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In  [12] J. Simons initiated a study of minimal cones from a more differential geometric 

point of view than had previously been attempted. One of Simons' main results was an 

identity for the Laplacian of the second fundamental form of minimal hyper-surfaces. 

Coupling this identity with an analysis of the first eigenvalue of a certain differential 

operator, he was able to prove that  no non-trivial n-dimensional stable minimal cones 

exist in R n+l for n <6. He was thus able to demonstrate that  any boundary of least area 

in R n~+l, n ~<6, must in fact be a hyperplane, because Fleming [7] had demonstrated that  

the non-existence of non-trivial stable minimal cones in R ~ implies the result that  the 

only boundaries of least area in R n are the hyperplanes. 

Simons was in fact able to deduce that, for n ~< 7, the only entire solutions of the 

minimal surface equation 
n 2 n - a n  - ~u  au  ~ u  

(1 + IVu I ) Z :-~ - Z =- 0 (*) j-lvx) ~.j_~x~ Oxj Dx~xj 

are linear functions, because De Giorgi [6] had improved Fleming's result in the non- 

parametric case, by showing that  the non-existence of non-trivial stable minimal cones in 

R n implies that  the only non-parametric boundaries of least area in R ~+I are the hyper- 

planes. The conjecture that the only entire solution of (*) are linear functions was known 

as the Bernstein conjecture, after Bernstein [2]. Prior to Simons' paper, it had been settled 

in the case n = 2  by Bernstein [2], n = 3  by De Giorgi [6] and n = 4  by Almgren [1]. Sub- 

sequent to Simons' paper the conjecture was finally completely settled; it was shown to 

be false for n > 7  by Bombieri, De Giorgi and Giusti [3]. 

In  the case n =2  Heinz [8] considered solutions of (*) which were defined over a disc 

~x e R~: Ix-x01 < R}. He proved there is an absolute constant fl such that  

( ~  +:~)(Xo) < ~/R~, (**) 
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where ~1, ~ are principal curvatures  of the graph of the solution u of (*). I n  the cas~ when u 

was an  entire solution of (*) Heinz let R-~ c~ in (**) and hence proved rx=~2~-0;  i.e., (**) 

implies Bernstein 's  theorem in the case n = 2 .  The result (**) and its proof have been re- 

fined by  various authors,  and a parametr ic  version was obtained by  Osserman (See [11]). 

However,  the methods  used were all str ict ly 2-dimensional. 

I n  this paper  we will use Simons '  ident i ty  for the Laplacian of the second fundamenta l  

form for minimal hypersurfaces to obtain  a number  of new estimates for the curvatures  of 

stable minimal hypersurfaees M which are immersed in a Riemannian  manifold N. Under  

suitable restrictions on N, we will in fact  obta in  (see Theorem 3) a pointwise bound for the 

principal curvatures  of M, provided dim (M I ~ 5. I n  the special case when IV = R n+ ~, when 

M is an area minimizing hypersurface with boundary  outside the ball {x E Rn + ~: I x - x 01 < R} 

and when n ~< 5, Theorem 3 gives the inequali ty (cf.~(**) above) 

~,(xo) <- ~IR ~, 
t -1 

where ~1 ... . .  ~n are the principal curvatures of M and j3 is an absolute constant .  W h e n  

8 M = r  we can let R ~  and deduce x ~ 0 ,  i = l ,  e. .... n; i.e., we obtain a proof of Bern- 

stein's Theorem for n ~< 5. A Bernstein- type result which is valid in a more general set t ing 

is given in Theorem 2. 

I n  the final section of the  present, paper  we give a simplified proof of Simons '  result 

t ha t  there are no non-trivial  6-dimensional stable minimal cones in R 7. 

w 1. Notation and preliminary results 

I n  this section, we set up our terminology and record Chern's [4] computa t ion  o 

Simons'  inequali ty for minimal hypersurfaces.  (See inequali ty (1.20) below.) We then 

demonst ra te  t ha t  this inequal i ty  gives a bet ter  lower bound (inequality (1.34)) for the 

Laplacian of [ A I (A = second fundamenta l  form of M) than  had previously been realized. 

Let  M be an oriented n-dimensional manifold immersed in an  oriented (n + 1)-dimen- 

sional Riemannian  manifold N.  We choose a local field of or thonormal  frames ca, ..., en+x 

in N such that ,  restricted to  M,  the  vectors e 1 .. . .  , en are tangent  to M. Wi th  respect to  

this f rame field of N,  let (o 1 . . . . .  con+ 1 be the field of dual  frames. Then  the s t ructure  equa- 

t ions of N are given by  
n + l  

d~o~--- - ~ o~,jha~, oJ~j+wji=O (1.1) 
tffil 

n + l  
do~,~ = - ~ w~ A o~,j + ~ t ,  (1.2) 

kffil 



where 

and 
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~ t 1  ~ ~ n + l  

k , l = :  

K t ~  +K~t~ = 0. 

We restrict these forms to M. Then 

(.On+ 1 ~ 0 .  

S i n c e  0 = d(on+ 1 = - Z n i=1 0 )n+ l , i  A (Di, by Cartan's lemma we can write 

~n+i . i= ~hoo,)1, h o = h t v  
1 

Here and in what follows, the range of summation is from 1 to n. 

By  using (1.1)-(1.4), we obtain 

dr = --~m~tAr w~t+w,~=0, 
t 

1 R 

where 

277 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

R~jkz = Ki~kt + htkhjt - ht~hjk. (1.7) 

The form Zl,r htj~otwj and the scalar (l/n) Zi h~ = H  are called respectively the second 

fundamental  form and the mean curvature of the immersed manifold M. If  H is identi- 

cally zero, M is said to be minimal. 

Now exterior differentiate (1.4) and define him by  

y h , ~  = dh~, - Y h,~ ~ , -  Y h~j~,~,. (1.s) 
k k k 

(1.9) 

(1.10) 

(1.:1) 

(1.12) 

Then 
1 (h~jk + ~Kn+:.~jk)% A r = 0, 

j ~  

h~jk -- h~kj = K n + l . t k t  = - -  Kn+l.ttk. 

Next, we exterior differentiate (1.8) and define h~jkz by  

hijk,~ol = dh,jk - 5 hlj~ o@ -- ~. hij, w,~ - ~ hi,~ wl~. 
l l l l 

Then 

_ _ 1  (h~k t -  �89 ~ h~mRm, k, ~ ~ hmjRmua)e % A mz = O, 
k , l  m lit 

and 

h.jk~ - h,r = ~ h~,~R,,~l + ~ hmjRm~v. (1.13) 
m m 
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Let  us now denote  the  covar ian t  der iva t ive  of K~t~t, as a curva ture  tensor  of N,  b y  

Kt~t: m. Then  restr ict ing to M,  we obta in  

Kn+l. t~: t = Kn+l. o~r - Kn+l. t. n+l./r ]tit -- K,+L tt. n + l  hkl § Z hint Kmttk, (1.14) 
In 

where 

~ Kn+1. ta, twt=dK,+l, tm-  ~ K,+l.,,t~Wmt- ~ K.+l.,~,OJm,- ~ Kn+l. ts,,~o,~. (1.15) 
l m ra m 

The Laplae ian  Ahij of the  second fundamen ta l  form htj is defined b y  

Ah~= ~ ht~. (1.16) 
/r 

F r o m  (1.10), we obta in  

Also, f rom (1.13) we obta in  

hkt~ -- h ~ ,  + Z h,m Rm,k + Y hint R, ,~ .  (1.18) 
m m 

Then  if we replace h ~ j  in (1.18) by  h~t  t-Kn+l.~n~j (by (1.10)) and  if we subst i tu te  the  r ight  

hand  side of (1.18) into ]~tm of (1.17), we ob ta in  

Ahtt= ~ (hu, tt-- K,§ K,+Lo~) + Y. (Z lk.,.Rmt~, + ~ h,,,Rmkt~). (1.19) 
k k m m 

F r o m  (1.7), (1.14) and (1.19) we then  obta in  

Ahtt = Z / ~ t ,  - Z Kn§ k,~,: t - Z Kn§ tt~,: ~, + Z ( - / ~  K,,+L t,.,,+~ -- ht, Kn+L,~. ,+x.1,) 
k k k k 

+ ~ ( h m t K ~  + hmtK~t~ + 2h~K~jk) 
m,k 

+ Z (h~th,~h~ + h~m~thmj - ~ & ~ h , l  - h ~ t h ~ t ) .  (1.20) 
m,k  

Now assuming M is min imal  in N,  so t h a t  ~ h~  = 0, we obta in  

Z h t ,  A h t / =  - -  Z hi IKn+l .k tk ; I - -  Z h i l / n + l  t J k ' k - -  Z h~j2 Kn+l  "k''n+l'k 
1 , t  t, L k  t . t . k  " " t . I .k  

+ ~. (2hm~hilK~a~+2h,~,hoKm,t~)- (~/~)~.  (1.21) 
m.t . j .k  t.t 

Up to  now, we have  followed the  exposi t ion in [5]. I n  order  to proceed, we assume 

t h a t  the  sectional curvatures  of N are bounded  between K t and  Ks  and  

IV/I ~= Z ' Ktl~t: m <- c'. (1.22) 
t,I, kol, m 

For  a n y  point  ~o tiM, we can choose our f rame  {el, ..., e~} a t  t h a t  poin t  so t h a t  

htj = ~t~tj. (1.23) 
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At such a point we have 

2 (2hm, h~jK,~k + 2h,.~kh~jKm~k) = ~. (2~ K , ~  + 2~t~]t,K~,~) = ~. (~2 _ 2]~,]tk + ] ~ ) K ~  
m. L j . k  t . k  t . k  

= 5 (~t,- ~)SK,~,~ >~ K2 ~. (]t,--Xk)2=2nK2Z]t~--2Ks(22,)~=2nKs2)~ �9 (1.24) 
t. k t. k t i | 

I t  then follows from (1.21), (1.22), (1.23) and (1.24) that  

2 h,,Ah,, > - 21/~-h~ |/ Z K,5~:= - nK~(2 hg) + 2nK2(Y. h~) - (2 h~) ~ 
i.J t.J |.J. k . l .m  |.J | . t  | . t  

>1 - 2cV2 h5 + n(2K2 - Ka) (5 1~5) - (5 h~) s (1.25) 

Now let 

IAI n = 2 by,. ( 1 . 2 6 )  
Lt 

Then (1.25) shows that,  at all points where IA] 40 ,  

The 

First, by using (1.10) together with the inequality 

2]Kn+l.~j,I ~< K 1 - K  s, 

we obtain 

A l s o ,  

21AIAIAI + 2(VIAl) s = AIAI s = 2 ~ h,5~ + 2Y h,,Ah. 
f . j . k  |,1 

>2 5 h~jk-4clA] + 2n(2g2-  K1)lAI2- 21Al '. (1.27) 
t.i.  tc 

crucial point now is to give a lower bound for Z,.j.k h,~ in terms of [VIAII s. 

V~-~;,~,/-- VU~,~,,- Vy (h,, ,-  h,,,)'- a V~ig,~,, - V5 ~ +~.,,, 
t . j  t#1 t.1 | * J  ~,1 

> l /~  h~, - � 8 9  1)(K~ - K2). (1.28) 

Y h,5~- IvlAI I ~ = [(5 ~5)( 5 h~%)- ~E (5  h.h,,k)s3 (5  h,~,) -1 
t . j . k  t . j  , . J . k  k |.J |.J 

=�89 Z (h~jhstk-hsth~e)2(bh~) -1, 
t.J s . t . k  |.J 

and, using (1.23), 

2 (h,jh,tk - h, th,,k) s = Y. (h,h,tk- h,th,~,) a + ( 5 h2,t)( Y. g k )  
f . I . s . t . k  | . s . t . k  s . t  t+J 

k 

h 2 ~l~h2 
t se~t s . t  t*J  s . t  t:vt 

k k 1r 

But by using (1.28) we obtain 

2 ~  I , ( K 1  t~ - 2 ~: h s - Ks) s 2 h~,~ > / 5  hg~ + y,,, , ,  - ~ . . ,  >/ ( 2 h;,,) n( 
tmJ t . /  ~ . j  i . j  t . j  
k 

(1.29) 

(1.3o) 

( 1 . 3 1 )  
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for  all e > O. Here we have used the fact  t ha t  

I/A >~ V h -  1//0 i m p l i e s  A / >  - -  
B C 

l + e  t 

for any  non-negative A, B, C and any  e > 0. 

Then since 

IvlAIl' = N(Y hoh,,~)'(Y h,',) -~ = ~ (~ h,,h,~)' (Y_ hl$|) -1 < ~ hl$|k = ~: hl2ik -F ~ h2i, 
k f , t  f . l  ,~ I | t,~: t : i : k  t 

= E h,~,~ + 2 ( 2 h,,,)' < 2 h,~,~ + (n - 1) 2 h~,, = ~ E h~,,, 
|::1: k t J-x-t t ~ k  t = t  t * t  

(1.32) 

we can conclude from (1.29), (1.30) and (1.31) t h a t  

Y h,5~- IvlAI I'/> Y h,~,~/> 2 n(,~- ( ~ h~tj) - 1) ( K  1 _ K2)2 
u .  k J.~ ~ t . j  2e 

k 

2 12 _ n ( n  - 1) (K 1 _ K~)~" 
> ~TC~)~ IvlAI 2~ (1.33) 

Combining (1.27) and (1.33), we then have 

2 i~ n ( n -  1) 
IAIAIAI + IAI ~ > ~ IvlAI 2~ - -  (K 1 - K2) 2 - 2c[AI + n ( 2 K 2  - K,)IAI 2. (1.34) 

at all points where IAI * 0 .  Actuany since IAIAIAI = �89  ~ -  IVlAI P we can in fact 
see tha t  this inequali ty mus t  be globally t rue in the distr ibution sense, even if I A I vanishes 

at  various points. 

The next  impor tan t  inequali ty is the stabil i ty inequality.  Recall tha t  a minimal hyper-  

surface is called stable if and only if the second variat ion of the area functional  is non- 

negative for all compact ly  supported deformations.  Of course it is t rue tha t  area mini- 

mizing hypersurfaces are stable in this sense. A direct  computa t ion  (cf. [4]) shows that ,  

if M is stable, then 

f ,  [lAl + (Z + lAP)/~] < o Kn+t.~.n+l.~ 
i 

for any  smooth funct ion [ with compact  support  in M. Therefore 

: , ,  + + IAp)l ~] < o; [ /hi ~nK~ 

t ha t  is 

fM (nK2 + lAP): < f~,  IvlP. (1.35) 
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Replacing / by [AIl+qt (q>~O) this gives 

+ (2 + 2q)fM [AII+~y(VIAI). (V/). (1.36) 

On the other hand if we multiply the inequality (1.34) by/3 [A[2q a n d  integrate over M 

we obtain (after integrating by parts in SM [A [i+2q(A IA [)p) 

(1+ ~)n IAI ~IvlA] < - (1§ 2q) IAI ~~ IvlAI l~/~ 

+ /~ { n(KI- 2K~)IAI~ + IAI' § IvlAI I~ + 2clAI +n(n- I) (K' - K2)~ } 1' 

-- 2 f M [A]I+Uq/(v]AD " (V/). (1.37) 

By adding (1.36), (1.37) and using the inequality 

2qlAII+~V(VIAI).(V/) <~q~/~IA[~JV[A]I~+~-~IAI~+~'IV/I', 
we then have 

(1 2 +~)n (l +~)q~) f~ [AI~[V[AII~/'~ 

~< fM (1 + e-1)[A[2~{[A[2IV/[2 + n ( K 1 -  3K2)IAI~/' + 2clAt/'~ n(n-2e 1) 

Inequality (1.38) will be of central importance in what follows. 

- -  (K 1 .  K2)2]2}. (1.38) 

w 2. Main results 

Throughout this section we will assume M is a stable immersion, so that all the ine- 

qualities of w 1 are valid. 

First of all, we obtain an L~ estimate for A by using (1.38) together with 0.36). 

T~OREM 1. For each pE[4,4+ ~ )  and ]or each non-negative smooth/unction ] with 

compact support in M, we have 

where fl is a constant depending only on n and p. 
1 9 -  752904 Acta mathematica 134. Imprim~ lc 3 0 c t o b r a  1975 
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Proof. Let  q = ( p - 4 ) / 2 ,  so that  q > 0  and q~<2/n. By using (1.38) with e chosen small 

enough to ensure 2/[(1 + 8)n] - ( 1  +~)qS>0, we have 

(2.1) 
where fil depends only on n, p. 

On the other hand, (1.36) says 

y~lAl,P < y~ ((1 + @lal~ IvlAI Iq' + 2(1 + q)(Ia[qVlAI). (IAI~'~-lvt)) 

+ f~  (lal "-~ IWl S--K,IAI"-'f'). (2.2) 

By the Cauehy inequality we have 

(IAI,IVIAI).(IAI,,~-~vf)<�89 IVlAII,+�89 ,, (2.3) 

and by using Young's inequality we have the following for each e >0: 

cl A [,-s < elA I" + fis~'s, (2.4) 

IA I,-,IV/I ~ =P(IAl~-,(IVfl,/p)) <.elAl~f'+fi3(IVfl~/F-s), (2.5) 
max {(K x -3K2) [A I v-s, -nKs]A Iv-s} <~ e]A [~'+fi4 (max {K1-3Ks,  -nK,~, 0}) vjs (2.6) 

(K x - K , ) "  I A ]r-4 <~ e] A I ~' + fls(K1 -Ks) j''s, (2.7) 

where fi2 ..... fi5 are determined by e, p. 

Now let M+ be defined by 

M+={xEM:f#O}.  

Then using (2.1), (2.3)-(2.7) in the inequality (2.2) we obtain 

( 1 -  fine)f. IAl"e -< fi, f~+ (Iv/l"/f"-~ + (e'3+ (K,-  K,) ~'~ 

+ (max {K~ - 3K2, - nK,, 0 })v,2)/a} (2.8) 

where fin depends on n, p and fit depends on e, n, p. 

If we now take e = 1/(2fls ) and replace / by/r /2  the required inequality easily follows. 

Suppose now that  we have a constant R 0 with 0 < R 0 ~< co and a family of subsets 

{BR}R~ (0. n,) defined by 

B~ = {x ~ M: r(x) < R}, 

where r is a given Lipschitz function on M with 

[Vr[ ~<1 a.e. on M. 
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Suppose also tha t  each BR is compact and 

M =  UB,, BR. 
R e (0, Re) 

We have in mind the particular cases where the B R are either geodesic balls of radius 

R in M or the intersection with M of geodesic balls of radius R in N. (We note tha t  in the 

former case, the immersion of M into hr need not even be proper.) 

Now let ]= ~ o r ,  where 7 is the Lipschitz function on R with ~(t)~-I for t<~OR, 
(0 E (0,1) a given constant) ~(t) --0 for t > R and with 7(t) decreasing linearly for t E (OR, R). 
I t  is then not difficult to see tha t  Theorem 1 implies 

fB[A]~<~R-~IB~], RE(0, R0), 0E(0,1), pE(0 ,4+  ~ ) ,  (2.9) 
0R 

where f l = f l { ( 1 - O ) - ~ + [ R g ( c 2 / a + K x - g 2 + m a x { - g 2 ,  0})] ~'2} (fl as in Lemma 1) and [BR[ 

is the n-dimensional volume of B R. 

Note tha t  if c=O and K 1 =K~>~O, then (2.9) gives 

f Bon[A'V <~ ~ R - P ' B ~ '  �9 

Thus if l ima_~ R-~'IBn [ = 0  for some V E (0, 4 + ~/8~), we must  then have I a I =0; tha t  is, 

we have the Bernstein type result stated in the following theorem. 

THEOREM 2. Suppose K I = K ~ > 0 ,  c = 0  and l ima_~ R-~[Ba] =0/or some p E ( 0 , 4 +  

~8-~). Then M is totally geodesic. 

Remarks. 1. Suppose/V is complete and M is a boundary of least area in N in the 

sense tha t  M=OU=~U for some open U c / V  and Vol ( a U n A ) ~ V o l  (0.4 N U) for each 

open A c N with compact closure. Then we can take r to be geodesic distance in /V and 

prove tha t  

[ Bal < �89 Vol (SR), 

where SR is the geodesic sphere of radius R in h r. 

In  particular, if N is flat we deduce tha t  [ B~ [ has order a t  most R ~ and hence there is 

a p satisfying the conditions of Theorem 2 provided n < 4 + 8 ~ ,  tha t  is, n ~< 5. Thus we 

deduce tha t  any boundary of least area in hr is totally geodesic if n ~< 5. In  particular, we 

deduce Bernstein's theorem for minimal graphs in R n+l when n < 5. 

The dimensional restriction n ~<5 can be relaxed if the volume growth of hr is small. 

For example if N is the product of the (n-4)-dimensional  terns and the 5-dimensional 

Euclidean space, then all boundaries of lea~t area in N are totally geodesic. 

19" - 752904 Acta mathematica 134. Impr i ra6  le 3 0 e t o b r r  1975 
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I n  the ease n ~< 5 we now show t h a t  one can actual ly  obtain  a pointwise bound for 

[ A [, provided appropriate  restrictions are imposed on N.  

We here continue to use the family of subsets {BR}aG(o" R.) int roduced above. 

THEOREM 3. Suppose N is simply connected, complete and has non-positive curvature 

(K 1 <. 0). Then i / n  < 5 and 

we have 

R2( c2'a+ IK I)+ R-"IBR[ <-to, 

sup IAI <rR -1 
BOB 

/or each 0 E(0,1), where r is a constant depending only on O, n and rio. 

Remarks. We note tha t  in the special case when N = R  n+l, if M is a boundary  of least 

area in {xeR~+l:  Ix-xo]  <R0} and if BR is the intersection with M of the ball {xERn+l: 

I -xol <R}, then (because R-"IBRI Remark 1 after Theorem 2) 

the inequali ty of the  theorem implies 

IAl(xo) <rl/R, R<Ro, (2.10) 

where E1 is an  absolute constant .  (Note tha t  fll can be computed  explicitly.) I f  R 0 = 

we can let R ~  ~ in (2.10) and obtain another  proof of Bernstein 's  theorem for n <5 .  

I t  is an open question whether  or no t  an  inequali ty like (2.10) is t rue in the case n =6 .  

I n  the case n = 2  an inequali ty of the form (2.10) was first established for non-parametr ic  

surfaces in [8]. An  analogous result, also in the case n = 2 ,  was established by  Osserman 

(see [11]). Osserman's  result was proved subject to the assumption tha t  the Gauss map  

omits a neighborhood of $2; no stabil i ty condit ion was assumed. However,  since it is no t  

clear whether  or no t  a 2-dimensionai boundary  of least area mus t  have a Gauss map  which 

omits a neighborhood of S 2 (at least when we restrict the Gauss map  to  BR, R < Ro), our 

inequali ty seems to  be of some interest even in the case n =2 .  

Proo/ o/ Theorem 3. By  (1.27) it is no t  difficult to  check tha t  the funct ion u = R-*fl~)+ 

] A ] ~ satisfies an  inequal i ty  of the form 

a u  +rx(R-~ + [A I~)u >/0, (2.11) 

where fix is a constant  depending only on n. 

We now need to  recall a well known result f rom the  theory  of elliptic equations (see 

for example [10], Theorem 5.3.1): Suppose r is a non-negat ive funct ion satisfying 
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on some ball Kn of radius R in R n. Then for each e > 0  and each 0fi(0,1) 

f /~ 11/2 
sup ~<~c t iR l ' jK  ~Sdx , (2.12) 

where c 1 depends only on n, e, 0 and R~Kslc] ("+')/~ dx. 

The same argument can be used to bound functions u satisfying (2.11) on M. The 

only difficulty in modifying the proof from R n to the present manifold setting is that  one 

needs a suitable Sobolev inequality. Under the hypotheses stated in Theorem 3 such an 

inequality has been proved in [9]. In  fact it is proved in [9] that  if N is simply connected, 

complete and has non-positive curvature then 

{ f ~,/.,,. ,> I"-'"" <<. c. f MiW ' 
for any smooth [ with compact support in M, where % depends only on n. 

Thus we can copy the R ~ proof of (2.12) and obtain 

s s'W~ supiAi'<c"/R-~[ (R-~N+IAI) / ' 
BO~ t d BR 

where c~ depends on ~G~(R-~+I~41~)<'">'  =, n, ~ and O. Choosing ~ > 0  such that 

n + e < 4 + V ~  (which can be done for n ~< 5) and using (2.9), we then have Theorem 3. 

w 3. Minimal  cones  in R n+l 

We conclude this paper with a simplified proof of Simons' theorem concerning the 

non-existence of stable 6-dimensional minimal cones in R 7. 

We let C be an n-dimensional stable minimal cone in R n+l with vertex 0. That  is, U 

is a union of rays emanating from 0 such that  C - {0} is a n-dimensional C ~ stable minimal 

submanifold of R n+l. 

Using (1.27) and (1.29) together with the fact that  c =K 1 =K~=O (since N = R  n+l in 

this case), we have 

IAIzXlAI + IAI' = �89 IAI -~ Y d,r~ 
f . t , r .s ,  k 

at an poiuts of O -  (0} for which I A I * 0, where 

ao,,k = hoh,~k -hr~h~, i, j, r, s, k = 1 ..... n. 

Then clearly, since htj=hjt and ht~=ht~s (by (1.10)), we then have 

IAI~IAI + IAI" >1 21AI -~- Y. Y ~#8~. (3.1) 
k=l  J~:n, r:~n. s~-n 
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I f  we now choose a frame e z . . . .  , en at  a given point x in such a way tha t  htj is diagonal and 

such tha t  en is in the radial direction x/ Ix] ,  then we have 

h~ = 0 ,  i # j ,  hnn = 0  and hi,n = - [x l - lh~ j ,  i, ] = 1, ..., n. 

Then 

~ . , . ~  = - h , , h = , ~  = I ~ l - l h - h , ~ .  

Thus, since h . . = O  and h~j=O for i # j ,  (3.1) gives 

]AIAIzl ] + ]A] '  >~21AI- ' ]x I - ' IAI  ~ = 2 ] x ] - ' ] A ] '  (3.2) 

As with inequality (1.34), this inequality holds globally in the distribution sense even if 

] A [ vanishes at  various points. 

We will also need the following formula (which is a special case of the co-area formula) 

for integration over C: 

Here r is an arbi t rary  summable function on C and B~ denotes the intersection with C 

of the ball in R =+x with radius R and center 0. 

We now take ] to be a C z function on C - {0} with compact support  in C - {0}. Then, 

multiplying by  [2 in (3.2) and integrating by  parts, we have 

2fclAPl'r-~< fc (]A] '-]V[A, p)/'-2fc 'A]/(V/)" (vIA]), (3.4) 

where r is defined on G by  

,(~) = I x l .  

On the other hand if we use (1.36) w i t h / I A I  in place of / (and with K s =0), we have 

Combining (3.4) and (3.5) we then have 

2fo t,r iAl'lvlr.. /3.6) 

We now assert tha t  (3.6) is valid even if [ does not have compact support  in C -  {0}, pro- 

vided tha t  

f lAP/~r -~< oo. (3.7) 

This is proved by applying (3.6) to the function 7,[, where 78 is any  smooth function on 
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7e(x) --: 1 for e < • 8--1' I vr ( )l < 2/I I for all  x, 

a n d y e ( x ) - 0  for [xl<~e/2 or Ix1>~28 -1, 

and  then  l e t t ing  8-~0. 

W e  now show tha t ,  if n ~<6, (3.6) canno t  poss ib ly  hold for  all  / sa t i s fy ing (3.7) unless 

IA[  - 0 .  To prove  this  we t ake  8E(0, �89 and  t a k e  

r l  +er l -2-2s  

where  r I is def ined  b y  

r I = m a x  {1, r}. 

This  choice of / is va l id  because,  using (3.3) toge the r  wi th  the  fact  t h a t  IA(x)l  = Ix1-1 

IA(x / [x  I) I , one can easi ly  check t h a t  (3.7) holds.  Then  (3.6) gives 

2 ]AlUr2~r21-n-4~< ~ - 2 + e  [Al2r -n-2'+(l+e)u  IAl r (3.3) 
: <x:lx[>l> J C<x;ix[<l> 

Now for n < 6 we can choose e such t h a t  ( � 8 9  +e)  ~ < 2 and  (1 +e)  ~ < 2. (3.3) t hen  gives 

c lAl r " " =0; 

t h a t  is [A[ = 0  as required.  
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