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The Teichmfiller space of a marked Riemann surface S, of finite conformal type (g, n) 

with signature or of a finitely generated Fuchsian group of the first kind representing S, 

was shown to have a complex structure by Ahlfors [3] (see also Rauch [23]). Bers [7] later 

showed that  it could be embedded as a bounded domain in the space of bounded quadratic 

differentials on S; this space has dimension 3 g - 3  §  The Bers embedding of the Teich- 

mfiller space lends itself naturally to questions about the boundary. In a two part, almost- 

joint paper, Bers [8] and Maskit [20] systematically examined that  boundary. In particular, 

Bers showed that  totally degenerate Kleinian groups are represented on the boundary. 

A totally degenerate Kleinian group has a region of discontinuity which is connected and 

simply connected. Using his deep construction techniques, Maskit gave an exhaustive list 

of those pathologies which might be expected to occur on the boundary and showed that  

they do indeed occur. We shall s tudy those groups which are not pathological, in a sense 

to be defined in w 1, and are called regular. This class coincides with Bers' non-degenerate 

non-quasi-Fuchsian groups and Maskit's groups giving complete factorizations of S. Re- 

gularity is a planar concept although we will show in w 7 that  regularity is equivalent to 

geometric finiteness. 

Since we will need to refer on many occasions to the earlier papers in this series, Bers 

[8] will be denoted B-I and Maskit [20] will be denoted B-II. 

The class of non-pathological boundary groups has been studied constructively by Maskit 

[20] and using the structure of their associated 3-manifolds, in the torsionfree case, by Mar- 

den [19] and Earle and Marden [12]. The techniques used in the present work are two- 

dimensional and non-constructive. They involve conformal and quasiconformal mappings 

and plane topology, although much of the work draws deeply, if not directly then in spirit, 

on the work of Maskit. Related studies in the space of Fuchsian groups have been conducted 

(i) This work has been partially supported by a grant from the National Science Foundation. 
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by Harvey [15]. Bers [10] has recently examined a compactifieation of the Riemann space 

using a concept of partition of a compact unmarked surface. 

Theorems 1 and 5 show that  the theory of regular b-groups is coextensive with the 

study of proper partitions of finite hyperbolic Riemann surfaces. Theorem 1 shows that  

any regular b-group induces a proper partition. Theorem 6 shows that  any proper parti- 

tion of the surface S may be realized on the boundary of the Teichmfiller space of S. This 

is exactly the existence of simultaneous uniformizations of properly partitioned Riemann 

surfaces or, in Bers' terminology [10], for Riemann surfaces with nodes. The uniqueness 

theorem for the uniformizations is corollary to Theorem 4. 

Theorem 2 is a technical theorem on the limit sets of regular b-groups and it enables 

us to prove that  the limit set is locally connected and of zero area. 

In w 5 and w 6 we examine deformations on the boundary of Teichmfiller space. In parti- 

cular we show that  there are partially degenerate groups on the boundary of the Teieh- 

mfiller space T(S) of S if dim T(S) > 1. 

Throughout the course of this work I have immeasureably profited from conversations 

with Lipman Bers. I should like to express my thanks to him and the other participants 

in the "Kleinian year"  at the Mittag-Leffler Institute, where much of this work was ini- 

tiated. 

w 1. Preliminaries 

A b-group is a finitely generated Kleinian group G with a simply connected eompo- 
G . . 

nent A = A(G) of its set of discontinuity ~(G). We denote by g: A-~S the projection onto 

S=A/G. If  there are two invariant components G is quasi-Fuchsian. If A =s then G 

is totally degenerate. 

If  G is a Kleinian group an element ~ of G is called primary if ~n =~ has no solution in 

G for n ~: • 1. If  ~ is a primary parabolic element of G generating a subgroup G1, then a 

topological disc B is called a horocycle for G1 if ~ ( B ) = B  for ~EG 1 and ~?(B)N B = ~  for 

E G - 6/1. A b-group G is called regular if it is neither quasi-Fuehsian nor totally degenerate 

and each primary parabolic transformation in G has two disjoint horocycles. If the hero- 

cycles of ~ do not lie in A(G), then ~ is called an accidental parabolic trans/ormation. 

Let S be a connected compact surface with the assignment at a finite number of 

points z, of integers n,~>2 or the symbol 0% for 1 <i<m. S may be given a complex struc- 

ture so that  it is punctured at  every point carrying the symbol co and has local parameter 

t lint at points marked by n,. The hyperbolic (or Poincare) area of S is 

A(S) = 2 ~ [ 2 ( g -  1) + ,=1 ~ (1 - l /n,)] ,  (1.1) 
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where g denotes the genus of S. The area of a finite union of disjoint connected Riemann 

surfaces is the sum of the areas of the individual surfaces. 

A marked sur/ace is a pair consisting of a surface together with a distinguished set of 

generators of the fundamental group of the surface. A marked sur/ace with signature is a 

system (S, ~1 .... , an) where S is a surface with signature and zr 1 ~i<~n, is a system of 

curves (simple loops or slits) on S determining a cover of S by a simply connected domain 

which respects signature. If S is not assigned integers at any point, this reduces to a marked 

surface. By abuse of language, we call the marking with signature an extended marking. 

A conformal map ! of A onto the upper half-plane U conjugates G into a Fuchsian 

group H of the first kind. H is called the Fuchsian equivalent (or model) of G. If ? is an ac- 

cidental parabolic transformation, ~ =/~/-1 is hyperbolic. The non-Euclidean straight line 

connecting the fixed points of ~ is called the axis A~ of ~ in U. A r =/(A~) is called the axis 

of ? in A and z~ v is called the closed axis of ?. z~  is a Jordan curve intersecting A(G) 

exactly in the fixed point ?. z~ v is a quasi:circle since Av is analytic and is differentiable at 

the fixed point of ?. If ~ is the natural projection zt: ~ ( G ) ~ ( G ) / G  and ? is an accidental 

parabolic transformation, then ~e(Av) is a curve (not necessarily simple or a loop) on A/G 

called a pinched curve. 

For any subset D ~  C, we denote by GD the stability subgroup of D, the subgroup 

{? fig Iy(D)= D}. The stability subgroup of a parabolic fixed point is either infinite cyclic 

or a non-trivial finite extension of a cyclic group. In the latter case the stability group is 

called a phantom group. By abuse of language we also Call phantom the Fuchsian equivalent 

of a phantom group. 

The classification of elementary groups yields that  phantom groups are all isomorphic. 

The elements of infinite order form a cyclic subgroup. The remaining elements of the group 

fall into two conjugacy classes, consisting of elements of order'two. 

w 2. Regular b-groups and proper partitions 

Let S be a topologically finite orientable surface. Let  xe: U ~ S  define a covering of S 

by a simply connected domain U which is ramified over each point z~ of index n~. A closed 

curve ~ determines a conjugacy class [7] of elements of G. :r is said to be admissible if each 

determined by ~ is primary in G and each component R of ~r-~(:r is a crosscut of S stabi- 

lized by the normal subgroup N~(?) of G generated by some ? E [?]. If  each ? in G deter- 

mined by ~ generated a subgroup <7> which is self-normalized in G, then ~ is homotopic, 

ally nontrivial simple loop on S' = S - { z  1 ..... z~}. If ~ENa(?) -<?>,  then ~ i s  of order two 

and cr contains ~(~), where ~ is the fixed point of ~1. Since G is discrete and is isomorphic 
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to a Fuchsian group, Na@) is either <?> or a phantom group. In  the lat ter  case the impres- 

sion of a is a slit connecting two distinct points marked by  the number  two. a covers the 

slit twice. 

I f  {a i .. . . .  an} is a collection of pairwise disjoint admissible curves on S, S -  Lit at is 

a finite collection of finite surfaces, S x ... . .  Sk, with signature. P = {$1 .... .  Sk) is called the 

proper (topological) partition induced by {a 1 ..... an}, if each St, as a surface with signature 

can be given the complex structure of a hyperbolic Riemann surface. The above condition 

on St is equivalent to 

2g, + rt + ~' (I - lind) ~> 2, (2.1) 
t~ 

where gt is the genus of St, r, is the number  of ideal boundary components of St, and Z '  

is the sum taken over those points contained in St. 

We note several obvious facts for future reference. A surface S of finite eonformal 

type admits a proper nontrivial parti t ion in precisely those cases where S is hyperbolic 

and the Teiehmfiller space of S has positive dimension. We assume {al ..... an} induees a 

proper partition of S, and ~s is an admissible curve on S, ~j N a, = 0  for i #] ,  which deter- 

mines the same conjugacy class in G as does aj. {~j, a,  .. . . .  ~j ..... an} then induces a proper 

parti t ion of S, (as usual, the symbol " denotes deletion of a t from the list) and we call the 

induced partitions equivalent. This relation on partitions extends to an equivalence rela- 

tion on partitions and we again call two related partitions equivalent. Any set of admissible 

curves inducing a proper partition of S is equivalent to a set whose curves are pieeewise 

analytic. 

A topologically finite surface S may  be eompaetified by  adjoining to S one point for 

each ideal boundary component. We call the resulting surface ~. 

LEMMA 1: If  S is a Riemann surface of finite conformal type and {al ..... on} induces 

a proper partition of S, each curve o/which is piecewise analytic then there exists a piecewise 

analytic closed curve fl on ~ with the following properties: 

(i) S - f l  is simply connected, 

(ii) if at is a simple loop, at N (S - f l )  is a single open Jordan arc, 

(iii) if at is a slit, then its impression is contained in ft. 

Proof: We have noted above tha t  S is hyperbolic and of finite type,  hence there exists 

a Fuchsian group Q, finitely generated and of the first kind, so tha t  U/Q is eonformally 

equivalent to S, where U is the upper half-plane. Let  zt: U ~ S  be the natural  projection. 

We denote by D the Dirichlet region for the action of G on U and based at  the point i. 

Let  fll be the boundary of D in 0 .  fll projects to a closed pieeewise analytic curve on ~, 
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hence on S. fll intersects the lift of any  admissible curve in either a finite set of points, 

and/or in a finite set of common subarcs. By an arbitrarily small shift of  basepoint, we may  

assume tha t  the lift of a simple loop ~t intersects fll in a finite set of points, none of which 

is a vertex of D. Let  (~i . . . . . .  ~ be a list of the components of the intersection of D and 

the lift ~-~(~) of the simple loop ~t. Each a~ is a cross-cut of D going from one side a of D 

to side b. Side a is paired by some element ? in G with ?(a) which is also a side of D. Choose 

a piecewise analytic open Jordan  arc c from side s to side b, not intersecting g- l (  (jcci) and 

separating ~ ,  from tha t  a~j which contains ~(a). D - c  has two components D 1, containing 

a~,, and D2., containing a~. D ' = / ) 1  (JT(D~) is a simply connected fundamental  set. for G 

with piecewise analytic boundary. We thus reduce the number  of components of 

D _~-1( (j  ~ )  by  one. The process may  be repeated until we find a simply connected funda- 

mental  set, again denoted D, whose boundary projects to a curve fl~ satisfying (i) and (ii). 

We must  now show how to modify the curve f12, or alternately the fundamental  set, 

the projection of whose boundary f12 is f12, to satisfy (iii). We now assume at is a slit. Any 

subarc of ~-~(a~)~ D may  be used to split D as above, and we may  sequentially obtain a 

fundamental  set, whose interior does not contain such subarcs. The boundary of this 

fundamental  set projects to a curve satisfying the conditions of the lemma. 

We will now prove a basic theorem about  regular b-groups and explore some of i t 's  

consequences. 

THEOREM 1: Let R be the set o/axes o/ accidental parabolic trans/ormations in a regular 

b.group G. Then there is a one-to-one correspondence ~ between the components At o/A*= 

A -  [J (A r e R} and the components ~ o/ ~(G)--A so that G~f = G~i. 

Proo[: Let ~1 be a non-invariant component of G and G t its stability subgroup. Since 

G is not quasi-Fuchsian and ~1 is a Jordan  domain, [G; G1] = oo. 

Let  H be the Fuchsian model of G in L and H 1 the subgroup of H corresponding to G 1. 

Since both G and G 1 are finitely generated and U/H 1 is of infinite area, the Dirichlet region 

D of H 1 has at  least one free side. That  D has a finite number  of sides is a classical theorem 

of Nielsen (see Marden [17]). I t  follows tha t  U/H 1 is the interior ~0 of the bordered Rie- 

mann  surface E =[U U (O(H1)N It)]/H 1. Let Z '  be Z with its ramification points deleted. 

Further  let ~ be a simple loop on Z '  fl Z ~ which is retractible in Z '  into a border compo- 

nent. ~ determines a conjugacy class of hyperbolic elements of H 1 represented say by  ~. 

is also determined by the border curve, which implies tha t  H 1 is discontinuous on 

I t - ( r l ,  ra} where rl and r2 are the fixed points of ~. Under the given isomorphism of H 

with G, we claim tha t  the ~ E G corresponding to ~ is parabolic. 
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I f  it were loxodromic, then we would continuously extend the conformal map  /: 

L-~A, giving the Fuchsian model, to the fixed points of ~. These points, together with the 

image under / of the axis of ~ and the axis of ? in ~1, form a Jordan curve, J .  J intersects 

D~I in two points. We consider the arc C 1 of 8~  1 containing prime ends of A which are 

images under / of C. C I contains fixed points of elements of G 1 since ~ 1  =A(G1) (Abikoff 

[1], w 1). In  particular, in any  neighborhood of a point 2 E C 1, we can find points equivalent 

to points in ](D). When we pull these points back to L, we contradict the discontinuity 

of H 1 on C. We have shown tha t  y is an accidental parabolic transformation. 

W e  next show tha t  if ~=~tH,(A~) where 7 is an accidental parabolic transformation 

in G1, then ~ is retractible in Y.' N •0 to a border curve of Z. A? does not separate A(G1) 

hence there is a subarc C of t t  minus the fixed points of 7 on which H 1 is discontinuous. 

is retractible into nn,(C). 

Let  K 1 be the convex hull of A(H1) in U. By the above reasoning together with the 

fact tha t  axes of accidental parabolic transformations are pairwise disjoint (B-II  Lemma 1), 

we have K1 ~ is a component of A*. 

K ~ is H 1 invariant, hence GI(K,* ) = G  r We have given an injection yJ from the compo- 

nents of ~ ( G ) - A  to the components of A*. 

We show tha t  y~ is a surjection. The A~ E R fall into finitely many  equivalence classes 

and are determined by parabolic elements 71 ... . .  ? ,  of G which are accidental with respect 

to A. Let  A 1 be the axis of 71 which corresponds to 71.71 has two horocycles, one on either 

side of A 1. By definition of R, one of the horocycles must  be induced by  a horocycle on a 

non-invariant component ~1 of G. By definition of regularity, ?1 must  have another  horo- 

cycle. Thus there is another component ~ of ~(G) left invariant  by 71. a~V(~l) and 8~v(~2) 

both contain A1. 

Choose a point z 0 in A*, and suppose C is the hyperbolic geodesic in A connecting z 0 

and some point z 1 in ~(~1). C crosses finitely many  elements of R, and we may  use the above 

argument  inductively to show tha t  each component of A* crossed by C lies in the image of 

~p~ The proof of the Theorem is complete. 

COROLLARY 1: I] G is a regular b-group with accidental parabolic con]ugacy classes 

[Yl], ..., [?k], then {~r(Ark ) .. . .  ,~r(Ar,)} is a ]amily o/ admissible curves defining a proper 

partition o/A/G. 

Proo/: R is a G-invariant union of crosscuts of A. Each A v E R, which does not pass 

through an elliptic fixed point, projects to a simple loop on S =A/G. If A~,E R passes 

through an elliptic fixed point then ? is normalized by  a phantom group and zr(Av) is a 

slit. Thus {~(A~,) ... . .  ~r(Arn)} is a family of disjoint admissible curves on S. 
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I t  remains to show tha t  each component S, of S -  I.J~(Av) satisfies (2.1). S,=A/GA,  

which is homeomorphic to s By Ahlfors Finiteness Theorem ~ i/Gn, satisfies (2.1). 

COROLLARY 2: I] ~ and ~ are noninvariant components o~ the b-group G and 

~ ~ ~2~, then ~ is the ]ixed point o] an accidental parabolic trans/ormation. 

Proo/: Since 2 is an accumulation point of orbits under Ga, and Gn,, A l=~- l (~a )  

and A~ =~P-~(~2) have :t as a boundary point. A 2 must  lie in a single component  of C-/~1.  

But  any  boundary curve of A 1 is the closed axis of an accidental parabolic transformation 

~,. Hence/~1 N A~ can consist at  most of A v and 2 must  then be the fixed point of ~. 

w 3. The l imit  sets of regular  b-groups 

We give a classification of limit points of regular b-groups and use it to show tha t  the 

limit set has zero area and is locally connected. 

TI~EOREM 2: I /  G is a regular b-group with oo E~(G) and )lEA(G) then either: 

(i) there exists a non-invariant component ~1 o/~2(G) such that ,~ EO~ 1, or 

(ii) there exists an accidental parabolic trans/ormation 7 E G and a sequence (~n) ~ G such 

that i/ Ar is the (closed) axis o/ 7, then ~n(Av) is a spherical nest about ,~ and 

diam (yn(A~)) ~0 .  

Proo/ o/ Theorem 2: We use the Fuchsian model H for G. Le t / :  U-~A be the conformal 

mapping conjugating H onto G. We assume :t does not lie in the boundary of any  non- 

invariant  component of ~(G) since each such boundary is a quasi-circle (B-II). I t  follows 

tha t  :t lies in a prime end of A whose preimage in U under ] is defined by a nested sequence 

of crosscuts corresponding to accidental parabolic transformations in G. I t  follows from 

Theorem 1 that  there exist only finitely many  non-conjugate accidental parabolic trans- 

formations in G, and therefore we may  extract  a subsequenee of crosscuts ~ which are 

images of a fixed crosscut ~0 under the maps ~ E H./(~0) together with the fixed point of 

y =]-~ o~o/. the accidental parabolic transformation whose axis is ](&0) is the (closed) axis 

A v of y. I t  is trivial tha t  ~,~(Av) nest about  ~t if ~n =]-1~176149 

If  diana v~(Av) does not converge to zero, we can find a subsequence, again denoted 

yn(Av) , for which the diameters remain greater than  some e >0.  Since vn(Av) accumulates 

only at  limit points, we may  conjugate G so tha t  o~ lies in the invariant  component with- 

out affecting the uniform positivity of the diam ~,~(Av). Thus we may  assume y~ 1(co)E A. 

Since v ~ ( A v ) = ~ k ( A v )  for kEZ, we may  assume ~1(oo) lies in a fixed fundamental  set 

for the cyclic group generated by ~. By definition of accidental transformation, horocycles 

1 5 -  752904 Acta mathematica 134. Imprim5 le 2 0 c t o b r r  1975 
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for ~ lie in non-invariant components, hence the poles of the 7 .  are uniformly bounded 

away from the fixed point of ~ hence from A v. I t  follows from standard arguments tha t  a 

subsequence of the Fn converge uniformly to a constant on A v, which contradicts the as- 

sumption tha t  diam ~(Av)  >e. 

The description of limit points of regular b-groups given in the previous theorem enables 

us to quickly show tha t  regular b-groups have limit sets of zero area, using the Koebe. 

Maskit Theorem [21]. 

COROLLARY: I] G is a regular b-group with oo Es then the limit set o /G has zero 

a r e a .  

Proo/: The classification of limit points given in Theorem 2, decomposes A(G) into 

two subsets. The first consists of those ;t EA(G) which lie in the boundary of a non-invariant 

component. Each such boundary is a quasi-circle, hence of zero area. That  there are count. 

ably many  such quasi-circles in A(G) is shown in Abikoff [1]. 

The limit points of G not lying on the boundary of a non-invariant component form 

the relative residual limit set Au(G, A). The accidental parabolic transformations ~, the 

images of whose axes nest about  some 2EA~(G, A), may  be chosen from a finite list since 

there are finitely many  eonjugacy classes of such ~. To show A(G) has zero area, it there- 

fore suffices to show tha t  for one such ~, 
co 

A r = {2 E N In t  y.(Ar): y .  e [y.] E G/<y>}, 

where <y> is the group generated by y. As noted in the proof of Theorem 2, we may  assume 

tha t  the poles of the y .  lie at  a uniformly positive distance from A v. While this is not pre- 

cisely the hypothesis of the Koebe-Maskit Theorem, the proof may  be repeated verbat im 

to conclude tha t  A v has zero area. 

We have shown tha t  the metric structure of A(G) is a rather  simply consequence of 

Theorem 2 and known techniques. The next  theorem shows tha t  its topological structure 

follows in the same fashion. 

TH~ORV.M 3: The limit set o /a  regular b-group ks locally connected. 

Proo/: Let G be a regular b-group. We examine the two possible cases given by  Theo- 

rem 2. 

I f  {~}-- N In t  y,(Ay) 

then either 

~. j(Ext Ay) or ~, j(Int  Av), 
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is a fundamental system of neighborhoods of 2 in C. Since the situation is symme- 

tric, we assume the latter. Xv intersects A(G) solely in the fixed point 20 of ~. If 

In t  A~ N A(G)=A is connected, its images under ~n~ yield the neighborhood system re- 

quired for local connectivity. So we must show A is connected. If not, there exist at least 

two components C 1 and C~ of A. C1 and C2 are closed in A and, at least one, say C 1, does 

not contain 20. I t  follows from the plane separation theorem (Whyburn [24, p. 108]) that  

there exists a Jordan curve J c I n t  AT, J separating C1 and C2. J is thus contained in 

~(G), hence in a single component of ~(G), but  every component of fl(G) is simply con- 

nected. This contradiction proves that  A(G) is locally connected at 2 E AR(G, A). 

If 2 lies on the boundary of a non-invariant component of f~(G) and A(G) is not 

locally connected at ;t, then 2 lies on a continuum of convergence of A(G); i.e., there exists 

a nondegenerate subcontinuum B of A(G) at no point of which is A(G) locally connected, 

(Whyburn [24, p. 19]). B must lie entirely in A(G) -An(G, A). If ~ is a non-invariant com- 

ponent of fl(G), then Of2~ N B is closed in B. We also have that  
0o 

B = (.J (B N 0~i ) ,  

where ~ ,  ranges over the non-invariant components of ~(G). Since no continuum may be 

written as the union of a countable number (greater than one) of disjoint closed sets, 

(Whyburn [24, p. 16]) there exist two non-invariant components say ~1 and ~ ,  such that  

B N ~ 1  N ~ 4:O. I t  follows from Corollary 2 to Theorem 1 that  if 21E B N ~ 1  fl ~ ,  then 

21 is the  fixed point of an accidental parabolic transformation. The following lemma shows 

that  A(G) is locally connected at such fixed points. I t  follows that  A(G) contains no con- 

tinua of convergence and is therefore locally connected. 

LE~MA 2: I/  2 is the/ixed point o /an accidental parabolic trans/ormation, then A(G) 

i.~ locally connected at 2. 

Proo/: Let ~'~1 and ~ 2  intersect exactly in the fixed point 21 of an accidental para- 

bolic transformation ~. Since ~ is a closed Jordan domain, i.e., topologically a closed disc, 

given any two sequences (z~), $(~n)=O~t with ~ ~n-~21 and z~-~21, there exist open arcs fl~ 

in ~ such that  fl~ N ~ = {$~, z~} and diam fl~-~0. Let ~ (respectively ~)  be a loxodromie 

fixed point on ~ (respectively ~ )  and draw a curve a connecting ~'1 and ~,  which ex- 

cept for endpoints lies in A. If 

~'~ = ~ ( ~ ) ,  
t z~ =~-n(~)  for nEN,  

and 

~n = ~ ] n ( g l )  f o r  neZ-{O}, 
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then as n-~ ___ oo, an-~t uniformly. If necessary by conjugation and passing to a subse- 

quence, we may assume ~tlE Int  C~ for all nEZ, where 

c~ = ~u ~_~u#~ u~. 

Since diam C~-~0, Bn = I n t  C~ is a fundamental system of neighborhoods of ~1" To prove 

the lemma it suffices to show that  the component of Bn N A(G) containing ~t 1 is a neigh- 

borhood of )t 1 in A(G). 

If Bn N A(G) is not connected then we may assume B~ ;I A(G) has infinitely many 

components, in particular more than four, since if not, we can forget those not containing 

~t, to obtain the required neighborhood. The proof now proceeds as for those )~ E An(G, A) 

using the plane separation theorem and we thus complete the proof of the lemma and of 

the theorem. 

COROLLARY: I /  G is a regular b-group and/ :  U-+A(G), then / has a continuous exten. 

sion to U. 

Proo/: I t  is simply necessary to cite several classical results. I t  is known (Whyburn 

[24, p. 111-112]) that  a plane region A, whose boundary ~A =A(G), is locally connected, 

has the property that  every boundary point of A is accessible from A. Since A is then a 

simply connected domain each of whose boundary points is accessible from A, it is a con- 

sequence of the theory of prime ends (Goluzin [13, p. 45]) that  any conformal map ] of 

the unit disc U onto A has a continuous extension to U. The proof of the corollary is now 

complete. 

w 4. Congruent regular b-groups 

The previous section dealt with the plane topological and metric properties of the 

limit set of a regular b-group. We now proceed to examine quasiconformal deformations of 

regular b-groups. In  Theorem 4, we will give precise conditions for two regular b-groups to 

be quasiconformally equivalent. For groups without torsion, the theorem has been proved 

by Marden [19]. 

In order to proceed, we must first formalize the concept of two regular b-groups that  

look alike. The relevant notion is that  of congruence. 

De/inition: Let G and G be regular b-groups with invariant components A and 

respectively. Let  (~1 ..... ~k} (respectively (~1, ..., ~k}) be the admissible curves on S = A / G  

(respectively ~ = A/G) defining the proper partition given by Theorem 1. G and G are said 
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to be congruent if there exists a homeomorphism/ :  S-+~, preserving extended markings, 

such tha t / ( a i )  = ~ .  

We note for future reference several immediate consequences of the definition. We 

not only obtain a correspondence between the non-invariant factors of G and G, but  we 

also see the manner  in which they are pieced together to form S and ~. Thus / lifts to a 

homeomorphism of ~ ( G ) ~ ( G ) ,  since factor congruence implies the topological equi- 

valence of S and S'.  / restricts to yield the topological equivalence of non-invariant factors, 

hence G and ~ are isomorphic as abstract  groups. I f  we assume tha t  the a~ and ~t are piece- 

wise analytic, then / may  be taken quasi-conformal on S, hence we may  lift to a quasi- 

conformal homeomorphism ~ of ~(G) onto ~(G). As corollary to Theorem 4, we will show 

tha t  [ extends to a quasieonformal mapping of C. 

We now introduce a normalization of quasiconformal mappings. Let  G and G be b- 

groups and H (respectively/~1) a non-invariant component subgroup of G (respectively 

G). I f  w is a quasiconformal mapping of C which conjugates H 1 into/~1, then w is called 

axis-normalized (with respect to H1) if, for each parabolic ? E H 1 which is accidental with 

respect to ~(G), w(Av) = A ~ _ I .  By projection to ~(H1)/H1, quasieonformal deformation 

of tha t  surface and then lift to ~(H1), it is clear that  every quasiconformal deformation 

of H 1 is equivalent to an axis-normalized quasiconformal deformation. Let  H 1 and H 2 be 

non-invariant component subgroups of G and assume there is a parabolic ? E H 1 A H 2 

which is accidental with respect to s Let  G be a b-group congruent to G and wf an 

axis-normalized quasiconformal mapping of C which conjugates H~ i n t o / ~ ,  for i =  1, 2. 

I f  Wl~Wl 1= W2~W ~ 1, then we may  assume tha t  wllA ~ = w~lA v. 

THEORV.M 4: I/  G and G are congruent regular b-groups, then there exists a quasicon. 

/ormal homeomorphism ~ o/C so that 

Proo/: The proof will have the following structure. A quasiconformal mapping ~: 

~ C conjugates G into G if and only if ~rqt~ -1 ~-1 =7~ , where 7~, i = 1  ..... A r is a system of 

generators of G and {~,} is a system of generators of G. Each 7, (respectively 4,) either 

stabilizes zero, one or two non-invariant components of G (respectively (~). Let  F be a 

fundamental  set for the action of G on A given by  a lift of S - f l ,  fl as in Lemma 1, to a con- 

nected subset of A. We assume co E F. F has a finite number  of sides and intersects finitely 

many  axes of accidental parabolic transformations. I t  is classical tha t  the transformations 

71 .... .  7N pairing the sides of F generate G. Let  ~ ..... ~k be the non-invariant components 

of ~(G) corresponding to the components F A A* as in Theorem 1. Let  G t=S tab  ~ t  for 
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i ~<K. A generator n~ either lies in G, for some i < K  or maps some ~1~ into ~ . ,  with i, i' <.K. 

Thus to show ~ conjugates G onto G is equivalent to showing 

(1) ~ conjugates Gt into G~ for i<~K, and 

(2) if ~/~(~)=~,,,  for some i, i ' ~ K  then dT~-~  = ~ f  ~ t':l~.. 

The proof consists of globally modifying a fixed mapping successively to satisfy (1) 

and (2). The modifications take place in a complementary component of a closed axis of 

an accidental parabolic transformation. The axis is a quasi-circle and is a removable singu- 

larity for quasieonformal mappings. The modifications must be performed infinitely many 

times but  are defined on finitely many complementary components of closed axes, and 

then extended by elements of G to the other complementary components. I t  then follows 

from normal convergence of uniformly quasiconformal mappings that  the limit mapping 

is quasiconformal. The method is algorithmic. 

Modi[ication 1: We assume that  we have an axis-normalized quasieonformal mapping 

gj so that  gjHjgi  I = ~ j  where Hj (respectively /Jj) is the group generated by G 1 ..... Gj 

(respectively G1 ..... G j). We seek a quasiconformal mapping Gt+ 1 such that  gj+IHj+lgj-+ 1 = 

/JJ+l. We may assume that  Gj+ 1 N Hj is a cyclic parabolic group, generated by a trans- 

formation ~ which is accidental with respect to A(G). Let  wj+ 1 be an axis-normalized map 

conjugating Gj+~ into Gj+ l such that  wj+~]A v =gi lA  v. 

Let D~ be the component of (~-A v containing ~j+~ and D 2 = C -  ~ and set 

[wj+l(z ) for zED x 
ho(z) "i 

[ gj(z) for z E D2 

The dilatation/~h0 satisfies I#~01 ~< max (i #w, +1 ], I JuaJ [ ) 

We now order the Hi+l-images A0n of Av so that  for nl <n2, A0n, is separated from 

Av by no more Hi+l-images of Av than A~n ' is. We now define a sequence of maps hn. 

Let  D 1 be the complementary disc of A0n ' containing V~=ll i J+~ tl~ and D2~ = C - D  1. Let  

= Ihn_l(Z) for z fi D 1" (4.1) 
hn(z) [~}nhn_lO~l(z) for z E D ~  

where 0n is the image of On in G under the isomorphism established by the given congruence. 

By the assumption of axis-normalization, h, extends to a quasiconformal map of C. (hn) 

is a sequence of mappings with I/~hn I~< I#h. I" Thus h,,---,.h were h is a quasiconformal map 

of c. 
To show that  h is the required mapping gJ+l, we must only show that  h~h-l(z)=~(z) 
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for each generator 7 of H~+~ and z ~ ( G ) .  For z ~ ( G ) ,  h(z)=hn(z) for n>~n o and by (4.1) 

we may assume 

h,~(z) =O,~hn_lOn(z ). 

A simple argument yields that  7 =On and we have shown that  we may find a quasieonfor- 

real mapping conjugating H~ into ~ .  

The second modification again gives us an algorithm for redefining g~ so that  it com- 

mutes with the generators 7 ~ G - Hz. We give the induction step. 

Modi/ication 2: Suppose H k < H  m <G where H m is obtained from the group generated 

by Hk and some of the generators of G in G -  H k. Let 7 be a generator of G, ~ E G - H  m. 

We denote by Hm+ 1 the group generated by H~ and 7. We further suppose g is an axis- 

normalized quasiconformal map of C conjugating H~ into H m. Under the correspondence 

established at the beginning of the proof, between non-invariant components of G and 

components of F • A* there are accidental parabolic transformations ~q, ~2 E H~ such that  

7 (Ext At, ) = I n t  Ar~. Since g is axis-normalized, we may assume 

 oglA , = g lad .  = go7 IA , (4.2) 

Let B be the doubly connected region bounded by Av, and Av,. Define hl(z ) = 
~ogoT-l(z ) for zETk(B) and kEZ. By (4.2) h i is continuous and injeetive. I t  has a con- 

tinuous extension to the fixed points of 7, hence is a homeomorphism of C. I t  is the limit 

of mappings/n with I/~fn I<~ [/~, I i.e., hence h 1 is quasiconformal. If 9~, denotes the set of 

axes, of accidental parabolic transformations ~ conjugate to ~1 in Hm+l, which are separated 

from Av, U Av, by n - 1 h~+~-images of Av, then h~ satisfies 

OoglA ~ =g]O(Av) =goO]A v for A v, O(Av)e9~ r (4.3) 

A similar argument yields the following induction step. Let  A~,, A~! E 9~ and suppose 

zj E Hm+ 1, zj(A~,) = A~ and h~_l satisfies 

Oh~j=~lA~=h~j~ilO(Av)=h,_~ OIA ~ for A~,O(A~) E ~ll~. (4.4) 

Define h~j(z) =~h~j lzik(z) for zET~ (Ext A~, N A~,) and kEZ. By the normalization (4.4) 

and continuous extension to the fixed points of zj, h~j is continuous. The dilatation of h~j 

is bounded by I~u~l almost everywhere since h~j is a limit of quasieordormal mappings with 

the given bound on their dilatations. 

The induction step is first performed for all pairs of axes in ~, .  The assumption (4.4) 

is then valid for 9~n+ ~ and we may continue. In the limit we obtain a quasieonformal map- 

ping h with I#nl ~< I#~1 i.e. which conjugates Hm+ 1 in to /~+1.  
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Since Hm = G for some m, the process terminates with a quasiconformal map @ satis- 

fying ~bqk -1 = G. 

Remarks: The proof of Theorem 4 given above, depends most heavily on one property 

of regular b-groups. The stability subgroups of non.invariant components have in some 

sense, disjoint actions. More precisely, there is a canonically defined set of quasicireles, 

the axes of accidental parabolic transformations, which split the action of the group. We 

have used this property in the following fashion: given two non-invariant component sub- 

groups with a common accidental parabolic transformation, we were able to simultaneously 

conjugate them, via a quasiconformal mapping, into two similarly situated subgroups. 

COROV.LARY: I /  G and G are /actor congruent regular b-groups, then any quasicon- 

/ormal mapping w: ~ ( G ) ~ ( G )  con]ngation G onto G, extends to a quasicon/ormal mapping 

o/(3 conjugating G onto G. 

Proo/: If ~b is as in the Theorem, then /=~b-Xow is a quasieonformal mapping of 

~(G) inducing a trivial automorphism of G, hence has a quasiconformal extension by 

Maskit's Extension Theorem [22]. w may then be extended to C by ~bo/. 

w 5. Convergence of quasi-Fuchsian groups to regular b-groups 

We next  give a constructive procedure for finding regular b-groups on the boundary 

of Teiehmiiller spaces. We first prove the following generalization of B-II, Theorem 12. 

If G is a finitely generated Fuehsian group of the first kind and P is a proper partit ion of 

U/G, we show that  there is a regular b-group HEOT(G) which realizes the partition P -  

in the sense of Theorem 1. We next  show that,  up to inner aut0morphism by elements of 

~ii[3c, all regular b-groups lie on the boundary of some Teiehmfiller space. For torison- 

free groups, the latter result has been obtained by Marden [18]. As corollary, we obtain a 

partial solution to a conjecture of Bers and the quasieonformal stability of regular b-groups. 

Stability is discussed in B-I. 

We first prove the following lemma, which we call the three point condition. 

LEM~IA 3: Let G o be a Kleinian group and (wn) a sequence o/homeomorphisms such that 

Z.(Oo) = O. =w,,Go(W.)-lc ~iiSc. We/ur ther  assume: 

(i) G. converges (in the sense o/generators converging) to a group H=Z(Go)C~j~fibc 

which is isomorphic to (7 0 , 

(ii) there is an open set Dc~, ,  on which w. is uni/ormly q ~ / o r m a l ,  



BOUNDARIES OF TEICHMT)LLER SPACES AND ON KLEINIAN GROUPS 225 

(iii) /or some zE D and ~ and ~, non-commuting loxodromic elements o/Go, 7(z) and ~(z) 

lie in D, 

then H is either discontinuous or non-discrete. Further, i / H  is discontinuous Hw(D)=Z(GoD) 

Proo/o/lemma: Since the dilatation of w,,lD is uniformly bounded, we may  choose a 

subsequence converging normally to a mapping w of D into C. I t  follows from Lehto- 

Virtanen [16, p. 74] tha t  w is either K-quasiconformal, constant or a mapping of D onto 

two points. We treat  each of these cases separately. 

I f  w is quasiconformal, then for each (E D N ~(G) there is a neighborhood N of w(~) 

in ~(G) such tha t  Wn(O- D) f) N = O for n sufficiently large. H is discontinuous in a neigh- 

borhood of $ since 

card {~eH: T(N) n N + O }  = card {TEG0: 7:(w-l(N) N w-~(N) :4:0} < '~. 

I t  also follows tha t  Hw(m =z(GoD). 

I f  w is the constant map w($) =c, then on the triple {z, ~(z), ~](z)} w, converges uniform- 

ly. I f  7,~=Z,~(7) and ~/, =gn(~), then 7 , . ~  and ~ / n ~  where ~, ~EH. I t  follows easily tha t  

~(c) =~(c) =c. Thus ~ and ~ have a fixed point in common. They do not commute since G 

and H are isomorphic. They are also of infinite order. The previous three statements are 

incompatible for elements in a discrete group of MSbins transformations. 

The last case may  be trivially dealt with. I f  necessary, by  removal of a finite number  

of points of D - { z ,  7(z), ~(z)}, we may  assume tha t  D has at  least two boundary points. 

I t  then follows from Lehto-Virtanen [16, p. 76] tha t  w(D) is connected and we then use 

the preceding arguments, to conclude tha t  H is either discontinuous or non-discrete. 

I f  S is a conformally finite surface with signature which is covered by  the upper half- 

plane U we have defined an admissible curve so tha t  a connected component of its lift 

to U is invariant under the normalizer of a eyche hyperbolic subgroup of the cover group. 

We will now give a definition of an open set associated to a family of admissible curves on 

which we may  support  certain deformations, of the surface S, which take us to regular 

b-groups on the boundary of the Teichmiiller space, T(S). Let a be a pieeewise analytic 

admissible curve on S. I f  a is a simple loop, a distinguished neighborhood of ~ is a tubular 

neighborhood K of ~ whose boundary is a pair of disjoint pieeewise analytic simple loops, 

each homotopie to ~ on S' = S - { z  1 . . . . .  zz}. I f  ~ is a slit with endpoints z~ and zj, a disting- 

uished neighborhood of ~ is a disc on S with pieeewise analytic boundary C and C sepa- 

rates z~ and zj from the other points at  which S is marked. In  either case the lift to U of 

a distinguished neighborhood of ~ has, as components, neighborhoods of the components 

of the lifts of a. 



226 WTtJJAMABIKOFF 

Let {al ..... a~} be a set of piecewise analytic admissible curves on S defining a proper 

partition of S. Let  K,  be distinguished neighborhoods of the a, having pairwise disjoint 

closures. K = U ;L1 K,  is called a proper neighborhood for the proper partition of S defined 

by  {al, ..., a~}. This terminology is justified by the next theorem. I ts  proof is for the most 

par t  due to Bers [B-I, Theorem 11], and states that,  up to homeomorphism, we m a y  rea- 

lize a proper parti t ion of a marked surface S = U/Go in terms of the orbit space ~(G)/G 

of a regular boundary group G of the Teichmfiller space T(Go). 

THEORE~ 5: Let G o be a finitely generated Fuchsian group o/ the first kind and 

{oq ..... an} a set o/ piecewise analytic admissible curves on S= U/G o de/ining a proper 

partition {S 1 ..... Sk} o /S .  I f  K is a proper neighborhood/or this partition, then there exists a 

sequence Gt o/quasicon/ormal de/ormations o/G o, G 1 = (w ~'') G0(uY'*) -1 such that: 

(1) supp /x tc~- l (K) ,  

(2) G,~GE~T(Go) (in the sense, say, o/generators converging) with G a regular b-group, 

(3) ~(G)/G =L/G o + ~1 +... + ~Q~: where ~ j is homeomorphic to S j and L is the lower hall- 

plane. 

Proo/: Each distinguished neighborhood K,  of one of the admissible curves, ~,, i.e., 

component of K, is topologically an annulus. The annulus contains a simple piecewise 

analytic homotopically non-trivial loop a~ in Kf. a~ determines a hyperbolic element of Go 

Let  K'~ be a tubular neighborhood of a'~ contsined in K,. The elegant argument,  due to 

Bers and cited above, shows tha t  we may  find a sequence of Beltrami differentials, so tha t  

(a) s u p p / ~ t c K ' =  UK~, 

(b) G~ = (w')Go(uC')-I~GE~T(Go) with an isomorphism Z induced by the conformal 

map u, =lira w~'lL of L, 

(c) if ),mEG 0 is a cover transformation determined by :tin, then ~m=Lim~_~ (w~')a • 

(w~q -1 E G is an accidental parabolic transformation. 

We now show tha t  each proper par t  of S appears - -up  to homeomorphism-- in  ~(G)/G. 

We consider S 1 �9 S 1 is homeomorphic (as a marked surface with signature) to S~' = ($1 - K) ~ 

Let  A be a component of ~-~($1"). On A, the maps w' are schlicht. We next  show tha t  A 

contains points z, 7(z), and ~(z) where 7 and ~/are non-commuting loxodromic elements of 

G 0. S* may  be given the conformal structure of a marked hyperbolic eonformally finite 

surface. As such the stability group of A is the cover group of a ramified cover of S~* 

with the obvious ramifications. Thus (Go) ~ is isomorphic to a finitely generated Fuchsian 

group of the first kind. In  particular (Go) A is a Fuchsian group which is not a finite exten- 
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sion of a cyclic group. In  tha t  case it is well-known tha t  (Go) ~ contains non-commuting 

loxodromic transformations. 

The conditions of Lemma 3 are thus satisfied and G is discrete since GEnT(Go) and 

such groups are b-groups. Thus (G0) A =Gw(A). Thus (wo~-l(S~))/G appears in the quotient 

and is homeomorphic to S 1. 

We next  complete the proof of (3) by  showing tha t  ~(G)/G has no other compo- 

nents save the base surface and those determined as above by  proper parts. Suppose ~1 

is a component of G which does not project into the proper parts defined above. G 1 = G~, 

is a finitely generated quasi-Fuchsian group of the first kind (see Abikoff [1]) and there is 

a loxodromic transformation :~ with fixed points ~1 and ~:~. ~ has a pullback ~, which is 

hyperbolic. If  the fixed points ~1, $~ of y lie in the boundary of some component of U = 

~z-~(K) then there exists another non-invariant component ~2 of ~(G) which is stabilized 

by ~. In  this case we may  find open Jordan arcs J1 and J~ lying in ~1 and ~2 respectively 

whose endpoints are ~1 and ~2- J=J1  U Je is a Jordan  curve in C -A(G)  both of whose 

complementary components contain limit points. This is impossible for a function group. 

If  the fixed points of ~ lie in the boundary of no component of U - ~ - I ( K ) ,  $1 and ~2 are 

separated, as boundary points of L, by  the axis A~ of the transformation ~ E Go, for which 

=w~w -1 is parabolic, w(Av) is a Jordan curve in A(G) and w(A,) meets A(G) in exactly 

one point, the fixed point of ~. w(Av) therefore cannot separate the fixed points ~ ,  ~2 of 

since $1, ~2 lie on the Jordan curve A(G1)~A(G ). But  it is also true tha t  w(A~) must  

separate ~ and ~2 since w ]L is schlicht. The proof of (3) is complete. 

To complete the proof of the Theorem, it remains to show tha t  G is a regular b-group. 

That  G is a nonquasi-Fuchsian b-group follows from Bers'  arguments. I t  is not totally 

degenerate since we have shown tha t  it has non-invariant components. We must  only 

show tha t  each parabolic element ~ of G has two disjoint horocyeles. I f  ~ is non-accidental 

with respect to A(G), then w-l~w =~ is parabolic and has two disjoint horocyeles, B 1 and 

B 2. The maps w "~ are schlicht on B 1 and B 2 as is the limit map w. We will need the follow- 

ing ]emma. 

L~MMA 4: Under the conditions o] Theorem 5, i /~  is a primary accidental parabolic 

trans/ormation with respect to A(G), then ~ is determined on A(G)/G by an admissible curve 

equivalent to one o/ the admissible curves de/ining the given partition o/S.  

Proo[ o/Lemma 4: We assume the s ta tement  is false and the curve a is a geodesic. 

We consider the intersection number  of a and any  admissible curve aj defining the given 

partition. We may  also assume that  each a s is a geodesic. We denote by a* an arbi t rary 



228 V~II~LT A M .ABIKOFF 

connected lift of a to A(G), and a~ a connected lift of gj. Up to sign the intersection num- 

ber is then realized in the number  of intersection points of a* and Ga~. 

I f  a* N a~ = O  for every lift of every ~j, then ~ lies in some proper part  St, and on St 

is not homotopic to a power of a boundary curve. ~ thus lies in the stability group of a 

non-invariant component ~1 of O(G). G 1= Go, is quasi-Fuchsian hence contains no para- 

bolic transformations which are accidental with respect to either of its two components. 

Since ~ is not equivalent to a boundary curve of St, ~ must  be loxodromic, contrary to 

hypothesis. 

a* and a~ can intersect in at  most one point. 

We now assume a* fl a~ = {z0}. The closures of a* and ~ are Jordan  curves a* and a* 

respectively. I f  ~ is the axis of ~j 6 G, then a* and ~* are the closed axes of ~ and yj respec- 

tively, and are crosscuts of A(G). I t  follows tha t  a* and a* intersect at  two points, z 0 and 

the fixed point z I common to ~ and ~j. Thus ~ and ~j lie in a cyclic subgroup of G, in which 

and ~j are primary. The assumption tha t  ~ and ~j are geodesic implies tha t  they have 

the same impression, hence the partitions {~, ..... ~,} and {a, ~1 .... .  &s ..... g~} are equi- 

valent. The proof of the lemma is complete. 

Continuation o/the proo/o/ Theorem 5: I f  ~ is accidental with respect to A(G), then 

Lemma 4 implies tha t  ~ is determined by  one of the admissible curves, say ~j. I t  also fol- 

lows tha t  there are Jordan curves, J1 and J2, invariant under ~, each contained except for 

the fixed point of ~ in distinct non-invariant components of f~(G). These curves contain 

disjoint horocyclic neighborhoods, and the proof of the Theorem is complete. 

THEOREM 6: Let G be a regular b-group with Fuchsian equivalent H, then there exists 

r] 6 ~'~Sbc so that 

~C~ -~ 6 ST(H). 

Proo/: I t  follows from Theorems 1 and 5, tha t  @T(H) contains a regular b-group 

which is congruent to G and such tha t  H is also the Fuchsian equivalent of G. I t  then fol- 

lows from the corollary to Theorem 4 tha t  G and (~ are quasiconformally equivalent via 

a map  w which is conformal on the invariant  component A of G. By composing w with a 

Mhbius transformation ~1, we may  assume w ( - i )  = - i  and w ' ( - i )  = 1. 

has been defined as the limit of a sequence of groups H , = v ,  Hv; 1. For notational 

purposes, we denote the induced isomorphism of groups defined by  a mapping / by ZI. 

In  this notation (~=Lim Z~,(H) the mappings vn of Theorem 5 converge to a conformM 

mapping only on L U (~  - g - l ( K ) ) .  In  the present context this is not sufficient; we must,  

by additional assumptions control the behavior of the v, on a dense open subset of ~(G). 
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We will alter the definition of G so tha t  each v, is uniformly locally quasiconformal except 

along the lifts to U of the curves al .. . . .  an on U/H. Let (Kt) be a sequence of proper neigh- 

borhoods of the admissible curves {al ..... an} so tha t  NK~= [.J~=l as. Let I~=:rr-l(K~). 

If  fn  is the dilatation of Vn, we assume 

{~ for zE(~- /~  1 
f n =  

for zEK~-Kn and i < n  

and tha t  f~ is chosen on Kn so tha t  Bers' argument,  as given in Theorem 5, remains valid. 

As before, Hn =y.~,(H) converges to a regular b-group, again denoted G, which is factor 

congruent to G. But  in this case v,~ converges uniformly on compact subsets of ~ * ( H ) =  

~ ( H ) - ~ r - l (  U aj) to a map v. We note that  this rather complicated s ta tement  is in reality 

no more deep than  the fact tha t  one may  map an annulus A = {0 < r I < l z  I < 1} onto a 

punctured disc via a homeomorphism which is quasiconformal off an arbitrarily small 

neighborhood of ] z [ = r r 

At any point z 0 E ~(G), v-l(zo) is well defined and v, .  v -1 has uniformly bounded dilata- 

tion at  %. We now preceed to define a sequence of groups Hn E T(H), which converge to 

G. by locally defining a dilatation f,(z).  Let  

fn(z)  = f w - i ( v . v ; l ( z ) )  

on a fundamental  set for ~ (H , )  -v,(Tr-l( (J aj)) and extend fn(z) to ~ (H , )  -v,(~r-l(  [J as) ) 

as a Beltrami differential for Hn, which defines fn  almost everywhere. For all n, ] t , I  < 

IlfwHoo< 1 hence there exist quasiconformal mappings w~ whose dilation is exactly fn(z). 

We of course assume an interior normalization for wn, i.e. w , ( - i ) = - i ,  w ' ( - i ) = l .  We 

claim tha t  on some subscquence, again denoted n, wn~w. If so it is clear tha t  H,  =wnHw; 1 

is a quasiconformal deformation of H and Hn">G. To prove the claim we note tha t  v'vn 1 

converges pointwise to the identity on ~(G) hence almost everywhere. Further,  

, , 7 " ( z )  
fn(Tn(Z)) = tin(z) ~ )  i f  7- = •vn(X) 

A ! A !  
but  Y--~X =Zvn(Y) hence 7 , - ~ 7 ,  hence 

f r - " p ' ( z )  

and f~ converges almost everywhere to #w_l. If  follows easily from an approximation 

theorem of Bers which may  be found in Lehto-Virtanen [16, p. 197] tha t  Wn~W, and the 

proof is complete. 
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We are now in a position to s tudy deformations of regular b-groups. The next  theorem 

proves a conjecture of Bers in the case of regular b-groups. Bers'  conjecture as states in 

[9] is: for any group G on the boundary of a Teichmiiller space T(H), one can find a com- 

plex manifold in ~T(H) of quasiconformal deformations of G which is isomorphic to a 

product of Teichmiiller spaces. To prove the conjecture in full generality, it would be 

necessary to prove this corollary for partially degenerate groups. 

COROLLARY 1: I/  H is a /initely generated Fuchsian group o/type (g, n) and whose 

limit set is I t  = R  0 {oo}, let S =L/H, where L the lower hall.plane. Let {S, ..... Sk} be a proper 

partition o / S  and G =z{H) be a regular b-group realizing this partition, i.e. S t is homeomor- 

phic to s ~/s, where ~lt is a non-invariant component o/~I(G). Then ~T(H) contains a 

complex mani/old o/quasicon/ormal de/ormations o/G isomorphic to [I~=1 T(f / JS tab  g/s). 

Proo/: If H represents a triangle group, it is quasiconformally rigid, hence has no 

boundary groups. If  H is of type (1, 1) or (0, 4), the stability group of each non-invariant 

component of G is a triangle group, the triviality of whose Teichmiiller space implies the 

triviality of the assertion. I f  

then any Beltrami differential Ps on S~ may  be lifted to a Beltrami di f ferent ia l /~  on 

7c-1(S~). We define 

z e~ - l (S* )  
P(z) ={ ~ '~(z) elsewhere 

p is a Beltrami differential for G. By solving the Beltrami equation with coefficient p we 

obtain a quasieonformal mapping w~ and a quasiconformal deformation X~(G)=GI= 

w~Gw~ 1. I t  is clear tha t  G 1 is a regular b-group and G1E OT(H) by Theorem 6. But  i~g(G) 

depends holomorphically on #, hence on g l (~r-l(S~)/G) q T(S~). Thus aT(G) contains a 

subset which has the complex analytic structure induced by the identification with 

1-]~=1 T(S~). Thus we have a canonically defined map 

k 

i: 1-I T(S~) ~ aT(H). 
~1 

To complete the proof of the theorem, it remains to show tha t  i is injective. Let  [p~] 

(respectively [v~]) be the equivalence class of Ps (respectively v~) in T(S*). If  i is not injec- 

tive then i([/~] ..... [/~k]) =i([vs] ... . .  [n]) with [vt] ~[#,]  for some i, i. e. w~Gw;l=w~Gw: 1. 

I t  follows tha t  [us] and [Ps] must  be equivalent under the Teichmfiller modular group F(S*) 

of T(S~). Since the modular group is discrete the mapping i is an immersion. To prove 

tha t  it is injective, it suffices to show tha t  is it univalent on each T(S*) since this deter- 
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mines the conformal structure of wg~,/wg(Stab ~,)w~_l. We may therefore assume/~(z) = 

v(z) =0 for zEC-n- l (S*) ,  wi, ~ w~ then gives a trivial deformation of G, hence, by Maskit 

[22], [#i] =[hi .  The proof is complete. 

We note for future reference that  the injection extends, again as an injection, to 

those boundary groups of T(ST) which are regular. These are b-groups with more loops 

pinched. 

The corollary above states that  there are many quasiconformal deformations of a 

regular b-group G in a small neighborhood of G in ~T(H). A simple dimension argument 

yields the next  corollary. I t  may also be obtained using the constructibility of regular b- 

groups (B-II) and the quasiconformal stability of constructible groups (Abikoff [2]). 

COROLT.ARY 2: A regular b-group is quasicon / ormally stable. 

w 6. Limits of deIormations on the boundary of Teichmiiller space 

and irregular b-groups 

We have in the previous section demonstrated the existence of injections of the Teich- 

miiller spaces of non-invariant component subgroups (or proper parts) of a regular b- 

group G into the boundary of the Teichmfiller space of the Fuchsian equivalent H of G. 

If the proper partition of S =A/G is induced by curves {a 1 ..... ~j}, we may perform further 

deformations of G by taking admissible curves {aj+ x ..... an} so that  {al ..... an} again 

induces a proper partition of S. In the same fashion as in Theorem 5, we may deform G 

into a regular b-group G' which is associated to the proper partition induced by {a~ .. . .  , an}. 

These are not the only limiting deformations which we may perform on regular b-groups. 

If ~ is a component of G, then Ga, = G~ may be deformed in it's Teiehmtillcr space into 

degenerate boundary point, i.e. there is a sequence (~)cOT(G1) converging to a totally 

degenerate boundary point G~. We next  show that  the injection i preserves degeneracy. 

More specifically, we show that  if (Gn)c T(G1) and O n t o  a totally degenerate boundary 

group of T(GI), then every accumulation point in ~T(H) of i(G,) is either partially or 

totally degenerate. The latter occurs if S~ is dense in S =L/H and the former if it is not 

dense, i.e. S has proper parts other than S~ in some partition. The proof, as usual, relies 

on Bers' proof of the existence of totally degenerate groups. 

THEOREM 7: Let G be a marked regular b-group with Fuchsian equivalent H and in- 

variant component A and let ~ i  be a non-invariant component o/ G. We /urther suppose 

S =A/G and S i =~i /Gi ,  G 1=Stab ~1 < Q, and T(H1) is a Teichmiiller space representing 

T(S1). I /HnE T(Hi) converge to a totally degenerate group [1 o/aT(Hi), then, under the in- 

jection i o/Corollary 1 to Theorem 6, a convergent subsequence of i(Hn) converges to a b.group 
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E aT(H}. -1/S 1 is the sole part o /S  in the partition induced by G, then G is totally degenerate. 

Otherwise G is partially degenerate. 

Proo/: We first note tha t  under the imbedding i: T(H1)--->aT(H ), i(T(H1) ) has a na- 

tural  boundary. I t  is not clear tha t  the boundaries of T(H1) and i(T(H1) ) are homeo- 

morphic, but both are compact. We also know that  every point on aT(H) hence on ai(T(H1) ) 

represents a marked b-group, which is group theoretically isomorphic to H and preserves 

markings. According to Bers, aT(H1) contains totally degenerate groups and we can choose 

a sequence [#n] E T(H1) converging to a point on aT(H1) which represents a totally de- 

generate group H. We assume that  the #n are Teichmiiller differentials, i.e. of minimal 

dilatation in their equivalence classes. The/~n may  be transported to i(T(H1) ) as in Corol- 

lary 1 to Theorem 6, and extended by 0 on C -GgZ r We maintain the no ta t ion /~  in i(T(H1) ) 

and choose a convergent subsequence, again denoted (/~n). This convergence is to be taken 

in the following sense. I f  we identify [~u,] and H~ as elements of T(H1), then i ( [ /~])= 

~I n E ~T(H) a n d / ] n ~ G  in the sense of generators converging. We denote the isomorphism 

o f / ~  and G by  Z~ and Z respectively. 

If  G has a non-invariant component ~2, not equivalent to ~1, then G2 = l im w~ x 

(Stab s w ~  is quasi-Fuehsian, since w,n i~s is conformal and the argument  of Lemma 3 

may  be carried over to show tha t  lim w~. [~s is schlicht. In  this case, G is either regular 

or partially degenerate. To prove the Theorem we must  show tha t  G~ = w~n (Stab ~2)w;~ is 

totally degenerate. To show tha t  ~1 is totally degenerate it suffices to show tha t  G1 is 

quasiconformally equivalent to /~. Let  n -1 G1 =w,,n(G1)w~, n �9 We will show tha t  there exist 

global quasiconlormal homeomorphisms ogn conjugating G~ into Hn and whose dilatations 

are uniformally bounded away from 1. I f  so by passing to a subsequence we may  assume 

w~ converge to a global quasiconformal homeomorphism o9 conjugating G1 in to /~ .  Let  B 1 

be the component of G 1 containing A, and Bn =w~,n(B1). The surfaces Bn/G~ are each quasi- 

eonformally equivalent to B1/G1, via maps/n-  

We claim tha t  the mappings/n  may  be chosen to have dilatations ~n uniformly bound- 

ed away from 1. I f  so, we may  lift v~ to B 1 and obtain a Beltrami differential v~ for the 

group G 1 on B 1. I f  D 1 = C - B1, the maps conjugating G 1 into G~ and into H~ have identi- 

cal dilatation/un on D r We consider the following diagram on the page 233, where [~ and 

~, are solutions of the Beltrami equations with the following dilatations: 

{ rn on B1 

/~ on D~ 

[0  on B~ 

~u~ = l~u. on D~ 
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Since w ,=~ . . ]~  1, the usual formula for the dilatation of a composition (see Ahlfors [4], 

p. 10) we obtain 

_ / 0  on Dn =Tn(D1) 
I -.I on 

Hence the claim is sufficient to prove the Theorem. We first reduce the claim to a tech- 

nical lemma. 

We examine that  component A1 of A* which is stabilized by G 1. A/G x is a finite bor- 

dered Riemann surface. B1/G 1 may be obtained from A~/G 1 by adjoining a finite number 

of disjoint closed punctured discs. The mappings w,n are conformal on A~, as are the map- 

pings ~,. The surfaces Bn/G= and ~(B1) /H 1 are therefore quasiconformally equivalent via 

maps which are conformal except on a finite number of punctured discs with disjoint 

closures. Under these circumstances, the next  lemma asserts that  the surfaces B~/G= are 

quasiconformally equivalent under mappings whose dilatations are uniformly bounded 

away from 1. 

LEMMA 5: Let/:  SI--->S 2 be a quasicon/ormal homeomorphism o/the marked/inite Rie- 

mann sur/aces S x and S~ with signature which preserve the extended markings. For each punc- 

t~tre zi, 1 <~i <~k on S 1 let N~ be a punctured disc on S 1 whose boundary in S 1 is a quasicircle 

and such that the puncture corresponds to z~. We assume that the neighborhoods Ni  have dis- 

joint closures, and that/1($1 - U ~=1 N ~) is con/ormal. Then. there is a quasicon/ormal mapping 

g o / S  1 onto S 2 again preserving markings such that: 

(1) g-1. / is homotopic to the identity on S 1. and, 

(2) sup [/z~(z)I <<.C where C depends only on S 1 and / I  ($1-  U~=I N1). 

Proo/: We first reduce the problem to a problem on quasiconformal mappings of 

closed discs with given boundary correspondences. 

For each i, let fit be the boundary curve of N, and fl~ be a quasicircle in S x - U~=I N, 

such that  fl, and fl', bound an annulus R, on $1, which contains no ramification points. The 

16 - 752904 Acta mathematica 134. Impr im6  le 2 0 c t o b r r  1975 
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R~ are taken with disjoint closures. I t  follows that  R~ U Nt =2~ is also a punctured disc. 

L e t / i  denote ] I N~" ]~ is thus a quasiconformal mapping of a closed disc onto another closed 

disc, which is eonformal in a fixed neighborhood of the boundary quasicirele and maps z~ 

into a given point ](zt). Let  g~ be a quasicon/ormal mapping of N~ onto/(N~) with the same 

boundary correspondence as/~, g(z~)=](zt) and having minimal dilatation. We claim that  

I/zo~l ~< C~ where C~ depends only on the values of / along the curve fl~. If so set 

g( z )  = l ( z )  on S l -  ~=,U N~ 

[gt(z) on N~ for l<~i<~k 

g then satisfies (1) and (2). 

By composition with eonformal mappings we may assume N~ and ](N;) are both the 

upper half-plane. The claim is then equivalent to the following. 

LEMMA 6: Let h be an Ahl/ors-Beurling /unction (Ahl/ors [4], p. 63//)  z o a given point 

in U and K a compact set in U. Then, /or  each z 1 in K,  there is a quasicon[ormal mapping 

w: U ~ U  so that W(Zo)=zl, w l R = h  and I/~wl ~<C<I where C depends only on g and h. 

Proo[: Let K I ~  ~ K s ~  ~ K  U (z0} with K t and K s open rectangles and ~ D denotes 

contains compactly. A recent theorem of Carleson [11] states that  we may find a quasi- 

eonformal mapping of U with the boundary values given by h which is pieeewise linear 

and is the identity on any compact subset of U. The dilatation of the Carleson mapping 

depends only on h and the compact set. Let  w 1 be a Carleson mapping with boundary val- 

ues h and which is the identi ty on K x. Since both zo and K lie compactly in Ks, for each 

z 1 E K there is a piecewise linear quasiconformal mapping w2 of K 1 which is the identity 

on aKx and has dilatation bounded by a constant independent of the choice of z 1 in K. 

Set 

= f w  1 on U - K  1 
w 

I . w  s o n  K 1 

w satisfies the requirements of the lemma and the proof of the theorem is complete. 

w 7. The geometric finiteness of regular b-groups 

Various authors have proposed definitions of those non-quasi-Fuchsian b-groups 

which arc in some sense non-singular. The original definition given by Bers [8] is that  of 

non-degeneracy which is based on the hyperbolic area of the quotient surfaces. Maskit's 

notion of non-singularity, given in B-II,  is that  of a b-group yielding a complete factoriza- 
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tion of the  base (marked)surface. Marden [19] (also Earle and Marden [12]) uses the con- 

cept of geometric finiteness to distinguish the class of non-singular finitely generated tor- 

sion-free Kleinian groups. Various other analytic and topological properties of regular b- 

groups may be found in B-II. The equivalence of the concepts of regularity and non- 

degeneracy for non-quasi-Fuchsian b-groups follows easily from B-II. We will next  show 

that  geometric finiteness and regularity are equivalent for non-quasi-Fuchsian b-groups. 

We recall that  a Kleinian group is called geometrically/inite if it has a finite sided Dirich- 

let fundamental polyhedron (see Marden [19] and Beardon and Maskit [6]). 

THEOREm 8: A non-quasi.Fuchsian b-group G is regular i/ and only i/ it is geometri- 
cally/inite. 

Proo/: The proof given here is based on a characterization of geometrically finite 

Kleinian groups, given by Beardon and Maskit [6]. We recall several of the pertinent de- 

finitions and theorems from their paper. If G is a Kleinian group, 2EA(G)is  a point 
o/ approximation of G if there exists some zE~(G) and a sequence (Tn) in q so tha t  

17n(z)-7n(2) I >~C>0. A parabolic fixed point z is said to be eusped if: 

(i) each primary parabolic transformation in G fixing z has two horocycles, or 

(ii) the stabilizer of z is not a finite extension of a cyclic group. 

We note that  case (ii) does not occur in b-groups. A Kleinian group G is geometrically finite 

if and only if each limit point is either a point of approximation or a cusped parabolic 

fixed point. Parabolic fixed points are not points of approximation. 

We assume G is a geometrically finite non-quasi-Fuchsian b-group. Greenberg [14] 

(see also Marden [19]) has shown that  G is not totally degenerate. I t  then follows from (i) 

tha t  G is regular. 

To prove the converse, we first note that  by definition of regular b-group, condition 

(i) is satisfied by each parabolic fixed point. To discuss the other points of A(G), we need 

the description given by Theorem 3. We assume ~ E~(G). If X lies in the boundary of no 

non-invariant component of ~(G), then there exists a closed axis Av of an accidental para- 

bolic transformation 7EG and a sequence 7~EG so that  7~1(A~) and 7n(2) lies in a fixed 

complementary component B of A~. ]Tn(Jt)-Tn(z)] has a positive lower bound unless both 

7.(~) and 7n(z) have subsequences converging to the fixed point of 7. I t  is clear tha t  the 

set of maps of A~ into 7~1(A~) is exactly Bn = {7~17k] k E Z} hence there exists some ~n E B~ 

so that  ~n(z) lies in the Ford fundamental region for the group generated by 7. Since z E A 

so does ~=(z), but the points in the Ford region for 7 near the fixed point of 7, lie in hero- 

cycles for 7- As 7 is accidental with respect to A, these horocycles lie in non-invariant corn- 
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ponents.  Thus  ~n(z) does not  converge to  the  fixed point  of 7 and  ]~n(~t)-~n(z)[ ~>C>0 

for some C. 

To complete the proof of the theorem we must  show that ,  if )t E a ~ ,  ~ t  a non- invar iant  

component  of ~(G), is no t  a parabolic fixed point, then ~t is a point  of approximation.  By  

Ahlfors '  L e m m a  [5], 0~  t = A  (Stab ~ )  and G~=Stab ~t  is quasi-Fuchsian of the first kind. 

The proper ty  to  be proved being a topological invariant ,  and Gt being the quasiconformal 

deformation of a Fuchsian group, it suffices to  assume G~ is Fuchsian. I t  is well known 

tha t  for G~ Fuchsian each )tEA(G~) which is not  a parabolic fixed point, is contained in a 

spherical nest  of circles ~;I (Bv) ,  ~n E G~ and By a circle passing th rough  the fixed points 

of some F EG~ and  orthogonal  to A(G~). Using the a rgument  above we can find a sequence 

~Tn and  a point  zE~(G) which define ~ to be a point  of approximat ion and the theorem is 

proved.  
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