
A GENERALIZATION TO OVERDETERMINED SYSTEMS 
OF THE NOTION OF DIAGONAL OPERATORS 

II. Hyperbolic operators 
BY 

BA RR Y  MACKICHAN 

Duke University, Durham, N.C., USA 

Contents 
CHAPTER I: INTRODUCTION 

0. Introduct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 
1. Complexes of first order linear differential operators . . . . . . . . . . . . . . .  241 
2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243 
3. The Cauehy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246 

CHAPTE~ II:  THE ~-ESTII~ATE 

4. The ~-complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248 
5. Metrics and extensions of metrics . . . . . . . . . . . . . . . . . . . . . . .  249 
6. The ~-estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
7. The GuiUemin decomposition . . . . . . . . . . . . . . . . . . . . . . . . .  251 
8. The ~-estimate and normality . . . . . . . . . . . . . . . . . . . . . . . .  257 

CHAPTER I I I :  THE CAUCHY PROBLEM 

9. Characteristics and hyperbolieity . . . . . . . . . . . . . . . . . . . . . . .  264 
10. The solution of the Cauehy problem . . . . . . . . . . . . . . . . . . . . . .  266 
11. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  273 

Chapter I: Introduction 
Seetion O. Introduction 

One of the problems in  the theory of overdetermined systems of l inear  par t ia l  dif- 

ferential  equat ions  is to prove the existence of local solutions of the  inhomogeneous equa- 

t ion  Du =v. I n  general, if D is overdetermined,  v mus t  satisfy a compat ib i l i ty  condi t ion  

D'v =0 for some operator D'. The best  possible result  is t h a t  the  compat ib i l i ty  condi t ion  

is no t  only  necessary, b u t  sufficient for the existence of local solutions; t ha t  is, if E ~ E t, 
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and E ~, are sheaves of germs of differentiable sections of vector bundles, then the complex 

of sheaves 
D D' 

o ~ o  ._~ ,_~ ~_~ (o.1) 

is exact, where | is the solution sheaf of the homogeneous equation. 

D. C. Spencer [12] has shown that,  granted certain reasonable assumptions about D, 

there exists a complex 

D 1 D~'-a o , 0  , c  o D~ C'1 , . . .  ,C" , 0  (0.2) 

of sheaves and first order linear operators such that  the eohomology of (0.2) at _C 1 is the 

same as that  of (0.1) at _E 1. Thus it suffices to look at complexes of first order operators 

satisfying the properties of Spencer sequences. 

In [9], the author showed that  if D is elliptic and satisfies a condition called the g- 

estimate, then (0.2) is exact. The proof consists of showing that  the Neumann boundary 

value problem is solvable on sufficiently convex small domains and that  the harmonic 

space is zero on these domains. In this paper, hyperbolic complexes satisfying the g-esti- 

mate are considered, and it is shown that  for such complexes, under suitable conditions, 

the Cauehy boundary value problem is solvable. This does not show that  the complex (0.2) 

is exact, but rather gives an isomorphism of the global cohomology corresponding to (0.2) 

over certain domains with the cohomology of a related complex on the lower dimensional 

Cauehy surface. 

The final theorem of the paper proves local existence and uniqueness of solutions for 

the Cauehy problem for complexes of first order linear differential operators which are 

symbol surjective (such as Spencer sequences), which satisfy the g-estimate and a hyper- 

bolicity condition, and some conditions on the regularity of the characteristic variety. 

Of these conditions, the g-estimate is the least familiar. I t  is a homologicaI condition 

on the g-complex of an operator, and initially looks strange, but it has several nice pro- 

perties, which are listed here with an indication of where the proofs can be found. 

(1) H D satisfies the 0-estimate, then D is involutive. [9, Theorem II.1.7]. 

(2) If D satisfies the 0-estimate, then every prolongation of D satisfies the 0-estimate 

[9, Theorem II.1.4 and II.3.1]. 

(3) If the first operator of a symbol surjeetive complex of linear first order operators 

satisfies the 0-estimate, then all operators in the complex do. [This paper, Theorem 6.2.] 

(4) If  D satisfies the 0-estimate, then every operator in the Spencer complex for D 

does. [9, Theorem II.2.1.] 
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(5) If S is a non-characteristic submanifold and D O is the tangential complex asso- 

ciated with S and D, and if D satisfies the &estimate, then D o does. [This paper, Theorem 

7.8.] 

(6) If the constant (1/2) ( k + l )  2 which appears in the &estimate (6.1) is replaced by 

(1/2) (k+1)2+~ for any e>0 ,  the resulting condition is so strong that  it is satisfied only 

by those operators which have no characteristics, real or complex, and are of finite type. 

Such operators are essentially the exterior derivative. [This paper, Corollary 8.3.] 

(7) On the other hand, it is conjectured that  if (1/2)k 2 is replaced by (1/2)k2-e 

for any e>0 ,  the resulting condition is so weak that  it is satisfied by any involutive 

operator. 

(8) If D is an elliptic operator which satisfies the &estimate, then the analytic meth- 

ods which prove the ~-Neumann problem is solvable also prove the Neumann problem 

for the Spencer complex for D is solvable [9]. 

The goal of this paper is to justify the following statement: 

(9) If D is hyperbolic and satisfies the 5-estimate, then the analytic methods which 

prove the Cauehy problem for a symmetric hyperbolic system is solvable also work to show 

that  the Cauehy problem for the Spencer sequence of D is solvable. 

Sections 1-3 state the Cauchy problem and what is meant by "existence and uni- 

queness" of solutions. Sections 4-6 define the 5-estimate and collect the results we need 

in this paper. Section 7 is an exposition of the Guillemin decomposition of a complex rela- 

tive to a foliation by non-characteristic surfaces. These results are due to Guillemin, but  

since they are unpublished, we reproduce them here. Section 8 contains a main result of 

the paper, that  the symbols of certain operators in the Guillemin decomposition of a 5- 

estimate complex restrict to the "cohomology" or "harmonic space" of complexes of 

symbols of other operators and that  these restrictions are normal (commute with their 

adjoints). Since normal matrices can be diagonalized this theorem is the justification for 

considering &estimate operators generalizations of diagonal operators. Section 9 shows that  

if the complex is hyperbolic, these normal matrices are in fact symmetric. Section 10 ap- 

plies this result to prove existence and uniqueness of solutions to the Cauchy problem by 

reducing it to solving symmetric hyperbolic Cauehy problems. Section 11 gives some 

examples. 

Section 1. Complexes o|  first order linear differential operators 

In this paper the phrase "differentiable of class C ~176 as it applies to vector bundles, 

sections, germs, etc., has been suppressed; it is assumed in all instances where it makes 

sense. N denotes the non-negative integers, N ={0, 1, 2 .. . .  }. 
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Let ~ be an open submanifold of a manifold X of dimension n, and let {Et: iEN} 

be a sequence of finite dimensional vector bundles over ~ .  For simplicity, we assume the 

scalar field for the vector bundles is C, the complex numbers, but  in many  cases it  suf- 

fices to consider real vector bundles. The sheaf of germs of sections of the bundle E l is 

denoted by _E t, and the space of global sections over ~ is denoted by  F(~,  E~), by  ~ ( ~ ) ,  

or by  ~ .  For each x in ~ ,  let E~ (resp. _EL) denote the fiber (resp. stalk) of the bundle E ~ 

(resp. sheaf E *) at  x. T*(~), or simply T*, is the complexified cotangent bundle of ~ .  

We consider linear partial  differential operators D: ~ - ~ E  j where i and ?" are in N. 

D may  be expressed in some neighborhood of x 0 in terms of a local coordinate chart of 

and local trivializations of E ~ and E j as 

D= ~ A,~(x)(a/~x): 

For each cotangent vector (x, ~)6T*(~)  (here x 6 ~  and ~6T*),  define a vector space 

morphism ~(D) :  E~---~E~, called the symbol morphism of D at  (x, ~), as follows: At x, 

choose a germ / of a function such tha t / (x )  =0 and d/(x) =~. For any  germ uE_E~, set 

a~(D) (u(x)) = 1 D(lmu) (x) 

where m is the order of D at  x. I t  is easy, and left to the reader, to check tha t  this is well- 

defined. I f  D is represented in terms of local coordinates and triviahzations as above, and 

if ~ =E~dx ~, then 
a~(D)= E A,~(x)~. 

I~I f f i  m 

This shows tha t  if ~GF(~,  T*(~)) is a smooth cotangent vector field on ~ ,  the vector 

space morphisms 
: E~-+E~ a~<=)(D) ~ J 

piece together to give a vector bundle morphism a~(D): E ~ E  j, tha t  the map a(D): T*-~ 

H e m  (E ~, E j) is smooth, and tha t  a~(z)(D): T*-+Hom (E~, E~) is a homogeneous poly- 

nomial function of order m in ~. These show tha t  there is a (linear) vector bundle morphism 

a(D): SmT*|  where SmT * is the bundle of m-fold symmetric tensor products on 

T*. 

In  this paper we shall consider complexes of first order linear differential operators 

D o D 1 
s  , s  , . . .  

I t  is convenient to consider the graded vector bundle E, which in degree i is E ~, and the 

graded operator D which in degree i is D~: ~ - ~  ~t+1 and is therefore an operator of degree 
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one. Since Di+loD~=0, we have DoD=O. Let  Hem (E, E) be the graded vector bundle 

of graded homomorphisms. In degree i, it is Hem t (E, E), the bundle of graded homomor- 

phisms of degree i. 
~ ~ / ~ + I  Fix x 6 ~ .  For each ~6T*,  a~(D): ~ x ~ x  so the assignment of a~(D) to ~ gives a 

map a(D): T*-+Hom I (E, E), which is linear since D is first order. We extend this to a 

vector space morphism 
a(D) : |  E) 

by setting a(D)(~l |174 . . .a~(D) and extending linearly. Since D o D = 0  

implies a~(D)oa~(D)=0 for every ~, this morphism factors through a well-defined, graded 

of degree zero, vector space morphism 

a(D) : AT* -* Hom~ (E, E) 

where AT* is the exterior algebra of T*. 

We have shown that  the symbol morphism of D induces on Ex the structure of a 

AT*-module. Clearly, E(~) is then a r ( ~ ,  AT*(~))-module, and for each x, _E x is a AT*- 

module. We say, loosely, that  E is a AT*-module. 

Denote the multiplication of u E Ex by r E T* by r A u, so that  if ~ E T*, ~ A u =a~(D) u. 

The interaction between the operator D and the module structure on E given by 

a(D) is given by the following proposition due to V. W. Guillemin, which can be stated either 

in terms of germs of sections, as we have done here, or in terms of global sections. 

LEM~A 1.1: For each r and each uE_Ex, 

D(r A u) = do~ A u + ( -- 1)~r A Du. 

Proo/: If r is a 0-form, the lemma is an immediate consequence of the definition of 

the symbol map. The proof for forms of higher degree follows from a simple induction ar- 

gument. 

Remark: The cohomology of the complex D: E-~ ~ is the graded vector space which is 

k e rD  l : EL+ ~+1 
H~(~(f]), D) imDt-1 : ~-I-~E~" 

V. W. Guillemin has observed that  this lomma implies tha t  the cohomology of the complex 

D: ~-~ E is a module over the de Rham cohomology ring. 

Section 2. Examples 

We pause to give several examples of complexes of first order differential operators 

and the corresponding module structures. The two best known examples of complexes of 
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linear first order differential operators are the de Rham and Dolbeault complexes, Ex- 

amples (i) and (ii) below. Example (iii) gives a method by which a complex is derived from 

a given complex and a submanifold of codimension at  least one. The resulting complex, 

the tangential complex, is used in the statement of the Cauchy problem. 

(i) The de Rham complex. In this case, EJ=A~T*(~),  and D~: AJT*-~At+IT * is the 

exterior differential, usually denoted by d. If ~ is in T*, the symbol morphism a~(d): AT*-~ 

AT* is exterior multiplication by ~, and the AT*-module Ex is AT*. 

(ii) The Dolbeault complex. In this case, X is a complex analytic manifold, E ~= 

AP.IT * the bundle of differential forms of type (p, i), and D~: AP.tT*-~A~.~+IT* is the 

Cauchy-Riemann operator in several complex variables, usually denoted by 0. The symbol 

morphism for ~ in Tx, a~(0): A .  Tz-~A.  Tz is exterior multiplication by ~(0.1), where 

~(0.1) is the projection of ~ onto h ~ in the direct sum decomposition * 2.0 �9 
OI * 0 . ,  * p.o * AO. , rp*  A �9 T, .  Thus the AT*-module E is isomorphic to A T~ |  T~, where . . . .  is the 

graded algebra which in degree i is A~ *. 

(iii) Tangential complexes. For each x E ~,  the bundle AT* is an algebra over the real 

or complex numbers, and is, a/ortiori, a ring. Similarly F(~,  AT*) and AT* are rings. 

A differential ideal Y in F(~,  AT*) is a subset of F(~,  AT*) which is an ideal which is 

d-closed (if aEY, then daEy) .  Similarly we may define a differential ideal Y in AT*. 

Given a differential ideal Y, define a submodule YE of ~ to be the submodule consisting 

of all finite sums of the form E~o~ A e~ where each eo~ ~ Y and each e ~  ~(~). Since Y is d- 

closed, it follows from Lemma 1.1 that  the submodule y ~  is D-closed. 

We obtain the following commutative diagram: 

0 0 0 

D 1 D 1 
~ ( y g ) H  , ( j E ) ~  , ( j E ) H  , . . .  

li li li 
D D , ~ I - 1  , ~ I  ]. ~ I + l  , o. 

, g~_l/(yS),_ ~ D ~  , g | / ( y g ) t  D y  > ~ f + l / ( y g ) t + l  , . . .  

0 0 0 

where (:IE) j is by definition :TEN E j, the maps i and ~ are inclusion and projection onto 

the quotient, and the maps D~ are defined to make the diagram commute. 

We examine several instances of this. Let  S be a submanifold of ~ with codimension 

q. There is a smallest differential ideal :7 which contains all functions which vanish on S. 
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I f  S is given locally by the equations ~1 = ~  =-.. =~q =0,  then locally 3 is the ideal spanned 

by  {Q1 .. . .  , ~q, d~l ... . .  d~q} over the functions. 

The corresponding complex 

is called the tangential complex for D: E-~ ~ tangential to S. 

Since 3 is d-closed, 3 ~  is D-closed. I t  is easy to show tha t  3 ~  is the least D-closed 

submodule of E which contains all sections of ~ which vanish on S. We also have: 

LEYIMA 2.1.: I / U E  ~IE, then there exist sections u'  and u" such that u = u '  + Du", u' Is ~-0, 

and U"ls=O. 

Proo]: Let u =Zco~ Aet be in (3~)  where each e0,E 3. Since 3 is generated by {el ..... ~q, 

dQ1 , ..., d~q} over the functions, we can write co~ = Z  a~j/~ ~j +fltj h dQ~ where a~j and fltj are 

differential forms. We can choose signs e ~j such that  D(Z etJfltj/~ ~j A e~) =E,6ij h d~j A ei + 

u '"  where u '"  vanishes on S. Thus we let u" = E ~tjfl~j A Qj h et and let u' = Zat j  h ~ A e~ - u" '  

Let  Y~ be the ideal in AT* consisting of the values at  x of forms in 3. Clearly 3~ is 

generated by  ~(x) ..... ffq(x), d~l(X), ..., d~q(x) over the constants. I f  x r then 1 e 3~ so 

3 ~ = A T  * and ( y g ) ~ = E ~  where (3~)~ is the submodule of E~ consisting of the values at 

x of sections in 3~.  Thus the space ~/Y~ is concentrated on S. I t  is not necessarily the 

space of sections of a vector bundle on S since the dimension of (~ /3g )~=E~/ (3~ )~  may 

jump, but  in the case where S is non-characteristic as defined in section 7, dim (~/3~)~ 

will be constant and ~ / 3 ~  can be considered to be the space of sections of a vector bundle 

over S. 

An explicit construction of the t~ngential complex for the Dolbeault complex appears 

in [1] and [2]. In  the latter paper it is pointed out tha t  the tangential de Rham complex 

on S is just the de Rham complex on S. 

A similar construction is obtained by taking 3 to be the ideal o[ an integrable codis- 

tribution. That  is, 3 is a differential ideal generated by forms of degree one. By the Fro. 

benius theorem, the ideal determines locally a foliation of ~;  tha t  is, it is possible to find 

locally functions ~ such tha t  {d~ ..... dffq} generates Y. The surfaces ~iven by ~1 = const, 

.... ~q = const. 8ire the corresponding local foliation of ~ .  

In  this case it is no longer true tha t  (~/3~)~ vanishes except for x on a given surface. 

We have tha t  D~ differentiates only in directions tangential to the surfaces of the 

foliation: ~ = c o n s t  . . . . .  ~ ) a ~ c o n s t .  More precisely, if ~=~(o~ .... .  ~q) is a function which is 

constant on each surface, and if e is in ~, then D(q;e)=(de A.e+~ h De) by  Lemma 1.1. 

Since ~ is a function of ~1 ..... ~q, d~ is a combination of d~l . . . . . .  d~q, and hence d~ A e~ Y~. 

Thus D~(c~e) = q~ ~ D~e 
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and D~ commutes with functions constant along the sheets of the lobation. Thus D~ 

does not differentiate except in directions tangential to the foliation. 

(iv) MaxweU's equations in an isotropic homogeneous medium. Let  E be the electric 

field strength, H the magnetic field strength, D the dielectric displacement, B the magnetic 

induction, J the electric current density, ~ the charge density, and a, e, and/~ the conduc- 

tivity, permittivity, and permeability. Assume the last three are constant. 

Maxwell's equations are 
curl H = J +~/~tD 

curl E = - O / ~ B  

div B - 0 

div D - 

These are supplemented by the constitutive equations 

D = e E  

B = ~ H  

J ~- aE. 

Let  E = E + V/~/e i l l .  Then Maxwell's and the constitutive equations reduce to: 

curl E - i ~  ~/~tE - / ~  ~V~ Re E = 0 

div E = Q/e 

Let X = R  a, let E ~ E 1, and E 2 be the bundles over X with fibers C a, Ca• (P, and C 1, 

respectively. 

Let DO: ~0._.~ E1 be the Maxwell operator defined by 

D~ = (curl u - i ~ a / a t u - i a V - ~ s  Re u, div u) 

and let DI: ~1__~ ~2 be defined by 

D~(vo, v~) = div v o + iV~al~t  vl + i ~  Re v~ 

Then D 1. D O = 0, and 
D O D 1 

~0 , E1 , ~ 
is a complex. 

Let S be the surface given by t =0. Then J E  ~ is isomorphic to the space of sections of 

C 3 over S, 3E  1 is isomorphic to sections of C 1 over S, and D O corresponds to div under 

these isomorphisms, y ~  and D~ are zero. 

Section 3. The Cauchy problem 

Let S be a submanifold of ~ of eodimension q. Let v be in E ~+1 and let u o be a smooth 

section of E ~ over S; i.e., u0EF(S , _Et[ s). The Cauchy problem is: 
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Find uE E ~ such tha t  D u = v  and u I , = 0 .  

We want to know when there exist solutions and to what  extent they are unique. In  

this section we show tha t  the best possible existence and uniqueness statements are equi- 

valent to the exactness of the complex D: ~ - ~  :1~ defined in the previous section, where 

J is the smallest differential ideal containing all functions which vanish on S. 

There are clearly some necessary conditions for the solvability of the Cauehy problem. 

Since D o D  =0, necessarily D v  =0 .  If/~o is any section in ~t which extends u o, then u - U o  

vanishes on S and so is in ~ .  Thus D ( u - ~ o ) = v - D ~  o must  be in ~E. Clearly, whether 

v -  D~ o is in J ~  depends only on v and u0, and not on the extension uo. The Cauchy prob- 

lem can now be stated: 

Find uE ~ such tha t  D u  = v and u] 8 = u0 where Dv = 0 and 

v -  D~ 0 E ~ ~ for every extension u0 of %. (3.1) 

We claim tha t  this is equivalent to the following problem: 

Find u' E ~t such tha t  D u '  = v' and u'  18 = 0 

where v' E y ~  and D r '  = O. (3.2) 

Clearly, (3.2) is a special case of (3.1). Conversely, if (3.2) can be solved for v' = v - D ~  o, 

then u = u '  +Uo solves (3.1.) 

Now we claim tha t  (3.2) is equivalent to the following problem: 

Find u E ~ such tha t  D u  = v and u EYE where v E 3 ~  and D v  = O. (3.3) 

I f  we can solve (3.2) we can certainly solve (3.3) since if u[ s=0  then ue3g. If  we can 

solve (3.3), we have by  Lemma 2.1 tha t  there is a section u"E Y~ such tha t  u = u  ' + D u "  

where u'] 8 =0,  and u '  solves (3.2). 

The final form (3.3) is the form of the Cauchy problem we shall consider. The solv- 

ability of this problem is equivalent to the exactness of the complex 

D D 
... , (yE)~-I , (yg)t , (YE) ~+1 , . . .  (3.4) 

I f  vE(y~)  1+1 and D r = O ,  we want  to find ue(ys with D u = v .  This can be done if and 

only if the eohomology class of v in the cohomology of (3.4) is zero. Solutions to the 

Cauehy problem are not in general unique if i>~l since if D u = v  and we(ys '-1, then 

D ( u  + Dw)  = v, so u + D w  is also a solution. We say tha t  the solution of the Canchy prob- 

lem is unique in the cohomology sense if the only multiplicity of solutions is of this 

kind; i.e., if u and u '  satisfy D u = D u ' = v ,  then u - u '  represents the zero cohomology 

class in the eohomology of (3.4). Let  H ~ ( y g )  represent the cohomology of (3.4) at  (y~)l.  

We have shown: 
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T~EOR~.M 3.1: The Cauchy problem (3.3) has a solution i /and only i/the cohomology 

class o /v  in Ht+I(YE) is zero. The solution, i / i t  exists, is unique in the cohomology sense i/ 

and only i/H~(YE) =0. The Cauchy problem can be solved/or every vE(YE) t+1 with Dv=O 

i /and only i/H~+I(yE)=0. 

We conclude this section by proving tha t  the solvability of the Cauehy problem for 

all admissible data is equivalent to the existence of a canonical isomorphism of H(E), 

the eohomology of the complex 

D D �9 . .  , ~ I - 1  , ~J , Ef+l , . . .  

and H(~/YE),  the cohomology of the complex 

. . .  �9 ( ~ / y ~ ) ~ _ ,  D;  �9 (E/YE)' D ;  , (gly,~) '+l " . . .  

The isomorphism is given by considering the long exact sequence of the short exact se- 

quence of chain maps (2.1): 

i* ~* i* 

We have ~*: H(E)-~H(E/YE) is an isomorphism if and only if H(YE)=0, which we have 

shown is equivalent to the existence and uniqueness (in the cohomology sense) of solutions 

to the Cauehy problem for D. 

Chapter H: The 6-estimate 

Section 4. The ~i-complex 

We have seen in section 1 tha t  if D: E ~ E ~ is a differential operator of order k, it 

determines a smooth vector bundle morphism a ( D ) : S k T * |  j where S~'T * is the 

space of symmetric k-fold tensor products on T* and a(D)(~| For each x E~, 

define the vector space (g~)x to be the kernel of a(D); i.e., 

0 , (g~)x , (S~T*| a(D),E~ 

is exact. The mth prolongation of a(D) is am(D): (sm+~T*| ~, and is de- 

fined to be the restriction to (sm+kT*| of I| (S'~T*QS~T*|174 

The mth prolongation of (g~)~ is t (gm+k)x, the kernel of am(D). I t  is easy to check tha t  

,SmT.~ t, N !g~+k)x=( ~gk)~ (sm~kT*| 

I f  a(D) has constant rank, then ' l 9, = U,e~(gk)x is a vector bundle, and gm+~ is a vector 

bundle for all m/>0, provided in addition g~ is involutive, which will be the case in this pa- 

per, since by [9, Theorem II.1.7], operators which satisfy the 5-estimate are involutive. 
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We shall assume tha t  a(D) has constant rank, although this assumption is not essential 

for much of the algebra in this paper. 

Let  (~: SmT*-~ T*QSra - iT  * be the unique bundle morphism such tha t  ~(~1. ~ . . . . .  ~ra) = 

Z 5 1 ~ |  ra) for all ~1 ..... ~m in T*. Extend 5 to a linear map 5:AIT*@ 

S ' ~ T * | 1 7 4  1T* |  by  setting (~(u|174 if u E A I T  *, vESraT*, 

and e E E .  Clearly (~2=0. I t  is possible to think of ~ as formal exterior differentiation of 

polynomials which are elements of ST*.  

The following square commutes: 

A 1T* | S k+m+lT* | E t ~ + I ( D )  AZT, | Sra+lT, | Ej 

At+iT, @ sk+rnT, @ E~ ara(D) , At+iT, | SmT,  | Ej  

l * i __> /+1  , t Therefore ~(A T | A T | and we obtain the &complex for each m~> k: 

0 * g~l , T* | g~i 1 ' . . .  . . . .  A ra-k T* ~"~k ~ A ~ - k + I T * | 1 7 4  ~ 

(4.1ra) 

De/ini t ion 4.1: The &cohomology of g~ is the cohomology of the sequences (4.1ra) 

where m >~ k. The bundle g~ is involutive if the &cohomology is zero. The operator D: ~ - ~  ~ 

is involutive if the corresponding g~ is involutive. 

For each m >//c, the sequence 

2 * t 0 ,gL+~ , T * |  , A  T | 

A ~ T* ~ -~ is always exact; the first non-trivial cohomology occurs at  ~ra_~.  

Section 5. Metrics and extensions of metrics 

Assume tha t  smooth inner products are given on the fibers of the bundles T* and E t. 

We extend these as follows. If  V1, ..., Vra are vector bundles with smooth hermitian inner pro- 

ducts, there is a unique inner product on V 1 | | Vm such tha t  (v 1 @... | v~, w 1 | @wra)x = 

(vl ,  w l )  ~ ... (vra, wra)x. Thus we have an inner product on | Define an inner product 

on SmT * by setting (x, y ) =  (ax, ay)  for x and yESraT*, where cr is the injection of SraT* 

into | generated by  

1 

where S(m) is the permutat ion group on {1 ..... m}. Similarly, define an inner product on 

1 7 -  752904  Acta mathematica 134. I m p r i m 6  le 2 0 c t o b r r  1975 
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AZT * by  using the injection fl: AZT*-~ |  generated by  

1 ... | ~(t) 
fl(~l A ... A $')= ~ ( -  1)"~"(')| 

We now have inner products on each bundle A~T*QSmT*| and hence on all sub- 

bundles of these, so we have inner products on all bundles in the 5-complexes. 

I f  D: E -+ ~ is a complex of linear first order differential operators, we want to have 

some relationship among the inner products on the bundles E o, E 1 . . . . .  For this reason, 

we define: 

De/inition 5.1.: A complex D: E -~ ~ of linear first order differential operators is called 

symbol surjective if for every i ~> 0, a(Dt): T*|  E j-~ E ~+ 1 is surjective. 

I t  is clear tha t  a complex is symbol surjective if and only if the AT*-module E is 

generated by  elements in E ~ 

I f  a complex D: E ~  ~ is symbol surjective and inner products on T* and E ~ are given, 

we define inner products on E ~, i >0,  inductively by  identifying E ~+~ with the orthocom- 

plement of g~, in T* |  ~. Under this identification E ~+~ acquires the inner product of a 

sub-bundle of T* |  ~. Note tha t  with this inner product, a(D~)*: E~+I-~T*| ~ is an 

isometry. 

The assumption of symbol surjectivity is a reasonable one. I t  is satisfied by the de 

Rham and Dolbeault sequences. Further,  D. C. Spencer [12] has shown tha t  correspond- 

ing to an operator D: ~ - ~  ~J satisfying certain reasonable hypotheses there is a complex 

0 ' O  ~_C 0 D~ ,C1 D1 , C  n , 0  

of first order linear operators which formally resolves the sheaf O of germs of solutions of 

the homogeneous equation Du=O. This complex, the Spencer sequence of D, is symbol 

surjective. In  Section 7 below we shall show tha t  the tangential complex corresponding to 

a symbol surjective complex and a non-characteristic Cauchy surface is symbol surjectivc. 

Section 6. The 8-estlmate 

Definition 6.1: A linear differential operator of order k, D: E~-+E j, satis/ies the ~. 

estimate if and only if there exist inner products on T* and E ~ such that  in the sequence 

0 "g~+l " * ~ A 2T* T | �9 |174 Et 

i / x E T * |  A ker ~*, then [[~x[12 >~ (�89 k2[[x[] 2. (6.1) 

Henceforth, when we assume that  D satisfies the 0-estimate, we shall assume that  the 

inner products given on T* and E ~ are the ones which give the estimate (6.1). 



OVERDETERMINED SYSTEMS OF DIAGONAL OPERATORS 251 

We collect here some of the results of [9] which we shall need. 

T~EOREM 6.2: 1] D: E-+ E is a symbol surjective complex of first order linear operators, 

and i] DO: E~ 1 satis]ies the ~-estimate, then ]or each i>~0, Dr: ~ t _ ~ i + l  satis]ies the O- 

estimate. 

Proo]: This is essentially Theorem II.2.1 of [9] ,which was proved for D: ~-+ ~ a Spen- 

cer sequence of some operator. However, the only properties of D tha t  were used hold for 

any symbol surjeetive complex. 

T H E o R E M 6.3: Consider the complex 

AI - IT* |174  , A I T * Q S m T * |  , A I+IT* |174  

The symmetric map ~*~ + ~(~* e Aut (A sT* @ S"T* | E) has two eigenspaces: ker (~, on which 

the eigenvalue is ( (m + 1) (m + l) ) /l, and ker (~*, on which the eigenvalue is (m(m + l) )/ (l + 1). 

Proo]: [9, Theorem 1.7.1]. 

THEOREM 6.4.: Consider the complex 

0 , S2T* |  , T * | 1 7 4  , A 2 T * |  ,0. 

The symmetric map S = � 8 8 1 7 4 1 7 4  is the linear map [or which 

S(~1|174 =~2|174 it is called the switching map. 

Proo]: [9, p. 108]. 

THEOREM 6.5: Consider the complex 

0 ' g2 ' T*|  ' A~T* |  

On g3 the map 5"~ is 4 times the identity. 

Proo/: [9, Lemma II . l .1].  

Section 7. The Guillemin decomposition 

The results of this section up through Theorem 7.7 are all due to V. W. Guillemin [5]; 

since they do not appear in any published work, we reproduce them here. 

Let  D: ~-~ E be a symbol surjective complex of linear first order differential operators. 

The following theorem follows from the work of V. W. Guillemin and D. G. Quillen. 

THEOREM 7.1: The/ollowing properties o /a  vector subspace U x o/ T* are equivalent: 
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(1) o , E ~ a~(D~ Ei  

(2) 0 , E ~ a~(D~ E~ 

i8 exact/or every ~ e Ux; 

(3) 0 , U, | E~ a(D~ E 1 is exact; 

(4) For each m > O, 

o ,S~U~| ~ a~-l(D~ S~- 'U~|  1 

is exact; and 

(5) The AT*-module E x is/ree as a AUx-module. 

is exact/or every ~ E U~; 

, . . .  a ~ ( D ' - I !  E ~  , 0  

a(D m-l) E ~ 
. . .  ~ ~ 0 

Remark: I t  is important  tha t  T* be the complexified cotangent space; the theorem is 

false if U~ and T* are real vector spaces. 

Proo/: Quillen's theorem [10, 3] says tha t  for each ~ E T*, the exactness of the sequences 

in (1) and (2) are equivalent. The proof was originally given for Spencer sequences only, 

but  it applies also to any symbol surjective complex. In  [4], V. W. Guillemin proves (1) 

and (3) are equivalent and (2) and (4) are equivalent. In  [5], he shows (2) and (5) are equi- 

valent. 

Definition 7.2: A subspace Ux of T* satisfying the above conditions is called non- 

characteristic. A sub-bundle U of T*(~) (a co-distribution in the sense of differential geo- 

metry) is non-characteristic if Ux is non-characteristic for each x E~.  A submanifold S c 

is non-characteristic at x if Uz, the annihilator of the tangent space of S at  x or the normal 

bundle of S at  x, is non-characteristic; and S is non.characteristic if it is non-characteristic 

at each x E S. 

We assume always tha t  a non-characteristic sub-bundle or subspace is the compcxi- 

fication of a real sub-bundle or subspace of T*. A sub-bundle is called integrable if it is 

integrable as a co-distribution. 

Let  U be a non-characteristic sub-bundle of T*(~) with fiber dimension q. Denote 

by a : A ~ U |  the morphism given by a(wQe)=oJ  A e, where A is the multiplication 

in the AT*-module E. We obtain a filtration 

E = Eo~ E I ~  ...D Eq~ E q +  1 = 0 (7.1) 

of E, where E t = a ( A t U |  Let E~=EZN Ej and let ~ t ' J -  ~ + t / ~ , + J _  ~j  /~+1.  Since we have inner 

products on all the bundles, we may  take E t'~ to be the orthocomplement of E~++{ in E~ +j. 
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We obtain 
E ~= | E j'~ (7.2) 

j + k = I  

where the direct sum is an orthogonal direct sum, and EJ'k=~(AkU|176 Since E is 

free as a AU-module,  E j'k ~ AkU | E j'~ 

We claim tha t  each E ~'j is a vector bundle over ~ .  All tha t  is necessary is to show tha t  

the fiber dimension of E ~'j is constant. Since AJU|176 E ~z, it suffices to show tha t  

each E l'~ is a vector bundle. We prove this by induction. Since E ~176 = E ~ it is true for i =0.  

Ex--Zt+j :k  dim Ex .  By the inductive Assume it is true for all i < b .  Then by  (7,2), dim k _  �9 ~.j 

assumption all summands on the right except dim E~ "~ are constant; hence dim E~ '~ is 

constant, and E k'~ is a bundle. 

Corresponding to (7.2) there is a decomposition of D into a sum D = D o § D 1 +... + Dq, 

with D r : ~.J_~-r+l.~+~ being the component of D with bidegree ( - r +  1, r). The equa- 

tion Do D = 0  gives 
D,_j o Dj = 0 (7.3) 

for each i>~0. In  particular, DooDo=O and 

Dlo D o § D0o D 1 = 0. (7.4) 

These facts may  be summarized by  observing tha t  

~2,0 : ,  

J jO1 i l  ~1 .o  Do, .o ,... 

l D,  ID1 
go.o Do , ~1.0  Do , ~ . o  , . . .  (7.5) 

is a spectral sequence decomposition of the complex D: ~-> E. 

This decomposition certainly depends on the decomposition (7.2), which depends 

on the inner products on E. The operator Do, however, has some canonical significance. 

I f  uE ~ ,  then we may  write u=Eco~ A u~ where c%EF(Q, A~T*(~)), so by  Lemma 1.1, 

Du =Y~dco~ A u~+ ( -  1)~coa A Dua, which is in E~. Thus D respects the filtration, and we 

obtain a quotient opera tor / ) :  Ej/~j+I->~j/~j+I, Since E~/Ej+I-= | i'j, we may  identify 

E~/~j§ with @ t ~ z .  Under this correspondence, / )  corresponds to D o. 

The following property of the operators D, is important .  

THEOREM 7.3: Let ~ be a section o/ U. Then a~(D,)=0 except when r = l ,  and a~(D1): 

E~'~---> E ~z+l is multiplication by ~ in the module E. 

Proo/: a~(D) : E ~ E  is multiplication by  ~, and according to the decomposition (7.2), 
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a~(D) decomposes into a~(Do)+a~(D~)+... +(~(Dq) where a~(D~)has bidegree ( - r + l ,  r). 

I f  ~ U, then a~(D): E~-~E~+~ and hence ha~ bidegree (0, 1). The theorem follows. 

The significance of this theorem is in the following theorem. 

T~IEOREM 7.4: / /  {Sa} is a local/oliation o/ ~ by submani/olds o/codimension q, 

and i/ U is the normal bundle to the/oliation (i.e., U~ is the annihilator o] the tangent space 

o/ Sa at x, where S~ is the submani]old containing x), then all the operators D~, except D1, 

are intrinsically defined as operators on the sheets o/the/oliation. That is, they do not in- 

volve any di/]erentiation in the normal directions. 

Proo/: ag(Dr) for ~ E U is the coefficient of differentiation in a normal direction. 

Let S be a non-characteristic submanifold of ~ with codimension q. Then locally 

there are q smooth functions {01 . . . .  , Oq} such tha t  for each x in S, {do1, do~ ..... dos } is a 

linearly independent set which spans a non-characteristic subspace U x of T*. By a con- 

t inuity argument,  and by shrinking ~ if necessary, the forms {d~h, ..., do q} will span an 

integrable non-characteristic sub-bundle U of T*(~). The surfa cos {~ = constant, 1 ~< i ~< q} 

will then be the leaves of a foliation of ~ by non-characteristic submanifolds, of which 

S is one leaf. Let  :~ be the least differential ideal containing all functions which vanish on 

S; it is generated by {Q1 ..... Qq, dQ1 ..... dQq} over the functions. If  x r then some Q~(x) ~:0, 

and (Y)x=T *, so (YE)~=E~. I f  xES,  then Ql(x)=... =Oq(x)=O, so (YE)~=(~(U| 

and D~: E/Y~-*E/YE  is simply the restriction to S of the tangential operator /): 

Eo/EI~E0/E1, which we have shown to be D o when quotients are identified with ortho- 

complements. We repeat this as a theorem. 

THEOBEM 7.5: Let S be a non-characteristic submani]old o] ~; let U be an integrable 

non-characteristic sub-bundle extending the normal bundle o / S ;  and let ~*.o = @ ~ E~.o. Then 

the complex D~: E/YE-~ E/YE is isomorphic to the complex Do: E*.~ *.~ restricted to S. 

The isomorphism is the one obtained by identi/ying quotient spaces with orthocomplements 

with respect to the given inner products. 

For each i we have a complex Do: E*'t-~E *'~. We claim that  this complex is essenti- 

ally the complex Do: E*'0-~ E *.~ More precisely, we have: 

T H ~ O R ~ ~ 7.6: The/ollowing diagram commutes: 

F(~,  A~U|176 ( -  1 y ( I | 1 7 6  A~U|  *'~ 

1o 1o 
E,.~(~ ) _ _ _ _  Do , E , . l ( ~ )  
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Proo[: An arbitrary section of F(O, A~|  *.~ can be written Y~ma| with dcoa=0 

since U is integrable, and therefore has a basis of exact sections. Then D(a(Y~eoa| 

D(Xw~ A e~) = Z(dco a A ea + ( -- 1)tco~ A De~) = ( - 1)~Zw~ A De a. Since D O is the part of D with 

bidegree (1, 0), it is clear that  Do(a(Z~a| ) = ( - 1)tZw~ A Doe a =a(( - 1)*Zeoa| 

THEOREM 7.7: I[ D: ~-~ ~ is a symbol surjective complex o/ /irst order linear di/- 

[erential operators, and U is a non-characteristic sub-bundle o/ T*(~), then Do: E *.~ E *.~ 

is a symbol sur~eetive complex o//irst order di//erential operators. 

Proo[: I t  suffices to show a(Dg): T*|176 t+1"~ is surjeetive for each i~>0. By 

definition, E i+1'~ is the orthocomplement of a(U|  i) in E *+1, so ~r: E*+I~E i+1'~ is sur- 

jective, where 7r is orthogonal projection. By the decomposition (7.2) and the definition of 

Do, the following diagram commutes and is exact. 

T* | E ~ a(Dt) , E ~+ ~ ,0  

T * |  ~'~ a(D{) , Ei+l.o 

1 1 
0 0 

An elementary diagram chase shows that a(Dio) is surjective. In  fact, a(D~): W |  *'~ 

E ~+1'~ is surjective, where W is the orthocomplement of U, since a(D~o)is zero on U |  ~'~ 

THEOREM 7.8: I /  D: E-~E is a symbol surjective complex o/ linear /irst order dip 

/erential operators, and U is a non-characteristic sub-bundle o/ T*(~), and i/ DO: E~ 1 

satis/ies the S-estimate, then/or each i >~0, D~o: ~t.o~ E,+i.o satis/ies the S-estimate. More pre- 

cisely, i/ W is the orthocomplement o/ U in T*, i/k~ is the kernel o/a(D~): W Q E*.~ E ~§176 

and i/k~ = W Qk~ fl S~W | E ~,~ then the S-estimate is saris~led in the complex 

0 ,k~ , WQk~ �9 A~WQE~'~ 

that is, i / x e  w| n ker, *, then II xll 2 > �89 2 

Remark: We shall solve the codimension q Cauehy problem by solving a succession 

of codimension one Cauchy problems. This theorem says that  one of our main hypotheses 

is preserved after passing to the tangential complex. If (S:} is a foliation of ~ by non- 

characteristic surfaces having U Is~ as normal bundles, there is no canonical inclusion of 

T*(S~) into T*(~), but an inner product on T*(~) induces an isomorphism of U a T*(Sa) 

with W. If we consider Dg to be an operator restricted to some S~, in order to consider the 

(~-estimate for Dg, we need an inner product on T*(So~), which obviously should be the one 

it obtains from its identification with W Is~:. The theorem then says that with this choice 

of inner product, Dg satisfies the (~-estimate. 
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Proo] ol  T h e o r e m  7.8: I t  suffices to prove that  DO: G ~176 E 1.~ satisfies the 0-estimate, 

for the theorem then follows from Theorems 6.2 and 7.7. To say tha t  iIOxi[~>~�89 z for 

x E W |  fi ker 0" is equivalent to saying tha t  all the eigenvalues of 0"6: ker ~*-+ker 0" are 

bounded below by  �89 We shall show that  there is a dim ker 0" dimensional subspace V of 

W |  on which (~'0 - � 8 9  >/0 (where I is the identity). This implies what we want,  for if 

x E V ,  we may  write X = X o + X  1 where x x E k e r O  and xoEker0*, so <x0, x l>=0.  The map 

x ~ x  o is clearly an isomorphism by  dimension considerations since any x in the kernel would 

be a 0-eigenvector for 0*0. By assumption, <O*0x, x> ~>�89 ~, so <O*~x o, x0>>~�89 

Ilxl[t ~) >/�89 ~. Thus all the eigenvalues of 0*0 on ker ~* are bounded below by  �89 

Consider the exact commutat ive diagram: 

0 0 

I , 1 
0 , U Q E  ~ , U |  ~ , 0  

t'| 1 
, go , T *  |  ~ �9 E 1 , 0  

, k  o i , WQEO.o , E  1'~ , 0 

l 1 1 
0 0 0 

where i represents various inclusion maps, re represents orthogonal projections, and a re- 

presents the symbol of D ~ or alternatively, the multiplication in the AT*-module E.  

The map from W | 1 7 6 1 7 6  1.~ is a(Do ~ restricted to W Q E  ~176 or alternatively, the multi- 

plication in the AW-module E *,~ The map ~ |  T * Q E ~ 1 7 4  ~176 (recall E ~ 1 7 6  ~ 

induces an isomorphism ~t: 9 ~  ~ as can be checked by  an easy diagram chase. 

Now consider the exact commutat ive diagram: 

0 0 

1 , 1 
0 , S 2 U |  ~ , S ~ U |  ~ , 0  

' 5 1 ; ,gO ,T* go ,A2T* |176  , 2 
I 

, k o 0 , W | k o , A 2 W  | EO. o , E2. o 

i 1 1 1 
0 0 O 0 

, 0  

, 0  
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I t  is not hard to verify that  this diagram is exact and commutative. The maps in 

the third column are 5 maps composed with inclusions, except for u: A s T* @ E ~ A s W @ E ~176 

which is orthogonal projection. The map g: T*Qg01-~ WQk ~ is the tensor product of ortho- 

gonal projection of T* onto W with ~: g01-~]c01 defined by the previous diagram. A simple 

diagram chase shows that  the dashed arrows may be added so that  the diagram remains 

exact and commutative. 

We may now commence the proof. Consider x E W @ k~ with 5*x = 0. Then ~*x E T* | 

and 5*zr*x=~t*5*x=O. By the assumption that  D O satisfies the 5-estimate, 116~*xU~> 

�89 2. We may just as well consider ~*x to be in T * | 1 7 4  ~ since 6 on T*|  ~ is the 

restriction of 5 on T* | T* | E ~ so we have ~*x e T* | T* | E ~ with <(6"5 - �89 ~r*x> >~ 0. 

By Theorem 6.3, if we consider the trivial 5-complex 

5 5 
0 ~ S~T * | E ~ , T* | T* | E ~ , A 2 T* | E ~ ,0, 

the identity on T*|  T * |  ~ is �88 55* +6*5. Thus 5"5 - �89 �89 - �88 = �89 by Theorem 

6.4, where S: T * | 1 7 4 1 7 6 1 7 4 1 7 4  ~ is the linear map for which S(~1|174 = 

~2|174 Therefore, 
<S~*z, ~*x> >/0. 

We noted that  ~: T*| W |  ~ is the tensor product of orthogonal projection and 

~: 9 ~ k ~ so g* is the tensor product of the inclusion W-~ T* and zt*: k ~ -~ 9 ~ and ~t*x e W | 9~ 

If we write ~*x = x o + x 1 where x o E W | W | E ~ and x I E W | U | E ~ then 

<SZo, Xo> = < Sxo + SXl , xo + Zl> = < Szt*x, ~*x> >/0, 

since x0, SXo e W |  W | E ~ xl e W |  U | E ~ Sxl  e U |  W | E ~ and these three subspaces 

are mutually orthogonal. Since the diagram 

i 
T*|  , T * | 1 7 4  ~ 

w| , w |  w o E ~  

commutes, it follows that ~x0=x o and ~rXx=0. Thus x0=~t~t*x. We have shown that  if 

5*x = 0, then <S~*x,  ~ * x >  >~ 0. Clearly ~ *  is an isomorphism of W|176 so there is a 

dim ker 5" dimensional space, namely ~t~r* ker 5*, on which (5*6 - �89 = S/> 0. We remarked 

at the beginning of the proof that  this is sufficient to prove the theorem. 

Section 8. The 8-estimate and normality 

The Cauehy problem for a surface of codimension q can be solved by solving a suc- 

cession of codimension one problems, so we shall make the simplifying assumption that  
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S is a non-characteristic surface of codimension one, and that  U is an integrable non- 

characteristic line bundle. 

Assume that  S is given by the equation ~ =0 where do ~0  on S. By shrinking ~ if 

necessary, we may assume that  do is the basis of a non-characteristic sub-bundle U in T*. 

Let ~=d~/Idol be a unit basis for U. The Guillemin decomposition in this case is partic- 

ularly simple, since AJU=O if ~>1, and hence E~ if i>1 .  The complex D: E ~ E  

becomes 

~o.t Do ,s Do *... 

IDi ID1 
Eo.o Do,ELo Do,... 

(8A) 

where E i = ~ t ' 0 ~  i-1'1. By the isomorphism a :  U ~ E t ' ~  t'1, for each i the operator 

Dx: E~'~ ~'1 transforms to an operator which we continue to denote by D~: Et'~ ~'~ 

I t  is easy to check that  ~r is the identity on E '.~ 

By Theorem 7.6, the diagram (8.1) is isomorphic (via a -s) to 

T l Eo.o Do ~  o Dg,Ez.  o . , . . .  
(8.2) 

where D~ denotes the restriction of D O to E ~'~ Equation (7.4) transforms under this iso- 

morphism into 
i | y~ t+l  y~i ( 8 , 3 )  D0~ = ~1 Oat:O 

for each i ~> 0. In particular, for each cotangent vector field ~E T*(~), 

a~(D~) a)(Dl) = a~(D~ + 1) a~(D~). 

If  K~ denotes the kernel of a~(D~):Ei'~ E j+L~ this implies 

i t ~  i a~(Dl) :K~ Ke. (8.4) 

The cohomology of the complex of vector bundle morphisms 

. . . - -  ~E~-I, o a~(D~-l) E~.O a~(D~) E t+ l , o__~ . . .  

is isomorphic to H~ =g~ A ker a~(D~-l) *. If k =0, H~ =K~. In spite of (8.4), we do not know 

a priori that  af(D~): ~ t He-~H ~. However, this is part  of the conclusion of the following theo- 

rem, which is the crux of this paper. 
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THeOReM 8.1: I] D: ~ E is a symbol surjective complex o/ first order linear di/- 

/erential operators which satis/ies the O-estimate, and i/ U is an inteffrable one dimensional 

non-characteristic sub-bundle o/T*,  then/or each ~ in T* 

i | cr~(D~) : H ~  H~, 

and the restriction o] (r~(D~) to Hr is a normal linear map; that is, i t 

a~(D~)' : H~-+ H~ 
is the adjoint o t a~(D1)[~ then 

[ae(D~), a~(D[)'] = a~(Di) a~(D[ )' - a~(D~)' a~(D~l) = O. 

Proo]: The proof of this theorem is quite long and hard, and except for Corollary 8.3, 

none of the results in this paper depend on the proof. The reader, if he is willing to take 

the theorem on faith, may  skip directly to section 9 for the consequences of the theorem. 

Remark: If  ~" ~ hi(D1). H~-+H~ is normal and a # 0 ,  then a~,(D~): H~-~H~ is normal, 

where ~'=@+b~, since because of the identities he(D0)=0 , and ar a~,(D[)= 

aa~(D~)+bI, and H~,=H~. Thus it suffices to prove the theorem assuming ]l~ll =1 and 

<~, ~> = 0 .  

We first prove the following lemma due to V. W. Guillemin. 

LEM~A 8.2: Let H be a subspace o t T*(~), and define h~=H|  and h~= 

H| N S2H|  ~. I t D*: ~-+ ~+1 satisties the O-estimate, then in the complex 

O O 
0 ~ h~ ~ H | hl , A~H | E ~ 

i/xeH| N ker 0*, then []0x]]2~ > �89 ~. (8.5) 

Proof: We proceed by induction on the codimension of H in T*, so it is sufficient to 

assume it is one. Let  ~ E T* be orthogonal to H so tha t  T* is the span of H and ~. 

Assume the lemma is false. Then there is an x E H | such tha t  x • and I i0xll 2 < 

~HxH ~. We shall show shortly that  there is a yEspan (~)| such tha t  (x+y)• Since 

~ •  we have tha t  x •  and Ox• Furthermore, IiOy[[2~�89 ~ since ~ A ~ = 0  and 

I]~ A ~]]z =�89174 if ~ • Therefore, ]]0x-4-0y]12 = ]]0X]] 2-t- ][0y][ ~ <�89 z+ ]]yl] ~) = 

�89 ~. This contradicts the assumption tha t  D': ~ ' - ~ ' ~  satisfies the 0-estimate, so 

the lemma is true. 

We prove now tha t  if x~H| N ker 0*, then there is a yqspan  (~)| such tha t  

(x + y) • Clearly ~ 0g2~ Oh2 and we can let {u I ..... u~} be a basis of the orthoeomplement 

of Oh~ in Og~. Since O g ~  T*| = H | 1 7 4  (~)| we can write Ur=Vr+~| where 

v~eH| and w~Eg~. We claim that  we can find a w, a linear combination of the w,'s such 
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that  (x+~|177 Since both x and ~|  are orthogonal to 6h~, it suffices to find 

w such that  (~]| ur>, which can be done if the only solution to 

(~@w, ~| l<~r<s, is ~@w=0. But this is clearly so since w is a linear com- 

bination of the w/s. Let y =~|  This completes the proof of the lemma. 

We apply the lemma by letting H be the space spanned by ~ and ~. We have for any 

xeH|  with x• 11~ll~>~�89 By Theorem 6.5, if x f i ~ ,  then IlO*xll =4llql so 

the estimate (8.5) is equivalent to 

811 xll + II *xll >1 411 11 for an xeH| (8.6) 

By the Guillemin decomposition, E ~  E H ' ~ 1 7 4  E ~'~ We shall represent elements of E ~ 

by pairs (y, z) with yEE ~-~'~ and zeE  ~'~ If u f iE  ~ ' ~  and v e ~  ~'~ then by diagram (8.2), 

D'(u, v) = (D~ v - D~-lu, D~ v). (8.7) 

An arbitrary element x e H | E t is 

x = (~| +~| ~| +~| 

where y~EE ~-1"~ and zjEE t'~ for }'=1, 2. Then xeh~ if and only if o(Dt)x=O, or by (8.7), 

(~(D~) (~| 1 +~| -a(D~ -1) (~| + ~| a(D0 t ) (~| + ~| = 0. 

Since a~(D~)=0 and ar this becomes 

(a~(D~)zx +z~-a~(D~o-1)yl, a~(D~)z~) = O. 
Thus, 

hi ={ (8| $| ~| +~ | -a~(D])z~)): y~, y~qB ~-1"~ and z~eK~}. (8.8) 

Thus an arbitrary element in H| can be written 

(~j|174 + ~| | + ~ |174 + ~ | @y~, ~j|174 q'-~| | 
. ~ E  H o -a~(D~)zn) +~|174174174 where y~ ' and z~s 

By definition, h~ is the intersection H | h~ 13 S~H | E ~, and (~: h~-~ H | hl is a constant times 

inclusion, so the above element is in Oh~ if and only if it is symmetric in $ and ~. This means 

yi~=Y21 and z~ =(~(D~-~)y~x-a~(D~)z,r Thus, 

~h~ = ( ($ |174 + ($| +~| + ~| | } |174 + ($| + ~| 

| -a~(D~)z~,) + ~ | | 

-~g(D~)zn)): Yu, Y~, Y~ ~ E~-~'~ and z~ ~K~}. (8.9) 

Let ~t~ be orthogonal projection of K~ onto H~. For simplicity denote a~(D~ -~) by 

ao, qi(D~) by a~, and ~t~a~ by 5~. Then 51: H ~ H ~  and we may consider the adjoint of 
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H~H~.  We have zr~r0=0 since the image of (r 0 is orthogonal to H~, (~1 [ H~' denoted by 5r: t 

and the kernel of gg is the image of go. The map A: H ~ H ~  defined by  A=I+5~51 is 

positive definite, and hence an automorphism. Let  w 2 be an arbi trary element of H~, 

and define wt=A-15~Aw2. Since alwt-5lwtEkergi=imageao, there is a z 1 in E t-L~ 

such tha t  aozl §  =0,  and similarly there is a z~ such tha t  

(roZ ~ +O'lW ~ -(~w~ = O. (8.10) 

I t  is easy to check tha t  x~H| where 

x = (~j'|174 + (~| +4~'| | - - ~ | 1 7 4  1 + ~|174 - ~'|174 + ~'|174 (8.11) 

Then (~x = (0, ~ A ~ | (5~w 1 + w~)), so 

[[~X[[ 2 = I[[(~IW 1 § 2. 

Also, 

IIxlP = I1~:~11 ~' + :tll~,,ll '~ + IIw, II ~' + II(i~ ~,11 '~ + I lwdP + Jl,~iwdl'~. 

To apply (8.6), we need to eale, iate II,~*dP. We have 

l l~.dl2__ s . p / < ~ * x , ~ > ' i  '~ /<x ,~y> ' l~  

Since by  Theorem 6.5, 

we have, 

ff~yIj2 = {~ ,~y ,  y }  = 41jyjf2, 

II~*dl = 4 s u p / < x ' ~ Y > ~  ~ 

Let 5y have the expansion given in (8.9). Then clearly, 

I[(~y[[2 ~ IIYllH 2 + ~]1~]12[] $, 

and 

{x, ~y} = (zi, Yl~} +2{Z~, Y12} --(Wl, Zll} ~-((~1 Wl, o'0Yll--UlZll} 

-- <W. 2, 0~0Yll - -a ]  Zll } § <51W2, a0Y12 § O'10"1Zll --(~10"0Y11}. 

Now observe: 

(1) wt, ~,wt, w~, and 51w.z are in H~ and so are orthogonal to the image of ao. 

(2) By (8~3), al: image qo-~image a 0. 

(3) Zll =~g~Zll § for some z' since image a o =ke r  ~ ,  

(~, z~ =~(~ zr~ zl~ + aoZ" , and 

O'lO'lZl: =iT/:~fflY~0'l;7~ Zl: f +O'0Ztt'. 

(8.12) 
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<X, (~y> = <Zl, Yll>-F 2<Z~, Y12>- <Wl, :Tg~Zll> --<(~lW], 5131:~Zl1> ~- 

-~ <W2' 51:~:~Zll> "4- <(~lW2' (~1 (~1:~ Zll>" 

Taking adjoints and using the definition of w~, we obtain 

<x, (~y> = <zl, Ytt> + 2 <z2, Yl~>. 

Therefore 

(8.13) 

I}~*xll ~ = 4 sup  ~<~' ~y)~2 (<~,  y11~ + 2<z2, y ,2>? 

By applying the Cauchy-Schwartz inequality to the inner product on E~J '~174  E ~-~'~ de- 

fined by <(zj, z~), (Y]I, Y12)> = <zl, Yn> + 2<z2, Y12>, we obtain 

We now have what we need to apply (8.6) to obtain, after some cancellation, 

or 
0 >/IlWl - '  ~' - '  2 

Since 1 1 ~ - ~ ; ~ 2 1 l  ~ >~0, we have  

II~;w, ll~ ~ I ] ~ w ,  l12. (8.14) 

Since w 2 is an arbi trary element of H~, (8.14) shows tha t  51~'~-5~51 is positive semi-de- 

finite on H~. Since the map is symmetric,  i t  can be diagonalized; since it is positive semi- 

definite, all the eigenvalues are >t0; and since it is a commutator,  the trace, or the sum 

of the eigenvalues, is 0. Thus, 

~ ~'~ = ~ ~ .  (8.15) 

The fact tha t  what was originally an inequality is in fact an equality has some strong 

consequences. I f  we had a strict inequality 

I1~*~11 ~ < 4(11~ II ~ + 211~11~), 

then (8.14) would be a strict inequality, which is impossible. Therefore, 

I1~*~11 ~ = 4(11~112 + 211~11~). (8.16) 

The choice of y=(~*x gives equality in the Cauehy-Schwartz inequality II~*zll ~= 

(<~*x, y>~/llyll). Let y=6*x have the expansion given in (8.9). We must  have II~ll ~= Ily,,ll~ + 

211y1~ll 2, for if IlaYll ~ > IlY,dl ~ + 211y~ll~, we  wou ld  have  Ila*zll ~ <4(11~111 ~ + 211~,112), a contra-  
dict ion.  Now 
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<x, ~y} 4 (<z,, Yn> + 2<z~, y~2}) ~ 
4(HZll12+SI[z2112)=II(~*XI[2=~ H(~yll HUll[J2 + 2 I[Yl211 $ 

o r  (ZI' Y11} +2(Z~, Y2u} = (IIzIH 2 +2][z~H2)~(l]Yi1]]~ +2llyl ll )h 
which is an instance of equality in the Cauchy-Schwartz inequality. Therefore, (z 1, z~) is 

proportional to (Yn, Yl~), and from (8.12) we conclude Y11=4z1 and y12=4z~. Therefore 

~y = ~ * x = ( ~ | 1 7 4  1 +(~| +~|174 ~ |174 +(~@$ +~|174 

al zn) + ~ | ~ | (4no z~ + alal  Zll - 4aj ao Zl)), where Y22 and Zll are yet to be determined. We 

know [[~yH 2 = []&~*xll ~ =4H(5*zll ~ = 16(Hz~]]~ +2Hz~H2). If we calculate II~yll 2 directly from 

the above expression and compare it with this, we may conclude y2~=O, Zll =0, aoZ 1 =0  
1 t and a0z2 =0. The last equation with (8.10) implies that  alw~ =51w~. Therefore al: H~-*H~, 

and [al, a'l] =0  on H~. This completes the proof of the theorem. 

COROLLARY 8.3: I /  in the complex 

0 , gO , T.| , A~T. |  0, 

it is true that/or every x~ T*| ~ satis/ying 5*x=0, 

then g? =0. l[ xll  > �89 

Proo[: We check easily that  under this hypothesis, if x ~ H |  ~ fl ker ($* in the complex 

0 
0 --+h~ , H |  ~ , AaH|  ~ 

then  ll ll 2. i f  the  pace is non-zero for some the above proof constructs 

an x ~ H |  ~ fl ker6*, namely (8.11) where z t and z~ can be taken to be zero, for which 

II *xll =lllxll which contradicts the hypothesis. Thus, for every ~, K~=0.  Since every 

~, real or complex, is non-characteristic, T* is a non-characteristic sub-bundle of T*, or 

by Theorem 7.1, the complex 0-+ T*| E ~ E 1 is exact. Therefore, gO =0. 

D. C. Spencer, in [12], has shown that  a complex D: E ~  E which is completely in- 

tegrable, or flat, for which gO = 0 is essentially a direct sum of copies of the de Rham com- 

plex. 

Suppose Uq is an integrable q-dimensional non-characteristic sub-bundle of T*, 

locally spanned by {d~) 1 . . . . .  d~q}. Let ~= =dqdllde=l]. By the isomorphism a: U|  E '.~ = E ''~ 

the operator D~: ~*.0_~ ~,.1 corresponds to Y'~q=I ~a| where DLa: E*.o_. E*.o. Then 

a~(n~) a~(D[~) = ' + 1  t a~(D~.~ ) a~(Do) 

and [a~(D~.~), a~(D~.~)] [ ker aS(D~) = 0 

by 7.3. Let Ho.~ = ker ar N ker ar *. 
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The following generalizes Theorem 8.1: 

THEOREM 8.4: I f  D: ~ - * E  is a symbol surjective complex o/ first order linear di/- 

/erential operators which satis/ies the ~-estimate, and i /Uq  is an integrable q-dimensional non. 

characteristic sub-bundle o /T* ,  then/or each ~ E T* and each ~ = 1 ..... q. 

~(D~.~) : H ~ . ~  H'~.~ 

and the restriction o/(~(D~.~) to Htq.~ is normal. 

Proo]: We may  suppose ~ =q. Let Uq_ 1 be the span of (d~l . . . .  , d~q_l}. Then Uq_ 1 is 

non-characteristic, and there is a complex corresponding to Uq_ 1, call it (D0)q_l, which is 

tangential to the surfaces defined by  the equations ~p = constant, fl = 1 ..... q - 1 .  The sub- 

spaces of the cotangent spaces of these surfaces determined by ~q are non-characteristic 

for (D0)q_l, and so there is a corresponding decomposition of (D0)q_ 1. I t  is clear tha t  the 

tangential complex of this decomposition is D O and the D 1 of the decomposition is D1. q. 

Since by  Theorem 7.8 the 5Jestimate holds for (D0)q_ 1, we may  apply Theorem 8.1 to prove 

the theorem. 

Chapter HI: The Cauchy problem 

Section 9. Characteristics and hyperbolicity 

In  this section we discuss some of the consequences of Theorem 8.1 for the structure 

of the characteristic variety of D: E-~ ~; then we shall define symmetric hyperbolic com- 

plexes and show that  for such complexes, the conclusion of Theorem 8.1 may  be replaced 

by "ai(D~)[.~ is symmetric ."  

Recall tha t  since D: E-~ E is a symbol surjective complex, a cotangent vector ~ET* 

is characteristic if the sequence 

0 ,E~x a~(D),E~ , . . .  (9.1) 

fails to be exact. The set of all characteristic vectors for a complex is ~, a projective 

variety in T*(~), called the characteristic variety of the complex. 

Let  Uq be an integrable non-characteristic sub-bundle of T* locally spanned by  

(d~l ..... d~q}, and let ~a =d~/lidQ~ll. If  W is the orthocomplement of Vq, and if K~ is the 

kernel of a~(D~ E~176 "~ where ~E Wq and (D0)q: E *.~ ~,.0 is the tangential complex 

corresponding to Uq, then ~ = (~ • Z~q=12~ ~ )  e T* is characteristic for D: ~-~ ~ if and only 

if there is an eigenvector eEK~ such tha t  for each ~, (~(D~ =2ae. This is clear, since 

is characteristic iff there is an e E E~ ~ such that  a~(D ~ e = 0. But  a~(D ~ e = 0 iff 

a~(D~)e =0 (9.2) 

and a~(D~)e =a(Zq~=~ ~| (9.3) 
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Since for each ~, ~r176 (9.2) means eEkera~(D~)=~.~ .  Since ~ is an isomor- 

phism and ~r176 _58_ ~ I,  (9.3) means ~ ( D ~ . ~ ) e - ~ e = 0  which establishes the claim. 

Thus if ~: T*-~ Wq is orthogonal projection, we have that  r~-l(~) intersects ~ at the 

points ~ - ~ 2 ~ ,  where (~1, ..., ~q) ranges over the sets of eigenvalues of ~(D~,I), ..., ~(D~.q). 

Since the maps ~ ( D  ~ ~) commute on ~ ,  and, if D: ~-> E satisfies the ~-estimate, are nor- 

mal on K ~ ~, they can be simultaneously diagonallzed there. Thus 

| ker a~(D ~ ~ ker ae(D~ = I~q.~ = t~q d. 
~e~-~(8) 

In general 

@ (ker an(D ~) N ker an(Dt-1) *) ~ ker a~(D~)q N ker ae(Df-X)q* = Hq.~, 

as can be seen readily by considering the symbol spectral sequence corresponding to (7.5), 

since the limit cohomology in this case is isomorphic to the kernel of 

| U | 

If Uq can be chosen to be maximally non-characteristic (i.e., there is no non-charac- 

teristic U' properly containing Uq), then every ~G Wq is characteristic for D 0, and the 

characteristic variety consists of at most dim K~ sheets, each of dimension n - q ,  lying 

over ~. 

Let  S be a submanifold of ~ of codimension q and let U be an integrable non-charac- 

teristic sub-bundle of T*(~) extending the normal bundle of S. 

De/inition 9.1: The pair U and D: ~ - ~  is called hyperbolic if for every x q ~ ,  and 

real cotangent vector ~ in T*, U~ + ~ contains only real characteristic vectors. 

Remark: There is no restriction on the multiplicity of the characteristics of D. The 

situation is analogous to that  of determined hyperbolic systems. Strong hyperbolicity as- 

sumes no symmetry, but does assume simplicity of characteristics; symmetric hyperboli- 

city assumes symmetry, but puts no restrictions on the multiplicity of characteristics. 

Our case corresponds to symmetric hyperbolicity with the ~-estimate taking the place of 

symmetry. 

T~EORE~ 9.2: Under the hypotheses el Theorem 8.1, i] (U, D) is hyperbolic, then/or 

each real ~, 
a~(D~) ~ : H~--> H e 

is symmetric. 

Proo/: By Theorem 8.1, we know (~I(D~) is normal, and therefore can be diagonalized 

by an orthonormal basis of H~. I t  will be symmetric if and only if the eigenvalues on the 

diagonal are real. The case i = 0 is already done, for the characteristics in U +~ are ~ - 2 ~  

1 8 -  752904 Acta mathematica 134. Imprim6 le 20c tob re  1975 
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where ~ ranges over all eigenvalues of a~(Dl~ Since all of these characteristics are real, all 

the eigenvalues are real. 

The case i > 1 is nearly as easy. Let  ~t be any eigenvalue of a~(D~) and let e be a cor- 

responding eigenvector. Then ( ~ - ~ )  | E T*| E~'~ T*| E '  (where ~ is a unit basis vec- 

tor  of U), and 

~(9  ~) ((~ -~L~)| = (~(9~)((~-~t~)| ~(D~)((~ - ~ )  | 

Since a~(D~) =0  and a~(D~) = I,  

a(D ~) ((~ - ~ )  | e) = (a~(1)~) e -~e,  adDS) e) = 0. 

We claim further that  e •  ~-~) (E~-~), for the projection of ~ _ ~ ( D  '-1) (E ~-~) onto 

E ~.~ is ~_~(D~-I) (E~-l'~ and for a n y / E E  H'~  

(a~_a~(D~ -~ ) /, e) = (a~(D~ -~) /, e) = (/,  a~(D~-~)*e) ffi 0 

since e ~ H~. 

Thus e ~ker q~_ar N ker a~_Ar *, so the complex of vector bundle morphisms 

... , E~-~ a~-ar E ~ a~-~.~(D~! E~+~ , ... 

cannot be exact. Therefore ~- : t~ is a characteristic vector in U+~,  and 2 must be real. 

Since ~t was an arbitrary eigenvalue of a~(D~), we have that  a~(D~) is symmetric. 

Section 10. The solution of the Cauchy problem 

In  this section the result of Theorem 9.2 is used to construct pseudodifferential opera- 

tors AS: ~+1.0 ~ , .0 ,  of order zero and tangential to a foliation by non-characteristic 

surfaces, such that  
L ~ = D~ + D~-IA t-1 +A~D~: s ~.o 

is a symmetric hyperbolic pseudodifferential operator. This in turn will be used to obtain 

the local existence and uniqueness theorem for solutions of the Cauchy problem. 

In order to guarantee the smoothness of the symbols of the operators A s, we must 

make some assumptions about the regularity of the characteristics of the complex D: 

~-+ ~. Recall that  a cotangent vector (x, ~)E T*(~) is in ~, the characteristic variety of 

D: E-> ~, if the complex ar Ex-> Ez fails to be exact. Let  ~x = ~ N T*(~). Following 

Guillemin [6], we have 

Definition 10.1: A characteristic (x, ~) in ~ is generic if 

(a) ~ is non-singular at ~; and 

(b) The dimension of the cohomology of a~(D): E~-->E~ is at a local minimum. 
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Generic characteristics are Cohen-Macaulay points of the characteristic variety, so 

that  

E ?  ~ a~(D) E~ a~(D) E ?  ~ 

is exact if i is greater than the eodimension of ~ in T*(~) [5]. 

Let  U~ be the normal bundle of a foliation by  non-characteristic sub-manifolds of 

codimension one. Our regularity hypothesis is: 

Hypothesis A: 

(a) There is an integrable maximal non-characteristic sub-bundle U= Uq~ T*(~) (with 

fiber dimension q) which contains U1; and 

(b) Every characteristic in ~q is generic, where ~qq~ Wq=(Uq) • is the characteristic 
~q,  ~ *,0 variety of (Do)q: �9 o ~q , the tangential complex corresponding to Uq. 

THEOREM 10.2: I /  D: E-+ E is a symbol sur]ective complex o/first  order differential 

operators satisfying the 6-estimate, if U 1 is an integrable non-characteristic sub-bundle with 

fiber dimension one, and i/(U1, D) is hyperbolic, then/or every (x, ~) E Wx there exist maps 
at(x,~)eHom cw~+x.0  f.0 ~--x , E~ ), homogeneous of degree zero in ~, such that/or each i, x, and ~, 

a~(D~) + ag(D~ -1 ) at-l(x, ~) + aS(x, ~) a~(D~) : ~,~"~t o_~ ~;.,,t o 

is symmetric. 

Further, if Do: ~. .0_~. .0  satisfies Hypothesis A, the maps at(x, ~) may be chosen to be 

smooth in (x, ~) except where ~ = O. 

Proof: I t  clearly suffices to find aS(x, ~) for (x, s the unit  sphere bundle in 

W1, and to extend a s to be homogeneous of degree zero in s Let  p: Y.(W1)-*s be the ca- 

nonical projection, and p*E t.~ the pull-back of E t.~ to a bundle over Y~(W1). Let  a(D~) 

denote the smooth section of H e m  (T*E i.~ p*E ~.~ given by  

a ( D i )  (x,  ~) = a~(D~) : _ ~  ~ , 

and similarly for a(D~). 

Fix a point (x,~)E~(W1). Let  bl: ~ o  ~ o  ~ '  -+J~; be a(D~) on H~ and zero on the ortho- 

complement. By Theorem 9.2, b is symmetric,  and clearly ba~(Do) =a~(D0)b =0,  so b -a(D1). 

is a coehain map from the complex a~(D0): E*'~  *'~ to itself. I t  induces a map on the 

cohomology which must  be zero since its restriction to H~ is zero. A simple exercise for. 11, 

p. 205] shows tha t  there is a eochain homotopy a such tha t  b-a(D1)=aa(Do)+a(Do)a, 

which proves the first par t  of the theorem. 
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Now we show that  Hypothesis A allows us to choose the a's smoothly. The problem 

is to extend a(D1)IH, which is a symmetric map on a family of vector spaces, to a bundle 

map b which commutes with a(D0) , is symmetric, and agrees with a(D1) on a bundle which 

includes H. Then a (D1) -b  vanishes on H and so induces the zero map on eohomology. 

Thus a (D1) -b  =aa(D0)+a(Do)a.  Since the a's may be chosen to be zero on a bundle in- 

cluding H, they may be constructed explicitly by Cramer's rule using the exactness of the 

a(D0) complex, and are hence smooth. 

By Hypothesis Aa, U is maximally non-characteristic, so every vector ~ E W a is char- 

acteristic for (D0)a: ~,.o ~,.o ea -~ ca , Thus ~q = W a, and by Hypothesis Ab and the observation 

that  all vectors in ~qa axe Cohen-Macaulay, the eohomology of 

o - - , ~  " ( ~ ) q  E~.~. ,,,(D~)q ... , ~-~.o~.~ , o  

is concentrated in the first position, and the dimension of the cohomology is independent 

of (x, W) E Wq. Thus it is a vector bundle / /o  over W a and pulls back to a bundle ~*HOq over 

W1, where g: WI-~ W a is orthogonal projection. 

We can choose functions {~1 ..... Qa} such that  (dQ~} is locally a basis of Y 1 and {d01, ..., 

d~q} is locally a basis of Uq. The sub-bundle U ' =  W 1 = Ui L determined by the restrictions 

of the functions {Qs ..... Qq} to the leaves of the foliation given by ~1 = constant is non- 

characteristic for the tangential complex Do: ~,.0_~ E*.0 corresponding to U r There is a 

spectral sequence decomposition of the symbol complex a(D0): p*E*'~ *'~ correspond- 

ing to (7.5), namely 

T 
I 

A 2 U' | p*E~ '~ , ... 

l 1 
U' |176 .~ , U' Qp*Elq .~ , ... 

p,~.o ~ p,~.o , . . .  

Let D I . 1 :  t - t  0 ," t  0 a~ -~ a~" be defined as in w 8. By Theorem 8.4, a(Dt.t)l.,H0 is normal, 

and hence, by hyperbolicity, symmetric. Thus I|174176 is symmetric. On 

AU'|  ~ a(Do) is a(D~174 ~' A a(D,.r where ~=d~'/llde'~t]. As remarked in w 8, 

a(DLO commutes with a(Dl.o, ) on st*H ~ and a(19~ is zero on st*H ~ so a(Dl.1) commutes 

with a(Do) on A U'| ~ 

Now a(D) restricted to AU'|176 '~ is I|174 ~ 'h  (I|162 so a(DO 

restricted to AU'| ~ is 1@a(Dm).  Let b: p*E*'~ *'~ be a symmetric bundle map 
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commut ing  wi th  a(Do) which ex tends  I|174 Then a(Dx) -b  is zero on 

AU'|176 hence i t  is zero on H,  and  we can f ind smooth  maps  a such t h a t  

a(D1) - b  = aa(Do) +a(Do)a. 

I n  o rder  to consider  local exis tence and  uniqueness  of solut ions to  the  Cauehy problem,  

we mus t  consider  lens-shaped domains .  Le t  ~ be an open submani fo ld  of X conta ined  in  

a ' coordinate  neighborhood,  and  let  S be a non-charac te r i s t i c  submani fo ld  def ined b y  the  

equa t ion  ~ =0 .  Le t  qb' and  (I)" be non-zero smooth  funct ions  wi th  compac t  suppor t  on S 

wi th  supp (I)' c in te r io r  supp q5" c ~ S N ~ ,  and  dp' ~< 0 ~ 0)". Le t  S '  and  S" be the  submani -  

folds def ined b y  the  equat ions  ff = (I)' and  e = (I)". We  assume t h a t  S '  and  S" are  non- 

character is t ic ,  which is c lear ly  t he  case if ~P' and  dp" are  suff icient ly smal l  in the  C 1 sense. 

Le t  M be the  closure of { x E ~ :  qb ' (x )<e (x )<0} .  

There  exis ts  an  open set  o~c ~ such t h a t  w N S" = r  and  M c c e o .  W e  shall  call  the  compac t  

set M a lens-shaped domain .  The def in i t ion  is more res t r ic t ive  t h a n  necessary,  bu t  i t  helps  

to  avo id  technica l  compl ica t ions  in the  following proof.  

THEOREM 10.2: Let ~ ,  S, S ' ,  S", and M be as above and let U ancl U' be integrable non. 

characteristic sub-bundles extending the normal bundles o] S and S'. Let :1 be the smallest di]- 

/ereutal ideal containing all ]unctions which vanish on S. I] D: E -+ E is a symbol surjective 

complex o] ]irst order di]]erential operators satis]ying the S-estimate and Hypothesis A,  and 

i] (U, D) and (U' ,  D) are hyperbolic, then 

D o D 1 
0 , 3 ~ ~  , Y~I(M) , . . .  , :IE~(M) ,0  

ks exact, where all sections o/bundles over M are taken to be di//erentiable up to the boundary. 

That is, the Cauchy problem ]or D: E-+ ~ with initial data on S has solutions over M and they 

are unique in the sense o/cohomology. 

Proo]: Since the  quest ion is local in a coord ina te  neighborhood,  we m a y  assume ~ c  R n 

a n d  t h a t  a t r iv ia l i za t ion  has been chosen for  t he  g raded  vec tor  bundle  E.  Choose coordina tes  

(t, x I . . . . .  xn-1) such t h a t  t = 0  defines S' and  {dr} is a basis  for U'. Le t  ~ +  be the  subse t  of 

for  which t~>0, and  (o+=w N f~+. 
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Let  H(m .,)(R n) be the Sobolev space with norm 

Ilull m s, = f t l  + I l'rtl + I 'l'rlat )l'de 

where ~ = (v, ~1, ---, ~ , - 0  is dual  to (t, x x . . . . .  x,_l), and ~' = (0, ~1 . . . . .  ~,-a)- The trivializa- 

t ion of E enables us to extend this to define Hu]l~m.s, for u fi E(to)if supp u = = to. Denote  by 

fltm.~(oo, E) the completion of the space of compact ly  supported sections in ~(to) with 

respect to the norm [[Ul[tm.s,. Denote  by  to- the intersection to f){(t, x): t~<0}, and by  

/:/(to-, E) the corresponding Sobolev space. Denote  by  Htm.s)(to+, E) the quotient  space 

tltm.s)(to, E)/i't~m.s)(to- , E); t ha t  is, a distr ibution u6(E(to+)) ' is in Htm.s}(to +, ]~) i~f there 

exists a distr ibution UE~(m.,~(w , E) with u = U in w +. The norm of u is defined by  

[lull,re.s, = inf 1] Ull,m., ,, 

the irdimum being taken over all such U. 

There is a nested sequence of compact  sets M = K 0 c  K I =  ... c to such tha t  K , =  K~+I 

and  U K =60. Any  pseudodifferential operator  P can be modified as in [8] by  adding  an 

operator  of order - ~  so t h a t  if supp u ~  K,  then supp Pu= K,+~. B y  Theorem 10.1 and 

Hypothesis  A, there is a smooth map  a~(x, ~) which is the map  of Theorem 10.1 smoothed 

in a neighborhood of the  zero section of (U1)& Let  A ~ be a pseudodifferential  operator  

defined on each surface {t = constant},  modified as above so tha t  if supp uEK,,  then 

supp A tu EKe+2, with asymptot ic  symbol  a~(x, ~). For  each i, if L ~= D~ + AtD~ + D~-IA ~-1, 

then L ~ + L  ~* is a pseudodifferential of order zero defined on each surface {t = constant}.  

We shall first prove tha t  the short  sequence 

D O 
0 - -  3E~ �9 3EI(M) (10.1) 

is exact, beginning with the following lemma: 

LV, MMA 10.4: Let u be a smooth section in ~~ oJ ) with compact support. Consider the Guil- 

lemin decomposition with respect to U'. Under the hypotheses o/Theorem 10.2, 

Io~, (D~176 < const {llDgull + Ilull}ll ll, 
where all inner products and nornus are in 

H(o.o~(to +, E) = L~(to+, E). 

Proo[: As above, if B = L ~  ~ where L~176176  ~ B is a tangential  pseudodif- 

ferential operator  of order zero. Thus  

I (~t,(D? + D?*) u) I -<< [(u, Bu)[ + [(u, A~ u) l + <u, V~)*A~ 
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Since the operators on the right are tangential  to the surfaces {t = constant} and u has 

compact support  in the x-directions, integration by  parts  incurs no boundary terms and 

yields 

[<u, (DO+DO*)u)I <l<u, Bu)l +2l<A~ DSu) I < const {IID~II + I1~11}11~11, 

since the zero order operators A and B are bounded in the Lg. sense. 

By  taking limits, we obtain 

COROLLARY 10.5: I/uEH(1.o)(O~+, E~ then under the hypotheses o/Theorem 10.2, 

l( u, (DO + D~ I <~ c~ {llDo~ + I1~11}11~11. 
To prove 

D o 
0 �9 Yg~ , Ys 

is exact, let ueYs176 with D~ so tha t  Uls=O, D~ and D~ Let ~ be the 

extension of u to w + given by  ~ = 0  outside M. Since u ] s = 0 ,  4 is continuous and has L~ 

first order derivatives, so ~H~l.o)(w+, E~ and DOfi=O and D~ Now let ~=e-m~. 
Since D o -~/~t is an operator tangential to the surfaces t = constant, D% + hr~ =0.  Thus 

o= fo+<D~ ~+ ~Ve,~>= fo+<e,D~ N~>+ fs l'~,ll', 

since the boundary terms incurred by  integrating by  parts  are all zero except where t =0.  

Since D o* + 5 / =  (D o + DO*) - (DO + N) + 2N, 

o= f~,+<e,(D~ + D~ + 2N fo+IIvII' + f~ II~,IIL 
and by  Corollary 10.5. 

] 2N fo+llel'~l < coast. {llDo~ + H} ,,vll, 

Dov=e D 0 u = 0 ,  where the constant on the right is independent of h r. Since aat(D~) =0,  o - -,vt 0 ~ 

so 12~r247 Ilvll~l < coast ~ +  Ilell ~. By choosing N sufficiently large we obtain a eontradie- 

tion unless ~ =z2 =0.  This proves tha t  (10.1) is exact. 

To prove tha t  
D~-J D ~ 

~ E * - I ( M )  , yEI(M) , ~ E t + I ( M )  

is exact for i >/1, we begin with the following lemma concerning the existence and uni- 

queness of solutions of the Cauchy problem for the determined symmetric hyperbolic 

pseudodifferential operator L ~. 
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LEM~A 10.6: I /  uEE~.~ +) and supp u c ( o  +, there exists a unique vE~t.~ +) with 

supp v c ~  + such that L~v = u  in ~+. 

The proof is a rather straightforward copy of the proof of the existence and unique- 

ness of solutions of the Cauchy problem for a determined symmetric hyperbolic operator. 

The section v is constructed in NsH~0.s~(eo +, E ~.~ which means supp vce5 + and v is in- 

finitely differentiable in the tangential directions. That v is infinitely differentiable in the 

normal direction follows by solving L~v = u  for the normal derivatives. 

Consider now a section u E y E ~ ( M )  with D f u = O .  This section is not in any of the 

previously mentioned Sobolev spaces, but this is remedied by the following 

LEM~A 10.7: Let u E y E ~( M ) satis/y D~u = O. There is a section v E Y E~- J ( M ) such that 

D t - l v - u  vanishes to in/ ini te order on S. I n / a c t  v can be chosen in  Et-l.~ so that v[s=0.  

This is a consequence of the solvability of the formal Cauchy problem on non-char- 

acteristic surfaces; see [2, Theorem 7.4]. The section v is constructed by determining what 

its normal derivatives must be on S and extending by the Whitney extension theorem. 

Let ~ be D ~ - l v - u  in M and f i=0  on eo+-M.  Since D ~ - l v - u  vanishes to infinite 

order on S, ~ is smooth and supp uce5 +. If  we can solve D~-~w=~, then in M ,  D t - l w  = 

D i - l v - u  so u = D t - l ( v - w ) .  Thus as far as solvability of the equation D t - l v  = u  is concern- 

ed, we may assume without loss of generality that u vanishes identically on co+-M.  

Write U=Uo+U 1 where u0E~t.0(w +) and UlE~t--i'0(W+), D~uo=O and n~uo=n~-lUl  . 

Solve the Cauchy problem i t - i v  = U 1 Jr A ~-lu o, supp v ~ ~5 +. We claim that 

D~-J( - A ~ - % ,  v) = (u 1, uo) = u; 

that  is, 

D~-iv=uo and D~- lv+D~-2A~-2v=ul .  

Fit-1 /'~t-1 First we show .D~o-lv = u o. Since ~,on~ ~ont-l= 0 and D~ D~ -1= ~o ~1 , we have 

L~D~-lv f-1 t-J ~-1 =Do L v =  Do (ul + At- luo)  

Thus L ' ( D ~ - l v - u o ) =  n~ l(ux + A ' - l u o ) - ( D ~  + A'JD~ + D~-~A~-l)uo=O 

since D~u0=0 and D~ l u l = D ] u  o. Since supp v c &  +, supp D~-lv=Co + and since also 

supp Uo~5+ we have D ~ v - u o  is a solution of the determined Cauchy problem L~w=0, 

supp w c ~  +. By Lemma 10.6, D~-Iv = u  o. 

Now we show D~-~v + D~-2A~-2v = u 1. We have 

Dl-~v + D~-2A~-2v = L~-~v - A~-~D~-~v = Ul + A~-~u ~ - A~-ID~ -Iv  = u~ 

Thus there is a section w = ( -  A ~-~v, v) with support in ~+ such that  D~-lw =u.  I t  is not 

clear, and in general not true, that  w ~ y ~ - l ( M ) .  If  i=1 ,  however, w vanishes to infinite 
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order on S and is thus in yE~-1(M), for in this case we can consider the lens-shaped do- 

main M' between S and S". On M',  u = 0 ,  and so by the exactness of (10.1) on M', w = 0  

on M '  and since w is smooth, w vanishes to infinite order on S. 

I f  i ~> 2, we can solve the equation Dw' = w on M' and extend w' arbitrarily but smoothly 

to M. Then D(w-  Dw')=u on M and w -  Dw' vanishes on M" and hence to infinite order 

on S, and so w -  Dw' E YE~-I(M). This completes the proof of Theorem 10.3. 

Section l l .  Examples 

(i) The de Rham complex. This was defined in section 2. I t  is usually treated as an el- 

liptic complex but since it has no characteristics, real or complex, it is also hyperbolic. 

The ~-estimate is satisfied vacuously since gO =0, and Hypothesis A is also satisfied. The 

construction of the pseudodifferential operators A s is not necessary in this case, since if S 

is given by  the equation ~ = 0, D 1 is ~ /~ .  

The solvability of the Cauchy problem in this case is an analytical expression of the 

fact that  de Rham cohomology is invariant  under deformation retracts. 

(ii) The coercive Neumann problem. A slight generalization of the above situation was 

considered by W. J .  Sweeney in [14]. He showed that  the Neumann boundary value prob- 

lem for an elliptic complex 

D o D 1 

is coercive, or elliptic, provided tha t  the normal bundle of the boundary of a compact 

manifold-with-boundary is hyperbolic. That  is, if the boundary is given by  Q =0,  then 

Sweeney's condition is that  there be no characteristics of the form ~ + ~td~, where ~ is a real 

covector and )~ E C. 

The results of this paper apply to show that  the cohomology of the boundary complex 

is isomorphic to the cohomology of the full complex on a neighborhood of the boundary. 

The hypotheses of the (~-estimate and Hypothesis A are unnecessary in this case, since 

H~=O for every real ~; i.e., the boundary complex is elliptic (otherwise, there would be 

characteristics of the full complex of the form ~+)z~,  where ~t is an eigenvalue of ~f(D~) 

on H~). For details, see [7]. 

(iii) MaxweU's equations in an isotropic homogeneous medium. I t  is easy to verify tha t  

the bundle spanned by (dt} is maximal non-characteristic and hyperbolic, and tha t  all small 

deformations of it are hyperbolic. Thus there are lens-shaped domains on which all our 

hypotheses are satisfied, except possibly for the 5 estimate. In  fact, the ~-estimate is also 

satisfied, as can be verified by  computation of the eigenvalues of &~* +~*~ on T*| 
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The t angen t i a l  complex  is 
d i v  

Ca , C 1-~ 0 

and  the  no rma l  opera to r s  D~ : Ca~  C a 

and  DI : (~1_~ C1 

-o _ ~u i a are  given b y  191 u -  + ~ curl  u + - Re  u 
E 

and  zpl v = ~-  • ~ Re v. 

Since these are  a l r eady  symmet r i c  hyperbol ic ,  the  cons t ruc t ion  of the  opera to r s  A ~ 

is no t  necessary  when the  Maxwell  equa t ions  are  given in the i r  usual  form. 

(iv) The wave equation. I f  the  second order  equa t ion  ~2u/~x~-02u/ay ~ =0 is r educed  to  

a f i r s to rder  ove rde te rmined  sys tem b y  the  in t roduc t ion  of new var iables ,  the  resul t  sat is-  

fies all  our  hypotheses .  
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