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Introduction

In René Thom’s catastrophe theory, gradient models for natural pheonomena are
given locally by stable unfoldings, whose unfolding space (the space parametrized by the
unfolding parameters) corresponds to the eontrol space of the gradient models. Thom’s
celebrated list of the seven elementary catastrophes is in fact a classification of stable un-
foldings of low unfolding dimension.

However, the equivalence relation on unfoldings used in Thom’s classification and in
defining the stability notion used there is fairly coarse; the diffeomorphisms used in de-
fining this equivalence notion can operate on the unfolding space via an arbitrary local
diffeomorphism. This means that in the mathematical description of a gradient model,
all of the control parameters are treated as being interchangeable. In particular, when the
control space is space-time, no distinction is made between the spatial coordinates and the
time coordinate. Hence Thom’s list can give the same mathematical description to physi-
cal events which an observer would see as being quite different.

The purpose of this paper is to develop mathematically a stability theory for unfold-
ings based on a finer equivalence notion ((r, s)-equivalence) than the ordinary one, in
which some of the unfolding parameters are treated as being “more important’ than the
others. Such a theory can be applied in catastrophe theory to give an adequate mathe-
matical description of spatio-temporal events in nature. The theory developed here ge-
neralizes the ordinary theory of stable unfoldings (for which see [11]).

The paper is organized as follows: § 1 contains preliminaries, lemmas which will be
applied throughout the paper. In particular some useful corollaries of the Malgrange pre-

(*) The title of this paper before publication was ““(r, s)-Stability of Unfoldings”.
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paration theorem are proved. § 2 is a quick review of the ordinary theory of stable unfold-
ings, for reference and for comparison with the results on (r, s)-stability. In § 3 several
(r, s)-stability notions are defined and the theory of (r, s)-stability is developed in analogy
to the results of § 2 for ordinary stability; in particular the equivalence of the different
definitions of (r, s)-stability is proved. § 4 treats the problem of classifying (r, s)-stable
unfoldings; in particular, an algorithm is developed for finding all (7, s)-stable unfoldings
of a given germ. In § 5 the classification is carried out for (3, 1)- and (1, 3)-stability and
analoga to Thom’s list are computed for these two cases. Finally, § 6 contains pictures of
the (3, 1)-stable unfoldings.

I should like to express my thanks to Klaus Janich for having suggested the problem
treated in this paper, for his encouragement during the work, and for his healthy skepti-
cism about some of the results. I should also like to thank Christopher Zeeman for sug-
gesting, after the research had been dome for (r, 1)-stability, that I extend my results to
the case of (r, s)-stability for general s. I am indebted to Les Lander for his assistance with

the pictures.

§ 1. Preliminaries

In this section we define notation and collect some basic results for future reference.

Definition 1.1. We denote by E(n, p) the set of germs at 0€R" of smooth mappings
from R* to R?. If p=1 we write simply £(r) for E(n, 1). The R-algebra structure of R in-
duces a natural R-algebra structure on &(n). The ring £(n) has a unique maximal ideal
11(n), consisting of those germs f€ E(n) such that f(0)=0.

If f€EE(n, p) and 1<i{<p, then we shall often for convenience write f, to denote the
germ in E(n) of the composition y,0f, where y,: R?—R is the i-th coordinate function of R?.

If g is an element of £(n, p) and if g(0) =0, then for any r the germ g induces a canonical
R-linear map ¢*: &E(p, r})—E(n, r) defined by setting g*(f) =fog for fEE(p, ). If r=1 then
g* is a homomorphism of R-algebras.

Definition 1.2. Let k be a non-negative integer. We denote by J*(n, p) the set of k-
jets at 0 of germs in E(n, p). The jet space J*(n, p) is a finite-dimensional R-vector space of

dimension p (n Z k) .

For each k there is a canonical R-linear projection m: E(n, p)—>J*(n, p) which assigns
to each germ in &(n, p) its k-jet at 0. Similarly, for each k and ¢ with ¢ >% there is a linear
projection 7, ,: Jn, p)—=J¥(n, p) defined by forgetting the higher-order terms.

We define J§(n, p): ={2€J%(n, p)|m o(z) =0}. This is a subspace of J*(n, p) of codimen-
sion p. For each k there is. a canonical projection g,: J*(n, p)—~J§(n, p) defined by “for-
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getting” the zero-order terms. More specifically, if f €E(n, p) and if z=7,(f) we have g,(2)=
m{f —(0)). For any k we define a projection 7, : E(n, p)—>J§(n, p) by setting my, =047

Since J*(n, p) and J¢(n, p) are finite-dimensional real vector spaces, they have a na-
tural C= differentiable structure.

Suppose g€E(n, p) and ¢g(0)=0. Then for any fEE(p, r), the k-jet at 0 of the composi-
tion fog depends only on the k-jets of f and of g. Hence g induces for each & a linear map
g% J¥(p, r)=>J¥n, r) defined by setting ,g*(mi(f)) =mlg*(f)) for fEE(p, r). Similarly, if
2€J§(n, p) then z induces a linear map z*: J*(p, r)—>J%(n, r) defined by setting z* —=;g*
where g €E(n, p) is any germ such that m,(g) =2.

Let U be an open subset of R™ and let f: U—R? be a smooth mapping. We define for
each k a smooth mapping J*: U—J*n, p), called the k-jet section of f, as follows: For
each €U define a germ fu,€E(n, p) by setting fiy(2) =f(x+2) for z near 0 in R*. Now
define J*f by setting J*f(x) =m,(fzy)-

Since clearly the germ of J*f at any point €U depends only on the germ of f at z,
we may also in the same way associate to every germ g €E(n, p) a germ J¥g which is the germ
at 0 of a smooth mapping from R" to J*(n, p).

Remark: Where no confusion can result, we shall often for convenience use the same
gymbols to denote functions, their germs at 0, and their £-jets at 0. Similarly we shall often
use the same symbol to denote a point c€ER? and to denote a constant mapping whose

value everywhere is ¢ (or to denote the germ or the k-jet of such a mapping).

Definition 1.3: We define L(n) ={p€E(n, n)|p(0) =0 and ¢ is non-singular at 0}. We
can make L(n) into a group by taking as the group operation the composition of germs in
&(n, n). The group L(n) is the group of germs of local diffeomorphisms of R" at 0. Observe
that whether or not a germ ¢ €E(n, n) belongs to L(n) depends only on the 1-jet of .

If k is a non-negative integer, we set L¥(n): =m,(L(n)) S J§(n, n). If @ and yp are ele-
ments of L{n), then the k-jet of poy depends only on the k-jets of ¢ and of y. Hence the
group operation of L(n) induces in a natural way a group operation on LF(n).

L¥(n) is an open subset of J§(n, p), and hence has a natural C* differentiable structure.
One easily sees that with respect to this differentiable structure L¥(») is a Lie group.

L(n) acts on m(n) on the right, and L(1) acts on m(n) on the left, the group action in
both cases being given by composition of germs. We may combine these two actions to
obtain an action of L(1) x L(n) on m(xn) “on both sides”; formally we can write this action
as an action from the right if we define f- (p, p): =y~tofogp for f€m(n), p EL(n), p EL(1).

The group actions defined above induce smooth actions of the groups L¥(n), L¥(1)
and L*¥(1) x L¥(n) on J¢(n, 1).
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The following theorems and lemmas will find frequent application in this paper. These
are all well-known results, except for the corollaries to the Malgrange Preparation Theorem
(Corollaries 1.7 and 1.8), which are new.

Lemma 1.4. (Nakayama’s Lemma). Let R be a commutative ring with identity and let
I be an ideal in R such that 1 +z is tnvertible for all 2€ 1. Let A and B be submodules of some
B-module M and suppose A is finitely generated over R.

If
(a) B+I-A2 4,
then
(b) B2 A,

and if equality holds in (a), then equality holds in (b).
For a proof, see e.g. [2, p. 281] or [11, Lemma 1.13].

CoROLLARY 1.5. Let A be a finitely generated E(n) module and let B be a submodule
of A such that for some k
dimg A/(m(n)**'4 + B) < k.
Then m(n)*A< B.
For a proof, see [3, Corollary 1.6] or [11, Corollary 1.14].

TaeorEM 1.6 (Malgrange Preparation Theorem). Let f€E(n, p) and suppose f(0)=0.
Let A be a finitely generated E(n)-module and suppose dimg A[f*(m(p)) 4 is finite. Then A
18 finitely generated as an E(p) module via f*.

This is Mather’s version of the theorem ([3, p. 132]). For a proof, see e.g. [3, pp. 131~
134], or see [1, Ch. V], or see the articles of Wall, Nirenberg, Lojiasiewicz, Mather and Glae-
ser in [10, pp. 90-132].

CoroLLARY 1.7. Suppose we are given (for i =1, 2, ..., k) germs f,€E(n, p,) with f,(0) =0,
such that for each ¢, 1 <i<k—1, there is a germ ¢, € E(p, 1, P,), with g,(0) =0, suchthat f;=g,f,.,.

Let C be a finitely-generated E(n) module. Then for each i we may also consider C as an
E(p,) module via f.

Let B be an E(n)-submodule of C and for each i, 1 <i <k, let A, be a finitely generated
E(p,) submodule of C.

If
(a) A, +Ag+...+ A+ B+m(p)C =C,
then
® A +A4,+..+A4,+B=C

(Note: When k=0, equation (a) reduces to: B+m(n)C=C.)
Proof. The proof is by induction on k. If k=0, then (b) follows by Nakayama’s Lemma.
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Suppose now k>0 and suppose the statement has been proved for all smaller values
of k. Let C=C|B; then C is a finitely generated £(n)-module but we may also consider
as an &(py) module via f%. Let 7z: C—C be the projection, and for each s, 1 <i <k, let 4; =
n(4,) and let 4] be the &(p,) submodule of C generated by A4;. (Note that 4; is an &(p,)
submodule of C).

Since m(p,) C< m(py)C, it follows from (a) that A7 +... + A% +m(p,)C=C, and since
each 4] is a finitely generated &(p;) module, this equation implies that dimg C/m(p)C is
finite. Hence by Theorem 1.6, C is finitely generated as an £(p,) module.

Now equation (a) implies that A; +4;+...+ A4 +m(p,;)C=C, and since C is finitely
generated over £(p;) we may apply the induction assumption for the case k—1 to conclude
that A;+...+ Ay =C. But this clearly implies (b). Q.E.D.

Corollary 1.7 is a generalisation of [3, Lemma, p. 134].

COROLLARY 1.8. Let k be an integer, k> 1, and suppose we are given, for 1 <¢<k, germs
f.€En, p,), with f,(0)=0, such that for each i, 1<i<k—1, there is a germ ¢,€E(P 1, D)),
with ¢,(0) =0, such that f,=¢f .,

_ Let C be a finitely generated E(n) module. Let B be an E(n) submodule of C, and for each 1,
1<i<k, let A, bea finitely generated E(p;) submodule of C generated by d, elements over E(p;).

Suppose

(a) A+ Ay + ...+ A+ B+m(p,) C+m(p) 0 =C.
Then

(b) Ay +..+A,+B=C

and

(c) m(p)*0< Ay + ...+ A, + B +m(py) C.

(Note: When k=1, then (a) reduces to 4,+ B+m(p,)C+m(n)**'C=C and (c) re-
duces to: m(rn)2C< B+m(p,)C).

Proof. Let A; be the E(p,) submodule of ¢ generated by 4, and let B’ =B+ m(p,)C
considered as an £(n) submodule of C. Clearly (a) implies A1 + A, +... + 4, + B +m(p,)C =
C and by Corollary 1.7 we get A + Ay +... + A, + B’ =C. Hence since 4; is finitely generated
over &(p,), it follows that if we set C=C/[(4dy+...+ A, + B’), then C is a finitely generated
E(p,) module.

Let 7: C—~C be the projection and let 4, =n(A4,). From (a) it follows that A, -+
m(py)**'C=0C. Since 4, is generated by d, elements over £(p,) and since m(p,)C =0, it
follows that dimgr C/m(p,)**'C <d,. Hence by Corollary 1.5 m(p,)*C =0; this implies (c).
And (c) and (a) together imply 4,+ A,+ ...+ A+ B-+m(p,)C=C; by Corollary 1.7, (b)
then follows. QE.D.
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Corollary 1.8 is a generalisation of [3, Theorem 1.13].

THEOREM 1.9 (Thom’s Transversality Lemma). Let U be an open subset of R*. Let k
be a non-negative integer and let N be a smoothly immersed submanifold of J*(n, p). Let B
be the set of all smooth mappings f: U~ RP such that the mapping J*f is transversal to N every-
where on U. Then B is a countable intersection of open dense subsets of C°(U, R?), the space
of all smooth mappings from U into R?.

In particular, since C°(U, R?) is a Baire space, B is dense.

(Note: in this paper we take the weak C®-topology on C®(U, R?). A basis for this
topology consists of all sets of the form {h€C~(U, R?)|J"(g—h)(L)< W}, where L is any
compact subset of U, r is any non-negative integer, W is any open neighbourhood of 0 in
J'(n, p) and g is any element of C°(U, R?). The weak C®-topology is not the same as the
Whitney topology, which is often used by other authors).

For the proof, see e.g. [6] and [11, Theorem 1.22 and Corollary 1.23].

We conclude this section with a very useful lemma of Mather’s.

LeEMMA 1.10. Let FEE(n+1) and let F(0)=0. Suppose there are germs E€EE(n+1, n)
and 1 €E(n +2) such that for x near 0 in R™ and for t near 0 in R the following equation holds:

oF(z,t)_ Z oF(z, 1)

&
( ) ot =1 82:,

&z, t) +n(F(x,t),2,1).

(Remark: Here §;,=y,0&, where y, is the j-th coordinate function on R™. See Def. 1.1.)
Then there exist germs p€E(n+1, n) and A€E(n+2) such that for x near 0 in R and

s near 0 in R

(b) @z, 0) =2 and A(s, z, 0) =s,
and such that for x near 0 in R and t near 0 in R we have
(c) F(p(x, 1), t) = A(F(z, 0), z, t).

Moreover we may choose @ and A (in fact uniquely) such that

(d) %;tﬁ’i)= —&Ep(x,8),8) (j=1,...,n)
oA
and % (8,2, 8) = n(A(s, 2, ¢), p(z, 1), 8),

for tER, xER™, sER.
For the proof, see [11, Lemma 1.29]. This lemma is an easy corollary of a lemma of
Mather’s ([3, p. 144] (or see [11, Lemma 1.27])).
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§ 2. Stability of unfoldings

In this section we collect, for future reference, some of the basic results in the theory
of unfoldings. A more detailed discussion of the subject, and the proofs of the theorems listed
here, can be found in [11].

To keep the notation manageable, it will be convenient to agree on some notational
conventions. We shall be considering germs in E(n+r) for some given n and r. We shall
denote the standard coordinates on R" by #,, ..., x, and the standard coordinates on R’
by uy, ..., u,, and we shall denote elements of R*** by pairs (x, #) where z€R" and w€R".
Occasionally we shall also be considering germs in E(n+r+s) for some given =, r and s;
in that case we shall take coordinates vy, ..., v, on R* and we shall denote elements of R™*7*¢
by triples (z, u, v) where z€R", w€R", vERS.

We shall apply similar notational conventions to mappings. For example, if
DEE(p, n+7) and we write @ =(p, y), this will mean p EE(p, n), p EE(p, r) and for y near
0 in R? we have ®(y) =(p(y), w(y)) ER™*".

We shall identify R* with the subspace R* x {0} of R* x R"=R""*, and similarly we
identify R™*" with the subspace R™*" x {0} of R"*"**. Also, we shall consider £(r) to be
embedded as a subring in E(n+7), via the injective ring homomorphism 7*, where
7: R* x R"—>R" is the projection onto the second factor. An element ¢ of E(n+1) i in E(r) if
and only if ¢ does not depend on z;, ..., z,; in this case we shall generally write “p(u)” to
abbreviate “g(z, )", where z€R" and u€R".

Similarly, for any p we may consider £(r, p) to be embedded in E(n+r, p).

In a similar way, we may identify £(n) with a subring of £(n +r), and we may identify
En), En+r), E(r+s), and E(s) with subrings of E(n+r+3).

Finally, some algebraic notation: Let B be a ring, M an R-module, and let §
be a subring of R (so that M is also an S-module). If a,, ..., a, € M, we shall denote by
{@y; ..., Gy the S-submodule of M generated by a,, ..., @.

Frequently we shall use an abbreviated version of this notation: Suppose f€E(n +1),
and suppose S is a subring of £(n+7r). Then we shall write {9f/éx)s as an abbreviation for
the S-submodule {&f[ox,, ..., 8f/ox,>s of E(n+7) and we shall write (df/éu)s as an abbrevia-
tion for {of/ou,, ..., &f/ou,>s. We shall use a similar abbreviated notation to denote modules
generated by derivatives of germs in €(n) or E(n+r+3); the meaning of the notation will

always be clear.

Definition 2.1. Let 5 €m(n). An r-dimensional unfolding of 7 is a germ f€E(n +7) such
that f|R™=7.
One may think of an r-dimensional unfolding of 7 as being an r-parameter family of
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germs in &(n) which contains the given germ 7 €m(n) at 0€R”. This implicitly understood
structure of an unfolding is reflected in the following definition of equivalence of unfold-

ings.

Definition 2.2. Let f and g be germs in m(rn+r). To f we associate a germ
Fe&n+r, 1+71), defined by F(z, u)=(f(z, ), ©) ER x BT, for 2€R™ and « ER". Similarly,
to g we associate a germ QEE(n+r, 1 +7) defined by Q(z, u)=(g(x, u), u) for xER", wER".

We say that f and g are equivalent as r-dimensional unfoldings (or r-equivalent) if there
are germs ® €L(n +r), p€L(r) and A €L(1 +r) such that the following diagram commutes:

Rn+r F Rl+r Pe Rr
1
1] A rpl
Rn+r G Rl+r p2 Rr

where p,: R xR"—R" is the projection onto the second factor. Such a triple (®,y, A) is
called an r-equivalence from f to g.
Note that if (D, p, A) is an r-equivalence, then ® ={(gp, y) for some germ ¢ €E(n +r, n).

Definition 2.3. Let U be an open subset of R”. Let f: U—~R be a smooth function and
let z€U. We define a germ f,€m(p) by setting £,(y) =f(z+y) —f(2) for all y near 0 in R?.

Definition 2.4. Let U and V be open subsets of R**", and let f: U-~R and ¢g: V>R
be smooth functions. Let (x, w)€U and let (y, w)€EV. We say f at (z, u) is r-equivalent
to g at (y, w) if the germs f., 4, and g, », in Mm{n +r) are equivalent as r-dimensional un-
foldings.

We can now define stability for unfoldings. There are several ways of doing this, but
the different stability notions we define below will all turn out to be equivalent to each
other.

Definition 2.5. Let f€m(n +7). We say [ is weakly stable as an r-dimensional unfold-
ing if for every open neighbourhood U of 0 in R**" and for every representative function
f: U=R of the germ f, the following holds:

For any smooth function h: U—R, there is a real number £>0 such that if ¢ is any
real number with |¢| <e, then there is a point (x, %) € U such that ' +th at (x, u) is r-equiva-
lent to f" at 0.

Definition 2.6. Let f€m(n+7). We say [ is strongly stable as an r-dimensional unfold-
ing if for any open neighbourhood U of 0 in R**" and any representative function [ of f
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defined on U, there is a neighbourhood V of f' in C*(U, R) (with the weak C® topology)
such that for any function g’ € V there is a point (x, ) in U such that g" at (z, u) is r-equi-
valent to ' at 0.

Definition 2.7. Let f€Em{n+r). Define FEE(n+r, 1+7) by setting F(z, u) =(f(x, u), w)
for z€R", w€R". We say.f is infinitesimally stable as an r-dimensional unfolding (or. r-
infinitesimally stable) if

(2) E(n +1) = 0f[0)e(n+n +Of [Oup ey + F*E(L +1).
(Geometrically this condition means roughly that the “tangent space’ at f to the

r-equivalence class of f is maximal, i.e. is equal to the ‘““tangent space” to m(n -+r)).
Condition 2.7 (a) can be reformulated in a slightly simpler form (Theorem 2.9):

Definition 2.8. Let fEm(n+7) be an r-dimensional unfolding of n€m(n). If 1<i<r,
we set o (f) =&ffou, | R*€E(n).
We define

Wy = oy(f), .. a(f)om S E(n).

THEOREM 2.9. Let f€m(n +r) unfold nE€m(n). Then f is r-infinitestmally stable if and
only if
(a) E(n) = <onjox)gmy+ Wy +1*E(1).

This theorem follows from the Malgrange Preparation Theorem. For the proof, see [11,
Lemma 4.9].

TEEOREM 2.10. Let f and g be elements of m(n+r). If f and g are r-equivalent, and +f f
18 r-infinitesimally stable, then g is r-infinitessmally stable.

Proof. See [11, Corollary 4.10, Lemma 4.3 and Chapter 3]. (This theorem can also be
proved directly from the definition of infinitesimal stability.)

TeHEOREM 2.11. Let f€m(n+r). The following statements are equivalent:

(a) f is weakly stable as an r-dimensional unfolding.
(b) f is strongly stable as an r-dimensional unfolding.

(c) f is infinitesimally stable as an r-dimensional unfolding.

Proof. See [11, Theorem 4.11]. The most important consequence of this result is that
it equates the geometrically defined stability notions (Definitions 2.5 and 2.6} with easily
verifiable algebraic conditions. (2.7 (a) or 2.9 (a)).

5 — 752905 Acta mathematica 135. Imprimé le 19 Décembre 1975.
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Definition 2.12. A germ f€m(n+r7) is said to be stable as an r-dimensional unfolding
(or r-stable) if f fulfills one (and hence all) of the equivalent conditions 2.11 (a), 2.11 (b)
or 2.11 (e).

Note: In future, in using the terms ‘“‘stable”, “equivalent”, etec., we shall often omit
reference to r when no confusion can result. For example, if f is an r-dimensional unfolding'
of 7, we shall write “f is a stable unfolding of 7"’ to mean f is r-stable.

A natural question to ask now is the following: Given a germ #€m(n), when does 7.
have stable unfoldings and what are they? The following results give a complete answer
to this question. The proofs can all be found in [11]; the method of proof was in most
cases suggested by the work of Mather, who proved ana,logous‘results for a slightly simpler

case in [4].

Definition 2.13. Let n€m(n). Let k be a non-negative integer. We say 5 is right k-
determined if for every germ u€m(n) with 7 (u)=m(n) there is a germ ¢ €L(n) such that

n=pp.

We say 7 is right-left k-determined if for every germ p€m(n) with m,(u) =m,(n) there
is a germ @ €L(n) and a germ A€L(1) such that n=Aug.

Clearly, if # is right k-determined then 7 is right-left k-determined.

LeEMMa 2.14. Let n€m(n). If 1 is right-left k-determined, then n is right (k +2)-deter-

mined.

Proof. 11, Corollary 2.12].

Definition 2.15. A germ % €m(n) is said to be finitely determined if 7 is right k-deter-
mined for some non-negative integer k (or equivalently, by 2.14., if % is right-left k-deter-

mined for some k).

Definition 2.16. Let  €m(n). We define
7(n) = dimg E(n)/< /0T en)»
o(n) = dimp E(n)/({&n/0x) e +7*E(L)).
If k is a non-negative integer, we set
T(n) = dimg E(n)/((Pn)0xDecny +m(n)F),
() = dimp E(n)/({n[0xDem +1*E(L) +m(n)).
Clearly 7,(n) <t(y) and 0,(n) <a(n) for all k.
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Note that 7,(n7) and oy(n) obviously depend only on the k-jet of 5. We call a(z) the co-
dimension of # (or more specifically, the right-left codimension of ).

TrEOREM 2.17. (Tougeron). Let n€m(n). The following conditions are equivalent:
(a) n s finitely determined,
(b) T(n) <eo,
(0) aln) <oo,
(d) the numbers 7,(n), for k a non-negative integer, are bounded,
(e) the numbers a{n), for ka non-negative integer, are bounded,
(f) for some non-negative integer k

m(n)* < <@nfozyecm +1E(1),
(g) for some non-negative integer k

m(n)* = (/0% ecn).

Proof. See [11, Corollary 2.17.] (conditions (d) and (e) above are not given in Corol-
lary 2.17 of [11], but (d) obviously follows from (b) above and it implies 2.17 (d) of [11]
and (e) follows from (c) above and implies 2.17 (e) of [11]). The proof uses results of Mather
([4; Prop. 1] (or see [11, Theorem 2.6]) and [3, § 7] (or see [11, Lemma 2.8])). This result
is due in part to Tougeron [8].

Definition 2.18. If 2€J5(n, 1), we set 7(2): =7,(n), where 7 is any germ in m(n) such
that 7, (n) ==z. Clearly 7(z) is well-defined independently of the choice of .
We set Z,: = {z€J§(n, 1)|1(2) > k}.

LeMMma 2.19. (a). If n€m(n) is finitely determined, then for k sufficiently large, 7,(n) $Z,,.
(b) If n€m(n) and if, for some positive k, my(n) €2y, then m(n)* 1< (on/ox)e,, (and so 7 is
finitely detewﬂined).
(¢) Z, is an algebraic subset of J§(n, 1).

Proof. (a) follows easily from Theorem 2.17 (d); (b) follows from Corollary 1.5; for (c)
see [11, Prop. 2.22].

TEEOREM 2.20. Let n€m(n). Then n has stable unfoldings if and only if 1 is finitely
determined. The minimal unfolding dimension of a stable unfolding of 7 is o(n). In fact if
H1s - 4 €E(n) are a basis of the R-vector space E(n)[({on[0x)eny +1*E(L)), and if fEm(n + 1)
is defined by f(x, u) =n(x) +u pu, (%) + ... +u, u,(x) for xER", w€R’, then f is a stable unfold-
ing of n of minimal unfolding dimension.

Proof. This follows easily from 2.9 and 2.17.
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THEOREM 2.21. Let n€m(n). If f€E(n+r) and gEE(n +1) are r-stable unfoldings of 7,
then f and g are r-equivalent.

Proof. See {11, Theorem 3.20 (see also Theorem 3.22 (b) and Def. 3.6)].

Definition 2.22. Let g€m(p). The g-dimensional constant unfolding of g is the germ
fE€E(p+q) defined by f(x, u): =g(x) for zERP, u ER

COROLLARY 2.23. Let n€m(n), and let fEE(n+71) and gEE(n+38) be unfoldings of 1.
If f is r-stable and g is s-stable, and if s<r, then | is r-equivalent to the r —s dimensional con-
stant unfolding of g.

Proof. From Theorem 2.9 it follows trivially that the » —s dimensional constan$ un-
folding of g is an r-stable unfolding of 7. The corollary then follows immediately from
Theorem 2.21.

Theorem 2.20 and Corollary 2.23 together completely describe all stable unfoldings
of a given germ 7.

A related but somewhat more general question is to ask for a classification of all
stable unfoldings (without specifying 7). René Thom’s celebrated list of the seven elemen-
tary catastrophes gives a partial answer to this question; Thom’s list classifies the r-stable
unfoldings for r <4. We shall state this theorem below:

Definition 2.24. Let u€m(n) and let g€E(n+r) unfold u. Let n€m(n+q) and let
fE€EE(n+g+r+s) unfold . We say f reduces to g if f is r+s-equivalent to an unfolding
g €E(n+q+r+s) of the form

(a) g'(z, ¥, u, v) =g(x, u) +Qy) (x€R*, yeR?, uER', vER’),
where @ is a non-degenerate quadratic form on R?.

If ¢ +¢ is positive (i.e. non zero), we say f reduces properly to g. If f has no proper re-

ductions, we say f is an irreducible unfolding of 7.

Definition 2.25. Let f€E(n+7) unfold y€m(n). We say f has a simple singularity at 0
if f reduces to the trivial unfolding 0 € m(0).

THEOREM 2.26. (Thom’s list of the seven elementary catastrophes). Let fEE(n +1) be
a stable unfolding of a germ n €m(n)2, and suppose r <4. Then either f has a simple singularity
at 0, or | reduces to a unique one of the following seven stable and irreducible unfoldings g,

of germs u,:
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Unfolding

Name B g dimension
Fold Hy() =3 gy (x, u)=2*+uzx 1
Cusp fo() =2t gs(, u, v) =2t +ua? +ovx 2
Swallowtas!  pg(x) =25 gs(%; u, v, w) =25 4 ux® +vr® +wr 3
Butterfly fha() =28 ga(%; %, v, w, t) =28 +urt +vad +wa? +-tx 4
Hyperbolic — pg(x, y)=23+3® gs(x, y, u, v, w) =23+ +uxy +vr+wy 3

wmbilic

(wave crest)
Elliptic Me(x, ¥) =2 —2y? go(, ¥, u, v, w) =2 —xy? +u(x* +y?) +vr+wy 3

wmbilic

(hair)

Parabolic — po(@, Y) =Ty +9* gy(%, 9, w, v, 0, ) =Ty +yf+uad +oyf +uw ity 4
umbilic
(mushroom)

Moreover, if f reduces to one of the g,'s, then f does not have a stmple singularity at 0.

Proof. See [11, Chapter 5]. {This theorem is Theorem 5.6 of [11].)

Thom’s list is of course well-known particularly because of its relevance to Thom’s
catastrophe theory. For a discussion of the relationship of this formulation of Thom’s
list to the theory of catastrophes, see the appendix to [11].

§3. (r, s)-stability of unfoldings

In this section we shall investigate a generalisation of the stability notions defined in
§ 2, and shall prove for this generalised stability notion analogues to some of the theorems
quoted in § 2. The analogue to Theorem 2.26 (Thom’s list) will be proved in § 5.

The generalisation we shall consider here may appear rather artificial and uninterest-
ing mathematically; however it was motivated by important considerations in the theory
of catastrophes. For a discussion of these motivations, see § 5.

We shall retain in this section the notational conventions introduced at the beginning
of § 2.

Definition 3.1. Let f and g be germs in m(n+r+s). To f we associate a germ
Fe&(n+r+s,1+r+s), defined by F(x? u, v)=(f(z, u, v), #,v) ER x R" x R*, forx ER", w ER’,
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vER’. Similarly, to g we associate a germ QGE€EE(n+r+s, 1+r+s), defined by Q(z, u, v)=
(g(x, u,v), u, v) for zER" wER", vER®.

We say f and g are (r, s)-equivalent if there are germs ®€L(n +7r+s), AEL(l +r+s),
WEL(r +s) and g €L(s) such that the following diagram commutes:

Rn+r+s F Rl+r+s 4 Rr+s q Rs
o e,
Rn+r+s G R1+r+s p Rr+s q Rs

where p: R1*"**>R"*" is the projection onto the second factor and ¢: R™**—R?* is the pro-
jection onto the second factor.

Such a quadruple (®, p, p, A) is called an (r, 8)-equivalence from f to g.

Note that if (®,y,p, A)is an (r, s)-equivalence, then y=(y, p) for some germ €
E(r+s,7) and O =(g, y, o) for some germ pEE(n+7+s, n). Moreover A =(4, y, o) for some
germ AE€EE(L +7+s).

Definition 3.2. Let U and V be open subsets of R**™* and let f: U~R and g: V>R
be smooth functions. Let (z, w, v)€U and let (y, w,t)€V. We say [ at (z, u, v) is (r, 8)-
equivalent to g at (y, w, t) if the germs f; 4, v, a0d gy, w1 in M(n + 7 +8) are (7, 8)-equivalent.
(See Def. 2.3 for the definition of f., 4,4 and gqy. v, 1)

We now define stability notions as before:

Definition 3.3. Let fEm(n+-r+5). We say [ is weakly (r, s)-stable if for every open
neighbourhood U of 0 in R™"* and for every representative function f': U—~R of the
germ f, the following holds: For any smooth function k: U—R there is a real number £>0
such that if ¢ is any real number with |¢| <¢, then there is a point (x, u, v) €U such that
f' +th at (z, u, v) is (r, s)-equivalent to [’ at 0.

Definition 3.4. Let f€Em(n+r+s). We say [ is strongly (r, s)-stable if for any open
neighbourhood U of 0 in R™"™* and any representative function /' of f defined on U,
there is a neighbourhood V of ' in C°(U, R) (with the weak O-topology) such that for
any function g’ € V there is a point (z, %, v) in U such that g’ at (z, u, v) is (r, 8)-equivalent
to ' at 0.

Definition 3.5. Let f Em(n +r +8). Define F€E(n +r +s, 1 +7+38) by setting F(z, », v)=
(f(z, u, v), u, v) for z€R", u€R’, vER®. We say f is infinitesimally (r, s)-stable if

(a) Em+1+8) = Offor)scnsrra+ B[P ecrry + Of [O0D gy + F*E(L 47+ 6).
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(Again, as in the case of ordinary infinitesimal stability, one may interpret this condi-
tion geometrically as saying roughly that the “tangent space” at f to the (r, s)-equivalence
class of f is maximal, i.e. i§ equal to the “tangent space” to m(n+r+s)).

Remark. Obviously if =0 or if s=0, then (r, s)-equivalence and the (r, s)-stability
notions are the same as ordinary r 4s-equivalence and the ordinary r +s-stability notions
which we defined in §2, so that (r, s)-stability is in fact a generalisation of ordinary
stability of unfoldings.

Moreover, it is clear that if two germs are (7, s)-equivalent, then they are certainly
r+s-equivalent, and if a germ satisfies any of the (r, s)-stability conditions, then it is
r+s-stable. We shall make frequent use of this fact in what follows. For example if f€
E(n+r+s) unfolds n€m(n) and if f is (r, s)-stable in any of the senses defined above,
then % must be finitely determined.

The following theorem, which is a slightly strengthened analogue to Theorem 2.9,
provides us with additional criteria for infinitesimal (r, s)-stability:

THEOREM 3.6. Let f€EE(n+r+38) unfold n€m(n). Suppose 1 is finitely determined and
choose an integer k such that m(n)*< {on/0x)eny. Let q=Fk(s+1). Let fo=f|R™" and define
Fo€E(n+r,1+7) by selting Fo(x, w) = (f(x, w), u) for cER*, w€R.

Then the following statements are equivalent:

(a) f 18 infinitesimally (r, s)-stable,

(b) E(n+1) = <0fo/0xDecn+m +<Ofo0UDecr) +<0f [ov| R** Hp + FTE(L +7),

(©) E(n+r) = 2fo/0)ecn+r+<BfolOUDecr +<Of | R™ "R + FGE(L +1)
+m(r)* Em+r) +Fmn+7)

(Note: If  is not finitely determined then neither (a) nor (b) can occur (because by
restricting to R™ it follows from (a) or (b) that the codimension of % is finite) and (e) is
meaningless because g is not defined.)

Proof of Theorem 3.6. (a) =(b): Let a: E(n +r+8)—>E(n +7) be defined by afg): =g|R**"
for g€E(n+r+s). Applying the homomorphism « to both sides of equation 3.5. (a) yields
(b) immediately.

(b) =(c) is trivial.

(¢)=(a): Since 5€m(n), clearly f,Em(n+r) and hence fo?€m(n+r)%. So FgE(l+r)sS
L, fos «oes f& ey +m(n + 7). Hence on the right hand side of (c) we may replace the sum-
mand FgE(1+7) BY <1, for +rs fo ey, Which is finitely generated over (r). (This step will
allow us to apply Corollary 1.8 later on in the proof).
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Since fo|R"=7 it follows that (89/0r)emn < {Ofo/0TDecn+r)+m(r) E(n+7). Therefore
mnY* < {8fo/0xD g n+ry + M(r) E(n +7) and since m(n +r)* S m(n)* +m(r) E(n +r) it follows that
m(n + 1< <0fp/0x en+n + m(r) E(n+r) and hence m(n +r)=m(n+ 1) P (0f, /02D ein i +
m(r)**'E(n+7). We may now therefore drop the term m(n+r)? from the right-hand side
of (c).

To summarize: We have shown that (¢) implies

(d) En+1) = (Bfoox) ginsmy +<OfofOUDeery + (1, fos vevs fo' ™ Dery
+<offev| R Dr +m(r)* ' E(n +1).

We claim this implies

(e) EMm+r+8) = Of[0xDgtnsris)+ O OUDgir 18y + <L, | vuey " Detrr0y + O [00Dee)
+mir+8) € +r+8)+ms)E(n+r+s).

This is so because if we let a: E(n+7+8)->E(n +1) be the restriction homomorphism
then a applied to equation (e) yields equation (d), so (e) holds modulo the kernel of «.
But the kernel of a.is m(s) E(n +7+s), which is contained in both sides of (e). Hence (e} is
valid.

Since (0f/dvdgs, is generated by s elements over £(s), we may by Corollary 1.8 drop
the terms m(r+s)**'Em+r+s)+m(s)E(m+r+s) from the right-hand expression in (e),
and in the resulting equation we may on the right replace (1,f, ..., " ersn by
F*E(1+r+s), which is bigger. But this yields equation 3.5 (a), so f is infinitesimally
(r, 8)-stable. Q.E.D.

COROLLARY 3.7. Let n, 7, s and t be non-negative integers. Let fEm(n+r+35) and let
geEm(n +r+s-+t), and suppose g|R™ 2 ={.
If f is infinitesimally (v, 8)-stable, then g is infinitesimally (r, s +t)-stable.

Proof. We take coordinates w,, ..., w, on R* ,and the usual coordinates on R™"*3,
Let h=g|R™" and define HEE(n +r, 1 +r) by H(z, u) = (h(z, u), u) for zER", u€ER'.

Let A = (k[0 g iny + (ORJOUDgiry + (O[O0 | B¥ >R + H*E(L +7) S E(m +1).

By Theorem 3.6-(b), g is infinitesimally (r, 8--¢)-stable if and only if (*) E(n+r)=4+
<@g/ew|R™">g. But sin¢e f is infinitesimally (r, s)-stable, and since f|B™"=g|R™"=h
and (of/9w;) | R"** = (9g/ov;) | R**" for 1 <i<s, it follows from Theorem 3.6 (b) that E(n +1r)=
4, so clearly (*) holds, and we are done.
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TEEOREM 3.8. Let [ and g be elements of m(n+r+s). If f is infinitesimally (r, s)-
stable and if f is (r, s)-equivalent to g, then g is infinitesimally (r, s)-stable.

Proof. Define F and @ in En+r+s, 1+r+s) by Flx, u, v)=(f(z, u, v), u, v) and
Q(x, u, v)=(g(x, u, v), u, v) for zER", w€R", vER®. Let (D, y, 0, A) be an (r, s)-equivalence
from f to g. Then F=A-1G0.

We let ¢ be the coordinate of R, so we have coordinates ¢, u,, ..., %y, ¥y, ..., ¥s O Rlt7+s
Recall there exist germs p€E(n-{-r+s,n) and y€E(r+s,r) such that ®=(p,y, o) and
p=(y, 0). Moreover clearly there is a germ A’'€E(1+r+s) such that A~-1=(A', y?). Since
F = A-1G® it follows that f =1'G® or, more explicitly:

(a‘) f(fl?, u, ’l)) =l’(g(¢(x, u, 'v), 7(u: ’l)), @(v))) )’(“, ”)a Q(’l))) for :EER"', ueRr: vER®,

Let u: En+r+s)—>En+r+s) be the map given by multiplication -with the germ
(04’ [ot)o Go D EE(R +7 + ).
From (a) one easily calculates that

of «Zg \ ) ,
b) ——€uj{="od for 1<i<n,
(&) ox; s % /e(n+r+s) "

© Qf-eu(<g—g°¢> /ago(]'.)> )+(I)*G*£(1+r+s) for 1<j<r,
x EnAT+E) E(r +3),

ouy

X

U e (19900 +(7 o) (%00 )
@ a”keﬂ(\@ o(I)/.g(n+r+s) \@'w /s(r+s)+\3'0 /5(3) HO¥G*E(L+r+s) for 1<k<s.

Moreover since F=A-1G® we have F*E(1 +r+8) =D*G*(A1)*E(1 +7+3), but A-1€
L1 +r+s), so (A™H)*EQ +r+8)=E(1+r+s) and hence

(e) F*E(L + 7+ 8) =O*G*E(L +7 +3).
If { is infinitesimally (7, s)-stable then

E(n+7+8) =<0f 0T ensr+or+ <O [0UD atr+ s T {Of [0V ece) + F*E(L +7 + ).
From this it follows, using (b), (c), (d), and (e), that

(®) 8(n+f+8)‘:/4(/g o) @%"\ +<Z1—‘io> )+€D*G*8(l+r+8).
£(3)

/e(n+r+s) /E(r+a)

Clearly ®*E(r-+s)=E(r+s) and D*E(s) =E(s); therefore

%9 o\ : /o9
<5;°(D /e(s) = (D*«ag/a”)e(s)) and \5’u°®>s(r+s)- (D*(<aglau>e(r+s))-
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Moreover {(8g/0x)o DYgin+r+s)=D*({0G/0x)ecnsr+s)- Finally, since u is multiplication by
(oA Jot)oGo®, which is an element of ®*G*E(1+r+s), we have P*G*E(l+r+s)=
u®*G*E(L +r+s). Using these facts, it follows from (f) that

(g E(n+7+48) S u®*(<09/0%) etn +1+5) +<CGIOU etr+ 5 + (GO0 g0y + G*E(L +7 +5)).

But x®* is a bijection of E(n+r+s) onto itself, so applying (ud*)! to equation (g) we
get:

En+r+6) = (UP*)1EM +1+8) S <09/02Decnsra+<0gIOU g0y +<09[00Det) + F*E(L +7+3),
and hence, by definition 3.5, g is infinitesimally (r, 8)-stable. Q.E.D.

The next few definitions and theorems will be devoted to showing that infinitesimal
(r, s)-stability can be expressed as a certain transversality condition.

Definition 3.9. Let » and r be non-negative integers. We define L(n, r) to be the set
of triples (@, p, A)€L(n +r) x L(r) x L(1 +7), such that the following diagram commutes:

Rn+r 4 R’ p’ Rl+r
R
Rn+r p R p' R1+r
where p and p’ are projections onto the second factor.

Clearly L(n, r) is a subgroup of L{n+7} x L{r} x L{1 +7). Moreover L(n,r) acts on
m(n+r) from the right if we define f-(®, y, A), for fEm(n+r) and (D, p, A)E€L(n, 1), as
follows: Define F€E(n+r, 1+r) by setting F(z, u)=(f(z, u), ) for zER", w€R". Let p;:
R¥*"->R be the projection onto the first factor.

Now set
(@, 9, A):=p,0(A1FD).

Remark. It is easy to see that L(n, r) is in fact just the group of r-equivalences of r-
dimensional unfoldings, and f-(®, y, A)=g if and only if (®,y, A) is an r-equivalence
from g to f.

Definition 3.10. Let n, r and ¢ be non-negative integers. We set L¥(n, r)={(®’, y’,A’)
€L%n +7) x L¥(r) x L1 +r)| there exists (D, y, A)EL(n, r) such that O’ =7, (D), v’ =m(y)
and A’ =n(A)}. Clearly Ln, r) is a closed Lie subgroup of L9(n +) x L(r) xfﬁ(l +7).

If fem(n+r) and (@, y, A)EL(n, r) then one easily convinces oneself that the g-jet
of f-(®, v, A) depends only on the g-jets of f, @, , and A. Hence the group action of
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L{n, r) on m(n+7) induces a well-defined right group action of L%n, r) on J§(n+r, 1),
such that for fEm(n+r) and (@, 9, A)EL(n,r) we have 7 (f): (7 (D), 7 (y), 7A))=
7 (f- (D@, p, A)). Moreover one readily checks that the action of L%n, r) on J§(n+r,1) is a
Lie-group action, i.e. smooth.

Remark. If z€J§(n +r) we shall denote the L(n, r) orbit of z by zL%n, r) and we shall
denote the tangent space at z to zL%n, r) by T.,2L%n, r). Since J§(n+r, 1) is a finite di-
mensional real vector space we may identify its tangent space at any point with J§(n+7, 1)
itself; in particular, we may identify 7,2L%mn,r) with a linear subspace of J§(n+r, 1).
With this identification in mind, we have the following lemma:

LemwmA 3.11. Let f€m(n +r) and let z=m,(f). Define FEE(n+r, 1 +r) by sefting F(x, u)=
(f(z, u), u) for z€R", u€R". Then

T, 2L%(n, 1) = 74(<0f [0 )mrcn+ry + {Of [0UDmery + F*mi(1 +7))

Proof. Let w: R—L%n, r) be an arbitrary smooth map such that w(0) is the identity.
Then it is easy to see that one can find smooth maps y: R*" xR—>R", §: R"xR—>R" and
A: R'™" x R—R with the following properties:

Firstly, if we define, for each {€R, germs O,€E(m+7, n+r), y,€E(r, r) and A€
E(1+r, 1+7) by the equations ®,(z, v)=(x+y(z, u,t), v +6(u, £)); p(w)=u+0(u, t); and
Afsu)=(s+Als, u, t), u+6(u, 1)) for zER", u€R" and sER, then for each tER the triple
(@0 s A) s in Lin, 7) and ()w() = ((D), 7o), 7o(Ay). And secondly, y(x, u, 0)=
S(w, 0) =A(s, u, 0)=0 for all zER", wER’, and sER.

Conversely, if we are given arbitrary maps y, §, and A satisfying all properties above
except (*), then equation (*) can be used to define a smooth map w: R—L¢=, r) such that
w(0) is the identity.

Now T,2L%n,r) consists of all tangent vectors of the form 8(z-w(t))/ot|i~o, Where
w is an arbitrary map as above. But if we have maps y, 4, and 4 as above, and define gemis
®;, y;, and A; as above, and if we let p,;: R'*"—>R be the projection onto the first factor,
then by straight computation (and using the fact that @, y,, and A, are germs of identity
mappings) one sees that

% (2- w(t))[,_o = “q(g‘t (f (@, 1, At))It—o) =T, (gt (m Ar F d)t)lt-o)

- 9. - < of [0y, : 3_f(3_¢53
-nq(((atplAt 1) t=0°F) +213x:(3t t=o) +1§13’“; ot

)
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Since p, A;'A;=p, we have

2 i} _ 7
0=ét—pl,t-o= (é‘tpl A: I)IH"‘ZH(a_tAt)

ol
t=0 ot

4
t=0

t=0

and hence (gt p A 1)

But now the lemma follows immediately because on the one hand the condition
(@, ., Ay) €EL(n, r) implies that for all £ we have (0, 0, £)=4(0, t) =4(0, 0, t) =0 and hence
(9y./08) | o €EM(n +7), (26,/0t)] 1o €Em(r) and (9A/0t) | o Em(1 +7); but on the other hand this
is clearly the only restriction on the derivatives with respect to ¢ at ¢ =0, so one can choose
y, 6 and A such that the (3y,/ot)|._, are arbitrary elements of m(n+r), the (89;/0t)| .o
are arbitrary elements of mi(r), and (91/ot) | =0 i8 an arbitrary element of m(1+r). Q.E.D.

Definition 3.12. Let f€Em(n+r+¢) and let ¢ be a non-negative integer. Let i: R™*"—
R*7** be the canonical inclusion given by i(z, u)=(x, %, 0) for (x, u)ER™". Let fo=
f|R™" =4*f. We define

M7 o(f): = (@q0 ") Hralfo) L(m, 1)) < J¥m+7+8, 1),

and we shall say f is (r, s) g-transversal if the map-germ J is transversal at 0 to M7 ,(f).
(See definition 1.2 for the definitions of g,, ,* and J9%).

Remark. Since g o g*: JYn+r+s, 1)>J§(n+r, 1) is a projection of real vector spaces,
M2 (/) is obviously an immersed submanifold of Jn+r+s,1), so it makes sense to

speak of transversality).

Lemma 3.13. Let f€m(n+r+s). Let fo=f|R™" and define Fo€E(n+r,1+7) by
Fo(x, u)=(fo(x, u), v) for x€ER", wER". Let q be a non-negative integer. Then [ is (r, s) g-
transversal if and only if

@)  E(m+r) = Pfolox)einin +<OfoOUDecr) +<Of [ov| B Hr + F§ E(1 +1) + m(n+1)*1

Proof. Let A<JYn+r+s, 1) be the image under the differential of JY of the tangent
space at 0 to R+, (Here again we identify 4, which is in fact a subspace of the fangent
space to JYn+r+s, 1) at 7,(f), with a subspace of J%n +r +s, 1) itself, in the obvious way;
we may do this because J%n +r+s, 1) is a finite-dimensional real vector space).

4 is generated by the partial derivatives of J% with respect to the coordinate axes
of R™"*s all evaluated at 0.
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Recall the definition of J9: choose a representative f’ of f, defined on a neighbourhood
U of 0 in. R™"*. For any y€U define f,,€EE(n+r+38) by fu(2)=Ff(y+z) for zER™™?,
and set J%(y)=m,(f,). From this definition it is clear that if # denotes any one of the co-
ordinates of R*"*s, then
oJf
ot

= nq(é—a—l) €EJYn+r+s,1).
o \at

Hence A =5, ({of[0x)>r + {Of [oudr + {&f [ov>R).

Now let B be the tangent space to M7 (f) at 7, (f) =J9(0) (as usual we shall identify
B with a subspace of J%n +r+s, 1)). Then from the definition of M? ;(f) and from Lemma
3.11 it is clear that B =m({0fo/0Z mcn+r +<{0fs/OUDmay + Fom(l +7)+1Dr +m(s) E(n+r+s))
(where the expression in parentheses is of course to be considered as a subset of E(n +r +8)).

The germ f is by definition (r, s) g-transversal if and only if J%n+r+s, 1)=
wE(Mm+r+8)=A4+B, and this is clearly equivalent (using the fact that Fom(l+7)+
{I>r=F5 E(1+r) and the fact that if ¢ is any coordinate of R™*", then df/ot —of,/ot €
m(s) E(n +r+s)) to

(b)) E(n+r+8) = (Ofo/0x)ecnsr + (fpfOuecr +<Of fOVDR + F5 E(L +1)
+m(s) E(n+r+s) +m(n+r+s)ttl,

Let o: E(n+7+s)—>E(n+r) be defined by setting «(g) =g|R™" for g€E(n+r+s). Then
the kernel of o« is m(s) E(n+r+s) and since m(s) E(n+r+s) is contained in both sides of
(b), equation (b) holds if and only- if the equation which results when we apply « to both
sides of (b) is valid. But doing this clearly yields equation (a), so we are done. Q.E.D.

As a corollary, we have

TEEOREM 3.14. Let f€m(n+r+s). Then [ is infinitesimally (r, s)-stable if and only

if f is (r, s) g-transversal for all non-negative integers q.

Proof. “if”’: Let f: E(n +r)—>E(n) be given by restriction, i.e.let (g) =g | R forg €E(n + 7).
Let n=f|R".
If f is (r, s) g-transversal for all ¢, then 3.13 (a) holds for all ¢, and applying B we find
that
E(n) = (@n/ox) ey +<0f[0u| R”, 0fjov| R™>r +7*E(L) +m(n)

for arbitrary ¢. This implies o,(#) <7 +s for all ¢ (see definition 2.16) and hence by Theorem
2.17 (c) i is finitely determined and for some integer k, m(n)*< (05/0x) ¢ Equation 3.13 (a)
holds in- particular for g=k(s+1)—1 so by Theorem 3.6, f is infinitesimally (», s)-stable.
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“Only if”: If f is infinitesimally (r, s)-stable then equation 3.6 (b) holds, but this
clearly implies that equation 3.13 (a) holds for any ¢, so f is (7, 8) g-transversal for all ¢.
We are now in position to prove the analogue for (r, 8)-stability of Theorem 2.11.

THEOREM 3.15. Let f€m(n +r+38) unfold n€m(n). The following statements are equi-
valent:

(a) f is infinitesimally (r, s)-stable.
(b) f is strongly (r, s)-stable.
(c) f is weakly (r, s)-stable.

Proof. The method of proof is essentially the same as for Theorem 2.11 (see [11, Th.
4.11]), although a small amount of extra work is needed here.

Proof that (a)=(b). Suppose f is infinitesimally (r, s)-stable. Let a neighbourhood U
of 0€ER™"™* and a representative f: U—R of f be given. We must find a neighbourhood
of f in C®(U, R) such that any mapping in this neighbourhood is, at some point of U,
(7, s)-equivalent to f' at 0.

We begin by defining some notation. We define a function I': UxC®(U, R)—~
m(n+r+s) as follows: If (y, w,2)€U and h€C™(U, R), define I'(y, w, z, h) by setting
'y, w, 2, b) (z, w, v) =h({x +y, u +w, v+2) —h(y, w, 2) for zER", wER", vERS. For (y, w,2) €U
and AE€C™(U,R), define 9(y,w,z h)=I(y, w,z, h)|R™" and define ((y,w,z, h)=
[(y, w, 2, b)|R™. Note that I'(0, 0, 0, {') =f and £(0, 0, 0, f') =7.

Since 7 is finitely determined there is a positive integer k such that m,(n) ¢Z, (see
Definition 2.18). Since Z, is an algebraic and hence closed subset of J§(n, 1) (by Lemma
2.19 (c)) and since m,o0l: U x O°(U, R)—>J§(n, 1) is continuous, it follows that there is a
neighbourhood U, < U of 0 in R™"™¢ and a neighbourhood ¥, of f' in C°(U, R) such that
if (y, w,2)€U, and REV, then =, l(y, w, 2, k) ¢Z, and hence (applying Lemma 2.19 (b))
()< (Y, w, 2, B)/0% miny.

Let g=k(s+1). If g is any germ in m(n +r+8), we set go=g|R**" and we let A(g) be
the finite subset of J%-(n+r, 1) consisting of the g —1-jets of the following elements of
E(n+7): all elements of the form (monomial in z; and %, of degree <q times some 9g,/o2;);
all elements of the form (monomial in %, of] degree <g times some dg,/du,); the germs
9g/ov;|R™" for 1<I<s; and all germs of the form (monomial in u, of degree <g times gd
for some 4, 0<i<g). The elements of 4(g) depend linearly on 7,(g).

Since f is infinitesimally (r, s)-stable, it clearly follows from Theorem 3.6 that A(f)
generates J%(n+r, 1) over R. Since s ol: U x C2(U, R)—~J%n+r+s,1) is continuous,
this implies that there is a neighbourhood U, U of 0 in R*™* and a neighbourhood ¥V,
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of f in C®(U, R) such that if (y,w,2)€U, and h€V,, then A(I'(y, w, 2, h)) generates
Jn+r, 1) over R.

Choose a compact neighbourhood K of 0 in B™**™*¢ guch that K< U, N U,, and choose
a real number ¢ >0 small enough, so that the closed n +r +s-cube [ ¢, ¢]*"™* is contained
in K.

It is not very difficult to see, finally, that there is a neighbourhood V; of f’ in C°(U, R)
and a neighbourhood V, of 0 in C°(U, R) such that if g€V, and if hE€V; and (y, w, 2) €K,
then m,_,(p(y, w,2,9)) can be written as a real linear combination of elements of
A(I'(y, w, z, b)) in such a way, that the coefficients have absolute value less than c.

Now choose a neighbourhood V of 0 in C°(U, R) such that V<V, and such that if
h€eV, then for any real number ¢€[0, 1], the mapping f' +thisin V,N VNV,

We shall show that if A€V, then /' +A is at some point of K (r, 8)-equivalent to f at
0. This will prove (a)=(b). So suppose A€ V. Let a point (y, w, z) EK and a real number
a€[0, 1] be given. Define a germ H €m(n +r+s+1) by setting

H(z, u, v, t) = (' +(a+t)h) (y +x, w+u, 2+0) —(f + (@ +1) k) (y, w, )
for z€R* u€R", vER®* and tER

and define a germ H€E(m+r+s+1,14+r+5+1) by setting

H(z, u,v,t) = (H(z, u, v, t), u, v, 1) for z€R", w€R’, vER?, tER.

Let u=H|R" and let Hy=H|R™"and H, = H|R™"*. Observe that u={(y, w,z, ' +ah)
and H,=I'(y, w, 2, ' +ah). By the choice of V and K, and since (y, w, 2)€K and REV
and 0 <a <1, it is clear that m(n)* = (Op/0x sy and that A(H,) generates J*(n +r, 1) over R.

Hence

(@) E(n+1)= COHo[0) ecnry + OHo|0Ug(ry + OH, Jo0 | R™ ) +<1, Hoy ..o, HE D iry + min+ 7)?
Since m(n)* < (Ou/0x mcxy it follows as in the proof of Theorem 3.6 ((c)=(a)) that
() m(n +7) S QH[0x)men 7 +m(r)* E(n +7).

In particular, in (d) we may replace the term m(n +7)? by m(r)***E(n +r). From the result-
ing equation it follows, by Corollary 1.8 (c), that

m(r)*E(n +7) S CHy[0xygnsn +<OHf0UDery + <1, Ho, ooy HE™ e,
and from this and (e) we get:

) m(r+1)? S COH /0% mentry + OHo[OUDmey +<1, Hy, .., Hg-l>m(r)-
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Now clearly (0H /3t)|R"+'=y(y, w, z, k), 80, since (y, w,z)€EK and A€V (and hence
heV, and f +ah€V,), it follows that z, ,((2H/ot)|R™") can be written as a linear com-
bination of elements of A(H,) with coefficients of absolute value <c.

This, together with (f), clearly implies that we can find germs &, ..., §,€E(n+7),
germs ¥, ..., ¥, €E(r), real numbers g, ..., B, and a germ w €E(1 +r) such that (if we define
H€Em+r, 1+1) by Hy(z, u) = (Hy(z, u), u))

oH r n
(g Bt RMT Z & o —4+ 2 xj 0+ Z Igt R +'+H0(w)’
=1 0%y =1 -

and such that |£,0, 0)| <c, (for 1<i<n); |x,(0)] <c¢ (for 1<j<r); |B;] <c (for 1<I<s);
and |w(0, 0)| <c.
Define x€E(n+r+ s+ 1) by setting

By (g) we have «|R™"=0s0 a€m(s+1)En+r+s+1).

By (d), H, is infinitesimally (r, s)-stable, so by Corollary 3.7 H is infinitesimally
(r, s+1)-stable. Hence equation 3.5 (a) holds (with appropriate substitutions) and multi-
plying by m(s+1)E(n+r+s+1) we find

ms+1)Em+r+s+1)=CH[0Z)m+n ensr+s+n T CH[OW ms +1 er+ 541
+ @H 00> s +1) + COH 08 i1y + H¥(M(s + 1) E(L + 7+ 5+ 1)).

Sotherearegermséy, ..., £ €m(s +1)Em+7+s+1), germs s, ..., xr EM(s + 1) E(r +s+1),
germs B, ..., Bs€m(s+1), a germ d€Em(s+1) and a germ o’ €m(s+1)E(1+r+5+1)such
that

JoH L, 0H ¢ H
a-—ZEZ + 2 % a +Zﬁ,—+H* )+6%.
i

f=1
Since d€m(s+1) it follows that 1 —¢ is a unit of E(s+1). Define germs & €E(n+r+s+1)
(for 1<i<n); germs y; €EE(r +s+1) (for 1 <j<r); germs f; €E(s+1) (for 1 <I<s)and a germ
" €E(L+r+s+1) by setting & =(&+£)/(1—8); ) =0y +x)/(1—8); Bi =(Bi+B)/(1—9);
and o" =(w +o’)/(1 —§). From the two different expressions we have for «, it easily follows

that
(h) 251 +Zx7_+2ﬂz'_‘+H* ").

(Note that H* is a homomorphism of £(s+ 1)-modules!)
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Moreover |£(0, 0,0, 0)| <c; |x3(0,0,0)] <¢; |B1(0, 0)] <¢; and [0"(0,0,0,0)| <c. By
Lemma 1.10 there is a germ ®€En+r+s+1,n+r+s) and agerm A€EE(1+n+r+s+1)
such that

i) Oz, u, v, 0) = (x, u, v) and A(z, z, u, v, 0) =7 for xER", uER", vER?, TER,

4] H(®(x, , v, t), t) = M(H(x, u, v, 0), x, u, v, t) for tER", w€ER", vERS, tER,

and finally, if we write O =(¢p,0,0) for some pEE(n+r+s+1,n), c€EEMm+r+s+1,7)
and p€E(n+r+s+1,s), then

ow;
(k) _;—pt_l (.’l?, u, v, t) = —5(¢(x, u, v, t): G(x, u, v, t)’ Q(x: uw, v, t), t) (7’ = 1; eeey n):

o v .
a%’(m, u, v, t) = —y;(o(x, u, v, ), o(x, w, v, 1), 8) (G=1,..7),

—a% (x, u, v, t) = —ﬂ;,(Q(x, u, v, t)’ t) (l =1.., 8),

and

oA
% (r, z, , v, t) =" (A7, @, u, v, 1), oz, u, v, ), o(z, w, v, 1), 8),

for z€R", u€R", vER®, T€ER and LER.

By (i) o(z, u, v, 0)=v and hence does not depend on z or u. Moreover by (k) dg/é¢ depends
only on the value of ¢ and not-directly on x or «, so by the uniqueness of solutions of or-
dinary differential equations with given initial conditions, ¢ does not depend on z or u,
i.e. 0€E(s+1, s). Using this fact it then follows by the same argument that 6 €E(r+s+1, 7).
And, then, by the same argument again, it follows from the last equation (k) that A€
EQ+r+s+1).

Now choose representative functions for the germs ¢, g, p, and A; for convenience
we use the same names for the representatives as for the germs.

Then we can choose suitable neighbourhoods W, of 0 in R™*"*%, W, of 0 in R™*, W,
of 0 in R?, W, of 0 in R'*"** and a neighbourhood 7T of 0 in R such that for t€ T we may
define functions ®;: W,—>R"*"*%; y: W,—>R™**; o,: W,~R?, and A;: W,~R by the equa-
tions (@, u, ) =(@(, u, v, B), o(u, v, 1), 0(v, 1)); Pilu, v) = (0w, v, 1), oo, )); Qo) =0(v, ;
and A1, u, v) =A(7, u, v, t) for tER", w€ER’", vER?, TER.

From (i) it follows that if the W, and 7T are chosen small enough then ®,, y, and g,
6 — 752905 Acta mathematica 135. Imprimé le 19 Décembre 1975.
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will be diffeomorphisms into for every t€7T, and for every (r, u, v) € W, and every t€T,
(PAifeT) (r, u, v) +0.

Now if one chooses & suitably small neighbourhood U, ..., of (y, w, z) ER"*"**
then one can for each (y, w', 2')€U. » . and for each t€T define germs ®@; .. .-
EL(n +7+8); Wi yw 2 €L +8); 0ty w2 EL(8) and Af 4.y, .- EL(1+7+5) by the equa-
tions: @}, 4 e (T, U, V) =P+ ¥y —y, utw —w, v+2 —2)—Dy' —y, w —w, 2z’ —2);
Yhyowr (V)= 0 =W, v+ 2 —2) — P’ — 0,2 —2); Ohy V) =Quf0+2 —2)
oz’ —2); and Al uo(T, %, 0)=(hz+(f +aR) ', o, 2)—(f +ah)(y, w, 2), W —w+u,
Z—z40) +(F+@+ORY, w, D)~ (F+@+OR) (Y w )+OY —y W -w, Z—2)),
Wi, v v, 28, ©)) for zERMuER, vER?, TER. (That these germs are in fact in L(n -+ +s) etc.
is immediately clear from the defining equations and the properties of @, y,, p, and A; to
show that A;,,. - .(0)=0 one must also use (j) and the definition of H).

Moreover, from (j) and the definition of H one can easily check by direct computation
that if U, .. ., and T were chosen small enough, then for each (y',w’,2')€U 4, and
each {€T, the quadruple (B, v~ 2% Y.y w25 Oty w25 Aty e, 22) 18 81 (7, 8)-equivalence
from f +ahat (y', w',2) to f' +(a+0)h at (3, w,2) + Dy —y, w —w,2’ —2).

To simplify the notation, we shall write d(y’, w', 2, t) for (y, w, 2) +
D,y —y, w —w, 2’ —2).

Because for ¢ small enough @, W,—~R"*"** is a diffeomorphism into, it is easily seen
that for any t near enough to 0 and for (y”, w", 2”) near enough to (y, w, z), there is a
(¢, w', 2') in Uy, ., such that (y", w’, 2")=d(y’, w', 2’, ¢).

From this, and by composing equivalences it follows that given any ¢, and ¢, suffi-
ciently near 0 and any (y", w”, 2") sufficiently near (y, w, z), there is a point (7, @, Z) such
that /' +(a+t)h at (y", w", 2") is (r, s)-equivalent to f' +(a+£,)h at (§, @, Z). In fact we
need only choose (¥, w’, z') such that (¢, w”", 2")=d(y’, w’, 2, t;) and then set (7, @, 2) =
diy’, w', 2, ty).

Moreover, from this, and the definition of d, and because of the equations (k) and the
fact that the absolute values of the &/, y7, fi and w” at O are less than ¢, it follows that if
¢, and i, are small enough, and if (y”, w", 2") is close enough to (y, w, z) then for ¢ between
¢, and ¢, each coordinate of 2d(y’, w’, 2, t)/ot will be smaller than ¢ in absolute value and
hence corresponding coordinates of (y”, w", z") and (g, ®%, Z) will differ by at most ¢|¢, —£,|.

Now since (y, w, 2) and a were arbitrary it follows by the compactness of K and of
[0, 1] that there is a real number £ >0 such that if [¢| <¢, then for any (2, u, v) €K and any
be[0, 1] there is an (', ', v') ER™"** guch that f' +bk at (x, u, v) is (r, s)-equivalent to
f+@®+t)h at (', w', v') and such that corresponding coordinates of (x, u, v) and (2, u’,’)
differ by at most c|¢].
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Now it is easy to define by induction a sequence of real numbers 0=£,<¢,<...<t,=1
and a corresponding sequence of points py=0, p;, Py, -.., P, ER"*7** such that f +1,k at p,
is (r, s)-equivalent to f' +i,.,h at p,,, (for 0<<s<m) and such that corresponding coordi-
nates of p; and p,,, differ by at most ¢(¢,,, —¢,). Since [—c, ¢]**"**< K this implies each
p; will be in K so that the induction can always be carried out as long as ;<1.

And then it follows that ' =f +t,k at 0 =p, is (r, s)-equivalent to '+ 4 at p,€ K< U,
so we are done proving (a) =(b).

(b) = (c) is trivial.

Proof that (c)=-(a). Suppose f is weakly (r, s)-stable. We shall use Thom’s trans-
versality lemma to find a germ which is (r, s)-equivalent to f and which is infinitesimally
(r, s)-stable; this will imply f is infinitesimally (r, s)-stable.

Choose a neighbourhood U of 0 in R™"** and a representative function f: U—R of f.
If ¢ is a non-negative integer and if i€R and £ =0, we define V{ ={h€C™(U, R)|JU(f’ +1th)
is transversal to M7 ;(f') everywhere on U}. By Thom’s transversality lemma (Theorem
1.9), for each g and ¢ the set V{ is a countable intersection of open dense subsets of
Cc=(U,R).

Let V=N7-0 N%-1V{ Then V is also a countable intersection of open dense subsets
of C°(U,R) and in particular, since C®(U, R) is a Baire space, V is dense and hence
non-empty. Choose an A€ V.

Since f is weakly (r, s)-stable it follows that if we choose an integer k sufficiently
large, then f +k-h at some point (y, w, z) of U will be (r, s)-equivalent to /' at 0. Or in
other words, if we define geém(n+r+s) by g(x, u, v)=(' +kh)(y +z, w+v, 2 +u)—
(f +57th) (y, w, z) for z€R", u€R’, vERS, then ¢ is (r, s)-equivalent to f. It easily follows
that f|R"*" and g|R"*" are r-equivalent and hence for any g we have M? (f) = M? (g).

Moreover since h€ V it follows that for any ¢, JUf’' +k~h) is transversal to M ,(f) at
(y, w, 2); by the definition of M7 ,(f) it-is clear that then J% is transversal to M7  (f)=
M? (g) at 0. Hence g is (r, s) g-transversal for all ¢, so by Theorem 3.14 g is infinitesimally
(r, s)-stable. But g is (r, s)-equivalent to f so by Theorem 3.8 f is infinitesimally (r, s)-
stable. Q.E.D.

As a consequence of this theorem we may make the following definition:

Definition 3.16. A germ fe€m(n-+r+s) will be said to be (r, s)-stable if any of the
equivalent conditions 3.15 (a), (b), or (¢) holds.

Here again it is now natural to pose the question of determining the (r, s)-stable un-
foldings of a given germ 7, and of classifying (r, s)-stable unfoldings in general. Clearly,
since any (r, s)-stable unfolding is also (r+s)-stable, n can have (r, s)-stable unfoldings
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only if it is finitely determined, and if f is an (, s)-stable unfolding of #, then r+s must
be > codim (n).

Conversely, if # is finitely determined, then clearly # has (r, s)-stable unfoldings for
sufficiently large r and s. In fact, if s is given, then there is an 7, such that # has (r, s)-
stable unfoldings for all »>r,.

For one can obtain an (r, s)-stable unfolding of # by first finding an r-stable unfold-
ing f of #; the s-dimensional constant unfolding of f will then be (r, s)-stable. From this it
is clear that the minimal value for r, above is at most o{%} (and, of course, at least () —s).

However, the problem of determining in general whether for given r and s a given germ
7 has (r, s)-stable unfoldings is somewhat more difficult than in the case of ordinary sta-
bility. So is the problem of classifying the (r, s)-stable unfoldings, for, as we shall see, an
(r, s)-stable unfolding of a germ 7, for given r and s, need not be uniquely determined up
to (r, s)-equivalence.

These are the questions which will concern us in the following sections.

§ 4. Classifying (r, s)-stable unfoldings

In this section we shall develop an algorithm for finding (up to (r, s)-equivalence) all
(r, s)-stable unfoldings of a given germ #, for given r and s. In particular this algorithm
will also enable us to tell, given r and s, whether or not % has any (r, s)-stable unfoldings.

In constructing this algorithm, we shall make use of what we know about ordinary
stability (in particular the fact that we know all r-stable unfoldings of a given germ # for
given r), and we shall make use of the fact that we can at least recognize (r, s)-stable un-
foldings when we see them. Given r and s, we begin by taking a standard (r+s)-stable
unfolding of #. This unfolding will of course be (r+s)-equivalent to any (r, s)-stable un-
foldings that # may have, but this is not enough because (7, s)-equivalence is finer than
(r +s)-equivalence. The idea is to alter the standard unfolding in a canonical way so as to
generate a set of unfoldings of % such that any (r, s)-stable unfolding of % will be (r, s)-
equivalent to some unfolding in this set; unfortunately, not every unfolding in the set will
in fact be (r, s)-stable, but using Theorem 3.6 we shall be able to tell which ones are. Of
course we shall devote a fair amount of effort to ensuring that the set of unfoldings which
our algorithm produces will be réasonably small, so that computations using this algo-
rithm will be possible in practice and not just in theory.

In this section we shall be working, unless otherwise stated, with a fixed germ n €m(n),
and we shall assume fixed non-negative integers r and s have been given (so they need

not be specifically mentioned in the notation which we shall introduce).
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Definition 4.1. For the purposes of this definition, we shall in departure from our
usual convention denote the standard coordinates of R™* by w;, ..., Wris.

We denote by S,.,, the symmetric group on r+s letters. If ¢ €8,.;, we denote by w,
the germ in L{r +8) given by wg(wy, ..., Wrts) = (@Wopys ) Wor+s)), and i fEm(n+r+8) we
denote by f, the germ in m(n +r+s) defined by

f(x, w) = f(z, w,(w)) for zER™, wER'.

Let k<min (r, s) and suppose we are given integers 1<i;<¢,<...<g<r and
integers 1<, <j,<...<j,<s. We denote by o(iy, -.., %; f1> ---» J) ESr+s the product of
transpositions (iy, 7+7;) (b 7+J2) o (5o 7+7i). We let T< 8,4, be the set of all such
(%1 +ovs B3 J1s --o» J)- NoOte that every element of 7' is of order 2.

Note that (with our usual coordinates u,,...,u, on R" and v,,...,v; on R®) if f€m(n +7+38)
and if 0 €T, then f, is just f preceded by an element of L(r +s) which simply interchanges
some of the u;’s with an equal number of the v,’s.

LEMMA 4.2. Let f and g€m(n-+r+s) be (r-+s)-stable unfoldings of n. Then there exists
a €T and a germ BEE(r+s, s) such that (0)=0, B|0 x R* is non-singular, and if we define
hemn+r+s) by hiz, u, v)=f,(x, u, B(u, v)) for x€R", w€R", vER’, then h is (r, s)-equi-
valent to g.

Proof. Since' g and f are both (r+s)-stable, g is (r +s)-equivalent to f. Let (@, y, A)
be an (r +s)-equivalence from g to f. Now since y€L(r +s) it is clear that for some suitably
chosen ¢€T, if we set y,=w,op and we write y,=(y,, J,), Where y,EE(r+s,7) and
0,€E(r+s, S), then y,|R"x 0 and 6,|0 x R* will be non-singular.

Moreover if we write ® =(p, y) for p€E(n+r+s,n) and if we write A=(4,y) for
A€E(l +r+s), and if we set O, =(p, p,) and A,=(4, y,), then (D, y,, A,) is an (r+s)-
equivalence from ¢ to f, (since o is of order 2).

Define g€L(s) by setting o(v)=05,(0, v) for vER®. Set @' =(@, ¥, 0); ¥ = (s> 0) and
A'=(4, y5» 0); by the choice of ¢ the germs @’, ¢’ and A’ are non-singular. Set ®"=
O (D) o' =ys(p’)t and A=A A). Clearly (®", 9", A”)EL(n, r+s); let h=
for (@", 9", A"). Suppose (u, v) ER™’. Let (', v') =(zp’)—1(u; v) and let (u”, v") =y"(u, v). Then
(u, v) =y’ (%', ¥') s0 u=yp,{u’, v'); but (u", v") =1p,(u', v’) so also u” =y, (u', v') =u. Hence "
has the form y"(u, ) =(u, B(%, v)) where 8 is some gérm in E(r+s, s). A similar argument
shows that ®"(x, w, v)=(=z, u, B(u, v)) and A"(¢, u, v) =(t, u, B(u, v)) for 2zER", tER, u€R,
vER® (note also that the germ f§ is in all three cases the same because (®”, 9", A”) is an

(r +8)-equivalence). So clearly 2 has the form h(x, u, v) =f,{(x, u, f(%, v)). Moreover since
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" €L(r +s) it follows that $(0) =0 and $|0 x R* is non-singular. And finally it is clear that
(@', 9", 0, A') is an (r, s)-equivalence from g to k. This completes the proof.

Our goal now is to strengthen Lemma 4.2 by showing that the germ f above can be
chosen to be of a fairly simple form.

Definition 4.3. Let f and g€nt(n+r+3). A smooth homotopy from f to g is a map from
[0, 1]<R to m(n+r+s), mapping t€[0, 1] to H,Em(n +r+s), such that Hy=f, H; =g and
for every t,€[0, 1] there is a germ K, €m(n+r-+s+1) such that for x€R", w€R’, vER®
and ¢ near 0 in R we have (*) K, (x, u, v, ) =H; .+(2, u, v) (whenever #,+1€[0, 1]). (What
(*) means precisely is that if K;, is any representative of K,, then for ¢ near 0 in R the
germ at 0 of K., |R**"* is H,,4,).

Definition 4.4. Let f and g€m(n+r+3) be (r, s)-stable germs. A siable homotopy from
f to g is a smooth homotopy t—H, from f to g such that for every t€[0, 1] the germ H, is
(r, s)-stable. If a stable homotopy from f to g exists then we say f and g are stably homo-
topic.

LeMMma 4.5. Let f and gEm(n +r +38). Suppose there is a smooth homotopy t—H, from f to
g such that for every t,€[0, 11 we can choose a germ K, Em(n+r+s-+1), with K, (z, u,v,t)=
H, . i(x, u, v) for z€ER™, u€R’, vER?®, tER near 0, such that

oK
(a) # €K, [0x>minsr+nenirss+n T oK JoUDmir +9) 4541

+ K /00D mm e+ KL EL+r+8+1),

where K, €EMm+r+s+1, L+r+s+1) is given by K, (z, u, v, t) = (K, (, u, v, 1), u, v, ) for
(x, u, v, t)ER"+,+‘+1.

Then f is (r, 8)-equivalent to g.

Proof. Let £,€[0, 1] be given and choose K,, as above satisfying equation (a). Then
there are germs &, ..., £, €m(n+r+s8)E(nm+r+s+1), germs yy, ..., x, EmMr+8) E(r +s+1),
germs 0y, ..., 3, €m(s) E(s+1) and a germ y€E(1 +7+s+1) such that

ZaK., r oK,

oK,
2 5z, &+ Z 51

%+2 + K ().
By Lemma, 1.10 there is agerm ®€Em +r+s+1,n+r+s)andagerm A€E(Ll +n+r+s8+1)
such that
®O(z, u, v, 0) = (x, 4, v)
(b) for z€R", w€R’, vER®, TER.
Mz, z, u,v,0)=1
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(c) K (D(x, u, v, t), 1) = A(K, (2, u, v, 0), z, u, v, t) for zER", u€R", vER’, tER.
(d) If we write ®=(g, y, ) where p€E(n+r+s,n), y€EE(N+r+8,7r)and g€EE(n+7+3,3)

then
op; _ .
% (x, u, v, 8) = —&plx, u, v, £), p(x, u, v, 1), o(z, w, v, 8),8) (i=1,..,n),
E__)’ - _ -
3t (:13, u7 'U: t) . X;(J’(my u9 'U, t)9 Q(xa u; ’l), t): t) (7 - 15 s T),

aa—i' (x, u, v, t) —d(o(x, u, v, t), ) l=1,..3s),

and

g—t}:(r, x, u, v, t) = u(Alz, =, u, v, 1), y(x, u, v, 1), o(x, u, v, t), t)

for x€R", w€R", vER?, TER, tER.

By (d) éo/ét depends only on ¢ and the value of g, but not directly on  and u; more-
over by (b) o(x, 4, v, 0) =v and so does not depend on = and %. The uniqueness of solutions
of ordinary differential equations with given initial conditions implies that ¢ does not
depend on z and u, i.e. g €E(s+1, s). Hence &y/ot depends only on » and ¢ and the value of
»; and y(2, u, v, 0)=u and so does not depend on z. By the same argument as before,
y€E&(r+s+1, r). And now the same argument again shows A€E(1 +r+s+1).

Now we claim that for all £ near 0 we have ®(0, 0, 0, ) =0. By (b) this is true when
t=0. Moreover by (d), since the &, y, and §, are in m(n +r+s) E(r +r+s+1) it follows that
whenever @(x, u, v, {)=0 then (6®/ot) (x, u, v, {) =0. Hence clearly ®(0, 0, 0, £) =0 for all £.
And from this and the fact that K,(0,0,0,¢)=0 for all ¢ it follows, by (c), that also
(0,0, 0, £) =0 for all ¢.

Choose representatives for ¢, y, o and A defined near 0 (we shall retain the same
names for the representatives as for the germs). For ¢ near 0 in R define germs
D, €En+r+s, nt+r+s), P, €EE(r+s,r+8),0,€E(s, 8) and A,EE(L +1+8, 1 +7r+5) by setting
Oy, u, v)=(p(x, w, v, 8), Y(u,v,1), o(v,2)); wilu,v)=(p(u,v,1),0(v,1); ev)=0(v,?); and
Az, u, v)=(AMz, 4, v, t), Yu, v)) for t€ER", uER', vER®. Clearly (b) implies that for ¢ near 0,
the germs ®@,, y,;, ¢; and A, are non-singular; moreover we have seen above that their
value at 0 is 0, for ¢ near 0. Hence they are in L(n +r+s), L(r +8), L(s) and L(1 +r+8)
respectively, and from (c) it is clear that for ¢ near 0, (®,, v, 01, A,) is an (r, 8)-equiva-
lence from H,, to H,,,;.

Hence for any §,€[0, 1], H,, is (r, s)-equivalent to H, for all ¢ sufficiently near ¢,. By
the compactness of [0, 1] it follows that f=H, is (r, s)-equivalent to g=H,. Q.E.D.
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CoROLLARY 4.6. Let f and gEm(n+r+8) be (r, s)-stable germs. Suppose f|R™" =
g|R™" and suppose the map t—(1 —t)f +1g is a stable homotopy from f to g. Then fis (r, 8)-
equivalent to g.

Proof. Let $€[0, 1]. Define K,€m(n+r+s+1) by setting K,(z, u, v, f)=
(1 —t—1y) }(x, u, v) + (¢ +8,) g(z, u, v) for zER", w€ER', vER?, tER.

By hypothesis, K, |R™*"**=(1—1y)f +tyg is (r, 8)-stable. Hence K,, is (7, s+1)-stable,
so

(a) S(n +rt+e+ 1) = <3Kt°/ax>s(n+r+s+1) + <aKt./au>s(r+s+l)
+ (0K [0 ets+1y + OK 1[0 ge41y + KB (E(L + 1+ 8+ 1)),

where I?,.GE(n+r+s+l, 1+7r+s+1) is defined by I?,,(x, u, v, t) = (Ko (z, u, v, t), u, v, t)
for z€R"* u€R’, vER® LtER.

Since g|R"™*" =f|R™*", it follows that 0K, [6t=g—fEm(s) E(n+7r+s+1), and from the
equation which results when both sides of equation (a) are multiplied by m(s), it is clear
that there is a germ a€m(s) E(s+1) such that 0K, [0t — (0K [0t} is contained in the right-
hand side of 4.5 (a). But 1 —« is a unit of E(s+1), so 8K, [ét itself is contained in the right-
hand side of 4.5 (a). Since this is true for any £,€[0, 1], it follows by Lemma 4.5 that f is
(7, s)-equivalent to g. Q.E.D.

We can strengthen this result:

CoROLLARY 4.7. Let f and g€m(n+r+3) be (r, s)-stable germs such that f|R™*" =
g|R™". Then f is (r, s)-equivalent’ o g.

Proof. Let h=f|R™"=g|R"*". Define HEE(n+r, 1+7) by H(z, u)=(h(z, u), w) for
2ER", u€R". Let C=E(n +1)/({0h/0x)ecnrry +{ORJOUDgry + H*E(L +7)), and let p: E(n +7)—>C
be the projection.

Since f is (r, s)-stable, it follows by Theorem 3.6 (b) that C' is generated over R by
(0f[ov, |R"*"), ..., p(0f[ovs|R™*"), and hence C is a finite dimensional vector space over B
of some dimension d <s. Choose a basis a,, ..., &; of C. Since the p(df/ov,|R™*") (i=1, ..., 8)
generate C, it is clear from linear algebra that there is a matrix 4 =(a,) €GL(s) such that
i1 ayp(0ffov;|R™") =, for i=1, ..., d. Define f €Em(n+r+s) by f(z, u, v)=f(z, u, v4);
clearly f' is (r, s)-equivalent to f and p(2f /ov,|R"*") =«, for i=1, ..., d. Moreover f'|R"*" =
f|R™" =h. Similarly there is a germ g’ €m(n+r+s) such that ¢'|R™**"=h and g¢’is (r, s)-
equivalent to g and p(dg’/ov,|R™*") =g, for i=1, ..., d.

For t€[0, 1], set H,=(1 —t)f +1g’. Clearly, for any t€[0, 1] we have H,|R™*" =h and
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p(0H Jov,|R"*") =@, for i=1, ..., d. Hence by Theorem 3.6 (b), H, is (r, s)-stable for every
t€[0, 1], so by Corollary 4.6 j’ is (r, s)-equivalent to g’, and this implies f is (r, 8)-equi-
valent to g. Q.E.D.

COROLLARY 4.8. Let f and gEm(n+r+s) and suppose | is (r, s)-stable. Suppose
g—fem(s)mir +8)°E(n+r+s) + m(s)2E(n +r+s). Then g is (v, s)-stable and is (r, s)-equivalent
to f.

Proof. Let n=f|R*=g|R™. Since f is (r, s)-stable, 7 is finitely determined, so for some
integer k we have m(n)*< (3/0xDgny. Let g=k(s+1).
Let h=f|R"*". Since f is (r, s)-stable it follows from Theorem 3.6 (c) that

(a) E(n+1) = OhfOxDein 11y +ORfOUY sy + <1, B,y ..., By + OF [O0| R™ 7 Dp
+m(r) 1 E(m 4 1)+ m(n+r)°.

Since g — f€m(s) m(r + s)°E(n +r +8) + m(s)2E(n +r + 5) it follows that for each i, 1 <i<s,
we have dg/ov;|R**" —affov,|R™*" €m(r)*E(n +r); moreover from (a) it follows by Corollary
1.8 {c) that

m(r)’E(n +1) S OROX) gn iy + OB[OU gy + <1, by .., B gy +(m+1)%
Hence clearly (a) still holds if we replace <af/av|R™*">p by <8g/ov|R"*")y; since g|R"*" =h

this implies, by Theorem 3.6 (c), that g is (r, s)-stable. And by Corollary 4.7 it then follows
that f is (r, s)-equivalent to g.

LEMMA 4.9, Let f and g€m(n+r+8) be (r, s)-stable germs. Suppose f-—g€
m(r+s1En +r+3) and suppose the map t—(1—t)f+ig is a stable homotopy from f to g.
Then f is (r, s)-equivalent to g.

Proof. Suppose #,€[0,1]. Let H=(1—-t)f+t,9. Define K,€m(n+r+s+1) by
K. (=, u, v, t)=(1 —t,—t) f(z, u, v) + (t, +1) g(x, u, v) for (x, u, v, ) ER"T++1,

Let g =H |R"; since H is by hypothesis stable there is a k such that m(n)*< {9u/0x) gny,
and if we set g="Fk(s+1) we have

(a) Em+r+s)= OH [0x) g(nsr+s)+ COH [0U) g 45+ COH [0V g5y
+<1, H, ..., H sy +i(n + 1 +35)?

(here we have used the fact that H*€m(n +r 4-5)9).

As in the proof of Theorem 3.6 ((c)=(a)), m(n)*< (Pu/0x)sn implies m(n+7+s)c
OH[0x)g(nir 4y +1i(r+8)**'E(m+7+5), so on the right of (a) we may replace the term
m(n+r+3)? by m(r +s)°*,
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By Corollary 1.8 the resulting equation implies

(b) 8(” +7‘+8) = <3H/ax>g(n+r+a) + <3H/au>e(r+s) +<6H/a'v>£(8) + <1’ Ha oees Hq_1>£(r+8)’
and

(c) m(r +8)°'E(n+7+8) S COH[Ox) g nir+s)+ OH[0UD gir 49
(L, Hy ooy H Vgt m(s) E(n 7 +8).

Let A = <aKt./ax>s(n+r+s+l) + <6Kt./au>e(r+s+l) +<l) Kt.y “vey Kg.—1>£(f+s+l)'

We have K, —H=t{g—f)em(l)m(r+8)°*'En+r+s+1). Hence 0K, jox,—oH [ox;€
m(l)m(r+8)** ' €m+r+s+1) for i=1, ..., n; 0K, /ou;—0H[ou;€m(l)m(r +8)°E(n+r+s+1)
for j=1,..,r; and K} —H'em(l)m{r+s)*'Em+r+s+1) for I=1, ..., ¢—1. Moreover
mr--s)’En+r+s+1)=m(r+8)(Emn+r+s)+m(l)Em+r+s+1)).

Hence (c) clearly implies

(d) mr+sP€m+r+s+1)c A+m(s)E@r+r+s+ 1) +ml)mr+s)’En+r+s+1).

From (b) it follows that E(n+r+s+1)=A4 + 0K, [0vDes+1y+m(1) E(n+r+8+1) and
hence, by Corollary 1.7, we have (e): En +7+8+1)=A4 + (0K, [00)gs.1). Let C =
E(m+r+s+1)/4, considered as an £(r+s+1) module. By (e) it is clear that C is finitely
generated over £(r+s+1), and so m(r+s)°C is also finitely generated over E(r+s-+1).
Moreover (d) implies m(r +)*C< m(s) C +m(r +s+ 1) m(r +5)°C, so by Nakayama's lemma
(Lemma 1.4) m(r +s)*C<m(s)C and hence m(r +s)*E(n+r+s+1)cd+m(s) E(n+r+s+1).
From this and (e) we find m(r+s)*" ' En+r+s+l)cm(r+s)d+m(s)En+r+s+1)=
m(r +8) A + (0K ., [ovDmisyecs +1y; hence m(r +s)**1E(n +r + 8 + 1) is contained in the right-hand
side of Equation 4.5 (a). Since this holds for any ¢,€[0, 1], and since for any #,€[0, 1]
we have 8K, [0t =g —f€m(r +s)**, it follows from Lemma 4.5 that f is (7, s)-equivalent to g.

COROLLARY 4.10. Let f and g€Em(n+r+5s) and suppose | is (r, s)-stable. Suppose
g—fEm(r+8)°*2E(n+r+3). Then f is (r, 8)-equivalent to g (and g is also (r, s)-stable).

Proof. If t€[0, 1], set H,=(1—t)f+1lg, and set J,=H,|R"*". Let fo=f|R"*". Let =
f|R". Then 7 is finitely determined, so for some integer k we have m(n)*< (99/0x>qr). Set
q=k(s+1).

Since f is (r, 8)-stable we have, by Theorem 3.6 (¢):

(a) E(n+1) = (OfofOxDgnrry + (Ofo/PUDe(ry + Of O | R™ g
+<L, for woor fo¥ Der +Mr) 1 Em A1) +m(n 1)
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Let t€]0,1]. Then H,=f+t(g—f) and hence H,—f€m(r+s)**2E(n+r+s). This im-
plies that all the first-order partial derivatives of H,, restricted to R™", differ from the cor-
responding derivatives of f, restricted to R"™*", by an element of m(r)**'€(n +r), and the
powers of J, differ from corresponding powers of f, by an element of m(r)**2E(n +r). So it
clearly follows from (a) that

Em+1) = 0T for) giniry + <0 tOUDeir) + OH (Jor | R™ g

+<1: Jt’ see th—l>£(r) + m(r)Hls(n +T) +m(n +r)q’

and hence H, is (r, s)-stable, by Theorem 3.6. This holds for any $€{0, 1] (so in particular
g=H, is (r, s)-stable), and certainly g—f€m(r+s)**'E(n+7+s), so by Lemma 4.9 fis
(r, 8)-equivalent to g.

With the aid of the preceding lemmas and corollaries, we can now prove a strengthen-
ed form of Lemma 4.2:

THEOREM 4.11. Let g€ m(n +7 +8) be an (r, s)-stable unfolding of n €m(n), and suppose
fEM(n+7+8) is an (r+s)-stable unfolding of 9. Then there exists a permutation c€T and
polynomial map-germs p, &,, ..., E,€E(r, 8), with p(0)=0 and £,(0)=0 for i=1, ..., s, such
that p has degree at most s+ 1, and &,, ..., & have degree at most s —1, and such that if we de-
fine hEm(n+r+s) by

(a) h(z, u, v) = f(x, u, v +p(u) +Zi.1v;&,(u)) for tER", wER', vERS,

then g is (r, 8)-equivalent to h.

(Remark. Observe that when s=1, the &, are all 0, so & is of the form A(z, u, v)=
fo(@, u, v+p(u))).

Proof. By Lemma 4.2 there is a ¢€T and a germ SEE(r+s, s) such that §(0)=0,
B | 0 xR*® is nonsingular and g is (r, s)-equivalent to the germ k,€m(n+r-+s) given by
hy(z, u, v)={,(x, u, B(w, v)).

Define g €L(s) by o(v)=p(0, v) and define ' €E(r+s, s) by §'(u, v)=p(u, o~1(v)). De-
fine h,€m(n+r+s8) by hyfx, u, v)=f,(x, u, f'(u, v)) =hy(z, u, 071(v)); clearly h, is (r, s)-
equivalent to k, and hence to g. Clearly 8'|0 x R*=idps, so one can find a germ y €E(r +s, 5)
such that 8'(u, v) =v+9(u, v) and such that $(0, v) =0 for all vER*. We can find a germ
x€m(r) E(r, s), polynomial map germs &, .., & Em(r)E(r,s) of degree <s—1, germs
M5 ws Ys €EM(rY°E(r, 8), and a germ d Em(s)2E(r +, 8) such that

p(u, v) = y(w) + i1 vy(E () +py(w)) +5(u, v) for w€RT, vERS,
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Define 9’ €E(r+s,s) by setting y'(u, v)=x(u) +Zi_1v;&(u) for w€ER’, vER ie.
y =y —6—-3f_1v,u,. Define hy€m(n+r+8) by setting hy(, u, v) =f,(x, u, v+y'(u, v)) for
z€R", w€R", vER®.

Clearly h,—hy € m(s) m(r +s)°E(n +r+38) +m(s)2E(n +r +8). Moreover, k, is (r, s)-stable,
since h, is (r, 8)-equivalent to g. By Corollary 4.8 it follows that & is (7, s)-stable, and is
(r, 8)-equivalent to A, and hence to g.

Finally, we can find a polynomial mapping p€m(r) E(r, s) of degree <s+1 and a
germ y€m(r)**2E(r, s) such that y=p+». Define h€Em(n+r+s) by setting h(z, u, v) =
folz, u, v+ p(u) + 251 v,&(u)) for zER?, u€R’, vER®. Obviously h—h,€m(r) *2E(n+7 +8).
Since A, is (r, s)-stable it follows from Corollary 4.10 that A is (r, s)-equivalent to h, and
hence to g. This completes the proof.

With the aid of Theorem 4.11 we can now state the algorithm we have sought for
determining (up to (r, s)-equivalence) all (r, s)-stable unfoldings of a given germ 7.

For any non-negative integer d we may identify the set of polynomial mappings in
m(r) E(r, s) of degree at most d with the finite-dimensional real vector space Jé(r, 5). Now
suppose 7 €m(n), r and s are given. Choose some (r+ s)-stable unfolding f of 7 (assuming
one exists); for example, we may take for f a constant unfolding of the minimal stable
unfolding of 7 given by Theorem 2.20. If ¢ €T, and if p€J§* (r, s) and &, ..., &,E€J37'(r, 8),
we define an unfolding H(o, p, &y, ..., &)Em(n+7r+s) by equation 4.11 (a), i.e. we set
H(o, p, &y, .-, E) (2, w, ¥) =] (2, u, v +p(u) + 2i1v,&(w)) for xER", w€R’, vER’. For each
of the finitely many ¢ €T we can compute, using Theorem 3.6 (c), for which p€J§*(r, s)
and &, ..., £&,€J37(r, s) the germ H(o, p, &, ..., &) will be (r, s)-stable. In fact, condition
3.6 (c) holds if and only if J%(n +r, 1) is generated over R by certain finitely many elements
which depend algebraically on p and the &,, so this computation is an exercise in linear
algebra, and it yields, for each ¢ €T, an algebraic subset 4, of J§*'(r, s) x (J§~!(r, 8))* such
that H(o, p, &, ..., &) i8 (r, s)-stable if and only if (p, &y, ..., &) €4,. And by Theorem
4.11 the set of all (r, s)-stable H(o, p, &, ..., &) for €T, p€J§*'(r, s) and &,€J57 (r, s)
contains representatives of every (r, s)-equivalence class of (r, s)-stable unfoldings of 7,
80 by this means we may determine them all.

Of course, this algorithm is somewhat unsatisfactory in that it does not yield a unique
representative for each (r, s)-equivalence class, and the set of “‘standard’ (r, s)-stable
unfoldings of 5 which it produces is thuch larger than one would like (after all, the condi-
tion on the p and &, for H(g, p, &,, ..., &) to be (r, 8)-stable is an open condition!).

However, in practice one can reduce the size of this set considerably, for one can either
make further applications of Lemmas and Corollaries 4.5-4.10 in’ special cases, or one

can often by inspection write down (r, s)-equivalences between some of the “standard”
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unfoldings given by the algorithm. For example, in the next section we shall compute
analogues to Thom’s list for the cases of (1, 3) and (3, 1)-stability, and the lists we shall
compute will contain only one representative of each equivalence class.

Here we can make one general remark, which somewhat reduces the size of the set of

“standard” unfoldings one must consider:

Remark 4.12. If, for some €T and p€Jit(r, s) there are germs &, ..., & and
&l .. Es€J57Y(r, 5) such that both H(o, p, &, ..., &) and H(a, p, &, ..., &) are (r, 5)-stable,
then H(o, p, &, ..., &) and H(o, p, &1, ..., &) are (r, s)-equivalent. (This is an immediate
consequence of Corollary 4.7). Hence for each ¢ €7 there is in fact an algebraic subset
B,c J§t(r, s) such that we need include only one unfolding of the form H(o, p, &, ..., &)
in our “standard” list, for each p in the complement of B,.

The algorithm described above involves a computation using Theorem 3.6 (c). This
computation can sometimes be simplified slightly if one uses instead the following corollary
of Theorem 3.6 (which is really of interest only for this purpose).

COROLLARY 4.13. Let fEm{n+r+3) unfold yEm(n). Suppose 7 is finitely determined
and choose a number k such that m(n)* < {on[0x)en. Suppose that in fact n€m(n)?, for some
integer d such that 1<d<k, and let p be the largest integer such that p<k(s+1)/(d-+1).
Set q=k(s+1). Let fo=f|R"*". Then f is (, s)-stable if and only if

(a) S(n + T) = <6f0/6x>5(n+r) + <af0/au>€<f) + <af/av I Rn+r>k
+ {1, fy vees foPDeiry + M) EM +7) + MR+ 1)

{Remark. This corollary is of interest only if one can choose d>2, for if % ¢m(n)2,
then E(n+7)=<{0fy/0x>en+r (since some &f,/0x, is a unit) and hence f is automatically
(r, s)-stable by Theorem 3.6 (b)).

Proof. “If” is clear, for obviously (a) implies equation 3.6 (¢). To prove “only if”’ we
shall show equation 3.6 (¢) implies (a).

First we show that 7 €m(n)? implies 5 —d-1%; x,0n/ox,€m(n)**'. We proceed by in-
duction on d. Surely the claim is true if d=1, as one easily verifies. Suppose d >1 and the
claim is true for d —1. Let =5 —d-1X, 2,09/6x,. To show «€m(n)®*! it is enough to show

that for any j, 1 <j<n, we have da/oz,;€m(n)®. But

o _am log 1% oy _d—l(an 1 2 azn)
i’

ow, ow, dow, 4o owor, d \ew, d—1:5" omox

and by the induction hypothesis this is in m(n)?, since dn/éx,€m(n)® ', This proves the

claim above.
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It follows that f, € (8f,/0xD gcn vy + ()¢ 1 + m(r) E(n + r). Moreover m(r)E(n +r) =m(r) +
m(r) m(n) E(n+r). Hence we can find a germ 8 € m(r) and a germ y € (9f, /08 e(n+r) + mn)**! +
m(n)m(r) E(n +r) such that fy=pF+y.

Now if a>p then there are polynomials Q(w, z) and R(w, z) in two variables w and z,
such that @ has degree at most p in z, and such that (w+2)* =Q(w, ) +2°*' R(w, z). Hence
f=(B+y)*=Q(B,¥) +y* ' R(B,y). Now Q(8,7) =Q(B, fo — B) and hence can be writtenasa poly-
nomial expression in f and f, of degree at most p in f,; this implies Q(8,7) €1, fo, ..., fo Yer-
And clearly

(b) YHR(B, v)EY*HE M +T)
S (o0 ecniry + PG (m(n)* 1) (m(n) m(r))* ' E(n +7)

= {Bfo/ODg(nsry + Zh2d m(n) 1+ m(r)PH T E(n 4 7).

Since M(n)* < (n/0x)eny, We have m(n)* = {0fo/0xDen+r) + m(r) E(n +r), and hence for any

non-negative integer ¢ we have
(c) m(n) = {0f/0x)gnsry +M(r)°E(n +7).

By the definition of p we have p+1=>k(s+1)/(d+1), and since d <k, this is readily seen
to imply that for any 4, 0<i<p+1, we have k(s+1—(p+1—1))<p+1+id. Hence by
(c) it follows that m(n)**1 "% < (8fy)0xDe(nir +m(r) 1= P*1PE(n +r), for any ¢, 0<i<p+1.
Therefore it is clear from (b) that y*+1R(B, y) €<fo/0xDensr + m(ry’ 1 E(n+r). So we have

shown that for any integer a >p, we have
(d) Fo* €L, for wres [ Decr + <Ofo/0FDecn+ry +M(rYE(m +1).

Now suppose f is (r, s)-stable. Then Equation 3.6 (c) holds; moreover since fo? € m(n +7)?
we may clearly replace the term Fg&(1+) on the right of 3.6 (¢) by <1, fo, ..., fo? *Den; but
by virtue of (d) we may then replace this term by (1, f, ..., f">er; this yields equation (a),
so we are done.

Thus far in this section we have restricted our attention to the problem of classifying,
for a given r and s, the (r, s)-stable unfoldings of a given germ #. We should now like to
consider the more general problem of determining all (r, s)-stable unfoldings f, for fixed r
and s but without having specified the germ » which f unfolds.

One way to attack this problem is first to try to show that a general (7, s)-stable un-
folding f is (r, s)-equivalent to an unfolding f’ such that the germ 7 =f'|R" is of some stan-
dard form; one can then, knowing 7, use the algorithm described after Theorem 4.11 to
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determine what f' can look like. In other words, one tries first to classify the germs  which
have (r, s)-stable unfoldings, and hopes that one can apply the results of this classification
to the problem of classifying the unfoldings.

This approach works quite well, at least when (r + ) is sufficiently small; in fact, a simi-
lar approach can be used in the case of ordinary stability to prove the validity of Thom’s
list of the seven elementary catastrophes, Theorem 2.26 (see [11, Chapter 5]). If 5 has
(r, s)-stable unfoldings, then the codimension of # must be at most r +s. Mather [4, Chapter
II] has classified the germs of codimension <35 (actually Mather classifies the germs whose
right-codimension (which is 7(n) —1) is <5, but these are the same germs for which o(7) =
right-left ecodim () <5); Siersma [5] (see also Siersma, Classification and Deformation of
Singularities, thesis, Amsterdam, 1974) extends Mather’s classification to germs of right-
codimension <8 and the same methods should work for germs of right-left codimension
<8. For a published version of Mather’s classification up to right-left codimension 4, see
(11, Th. 5.15]. (Note: Siersma’s thesis extends the classification up toright-codimension9).

To conclude this section, we shall prove some lemmas which will enable us to apply
the results of a classification of germs to the problem of classifying (r, s)-stable unfold-
ings. In the next chapter we shall then use these lemmas to prove, for (r, s)-stability,
analoga to Thom’s theorem (Theorem 2.26).

Definition 4.14. Let 7 and yu€m(n). We say n and yu are equivalent if there is a germ
@€L(n) and a germ A€L(1) such that n =Aup.

Notation: In the remainder of this section, we shall often be considering germs in
m(» +d) for some n and d, and unfoldings of such germs. We shall take coordinates z,, ..., Z,,
Y1 - Yo o0 R”*% and denote elements of R"*¢ by pairs (z, y), where z€R", yER.

Definition 4.15. Let n€m(n+d) and let u€m(n). We shall say # reduces to u if there
is a non-degenerate quadratic form ¢ on R? such that 7 is equivalent to the germ ' €m(n +d)
given by u'(x, y) =pu(x) + @(y) for x€R", y ERE. If d >0, we say p is a proper reduction of 7.
If 5 has no proper reduction, we say 7 is ¢rreducible.

Definition 4.16. Let f€m(n+d+r+s) and let gEm(n +r+3). We say [ (r, s)-reduces
to g if there is a non-degenerate quadratic form ¢ on R? such that f is (r, s)-equivalent to
the germ ¢g'€m(n+d-+r+s) given by ¢'(z, y, u, v) =g(z, u, v) +Q(y), for z€R", y€R?,
wER", vERS.

I d>0, we say g is a proper (r, s)-reduction of f. If f has no proper (, s)-reduction, we
say f is (r, s)-irreducible.
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Remark. If f€Em(n +d +7 +s) unfolds n €m(n +d), and if g€m(n +7 +s) unfolds u € m(n),
and if f (r, s)-reduces to g, then one easily sees that % reduces to u. Hence if 7 is irreducible,
then f{ is {r, s)-irreducible.

LemMA 4.17. Suppose f€m(n+d-+r+8) (r, s)-reduces to g€m(n+r+s). Then | is
(r, s)-stable if and only if g is (r, s)-stable.

Proof. Clearly it suffices to give the proof in the case when f is of the form f(z, ¥, 4, v)=
gz, , v) +Q(y) (x€R", yE€R?, w€R, vER?), where @ is a non-degenerate quadratic form on
Re. Let FEE(MM+d+7+s,1+r+s)and GEE(R+r+8, 1 +7+8) be defined by F(z, y, u,v) =
(f(z, ¥, u, v), u, v) and G(z, u, v) =(g(z, u, v), u, v) for zER", yER?, u€R’, vER®.

By definition 3.5, f is (r, s)-stable if and only if

(a) E(n+d+r+38) = (OfoxDensasrsn + O 0P ensarrsn +<Of[OUDerrs)
+{0f [0y + F*E(L +7+35)

and g is {r, s)-stable if and only if
(b) E+T1+8) = (0g[0x) s(nsr+5y+OF[OUDgir 4 5y + OGOV 5+ G*EQA+r+3).

Let a:&mn+d+r+s)>Em+r+s) be the restriction homomorphism given by «(h)=
h|R*x0 xR x R* for h€EE(n +d +r+3). Since @ is non-degenerate, we clearly have

<aﬁay>£(n+d+r+s) = <9Q/3y>e(n+d+r+s) = m(d) 8(% +d +7+8).

Applying & to both sides of equation (a) yields equation (b) (hence (a) implies {b)); but
since the kernel of «, which is m(d) E(n+d +r+s), is contained in both sides of equation
(a), it also follows that (b) implies (a). This completes the proof.

The following lemma is a converse to the remark following Definition 4.16.

LrmMma 4.18. Let fEmi(n +d +7+3) be an (7, s)-stable unfolding of n € m(n +d), and sup-
pose 1) reduces to a germ u €n(n). Then u has an (r +s)-dimensional unfolding g€ m(n +r+3)
such that f (r, s)-reduces to g.

Proof. Since 7 reduces to u, there is a non-degenerate quadratic form @ on R* and
there are germs @ € L{n +d) and A€L(1) such that Anp=u', where u’ €m(n--d) is given by
1@, y)=p(x)+Q(y) for x€R", yER®. Define D EL(n+d+r+s) by setting O(z, y, 4, v)=
(7N, y), u,v) for (z,y)ER™4, w€R’, vER’, and define A€EL(l+r+s) by setting
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Aft, u, v) =(At), u, v) for tER, u€R’, vER’, Clearly (®, idgr+s, 1dgs, A) is an (r, s)-equival-
ence from f to some unfolding /' of u’.

Let A =E(n+4)/({0p' [0xD en+ay + <O’ [0YDecn+ay + 1 "* E(1)). Observe that (O’ [0yDecn+ar=
OQ/ey>en+ay=m(d) E(n +d), since @ is non-degenerate.

Since ' is an (r, s)-stable unfolding of u’ we have codim (u') =dimg 4 <r+s. Hence
we can find germs b, ..., b, ;€E(n+d) whose classes in 4 generate 4 over R; moreover
since m(d) E(n+d) is contained in the denominator of 4 we may in fact choose by, ..., byys
to be in E(n). Define h€mn +r+s) by hiz, u, v) = pu(@) + u by(®) + ... +u,b(x) +
10,01(2) + ... 0,0y () for xER?, wER', vERS. Define b’ €Em(n+d+r+38) by ' (z, y, ,v)=
h(zx, u, v) + Qy) =p' (@, y) + X519, b,(x) + Zj_,v;b, ,4(x) for z€R, yER?, u €ERT, vER’. By the
choice of the b, it is clear from Theorem 2.9 that A’ is an (r+s)-stable unfolding of u'.
Hence by Lemma 4.2 there is a permutation ¢ €7 and a germ S€E(r +s, s), with 8(0) =0,
such that f is (r, s)-equivalent to the germ ¢’ €m(n+d+r+s) given by ¢'(z, y, u, v) =
ho(, y, u, B(u, v)) for (z,y,u, v)ER" ¥+ Tf we define geEm(n+r+s) by gz, u, v)=
bo(x, u, f(u, v)) for (x, u, v)ER"*"**, then g unfolds u and clearly ¢'(z, y, u, v) =g(x, u, v) +
Qy), so g’ (r, s)-reduces to g and hence f (r, s)-reduces to g. This completes the proof.

LEMMA 4.19. Let f€m(n+d+r+s). Suppose f (r, s)-reduces to geEm{n+r+s), and
suppose g is (r, s)-equivalent to h€m(n+r+s). Then f also (r, s)-reduces to h.

Let (@, v, 0, A) be an (r, s)-equivalence from ¢ to h. Then A =(4,y) for some A€
E(1+r+s). Letting 7 denote the first coordinate of R'*"**, we have (04/6t) (0) #-0; without loss
of generality we may assume (64/0t)(0) >0, for if not we may achieve this by replacing h
by —h and A by —A, and clearly if f reduces to —h then f also reduces to A.

Since f (r, s)-reduces to g, there is a non-degenerate quadratic form @ on R? such
that f is (r, s)-equivalent to the germ ¢’ €m(n +d +r+-8) given by ¢'(, ¥, u, v) =g{z, u, v) +
Q(y). Define &' €m(n+d+r+s) by k'(, y, u, v) =h(x, u, v) +Q(y) for xER", yER?, u€R,
vER®. Clearly it suffices to show ¢’ is (r, s)-equivalent to &'

Define k€m(n +d +r+s) by setting

k(z, y, u, v) = Mg®Y=, u, v) +Q(y), y(u, v)) for zER", yER?, uER', vERS.

One sees immediately from this definition that k and ¢’ are (r, s)-equivalent; to complete
the proof we shall show £ is (r, s)-equivalent to %'.

For t€[0, 1], sét H,=tk+(1—t)h'. If {,€[0, 1], define K, Em(n+d+r+s+1) by set-
ting K, (2, y, w, v, {)=H, (2, y, u, v) for z€R", y€R?, uwER', vERS, tER.
7 — 752905 Acta mathematica 135. Imprime le 19 Décembre 1975
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We have 0K,[ot=k—h’. From the definition of %k, and since A'(z, y, u, v)=
gDz, u, v), y(u, v)) +Q(y), one easily computes that for z€ER", u€R’, vER* and
tER we have (0K, [ot)(x, 0, u,v,t)=0 and since Q€Em(d)® we have for i=1, ..., d that
(62K, jetey,) (x, O, u, v, t) =0. Hence 0K, jotEm(d)?E(n+d +r+5+1).

For i=1, ..., d we have
oK, _ a_Q_ 3_1 -1 -1 e ]
2, (x,y,u,0,1) 2, () [(to+ t) 7 (gD (z,u, v} + Q) p~ (u,v)) + 1 —t—14].

When z, y, %, v and ¢ are 0, the function in square brackets evaluates to (6A/ot)(0)+1 —¢,,
which is certainly not O since (84/¢7)(0)>0 and |#,| <1. Hence the function in square
brackets above is a unit of £(n+d+r+s+1). It follows that

<aKta/6y>£(n+d+r+s+1) = <3Q/6y>£(n+a+,+s+1) = m(d) E(n + d +r+s+ 1).
Therefore aKt./at € ‘Yn((l)2 E(n + d+r+s+ 1) = <3K¢./6y>m(d) Sn+d+r+s+1dy

so the homotopy ¢t—H, clearly fulfills condition 4.5 (a), and hence by Lemma 4.5 £ is
(r, s)-equivalent to A’. This completes the proof.

The following lemma is a converse to Lemma 4.19.

LeMMaA 4.20. Let f€m(n+r-+s). Suppose f (r, s)-reduces to gEm(n,+r+s) and to
h€m(ny+r+5) and suppose g|R™ €m(n,)® and k|R™€Em(n,)®. Then n,=n, and g is (r, s)-
equivalent to h.

Proof. The idea of the proof is taken from Thom [7, § 5.2 D, p. 76] and Tougeron [9,
Ch. VIII, Th. 3.6 (1), pp. 166-7].

Without loss of generality we may assume n, >n,; otherwise interchange ¢ and A.

The hypotheses imply n, <n and n,<n. Let d, =n —n, and let dy=n —n,. Then there
is a non-degenerate quadratic form @ on R* and a non-degenerate quadratic form R on R*
such that f is (r, s)-equivalent to the germs g’ and A’ €m(n +r+s) given by ¢'(x, y, u, v) =
g(x, u, v) +Q(y) for z€R™, yER*, w€ER", vER® and A'(w, 2, u, v) =h(w, u, v) + R(z) for
wER™, 2z€R*, u€R", vER®.

By the Morse lemma, there is a germ @€L(d,) such that Qp(y,, ..., ¥a,) = Zi1 + 45
Define g €m(n +r +s) by setting ¢"(x, y, u, v) =g’ (%, 9y, 4, v) =g(z, u,v) + Z{2, £ 4} for z€R™,
yER?, u€R’, vER?. Clearly ¢" is (r, s)-equivalent to g’. Similarly A’ is (, s)-equivalent to
a germ A" €m(n+7+s) of the form A”(w, 2z, u, v) =h{w, u, v) + 22, + 27 for wER™, zER*,
#€RT", vER®.
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Since ¢” and A" are (r, s)-equivalent, there is a coordinate change on R"*"** of the
form (z, y, u, v)— (#'(z, ¥, 4, v), ¥ (z, ¥, u, v), ¥ (4, v), v'(4, v)) (where zER™, 2’ ER™, yER™,
y' €ER®, u, w €R’, v, v'ER®), and there is a germ A€E(l+r+s) satisfying (94/07)(0) +0
(where T denotes the first coordinate of R'*"*%), such that everywhere near 0 in R"*"**

we have

ds d
(a) ha',w'v')+ 2yt =g, u,v)+ O Lyi, u,0)
-1 =1

Define g€m(n, +r+3s) by g(z, u, v) =Ag(x, «, v), u, v) for xER™, wER", vER’. Clearly
g is (7, s)-equivalent to g.
If we differentiate (a) with respect to ¢; and then set y =0, we find, for each ¢, 1 <i<d,,
that when y=0 we have
L2}

. A ( o9 3x,)  og ox;
b 42y, =—(9(x, u,v), u, v (2, u,0) — )= 2> =~ (x,u,v)—
(b) F2yi= 2 0@ w0 w0 2 2w ) o) = 3 2 e )

If, for some k, 1 <k<n,, we differentiate equation (b) with respect to x;, (we may do this
because (b) holds for all # near 0 when y=0), and then evaluate at 0ER™*"**, then we
find, for any 4, 1 <¢<d,, and for any k, 1 <k<n,, that (c) (v /ox;)(0)=0 (the right-hand
side evaluates to O because g|R™ €m(n,)3, which clearly implies also §|R™ € m(n,)3).

But the map of R™ to itself given by (z, y)—(x'(z, ¥, 0, 0), ¥'(, ¥, 0, 0)) is non-singular
at 0; because of (c) this can only be the case if the matrix ((82]/82;) (0))1<j< ns: 1< k<n, has rank
n,. Since by assumption #, > n,, this implies n; =n,.

Moreover it follows that the germ ®€E(n,+r+s, n,+r+s) given by Oz, u, v)=
(2'(z, 0, w, v), w'(u, v), v'(u, v)) is non-singular at 0, so if we define AEm(n,+r+s) by h=
h®, then £ is (r, s)-equivalent to k. We shall show % is (r, s)-equivalent to g.

Let u=h~g. If ¢t€[0, 1], define H,Em(n, +r+s) by setting H,~g+tu. If t,€[0, 1],
define K, €m(n,+r+s+1) by setting K, (x, u,v, t)=H,, (r,u,v) for x€R™, u€R,
vERS, tER.

From (a) and (b) it follows that u € (<8F/0x)s(n,+r+5)? For any 4, 1 <i<n,, we have

aKto ag) = op n1 r s

(ax, o, (x,u,v,t)—(to+t)axi(x, u,v) for z€ER™ u€R,vER’i€R.

If J is the ideal of £(n;+7+s) generated by the germs 8%g/ox,0m,, 1<j, k<n,, then
clearly ou/ox,€J -{0G/0x) ¢(n 1145 (for 1<i<n,). Moreover, since g|R™€m(n,)® we have
(0%g[07,02,) (0) =0 (for 1<y, k<n,) and hence J=mn(n,+r+s) (note that by a similar
argument we also have {0F/0x)¢n, +r+s S M{Ny +7+8)).
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So we have

<6g/az>e(n;+r+s+1) = <6Kt./ax>s(n,+r+s+1) + <a,u/ax>£(n;+r+s+l)
S (0K /02D gnysr s 541 T 0GIOTDmeny +r454D-

By Nakayama’s lemma (Lemma 1.4) this implies

<a§/ax>s( nyt+r+s+1) = <3Kzo/ax>s(nx+r+s+l)-
Hence we find that

aKtn/at =u € (<a.(7/ax>e(m+r+s+l))2 < (3.(7/3x>m(n,+r+,) E(m+r+s5+1) = <aKto/az>m(m+r+s) E(my+r+s+1)

Since this holds for any ¢,€[0, 1], it follows by Lemma 4.5 that §=H, is (r, s)-equivalent
to h=H,. Q.E.D.

Remark. 1t is a well known fact that for a germ 7 €m(n)? the condition n€m(n)® is
equivalent to the condition “» is irreducible” (see e.g. [11, Corollary 5.13 (a)]). Moreover
if f is an (r, s)-stable unfolding of 7, then by virtue of Lemma 4.18 f is (r, s)-irreducible
if and only if % is irreducible. Hence in Lemma 4.20 we may replace the condition
g|R™ €m(n,)* by the condition g|R™€Em(n,)? and g is (r, s)-irreducible; and similarly for A.

Note also that if 7 €m(n) is non-singular at 0, i.e. 9 ¢m(n)?, then any (r+s)-dimen-
sional unfolding of # is (7, s)-stable and any two (r+s)-dimensional unfoldings of # are
(r, 8)-equivalent.

So by virtue of Lemmas 4.17-4.20 we have reduced the problem of classifying all
(r, s)-stable unfoldings to that of classifying the (r, s)-irreducible (r, s)-stable unfoldings.

This simplification will prove useful in the next section.

§ 5. Time-stable and space-stable unfoldings: the “Thom lists”

Thom’s celebrated list of the seven elementary catastrophes (Theorem 2.26) is a
classification theorem for r-stable unfoldings when r <4. In this section we shall compute
analogous lists for (r, s)-stable unfoldings in two important special cases: the cases of
(3, 1)-stability and (1, 3)-stability.

Why are these cases of particular interest? In faet, why is (7, s)-stability of interest
at all? The answer lies of course in the applications to catastrophe theory.

Recall that in Thom’s catastrophe theory models for natural processes are obtained
in the following way: Two manifolds B and M are given. The manifold B, the “control

space”, is the space in which the process is observed or in which it takes place; in the ap-
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plications, either B represents physical space-time or B may be a space of control para-
meters which govern the event to be described (for example, B may be parametrized by
certain physical variables whose effect on the outcome of an experiment is to be deseribed).
Usually B is of quite low dimension, generally <4. The manifold M, the “state space”,
is parametrized by all the physical variables which are relevant to the process under study
and which play a réle in describing the physical “state” (in a general sense) which reigns
at various points of B; the state space can be of very high dimension.

We consider Bx.M to be fibred over B via the projection #: B x M —B. One may
define a physical process s to be a subset of B xM; if b€ B, then the set s, =sN ({} x M)
(considered as a subset of M) can be interpreted as the set of possible physical states which
can reign at the point b€ B. A point b€ B is said to be regular for the process if the set of
possible states “looks the same” everywhere near b, i.e. if there is a neighbourhood U of
b€ B and a homeomorphism A: U x MU x M such that wh=n on U x M and such that
h(s N (U x M))=U xs,. The non-regular points of B are called catastrophe points. In ob-
serving a process oceurring in nature, one does not notice continuous changes of state; one
only sees something happening if the state changes abruptly. So what one observes in
nature is the set of catastrophe points of a process.

In the simplest case (but one which is adequate to explain a large variety of pheno-
mena) one supposes the set s is obtained as follows: One takes a smooth function V:
B x M—R, and one supposes s< {(b, ) € B x M: V| ({b} x M) has a local minimum at (b, x)}
(which subset of this set one chooses s to be is governed by various conventions which we
shall not discuss here). In other words, V is considered as a family of potential functions
on M, parametrized by B, and for b€ B, the set s, of possible states at b consists of states
at which the potential function above b has a local minimum. Models of this sort are called
gradient models.

Naturally it is of great interest to classify such functions V, at least locally; the clas-
sification should respect the character of V as a family of potential functions on M. That
is, we wish to classify the functions ¥ locally up to the action on the left of families of dif-
feomorphisms of R, parametrized by B, and up to the action on the right of diffeomor-
phisms @ of B x M which have the property that there is a local diffeomorphism ¢ of B
such that n® =y

If B has dimension r and M has dimension z, then locally such a function ¥ is just
an r-dimensional unfolding of a germ z€m(n) and two such functions are locally equi-
valent in the manner described above exactly when the corresponding unfoldings are 7-
equivalent.

Before performing the classification we may reasonably make two additional restric-
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Fig. 1.

tions. Firstly, since B is usually 4-dimensional space-time and in any case is usually of
very low dimension, we may assume r <4. Secondly, to say that a process is “observable
in nature” usually means that the process occurs repeatedly or can be evoked again and
again in repeated experiments; however, the initial conditions for such a process can never
be reproduced exactly. Hence it is reasonable to assume that the function ¥ does not
change its appearance under slight perturbations; this corresponds to assuming that the
associated unfolding is r-stable.

If we adopt these two additional restrictions, then Thom’s list of the seven elementary
catastrophes (Theorem 2.26) is precisely a classification theorem of the sort we require.

Unfortunately, however, this classification is inadequate for many applications; it is
too coarse. The reason is that in many cases the control space B is not physically isotropic,
in the sense that different control parameters need not have the same physical importance.
This is the case, for example, when B is space-time; the time-coordinate plays a special
role; time is not just another spatial dimension. However the equivalences up to which
unfoldings are classified in Thom’s list can operate on B via an arbitrary local diffeomor-
phism. They take no note of the possible anisotropy of B and they can therefore identify

O] 10

increasing time— time =0

Fig. 2.
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two processes which would look entirely different to an observer studying them in nature,
An example will make this clear.

For simplicity, we shall take B to be a three-dimensional space-time, with one tem-
poral and two spatial coordinates; locally, B is R3, with coordinates z, ¥ and z. Suppose
we are observing a process whose catastrophe set is the cone z2=x24-y2% (see figure 1).
What we will actually see happening in time is not uniquely determined by this descrips
tion of the catastrophe set; it depends on which direction we choose to be the time direc-
tion, or more precisely on how B is foliated into “spatial” planes of constant time. If
we choose z to be the time coordinate (so that planes of constant time are those which are
parallel to the xy-plane), and if we make a film of what we then observe, then successive
frames of the film would look as in figure 2. We should see a bubble collapsing to a point
and then expanding again. If instead we choose z as the time coordinate and planes paral-
lel to the yz-plane as planes of constant time, then a film of the event would look as in
figure 3, and we should see two hyperbolas approaching each other, merging to form a
cross, and then separating again.

Clearly we should say these two events are different, but the unfoldings which generated
them would certainly be 3-equivalent, since we have merely interchanged two coordinates
of B=R3.

This example demonstrates that if we wish to obtain, by means of catastrophe theory,
an adequate description of events which are seen as developing in time, if we are to be
able to describe the spatial configuration at fixed moments of time, then we must classify
unfoldings up to equivalences which preserve simultaneity, that is, whose action on B
respects the foliation of B into planes of constant time. If we consider the action on B as
a change of local coordinates, then the new time coordinate may depend only on the old
time coordinate, not on the spatial coordinates. (Note that the new time coordinate need
not be the same as the old time coordinate; we may change the time scale). And of course
stability must also be defined using this more restricted sort of equivalence of unfoldings.
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The equivalence notion which we need for this purpose (when B is 4-dimensional space-
time) is obviously (3, 1)-equivalence.

There are other applications of catastrophe theory in which the converse problem
ariges; that is, one does not need to be able to describe global spatial configurations at in-
dividual moments in time, but it is important to be able to say what happens at fized
points of space as time progresses. For example, Zeeman has a description of gastrulation
in which points of space represent individual cells of the embryo. Each cell undergoes the
same temporal development; the change in shape of the embryo as a whole is accounted
for by the fact that the temporal development of the cells occurs on a different time
scale for different cells. For his model, Zeeman needs to be able to follow the development
of individual cells through time; he must be able to identify a given cell at different mo-
ments of time. Simultaneity of stages in the development of different cells is not important
to the description. For applications of this sort, one needs a classification of unfoldings
via equivalences which preserve identity of location, that is, which respect the foliation
of space-time into lines of constant position. If we consider the action on space-time
as a coordinate change, then the new spatial coordinates may depend only on the old
spatial coordinates, but not on the old time coordinate. Again stability must also be
defined using this sort of equivalence. The type of equivalence needed here is just (1, 3)-
equivalence (when B is 4-dimensional space-time).

One can conceive of other applications of catastrophe theory, in which B need not be
space-time but perhaps instead a space of control parameters for a process or a series of
experiments, where some of the control parameters might be physically more important
than the others or play a different réle from that of the others; for such applications a
classification of (r, s)-stable unfoldings for other values of r and s would be of interest.
But clearly the cases of (3, 1)-stability and (1, 3)-stability are the most important, so we
make the following definition.

Definition 5.1. A four-dimensional unfolding is said to be time-stable if it is (3, 1)-
stable; it is said to be space-siable if it is (1, 3)-stable.

Similarly we shall say ‘‘time-equivalent”” and “‘time-reduces” for “(3, 1)-equivalent”
and ““(3, 1)-reduces” respectively; ‘“‘space-equivalent’” and “space-reduces” for “(1, 3)-
equivalent’ and “(1, 3)-reduces” respectively.

Theorems 5.2 and 5.3 below classify the time-stable and the space-stable unfoldings
respectively. In stating these theorems we adopt the following notational convention: The
unfoldings listed in Theorems 5.2 and 5.3 are germs in m(n+4) for some n. We shall use
letters z, y etc. to denote the coordinates of R®. We shall denote the unfolding parameters
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(i-e. the coordinates of R%) by u, v, w and ¢, whereby in both theorems ¢ is to be interpreted
as the time-coordinate and u, », and w as spatial coordinates (so in Theorem 5.2 ¢ cor-
responds to »; in the notation used in previous sections and u, v, w correspond to u;, u,,
ug; in Theorem 5.3 ¢ corresponds to %, and u, v, w to vy, vy, v3). The proof of both theorems
is given after Theorem 5.3.

THEOREM 5.2. Let f€m(n +4) be a time-stable unfolding of n€m(n)2. Then either f has
a simple singularity at 0, or f time-reduces to a unigque one of the following 12 unfoldings h,

of germs v,
Name v hy
Folds: the fold »y(x) =23 hy(z, u, v, w, t) =2% +ux
bubble collapse vy} =28 ho(z, u, v, w, £) =%+ tr + v +vie +wiz
fission vg(x) =23 hg(z, u, v, w, t) =2+t + v +v¥e —wix
fusion v () =23 hy(x, w, v, w, t) =2+ tx + uPx — v’z —wx
bubble formation vs(x) =28 hy(z, u, v, w, t) =23 +tx —ule —vix —wir
Cusps: the cusp (%) =2t hg(z, uw, v, w, t) =2t +ux?® +vx
bec-a-bec vo(x) =2 ho(z, u, v, w, t) =x*+ux? +ir +ux + v’ +wie
bec-a-bec to lip vg(x) =2t he(z, u, v, w, t) =2t +ux? + 2 +ur 4+ v*r —wla
the lip vo(x) =2t ho(2, u, v, w, 1) =2 +ux® + o -+ ux ~v*x —wi
The swallowtail vio(x) =25 hyol, w, v, w, t) =25 +uxd® 4 va® +wx
The hyperbolic

umbilic m(®, Y)=23+y®  hy(2, ¥, 4, v, w, t) =23 +y° +ury +-vr +wy
The elliptic

umbilic v0(Z, Yy =23 —2y® By, ¥, u, v, w, 1) =% —xy? +u(2?+y%) +ox +wy

All of the h, are time-stable and clearly time-irreducible.

THEOREM 5.3. Let f€m(n+4) be a space-stable unfolding of a germ n€m(n):. Then
either f has a simple singularity at 0, or f space-reduces to a unique one of the following unfold-
ings b} of germs v}:

Name v; hy

Folds: vy (x) =23 hi(x, t, u, v, w) =23+t
va(x) =3 ho(x, t, u, v, w) =23 +ur +t2%
va(2) = a3 hs(x, t, w, v, w) =23 +ur — 122
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Name v, h;

va(w) =3 hi(z, t, uw, v, W) =23 +uzx +vix + 3

v5(x) =23 hs(zx, t, u, v, w) =3 +uzx +viz +wis + i

vo(x) =23 he(z, t, u, v, w) =23 +ux +vix -+ witr — iz
Cusps: vy(x) =t hi(z, t, u, v, w) =2t +uxd +t22 +iz

vg(x) = xt ha(x, t, u, v, w) =2A +ux® +vi® + iz

vo(x) =24 ho(z, t, u, v, w) =2 +uz? +i22 +vx + 2%

vio(@) =t hig(x, ¢, w, v, w) =2 +ux® 2 + vz + 132 + wix

vu@)=2t  hi(z, b, U, v, w) =2t +ux? + 1222 4+ x4 2+ wix

V(@) =2t hia(x, t, u, v, w) =24 +ux? — 1222 4+ ox + 122 + wix
Swallowtails: Y13 (B) =2°  his (@, £, u, v, w) =2 +ux® +cba® +vtad + 1 + wa + lx

(cER, c+1)

v1a(x) =28 hia(z, t, u, v, w) =25 + ua® + 828 + va? +twa? +tx

vis(x) =2 Ry, ¢, u, v, W) =25 + uad —tad - vr® + twa iz
All of the h; are space-stable and clearly space-irreducible.

Remark. Let r and s be arbitrary and suppose k€m(n +r-+s) unfolds » Em(n). By the
remark at the end of § 4, if » ¢m(n)? then A is automatically (r, s)-stable and is (r, s)-equi-
valent to any other (r + s)-dimensional unfolding of ».

Suppose v€ni(n)? but - has a simple singularity at 0. Then again & is automatically
(r, s)-stable, for v reduces to the trivial germ 0 € m(0), so » is equivalent to a non-degenerate
quadratic form on R” and it is then easily seen (using Theorem 2.9) that any r-dimensional
unfolding of » is r-stable and hence, by Corollary 3.7, any (r + s)-dimensional unfolding of
v is {7, s)-stable. Furthermore, by Lemma 4.18 it follows that & (r, s)-reduces to an {r +s)-
dimensional unfolding of 0€m(0), i.e., to a germ in m(r+s). Again any germ in m(r+s)
is (r, 8)-stable and they are all (7, s)-equivalent, for if g’ and ¢g” are in m(r +s), and if we
define A €L(1 +r+3) by Afr, u, v)=(z +9¢" (¥, v) —g'(u, v), u, v) for TER, wER’, vER®, then
(tdgr+s, idgr+s, idge, A) is an (r, s)-equivalence from ¢’ to ¢’. Hence the classification up
to (r, s)-equivalence of unfoldings with a simple singularity is also completely trivial.

Obviously, in Theorems 5.2 and 5.3, if { time-reduces to one of the unfoldings A; or
space-reduces to one of the unfoldings k;, then f does not have a simple singularity.

Proof of Theorems 5.2 and 5.3. The method of proof is the same for both theorems. If
{ is time-stable or space-stable, then { is 4-stable and hence f has a simple singularity or f
reduces (in the sense of Definition 2.24) to a unique one of the unfoldings g, in the list of
Theorem 2.26. If the latter is the case, then 7 reduces to a unique one of the germs u, in
the list of Theorem 2.26 (7 cannot reduce to more than one of the u;, for then, by Lemmas
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4.18 and 4.17, { (4, 0)-reduces to stable unfoldings of more than one of the y; and by Corol-
lary 2.23 and Lemma 4.19it follows that f reduces (in the sense of Definition 2.24) to more
than one of the g,).

By Lemma 4.18, if  reduces to y; then f time-reduces (in Theorem 5.2) or space-
reduces (in Theorem 5.3) to a four-dimensional unfolding % of u; which by Lemma 4.17
must be time-stable (resp. space-stable). Moreover by Lemma 4.19 f also time-(space-)
reduces to any other unfolding of u; which is time-(space-)equivalent to &, but on the other
hand, by Lemma 4.20 the time-(space-)equivalence class of % is uniquely determined by f.
Hence to complete the proof we need only show that for each germ g, in the list of Theorem
2.26, the lists of Theorems 5.2 and 5.3 contain exactly one representative of each time-
(resp. space-)equivalence class of time-(resp. space-)stable unfoldings of u;.

To show this, we first apply the algorithm given after Theorem 4.11 to obtain lists
containing at least one representative of each of these equivalence classes; special argu-
ments will then be used to reduce these lists to those given by "fheorems 5.2 and 5.3;
finally we shall show that the size of the lists cannot be reduced further, i.e. that we have
a unique representative of each class. The remainder of the proofs of Theorems 5.2 and 5.3
will be conducted separately.

Proof of Theorem 5.2 continued. By applying the algorithm given after Theorem 4.11,
one finds that up to time-equivalence an arbitrary time-stable unfolding of u,(x) =23 is
either 3 +ux (which is k,) or is of the form

23 +ix + (du + By + Cw + Du? + Euv + Fuw + Gv? 4 How + Iw?) ,

where 4, B, C, D, E, F, G, H, I€R and either 4, B or C is non-zero or

2D E F
det | E 2G H | 0.
F H 21

If A, B or C is'non-zero then by Lemma 4.9 the unfoldings we get for different values of
D, E; F, G, H and I are all time-equivalent, so we may assume D=E=F=G=H =1=0;
by a linear change of coordinates in uvw-space we may then arrange that 4=1, B=C=0;
this gives 234z +ux and changing coordinates by setting 4’ =u +¢ (the other coordinates
unchanged) gives #®-+u'z, which is k, again. If 4 = B=C =0, then we-have

2D E F

det|E 2@ H| =+0;
F H 21
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this is the determinant of the Hessian at 0 of the form Dwu?+ Euv+ Fuw-+ Gv?+
How + Iw? on R3, so this quadratic form is non-degenerate and by a linear change of co-
ordinates on uvw-space we may assume E = F =H =0, and either D=Q@=1=1;0or D=G=1,
I=—-1;0r D=1, G=I=-1; or D=G=1I=—1. These four possibilities give Ay, hs, h,,
and ;.

‘We must show that no two of these unfoldings A, — k; are time-equivalent. To simplify
the notation, we denote u, v, and w by u,, u,, u; respectively. If &, is time-equivalent to
h, then there is a germ 1€£(5) and a coordinate change (¥, u,, Uy, Uy, £) (2, wy, Uz, uz, t')
on RS such that

(a') hf(x” 'Il«;, ué’ ué: t’) =}'(hj(x, ulr uz, u3, t): ub uZ: u3’ t)

and such that the u; do not depend on z, ¢’ depends only on ¢, and (94/07)(0) +0 (where 7
is the first coordinate).

Suppose first §=1, ¢+1. If we apply the operator &2/6xdt to (a) and evaluate at 0 ERS,
we find (62'/ox)(ét'[ét) (0)=0, which is impossible, so %, is not time-equivalent to any
of the others. So we may suppose 4, j +0. Then k=23 +tx +@Q(u,, uy, u3)x and by=a3+
t5 4-Q5(uy, Uy, ug)x where @, @, are non-degenerate quadratic forms on R3. If, for k=1, 2, 3,
we apply 83/02%0u, to (a) and evaluate at 0, we find 6(0z'[ox)? (62 [owu,)(0)=0 which
implies (9z'/ow,)(0)=0. From this it follows that if we apply &%/owdw,ou, to (a), for
1<k, <3, and evaluate at 0, then we find

%Q,

o’ Q0 ou,  ou,

b 0
( ) ax( )1<D.G<3 Mpauq auk( )6’“1

0)= o 0) (0) (fork,l=1,2,3).

ot
Moreover, if we apply 93/02® to (a) and evaluate at 0, we find 6(dz'/dx)3(0) =6(a4/é) (0),
80 (0x'fox) (0) and (64/67) (0) have the same sign; hence it follows from (b) that @, and @,
have the same index, so ¢=4. So no two of &y, ..., h; are time-equivalent.

By applying the algorithm given after Theorem 4.11 and by subsequently reducing
the size of the list so obtained via arguments similar to those we used for the unfoldings
of y,, it is easily verified that up to time-equivalence an arbitrary time-stable unfolding of
Ma(x) =24 is either 2%+ ua? + vz (which is ) or is of the form 2% +ua? +ix + Aux +v?r L wr
(where 4 +0) or of the form x*+tx?+ Byx®+u22? + w22 -+-vx (for some B=0). Unfoldings
of the last type are time-equivalent to unfoldings of the second type; for the unfolding
2t 4 ta? + Box? + g, ur? + g, w2 +vx (where g, = +1, £,= 1) becomes
|B| Bl 2

x4+u’x2+t’x+lu'x—s 'l —g, S w' %
B “B Y B



STABILITY OF UNFOLDINGS IN. SPACE AND TIME 109

(which is of the second type above) if we change coordinates by setting
u=V|B|v; v=%(u’—eu|B|v’2—sw|B|w’2)+t’; w=V|B|w';and t = — BY'.

Finally, we claim any unfolding of the form x*+wua?+ix + Aux+ v fwix (A +0) is
time-equivalent to an unfolding of the form %+ ux? -z +ux + v2x +- w?x (and hence clearly
to hy, hg or hy). For suppose we change coordinates by setting x=ox', u=pu’, v=yv',
w=0w and t=et’, where «, §, ¥, 0, € are non-zero real numbers. Then 2+ ua®+tx + Aur +
vir+wikr becomes (*) ofa't4olfu'w’?+oaet's’ + Aafu's’ +ay?'?’ +ad?w2’. If we can
choose «, 3, y, 6, and & such that (**) o =o?f =ae=Aaf = + ay?= + ad?, then the unfold-
ing (*) will be a real multiple of (and hence time-equivalent to) an unfolding of the form
i+ u'x? ' +u's’ +v'%’ tw'%’ (for some choice of the-+signs). But equation (**) can
be solved by setting a=A4, f=A42, y= VIT"I, 6= VTA_“’|, &= A3 this proves the claim.

We must show that no two of hg—h, are time-equivalent. If h; were time-equivalent
to h,for i=17, 8, or 9, then clearly hg|,_o would be 3-equivalent to k,|,_o. But this is impos-
sible, for one easily checks (using Theorem 2.9) that kg |, is 3-stable and k|, (i =7, 8,
or 9) are not.

For.¢=17, 8, 9, the unfolding %, has the form z*+wuax?+ix+ux+Q,(v, w)x, where @,
is a non-degenerate quadratic form in » and w. If 7<¢, <9, and if , is time-equivalent
to A;, then there is a coordinate change (z, u, v, w, t)—> (¢, w’, v, w’, t') on R5, and there is
a germ A€E(5), such that

(C) hi(x,’ ’Ll/’, ’Ul, w,a t,) = A(hj(x, u, v, w, t); u, v, w, t)

’

and such that ', v, w' do not depend on z and ¢ depends only on ¢, and such that
(04/07) (0) =0 (where 7 is the first coordinate). If we apply ¢°/62® to (c) and evaluate at O
we find

’ 2 7 2./
() 240(2—”; (0))3%(0)=0 s0 a—’”(0)=0.

If we apply 6%/oxdv to (c) and evaluate at 0, we find

ox'  ouw ou' .. ou'
P 0) 7 0)=0 so - (0)=0; similarly P 0)=0.

()
If we apply &%/62%0v to (c) and evaluate at 0, then because of (e) we find

ox’ \3 (ox' ox' .. ox'
) 24 (59; (0)) (5 (0))—0, s0 o-(0)=0; similarly -> (0)=0.
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If we apply 24/0x20v® to (c) and evaluate at 0, then because of (d), (e), and (f) we find

' 2u'
Soow 0)= (0) 0.

@) ( (0))232“2 0)=0; so a;‘; (0)=0; similarly

If we apply &%/o2t to (¢) and evaluate at 0, we find

o’ N\t A oA
24(5(0)) =24_-(0) 50 -(0)>0.

If we apply &°/0220u to (0) and evaluate at 0, then because of (d) we find
2(Z o) Z0~220 » FEo>0

1f we apply ¢*/ozdu to (c) and evaluate at 0 we find

ox' ou oA ox'
P (Wa (0)'='5‘_c(0), 80 (0)>0.

Finally if we apply &®/0xd0? to (c) and evaluate at 0, then because of (e) and (g) we find
*Q, 32@: Qs ox' o _0A  3*Qy
[ )( (0)) 6'vaw( ) ( )“’(O)+“'“ (0)( (0)) ] 0)= (0) 3 (0);

by applying &*/oxovow and 33/azou? to (c¢) and evaluating at 0 we obtain corresponding
equations involving (9%Q,/6vow)(0) and (0%Q,/ow?)(0) respectively on the right. Since
(0x'jox) (0) and (04/d7)(0) are both positive, and since (because of (e)) the matrix

o' ov'
— — (0

~0 o

ow' o'
rn (0) w ()]

is non-singular, it follows that @, and Q, have the same index, so ¢ =j. Hence no two of the
unfoldings kg — bk, are time-equivalent.

By applying the algorithm given after Theorem 4.11 and by using arguments similar
to those used in classifying the unfoldings of u,, one easily verifies that up to time-equiva-
lence k., hyy, and kyy are the only time-stable unfoldings of us(x)=15, us(z, y)=2%+4°
and ug(x, y) =2® —2y? respectively; the algorithm also shows that u,(x)=2% and u,(x, y) =
x%y +y* have no time-stable unfoldings. This completes the proof of Theorem 5.2.
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Proof of Theorem 5.3 continued. We first make an observation which will enable us
to shorten the computations considerably. To simplify the notation, we shall for the
purposes of this remark denote the spatial coordinates %, » and w by v,, v, and vg respec-
tively. Let p€m(n) for some n and suppose u has a 4-stable unfolding g of the form
g(x, t, vy, vy, v3) =u(x) -+ S5, ,b,(x), where the b, are in E(n). Note that g is linear in the
v, and does not depend on ¢. (By virtue of Theorem 2.20 and the other results of §2, u has
a 4-stable unfolding of this form exactly when o(u)<3.)

We claim that in this case any space-stable unfolding of u is space-equivalent to a

space-stable unfolding % of the form

* Wz, t, vy, vy, v3) = g(&, £, wy(E, ¥y, vy, V3), Wy(t, V1, Vy, V), WylE, ¥y, Vs, Vs)),
where each w, is of the form
(**) wi(t’ Uy, Vg, ”3) = +pi(t) + E?alvlfil(t)7

the p; and &;; being polynomials in ¢ without constant term, the p, being of degree at
most 4 and the §; of degree at most 2. By Theorem 4.11 we know that any space-stable un-
folding f of u is space-equivalent to a space-stable unfolding 4’ of the form A'(x, ¢, vy, vy, v3) =
gol, t, wy, w,, wy), where ¢ is some permutation in 7' (see Def. 4.1) and the w, are of the form
(**). What we must prove is that we may without loss of generality take g to be the iden-
tity. If ¢ is not the identity then for some ,, 1 <2,<3, we have h'(x, t, v;, Vs, v3) =pu(z) +
2igics, ity Wilt, ¥y, Vg, vg)by(x) +1tb, (). If in this we replace t by ¢ +v;, we obtain a space-equiv-
alent unfolding A" of the form A"(x, t, vy, vy, v5) =p(2) + Dicics, 144, Wil + V45 V1, Vg, V) by(2) +
;,0;,(x) +1b,,(z). Clearly for suitably chosen polynomials &;;(t) of degree at most 2 and without
constant term, and for suitably chosen germs y,(t, vy, vy, v3) In (o33, V13, V3504 +

({vy, Vs, VaDewy)?, and for suitably chosen real numbers ¢;, we may write (for ¢ 3=3,)
Wit + 04, V1, Vg, V3) = 0+ Dy +04,) + Zha1 0,54t +04,)
=0;+¢,0;, +24(f) +23’=1 vjfﬁj(t) +yilt, vy, vy, V).

For =iy set wi(t, vy, vg, V) =;+0,0,, +P4(t) + Ti-10,E5(t), and set wi,(t, vy, vy, v3) =0y, +1.
By virtue of Corollary 4.8 " is space-equivalent to the unfolding % given by A(z, t, v,, v,, v5) =
(@) + Dicica Wi (t, vy, Vs, ) by(2). Now for ¢ = iyset wi (£, vy, v5, 3) = v; +Di(t) + Zn<s<s, 1,7, Es(t)+
V1(Eia(8) — Sigics, +1,6,64(t)) and set w;, =wj,. (Note that each wj is of the form (**), and
that w] is obtained from w; by replacing each w,, for j &4y, by v,—c;v,,.) If in % we replace
each ,(j +14,) by v, —¢,v,,, then we obtain an unfolding & which is space-equivalent to % (and
hence to f), and Ais of the form (*), for we have h(z,t,v,, v, v3) = () + 1w (8,94, 05,03) by(2) =

g(, ¢, wi, wy, wy). This completes the proof of the claim above.
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We now proceed to find all space-stable unfoldings of the germs g, in the list of Theo-
rem 2.26. We shall revert to denoting the spatial coordinates of R* by u, v and w (rather .
than v, v,, ;). We also agree on the following notational convention: polynomials in ¢
will be denoted by capital letters (P, Q, R, S, 4, B, C, D, etc.), and if (for example) P is
such a polynomial, then we shall write P, to denote the coefficient of the term # in P(t).

By applying our algorithm (and making use of our observation above) we easily find
that any space-stable unfolding of u,(x) =22 is space-equivalent to an unfolding of the form

(a) 23 +ux + P(f) x + Q(t) ux + B(t) v + S(t) we,

where P, ), R, and S are polynomials in ¢ without a constant term, P is at most quartic,
Q. R, and S are at most quadratic, and where one of the following conditions is satisfied:
either (i) P,<=0 or (ii) P;=0, P,+0 or (iii) P,=P,=0, P;=+0, and R, or 8, is non-zero,
or (iv) Py=P,=P;=0, P,+0, and R,S,— 8, R,=+0. In case (i) there are no conditions on
@, R or 8, so by remark 4.12 we may assume they are 0. Since P, =0, the map (x, ¢, u, v, w)—>
(' =z, t' =P(t)+u, ' =u,v"=v,w =w) i8 a coordinate change on RS, under which the
unfolding (a) becomes '3 +¢'z’, which is k1. In case (ii) we may again assume @ = R=8=0,
by virtue of Remark 4.12, and we have P(t)=P,t?+P,t®+P,t*, with P,<+0; under a suit-
able change of the t-coordinate {—¢ the polynomial P can be transformed to +¢'2, and
the unfolding (a) becomes ks or hs.

In case (iii) we may assume R, =1, B;=0, § =@ =0 by virtue of Remark 4.12, and by

virtue of Lemma 4.9 we may assume P,=0. If we then change coordinates by setting

t'= Is/lTat, v’=v/13/§;, the other coordinates unchanged, then (a) becomes x®+ux+¢3x+
t'v'z, which is hs. In case (iv) we may by virtue of Remark 4.12 assume B, =8,=1, R,=
S, =0, @ =0, and by virtue of Lemma 4.9 we may assume P, =+ 1; this gives k5 or hq.

By methods similar to those used in the proof of Theorem 5.2, one can easily show
that no two of the unfoldings h; — ks are space-equivalent We omit the details.

Again, by using our algorithm and by virtue of the observation at the beginning of
the continuation of the proof, we easily find that any space-stable unfolding of y,(x) =x*

is space-equivalent to an unfolding of the form
(b) at+ux?+P(t)a? +Q(t)ua? + R(t)va® + S(E) wa? +vx + A(t)x + B(t)uz + O(t)vxr + D(t) we,

where P, @, R, 8, A, B, C, D are polynomials in ¢ without constant term, P and 4 are at
most quartic, the other polynomials are at most quadratic, and where one of the following

conditions is satisfied:

either: (i} P; 0, 4, +0; or (ii) P, =0, 4, +0, and either 2P, +4, R, or 8, =0; or (iii) 4, =0,
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Py <0, 4,0, and 24,+P, B, or D, =0; or (iv) P, +0, 4,=A4,=0, A;+0 and P, B, D,—
P,D,B,+3A4;D;=+0; or (v) Py=A4,=0, P;=0, 4,+0, Py D, +4,8;.

Suppose case (i) holds. By Remark 4.12 we may assumeé @Q=R=S=B=(C=D=0.

It follows easily from the implicit function theorem that we can find germs « and
BEE(1), of functions of ¢, such that o and § are units of £(1) and such that for all ¢ near 0
we have
(¢) ok(t) = (P1f(8) +Pytf(t) + Pyt63(t) + Pyi®BA(t)) a()

= (A4, 8(t) + A tp(t) + A5t263(8) + A, 364(E)) l?)

(simply define a function F: R®->R2 by setting
F(t, a, b)=(a% — (Pyb +P,b% + P, b%2 + P, b%3)a?, at —(A4,b -+ A,b% + A, 032 + A, b%3)a);

we have F(0, 4,/P,, A}/P3)=(0, 0) and the matrix

oF, oF,
da

0, 4,/P,, A%/P}
oF, oF, (0, 4,/P,, A1|Fy)
oa ob

is non-singular, so by the implicit function theorem there are germs « and f in (1),
with «(0) = 4,/P;, B(0)=A3}/PS, such that F(t, a(t), B(t)) =0 for ¢ near 0).

In (b) let us replace x by a(t); t by B(E)t; u by (A2[P3)u; and v by (A3/P)v; and let us
divide the resulting unfolding by o(t). Since o and B are units of £(1) we then obtain an un-
folding which is space-equivalent to (b), and because of (c) this unfolding will have the form

(d) 22+ (A3 [P ujod(t)) 22 + ta? + (A3 [P3) v]ad(t)) x +t2

(recall that we have set @, R, 8, B, C, D to 0!) Now clearly, for suitably chosen polynomials
@'(t) and C’'(£), at most quadratic in ¢ and without a constant term, and for suitably chosen
germs p and § in m(1)?, we may write the unfolding (d) as x*+ux®+t2? +Q'(t) ux® +ovr+
tx + C'(t) v+ (t) uxr® +6(t) va; moreover this unfolding is space-stable since it is space-equiv-
alent to an unfolding of the form (b) for which condition (i) holds. By virtue of Corollary 4.8,
the unfolding (d) is space-equjvaleht to (e): x*+ux? +ix? +Q'(8)ux +vx +tx + C'(t)vx. This
unfolding is again of the form (b) and such that condition (i) holds; so by virtue of Re-
mark 4.12 we may replace @’ and C’ by 0. In other words, the unfolding (e) is space-equi-
valent to (f): x* +ua? +122 +wzx + iz, since both (e) and (f) are of the form (b), with the same
polynomials P and 4, and since they are both space-stable (because both satisfy condition
{1)). Finally, if in (f) we replace ¢ by t —» and u by u+v we obtain the space-equivalent
unfolding k7.

8 — 752905 Mathematica 135. Imprime le 19 Décembre 1975
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Suppose case (ii) holds. By Remark 4.12 we may assume S,=1, §,=0, Q=E=B=
C=D=0, so the unfolding (b) is z*-+ua?+P(f)2? +wtz® +vr+ A(t)x. If we set t'=A(t)
(since 4, 0 the map t—t'=A(2) is a change of coordinates on R), and if we set w’'=w/4,,
then for a suitable polynomial P’(¢') without constant term, of degree at most 4, and such
that P;=0, and for a suitable real number S; and suitable germs f€m(1)® and y €Em(1)®
we may write the unfolding above as zt-+ux?+P'(t')x?+w't'a?+ 8wt +vx+t'x+
Bt )22 +w'y(t' )22 By Corollary 4.8, Corollary 4.10 and Remark 4.12 this is space-equi-
valent to z*+wux?+P’(t) 2%+ wix? + vz +tx, which is again of the form (b) and such that
case (ii) holds. By Remark 4.12 this unfolding is space-equivalent to x*-+uw?+P’(f)a® +
2P; tvx? 4 3Pg t20x? 4 wix? + vz +tx; since this is space-stable no matter what the value of
P; we may by Lemma 4.9 assume P;=0. If we now replace ¢ by ¢ —v and « by u+wv+
Pjv?—2Pg®, we obtain the space-equivalent unfolding 2#+ua?+ P’(t) 22 +wia? — 3Psv%a® +
tx; replacing w by w4 3Py? gives the space-equivalent unfolding a*+wux?+P’(t)2?+
wta? +tz. We shall show this is space-equivalent to g

If 7,€[0, 1], define a 5-dimensional unfolding K, of «* by setting K, (x, t, , v, w, T)=
28 +ux® 4 (7o + 1) P' () 22 + wiz® +tx for z, t, u, v, w, TER. Then 0K, [0 =P'(t) 2% To simplify
the notation in the following let us set 8 =wu+(to+7)P'(f) +wt; then K, =x*+02%+tx.
Now 4K, —x0K, [0x=202%+3tx. Hence (4K, —x0K,, [0x) =40+ 126t + 9222 If we
subtract (0%2-+30t)0K,,/or from this we get —28%2—70%x—36t%+9%x% if we add
3862 (=303 K,,)?) to this we get —28%22—T78%x+922% if we add 6*(4K,, —x0K, [0x)
(which equals §%(2022+ 3tx)) to this we get —40%x + 9122, if to this we add 40%0K, [0t
we get 91222 +40%wix? + 8Pj(v, +1)0%2x2 + 12P;(1, +7)0%322 (recall Py=0); if we subtract
20wt(4K ,, — 20K, [0x) ( —20wt(2822 + 3tx)) from this we get 9222 — 63wt + 8Pj(z, +7)0%2%22 +
12P; (1, +7)0%%2% if we add 60wt?0K, [0t we get 92z 60w2x® +12P;(ty+7)dwta?®+
18P5(zo + 7) Swtta? + 8P; (1, + 7) 028222 + 12P;3(7, +7)0%3%2% dividing this by 9-+6dw?+
12P5(xy + 7) dwt + 18P3(t, + 7) dwt? +8P3(7y +7) 82+ 12P3(1 +7) 6% (which is a germ of a
function of ¢, #, w, and v and is non-zero near 0) gives #222. We have shown that 2%

is an element of

(20K . [0, tOK ;[0 ooy + {LOK 1, [08 )5y + <1, Ko, K$o>5(5)

(here £(5) is the ring of germs at 0 of smooth functions of ¢, u, », w, and 7); consequently
1322 is also an element of the same sum of £(5) submodules of £(6); hence 9K ,, /ot = P;t?x? +
P32 is also an element of this sum of modules, and this is true for any 7,€[0, 1]. From
this it follows by Lemma 4.5 that a*+ux?+P’(t)2? + wix? +fx is space-equivalent to z* +
ua® +wix? +tx, which is clearly space-equivalent to hg.

If case (iii) holds, then by arguments similar to those used for case (i), the unfolding
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(b) is space-equivalent to hg. Similarly in case (iv) the unfolding (b) is space-equivalent
to k1o

In case (v) one may by Remark 4.12 assume D, =1, D,=0, §=R=8=B=C=0.
By the implicit function theorem one can find units « and § of £(1) such that

od(t) = L (Poff3(t) + P3tf3() + Py t2p4(t)) 02(t) = (A2 5%() + A5tf3(E) + A 22B4(t)) ()

for ¢ near 0, where the =+ sign is taken to be + if P,>0and — if P,<0. By continuing the
argument as in case (i) one can easily show that in case (v) the unfolding (b) is space-
equivalent to %y, or to fys.

It can easily be shown, by arguments similar to those used in the proof of Theorem
5.2, that no two of the unfoldings h; — ks are space-equivalent.

By using the usual algorithm and applying the observation at the beginning of the
continuation of the proof of Theorem 5.3, one readily computes that an arbitrary space-
stable unfolding of us(x) =" is space-equivalent to an unfolding of the form

(8) @5 +ux® + P(t) 23 + Q(t) ux® + R(t) vard® + S(t) wa +va? + A(t) a?
+ B(t)ua®+ C(t) va? + D(t)wa? +wx + E(t)x + F(t) ux + G{t) vx + H(t) we,

where P, Q, R, S, A, B, C, D, E, F, @ and H are polynomials in ¢ without constant term,
P, 4, and E of degree at most 4, the others at most quadratic, and where the coefficients
of these polynomials satisfy the following conditions: E,+0 and 4P, E,+3A4} and the

determinant

P, A, E, 2P, 24, 2E,

0O 0 0 2P, 4, O

0 0 0 —-P 0 E,

=+0.

1 0 0 @ B, F,

0 1 0 R ¢, G

O 0.1 &5 D, H,

Suppose first 4,+0. By Remark 4.12 we may assume @Q=8S=B=C=D=F=G=H=0,
R,=0, and we may choose R, to have any value such that the determinant above does not
vanish (note that by choosing R, appropriately we can in fact ensure that the determinant
does not vanish). By the inverse function theorem there are units o and P EE(L) such that

a*(t) = (A1 8(8) + A2B2(1)E + Ay f3(8) 12 + A () ) (1)

= (B,8(t) + B f2(t)t -+ B f3(t) 12 + B fA(2) 13) x(t)
for ¢ near 0.
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By the same argument as was used in case (i) for the unfoldings (b) of #%, it follows
that the unfolding (g) (when A, +0) is space-equivalent to an unfolding of the form

(h) 25 +uxd 4 P’ (t) 2® + Ryt 4 va® +ia? +wa +tx,

where P’ is a-polynomial in ¢ without constant term, of degree at most 4, and R; is a real
number, and where (since this unfolding is of the form (g) and is space-stable) we have
P;+3 and R, +2P;.

We shall show that any space-stable unfolding of the form (h) is space-equivalent to
an unfolding of the same form in which P;=Pg=P;=0. First, since (h) is stable no
matter what the value of P;, we may by Lemma 4.9 assume P;=0. By Remark 4.12 we
may assume that R; <0 and that R; is of opposite sign to P; if P;+0. Now suppose P;
and P; are not both zero. For 7,€[0, 1], define a 4-dimensional unfolding H.,, of #5 by
setting

H, (x,t,u, v, w) = 25 +uad + Py tad 4 14( Py 12 + P 13) 23 + R} tvx® +va® +fa? + wz +tx,

and define a 5-dimensional unfolding K., of z* by setting

K, (x, ¢t u,v,wt)=H,, (2t u v w),forzt u v w rER.

Because of the way we chose Rj, we have that H, is space-stable for each 7,€[0, 1].
Because K,, is a 1-dimensional unfolding of H_, it follows easily from this, using Corollary
1.7, that

E(6) = (0K ,,[0%) g0y +OK 1, [08)ec) + (OK o, [0U, DK 1,[00, 0K, [ow)ece + K, E(6),

where £(6) is the ring of germs of functions of z, ¢, %, v, w, and 7, and E(5)< E(6) consists
of those germs which do not depend on x, £(4) consists of those germs which do not
depend on z nor f, and where K, €E(6, 6) is defined by setting K., (z, ¢, u, v, w, T)=
(K, (2, 8 u, v, w, T), t, u, v, w, 1) for z, t, u, v, w, TER.

In particular, we can find germs y(z, ¢, u, v, w, T) €E(6); 8¢, », v, w,v) EE(5); e(u, v, w, T),
L(u, v, w,7), and n(u, v, w,7) EE4); and germs x(f, u, v, w, 1), A{t, %, v, w, 7)EE(5) and
ula, t, u, v, w, 7) EE(6) such that

. oK, ‘o8 Pl oK, oK,
o P — (] 0
(i) P Py 23+ Pyt3a® = y(x,t,u,v,w,T) P + (¢, u, v, w,T) o
K K
+ &(u, v, w, T) %’ + E(u, v, w, 1) aav"’ + n(u, v, w, 7) 3_(%:,

+ %(t, u,v,w, T) + At, u, v, 0, 7) Ky, + (Ko, t,u,0,w,7) K2,
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Now we claim that when z, ¢, u, v, and w are 0, then the germs y, §, ¢, { and 7 vanish (no
matter what the value of 7), i.e. we claim y €m(5) E(6), €m(4) E(5) and ¢, { and 5 are
in m(3) £(4).

To prove this claim, we differentiate equation (i) and evaluate the resulting equation
for x=t=u=v=w=0 (after substituting the correct expressions for K., and its deriva-
tives). If we differentiate once, twice, ..., etc., up to seven times with respect to x, and

evaluate for x =t =u=v=w=0, we find respectively that:

(i) 6(0,7)+n(0,7) =0; (J2)  20(0,7) +2{(0,7) =0;
(is) 6P16(0, 7) +6¢(0, 7) = 0; () 1209(0,7)=0;
(js) 6008y/6x(0, 7) +120 A(0, 7) = O; (i) 1800 8%/02%(0, 7)=0; and

(i) 4200 &% /223(0, T) = 0.

If we differentiate equation (i) once with respect to ¢ and then once, twice, or thrice with

respect to x and evaluate when x =t =u=v=w=0, we find respectively:

(s) oy[ox(0, T) +2v(0, T) +26/0t(0, T) + A(0,7) = 0;
(3o) 6P1(0, T) +49y[0x(0, T) + &%y [052(0, T) +288/84(0, T) +2A(0, T) = 0;
(G10) 18P18y[0x(0, T) + 60% [02*(0, T) + 8% |0x3(0, T) + 6.P106/24(0, T)

+12(1y + 1) P26(0, 7) + 6 R1£(0, 7) +6P1A(0, 7) = 0.

Now by (j we have (0, 7)=0, ie. yeEm(5)E(6). By (j;) we have A0, 7)=
—50y[0%(0, 7). Substituting into (jg) we find 26/0¢(0, T) =42y [0x(0, 7). By (j¢) %[00, T) =0;
by (js) we now find &y/6x(0, 7) =0, and hence also 88/3t(0, 7) =A(0, ) =0. Also, by (j;) we
have 83%[023(0,7)=0. Hence (j,,) reduces to: 12(z,+7)Ps8(0, 7) +6R1(0, T) =0. But by
(ja) we have (0, 7)+((0, 7) =0, and since R; was so chosen that for no (r,+7)€[0, 1] is
12(7y+7)Py=6R], it follows from the last two equations that 8(0, v)=((0,7)=0 (i.e.
d0€m(4) E(5) and Ze€m3)E4)); and by (j;) and (j,) it now follows that % and e are in
m(3) £(4). This proves the claim.

Since the claim above holds for any 7, €[0, 1] it follows by Lemma 4.5 that H, (which
is the unfolding (h) with P;=0) is space-equivalent to Hy=25+ux®+ Pytxd + Ritvas +
v + 82 + Wit + b By Remark 4.12 we may assume Rj=1. If we replace ¢ by t—v and w
by w+v and u by u+Piv+92, we then get the space-equivalent unfolding 2® + ua® + Pjta® +
tox® -+ tx? +wx 4 iz, which is a member of the continuous family hys of space-stable unfold-
ings. This takes care of the case A; +0.
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Let us now consider the unfolding (g) when 4, =0. The conditions for (g) to be space-
stable now reduce to the following: E, =0, P, =0, and 24,+P, B, + E, D,. By Remark
4.12 we may assume Q=R=8=B=C=F=G=H=0, D,=0, and D, +24,/E,.

By the inverse function theorem we can find units o and 8 in £(1) so that for ¢ near 0

aB(t) = £ (PLA{E) +Pyf2(t)t +Pyf3(t) 2+ Py (1) 13) o3(2)
= (B,B(t) + B f2(0) 8+ Ha (1) 8 + By A1) ) x(2),

where the + sign is taken to be the sign of P,/E,.
By the same argument as was used above in the case A4, <=0, it follows that the un-
folding (g) (when A, =0) is space-equivalent to an unfolding of the form

(k) 25+ uxd+ 123 + va? 4 A’ (t) 22 + Ditwa? + wz +tz,

where A’(t) is a polynomial in ¢ without constant term, of degree at most 4, and with A;=0,
and where D} is a real number and D;+24;. By Remark 4.12 we may assume Dj &0
and is of opposite sign to Aj if Ay 0.

We may then argue as we did for the unfoldings of the form (h), to show that in (k)
we may assume A’ =0. By Remark 4.12 we may then set Di =1. This gives the unfoldings
2° 4 ux® + ta® + va® + twa? +wx +tx, and if in these we replace ¢ by ¢t —w; v by v+w? and »
by u-+w we get k14 or his (depending on the + sign).

By the same arguments used before one can easily show that none of the unfoldings
in the family hj3 is space-equivalent to kjs or h;s ,that kj4 and h;s are not space-equi-
valent to each other, and that no two of the unfoldings his,, for different values of c, are space-
equivalent to each other (so x® has infinitely many non-equivalent space-stable unfoldings!).
In other words the space-stable unfoldings of 23 given in the list are all essentially different.

We claim that u,(z) =% has no space-stable unfoldings. This can easily be seen by a
dimension argument as follows: By virtue of Theorem 4.11 and Theorem 2.26, if z8 has a
space-stable unfolding, then it has a space-stable unfolding f of the form

0N fx, b u, v, w) =28+ P(t, u, v, w) 2t +Q(¢, u, v, w)ad + R(t, u, v, w)a2+ 8¢, u, v, w)x
where P, @, R, and S are suitable polynomials in £, %, v, and w, without constant terms.
Moreover, since f is space-stable, we must have, by virtue of Corollary 4.13, that
(m) E(2) = (of fox| B¢z + <0f [0t | Beqt) + <0f [0u | R?, f [ov | B2, Of fow | R%)x
+(1, f|R, 2| R2, £ R sy + e

(where R2? denotes the z, t-plane (i.e. u=v=w=0), £(2) is the ring of germs of smooth func-
tions of 2 and ¢, and &(1) is the ring of germs of smooth functions of ¢).
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Now let C = E&(2)/(<of[0x | R% g, + {t*)s) and let 7: £(2) > C be the projection. Because
f has the form (1) it is clear that the 20 elements n(t'zf), 0<i<3, 0<j<4, form a basis of
C over R, so dimg C'=20. Let us consider the germs f/ IRZ, 7=0, 1, 2, 3. Clearly
(6f —x0f [ox) | R? = (2Px* + 3Q23 + 4 R2? + 58x) | R? is divisible by ¢, so z(f| R?) can be written
as a sum of monomials divisible by #. It follows that z(f2|R?) is a sum of monomials divis-
ible by # and #(f*|R?) is a sum of monomials divisible by 3. But since any germ divis-
ible by # is in the kernel of x, this implies dimg 7({f'|R%)5q)) <4 —j, for 0<j<3. Hence
dimg 72(<1, f|R?, 2| R, f3| R®q,) <443 +2+1 =10. Moreover dimg 7(<2f/0t| R?) ) <4 and
dimg 72(0f{ou| R?, offov|R2, offow|R?g) <3. So if (m) held we would have dimg C<
10+4+3=17 <20, which is impossible. Therefore f cannot be space-stable and 2* has no
space-stable unfoldings.

We shall show that us(x, y) =2+ has no space-stable unfoldings. For suppose ug
has a space-stable unfolding f(x, y, ¢, u, v, w), and let fy=f|u_y—1-o. By virtue of Theorem
4.11 and the observation at the beginning of the continuation of the proof of Theorem
5.3, we may clearly choose f such that f, has the form

folz, 3, t) = 2®+ 43 +P(t)xy + A(t)z + E(t)y

for suitable polynomials P, 4, and # without constant term and of degree at most 4. Let
D =E3)/({Pes +m(3)12+(1, ¢, 12)g) and let m;: E(3)—D be the projection. Let M be the
subspace of D generated over R by the elements 7, («t), 7r,(yt') and 7, (xyt), for 1=0, 1, 2.
We claim 7t,({&fo/0, 0fy[0Y)e) N M = {0}.

For let « and § be in &(3) and suppose m,(a«dfyjox +Hofyjoy) € M. Since 7, (m(3)12+
{t%e®) =0, we may assume x and 8 are polynomials in z, y, and £, and we may write

a(, y,b)= ; %z ayB) s Blx,y,8)= ‘ %z By(t) 'y,

where o, and 8, are suitable polynomials in ¢ and all but finitely many of them are 0, and
where, of course, we set o, =f;=0 if either ¢ or j is negative. Let us denote by f,(t) the

coefficient of 2y’ in «df,/ox +pof,/0y (so f, is a polynomial in ¢). Then we have, for all
%, §, that

(I].) f,j = 3“;_2,1 +PO¢;,1_1 +Adi_; +3ﬂ¢.1_2 +Pﬂ¢_1_ i+ Eﬂi'j.

Since 7,{0dfy/0x +p0fy/0y) EM we know fy; is divisible by 8 whenever ¢>2 or §>2, and
i+7<12. To show m,(adfy/0x +P0fo/0y) =0, we must show f, ,, f, o and f, ; are divisible
by .
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Now when 1>2 or j 22, i +j<12, we may solve equation (n) to find that

(0) oo, 3P 12 = —¥Pou,s1+ Aoy ;+PPi_1,;+ EB1.;) modulo 3 (¢>2 or i=2,1+3<12).

By repeatedly substituting from equations (o) into the equations (n) for f, ¢, f1,0 and
f1.1, one easily finds, because P, A and ¥ are divisible by ¢, that f, ,, f, ¢, and f;,; are divisible
by 2. In other words, 7,(xdf,/éx +Béf,/dy) =0, and our claim has been proved.

Now let D’ = D/n,({0f,[0x, 0fo/0yDes,) and let ;y: £(3)— D’ be the projection. From the
form of f, and because of what we have just proved above it is clear that the 9 elements
7o (xt), mo(yt') and my(xyt!), 1 =0, 1, 2, form an R-basis of D'.

Corollary 4.13 clearly implies that for f to be space-stable it is necessary that D’ be
generated over R by the following 9 elements: the 3 elements m,(#*6fy/0f), for =0, 1, 2;
the three elements 7,(9f/0% | yp=10-0); 7a(f/00| u=v-w—0), a0d 74(8f/0W| 4 _y— v 0); the two ele-
ments 7,(f,) and m,(fyt) (note that 3f, —28f,/0x —yof,/0y =Pxy +2Ax+2Ey, so m,(f,) is a
linear ¢combination of monomials divisible by ¢; hence sz,(fyt2) =0); and finally the element
7e(f,?) (note that since m,(f,) is a sum of terms divisible by ¢, it follows readily that 7,(fe%)
is a linear combination of terms divisible by 2, so 7,(fy%) =0).

But if we denote by P,, 4,, and E, the coefficient of ¢ in P, 4, and E respectively,
then in terms of the basis of D’ given by m,(2t!), m,(yt') and my(zyt), 1=0, 1, 2, we have:

To(t70fo[0t) = Py2yt? + A, xt* + B yt?,
7o(3fet) = Pyxyt? + 24, 2t* + 2B, yt?,
and as is easily seen:

75(9f,%) = 44, B, zyt?,

and as these three elements of D’ can clearly not be linearly independent, no matter what
P, A, and E are, it follows that the 9 elements listed in the preceding paragraph cannot
generate D’ (since dimg D’ =9), so f is not space-stable. Hence 23443 has no space-stable
unfoldings.

A similar argument shows that ug(z, y) =2°—zy? has no space-stable unfoldings.

Finally, u,(x, y)=a% +y* has no space-stable unfoldings. This can be seen most
easily as follows: Suppose f is a representative, defined near 0€RS, of a space-stable un-
folding of u,. Let ¢ be a representative of the 4-stable unfolding g, of u, given in the
list of Theorem 2.26 (recall g,(z, ¥, ¢, u, v, w) =%y +y*+uz?4vy? +wzri-ty). Then for
(z, ¥, %, u, v, w) ER® sufficiently near 0, we may consider the germs fi, ,.¢, 4. v,w and
Iz v.t. u. v, wy EM(6) (see Definition 2.3).



STABILITY OF UNFOLDINGS IN SPACE AND TIME 121

If a€R is close enough to 0, then we have that go, 4,80, —a. —6as,0(%> ¥, 0,0, 0,0) =
2%y +y*+4ay®. Suppose a<0. Introduce new coordinates 2', ¥’ on R? near 0 by setting
#' =y(4a+y)"® and y’ =2(—1/(4a +y))"'®. Since a +0 this is a smooth change of coordinates
on R? near 0, and clearly x%y+y*+4ay® =23 —2'y'2. So for & <0 but near 0, we have that
900, 0. 805, —a, ~6as, 00| R? is equivalent to pg(x, y) =23 —xy?.

By assumption the germ fy.0,0,0,0.00 i space-stable, hence 4-stable, and hence 4-

..... - This clearly implies that for any point z€R® near
0, there is a 2’ €R® near 0 such that the germ g,|R*€m(2) is equivalent to f,|R2€m(2).
In particular it follows that there are 2’ €R® arbitrarily close to 0 such that f,.|R? is equi-
for this unfolding, in fact for any ¢. But this equation is an algebraic condition on the g¢-
jet of the unfolding, so clearly this equation will also hold for the unfolding f, if z€RS is
close enough to 0 (how close depends on ¢, of course). In any event, it follows that for any
g there is a z€R® near 0 such that f,| R? is equivalent to ug and such that equation 3.6 (c)
holds for f,. If ¢ was chosen large enough, it follows f, is space-stable, contradicting the
fact that yg; has no space-stable unfolding. This proves that u, cannot have a space-stable
unfolding.
This completes the proof of Theorems 5.2 and 5.3.

Remark. The family k5 of space-stable unfoldings of x5 in the list of Theorem 5.3 shows
that for suitable r and s it is possible for a germ to have infinitely many (in fact, continu-
ously many) nonequivalent (r, s)-stable unfoldings.

§ 6. Pictures of the time-stable unfoldings

In this section we present drawings of the unfoldings in the list of Theorem 5.2.

The drawings show the bifurcation set of the unfoldings, which is defined as follows:
Suppose f€m(n +7) is an r-dimensional unfolding. Let 7: R®*"—R" be the projection, and
let SSR™T be the germ at O of the set {(x, u)€ER™": f|R" x {u} has a degenerate singu-
larity at (z, w)}. Then the bifurcation set of f is the éet-germ 7(8), which is the germ at 0
of a subset of R".

Remark. In the language of catastrophe theory (see the beginning of § 5), if the un:
folding f locally represents a gradient model for some natural process, then the catastrophe
set of the gradient model {which describes what an observer would actually see in nature)
will in general not be the same Iocally as the bifurcation set of f, so the pictures we give
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t<0 t=0 t>0

Fig. 1 Bubble collapse: the bifurcation set of the unfolding h,.

here do not actually show what happens in nature if we use the time-stable unfoldings as
models for natural processes in catastrophe theory. However, the catastrophe set of a
model is not uniquely determined; the catastrophe set can be chosen in one of several ways
depending on the application. Therefore we cannot actually draw the catastrophe set of
the time-stable unfoldings. However, pictures of the bifurcation set are useful because
they provide a great deal of information about what the catastrophe sets can look like,
and hence they enable one to see which natural processes can be described locally by which
unfoldings in the list. In this sense our pictures can be interpreted as showing what hap-
pens in nature during a process whose local model is a given time-stable unfolding.

The pictures we give are in the form of a simplified cine-film, each frame of which
shows the spatial configuration of the bifurcation set at a fixed moment of time. A frame
taken at time ¢ of one of these films shows a two-dimensional section of the bifurcation set
rather than the actual 3-dimensional spatial configuration at time #; this lends clarity and
exactness to the pictures, since we have been able to plot the actual curves to scale, and the
actual 3-dimensional configuration can easily be visualized from the two-dimensional sec-
tions.

Each frame shows the coordinate axes as well as the actual curves. Where it is mean-
ingful the scale of the pictures is given next to the films.

We do not give pictures of the unfoldings h,, kg, hyg, %y OF by, since these unfoldings
(and their bifurcation sets) are constant in time, and pictures of their bifurcation sets at
any fixed moment of time are well known and have been published elsewhere (see for
example Thom [7] or Woodcock and Poston [12]).

The folds h, —h; have as bifurcation sets the set-germs {(u, v, w, )|t + w2+ v+ w?=0},
where the choice of the + signs depends on which unfolding we are considering, and cor-
responds to the signs of the terms u?z, »*r and w2 in the unfolding in question.
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Fig. 2 The bifurcation set of the unfolding hs.

Figure 1 is a film of the bifurcation set of A,; each frame shows a plane section through
the origin of R® for a fixed value of ¢{. The three-dimensional configuration at each fixed
time can be obtained by rotating the frames about any line through the origin. When ¢
is negative, the bifurcation set is a sphere (colloquially, a bubble). The spheres become
smaller with increasing time until they are reduced to a point (at {=0) and vanish. For
positive ¢ the bifurcation set is empty.

The film does not show the rate of collapse of the bubbles. Instead of making a film
we can draw a picture of a 3-dimensional section of the bifurcation set in which we include
two spatial coordinates and the time coordinate (we set one of the spatial coordinates =0).
Such a section is shown in figure 2: we see a paraboloid of revolution, whose axis is
normal to the planes of constant time. In this picture we see how the size of the bubbles
changes with time; the radius of the bubble at time ¢is V——t In particular, when the bubble
vanishes, at =0, it is collapsing with infinite velocity.

A picture of the bifurcation set of h; can be obtained by running the film in figure 1
backwards at the same speed.

Figure 3 shows a film of the bifurcation set of k;; each frame shows a section by the
plane v=0, and the actual 3-dimensional configuration can be obtained by rotating about
the vertical (w-) axis. At each time ¢<=0 the bifurcation set is a hyperboloid of revolution
(the plane sections shown in the film are hyperbolas); at ¢ =0 the bifurcation set is a cone.
Ii, for £<0, we visualize the region of space enclosed by the hyperboloid as being a blob
of liquid, then as time progresses this blob is pinched until, after {=0, it separates into
two blobs which move apart; hence the name ““fission”. The apices of the hyperbolas shown
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N

t<0 t=0 t>0
Fig. 3 Fission: the bifurcation set of the unfolding hs.

in figure 3 for time ¢ are at a distance Vm from the origin; in particular the “pinch” in
the bifurcation set for negative ¢ narrows with infinite velocity at time ¢{=0, and the two
components which appear when ¢ is positive separate with infinite velocity at time {=0.

A film of the bifurcation set of %, can be obtained by rotating the frames of figure 3
about the horizontal (u-) axis rather than the vertical (w-)} axis, or equivalently, as far
as the bifureation set is concerned, by running the film in figure 3 backwards at the same
speed.

X

/

t=-02 t=-0.1 t=0

v 05
0
A 285005
U u
t=0.1 t=0.2

Fig. 4 Bec-a-bec: the bifurcation set of the unfolding h,.
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Fig. 5 The lip: the bifurcation set of the unfolding h,.

The cusps k, — hy have as bifurcation sets the set-germs {(u, v, w, t)|¢ + (4/(3 Vé))uV —u+
#tv?+w? =0}, where the sign of the terms +¢? and +w? is to be chosen to correspond to
the sign of the terms v%r and w?x resp. in the unfolding in question.

Figure 4 shows the bifurcation set of the ‘“‘bec-a-bec”’ unfolding 4,; each frame shows
a section of the bifurcation set at some fixed time by the plane w=0. When ¢ is negative
we see two cusps; as time progresses they approach, join at =0, and subsequently two
smooth curves appear which move apart and away from the origin. The points of the cusps
seen when ¢ <0 lie at a distance }/ —¢ from the origin. In particular, the cusps are moving
together at infinite velocity when they join. However, the two curves which form when
t>0.move away from the origin with finite non-zero' velocity at t=0 (the actual velocity
is 1'in the scale we have chosen) and move away from each other with zero velocity when
t=0.

The above discussion refers to the plane sections of the bifurcation set shown in fi-
gure 4; the actual bifurcation set of k, is obtained by rotating about the horizontal (u-)
axis.

Figure 5 shows the bifurcation set of the “lip” unfolding .hy; each frame shows a sec-
tion of the bifureation set at some fixed time by the plane v=0. When ¢ is negative the
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Fig. 6 Bec-a-bec to lip: the bifurcation set of the unfolding h,.

bifurcation set is empty; at £ =0 a point appears at the origin; subsequently a crescent ap-
pears and grows in size. The horns of the crescent are cusps whose points lie on the w-axis
at a distance V¢ from the origin (so the horns move apart with infinite velocity at ¢ =0).
The midpoints of the two curves forming the crescents move away from the origin with
finite non-zero velocity (=1 in the scale we have used) at t =0, and they move away from
each other with zero velocity at ¢ =0.

The above discussion refers to the plane sections shown in figure 5; the actual bi-
furcation set of A, is gotten by rotating the pictures about the horizontal (u-) axis.

Figures 3, 4 and 5 together can be used to visualize the bifurcation set of the ‘“bec-a-
bec to lip” unfolding hs. At time £, a section of the bifurcation set of Ay by the plane w=c
looks like the frame of figure 4 for time ¢ —c?; a section by the plane v=c looks like the
frame of figure 5 for time t+4c2 Sections by planes u=constant are empty if u>0; if
% =0 we see the film of figure 3 as time progresses; if « <0 we see simultaneously two co-
pies of the film of figure 3 with a time-lag between them of (8/(3 Ve)) | Vm .

Globally we can describe the spatial configuration of the bifurcation set of 4 as fol-
lows (for a crude sketch, see figure 6; for convenience we have changed the orientation of
the coordinate axes): At negative times we see two ‘‘wedges” located symmetrically about
the plane v=0; each wedge consists of two surfaces which meet cuspally along a branch
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of an hyperbola. As time progresses the two wedges approach each other and meet at the
origin when {=0; at this time the two surfaces forming each wedge are joined along the
lines v= +w. When time becomes positive the two wedges have merged to form a tube
whose cross-section is a crescent (as shown in figure 5); the tube has a “seam”, lying along

the branches of an hyperbola, where the two surfaces forming the tube meet cuspally.

Remark. In this paper we do not give pictures of the space-stable unfoldings, those
in the list of Theorem 5.3. One reason for this is that the bifurcation sets of these unfold-
ings can not as easily be shown pictorially as for the time-stable unfoldings. It would be
meaningless to show a film of the bifurcation set, since the sequence of spatial configura-
tions at fixed moments of time is not invariant under space-equivalence. The most reason-
able sort of drawing for the space-stable unfoldings would probably be one showing the
regions of space in which different sequences of events occur in time. If we denote the
bifurcation set of some space-stable unfolding by A= R4, and if we let z: R*—~R3 be the
projection (¢, u, v, w) — (u, v, w), such a drawing would show where in u, v, w-space the
fibres of 7|4 have different topological types, where the topological type of the fibre
changes, and above which points (u, v, w) two or more “branches” of 4 come together or
branches appear or disappear. Such pictures would seem not to have as immediate an

interpretation as the films of the time-stable unfoldings.

Notes added in proof: N. Baas in [13] studies a global stability notion (stability of com-
posed mappings} which is closely related to the (local) notion of (r, s)-stability treated in
the present papers; Baas and I wish to point out that these notions are not, however,
exactly the same (primarily because of important (though technical) differences between
the local and global cases).

Baas’s preprint [13] also contains a proof, due to Mather in an unpublished manu-
seript, of my Corollary 1.7 to the Malgrange Preparation Theorem in a somewhat more
general form. It should also be mentioned that for the case k= 2 a version of this corollary
was proved by F. Latour in [14, p. 1333].

To correct an oversight in the text it should be mentioned that the classification of
germs of low codimension by Mather and Siersma referred to on page 95 has, as is well-
known, been extended considerably by V. I. Arnol’d in [@®ynku, AHanus, 9 BemI. 1 (1975),
49-50; Vcnexa Mar. Hayk, 30 Bem. 5 (1975), 3-65, and earlier papers cited there].
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