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Chapter I: Introduction
Section 0. Introduction
One of the problems in the theory of overdetermined systems of linear partial dif-
ferential equations is to prove the existence of local solutions of the inhomogeneous equa-
tion Du=v. In general, if D is overdetermined, » must satisfy a compatibility condition
D'y =0 for some operator D’'. The best possible result is that the compatibility condition
is not only necessary, but sufficient for the existence of local solutions; that is, if E°, B3,

Research supported by National Science Foundation Grant GP-28372.



240 BARRY MACKICHAN

and E?, are sheaves of germs of differentiable sections of vector bundles, then the complex
of sheaves

0 0 E° B B (0.1)

is exact, where @ is the solution sheaf of the homogeneous equation.
D. C. Spencer [12] has shown that, granted certain reasonable assumptions about D,

there exists a complex

1 7—-1
0 0 QﬂD0 ct D ...D cr 0 (0.2)

of sheaves and first order linear operators such that the cohomology of (0.2) at (" is the
same as that of (0.1) at B Thus it suffices to look at complexes of first order operators
satisfying the properties of Spencer sequences.

In [9], the author showed that if D is elliptic and satisfies a condition called the §-
estimate, then (0.2) is exact. The proof consists of showing that the Neumann boundary
value problem is solvable on sufficiently convex small domains and that the harmonic
space is zero on these domains. In this paper, hyperbolic complexes satisfying the d-esti-
mate are considered, and it is shown that for such complexes, under suitable conditions,
the Cauchy boundary value problem is solvable. This does not show that the complex (0.2)
is exact, but rather gives an isomorphism of the global cohomology corresponding to (0.2)
over certain domains with the cohomology of a related complex on the lower dimensional
Cauchy surface.

The final theorem of the paper proves local existence and uniqueness of solutions for
the Cauchy problem for complexes of first order linear differential operators which are
symbol surjective (such as Spencer sequences), which satisfy the d-estimate and a hyper-
bolicity condition, and some conditions on the regularity of the characteristic variety.

Of these conditions, the d-estimate is the least familiar. It is a homological condition
on the d-complex of an operator, and initially looks strange, but it has several nice pro-

perties, which are listed here with an indication of where the proofs can be found.

(1) If D satisfies the 8-estimate, then D is involutive. [9, Theorem I1.1.7].

(2) If D satisfies the d-estimate, then every prolongation of D satisfies the J-estimate
{9, Theorem I1.1.4 and I1.3.1].

(3) If the first operator of a symbol surjective complex of linear first order operators
satisfies the J-estimate, then all operators in the complex do. [This paper, Theorem 6.2.]

(4) If D satisfies the d-estimate, then every operator in the Spencer complex for D
does. (9, Theorem 11.2.1.]
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(8) If S is a non-characteristic submanifold and D, is the tangential complex asso-
ciated with § and D, and if D satisfies the d-estimate, then D, does. [This paper, Theorem
7.8.]

(6) If the constant (1/2) (£+1)% which appears in the §-estimate (6.1) is replaced by
(1/2) (£+1)%+¢ for any £>0, the resulting condition is so strong that it is satisfied only
by those operators which have no characteristics, real or complex, and are of finite type.
Such operators are essentially the exterior derivative. [This paper, Corollary 8.3.]

(7) On the other hand, it is conjectured that if (1/2)%2 is replaced by (1/2)k%—¢
for any >0, the resulting condition is so weak that it is satisfied by any involutive
operator.

(8) If D is an elliptic operator which satisfies the §-estimate, then the analytic meth-
ods which prove the d-Neumann problem is solvable also prove the Neumann problem
for the Spencer complex for D is solvable [9].

The goal of this paper is to justify the following statement:

(9) If D is hyperbolic and satisfies the d-estimate, then the analytic methods which
prove the Cauchy problem for a symmetric hyperbolic system is solvable also work to show
that the Cauchy problem for the Spencer sequence of D is solvable.

Sections 1-3 state the Cauchy problem and what is meant by ‘“‘existence and uni-
queness” of solutions. Sections 4-6 define the d-estimate and collect the results we need
in this paper. Section 7 is an exposition of the Guillemin decomposition of a complex rela-
tive to a foliation by non-characteristic surfaces. These results are due to Guillemin, but
since they are unpublished, we reproduce them here. Section 8 contains a main result of
the paper, that the symbols of certain operators in the Guillemin decomposition of a d-
estimate complex restrict to the ‘“‘cohomology” or ‘“harmonic space’” of complexes of
symbols of other operators and that these restrictions are normal (commute with their
adjoints). Since normal matrices can be diagonalized this theorem is the justification for
considering d-estimate operators generalizations of diagonal operators. Section 9 shows that
if the complex is hyperbolic, these normal matrices are in fact symmetric. Section 10 ap-
plies this result to prove existence and uniqueness of solutions to the Cauchy problem by
reducing it to solving symmetric hyperbolic Cauchy problems. Section 11 gives some

examples.

Section 1. Complexes of first order linear differential operators

In this paper the phrase “differentiable of class C*” as it applies to vector bundles,
sections, germs, etc., has been suppressed; it is assumed in all instances where it makes

sense. N denotes the non-negative integers, N ={0,1, 2, ...}.
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Let Q be an open submanifold of a manifold X of dimension =, and let {E*: i€ N}
be a sequence of finite dimensional vector bundles over Q. For simplicity, we assume the
scalar field for the vector bundles is €, the complex numbers, but in many cases it suf-
fices to consider real vector bundles. The sheaf of germs of sections of the bundle E* is
denoted by E', and the space of global sections over Q is denoted by I'(Q, £), by EYQ),
or by &' For each z in Q, let E! (resp. E:) denote the fiber (resp. stalk) of the bundle E*
(resp. sheaf EY) at z. T*(Q), or simply T*, is the complexified cotangent bundle of Q.

We consider linear partial differential operators D: £'— £’ where 4 and j are in N.
D may be expressed in some neighborhood of z, in terms of a local coordinate chart of Q2

and local trivializations of E* and E’ as

D= 3> A.z)(@/ox)
o<lzi<k

For each cotangent vector (z, £) € T*(Q2) (here €L and £€T7), define a vector space
morphism og(D): Ei—E., called the symbol morphism of D at (2, &), as follows: At z,
choose a germ f of a function such that f(x) =0 and df(x) =¢. For any germ »€E}, set

1
0¢(D) (u(@)) = - D(f"u) @)

where m is the order of D at x. It is easy, and left to the reader, to check that this is well-
defined. If D is represented in terms of local coordinates and trivializations as above, and

if £=2X&,dx', then
oy D)= 2 Au(x)&"
lel=m
This shows that if £EI(Q, T*(Q)) is a smooth cotangent vector field on €, the vector

space morphisms
Ogn(D) : Bz~ B}

piece together to give a vector bundle morphism ¢¢(D): E'— E’, that the map o(D): T*~
Hom (E!, E) is smooth, and that o, (D): T:~>Hom (K}, Ef) is a homogeneous poly-
nomial function of order m in &. These show that there is a (linear) vector bundle morphism
o(D): S"T*® E'— E’, where S™T™* is the bundle of m-fold symmetric tensor products on
T+,
In this paper we shall consider complexes of first order linear differential operators
o2 al

It is convenient to consider the graded vector bundle E, which in degree i is E’, and the
graded operator D which in degree ¢ is D*: £'— £ and is therefore an operator of degree
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one. Since Di*lo D=0, we have Do D=0. Let Hom (E, E) be the graded vector bundle
of graded homomorphisms. In degree 1, it is Hom' (&, E), the bundle of graded homomor-
phisms of degree <.

Fix €Q. For each £€T7}, ,(D): B~ EL'' so the assignment of o,(D) to & gives a
map o(D): Ts—~Hom} (E, E), which is linear since D is first order. We extend this to a
vector space morphism

o(D): ®*T;—->Homk(E, E)
by setting ¢(D)(£,®...®&,) =0z (D)o ... 05(D) and extending linearly. Since Do D=0
implies ag(D)oag(D) =0 for every &, this morphism factors through a well-defined, graded

of degree zero, vector space morphism
o(D): AT; ->Hom, (E, E)

where AT is the exterior algebra of 7.

We have shown that the symbol morphism of D induces on E, the structure of a
ATZ-module. Clearly, £(Q) is then a I'Q, AT*(Q))-module, and for each z, E. is a AT7;-
module. We say, loosely, that E is a AT*-module.

Denote the multiplication of u € E, by 0 € T% by w A u, so that if €T, EAu =0¢(D)u.

The interaction between the operator D and the module structure on E given by
o(D)is given by the following proposition due to V. W. Guillemin, which can be stated either

in terms of germs of sections, as we have done here, or in terms of global sections.
Lemwma 1.1: For each w € A'T, and each u€E,,
D(w Au) =dw ANu+(—1'ow A Du.
Proof:  w is a 0-form, the lemma is an immediate consequence of the definition of

the symbol map. The proof for forms of higher degree follows from a simple induction ar-
gument.

Remark: The cohomology of the complex D: £ £ is the graded vector space which i

B ker Dl : 8‘—>8“‘1

Hi(s(Q)’D) - im Di—l . 8!—1__)8{'

V. W. Guillemin has observed that this lemma implies that the cohomology of the complex

D: £— £ is a module over the de Rham cohomology ring.

Section 2. Examples

We pause to give several examples of complexes of first order differential operators
and the corresponding module structures. The two best known examples of complexes of
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linear first order differential operators are the de Rham and Dolbeault complexes, Ex-
amples (i) and (ii) below. Example (iii) gives & method by which a complex is derived from
a given complex and a submanifold of codimension at least one. The resulting complex,

the tangential complex, is used in the statement of the Cauchy problem.

(i) The de Rham complez. In this case, E'=A'T*(Q), and D;: A'T*~A'"' T* is the
exterior differential, usually denoted by d. If £ is in T';, the symbol morphism a¢(d): ATT—
AT?7 is exterior multiplication by £, and the AT%-module E, is AT%.

(ii) The Dolbeault complex. In this case, X is a complex analytic manifold, E'=
A?'T* the bundle of differential forms of type (p, t), and Dy A®-!T*—>AP-*1* jg the
Cauchy-Riemann operator in several complex variables, usually denoted by 8. The symbol
mworphism for & in T7, 04(0): A> T:—~A»"*'T} is exterior multiplication by £%, where
EOV is the projection of £ onto A™T% in the direct sum decomposition T3 =A""T; ®
AYT%. Thus the AT5-module E is isomorphic to A**T;® A”°Ty, where A%*7T7 is the
graded algebra which in degree ¢ is A%*7T,

(iii) Tangential complexes. For each z€Q, the bundle AT?Y is an algebra over the real
or complex numbers, and is, a fortior:, a ring. Similarly I'(Q2, AT*) and /E are rings.
A differential ideal J in I'(Q2, AT™) is a subset of I'(Q2, AT*) which is an ideal which is
d-closed (if «€J, then da€J). Similarly we may define a differential ideal J in AT*.
Given a differential ideal J, define a submodule J€ of £ to be the submodule consisting
of all finite sums of the form X, A e, where each w,EJ and each e € £(Q). Since Jis d-
closed, it follows from Lemma 1.1 that the submodule J€ is D-closed.

We obtain the following commutative diagram:

| 1 I
}
(96)- D, gep—L . (ggm
7 N 7
Eil—l ‘D gli D Eil+1

7 D 7 > 7
e ETY(IE)TT 1 EY(IE) L EM(IE) T —— ...
0 0 0
where (JE) is by definition J€ n &/, the maps ¢ and 7 are inclusion and projection onto
the quotient, and the maps D, are defined to make the diagram commute.
We examine several instances of this. Let S be a submanifold of Q with codimension
g¢. There is a smallest differential ideal J which contains all functions which vanish on S.
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If 8 is given locally by the equations g, =g, =... =p, =0, then locally J is the ideal spanned
by {015 -+ 0> 401> ---» Ao} over the functions.
The corresponding complex

Dy E[IE~ EIIE

is called the tangential complex for D: £ £ tangential to S.
Since J is d-closed, JE& is D-closed. It is easy to show that JE& is the least D-closed

submodule of € which contains all sections of £ which vanish on 8. We also have:

Lemma 2.1.: If w€JE, then there exist sections u' and u” such that u=u' -+ Du", u'|s=0,
and u"|s=0.

Proof: Let u=2X.w; A e; be in (JE) where each w,€ J. Since J is generated by {oy, ..., 04
doy, ..., do,} over the functions, we can write w,=X a;; A p,+B;; A dg, where «;; and B, are
differential forms. We can choose signs &¥ such that D(X &8, Ap;Ae)) =28, do,;Ae;+
u'"" where u'” vanishes on S. Thus we let w” =X ¢'8,,A 0, A\ e, and let w' =Zo;; Ao, Ne,—u'"’

Let J, be the ideal in ATy consisting of the values at z of forms in J. Clearly J, is
generated by g4(%), ..., 04(®), doy(%), ..., dog(x) over the constants. If ¢S, then 1€J, so
J.=AT? and (JE),=E, where (JE), is the submodule of E, consisting of the values at
x of sections in JE. Thus the space £/JE is concentrated on 8. It is not necessarily the
space of sections of a vector bundle on S since the dimension of (&/JE),=E,/(JE), may
jump, but in the case where S is non-characteristic as defined in section 7, dim (&/JE),
will be constant and £/ JE can be considered to be the space of sections of a vector bundle
over S.

An explicit construction of the tangential complex for the Dolbeault complex appears
in 1] and [2]. In the latter paper it is pointed out that the tangential de Rham complex
on § is just the de Rham complex on 8.

A similar construction is obtained by taking J to be the ideal of an integrable codis-
tribution. That is, J is a differential ideal generated by forms of degree one. By the Fro-
benius theorem, the ideal determines locally a foliation of €; that is, it is possible to find
locally functions g, such that {dg,, ..., dg,} generates J. The surfaces given by g, =const,
.., 0g=const. give the corresponding local foliation of €.

In this case it i’s no longer true that (£/JE€), vanishes except for = on a given surface.

We have that D, differentiates only in directions tangential to the surfaces of the
foliation: g, =const, ..., p,=const. More precisely, if ¢ =¢(o,, ..., g,) 18 a function which iy
constant on each surface, and if e is in &, then D(pe)=(dp Ae+p A De) by Lemma 1.1.
Since ¢ is a function of g, ..., o, d@ is a combination of dp, ..., dg,. and hence dp Ae€ JE.

Thus Dy(ge) =@ A Dye
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and D, commutes with functions constant along the sheets of the foliation. Thus D,
does not differentiate except in directions tangential to the foliation.

(iv) Maxwell’s equations in an isotropic homogeneous medium. Let E be the electric
field strength, H the magnetic field strength, D the dielectric displacement, B the magnetic
induetion, J the electric current density, o the charge density, and o, ¢, and u the conduc-
tivity, permittivity, and permeability. Assume the last three are constant.

Maxwell’s equations are
curl H =J +0/otD

curl E = —9/ctB
div B=0
divD=p

These are supplemented by the constitutive equations

D =¢E
B=uH
J=0ck.

Let E=E+Vufe iH. Then Maxwell’s and the constitutive equations reduce to:

curl B~V ue 8/otE —icV pje Re E =0
div E =p/e
Let X=R4, let E° K%, and E2 be the bundles over X with fibers €3, €3 x (1, and Ct,

respectively.
Let DV £°— £ be the Maxwell operator defined by

D% = (curl u—iV ye 8Jot u—ioV e Re u, div u)
and let D': £ £2 be defined by

D(vy, v;) = div v, +iV ued/ot v, +icV ue Re v,
Then D'- D°=0, and
o2 a D e
is & complex.
Let S be the surface given by t=0. Then J£° is isomorphic to the space of sections of
€3 over 8, JE! is isomorphic to sections of € over S, and D} corresponds to div under

these isomorphisms. J&2 and D} are zero.

Section 3. The Cauchy problem

Let S be a submanifold of Q of codimension ¢. Let » be in £+ and let , be a smooth
section of E* over §; i.e., uy€I'(S, E*|,). The Cauchy problem is:
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Find » € €' such that Du=v and u|,=0.

We want to know when there exist solutions and to what extent they are unique. In
this section we show that the best possible existence and uniqueness statements are equi-
valent to the exactness of the complex D: JE—+ JE€ defined in the previous section, where
J is the smallest differential ideal containing all functions which vanish on 8.

There are clearly some necessary conditions for the solvability of the Cauchy problem.
Since Do D=0, necessarily Dv=0. If §, is any section in &' which extends u,, then v —,
vanishes on S and so is in J€. Thus D(u —#,) =v— Dé, must be in JE. Clearly, whether

v— Dilyis in J€ depends only on v and u,, and not on the extension #, The Cauchy prob-
lem can now be stated:

Find € £* such that Du =v and u|, = u, where Dv =0 and

v~ Diiy € J € for every extension i, of u,. (3.1}

We claim that this is equivalent to the following problem:

Find u’€ €' such that Du' =v" and w'|, =0
where v’ € J€ and Dv' =0. (3.2)
Clearly, (3.2) is a special case of (3.1). Conversely, if (3.2) can be solved for ¢' =v — Dil,,
then u =u’+#, solves (3.1.)

Now we claim that (3.2) is equivalent to the following problem:
Find » € & such that Du =v and u € JE where v€JE and Dv =0. (3.3)

If we can solve (3.2) we can certainly solve (3.3) since if u|,=0 then u€ JE. If we can
solve (3.3), we have by Lemma 2.1 that there is a section »” € J€ such that w=u'+ Du”
where 4’| =0, and %’ solves (3.2).

The final form (3.3) is the form of the Cauchy problem we shall consider. The solv-
ability of this problem is equivalent to the exactness of the complex

v (JENT D (JEY DA(:JE)‘“l (3.4)

If v€(JE)** and Dv=0, we want to find u€(JE)! with Du=v. This can be done if and
only if the eohomology class of » in the cohomology of (3.4) is zero. Solutions to the
Cauchy problem are not in general unique if ¢>1 since if Du=v and w€(JE)*", then
D(u+ Dw)=v, so u+ Dw is also a solution. We say that the solution of the Cauchy prob-
lem is unique in the cohomology sense if the only multiplicity of solutions is of this
kind; i.e., if 4 and «' satisfy Du=Du’=v, then u—u’ represents the zero cohomology

class in the cohomology of (3.4). Let H(JE) represent the cohomology of (3.4) at (JE)*.
We have shown:
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THEOREM 3.1: The Cauchy problem (3.3) has a solution if and only if the cohomology
class of v in H'*(JE) is zero. The solution, if it exists, is unique in the cohomology sense if
and only if H(JE)=0. The Cauchy problem can be solved for every v€(JE)*! with Dv=0
if and only if H**(JE)=0.

We conclude this section by proving that the solvability of the Cauchy problem for

all admissible data is equivalent to the existence of a canonical isomorphism of H(E),

the cohomology of the complex

'D 8! D £l+1

81—1

and H(E|JE), the cohomology of the complex

&9y 2 198y Lo g8y —— .

The isomorphism is given by considering the long exact sequence of the short exact se-

quence of chain maps (2.1):

* n*

BYE) - HYETE) ——— H™ N (IE)—or .
We have n*: H(E)—>H(E[JE) is an isomorphism if and only if H(JE)=0, which we have

shown is equivalent to the existence and uniqueness (in the cohomology sense) of solutions

.. —— H'(JE)

to the Cauchy problem for D.

Chapter II: The §-estimate
Section 4. The §-complex

We have seen in section 1 that if D: £'— £’ is a differential operator of order k, it
determines a smooth vector bundle morphism ¢(D): S*T*® E'—> E’ where S¥T™* is the
space of symmetric k-fold tensor products on 7™ and o(D)(£*®e) =0,(D) (e). For each z€Q,
define the vector space (g%); to be the kernel of ¢(D); i.e.,

0—— (gh)e—— ST 0 B, 2P g1

is exact. The mth prolongation of o(D) is 6,(D): (8"*T*@ EY),~(S"T*® £’),, and is de-
fined to be the restriction to (S™*T*® E"), of I®c(D): (S"T*®S*T*® E'),~(S"T*® E’),.
The mth prolongation of (gi), is (gh+x):. the kernel of o,(D). It is easy to check that
(Im+)e=(S"T*®gL): N (S™HT*Q EY),.

If ¢(D) has constant rank, then g} = U.cq(gk); is a vector bundle, and gt , is a vector
bundle for all m >0, provided in addition gft is involutive, which will be the case in this pa-

per, since by [9, Theorem I1.1.7], operators which satisfy the d-estimate are involutive.
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We shall assume that (D) has constant rank, although this assumption is not essential
for much of the algebra in this paper.

Let 8: 81— T* ® 8™1T™* be the unique bundle morphism such that 6(&*-&2-...- &™) =
2R ER(E. Ef ..o &™) for all &, ..., &" in T* Extend § to a linear map é: A'T*®
S"T*QE—~A"'T*®@S8™" 'T*® E by setting du@v®e)=uAdv®e if u€A!T*, vES™T*,
and e€ E. Clearly 62=0. It is possible to think of § as formal exterior differentiation of
polynomials which are elements of ST™*.

The following square commutes:

AIT*®Sk+m+1T*®Ei&+1(D) A’T*@S"’HT*@)E’

) 0
Al+1T* ® Sk+mT* ® ol Gm(D) AI+IT* ®R8™T* R B
Therefore S(A'T* @ gk 1 ps1)—> A1 T* @ gty and we obtain the d-complex for each m > k:

0——gh—2 @l e L Am kg O AR g g @ 1
(4.1,)
Definition 4.1: The d-cohomology of g} is the cohomology of the sequences (4.1,)
where m > k. The bundle ¢, is snvolutive if the §-cohomology is zero. The operator D: &'— &/
is tnvolutive if the corresponding g is involutive.

For each m =k, the sequence

0 G T* Qg —— NT*®@gh 1

is always exact; the first non-trivial cohomology occurs at A2T*®@gt,_;.

Section 5. Metrics and extensions of metrics

Assume that smooth inner products are given on the fibers of the bundles 7* and E".
We extend these as follows. If V,, ..., V,, are vector bundles with smooth hermitian inner pro-
ducts, there is a unique inner product on V;®...® V,, such that (0;® ... @V, W;® ... QW >, =
vy, Wy oo Uy Wy, Thus we have an inner product on @ ™7T™*. Define an inner product
on §™T* by setting (x, y> = {aw, ay) for z and y ES™T*, where « is the injection of S™T'*
into ®™T™* generated by

a(sl-...-ém)=ﬁ% 2EV®...QE™  g€S(m)

where S(m) is the permutation group on {1, ..., m}. Similarly, define an inner product on
17— 752904 Acta mathematica 134. Imprimé le 2 Octobre 1975
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A'T* by using the injection 8: A'T*—> @'T™* generated by
1
BEYA ... A 5')=l—|>_‘ (-1 PR ... @&,

We now have inner products on each bundle A'T*®S™T*® E, and hence on all sub-
bundles of these, so we have inner products on all bundles in the d-complexes.

If D: £~ £ is a complex of linear first order differential operators, we want to have
some relationship among the inner products on the bundles E° E1, .... For this reason,

we define:

Definition 5.1.: A complex D: £— £ of linear first order differential operators is called
symbol surjective if for every i >0, o(D"): T*® E'- E'*! is surjective.

It is clear that a complex is symbol surjective if and only if the AT*-module ¥ is
generated by elements in E°.

If a complex D: £— £ is symbol surjective and inner products on 7™ and E° are given,
we define inner products on E, i >0, inductively by identifying E**! with the orthocom-
plement of ¢!, in 7*® E*. Under this identification E**! acquires the inner product of a
sub-bundle of T*® E'. Note that with this inner product, o(D')*: E**'->T*®E' is an
isometry.

The assumption of symbol surjectivity is a reasonable one. It is satisfied by the de
Rham and Dolbeault sequences. Further, D. C. Spencer [12] has shown that correspond-

ing to an operator D: £'— £/ satisfying certain reasonable hypotheses there is a complex

0 1
0—o0—e-L.g 2. o0

of first order linear operators which formally resolves the sheaf ® of germs of solutions of
the homogeneous equation Du=0. This complex, the Spencer sequence of D, is symbol
surjective. In Section 7 below we shall show that the tangential complex corresponding to

a symbol surjective complex and a non-characteristic Cauchy surface is symbol surjective.

Section 6. The §-estimate
Definition 6.1: A linear differential operator of order k, D: £'— &/, satisfies the 6-
estimate if and only if there exist inner products on T™* and E* such that in the sequence
i 6 H 6 2m* k—1m% i
0 Fr+1 T*®gi AT*Q 8 'T*®FE
if zET*® gk 0 ker 6%, then ||0z|® > (3) K¥)|=|[>. (6.1)

Henceforth, when we assume that D satisfies the §-estimate, we shall assume that the

inner products given on 7™* and E°® are the ones which give the estimate (6.1).
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We collect here some of the results of [9] which we shall need.

TarorREM 6.2: If D: £-> £ is a symbol surjective complex of first order linear operators,
and if DO: 9 €' satisfies the O-estimate, then for each i>0, D' £'— £ satisfies the O-

estimate.

Proof: This is essentially Theorem I1.2.1 of [9] ,which was proved for D: £~ & a Spen-
cer sequence of some operator. However, the only properties of D that were used hold for

any symbol surjective complex.

THEOREM 6.3: Consider the complex
Al—l T*®SmHT*®E'—6——>AIT*®S”‘T*®E—6—>AIHT*®S”“1T*®E.
The symmetric map 6*0 +00*€ Aut (A'T*@8"T*® E) has two eigenspaces: ker 6, on which
the eigenvalue is ((m+1) (m +1))/I, and ker 6*, on which the eigenvalue ts (m(m +1))/(1+1).

Proof: [9, Theorem 1.7.1].

TurorEM 6.4.: Consider the complex

0—>SZT*®E‘—6—>T*®T*®ELAZT*(@E————»O.
The symmetric map S=13100*—0*0€Aut (T*QT*®E) is the linear map for which
S(E'@E®e) =E2RE1®e; it is called the switching map.
Proof: [9, p. 108].

THEOREM 6.5: Consider the complex

0
0———->gz—+T*®gl—6—>A2T*®E.
On ¢, the map %0 is 4 times the identity.
Proof: [9, Lemma II.1.1].

Section 7. The Guillemin decomposition

The results of this section up through Theorem 7.7 are all due to V. W. Guillemin {5];
since they do not appear in any published work, we reproduce them here.

Let D: £~ € be a symbol surjective complex of linear first order differential operators.
The following theorem follows from the work of V. W. Guillemin and D. G. Quillen.

TarOREM 7.1: The following properties of a vector subspace U, of T are equivalent:
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(1) O—ﬁEfﬂ—)»E} is exact for every EEU,;

0 n-1
@ o—— g2 g 2DV ) g

s exact for every E€EU,;

a(D,) B

8) 0—U,®E)} 1 s exact;

(4) For each m>0,

0__+SmUI®EgMD_O),

S™ U, ® B!

18 exact; and

(8) The ATr-module E, is free as a AU,-module.

Remark: 1t is important that 77 be the complexified cotangent space; the theorem is

false if U, and 7' are real vector spaces.

Proof: Quillen’s theorem [10, 3] says that for each & € T';, the exactness of the sequences
in (1) and (2) are equivalent. The proof was originally given for Spencer sequences only,
but it applies also to any symbol surjective complex. In [4], V. W. Guillemin proves (1)
and (3) are equivalent and (2) and (4) are equivalent. In [5], he shows (2) and (5) are equi-

valent.

Definition 7.2: A subspace U, of T'; satisfying the above conditions is called non-
characteristic. A sub-bundle U of 7*(QQ) (a co-distribution in the sense of differential geo-
metry) is non-characteristic if U, is non-characteristic for each €. A submanifold < Q
is non-characteristic at x if U,, the annihilator of the tangent space of 8 at = or the normal
bundle of S at z, is non-characteristic; and 8 is non-characteristic if it is non-characteristic
at each z€S.

We assume always that a non-characteristic sub-bundle or subspace is the compexi-
fication of a real sub-bundle or subspace of T*. A sub-bundle is called integrable if it is
integrable as a co-distribution.

Let U be a non-characteristic sub-bundle of 7*(Q2) with fiber dimension ¢. Denote
by 0: A'U® E—E the morphism given by o(w®e)=w Ae, where A is the multiplication
in the AT*-module E. We obtain a filtration

E=E>E>.D2E>E,,=0 (7.1)

of E, where E;,=o(A'U® E). Let Ef =E* N E,and let E*' = E}*//E}}]. Since we have inner
products on all the bundles, we may take E*/ to be the orthocomplement of E}}} in E}"’.
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We obtain
E'= @ E'* (7.2)

Jrle=1i

where the direct sum is an orthogonal direct sum, and E'"* =g(A*U® E*°). Since E is
free as a AU-module, B = A*U ® E*0,

We claim that each E*/ is a vector bundle over Q. All that is necessary is to show that
the fiber dimension of E*/ is constant. Since A'U® E*®~ E%, it suffices to show that
each E"? is a vector bundle. We prove this by induction. Since E%? = E?, it is true for ¢ =0.
Assume it is true for all ¢<k. Then by (7.2), dim Ef =3, ,_, dim EY’. By the inductive
assumption all summands on the right except dim E%® are constant; hence dim EX° is
constant, and E*° is a bundle.

Corresponding to (7.2) there is a decomposition of D into a sum D= Dy+D,+...+ D,
with D,: 4/ E-"+1-7+7 being the component of D with bidegree (—r+1, r). The equa-
tion Do D=0 gives

2 D, joD;=0 (7.3)

o<y
for each ¢>0. In particular, Dyo Dy=0 and

DyoDy+Dyo D, =0. (7.4)
These facts may be summarized by observing that

E¥Os .

D,
go Lo go .
Dl Dl

80'0 DO 81.0 DO

&0 (7.5)

is a spectral sequence decomposition of the complex D: £~ £.

This decomposition certainly depends on the decomposition (7.2), which depends
on the inner products on E. The operator D,, however, has some canonical significance.
If w€E,;, then we may write u=Xw, A u, where w,E(Q, A*T*Q)), so by Lemma 1.1,
Du=2dw, Au,+(—1)'w, A Du,, which is in &,. Thus D respects the filtration, and we
obtain a quotient operator D: EilE11—~E&;/ ;4. Since E | E; = @ E", we may identify
&/ &4, With @, £+, Under this correspondence, D corresponds to D,

The following property of the operators D, is important.

THEOREM 7.3: Let & be a section of U. Then o4(D,)=0 except when r=1, and oz(D,):
E¥—~ B+ s multiplication by & in the module E.

Proof: ay(D): E~E is multiplication by &, and according to the decomposition (7.2),
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o¢(D) decomposes into oy(Dy) +0,(D;) +... +a¢(D,) where o, (D,) has bidegree (—r+1, ).
If £€U, then o(D): E;—~ E;, and hence ha3 bidegree (0, 1). The theorem follows.

The significance of this theorem is in the following theorem.

TueorEM 7.4: If {8,} is a local foliation of Q by submanifolds of codimension q,
and if U is the normal bundle to the foliation (i.e., U, is the annihilator of the tangent space
of 8, at x, where S, is the submanifold containing x), then all the operators D,, except D,,
are intrinsically defined as operators on the sheets of the foliation. That is, they do not in-

volve any differentiation in the normal directions.

Proof: o¢(D,) for €U is the coefficient of differentiation in a normal direction.

Let S be a non-characteristic submanifold of Q with codimension ¢. Then locally
there are ¢ smooth functions {g, ..., ¢,} such that for each z in S, {dp,, dg,, ..., dg,} is a
linearly independent set which spans a non-characteristic subspace U, of 7. By a con-
tinuity argument, and by shrinking Q if necessary, the forms {dp,, ..., do,} will span an
integrable non-characteristic sub-bundle U of T*(Q). The surfaces {¢,~ constant, 1 <i<gq}
will then be the leaves of a foliation of Q by non-characteristic submanifolds. of which
8 is one leaf. Let J be the least differential ideal containing all functions which vanish on
S; it is generated by {g,, ..., 0¢ 401, .., dp,} over the functions. If x ¢.5, then scme p,(x) +0,
and (J),=T%, so (JE),=E,. If €8, then p,(x) =... =g, () =0, so (JE),=c(URE)=E,
and D, E/JE~E/TE is simply the restriction to S of the tangential operator D:
&Eo/ €, Eo/ E;, which we have shown to be D, when quotients are identified with ortho-

complements. We repeat this as a theorem.

THEOREM 7.5: Let 8 be a non-characteristic submanzfold of Q; let U be an integrable
non-characteristic sub-bundle extending the normal bundle of S; and let £+%=@ ;£ Then
the complex Dy: E[JE—~E]TE ts isomorphic to the complex Dy: E*0— E*O restricted to S.
The isomorphism is the one obtained by identifying quotient spaces with orthocomplements
with respect to the given inner products.

For each i we have a complex D,: £*!— E*!. We claim that this complex is essenti-

ally the complex D,: £*0—> £*9 More precisely, we have:

THEOREM 7.6: The following diagram commutes:

. ]
1@, AU B VD) b Ay gy

e Io

8*.1(9) ‘DO E*.l(Q)
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Proof: An arbitrary section of I'(Q, A'® E*9) can be written Zw,®e, with dw,=0
since U is integrable, and therefore has a basis of exact sections. Then D(o(Zw,®e,)) =
D(Zw, Ney) =X(dwy N ey +(—1)'wy A De,)=(—1)Zw, A De,. Since D, is the part of D with
bidegree (1,0), it is clear that Dyo(Zw,®e,)) =(—1)'Zw, A Dye, =a({—1)'Zw,® Dye,).

TaeorEM 7.7: If D: £~ & is a symbol surjective complex of first order linear dif-
ferential operators, and U is a non-characteristic sub-bundle of T*(Q), then Dy: £*0— £*.0

18 a symbol surjective complex of first order differential operators.

Proof: Tt suffices to show o(Dj): T*® E*°— E**' is surjective for each ¢>0. By
definition, E'*'° is the orthocomplement of ¢(U® E') in E**, so n: E*'—>E"*!° is sur-
jective, where 7 is orthogonal projection. By the decomposition (7.2) and the definition of
D, the following diagram commutes and is exact.
o(DY)

T*® E Bt 0
I®n l"z

T*®E"° G(D(il) E1+1.0

0 0
An elementary diagram chase shows that o(Dj}) is surjective. In fact, o(Dj): W@ E**~

E'*'0 is surjective, where W is the orthocomplement of U, since o(D}) is zero on U® E*°.

TurorREM 7.8: If D: £~ & is a symbol surjective complex of linear first order dif-
ferential operators, and U is a non-characteristic sub-bundle of T*Q), and if D°: £9— &1
satisfies the d-estimate, then for each i>0, D E0-> 110 satisfies the d-estimate. More pre-
cisely, if W is the orthocomplement of U in T*, if k! is the kernel of o(D}): W ® E*0— E'*1,
and if k=W QK 1 SPW® E'0, then the §-estimate is satisfied in the complex

0— ki Wor 2 AW e B

that is, if k€ W QKL N ker 8*, then ||0x||2 >} ||«||2.

Remark: We shall solve the codimension ¢ Cauchy problem by solving a succession
of codimension one Cauchy problems. This theorem says that one of our main hypotheses
is preserved after passing to the tangential complex. If {S,} is a foliation of Q by non-
characteristic surfaces having U|s, as normal bundles, there is no canonical inclusion of
T*(8,) into T*((2), but an inner product on T*(Q) induces an isomorphism of U, T™*(S,)
with W. If we consider D} to be an operator restricted to some S,, in order to consider the
d-estimate for D}, we need an inner product on 7%(S,), which obviously should be the one
it obtains from its identification with W|s,. The theorem then says that with this choice

of inner product, D} satisfies the d-estimate.
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Proof of Theorem 7.8: It suffices to prove that D§: £%0— £10 satisfies the §-estimate,
for the theorem then follows from Theorems 6.2 and 7.7. To say that ||0z|2> 1] z||? for
x€ W ki N ker 6* is equivalent to saying that all the eigenvalues of §*3: ker §* —ker §* are
bounded below by . We shall show that there is a dim ker 6* dimensional subspace V of
W @k} on which (6*6 —341)>0 (where I is the identity). This implies what we want, for if
x€V, we may write x=x,+2, where z,€ker § and xz,€ ker §*, so {(x,, ;) =0. The map
x>, is clearly an isomorphism by dimension considerations since any z in the kernel would
be a O-eigenvector for §*6. By assumption, {(§*z, 2> >}||z||?, so 8%z, x> =4(|| =% +
[l£1]{2) = &]|%, |2 Thus all the eigenvalues of §*3 on ker 6* are bounded below by .

Consider the exact commutative diagram:

0 0
0 —— USE — - U® B ——0
. i1
0——g?— T o —2— K 0
. e | 7
0—— B — > W E* E'° 0
0 0 0

where i represents various inclusion maps, 7z represents orthogonal projections, and o re-
presents the symbol of DP, or alternatively, the multiplication in the A7™-module E.
The map from W® E%°-> E19 is o(Dj) restricted to W ® E®?, or alternatively, the multi-
plication in the AW-module E*°. The map n®I: T*® E°~>W® E°° (recall E%°=E?)
induces an isomorphism 7: g7 —~kJ, as can be checked by an easy diagram chase.

Now consider the exact commutative diagram:

0 0
2 1 2
0 SUSE —— SUSE ——0
0 — Vo veremrl®lyem 0
5
0——g—reg— 2 Ao e B ——0
0—B—— WO —— AW E B2 0
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It is not hard to verify that this diagram is exact and commutative. The maps in
the third column are 6 maps composed with inclusions, except for n: A2T*® E°— A2W & E°°
which is orthogonal projection. The map 7: T*®¢?—~ W @k is the tensor product of ortho-
gonal projection of T* onto W with 7: g} —~%? defined by the previous diagram. A simple
diagram chase shows that the dashed arrows may be added so that the diagram remains
exact and commutaftive.

We may now commence the proof. Consider x€ W ® & with §*x=0. Then n*z € T*®g%
and &*n*r=n*¢*x=0. By the assumption that D° satisfies the -estimate, |dn*z|2>
3|j=*z||2. We may just as well consider z*z to be in T*® T*® E°, since § on T*®g! is the
restriction of 6 on T*® T*® E°, so we have n*x € T*® T*® E° with {(6*0 —{I)n*z, m*z) >0.

By Theorem 6.3, if we consider the trivial -complex

0————*SzT*®E°—LT*®T*®E°-—Q—+A2T*®E’°——>O,

the identity on T*@ T*® E° is } 66* +46*0. Thus 6*6 — 11 =1(6*6 — }66*) =18, by Theorem
6.4, where S: T*QT*®@E°*>T*@T*® E® is the linear map for which S(F®E&®e)=
£2®8 ®e. Therefore,
{Sn*x, n*x) = 0.
We noted that 7: T*®¢3—~ WKL) is the tensor product of orthogonal projection and
7 g3~ kY, so * is the tensor product of the inclusion W T* and 7*: k3 —>g¢3, and m*z € W ®4¢°.
If we write n*x =%, +x, where 2,€ W@ W ® E° and 2, € W® U® E°, then

{8y, 2o> = {8y + 8z, 2y +x,> = {SA*x, 7*x> = 0,

since x;, Sx, EWRWQE®, 2, e WRU®E®, Sx,€eU® W® E®, and these three subspaces
are mutually orthogonal. Since the diagram

T*® @ ——T*@T*® E°
- 2 ln
Wek —— WoWeE
commutes, it follows that mx,==, and mz, =0. Thus z,=nn*x. We have shown that if
0*cr=0, then (Sma*z, wn*x)>0. Clearly n#n* is an isomorphism of W®#AS, so there is a
dim ker 6* dimensional space, namely zz* ker 6%, on which (6*6 —11)=8>0. We remarked

at the beginning of the proof that this is sufficient to prove the theorem.

Section 8. The §-estimate and normality

The Cauchy problem for a surface of codimension ¢ can be solved by solving a suc-

cession of codimension one problems, so we shall make the simplifying assumption that
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S is a non-characteristic surface of codimension one, and that U is an integrable non-
characteristic line bundle.

Assume that S is given by the equation p =0 where dg &0 on §. By shrinking Q if
necessary, we may assume that dp is the basis of a non-characteristic sub-bundle U in 7™,
Let {=dpg/|dp| be a unit basis for U. The Guillemin decomposition in this case is partic-
ularly simple, since A’U=0 if j>1, and hence E*'=0 if :>1. The complex D: £— &
becomes

grLo.gn Do,
. o, (8.1)
goo Lo gro Do
where £'=§£'"g £*-11 By the isomorphism o: U® E"°~ E*!, for each i the operator
D,: E*°—>E*! transforms to an operator which we continue to denote by Di: B*°~ E*°.
It is easy to check that o,(D}) is the identity on E*0.
By Theorem 7.6, the diagram (8.1) is isomorphic (via o) to

g0 "Dg gre ‘Dtl) &0

Y

where Dj denotes the restriction of D, to £"°. Equation (7.4) transforms under this iso-

morphism into
DioDi=D!*1oD} (8.3)

for each 1> 0. In particular, for each cotangent vector field &€ T%(Q),
o¢(Do) o¢(D1) = 0¢(Di*) o1 D).
If K} denotes the kernel of o:(D}): E*°— E**1°, this implies
ox(D}): Kt~ Kj. (8.4)

The cohomology of the complex of vector bundle morphisms

Ei-10 UE(Dz)—]) BV 0'5('86) EirLo

is isomorphic to Hf =K} N ker o,(Dy")*. If k=0, Hi = K¢. In spite of (8.4), we do not know
a priori that o (D}): Hi—~Hf. However, this is part of the conclusion of the following theo-
rem, which is the crux of this paper.
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TuEOREM 8.1: If D: £~ E vs a symbol surjective complex of first order linear dif-
ferential operators which satisfies the d-estimate, and if U is an integrable one dimensional
non-characteristic sub-bundle of T*, then for each & in T';

oD}y : Hi~ HY,
and the restriction of o¢(Di) to H{ is a normal linear map; that is, if
oy(Dy)" : Hy—~ H
is the adjoint of o¢(D1)| 4t then
[06(D1), 04(D})"] = 0:(D1) 0¢(D3) — 0(D}) 0(D1) =0.

Proof: The proof of this theorem is quite long and hard, and except for Corollary 8.3,
none of the results in this paper depend on the proof. The reader, if he is willing to take

the theorem on faith, may skip directly to section 9 for the consequences of the theorem.

Remark: 1f oy(D}): Hi—~H} is normal and a0, then oy (D}): Hi—H{ is normal,
where & =af+bf, since because of the identities ¢,(Dy)=0, and oD} =1, ag'(D"l)=
acg(D}) +bI, and Hi=H} Thus it suffices to prove the theorem assuming [|£[| =1 and
&, & =0.

We first prove the following lemma due to V. W. Guillemin.

Lemma 82: Let H be a subspace of T*(Q), and define hi=HQRE' N g}, and hi=
H@R 0 S2H® E*. If D' £~ £ satisfies the d-estimate, then in the complex

0 B 0 H®H 0 A2H® B

if tEH®hE Nker 8%, then, ||0x||> =} ||][2. (8.5)

Proof: We proceed by induction on the codimension of H in T*, so it is sufficient to
assume it is one. Let 4 € T be orthogonal to H so that T* is the span of H and 7.

Assume the lemma is false. Then there is an x€H®A} such that x Lok} and ||6x]|% <
t||2||2. We shall show shortly that there is a y€span (1) ®gt such that (x+y) Ldgh. Since
nLH, we have that 1y and dx1dy. Furthermore, |dy|?<%]y]|? since n An=0 and
InAgle=blnetls it gLt Therefore, |ou-+dyl= foel+ ol <dilel+ o) -
3|lx +y||2. This contradicts the assumption that D% £'— E'*! satisfies the d-estimate, so
the lemma is true.

We prove now that if x€ H®R} N ker §*, then there is a y€Espan ()®g! such that
(z+y) Ldgs. Clearly dgb> 6k} and we can let {w,, ..., u,} be a basis of the orthocomplement
of ok} in 8gh. Since dgh < T*®gi = H®g} ®span (n)®4gi, we can write u, =v,+n@w, where

v,€H®g} and w,€g}. We claim that we can find a w, a linear combination of the w,’s such
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that (z-+7®w)Légh. Since both x and y®w are orthogonal to O3, it suffices to find
w such that (n@w, n@w,> =z, u,», which can be done if the only solution to
MRw, n®w,>=0, 1 <r<s, is nw=0. But this is clearly so since w is a linear com-
bination of the w,’s. Let y =7 ®w. This completes the proof of the lemma.

We apply the lemma by letting H be the space spanned by & and {. We have for any
x€H®R with x 16k, ||6x||2>3||=||2. By Theorem 6.5, if x€6h}, then ||6*z|2=4||z|]2, so
the estimate (8.5) is equivalent to

8|8z |2+ ||6*x||2 > 4||=||? for all x€H ®h]. (8.6)

By the Guillemin decomposition, B!~ E'"1*® E"°. We shall represent elements of E*
by pairs (y, 2) with y€ E*"? and z€ E"°. If u€ £'° and v€ €7, then by diagram (8.2),

D(u, v) = (Div— Dy 'u, Dyv). (8.7)
An arbitrary element € H® E' is
= (E®Y, +{®Ys E®2 T ®2),
where y,€ E*"% and z,€ E*® for j=1, 2. Then x€}; if and only if ¢(D*)x =0, or by (8.7),
(0( DY) (@2, +{@2,) —a(DF) (@Y, + L ®ys), 0( Do) (E @2+ ®2,)) = 0.
Since 0¢(D,) =0 and o;(Dj) =1, this becomes

(og(Dh)2, +2,—0g( D ) yy, og(Dh)z,) = 0.
Thus,

hi ={ @y, + L @Yy E®2 +L D (0g(Db )y —0(D)21)): 9y, Y2 € B0 and 2, €K} (8.8)
Thus an arbitrary element in H®A} can be written
EDEQYN +HEBLOY12 +H OE@Yn +{OL OYs, EQE® 2 +EDL (0 DY) Y1y
—0g(Di)2) +{ ®E@213 +LOL @ (0g( D) 13— 0¢(D}) 215)) Where y € B and 2, €K}
By definition, 4} is the intersection H®%! N S2H ® E', and §: ks~ H ®4A] is a constant times
inclusion, so the above element is in 6%} if and only if it is symmetric in § and {. This means
Y15 =Ys and 253 =0(D§ ) yy; —0¢( D) 2yy. Thus,
oht ={ (E®E®Yy + ERL L @E) 1o+ L OL DY o, E®E®2, +(ERL +L®E)
®(0g( D5 11 —0g( Di)zn) +ERL® (0 D5 ) y20—0g( D3N o D5 )y
—0e(D})21y)): Y11 Yz Y22 € B2 and 2y, EKE}. (8.9)

Let x; be orthogonal projection of K{ onto H}. For simplicity denote o;(D§ ") by
0o, 0¢(D}) by oy, and w0, by G,. Then G,: H{-—H} and we may consider the adjoint of
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A s denoted by G1.: Hi—H}. We have 7;0,=0 since the image of o, is orthogonal to H;,
and the kernel of z; is the image of 6, The map A4: H{-—H} defined by A=1+4,5, is
positive definite, and hence an automorphism. Let w, be an arbitrary element of H},
and define w,=A4-16; Aw,. Since o,w, ~&w, Eker 7 =image o, there is a z, in E"'°
such that ¢y2, +0,w, —&w, =0, and similarly there is a z, such that

0923 T 01Wy — G wy = 0. (8.10)

It is easy to check that 2 € H@h! where

r = (5@5@31‘}‘(5@5“{'5@5)@%: —§®§®w1 +§®C®51w1 —C®£®w2+5®5®61w2)- (8'11)
Then dx = (0, £ AL R (G, w, +w,)), 50
[10]|2 = %6,y + w2

Also,
ll* = llzall? + 2l e + [Joon |2+ [|Greon |+ [Jowa |2+ [|Groea |2

To apply (8.6), we need to calculate ||§*z[|2. We have

o* : 2 ,5 2
et =amn (i) = e (GE)

vehy

yehy

Since by Theorem 6.5,

6912 = <&*0y, y> = 4]ly]|%. (8.12)
we have,
<9m3y>)2
S| = 4 /24
- (G

Let dy have the expansion given in (8.9). Then clearly,

ll6y11* = llyaall + 2]l 92>
and

<=, 0y = {2y, Y1) T 229, Y12> — <y, 211> +<{G Wy, 09Y11 — 0121

=Wy, OpY11 — 0421 +{G Wy, OpYr2 T 0101213 —0106Y11)-

Now observe:

(1) wy, Giwy, wy, and & w, are in H} and so are orthogonal to the image of g,
(2) By (8.3), oy: image ¢,—image oy
(3) 213 =721, T 0o2" for some 2’ since image o =ker 7,

0121 =Tz 0172y, T 042", and

0101 211 =T 01T 0170 295 T 002",
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Thus,
(z, 0y)> = (2, Y1x)> +2<2,, Yo — Wy, 7!5211> =<0 Wy, G172y
+wy, 63721y (G Wy, Gy 5178211

Taking adjoints and using the definition of w,, we obtain

(&, 0y = {21, Y1) + 2420 1) (8.13)
Therefore

, 0 > 2 (<z1,3/11>+2<32s3/12>)2
Sl =4 (<’° y)\4 Pabduos Sre i)
3%l =4 sup {50 ) <4 50 =y 1T 2yl

yehz

By applying the Cauchy-Schwartz inequality to the inner product on E'-'°@ E*1* de-
fined by {(2;, 25), (411, ¥12)> = <21, Y110 +2<23, Y10>, We obtain

8%l < 4zl + 2jz2]i?).
We now have what we need to apply (8.6) to obtain, after some cancellation,

[1Fy201 +wa|? > Jleon ||+ |Gy [|2 + [laoa| + (|61 e,
or
0 = {|w; —G1w,[|2 + [|Gr0a]| ~ [| G120
Since ||w; —&1w,||2>0, we have
|1 welf? = |Gy (8.14)
Since w, is an arbitrary element of H}, (8.14) shows that G,5, —&,5, is positive semi-de-
finite on H{. Since the map is symmetric, it can be diagonalized; since it is positive semi-
definite, all the eigenvalues are >0; and since it is a commutator, the trace, or the sum
of the eigenvalues, is 0. Thus,
6,61 = 616, (8.15)
The fact that what was originally an inequality is in fact an equality has some strong
consequences. If we had a strict inequality
l16%2(|* < 4([|2 |2 +2lf=2]®),
then (8.14) would be a strict inequality, which is impossible. Therefore,
ll6%2()® = 4(llzs|* + 2l ). (8.16)

The choice of y=4§*x gives equality in the Cauchy-Schwartz inequality |6*z|2=
(K0*z, 1>?/||y||)- Let y = 8*x have the expansion givenin (8.9). We must have {|dy||2={jy, [?+
2|ys2ll2 for if ||8y|2> ||y |2 +2]ly12l|2 we would have |[§%||2 <4(||2,]|2 +2]|2,]|%), & contra-
diction. Now
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(=, 0y> ({21, 11D + 2€20, Y22))?
4(Hz, 1P+ 2||20[7) = [0%||2 = 4 =4
Ul 2l =07 = 4 sy ™= &y P 2l

or {21 Y1 T2{20, Yoo = ("zlu2 +2”22"2)}(”3/11”2+2"y12“2)*,
which is an instance of equality in the Cauchy-Schwartz inequality. Therefore, (2,, ;) is

proportional to (¥, ¥12), and from (8.12) we conclude y,; =4z, and y,, =42,. Therefore
8y =06%c = (ERED 4z, + (E@L +LDE) @bty + LD DYagy EDE@ 2y +(EDE +LDE)® (4002 —
017211) FE QL ® (40424 + 0,012, —40,042,)), Where y,, and z,; are yet to be determined. We
know ||0y||2=|66*x||2 =4||6*x||2=16(||2,]|2 +2[|2]|?). If we calculate [|dy||?> directly from
the above expression and compare it with this, we may conclude y,,=0, 2y, =0, 642, =0
and 0,2, =0. The last equation with (8.10) implies that ¢, w, =&, w,. Therefore o,: Hi{—~H},
and [0y, 611=0 on H}. This completes the proof of the theorem.

COROLLARY 8.3: If in the complex
o O o 0 2 0
00— gpp—T*Rgp—— AN T*Q E°,
it is true that for every x€ T*®4? satisfying 6*x =0,

|11 > #{||?,
then g% =0.

Proof: We check easily that under this hypothesis, if € H®A$ N ker §* in the complex

0 13 0 H®M J A*HQE®

then ||6z||2> ]|z||2. If the space K§=H? is non-zero for some &, the above proof constructs
an z€H®A] N ker 6%, namely (8.11) where z, and 2z, can be taken to be zero, for which
|6*||2=1]|x||?, which contradicts the hypothesis. Thus, for every & K2=0. Since every
&, real or complex, is non-characteristic, 7* is a non-characteristic sub-bundle of 7™, or
by Theorem 7.1, the complex 0 T*® E°— E1 is exact. Therefore, g =0.

D. C. Spencer, in [12], has shown that a complex D: £~ £ which is completely in-
tegrable, or flat, for which g} =0 is essentially a direct sum of copies of the de Rham com-
plex.

Suppose U, is an integrable g¢-dimensional non-characteristic sub-bundle of 7%,
locally spanned by {dg,, ..., dg }. Let £, =dp,/||do,||- By the isomorphism ¢: U® "0~ E*!
the operator D;: £49— £"! corresponds to X¢_; {,® D, ,, where D, ,: £'0— £40. Then

0(Dp) 0¢(D1 o) = 0(DiLy') o¢(Dj)
and [Gﬁ(Di.a): 65(Di.ﬁ)] | ker Ue(D(’)) =0

by 7.3. Let H} . =ker o:(D}) N ker o:(D51)*.
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The following generalizes Theorem 8.1:

THEOREM 84: If D: £— £ is a symbol surjective complex of first order linear dif-
ferential operators which satisfies the d-estimate, and if U, is an integrable g-dimensional non-
characteristic sub-bundle of T*, then for each £€ T} and each a=1, ..., q.

0g(Dia): Hoe— Ho
and the restriction of o¢(D},) to Hy ¢ i8 normal.

Proof: We may suppose a=gq. Let U,_, be the span of {dg,, ..., do,_;}. Then U,_, is
non-characteristic, and there is a complex corresponding to U,_,, call it (Dy),_;, which is
tangential to the surfaces defined by the equations gz =constant, =1, ..., ¢ —1. The sub-
spaces of the cotangent spaces of these surfaces determined by g, are non-characteristic
for (D,),_,, and so there is a corresponding decomposition of (Dy),_,. It is clear that the
tangential complex of this decomposition is D, and the D, of the decomposition is D, ,.
Since by Theorem 7.8 the é-estimate holds for (Dy)¢—1» Wwe may apply Theorem 8.1 to prove

the theorem.
Chapter III: The Cauchy problem

Section 9. Characteristics and hyperbolicity

In this section we discuss some of the consequences of Theorem 8.1 for the structure
of the characteristic variety of D: £— £; then we shall define symmetric hyperbolic com-
plexes and show that for such complexes, the conclusion of Theorem 8.1 may be replaced
by “o5(Di1)|u} is symmetric.”

Recall that since D: £— £ is a symbol surjective complex, a cotangent vector P i

is characteristic if the sequence
0 B}

fails to be exact. The set of all characteristic vectors for a complex is U, a projective

o5(D)

B (9.1)

variety in 7™%(Q)), called the characteristic variety of the complex.

Let U, be an integrable non-characteristic sub-bundle of 7™ locally spanned by
{doy. ..., do,}, and let £, =dp,/||do,||- If W is the orthocomplement of U, and if K{ ¢ is the
kernel of ag(ng)a: E3°— EL°, where £€ W, and (D,),: E*°— E*0 is the tangential complex
corresponding to U,, then % =(§“—E§:11‘,Ca) €T3 is characteristic for D: £— £ if and only
if there is an eigenvector e €KY ; , such that for each «, o(D9,,)e =4,e. This is clear, since
n is characteristic iff there is an e € E? such that o,(D%e=0. But o,(D%)e =0 iff

0,(Dg)e=0 (9.2)
and o( DY) e=0(Zi.1 L, ®0,(D8..)e) =0. (9.3)



OVERDETERMINED SYSTEMS OF DIAGONAL OPERATORS 265

Since for each «, a¢(D§),=0, (9.2) means e€Eker o;(DJ) =K ;. Since ¢ is an isomor-
phism and o (D95) =651, (9.3) means og(D} ,)e—A,e=0 which establishes the claim.

Thus if 7: T*— W, is orthogonal projection, we have that z~Y£) intersects ¥ at the
points & —32,(,, where (4, ..., 4,) ranges over the sets of eigenvalues of a¢(DY ), ..., o:(DY,).
Since the maps o(DS ,) commute on K2, and, if D: £ £ satisfies the J-estimate, are nor-
mal on K9 ;, they can be simultaneously diagonalized there. Thus

oD, rer 0y(D") 2 er o(D5), = Koe=Hgs.
In general
@ (ker (D" N ker o,(D'"")*) > ker o¢(Df), N ker o¢(D'"1)s = H} ¢,

nex— (&

as can be seen readily by considering the symbol spectral sequence corresponding to (7.5),

since the limit cohomology in this case is isomorphic to the kernel of

w1, 220 De) g e

If U, can be chosen to be maximally non-characteristic (i.e., there is no non-charae-
teristic U’ properly containing U,), then every £€W, is characteristic for D, and the
characteristic variety consists of at most dim K? ; sheets, each of dimension n—g, lying
over £,

Let S be a submanifold of € of codimension ¢ and let U be an integrable non-charac-

teristic sub-bundle of 7%(Q)) extending the normal bundle of S.

Definition 9.1: The pair U and D: £— £ is called hyperbolic if for every z€(), and

real cotangent vector £ in T%, U,+£ contains only real characteristic vectors.

Remark: There is no restriction on the multiplicity of the characteristics of D. The
situation is analogous to that of determined hyperbolic systems. Strong hyperbolicity as-
sumes no symmetry, but does assume simplicity of characteristics; symmetric hyperboli-
city assumes symmetry, but puts no restrictions on the multiplicity of characteristics.

Our case corresponds to symmetric hyperbolicity with the d-estimate taking the place of
symmetry.

THEOREM 9.2: Under the hypotheses of Theorem 8.1, if (U, D) is hyperbolic, then for
each real &, _
oi(D}) : Hi~ H}
18 symmetric.
Proof: By Theorem 8.1, we know og(Di) is normal, and therefore can be diagonalized
by an orthonormal basis of Hi. It will be symmetric if and only if the eigenvalues on the

diagonal are real. The case 1 =0 is already done, for the characteristics in U +& are £ —AZ
18 — 752904 Acra mathematica 134. Imprimé le 2 Octobre 1975
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where 4 ranges over all eigenvalues of g¢(D}). Since all of these characteristics are real, all
the eigenvalues are real.

The case ¢ >1 is nearly as easy. Let A be any eigenvalue of g;(D1) and let e be a cor-
responding eigenvector. Then (§—A)®e€T*® E°< T*® E* (where { is a unit basis vec-
tor of U), and

a(D)(E—A) ®e) = (a( DY) ((§ —AL) ®e), o(Dp) (€ —AL)®e))-
Since o;(D§) =0 and op(D}) =1,
o(DY)((E~2L)®e) = (ag(Di)e —2e, ag(Do)e) =0.

We claim further that e Loy ;(D*?)(E*), for the projection of o¢_i(D"')(E*?) onto
E'0is gg_y (D5 ) (B0, and for any fE€ B!,

oe_1t(Do") 1, €> = oe(Dv") f, € = <f, 0D )*e> = 0
since ¢ € Hj.
Thus e €ker og_3:(D*) N ker a;_3(D'™")*, so the complex of vector bundle morphisms

0g (DY) 1, 0s_ne(DY)

El—l E‘ Ei+1

cannot be exact. Therefore £ —A is a characteristic vector in U +§, and 4 must be real.

Since A was an arbitrary eigenvalue of o;(D}), we have that o¢(Dj) is symmetric.

Section 10. The solution of the Cauchy problem

In this section the result of Theorem 9.2 is used to construct pseudodifferential opera-
tors A% 710> €10, of order zero and tangential to a foliation by non-characteristic

surfaces, such that
L'=Di+ Dy A1+ A'Dy: €0 £

is a symmetric hyperbolic pseudodifferential operator. This in turn will be used to obtain
the local existence and uniqueness theorem for solutions of the Cauchy problem.

In order to guarantee the smoothness of the symbols of the operators 4%, we must
make some assumptions about the regularity of the characteristics of the complex D:
E— &. Recall that a cotangent vector (z, £) €T*(Q) is in U, the characteristic variety of
D: £~ €, if the complex o;(D): £, &, fails to be exact. Let ¥, =V n T3(Q). Following
Guillemin [6], we have

Definition 10.1: A characteristic (z, {) in ¥ is generic if

(a) U, is non-singular at ; and
(b) The dimension of the ecohomology of g;(D): E,—~ E_ is at a local minimum.
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Generie characteristics are Cohen-Macaulay points of the characteristic variety, so
that

Eit o¢(D) B a(D) B

is exact if ¢ is greater than the codimension of ¥, in T5(Q) [5].
Let U, be the normal bundle of a foliation by non-characteristic sub-manifolds of
codimension one. Our regularity hypothesis is:

Hypothesis A:

(a) There is an integrable mazimal non-characteristic sub-bundle U = U ,< T*(Q) (with
fiber dimension g) which contains U,; and

(b) Every characteristic in U, is generic, where W, < W,=(U,)* is the characteristic
variety of (Dg)y: 3%~ E%'°, the tangential complex corresponding to U,,.

TuaEorREM 10.2: If D: £+ E is a symbol surjective complex of first order differential
operators solisfying the §-estimate, if U, 18 an integrable non-characteristic sub-bundle with
fiber dimension one, and if (U, D) ts hyperbolic, then for every (x, &) € W, there exist maps
a'(z, &) €Hom (EL°, EL°), homogeneous of degree zero in &, such that for each i, x, and &,

os(D}) + o(DE Y at Y, &) + o'(x, &) 0¢(D}) : B2~ EL°
s symmetric.
Further, of Dy E40— EX0 satisfies Hypothesis A, the maps a'(x, &) may be chosen to be
smooth in (x, &) except where £=0.

Proof: Tt clearly suffices to find a'(z, &) for (z, &) €Z(W,), the unit sphere bundle in
W,, and to extend a’ to be homogeneous of degree zero in £. Let p: Z(W,)—>Q be the ca-
nonical projection, and p*E*® the pull-back of E*® to a bundle over Z(W,). Let ¢(D})
denote the smooth section of Hom (p*E"®, p*E'%) given by

o(D}) (%, &) = 0y(D}) : Bz° > E2°,
and similarly for o(D}).

Fix a point (x, £)EZ(W,). Let b': EL®—> EL® be (D) on H} and zero on the ortho-
complement. By Theorem 9.2, b is symmetric, and clearly bog(Dy) =0(D,)b =0, s0 b —a(D,).
is a cochain map from the complex oy(D,): B;°— E;* to itself. It induces a map on the
cohomology which must be zero since its restriction to H, is zero. A simple exercise [cf. 11,

p. 205] shows that there is a cochain homotopy a such that b—o(D,)=aac(D,) +a(Dy)ea,
which proves the first part of the theorem.
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Now we show that Hypothesis A allows us to choose the a’s smoothly. The problem
is to extend o(D,) |y, which is a symmetric map on a family of vector spaces, to a bundle
map b which commutes with ¢(D,), is symmetric, and agrees with ¢(.D;) on a bundle which
includes H. Then ¢(D,)—b vanishes on H and so induces the zero map on cohomology.
Thus a(D,) —b=ag(D,) +6(D,)a. Since the a’s may be chosen to be zero on a bundle in-
cluding H, they may be constructed explicitly by Cramer’s rule using the exactness of the
a(D,) complex, and are hence smooth.

By Hypothesis Aa, U is maximally non-characteristic, so every vector 7 € W, is char-
acteristic for (D), E3°— £7°, Thus ¥, = W,, and by Hypothesis Ab and the observation
that all vectors in Y, are Cohen-Macaulay, the cohomology of

o,(D} o, (D}
O_)Eg,g w(Do) ¢ E},‘,‘l 2(Do) g E:'}a‘o 0

is concentrated in the first position, and the dimension of the cohomology is independent
of (¢, 7)€ W,. Thusit is a vector bundle H} over W, and pulls back to a bundle n*HY over
W, where n: W,— W, is orthogonal projection.

We can choose functions {g,, ..., g,} such that {dg,} is locally a basis of U, and {dg,, ...,
dg,} is locally a basis of U,. The sub-bundle U’'< W, = U7 determined by the restrictions
of the functions {g,, ..., g,} to the leaves of the foliation given by g, =constant is non-
characteristic for the tangential complex Dy £*°-> £*0 corresponding to U,. There is a
spectral sequence decomposition of the symbol complex o(D,): p* E**—p* E*° correspond-
ing to (7.5), namely

A2 U' ® p*EO 0
U'®ptE00 U'®p'E’1°——->
P By PE —

Let D, ,: E;°~E° be defined as in § 8. By Theorem 8.4, 6(Dy )|z is normal,
and hence, by hyperbolicity, symmetric. Thus I®a(Dy,1)|s0-@a+s is symmetric. On
AU @n*HY, o(Dy) is o( D)@ Z2_5 £* Ao(D, ), where {*=dp”/||do*||. As remarked in § 8,
o(D,,) commutes with (D, ,) on n*H}, and o(1}), is zero on n*HY, so o(D, ;) commutes
with o(D,) on AU’ @n*HY.

Now o(D) restricted to AU’ @p*E%°’ is I®a(Dy),®X1 I* A (I®6(Dy,)), so o(Dy)
restricted to AU’ @a*HY is I®a(D, ;). Let b: p*E**—>p*E*° be a symmetric bundle map
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commuting with ¢(D,) which extends I®o(Dy,)|sv @mu® Then a(Dy)—b is zero on

AU’ @n*HY, hence it is zero on H, and we can find smooth maps a such that
o{D,) —b = ac(Dy} +o(Dy)a.

In order to consider local existence and uniqueness of solutions to the Cauchy problem,
we must consider lens-shaped domains. Let ( be an open submanifold of X contained in
a coordinate neighborhood, and let 8 be a non-characteristic submanifold defined by the
equation p=0. Let @' and ®” be non-zero smooth functions with compact support on S
with supp @’ <interior supp ®"< =8N Q, and &' <0< ®”. Let 8" and §” be the submani-
folds defined by the equations o=@ and ¢=®". We assume that §' and §” are non-
characteristic, which is clearly the case if ®" and ®” are sufficiently small in the (" sense.
Let M be the closure of {x€€: @'(x) <p(x) <0}.

2 \\\\\\\\\\\WR\\\\\\\\\\

- .‘\\\\\\\\}}}}}\\ AMAN \\\\\\\\\\\\\\\\\\\\\\’\“.\\\.‘
i

There exists an open set w< 2 such that w N 8" =¢ and M < < . We shall call the compact

set M a lens-shaped domain. The definition is more restrictive than necessary, but it helps

to avoid technical complications in the following proof.

TueoreM 10.2: Let Q, S, S’, 87, and M be as above and let U and U’ be integrable non-
characteristic sub-bundles extending the normal bundles of S and S’. Let J be the smallest dsf-
ferental ideal containing all functions which vanish on 8. If D: E— € is a symbol surjective
complex of first order differential operators satisfying the d-estimate and Hypothesis A, and
if (U, D) and (U’, D) are hyperbolic, then

Do Dl
0——JEM)—— JE M) —— ... —— JEMM) ——0
is exact, where all sections of bundles over M are taken to be differentiable up to the boundary.

That is, the Cauchy problem for D: E— & with initial data on S has solutions over M and they
are unique in the sense of cohomology.

Proof: Since the question is local in a coordinate neighborhood, we may assume Q< R
and that a trivialization has been chosen for the graded vector bundle E. Choose coordinates
(t, 2y, ..., *,_;) such that ¢ =0 defines 8’ and {dt} is a basis for U’. Let Q+ be the subset of
Q for which ¢>0, and o+ =w N Q+.
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Let H,, {R") be the Sobolev space with norm
Il 22 1+ e+l Prlaceras

where §=(z, &, ..., §,_,) is dual to (¢, zy, ..., Z,_y), and & =(0, &, ..., &,_;). The trivializa-
tion of E enables us to extend this to define [[u||?,. ;) for u € E(w) if supp » < < w. Denote by
H . o(w, E) the completion of the space of compactly supported sections in &E(w) with
respect to the norm ||ull(,. ,. Denote by w~ the intersection w N{(¢, x): ¢<0}, and by
H(w~, E) the corresponding Sobolev space. Denote by H, ,(w*, E) the quotient space
Hip o0, B)H,, (=, E); that is, a distribution u€(E(w*))’ is in H,, ,(w*, E) iff there
exists a distribution U€H ,, ,)(w, E) with w=U in w*. The norm of u is defined by

lullin.sr =10t [ Ullom.0

the infimum being taken over all such U.

There is a nested sequence of compact sets M =K,< K,<=...Cw such that K,< K, ;
and U K=w. Any pseudodifferential operator P can be modified as in [8] by adding an
operator of order — oo so that if supp u< K, then supp Puc< K, ,». By Theorem 10.1 and
Hypothesis A, there is a smooth map a'(z, '5) which is the map of Theorem 10.1 smoothed
in a neighborhood of the zero section of (U')*. Let 4 be a pseudodifferential operator
defined on each surface {t=constant}, modified as above so that if supp u€K,, then
supp A'u€K,,,, with asymptotic symbol a'(z, &). For each ¢, if Li= D!+ A'D{+ D§*4*,
then L'+ L* is a pseudodifferential of order zero defined on each surface {f=constant}.

We shall first prove that the short sequence
DO
0—JEM)—— JEY (M) (10.1)
is exact, beginning with the following lemma:

LeEMMA 10.4: Let u be a smooth section in Ew) with compact support. Consider the Guil-
lemin decomposition with respect to U’'. Under the hypotheses of Theorem 10.2,

| <w, (DY +DY*)up| < const {|| Dful| + [|uI}][«],
where all inner products and norms are in
Hy o 0%, E) = Lyw*, E).
Proof: As above, if B=L+ L%, where L®=D}+ A4°Dg, B is a tangential pseudodif-

ferential operator of order zero. Thus

| <u,(DY+ D¥*)up| < |C(u, Bup| + | {u, A°DJuy | + (u, D§* A% u) |
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Since the operators on the right are tangential to the surfaces {t=constant} and u has
compact support in the z-directions, integration by parts incurs no boundary terms and
yields

| <u, (DY + D¥*)u)| < |<u, Buy| +2{<A%u, D§uy| < const {|| DJul| + |ju||} ||«

since the zero order operators 4 and B are bounded in the L, sense.

By taking limits, we obtain
CoroLLARY 10.5: If u€H ;o {w*, E°), then under the hypotheses of Theorem 10.2,

| <, (DY + D$*)up| < const { || Dyu|| + |||} ||=]l-

To prove
D°
0 JE(M)——— JE (M)

is exact, let w€ JEYM) with D% =0, so that u|;=0, D}u=0, and D§u=0. Let % be the
extension of % to w* given by % =0 outside M. Since u|s=0, @ is continuous and has L,
first order derivatives, so 4E€H, q(w*, E), and D}i=0 and DY@ =0. Now let 5=¢ .

Since D} —d/ét is an operator tangential to the surfaces ¢ =constant, D{5-+N5=0. Thus
0= f (DG + N, 5= J‘ 8, D5+ No)+ f |||,
wt wt s’

since the boundary terms incurred by integrating by parts are all zero except where ¢=0.
Since D¥* 4N = (DY + Di*) — (DY +N)+2N,

0= f <5, (Di+ DY) o) + 2N f Ilﬁl|2+f P,
ot wt s’
and by Corollary 10.5.

< const. {||D§ ]+ |||} ||all,

NG

where the constant on the right is independent of N. Since o4(D§) =0, D§5=e-¥Dj % =0,
80 |2N §,+||6]|2] <comst f,+|5]|2. By choosing N sufficiently large we obtain a contradic-
tion unless ¥=4 =0. This proves that (10.1) is exact.

To prove that

D! Dt
JENM)— JE(M)—— JE (M)
is exact for i1, we begin with the following lemma concerning the existence and uni-

queness of solutions of the Cauchy problem for the determined symmetric hyperbolic

pseudodifferential operator L.
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LEMMA 10.6: If u€E'(QY) and supp u< o+, there exists a unique v€ E49(Q+) with
supp v< o+ such that L'v=u in Q.

The proof is a rather straightforward copy of the proof of the existence and unique-
ness of solutions of the Cauchy problem for a determined symmetric hyperbolic operator.
The section v is constructed in M, H g, ,(w*, E*°) which means supp v<®* and v is in-
finitely differentiable in the tangential directions. That v is infinitely differentiable in the
normal direction follows by solving L'v = for the normal derivatives.

Consider now a section uw€ JE (M) with D'u=0. This section is not in any of the
previously mentioned Sobolev spaces, but this is remedied by the following

LeEMMA 10.7: Let u€ JE(M) satisfy D'u=0. There is a section v€ JE' (M) such that
D'y —u vanishes to infinite order on S. In fact v can be chosen in E-19M) so that v|s=0.
This is a consequence of the solvability of the formal Cauchy problem on non-char-
acteristic surfaces; see [2, Theorem 7.4]. The section v is constructed by determining what
its normal derivatives must be on S and extending by the Whitney extension theorem.
Let @ be D'"'v—u in M and %=0 on w+—M. Since D' 'v—u vanishes to infinite
order on S, 4 is smooth and supp u<@*. If we can solve D' 'w=1, then in M, D' 'w=
D'"'v —u so u=D*"}(v—w). Thus as far as solvability of the equation D' 'v=u is concern-
ed, we may assume without loss of generality that u vanishes identically on w+— M.
Write u=u,+u, where u,€ E"9w*) and u, € E-1%w*), Diu,=0 and Dju,=Dj 'u,.

Solve the Cauchy problem L*~'v =u, + 4*~1u,, supp v<@®*. We claim that

DFY (=AY, v) = (uy, up) = u;
that is,
Di'w=u, and Di'w+D§y?At%w=u,.
First we show D) 'v=u,. Since D} D§ =0 and D! Dy ' =Dy ' Di™', we have
LiDi Y= Di Lo = DE Yy + AV )

Thus LY(DY o — ug) = Db Yuy + A ug) — (Di + A'D§+ Dy TA Y uy =0

since Dju,=0 and D} 'u,=Diu, Since supp v<&*, supp Dy 'v<@+ and since also
supp %, <@* we have D§ 'v—u, is a solution of the determined Cauchy problem Liw=0,

supp w<a@+. By Lemma 10.6, D§ v =u,.
Now we show Di'v+ D§ 24! %y =u,. We have

— i— - — - - - - -1
DI+ DE2A =L - A" 'Df w=u, + A" — A7 Dy o=,

Thus there is a section w=(— A*2v, v) with support in @+ such that D*'w=u. It is not

clear, and in general not true, that w€ JE-(M). If s =1, however, w vanishes to infinite
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order on S and is thus in JE**(M), for in this case we can consider the lens-shaped do-
main M’ between S and 8”. On M’, =0, and so by the exactness of (10.1) on M’, w=0
on M’ and since w is smooth, w vanishes to infinite order on S.

If ¢ >2, we can solve the equation Dw’ =w on M’ and extend w’ arbitrarily but smoothly
to M. Then D(w— Dw')=w on M and w— Dw' vanishes on M’ and hence to infinite order
on S, and so w— Dw' € JEY(M). This completes the proof of Theorem 10.3.

Section 11. Examples

(i) The de Rham complex. This was defined in section 2. It is usually treated as an el-
liptic complex but since it has no characteristics, real or complex, it is also hyperbolic.
The 8-estimate is satisfied vacuously since g7 =0, and Hypothesis A is also satisfied. The
construction of the pseudodifferential operators A is not necessary in this case, since if §
is given by the equation ¢ =0, D, is 8/dp.

The solvability of the Cauchy problem in this case is an analytical expression of the
fact that de Rham cohomology is invariant under deformation retracts.

(ii) The coercive Newmann problem. A slight generalization of the above situation was
considered by W. J. Sweeney in [14]. He showed that the Neumann boundary value prob-
lem for an elliptic complex

80___‘D_0_> 81 _Pl_> 82
is coercive, or elliptic, provided that the normal bundle of the boundary of a compact
manifold-with-boundary is hyperbolic. That is, if the boundary is given by =0, then
Sweeney’s condition is that there be no characteristics of the form £+ Adg, where £ is a real
covector and A1€C.

The results of this paper apply to show that the cohomology of the boundary complex
is isomorphic to the cohomology of the full complex on a neighborhood of the boundary.
The hypotheses of the J-estimate and Hypothesis A are unnecessary in this case, since
H§=O for every real §&; i.e., the boundary complex is elliptic (otherwise, there would be
characteristics of the full complex of the form & +Adp, where A is an eigenvalue of o(D})
on H}). For details, see [7].

(iii) Maxwell’s equations in an isotropic homogeneous medium. It is easy to verify that
the bundle spanned by {dt} is maximal non-characteristic and hyperbolic, and that all small
deformations of it are hyperbolic. Thus there are lens-shaped domains on which all our
hypotheses are satisfied, except possibly for the § estimate. In fact, the §-estimate is also
satisfied, as can be verified by computation of the eigenvalues of §6* +6*5 on T*® 7.
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The tangential complex is

¢3¢0
and the normal operators Dy: -
and Di: G-t
are given by D(l’u=8—u+L_ curl u+Z Re
o Vue £
and D} =al+gRev.
at ¢

Since these are already symmetric hyperbolic, the construction of the operators A4*
is not necessary when the Maxwell equations are given in their usual form.

(iv) The wave equation. If the second order equation 5%u/dx® —d*u/dy® =0 is reduced to
a firstorder overdetermined system by the introduction of new variables, the result satis-

fies all our hypotheses.
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