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Introduction 

In  Ren6 Thorn's catastrophe theory, gradient models for natural pheonomena are 

given locally by stable unfoldings, whose unfolding space (the space parametrized by the 

unfolding parameters) corresponds to the control space of the gradient models. Thorn's 

celebrated list of the seven elementary catastrophes is in fact a classification of stable un- 

foldings of low unfolding dimension. 

However, the equivalence relation on unfoldings used in Thorn's classification and in 

defining the stability notion used there is fairly coarse; the diffcomorphisms used in de- 

fining this equivalence notion can operate on the unfolding space via an arbitrary local 

diffeomorphism. This means that  in the mathematical description of a gradient model, 

all of the control parameters are treated as being interchangeable. In  particular, when the 

control space is space-time, no distinction is made between the spatial coordinates and the 

time coordinate. Hence Thorn's list can give the same mathematical description to physi- 

cal events which an observer would see as being quite different. 

The purpose of this paper is to develop mathematically a stability theory for unfold- 

ings based on a finer equivalence notion ((r, s)-equivalence) than the ordinary one, in 

which some of the unfolding parameters are treated as being "more important, '  than the 

others. Such a theory can be applied in catastrophe theory to give an adequate mathe- 

matical description of spatio-temporal events in nature. The theory developed here ge- 

neralizes the ordinary theory of stable unfoldings (for which see [11]). 

The paper is organized as follows: w 1 contains preliminaries, lemmas which will be 

applied throughout the paper. In particular some useful corollaries of the Malgrange pre- 

(1) The title of ~hls paper before publication was "(r, a)-Stability of IYnfoldings". 
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paration theorem are proved. w 2 is a quick review of the ordinary theory of stable unfold- 

ings, for reference and for comparison with the results on (r, s)-stability. In w 3 several 

(r, a)-stability notions are defined and the theory of (r, a)-stability is developed in analogy 

to the results of w 2 for ordinary stability; in particular the equivalence of the different 

definitions of (r, a)-stability is proved. w 4 treats the problem of classifying (r, s)-stable 

unfolding"s; in particular, an algorithm is developed for finding all (r, s)-stable unfoldings 

of a given germ. In  w 5 the classification is carried out for (3, 1)- and (I, 3)-stability and 

analoga to Thorn's list aro computed for these two eases. Finally, w 6 contains pictures of 

the (3, 1)-stable unfoldings. 

I should like to express my thanks to Klaus Jiinich for having suggested the problem 

treated in this paper, for his encouragement during the work, and for his healthy skepti- 

cism about some of the results. I should also like to thank  Christopher Zeeman for sug- 

gesting, after the research had been done for (r, 1)-stability, tha t  I extend my results to 

the case of (r, s)-stability for general s. I am indebted to Les Lander for his assistance with 

the pictures. 

w 1. Preliminaries 

In  this section we define notation and collect some basic results for future reference. 

Detinition 1.1. We denote by E(n, p) the set of germs at 0ER n of smooth mappings 

from R n to R ~. If  p = 1 we write simply E(n) for E(n, 1). The R-algebra structure of R in- 

duces a natural R-algebra structure on E(n). The ring E(n) has a unique maximal ideal 

re(n), consisting of those germs ]EiE(n) such that  ](0)=0. 

If ]fiE(n, p) and 1 < i < p ,  then we shall often for convenience wr i te / t  to denote the 

germ in E(n) of the composition y,o/,  where y~: RP-~R is the i-th coordinate function of R v. 

If g is an element of E(n, p) and if g(0) =0,  then for any r the germ g induces a canonical 

R-linear map g*: E(p, r )~E(n ,  r) defined by setting 9"(/)=/~ f o r / e E ( p ,  r). If  r = l  then 

g* is a homomorphism of R-algebras. 

Definition 1.2. Let  k be a non-negative integer. We denote by J~(n, p) the set of k- 

jets at  0 of germs in E(n, 20). The jet space Jk(n, p) is a finite-dimensional R-vector space of 

d~mension p (n ; k). 

For each k there is a canonical R-linear projection ~k: E(n, p)-+Jk(n, 1o) which assigns 

to each germ in E(n, 20) its k-jet at  0. Similarly, for each k and q with q>~k there is a linear 

projection ~t,.k: Ja(n, 20)-~ J~(n, 20) defined by forgetting the higher-order terms. 

We define J~(n, 20):= {z E J~(n, 20)]~k. 0(z) = 0}. This is a subspace of J~(n, p) of codimen- 

sion 20. For  each k there is  a canonical projection ~k: Jk( n, 20)-~Jo~( n'  20) defined by  "for- 
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gett ing" the zero-order terms. More specifically, if ] E E(n,/9) and if z =~k(/) we have ~k(z) = 

~k(/-/(O)). For any  k we define a projection zo.k: E(n, lo)-~Jo~(n, p) by  setting ~O.k=Qk~k. 

Since Jk(n, p) and J~)(n, p) are finite-dimensional real vector spaces, they have a na- 

tural  C ~176 differentiable structure. 

Suppose gEE(n, p) and g(O) =0.  Then for a n y / E E ( p ,  r), the k-jet a t  0 of the composi- 

tion fog depends only on the b-jets of / and of g. Hence g induces for each b a linear map  

kg*: jk(p, r)_+jk(n, r) defined by  setting kg*(~k(/))=X~k(g*(/)) for / eE(p ,  r). Similarly, if 

zEJ~(n,p) then z induces a hnear map z*: Jk(p, r)->J~(n, r) defined by  setting z*=kg*, 
where gEE(n, p) is any germ such tha t  ~ ( g ) = z .  

Let  U be an open subset of R" and l e t / :  U-~R ~ be a smooth mapping. We define for 

each k a smooth mapping jk]: U_~Jk(n, p), called the k-jet section of ], as follows: For  

each xEU define a germ/(x)EE(n,p)  by set t ing/(x)(z)=/(x+z)  for z near 0 in R n. Now 

define j k / b y  setting Jk/(x)=7~k(/(x)). 
Since clearly the germ of j k / a t  any  point x E U depends only on the germ of / at  x, 

we may  also in the same way associate to every germ g EE(n, p) a germ jkg which is the germ 

at  0 of a smooth mapping from R" to Jk(n, p). 

Remark: Where no confusion can result, we shall often for convenience use the same 

symbols to denote functions, their germs a t  0, and their k-jets a t  0. Similarly we shall often 

use the same symbol to denote a point c E R ~ and to denote a constant mapping whose 

value everywhere is c (or to denote the germ or the k-jet of such a mapping). 

De/inition 1.3: We define L(n)={q~EE(n, n)Iqg(O)=0 and ~ is non-singular a t  0}. We 

can make L(n) into a group by  taking as the group operation the composition of germs in 

E(n, n). The group L(n) is the group of germs of local diffeomorphisms of R" a t  O. Observe 

tha t  whether or not a germ ~EE(n, n) belongs to L(n) depends only on the 1-jet of ~. 

I f  k is a non-negative integer, we set Lk(n): =gk(L(n))_~ J~(n, n). If q~ and ~fl are ele- 

ments of L(n), then the k-jet of ~0ov 2 depends only on the k-jets of ~ and of ~v. Hence the 

group operation of L(n) induces in a natural  way a group operation on L~(n). 
Lk(n) is an open subset of J~(n, p), and hence has a natural  C ~176 differentiable structure. 

One easily sees tha t  with respect to this differentiable structure L~(n) is a Lie group. 

L(n) acts on re(n) on the right, and Z(1) acts on rn(n) on the left, the group action in 

both cases being given by  composition of germs. We m a y  combine these two actions to 

obtain an action of Z(1) • on re(n) "on both sides"; formally we can write this action 

as an action from the right if we define it. (~p, ~): =~-Xo/oq0 for itElrt(n), ~EL(n), v/EL(l). 

The group actions defined above induce smooth actions of the groups//~(n), L~(1) 

and L~(1) • on J~(n, 1). 
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The following theorems and lemmas will find frequent application in this paper. These 

are all well-known results, except for the corollaries to the Malgrange Preparation Theorem 

(Corollaries 1.7 and 1.8), which are new. 

LEMMA 1.4. (Nakayama's Lemma). Let R be a commutative ring with identity and let 

I be an ideal in R such that 1 + z is invertible/or all z E I.  Let A and B be submodules o! some 

R-module M and sutrpose A is finitely generated over R. 

11 
(a) B + I . A  D A, 

then 

(b) B ~_ A, 

and q equality holds in (a), then equality holds in (b). 

For a proof, see e.g. [2, p. 281] or [11, Lemma 1.13]. 

COROLLARY 1.5. Let A be a !initely generated E(n) module and let B be a submodule 

o / A  such that !or some k 
dlmn A/(m(n)k+~A + B) <~ k. 

Then m(n)kA ~ B. 

For a proof, see [3, Corollary 1.6J or [11, Corollary 1.14]. 

THEOREM 1.6 (Malgrange Preparation Theorem). Let !EE(n, p) and suppose !(0)=0. 

Let A be a !initely generated E(n)-module and sup,pose direr A//*(m(T))A is !inite. Then A 

is/ ini tely generated as an ~(p) module via !*. 

This is Mather's version of the theorem ([3, p. 132]). For a proof, see e.g. [3, pp. 131- 

134], or see [1, Ch. V], or see the articles of Wall, Nirenberg, Lojiasiewicz, Mather and Glae- 

set in [10, pp. 90-132]. 

COROLLARY 1.7. Suppose we are given (/or i = 1, 2 ..... k) germs !c fiE(n, Pc) with !~(0) =0, 

such that/or each i, 1 <. i <~ k - 1, there is a germ g c E ~(Pt+x, Pc), with go(0) = 0, such that ! c = g c / c+ x. 

Let G be a !initely.generated ~(n) module. Then/or  each i we may also consider G as an 

~(1~c) module via/L 
Let B be an E(n).sulnnodule o / C  and/or  each i, 1 <~ i <~ k, let A t  be a ! ini tdy generated 

,~(p~) submodule o/g. 
I/ 

(a) A1 +A2+. . .  +A~+B+m(px)  C = C, 

then 

(b) A I + A ~ + . . .  + A ~ + B  = C 

(Note: When  k =0,  equation (a) reduces to: B + re(n)0 = g.) 

Proo!. The proof is by induction on k. If  k = 0, then (b) follows by Nakayama's Lemma, 



STA~I~TY O~ UNFOLD~OS r~ SPAC~ ~ D  Tn~E 61 

Suppose now b > 0 and suppose the statement has been proved for all smaller values 

of k. Let  C = C/B; then C is a finitely generated ~(n)-module but  we may also consider C 

as an ~(Pk) module via/*.  Let  ~: C ~ C  be the projection, and for each i, 1 ~<i<k, let A~ = 

~(A~) and let A~' be the E(p~) submodule of C generated by A~. (Note that  A~ is an E(p~) 

submodule of C). 

Since re(P1) C~  m(pk) C, it follows from (a) that  A~ + ... +A~ + m(pk) C = C, and since 

each A~ is a finitely generated E(Pk) module, this equation implies tha t  dlmR ~/m(pk) C is 

finite. Hence by Theorem 1.6, C is finitely generated as an ~(Pk) module. 

Now equation (a) implies that  A~ +A~ +...  +A~ +m(pl )C =C, and since C is finitely 

generated over ~(pl,) we may apply the induction assumption for the case ]r 1 to conclude 

that  A~ + ... +A~ =C. But this clearly implies (b). Q.E.D. 

Corollary 1.7 is a generalisation of [3, Lemma, p. 134]. 

COROLL~Y 1.8. Let k be an integer, ]c>~ 1, and suppose we are given,/or 1 <~i <~]r germs 

/ ~ ( n , p ~ ) ,  with /~(0)=0, such that /or each i, l~<i~<]c-1, there is a germ g~(P~+I,P~),  

with g~(0)=0, such that/~ =g~/~+x" 

Let C be a/initely generated ~(n) module. Let B be an ~(n) submodule o/C, and/or each i, 

1 ~ i <~ k, let A~ be a/initely generated ~(p~) submodule o /C generated by d~ elements over ~(p~). 

Suppose 

(a) A~ + A2 + ... + A~ + B + m(pl) C + m(p~)~'+~C = C. 

Then 

A ~ + . . . §  (b) 

and 

(c) m(P2)d'C~_ A 2 +... + A~ + B + re(P1) C. 

(Note: When /~=1, then (a) reduces to A l + B + m ( p l ) C + m ( n ) d ' + l C = C  and (e)re- 

duces to: m(n)d'CG B + m(pl) C). 

Proo/. Let A~ be the E(P2) submodule of C generated by A 1 and let B ' = B + m ( p l ) C  

considered as an ~(n) submodule of C. Clearly (a) implies A~ + A s + ... + Ak + B' + re(p2) C = 
t t . t �9 C and by Corollary 1.7 we get A 1 § A2 + ' "  + Ak + B = C. Hence since A1 is finitely generated 

over E(p2), it follows that  if we set C=C/(A2+ ... §  B'), then C is a finitely generated 

~(P2) module. 

Let  g: C-~C be the projection and let -~I=~(A~). From (a) it follows that  A I +  

m(p2)d'+ic=c. Since ~1 is generated by d 1 elements over E(pz) and since m(pl )C=0,  it 

follows that  dimR C/m(p~)~'+lC ~<d 1. Hence by Corollary 1.5 m(P2)d'O=0; this implies (c). 

And (e) and' (a) together imply A~ + A 2 +...  + Ak + B + m(Pl) C-- C; by Corollary 1.7, (b) 

then follows. Q.E.D. 
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Corollary 1.8 is a generalisation of [3, Theorem 1.13]. 

THEOREM 1.9 (Thom's Transversality Lemma). Let U be an open subset o] R n. Let k 

be a non-negative integer and let N be a smoothly immersed submani]old of Jk(n, p). Let B 

be the set o] all smooth mappings ]: U-~ R ~ such that the mapping jk] is transversal to N every- 

where on U. Then B is a countable intersection of open dense subsets of Coo(U, R~), the space 

o] all smooth malrpings #ore U into R p. 

In particular, since Coo(U, R r) is a Baire space, B is dense. 

(Note: in this paper we take the weak Coo-topology on C~176 R~). A basis for this 

topology consists of all sets of the form {h e Coo(U, Rr)]Jr(g-h)(L)__ W}, where L is any 

compact subset of U, r is any non-negative integer, W is any open neighbourhood of 0 in 

Jr(n, p) and g is any element of Coo(U, RP). The weak Coo-topology is not the same as the 

Whitney topology, which is often used by other authors). 

For the proof, see e.g. [6] and [11, Theorem 1.22 and Corollary 1.23]. 

We conclude this section with a very useful lemma of Mather's. 

Lv.MMA 1.10. Let F 6 E ( n + I )  and let F(O)=0. Suppose there are germs ~ 6 ~ ( n + l ,  n) 

and ~ EE(n +2) such that/or x near 0 in R" and/or t near 0 in R the/ollowing equation holds: 

aF(x, t) ~ OF(x, t) 
(a) ~ - , - 1 -  ~xj ~,(x, t) + ~(F(x ,  t), x, t). 

(Remark: Here ~j=yjo~,  where yj is the i-th coordinate ]unction on R n. See Def. 1.1.) 

Then there exist germs ~ e E ( n + l ,  n) and ~teE(n+2) such that ]or x near 0 in R ~ and 

s near 0 in R 

(b) q~(x, O) = x and 2(s, x, O) = s, 

and such that/or x near 0 in R n and t near 0 in R we have 

(c) F(~Cx, t), t) =,!.C.F(x, o), x, t). 

Moreover we may choose q~ and 2 (in/act uniquely) such that 

(d) a(pj(x, t) 
ot ~j(~(x,t),  ~) (j = 1 . . . . .  n) 

and 

/or tER, xER n, sER. 

~- Ca, x, t) = ~(~tCs, x, t), ~Cx, t), t), 

For the proof, see [11, Lemma 1.29]. This lemma is an easy corollary of a lemma of 

Mather's ([3, p. 144] (or see [11, Lemma 1.27])). 
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w 2. Stability of  unfoldings  

I n  this section we collect, for future reference, some of the  basic results in the  theory  

of unfoldings. A more detailed discussion of the  subject, and  the proofs of the  theorems listed 

here, can be found in [11]. 

To keep the nota t ion manageable,  it will be convenient  to  agree on some notat ional  

conventions. We shall be considering germs in ~(n§ for some given n and r. We shall 

denote the  s tandard  coordinates on R n by  x 1 . . . . .  x~ and  the s tandard  coordinates on R r 

by  u 1 . . . . .  ur, and we shall denote elements of R ~+~ by  pairs (x, u) where x E R  ~ and  u E R  ~. 

Occasionally we shall also be considering germs in ~(n§247 for some given n, r and s; 

in t ha t  case we shall take  coordinates v t . . . .  , v8 on R 8 and we shall denote elements of R n+r+~ 

by  triples (x, u, v) where x E R  n, u E R  ~, vER ~. 

We shall apply  similar notat ional  conventions to  mappings. For  example, if 

dp E ~(p,  n + r) and we write dp = (~, ~), this will mean  ~ e ~(p,  n), ~2 E ~(p,  r) and for y near 

0 in R ~ we have dp(y)=(~(y), ~(y))ER n+~. 

We shall identify R ~ with the subspace R n x  (0) of R ~ x R ~ = R  ~+r, and similarly we 

identify R ~+~ with the subspace R~+~x (0) of R ~+~+~. Also, we shall consider E ( r ) t o  be 

embedded as a subring in ~ ( n §  via the  injective ring homomorphism ~*, where 

~: R n • R ~ R  ~ is the projection onto the  second factor. An  element V of E(n § r) is in ~(r) if 

and only if ~ does not  depend on x t . . . . .  x~; in this case we shall generally write "V(u)" to  

abbreviate  "V(x, u)",  where x e B  ~ and u E R  r. 

Similarly, for any  p we m a y  consider E(r, ID) to  be embedded in E(n§ p). 

I n  a similar way, we m a y  identify ~(n) with a subring of ~(n § r), and we m a y  identify 

E(n), E(n + r), g (r + 8), and E (s) with subrings of E (n + r + s). 

Finally, some algebraic notat ion:  Let  R be a ring, M an R-module,  and let S 

be a subring of R (so tha t  M is also an  S-module). I f  a t . . . . .  akEM, we shall denote by  

<at .. . . .  ak>z the S-submodule of M generated by  a t . . . . .  ak. 

Frequent ly  we shall use an abbreviated version of this notat ion:  Suppose [ E E(n +r) ,  

and  suppose S is a subring of ~(n  +r) .  Then  we shall write <~[/ax>s as an abbreviat ion for 

the  S-submodule <~f/~x t . . . . .  ~Haxn>s of E(n +r )  and  we shall write <D[l~u>s as an abbrevia- 

t ion for <~[/~u 1 . . . . .  ~[/au~> s. We shall use a similar abbreviated nota t ion to  denote modules 

generated by  derivatives of germs in E(n) or E(n+r+s); the  meaning of the  nota t ion will 

always be clear. 

De/inition 2.1. Let  ~ ein(n). An  r-dimensional un/olding of ~/is a germ [ e E(n + r) such 

that/IR ~ =V- 

One m a y  th ink of an  r-dimensional unfolding of ~} as being an  r -parameter  family of 
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germs in ~(n) which contains the given germ r] Era(n) at  OER'. This implicitly understood 

structure of an unfolding is reflected in the following definition of equivalence of unfold- 

ings. 

Definition 2.2. Let  f and g be germs in rrt(n+r). To / we associate a germ 

F E E ( n + r ,  1 +r) ,  defined by  F(x, u)=(/(x, u), u)ER •  ~, for xER"  and u E R  ~. Similarly, 

to g we associate a germ GE~(n+r, 1 +r)  defined by G(x, u) =(g(x, u), u) for xER', u E R  r. 

We say tha t  f and g are equivalent as r-dimensional unfoldings (or r-equivalent) if there 

are germs (I)EL(n +r), ~p EL(r) and A EL(1 +r)  such tha t  the following diagram commutes: 

R~+r F ,RI+~ P2 , R  ~ 

1 i ! 
where P2: R • Rr-~R r is the projection onto the second factor. Such a triple (qb, ~p, A) is 

called an r.equivalence from f to g. 

Note tha t  if ((I), W, A) is an r-equivalence, then (I)= (~, ~) for some germ ~ E E(n + r, n). 

Definition 2.3. Let  U be an open subset of R p. Let  [: U-~R be a smooth function and 

let zE U. We define a germ/~ era(p) by setting [~(y)=/(z+y)-/(z) for all y near 0 in RL 

Definition 2.4. Let  U and V be open subsets of R n+r, and l e t / :  U ~ R  and g: V-~R 

be smooth functions. Let (x, u)E U and let (y, w)E V. We say f at  (x, u) is r-equivalent 
to g at  (y, w) if the germs/(x, u) and g(~. ~) in Irt(n + r) are equivalent as r-dimensional un- 

foldings. 

We can now define stability for unfoldings. There are several ways of doing this, but  

the different stability notions we define below will all turn out to be equivalent to each 

other. 

Definition 2.5. L e t / E m ( n + r ) .  We say / is weakly stable as an r-dimensional unfold- 

ing if for every open neighbourhood U of 0 in R n+r and for every representative function 

]': U ~ R  of the germ f, the following holds: 

For any smooth function h: U-~R, there is a real number  e > 0  such tha t  if t is any 

real number  with [t I <e, then there is a point (x, u) E U such tha t  f '  + th  a t  (x, u) is r-equiva- 

lent to f '  a t  0. 

Definition 2.6. Let  /E rrt(n + r). We say / is strongly 8table as an r-dimensional unfold- 

ing if for any open neighbourhood U of 0 in R n§ and any  representative func t ion / '  of f 
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defined on U, there is a neighbourhood V o f / '  in Go~ R) (with the weak G ~176 topology) 

such that for any function g'E V there i sa  point (x, u) in U such that g' at: (x, u) is r-equi- 

valent to [' at O. 

Definition 2.7. Let [Erlt(n+r). Define FE~(n+r,  1 +r) by setting F(x, u)--(/(x, u), u) 

for xER',  uERr. W e  s a y /  is in/initesimaUy stable as an r-dimensional unfolding (or r- 

in]initesimally stable) if: 

(a) E(n + r) = (a//~x>~c. §  + (al/au)~(,~ + F'E(1  + r). 

(Geometrically this condition means roughly that the "tangent space" at [ to the 

r-equivalence class of [ is maximal, i.e. is equal to the "tangent space" to m(n+r)). 

Condition 2.7 (a) can be reformulated in a slightly simpler form (Theorem 2.9): 

Definition 2.8. Let [Em(n+r) be an r-dimensional unfolding of r/Era(n). If 1 <i<r, 

we s e t ~ ( / )  = a/l~u~ [ I t" ~ E(n). 

We define 

Wr: - - -  (a , ( / )  . . . . .  ~ , ( / ) )a  -~ ~(n) .  

Ta]~OR~M 2.9. Let/Em(n+r) un/old r/Ern(n). Then [ is r.in/initesimaUy stable i /and 

only i/ 

(a) ~(n) -- (eql~z>~(.) + W~ +~*~(1). 

This theorem follows from the Malgrange Preparation Theorem. For the proof, see [11, 

Lemma 4.9]. 

THEOREM 2.10. Let [ and g be element8 el rrl(n+r). I / [  and g are r-equivalent, and i / /  

is r-in/initesimally stable, then g is r-in/initesimaUy stable. 

Proo[. See [11, Corollary 4.10, Lemma 4.3 and Chapter 3]. (This theorem can also be 

proved directly from the definition of infinitesimal stability.) 

T~EOREM 2.11. Let/Enl(n+r). The following statements are equivalent: 

(a) / is weakly stable as an r-dimensional un/olding. 

(b) ] is strongly stable as an r-dimensional un/olding. 

(e) / is in/initesimally stable as an r-dimensional un/olding, 

Proo/. See [11, Theorem 4.11]. The most important eonseclnenee of this result is that 

it equates the geometrically defined stability notions (Der 2.5 and 2.6) with easily 

verifiable algebraic conditions. (2.7 (a) or 2.9 (a)). 
5 -  752905 Acta mathematica 135. Imprim6 le 19 D ~ m b r e  1975. 
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De/inition 2,12. A g e r m / E m ( n  +r) is said to be stable as an r.dimensional un/oldinq: 

(or r-stable) if [ fulfills one (and hence all) of the equivalent conditions 2.11 (a), 2.11 (b) 

or 2.11 (c). 

~ote: In  future, in using the terms "stable", "equivalent",  etc., we shall often omit 

reference to r when no confusion can result. For example, if ] is an r-dimensional unfolding 

of ~}, we shall write "] is a stable unfolding of 7"  to mean / is r-stable. 

A natural question to ask now is the following: Given a germ ~7Em(n), when does ~}. 

have stable unfoldings and what are they? The following results give a complete answer 

to this question. The proofs can all be found in [11]; the method of proof was in most 

cases suggested by the work of Mather, who proved analogous results for a slightly simpler 

case in [4]. 

Definition 2.13. Let  ~Em(n). Let  ]r be a non-negative integer. We say ~ is right k- 

determined if for every germ/~em(n) with 7rk(p)=~rk(~) there is a germ ~eL(n) such that  

~ = / ~ .  

We say ~ is right.left k-determined if for every germ pEru(n) with ~z~(/~)--yrk(~}) there 

is a germ q~EL(n) and a germ 2EL(l)  such that  ~ =2/~ .  

Clearly, if y is right k-determined then ~ is right-left b-determined. 

L~.MMA 2.14. Let ~}Em(n). I f  ~ is right.left k.determined, then ~ is right (k + 2)-deter. 

mined. 

Proo[. [11, Corollary 2.12]. 

De/inition 2.15. A germ wEre(n) is said to be finitely determined ff ~ is right/c-deter- 

mined for some non-negative integer ]r (or equivalently, by 2.14, if W is right-left k-deter- 

mined for some 1r 

Definition 2.16. Let  ~ Era(n). We define 

T(~) = dima ~(n)/(~/ax~(n), 

a(~) = dima E(n)[((O~]~x)e(n) + ~*~ (1)). 

If b is a non-negative integer, we set 

ak(~) = dima ~(n)/( (~q/Ox)~(,) +~*~(1) + m(n)~). 

Clearly T~(~) ~<~(~) and ak(~) <a(~) for all k. 
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Note tha t  vk(7) :and ak(7) obviously depend only on the k-jet of 7. We call a(7 ) the co- 

dimension of 7 (or more specifically, the right-left codimension of 7)- 

THEOREM 2.17. (Tougeron). Let 7 Era(n). The/oUowing conditions are equivalent: 

(a) 7 is/initely determined, 

(b) 3(7) < ~ ,  
(c) a(7) < oo, 

(d) the numbers ~k(7), /or b a non-negative integer, are bounded, 

(e) the numbers ak(7), /or k a non-negative integer, are bounded, 

(f) /or some non-negative integer b 

re(n) * _ (~ql~x)~(n) +7*E(1), 

(g) /or some non-negative integer k 

re(n) k _~ (e7/ax)~(,). 

Proo]. See [11, Corollary 2.17.] (conditions (d) and (e) above are not given in Corol- 

lary 2.17 of [11], but (d) obviously follows from (b) above and it implies 2.17 (d) of [11] 

and (e) follows from (e) above and implies 2.17 (e) of [11]). The proof uses results of Mather 

([4, Prop. 1] (or see [11, Theorem 2.6]) and [3, w 7] (or see [11, Lemma 2.8])). This result 

is due in part  to Tougeron [8], 

De/inition 2.18. If  zEJ~(n, 1), we set z(z): =~k(~/), where 7 is any germ in re(n) such 

that  g*(7) =z. Clearly ~(z) is well-defined independently of the choice of 7. 

We set Zk: ~- (zEJ~(n, 1)[~(z) ~> b}. 

LEMMA 2.19. (a). I / 7  E re(n) is/initely determined, then/or b su//iciently large, gk(7) ~Zk. 

(b) 1/7Era(n) and q, /or some positive b, ~(7)  gZk, then m(n)k-x~ (~/~x)e<,) (and so 7 is 

/initely determined). 

(e) Z k i8 an algebraic subset o/J~(n, 1). 

Proo/. (a) follows easily from Theorem 2.17 (d); (b) follows from Corollary 1.5; for (c) 

see [11, Prop. 2.22]. 

THEOREM 2.20. Let 7Era(n). Then 7 has stable un/oldings i /and  only i/ 7 is/initely 

determined. The minimal un/olding dimension o/ a stable un/olding o /7  is a(7 ). In  ]act i/ 

izl, ..., lzr E ~(n) are a basis o/the R-vector space ,~(n)/((ib?/~x)e(n) § and i / /E  m(n + r) 

is de/ined by/(x ,  u)=7(x)+ullzl(x)Jr... +urlzr(x) /or xER' ,  uE R r, then / is a stable un/old- 

ing o/7 o/minimal un/olding dimension. 

Proo]. This follows easily from 2.9 and 2.17. 
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THEOREM 2.21. Let 7Era(n). I f / E E ( n + r )  and gEE(n +r) are r-stable un/oldings o] ~, 

then f and g are r.equivulent. 

Proof. See [11, Theorem 3.20 (see also Theorem 3.22 (b) and Def. 3.6)]. 

Definition 2.22. Let  g Era(p). The q-dimensional constant unfolding of g is the germ 

fE~(p+q)  defined by f(x, u): =g(x) for xER v, u ER q. 

COROLLARY 2.23. Let 7Era(n), and let fE~(n +r) and gE~(n+s) be unfoldings of 7. 

I f  f is r-stable and g is s-stable, and if s <~r, then f is r.equivalent to the r - s  dimensional con- 

stant unfolding of g. 

Proof. From Theorem 2.9 it  follows trivially tha t  the r - s  dimensional constant un- 

folding of g is an r-stable unfolding of 7. The corollary then follows immediately from 

Theorem 2.21. 

Theorem 2.20 and Corollary 2.23 together completely describe all stable unfoldings 

of a given germ 7. 

A related but  somewhat more general question is to ask for a classification of all 

stable unfoldings (without specifying 7). Rend Thorn's celebrated list of the seven elemen- 

tary  catastrophes gives a partial answer to this question; Thorn's list classifies the r-stable 

unfoldings for r ~<4. We shall state this theorem below: 

Definition 2.24. Let  /~em(n) and let gEE(n+r) unfold /~. Let  7Em(n§ and let 

fE~ (n+q+r+s )  unfold 7. We say f reduces to g if / is r+s-equivalent  to an unfolding 

g 'E~(n+q+r+s)  of the form 

(a) g' (x, y, u, v) = g(x, u) + Q(y) (x E R' ,  y E R q, u E R r, v E Rs), 

where Q is a non-degenerate quadratic form on R q. 

If  q + s  is positive (i.e. non zero), we say ] reduces properly to g. If f has no proper re- 

ductions, we say f is an irreducible unfolding of 7- 

Definition 2.25. L e t / E E ( n + r )  unfold ~ Era(n). We say f has a simple singularity at 0 

if / reduces to the trivial unfolding 0 e m(0). 

THE O REM 2.26. (Thorn's list of the seven elementary catastrophes). Let /E E(n § r) be 

a stable unfolding of a germ 7 E re(n) 2, and suppose r <~ 4. Then either / has a simple singularity 

at 0, or / reduces to a unique one of the following seven stable and irreducible unfoldings g~ 

o/germs I~: 
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Name /~ 

Fold /ax(x ) = x  3 

Cusp /~2(x) ---x 4 

Swallowtail 1~3( x ) = x 5 

Butterf ly /~4(x) ~-x e 

Hyperbolic ~u 5(x, y) = xa§ y3 
umbilic 
(wave crest) 

Elliptic /u6(x , y ) = x ~ - x y  2 
umbilio 

(hair) 

Parabolic /aT(X , y ) = x ~ y §  4 

umbilic 
(mushroom) 

Unfolding 

g~ dimension 

gl(x, u) = x  a + ux  1 

g2(x, u, v) = x  4 + ux  ~ + v x  2 

g3(x, u, v, w )=xS  +uxa +vx2 + w x  3 

g4(x, u, v, w, t )=xS + u.O + vxa + wx~ + t x  4 

gs(x, y, u, v, w ) = x 3 + y a + u x y + v x + w y  3 

g6(x, y, u, v, w ) = z a - z y 2 + u ( x 2 + y 2 ) + v x  + w y  3 

gT(x, y, u, v, w, t ) = x 2 y + y a + u x 2 + v y 2 + w x + t y  4 

Moreover, i / / r e d u c e s  to one o / the  g/s ,  then / does not have a simple singularity at O. 

Proo/. See [11, Chapter 5]. (This theorem is Theorem 5.6 of [11].) 

Thorn's list is of course well-known particularly because of its relevance to Thorn's 

catastrophe theory. For a discussion of the relationship of this formulation of Thorn's 

list to the theory of catastrophes, see the appendix to [11]. 

w 3. ( r ,  s)=stabiIity of unfoldings 

In this section we shall investigate a generallsation of the stability notions defined in 

w 2, and shall prove for this generalised stability notion analogues to some of the theorems 

quoted in w 2. The analogue to Theorem 2.26 (Thorn's list) will be proved in w 5. 

The generalisation we shall consider here may appear rather artificial and uninterest, 

ing mathematically; however :it was motivated by important considerations in the theory 

of catastrophes. For a discussion of these motivations, see w 5. 

We shah retain in this section the notational conventions introduced at  the beginning 

o~w 

De/init ion 3.1. Let / and g be germs in m(n+r+s ) .  To / we associate a germ 

FEE(n  + r + s ,  1 + r  +s), defined by _~(x, u, v) = (/(x, u, v), u, v) ER • R '  • R e, for xER ~, uER ~, 
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vER s. Similarly, to g we associate a germ qE~(n+r+s, l + r + s ) ,  defined by G(x, u, v)= 
(g(x, u, v), u, v) for xER ~, uER' ,  vER s. 

We say f and g are (r, s)-equivalent if there are germs ~PEL(n+r§ AEL(I+r§ 
EL(r +8) and ~ EL(s) such that  the following diagram commutes: 

R~+~+~ F ,R1+r+~ p ,R'+~ q ,RS 

R~+,+~ O ,R1+~+8 10 ,R~+~ q"R" 

where p: RI+r+S-~R r+~ is the projection onto the second factor and q: Rr+S-~R s is the pro- 

jection onto the second factor. 

Such a quadruple ((I), ~, ~, A) is called an (r, s)-equivalence from / to g. 

Note that  if ((I), ~, ~, A) i s  an (r, s)-equivalence, then ~=(~,  ~) for some germ ~E 

E(r § r) and (I) =(% ~, q) for some germ qpE~(n.§247 n). Moreover A =  (X, ~, ~) for some 

germ XE~(1 +r§ 

Definition 3.2. Let  U and V be open subsets of R n+r§ and let f: U-~R and g: V - ,R  

be smooth functions. Let  (x, u, v)E U and let (y, w, t)E V. We say / at  (x, u, v) is (r, s)- 

equivalent to g at (y, w, t) if the germs f(z.u.v) and g(~. ~.o in m(n+r+s) arc (r, s)-equivalent. 

(See Def. 2.3 for the definition of f(:.u.v) and g(u.w.t~). 

We now define stability notions as before: 

Definition 3.3. Let /Em(n+r+s). We say / is weakly (r, s)-stable if for every open 

neighbourhood U of 0 in R n+'+~ and for every representative function /': U-~R of the 

germ/ ,  the following holds: For any smooth function h: U-~R there is a real number e >0  

such that  if t is any real number with ] t [ < e, then there is a point (x, u, v) E U such that  

/' § th at (x, u, v) is (r, s)-equivalent t o / '  at 0. 

De/inition 3.4. Let  / E m ( n + r + s ) .  We say / is strongly (r, s).stable if for any open 

neighbourhood U of 0 in R n+r+8 and any representative function /' of / defined on U, 

there is a neighbourhood F of f* in C~(U, R) (with the weak C~-topology) such tha t  for 

any function g' E V there is a point (x, u, v) in U such that  g' at  (x, u, v) is (r, s)-equivalent 

t o / '  at  0. 

Definition 3.5. L e t / E m ( n § 2 4 7  Define F E E ( n §  +s, 1 § by setting .F(x, u, v)= 

(f(x, u, v), u, v) for xER ", u E R  r, vER 8. We say / is infinitesimally (r, 8)-stable if 

(a) s  = (0//~x)~(.+,+.) + (~//0u)E(r§ + (0//0v~(8) + F*s  + r + s ) .  
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(Again, as in the: case of ordinary infinitesimal stability, one may interpret this condi- 

tion geometrically as saying roughly tha t  the "tangent space" at  I to the (r, s)-eqnivalence 

class of '1 is maximal, i.e. is equal to the "tangent space" to l~(n § r § s)). 

Remark. Obviously if r =0  or if s =0, then (r, s)-equivalence and the (r, s)-stability 

notions are the same as ordinary r +s-equivalence and the  ordinary r +s-stability notions 

which we defined in w 2, so that  (r, s)-stability is in fact a generalisation of ordinary 

stability of unfoldings. 

Moreover, it is clear that  i f  two germs are (r, 8)-equivalent, then they are certainly 

r+s-equivalent, and if a germ satisfies any of the (r, s)-stabifity conditions, then it is 

r+8-stable. We shall make frequent use of this fact in what follows. For example if ]E 

~ ( n + r + s )  unfolds ~em(n) and if ] is (r,s)-stable in any of the senses defined above, 

then ~ must be finitely determined. 

The following theorem, which is a slightly strengthened analogue to Theorem 2.9, 

provides us with additional criteria for infinitesimal (r, s)-stability: 

T H E 0 R E M 3.6. Let / E 8 (n + r + s) un/old ~ E re(n). Suppose ~ i8 finitely determined and 

choose an integer k such that m(n)~_c(&7/0x)e(n). Le$ q=k( s§  Let l o=/ IR  n§ and &line 

Foeg (n+r ,  1 +r) by setting Fo(Z, u )=  (/(x, u), u) ]or x e R  ~, u e g  ~. 

Then the ]ollowing statements are equivalent: 

(a) ] is in]initesimally (r, s)-stable, 

(b) E(n § r) = (~fo/OX}e(n+r) § (~to/~U)E(r) § (~f/~vIR"+r)R § F ~ ( 1  § r), 

(c) ,~(n + r) = (alo/aX)~,,+,) + (~lo/~),(~) + (al/av I R"+')R + ~$,~(]- + r) 

+ m(r)'+ls + r) + m(n + r)~. 

(Note: I f  z] is not finitely determined then neither (a) nor (b) can occur (because by  

restricting to R n it follows from (a) or (b) tha t  the eoclimension of ~ is f in i te)and (e) is 

meaningless because q is not defined.) 

Proof of Theorem 3.6. (a) ~(b): Let ~: ~ ( n + r + s ) ~ ( n + r )  be defined by ~(g): -~g[R n+r 

for g e E(n §  +s). Applying the homomorphism ~ to  both sides of equation 3:5. (a)fields 

(b) immediately. 

(b) ~ (e) is trivial. 

(c) ~(a): Since ~ Era(n), clearly 10Em(n§ and hence Io q Ertt(n +r) e. So 1~oo~(1 ~-r)c 

(1, 1o . . . .  , loq-~)~(~) § m(n § r) ~. Hence on the right hand side of (e) we may replace the sum- 

mand F~E(1 +r)  by (1, 1o ..... 1o~-1)e(~), which is finitely generated over E(r). (This step will 

allow us to apply Corollary 1.8 later on in the proof). 
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Since /0[R"=u it follows that  (~]~x)~c,)c_(~/o/OX)~(n+r)+rn(r)~(n§ Therefore 

re(n) ~C _ (~/o[OX)e(n+r) § ~tt(r) ~(n + r) and since m(n § r ) ~  re(n) ~ § re(r) ~(n § r) it follows that  

llt(n + r) ~_~ {~fo/~X)~(~+T) + re(r) ~(n + r) and hence m(n + r) ~ = rn(n + r f  (~+ z)~ {0/o/~X~r + 

m(r)~+~(n+r).  We may now therefore drop the term m(n+r) q from the right-hand side 

of (c). 

To summaxize: We have shown that  (c) implies 

(d) ~(n + r) = {Otol~)~(.§ {o /o /~u)~( , )+  (1,/o . . . . .  t0q-1)~(r )  

+ (,~ll~vlR"+Ss + re(r) '+~8(n  + r). 

We claim this implies 

(e) ~(~ +r  +~) - -  { ~ / l ~ z ) ~ ( . § 2 4 7  / . . . . .  /~-%(,+.) + {01/~v}~(.) 

+ m(r + s)~§ + r + s) + m(~) ~ (n + r + s). 

This is so because if we let ~: E ( n + r + s ) - ~ ( n + r )  be the restriction homomorphism 

then ~ applied to equation (e) yields equation (d), so (e) holds modulo the kernel of ~. 

But the kernel of ~ is  m(s)E(n +r +s), which is contained in both sides of (e). Hence (e)is 

valid. 

Since (a//0v)~o) is generated by s elements over ~(s), we may by Corollary 1.8 drop 

the terms llt(rTs)8+l~(n+rTs)Tll~(s)~(n-J-rT8) from the right-hand expression in (e), 

and in the resulting equation we may on the right replace {1, /  . . . .  ,/q-Z)ecT+, ) by 

F*~(1Tr+s) ,  which is bigger. But this yields equation 3.5 (a), so / is infinlC~simaliy 

(r, s)-stable. Q.E.D. 

COROLLARY 3.7. Let n, r, s and t be non-negative integers. Let ~6m(n+r +s) and let 

g6m(n +r +s +t), and suppose glRn§ 

I[ / is in/initesimaUy (r, s).stable, then g is infinitesimally (r, s +O.stable. 

Proo/. We take coordinates wx, ..., wt on R ~ ,and the usual coordinates on R n+T+ .̀ 

Let h=g[R n+r and define H ~ ( n  +r, 1 +r) by H(x, u)--(h(x, u), u) for xER n, uERL 

Let A = (0h/~}~(.+. + (ah/0u)~c,) + (~glav I m+'}R + H'8(1 + r) ~ 8(n + r). 

By Theorem 3.6 (b), y is infinitesimally (r, 8+t)-stable if and only if (*) E ( n + r ) f A +  

(Og/0w[Ra§ But  since f is infinitesimally (r, s)-stable, and since /]Rn+r--g[Rn§ 

and (0//Sv~)IRa+r'-(~/~vt) [ R a+r for 1 ~< i ~<s, it  follows from Theorem 3;6 (b) tha t  E(n Jr r):= 

A, so clearly (*) holds, and we are done. 
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THEOREM 3.8. Let t and ~ be element~ ot m ( n + r + s ) .  I/ / is intinltesimaUy (r, s), 
stable and i] t is (r, s)-equlvalent to g, then g is infinitesimally (r, s) stable, 

Proo/. Define 2' and G in 8(n+r+s , l+r+s)  by F(x, u, v)=(/(x, u, v), u, v) and 

G(x, u, V) =(g(x, u, v), u, v) for xER n, uER r, vER 8. Let ((I), ~, ~, A) be an (r, s)-equlvalenee 

from f to g. Then _~ = A-1CrcI). 

We let t be the coordinate of R, so we have coordinates t, ua ..... Ur, vl ..... va on R 1+r+8 

Recall there exist germs ~oE~(n+r +s, n) and 7E~(r+s,r) such tha t  dP=(~0,7,~)and 

= (7, ~). Moreover clearly there is a germ 2' E ~(1 + r + s) such that  A -1 = (2', v2-1 ). Since 

F--A-XG~ it follows that  f =2'GdP or, more explicitly: 

(a) /(x, u, v) =2'(g(c?(x, u, v), 7(u, v), ~(v)), y(u, v), e(v)) for x e R  ~, uER r, veR  8. 

Let /~: ,~ (n+r§  be the map given by multiplication with the germ 

(~2'/at) o G o t  e E(n + r + s). 

From (a) one easily calculates that  

au~ \ ~ x  /,(~+r+,) ~ u  /~( ,+J+r for l<~i~<r, 

(d) avk [ ~ x  /,(n+r+,) ~U /,(ros,+ O ,(s, -~dP*a*~(l+r+s) for l < k % s .  

Moreover since P=A-1G(I) we have F*~(1 + r + s )  =(I)*G*(A-1)*5(1 + r+s ) ,  but A-XE 

L(1 + r  +s), so (A-X) * ~(1 + r + s) ~- ~(1 + r + s) and hence 

(e) F ' E ( 1  + r + 8) = (I)*G*E(1 + r  +s ) .  

If t is infinitesimally (r, s)-stable then 

,~ (n + r + s) = ( ~ t / ~ } e ( ,  + �9 + ,) + < ~ l / ~ } ~ ( , + , )  + (a l lay}e( , )  + F*E  (1 + r + s). 

From this it  follows, using (b), (e), (d), and (e), that  

, , ,  ) 
Clearly (I)*E(r+s)--~E(r +s) and (I)*ECs)=E(s); therefore 

le(,)= (~*((8g/Ov}e(s)) and ~ u  /e(,+,)" @*(<OgiSu)e(r+*))" 
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Moreover ((Og/Ox) o dg)~(n+~+~) = r Finally, since # is multiplication by 

(a2']~t)oGo(I), which is an element of (I)*q*~(l+r+8), we have (I)*G*E(I+r+8)-- 

pr +r+s). Using these facts, it  follows from (f) that  

(g)  s  + r + 8) ~ # r  +,+~) + (aglau)~(,+~) + (aglOv)~(~) + a '8 (1  + r + s)). 

But #(I)* is a bijection of ~(n+r+8) onto itself, so applying (p(I)*) - t  to equation (g) we 

get: 

(n + r + 8) = ( # r 1 6 3  (n + r + 8) c (aglax~e(, +, +,> + (~glau)~(, +,> + (ag/av~(,) + q*s + r + 8), 

and hence, by definition 3.5, g is infinitesimally (r, 8)-stable. Q.E.D. 

The next few definitions and theorems will be devoted to showing that  infinitesimal 

(r, s)-stability can be expressed as a certain transversality condition. 

Definition 3.9. Let n and r be non-negative integers. We define L(n, r) to be the set 

of triples ((I), ~, A)EL(n + r) • L(r) • L(1 + r), such that  the following diagram commutes: 

I 

R ~+" P , R ~ P.._2..-- R TM 

R~+~ P , R  ~ ,  .. RI+~ 

where p and p'  are projections onto the second factor. 

Clearly L(n,r) is a subgroup of L(n+r)•215 +r). Moreover L(n,r) acts on 

m(n+r) from the right if we define/-((I), v2, A), f o r / e m ( n + r )  and (dP, v 2, A)EL(n, r), as 

follows: Define F e ~ ( n + r ,  1 +r) by setting F(x, u)=(/(x, u), u) for xER ", uER ~. Letp l :  

RI+r-~R be the projection onto the first factor. 

Now set 
[. (O, W, A): = pro (A-1-P(I)). 

Remark. I t  is easy to see that  L(n, r) is in fact just the group of r-equivalences of r- 

dimensional unfoldings, and /.((I), ~, A)=g if and only if ((I), y), A) is an r-equivalence 

f rom g to  11 

Definition 3,10. Let n, r and q be non-negative integers. We set Lq(n, r) = {(di)', ~',A') 

ELq(n+r) • • +r)i there exists ((I), ~, A)eL(n, r) such that  (I)' =#zq(dp), v 2' =~q(~#) 

and A' =~zq(A)}. Clearly Lq(n, r) is a closed Lie subgroup of La(n + r) • Lq(r) • Lq(1 + r). 

If [Em(n+r) and (dl), ~, A)EL(n ~ r) then one easily convinces oneself that  the q-jet 

o f / -  ((I), v2, A) depends only on the q-jets of [, O, ~, and A. Hence the group action of 
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Z(n, r) on m(n+r )  induces a well-defined right group action of Lq(n, r) on J~(n+% 1), 

such that  for / E m ( ~ + r )  and ((I),~p, A)EL(n,r)  we have ~rq(/)-(~e((I)), ~rq(~o), ~q(A))= 

zrq(f.(~P, y~, A)). Moreover one readily checks that  the action of Lq(n, r) on J~)(n+r, 1) is a 

Lie-group action, i.e. smooth. 

Remark. If zEJg(n+r) we shall denote the Lq(n, r) orbit of z by zLq(n, r) and we shall 

denote the tangent space at z t o  zLq(n, r) by TzzLq(n, r). Since Jg(n+r, 1) is a finite di- 

mensional real vector space we may identify its tangent space at  any point with J~(n +r, 1) 

itself; in particular, w e  may identify TzzLq(n, r) with a linear subspaco of JS(n+r ,  1). 

With this identification in mind, we have the following lemma: 

LEMMA 3.11. Let / Em(n +r)  and let z =gq(/). De/ine F E E(n + r, 1 + r) by seUing .F(x, u) -~ 
(/(x, u), u)/or xER n, uER ~. Then 

T~zLq(n, r) = ~rq((O//~x)m(~+,) + (~//~U}m(,) + F 'm(1 + r)) 

Proo/. Let w: R-~Lq(n, r) be an arbitrary smooth map such that  w(0) is the identity. 

Then it is easy to see that  one can find smooth maps ~: R n+T • R-~R n, ~: R T • R-~R ~ and 

~t: R 1+~ • R-~R with the following properties: 

Firstly, if we define, for each tER, germs ffPt6~(n+r, n +r ) ,  ~otE~(r, r) and Ate  

~(1 +r ,  1 +r)  by the equations (I)t(x, u)=(x+7,(x, u,t), u+($(u, t)); ~ot(u)=u~-~(u, t); and 

At(s,u)=(8+~(s, u, t), u+O(u, t)) for xER n, uER" and sER, then for each tER the triple 

((I)t, ~0,, At) is in L(n, r) and (*) w(t) = (7rq((1)~), ~ze(~t), r~q(At)). And secondly, 7(x, u, 0)-~ 
~(u, 0) =2(s, u, 0) =0  for all xER' ,  uER r, and sER. 

Conversely, if we are given arbitrary maps ~, ~, and ~t satisfying all properties above 

except (*), then equation (*) can be used to define a smooth map w: R-~iq(n, r) such that  

w(0) is the identity. 

Now TzzLq(n, r) consists of all tangent vectors of the form O(z.w(t))/otit~o, where 

w is an arbitrary map as above. But  if we have maps 7, ~, and 2 as above, and define germs 

(Pt, ~t, and As as above, and if we let Pl: RI+~-~R be the projection onto the first factor, 

then by  straight computation (and using the fact that  (I)o, ~o, and A o are germs of identity 

mappings) one sees that  

N (z" 

' 0 + + E - - ~  
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Since p~A~A~=px we have 

0 0 _~ + 0 

and hence p~ Ar -- - - -  
~-o ~ t-o" 

But  now the  lemma follows immediately because on the one hand the condition 

(r y~, A~)~L(n, r) implies tha t  for all t we have 7(0, 0, t)--~(0, t) --2(0, 0, t )=0  and hence 

(~7 J~)  [ ~0 ~ ra(n + r), (O8~]~t) I r--o G ra(r) and (~ /~)  ] ~-o ~ 11t(1% r); but  on the other hand this 

is clearly the only restriction on the derivatives with respect to ~ at  t = 0, so one can choose 

r ,  ~ and ~t such that  the (~ /~ ) l~ -0  are arbitrary elements of ~ ( n + r ) ,  the (OOJ0t)l~_ o 

are arbitrary elements of ra(r), and (O2]~t) l ~-o is an arbitrary element of ra(1 +r).  Q.E.D. 

De~inlt~ 3.12. Let  fEm(n+r +s) and let q be a non-negative integer. Let  i: R a+r-~ 

R n+~+s be the eanonieal inclusion given by i(x, u)=(x, u, 0) for (x, u)ER n+r. Let  ]0= 

/I Rn§ = i ' f ,  We define 

Mr q. s(/): = (eeoai*)-l(~a(fo)La(n, r)) ~ Jq(n +r +s, 1), 

and we shall say / is (r, s) q-transversal if the map-germ Jq] is trausversal at 0 to M~.,(/). 
(See definition 1.2 for the definitions of Oa, ~i*, and Ja]). 

Remark. Since pq%i*: Ja(n+r+s, 1)~JS(n+r, 1) is a projection of real vector spaces, 

Mar.s(f) is obviously an immersed submanlfold of Ja(n+r+s, 1), so it  makes sense to 

speak of transversality). 

L~.MMA 3.13. Let /Em(n+r+s). Let /o=f]R n+r and de/in~ Foes , l+r) by 

Fo(X, u)=(fo(X, u), u) /or xeR '~, ueW. Let q be a ~n-~atlve integer. Then / ia (r, s) q- 

transversal if and only if 

(a) s +r) = {~]o/&V)~(,~+r)-{-~fo/aU)e(r)-{-(~H~lRn+r)R-f F~ ~(1-{-r) + m(n + r)q+L 

Proof. Let A~_J~(n+r+s, 1) be the image under the differential of Jqf of the tangent 

space at  0 to R n+r§ (Here again we identify A, which is in fact a subspace of the tangen$ 

8~we to Jq(n + r + s, 1) at gq(f), with a subspace of Jq(n + r + s, 1) itself, in the obvious way; 

we may do this because Jq(n + r + 8, 1) is a finite-dimensional real vector space). 

A is generated by the partial  derivatives of Jar with respect to the coordinate axes 

of R n§247 all evaluated at  0. 
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Recall the definition of Jq/: choose a representative f o f / ,  defined on a neighbourhood 

U of 0 in R~+r+L For any yE U define /(~)E~(n§ by/(~)(z)=/ ' (y§  for zER n+~+~, 

and set gq/(y),=r~q(/(~)). From this definition it is clear tha t  if t denotes any one of the co- 

ordinates of R n+r+s, then 

OJq/at uffio ~ ~z a (~ )  ~Jq(n+r+s, 1). 

Hence A =#q( (~//aX)R + (a//aU)R + (O/]~V)R). 
NOW let B be the tangent space to Mq~.~(/) at  gq(/)=Jq/(O) (as usual we shall identify 

B with a subspace of Jq(n +r +s, 1)). Then from the definition of M~.s(/) and from Lemma 

3.11 it is clear that  B =~q((~/o/~x)m(n+r) + (a/0]~m(r) § F~m(1 + r )§  (1)R § re(s) ~(n + r + s)) 

(where the expression in parentheses is of course to be considered as a subset of E(n + r + s)). 

The germ ] is by definition (r, s) q-transversal if and only if Jq(n+r+s, 1)= 

gq~(n § =A § and this is clearly equivalent (using the fact tha t  F~m(1 +r)  + 

(1)R=F~ ~ ( l + r )  and the fact tha t  if t is any coordinate of R "+r, then ~]/~t-a/o/atE 
re(s) s + r +s)) to 

(b) E(n + r + s) = (O/o/~X)e (~+~) + (~/o/au)e(~) + (O//~V)R + F~ E (1 + r) 

+ re(s) E(n + r + s) + m(n + r + s)q+L 

Let  a: ~(n+r+s)-+E(n+r) be defined by  setting a(g) =g]R  a+r for gEE(n+r+s). Then 

the kernel of ~ is m(s)E(n+r+s) and since m(s)~(n+r+s) is contained in both sides of 

(b), equation (b) holds if and only if the equation which results when we apply ~ to both 

sides of (b) is valid. But  doing this clearly yields equation (a), so we are done. Q.E.D, 

As a corollary, we have 

THEOREM 3.14. Let /Em(n +r +s). Then / is in/initesimally (r, s)-stable i /and only 
i / / i s  (r, s) q-transversal/or all non-negative integers q. 

Proo/. "if": Let  fl: E (n + r)-~ E (n) be given by restriction, i.e. let fl(g) = g I R" for g E ~ (n + r). 

Let  ~ = / I R  n . 

I f / i s  (r, s) q-transversal for all q, then 3.13 (a) holds for all q, and applying fl we find 

that  

s = <~/~x)~(n) + <~//~ulR', a//avlR~)R +~*~(1) + m(n)q+ 1 

for arbitrary q. This implies aq(~) ~< r + s for all q (see definition 2.16) and hence by Theorem 

2.17 (c) ~ is finitely determined and for some integer k, m(n)k_~ (~/~x}e(n). Equation 3.13 (a) 

holds in particular for  q =k(s+  1 ) -  1 so by Theorem 3.6, / i s  infinit~imally (r, s)-stable. 
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"Only if": If  [ is infinitesimally (r, s)-stable then equation 3.6 (b) holds, but  this 

clearly implies that  equation 3.13 (a) holds for any q, so [ is (r, s) q-transversal for all q. 

We are now in position to prove the analogue for (r, s)-stability of Theorem 2.11. 

THEOREM 3.15. L e t / E m ( n + r + s )  un/old ~Em(n). The/olIowing statements are equi- 

valent: 

(a) / is infinitesimally (r, s)-stable. 

(b) / / s  strongly (r, s)-stable. 

(c) / /8 weakly (r, s).~ble, 

Proo]. The method of proof is essentially the same as for Theorem 2.11 (see [11, Th. 

4.11]), although a small amount  of extra work is needed here. 

Proof tha t  (a) ~ (b). Suppose / is infinitesimally (r, s)-stable. Let  a neighbourhood U 

of 0ER n+r+* and a representat ive/ ' :  U-~R of f be given. We must find a neighbourhood 

of ]' in C~176 R) such that  any mapping in this neighbourhood is, at  some point of U, 

(r, s)-equivalent t o / '  at 0. 

We begin by defining some notation. We define a function F: U xC~176 R)-~ 

m ( n + r + s )  as follows: If (y, w, z )EU and bECk(U, R), define F(y, w, z, h) by setting 

F(y, w, z, h) (x, u, v) = h(x + y, u + w, v + z) - h(y, w, z) for x E R n, u E R r, v E R'. For (y, w, z) E U 

and h E C~(U, R), define ~,(y, w, z, h) = F(y, w, z, h) I Rn+r and define ~(y, w, z, h) = 

F(y, w, z, h)]R n. Note that  F(0, 0, O,/') = / a n d  ~(0, 0, O,/') =~/. 

Since ~ is finitely determined there is a positive integer b such that  gk(~/)CZk (see 

Definition 2.18). Since Z~ is an algebraic and hence closed subset of Jg(n, 1) (by Lemma 

2.19 (c)) and since g~o$: U • U~(U, R)~Jg(n ,  1) is continuous, it follows that  there is a 

neighbourhood UI___ U of 0 in R "+~+' and a neighbourhood g 1 o f / '  in U~(U, R) such that  

if (y, w, z )EU 1 and hE V1 then g~$(y, w, z, h)r and hence (applying Lemma 2.19 (b)) 

Let q=k ( s+ l ) .  If  g is any germ in m ( n + r + s ) ,  we set 90=91R'+" and we let A(g) be 

the finite subset of Jq-l(n+r,  1) consisting of the q -1 - j e t s  of the following elements of 

~(n+r) :  all elements of the form (monomial in x t and uj of degree <q times some ~go]~X~); 

all elements of the form (monomial in u t of] degree <q times some Og0/~uj); the germs 

~g/avz]R n+" for 1 <~l<s; and all germs of the form (monomial in uj of degree <q times g~ 

for some i, 0~<i<q). The elements of A(g) depend linearly on rrq(g ). 

Since ] is infinitesimally (r, s)-stable, it clearly follows from Theorem 3.6 that  A(/) 

generates Jq-l(n+r,  1) over R. Since gqoF: U • R)-~Jq(n +r +s, 1) is continuous, 

this implies tha t  there is a neighbourhood U~___ U of 0 in R "+'+~ and a neighbourhood V2 
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of / '  in Coo(U, R) such tha t  if (y, w, z)EU~ and h E V  2, then A(F(y, w, z, h)) generates 

Jq- ! (n+r ,  1) over It. 

Choose a compact neighbourhood K of 0 in It'+~+~ such tha t  Kc_ U 1 N U~, and choose 

a r e a l  number  c > 0 small enough, so tha t  the closed n + r + s-cube [ - c ,  c] "+r+~ is contained 

in K .  

I t  is not very difficult to see, finally, tha t  there is a neighbourhood V3 of l '  in Coo(U, It) 

and a neighbourhood V4 of 0 in Coo(U, R) such tha t  if g E V4 and if h E Va and (y, w, z) E K, 

then zq_l(~(y, w,.z, g)) can be written as a real linear combination of elements of 

A(F(y, w, z, h)) in such a way, tha t  the coefficients have absolute value less than  c. 

Now choose aneighbourhood V of 0 in C~176 It) such tha t  V _  V~ and such tha t  if 

h E V, then for any  real number  t E [0, 1], the m a p p i n g / '  + th is in V~ N g~ N ga. 

We shall show tha t  if hE V, t h e n / '  +h is at  some point of K (r, s)-equivalent t o / '  a t  

0. This will prove (a)~(b) .  So suppose hE V. Let  a point (y, w, z ) E K  and a real number  

aE[0, 1] be given. Define a germ H E m ( n + r + s + l )  by setting 

H(x, u, v, t) = (/' + ( a + t ) h ) ( y + x ,  w + u ,  z + v ) - ( t '  +(a+t )h ) (y ,  w, z) 

for xER n, uEi t  ~, vEi t  s and tEi t  

and define a germ H E , ~ ( n + r + s + l ,  1 + r + s + l )  by  setting 

H(x,  u, v, t) = (H(x, u, v, t), u, v, t) for xER n, u E R  ~, vER 8, tER. 

Let ~ = H [ R  ~, and let H 0 = H I R ~+* and H 1 = H I R * §  Observe tha t  l a = ~(y, w, z, ]' + ah) 

and H 1 =F(y ,  w, z , / ' + a h ) .  By the choice of V a n d  K, and since (y, w, z ) E K  and hE V 

and 0 ~< a ~< 1, it is clear tha t  re(n) ~_ (~lz]~X)r,(~) and tha t  A (H1) generates Jq-X(n + r, 1) over R. 

Hence 

(d) s  + r) = <aHo/aX)~{n+,) + (0Ho/~a~a(, > + <~H1/~v [ Rn+T>R + <1, H 0 ..... Hg-I>e(T) + m(n + r) ~ 

Since m(n)k__q (~la/~x)mr it follows as in the proof of Theorem 3.6 ((c)~(a)) tha t  

(e) m(n -t- r) q ~_ ((~Ho/SX)r,(n+r) -t- m(r)~+lg(n + r). 

In  particular, in (d) we may  replace the term m(n + r) e by  m(r)~+lE(n + r). From the result- 

ing equation it follows, by Corollary 1.8 (c), tha t  

m(r)~E(n + r) ~_ (Ogo/~X)e(n+T) + (8Ho/OU)er + (1, H 0 ... . .  H~-I)ect), 

and from this and (e) we get: 
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Now clearly (OH/Ot)]R~+'=y(y, w, z, h), so, since (y, w, z)~K and h~ V (and hence 

h e  V~ and /' +abe V~), it  follows t ha t  rta_d(OH/Ot)]R "+') can be wri t ten  as a linear com- 

binat ion of elements of A(Hx) with coefficients of absolute value <c.  

This, together  with (f), clearly implies tha t  we can find germs ~ . . . . .  ~ ( n + r ) ,  

germs g~ . . . . .  g, ~ E(r), real numbers/5~ . . . .  ,/5,, and a germ co ~ ~( 1 + r) such t ha t  (if we define 

H 0 e s  1 + r )  by  H0(x, u ) =  (Ho(x , u), u)) 

(g) ~- OH o L OH o • OH] 
o_/r R~+, = 2~ ~,-=-+ 2. x,~7. + ~ s  IR'+'+H;(~ 

~ | - 1 ~ ' f  I - 1 u ~ i  l = 1 v u I 

and such t h a t  I~(0, 0) I <c,  (for l~<i~<n); ]X~(0)I <c  (for l < i < r ) ;  I/5,1 <c  (for 1 <l<~s); 

and leo(0, 0)] <c.  

Define x ~ ( n + r + s +  1) by  setting 

, . ,  e , N -  ,-,  

By (g) we have x [R~+ '=0  so o~m(s+l )E(n+r+s+ 1). 

By  (d), H x is infinitesimally (r, s)-stablo, so by  Corollary 3.7 H is infinitesimally 

(r, s +  1)-stable. Hence equat ion 3.5 (a) holds (with appropriate  substitutions) and multi- 

plying by  m(s+l )~(n+r+s+l )  we find 

m(s + 1) E ( n  + r + s + 1) = (OH/ax)m<8+x),<n+,+s+l) + (OH/au)mcs+l)er 

+ (aH/Ov)m~+~ + (OH/Ot)mr + H*(m(s  + 1) E(1 + r + s + 1)). 

t v p t So there  are germs ~ .... , ~ ~ E m(8 + 1) E(n + r + s + 1), germs X~ .... , Z, E m(s + 1) E(r + 8 + 1), 

germs/5~, ..., 3'~em(8§ 1), a germ ~ m ( 8 + 1 )  and a germ o ' e m ( 8 + D ~ O  § 2 4 7 2 4 7  such 

t ha t  

cr ~ .,OH ~ ,OH ~ ~,OH ~sOH 
~, =- + ~ xj :-- + 2, ~ ~ + R*(o~') + -d"  

= 1 0 ~  ~ = 1 ~T, )  l = 1 

Since ~ e m(s + 1) it  follows tha t  1 - 8 is a uni t  of ~ (s + 1). Define germs ~ ~ ~ (n + r + s + 1) 

(for 1 ~< i ~< n); germs Z~ ~ ( r  + s  + 1) (for 1 ~<~ -~r); germs/5~ ~ ( s  + 1) (for 1 < l  ~<s) and a germ 

co ~ ~ ~(1 + r  + s  + 1) by  sett ing $~ = (~ +~'~)/(1 -~ ) ;  X~ = (~ +Z;)/( I -~ ) ;  /5~ = (/5, +/5;)/(1 -~) ;  

and to ~ = (w +co')/(1 -~) .  F rom the two different expressions we have for *r it  easily follows 

tha t  

aH ~ .aH ~ OH " D~, ~ - 

(Note tha t  H* is a homomorphism of ~(s + 1)-modules!) 
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Moreover I~'(0, 0, 0, 0) l < c; I Z~(0, 0, 0) l < c; I fl;(0, 0) l < c; and leo"(0, 0, 0, 0) I < c. B y  

Lemma 1.10 there  is a germ r  n+r+s )  and a germ~E,a_( l+n+r+s+l)  

such t ha t  

(i) r u, v, O) = (x, u, v) and ]~(v, x, u, v, O)=v for xER' ,  uERr, vER*, TER, 

(J) H((I)(x, u, v, t), t) =2(H(x, u, v, 0), x, u, v, t) for x E R  ", uER ~, vER ~, tER,  

and finally, ff we write di)=(9, a, Q) for some 9 E E ( n + r + s + l , n ) ,  aEE(n +r +s + l,  r) 

and QEE(n+r+s+l ,  s), then  

(k) ' (x ,  u ,  v, t) = . ~ ' ( ~ ( x ,  u,  v, t), a(x,  u ,  v, t), q(x, u ,  v, t), t) (i = 1 . . . . .  n), 

Dfft "x -~  ( , U, V, t) = --XJ (a(x, u, V, t), e(x, U, v, t), t) (i = 1 . . . . .  r), 

~-~qzz (z, u ,  v, t) = - f l ; ' (q(z ,  u ,  v, t), t) (l = 1 . . . . .  s), 

and 

~2 
5 / ( * '  x, u, v, t) =o/ ' (2 ( . ,  x ,  u,  v, t), a(x,  u, v, t), q(x, u,  v, t), t), 

for x E R  n , u E R  r , v E R s , z E R  and tER.  

By  (i) 0(x, u, v, O)=v and hence does not  depend on x or u. Moreover by  (k) ~O/Ot depends 

only on the value of Q and n o t  direct ly on x or u, so by  the uniqueness of solutions of or- 

dinary differential equations with given initial conditions, ~ does not  depend  on x or u, 

i.e. Q E E (s + 1, s). Using this fact  it  then  follows by  the same argument  t ha t  a E E(r + s + 1, r). 

And, then,  by  t h e  same argument  again, it  follows from the last equat ion (k) t ha t  2 E 

~(1 + r + s + l ) .  

Now choose represen ta t ive  functions for the  germs 9 ,  a, ~, and 2; for  convenience 

we use the  same names for the  representat ives as for the  germs. 

Then  we can choose suitable neighbourhoods W 1 of 0 in R n+r+8, W~ of 0 in R r+~, Wa 

of 0 in R*, W4 of 0 in R l+r+~ and a neighbourhood T of 0 in R such t ha t  for  t E T  we m a y  

define functions dp~: WI-~R~+r+~; YJt: W~-~R~+*; ~ot: Wa -~Rs, a n d  2~: W4-~R by  the  equa- 

t ions @~(x, u, v) =(T(x,  u, v, O, a(u, v, t), O(v, t)); ~0t(u, v )=(a (u ,  v, t), 0(v, t)); 0t(v)=0(v, t); 

and 2t(v/u, v) =2(T, u, v, t) for x E R  ~, u E R  ~, vER ~, ~ER. 

From (i) it follows tha t  if the W, and T are chosen small enough then  (I),, YJt and 0~ 

6-752905  Acta mathematica 135. Imprim6 lo 19 DSccmbro 1975. 
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will be diffeomorphisms into for every t E T, and for every (v, u, v) E W 4 and every t E T, 

(a2d~r) (~, u, v) 4=0. 

Now if one chooses a suitably small neighbourhood Ucu.w.z ~ of ( y , w , z )  EI~ n§ 

then one can for each (y', w', z')EU~u.~.z) and for each t E T  define germs dP~.~,.w,.~, 

EL(n + r+s) ;  v/~.y,.w,.~,EL(r+s); p~.u, ~, ~,EL(s) and A~.u,.w,.~,EL(l+r+s) by the equa- 

tions: dP~.y, ,~,.z,(x, u, v)=dPt(x + y ' - y ,  u + w ' - w ,  v + z ' - z ) - d P t ( y ' - y ,  w ' - w ,  z ' -z) ;  

v,,;. ~.. w.. ~, ( u ,  v )  = v / t ( u  + w '  - w ,  v + z '  - z )  - V ' t ( w '  - w ,  z '  - z) ;  ~. ~,. ~,. ~, (v)  = Q t ( v  + z '  - z )  - 

~t(z'-z); and A~.~..~..~.(v, u, v)=(2t(7:+(f +ah)(y', w', z ' ) - ( / '+ah)(y ,  w, z), w ' - w + u ,  

z ' - z + v ) + ( f + ( a + t ) h ) ( y ,  w, z ) - ( / '+(a+t )h) ( (y ,  w, z)+dPt(y'-y,  w ' - w ,  z ' -z)) ,  
~p~.y.. ,~,.~.(u, v)) for xERn,uER ~, vER 8, vER. (That these germs are in fact in L(rt+r+s) etc. 

is immediately clear from the defining equations and the properties of dP t, v2t, qt and At; to 

show that  A~.~..~..z.(0)=0 one must also use (j) and the definition of H). 

Moreover, from (j) and the definition of H one can easily check by direct computation 

that  if Ucy . . . .  ) and T were chosen small enough, then for each (y',w',z')E U(~.~.~) and 

(I)' ' ' A '  each tET,  the quadruple ( t.~,.w..~,, ~t.y..w..z.,~t.y..w,.z,, t.y..~,.~,)isan (r,s)-equivalence 

from f +ah at (y',w',z') to f +(a+t)h at  ( y ,w , z )+dPt (y ' - y ,w ' -w , z ' - z ) .  
To simplify the notation, we shall write d(y', w', z', t) for (y, w, z ) +  

t t ( Y ' - Y ,  w ' - w ,  z ' - z ) .  
Because for t small enough (I)t: Wx~R n+~+s is a diffeomorphism into, it is easily seen 

that  for any t near enough to 0 and for (y", w ", z") near enough to (y, w, z), there is a 

(y', w', z') in U~y. ~.~) such that  (y", w ~, z") =d(y', w', z', t). 

From this, and by composing equivalences it follows that  given any t~ and t~ suffi- 

ciently near 0 and any (y~, w", z ~) sufficiently near (y, w, z), there is a point (g, @, 5) such 

that  ]'+(a+tx)h at (y~, w ~, z ~) is (r, s)-equivalent to ]'+(a+t2)h at (if, @, ~). In fact we 

need only choose (y', w', z') such that  (y", w ~, z')=d(y', w', z', t 0 and then set (g, z~, ~) = 

d(y', w', z', t~.). 

Moreover, from this, and the definition of d, and because of the equations (k) and the 

fact tha t  the absolute values of the ~ ,  Z~, ~ and co" at  0 are less than c, it follows that  if 

t 1 and t~ are small enough, and if (y", w ~, z ~) is close enough to (y, w, z) then for t between 

t 1 and t2 each coordinate of &t(y', w', z', t)/Ot will be smaller than c in absolute value and 

hence corresponding coordinates of (y', w", z ~) and (if, @, 5) will differ by at  most c it ~ -t~[. 

Now since (y, w, z) and a were arbitrary it follows by the compactness of K and of 

[0, 1] that  there is a real number c > 0  such that  if Itl <e, then for any (x, u, v) EK and any 

bE[0, 1] there is an (x', u', v')ER *+r+s such that  f + b h  at  (x, u, v) is (r, s)-equivalent to 

/' + (b +t)h at (x', u', v') and such that  corresponding coordinates of (x, u, v) and (x',u',v') 

differ by at most c lt I . 
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Now it is easy to define by induction a sequence of real numbers 0 = t  o < t I <...  <tm = 1 

and a corresponding sequence of points P0 =0,  pl, pz ..... pm ER n+r+8 such that  [' +t,h at  lo, 

is (r, s)-eqnivalent to [' +t,+lh at P,+l (for 0 ~<i <m) and such that  corresponding coordi- 

nates of p~ and P~+l differ by at  most c(t,+l-t,). Since [ -c ,  c]n+r+8__qK this implies each 

T~ will be in K so that  the induction can always be carried out as long as t, ~< 1. 

And then it follows tha t  t '  = [ '  +toh at 0 =Pc is (r, s)-equivalent to [' + h  at  pmEK~_ U, 
so we are done proving (a) ~ (b). 

(b) ~ (c) is trivial. 

Proof tha t  (c)~(a).  Suppose ] is weakly (r, s)-stable. We shall use Thorn's trans- 

versallty lemma to find a germ which is (r, s)-equivalent to ] and which is infinitesimally 

(r, s)-stable; this will imply ] is infinitesimally (r, s)-stable. 

Choose a neighbourhood U of 0 in R ~+r+8 and a representative function ]': U ~ R  of ]. 

H q is a non-negative integer and if tER and t # 0 ,  we define V~ ={hEC~176 R)]Jq(] ' +th) 

is transversal to M~.8(/') everywhere on U}. By Thorn's transversality lemma (Theorem 

1.9), for each q and t the set g~ is a countable intersection of open dense subsets of 

Ca~ R). 
Let V = n e~017 ~=x v[/k. Then V is also a countable intersection of open dense subsets 

of C~(U, R) and in particular, since C~(U, R) is a Baire space, V is dense and hence 

non-empty. Choose an h E V. 

Since ] is weakly (r, s)-stable it follows that  if we choose an integer k sufficiently 

large, then ]' + k-lh at some point (y, w, z) of U will be (r, s)-equivalent to ]' at  0. Or in 

other words, if we define gEm(n+r+s)  by g(x, u, v )=( f '+k- lh) (y+x,  w + v , z + u ) -  

(r+k-lh)(y,  w, z) for xER ~, uER r, vER 8, then 9 is (r, s)-equivalent to ]. I t  easily follows 

t h a t / ] R  n+r and g[R ~+r are r-eqnivalent and hence for any q we have Mar. s(f)=Mqr, s(g). 

Moreover since h E V it follows that  for any q, Jq([' + k-lh) is transversal to Mg. 8([) at  

(y, w, z); by the definition of M~.~(]) i t  is clear tha t  then Jr is transversal to M~.~([) = 

M~. 8(g) at  0. Hence g is (r, s) q-transversal for all q, so by Theorem 3.14 g is infinitesimally 

(r, s)-stable. But g is (r, s)-equivalent to [ so by Theorem 3.8 [ is infinitesimally (r, s)- 

stable. Q.E.D. 

As a consequence of this theorem we may make the following definition: 

De/initlon 3.16. A germ /Em(n+r§  will be said to be (r, s).stable if any of the 

equivalent conditions 3.15 (a), (b), or (c) holds. 

Here again it  is now natural to pose the question of determining the (r, s)-stable un- 

foldings of a given germ ~/, and of classifying (r, s)-stable unfoldlngs in general. Clearly, 

since any (r, s)-stable unfolding is also (r+s)-stable, ~7 can have (r, s)-stable unfoldings 
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only if it is finitely determined, and if / is an (r, s)-stable unfolding of 7, then r + s  must  

be ~>eodim (7). 

Conversely, if 7 is finitely determined, then clearly 7 has (r, a)-stable unfoldings for 

sufficiently large r and s. In  fact, if a is given, then there is an r 0 such tha t  ~ has (r, s)- 

stable unfoldings for all r >~ r 0. 

For one can obtain an (r, s)-stable unfolding of ~ by first finding an r-stable unfold- 

ing [ of ~7; the s-dimensional constant unfolding of ] will then be (r, 8)-stable. From this i t  

is clear tha t  the minimal value for r 0 above is a t  most a(~) (and, of course, at  least a(~) - s ) .  

However, the problem of determining in general whether for given r and s a given germ 

has (r, a)-stable unfoldings is somewhat more difficult than  in the case of ordinary sta- 

bility. So is the problem of classifying the (r, s)-stable unfoldings, for, as we shall see, an 

(r, s)-stable unfolding of a germ 7, for given r and s, need not be uniquely determined up 

to (r, s)-equivalence. 

These are the questions which will concern us in the following sections. 

w 4. CiaRsifying (r, s)-stable unfoidings 

In  this section we shall develop an algorithm for finding (up to (r, s)-eqnivalence) all 

(r, s)-stable unfoldings of a given germ 7, for given r and s. In  particular this algorithm 

will also enable us to tell, given r and s, whether or not 7 has any (r, s)-stable unfoldings. 

In  constructing this algorithm, we shall make use of what  we know about ordinary 

stability (in particular the fact tha t  we know all r-stable unfoldings of a given germ ~] for 

given r), and we shall make use of the fact tha t  we can a t  least recognize (r, s)-stable un- 

foldings when we see them. Given r and s, we begin by  taking a standard (r+s)-stable 

unfolding of 7. This unfolding will of course be (r + s)-eqnivalent to any (r, s)-stable un- 

foldings that  7 may  have, but  this is not enough because (r, s)-eqnivalence is finer than  

(r § The idea is to alter the standard unfolding in a canonical way so as to 

generate a set of unfoldings of 7 such tha t  any  (r, s)-stable unfolding of 7 will be (r, s)- 

equivalent to some unfolding in this set; unfortunately, not every unfolding in the set ~11 

in fact be (r, s)-stable, but  using Theorem 3.6 we shall be able to tell which ones are. Of 

course we shall devote a fair amount  of effort to ensuring tha t  the set of unfoldings which 

our algorithm produces will be reasonably small, so  tha t  computations using this algo- 

r i thm will be possible in practice and not just in theory. 

In  this section we shall be working, unless otherwise stated, with a fixed germ ~ E re(n), 

and we shall assume fixed non-negative integers r and s have been given (so they need 

not be specifically mentioned in the notation which we shall introduce). 
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Definition 4.1. For the purposes of this definition, we shall in departure from our 

usual convention denote the standard coordinates of R r+~ by w 1 . . . .  , W,+ s, 

We denote by S~+~ the symmetric group on r+s  letters. If aES~+~, we denote by t% 

the germ in L(r+s) given by eo~(w 1 ... .  , wr+s)=(w~(1) ..... Wo(r+s)), and i f / E l l l ( n + r + s )  we 

denote by / r  the germ in m(n + r + s) defined by 

t.(x, w) = l(x, ~oAw)) for xelt", w e l t  '+'. 

Let k~<min (r, s) and suppose we are given integers l<~il<i~<...<ik<~r and 

integers l~<jl<}~<...<?'k~<s. We denote by a(il, ...,ik; Jl ... . .  jk)ES,+~ the product of 

transpositions (is, r+jl)(i~, r+~)  ... (i~, r+]~). We let T~_S~+, be the set of all such 

a(i 1 .... .  i~; ]1 ..... }~). Note that  every element of T is of order' 2. 

Note that  (with our usual coordinates u 1 ..... u~ on lt~ and vl,...,v, on It') if /E m(n + r + s) 

and if a E T, then ~ is just / preceded by an element of L(r +s) which simply interchanges 

some of the u~'s with an equal number of the v/s. 

LEMMA 4.2. Let / and gE m(n +r + s) be (r + s).stable un/oldings o/~.  Then there exists 

a aE T and a germ f lEg(r+s,  s) such that riO) =0, fl]0 x R'  is non-singular, and if we de/ine 

hEm(n+r+s )  by h(x,u,v)=/,~(x,u,  fl(u,v)) /or xER  ~, uER ~, vER ~, then h is (r; s).equi- 

valent to g. 

Proo/. Sinceg a n d / a r e  both (r+s)-stable, g is (r+s)-equivalent to / .  Let ((I), ~, A) 

be an (r +s)-equivalence from g to / .  Now since ~ EL(r + s ) i t  is clear that  for some suitably 

chosen (~ET, if we set ~p~=coao~p and we write yJ~=(y~, Oa), where 7~E~(r+s,  r) and 

~ E ~ ( r  +s, s), then 7~[R r x 0 and ~10 x R 8 will be non-singular. 

Moreover if we write (I)=@,~v) for q~EE(n +r +s, n) and if we write A=(2 ,~)  for 

2 E E(1 +r +s), and if we set (I)r (~, ~r and A~ = (2, v2r then ((I)r v2r A~) is an (r +s)- 

equivalence from g to /~  (since a is of order 2). 

Define ~EL(s) by setting ~(v)=~(0, v) for vER'. Set (I)' =@, 7~, q); ~' =(7~, Q) and 

A' =(2, 7r Q); by the choice of a the germs (I)', p'  and A' are non-singular. Set (I)"= 

(I)~((I),)-l; ~,,=~(~,)-1 and A'=A~(A')  -1. Clearly (~P", v/ ,  A")EL(n, r+s);  let h =  

/~" (~", yJ", A"). Suppose (u, v) ER ~+~. Let (u', V') = (v2')-l(u, v) and let (u", v") =y~"(u, v). Then 

(u, v)=y/(u',  v') so u =~,~(u', v'); but (u", v")=y~(u', v') so also u" =7~(u', v ')=u. Hence y" 

has the form ~"(U, v)=(u, fl(u, v)) where fl is some germ in E(r+s, s). A similar argument 

shows that  ~"(x, u, v)=(x, u, fl(u, v)) and A"(t, u, v) =(t, u, fl(u, v)) for xER", tER, u E R  ~, 

vER 8 (note also that  the germfl  is in all three cases the same because ((I)", v2", A") is an 

(r +s)-equivalence). So clearly h has the form h(x, u, v)=/~(x, u, fl(u, v)). Moreover since 
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~p" EL(r + s) it follows that/~(0) = 0 and fl [ 0 x R ~ is non-singlflar. And finally it is clear that  

((I)', ~', ~, A') is an (r, s)-equivalence from g to h. This completes the proof. 

Our goal now is to strengthen Lemma 4.2 by showing that  the germ fl above can be 

chosen to be of a fairly simple form. 

Definition 4.3. Let  ] and 9 E m ( n + r + s ) .  A smooth homotopy/rein f to g is a map from 

[0, 1]_cR to m ( n + r + s ) ,  mapping tel0,  1] to HtE m(n+r+s ) ,  such that  He=I, Hx= 9 and 

for every toE[0, 1] there is a germ K t . f i m ( n + r + s + l )  such that  for x E E  n, u E R  ~, vER ~ 

and t near 0 in R we have (*) Kt.(x, u, v, t)=Ht.+t(x, u, v) (whenever to+rE[0, 1]). (What 

(*) means precisely is tha t  ff K~. is any representative of K~, then for t near 0 in R the 

germ at  0 of K~,IR "+'+8 is Hr,+t). 

De/init~m 4.4. Let  ] and g E m ( n + r + s )  be (r, s)-stable germs. A stab/e homotopy from 

] to g is a smooth homotopy t ~ H t  from / to 9 such that  for every rE[0, 1] the germ H t is 

(r, s)-stable. If a stable homotopy from / to ~7 exists then we say / and g are stably homo. 

topic. 

LEMMA 4.5. Let / and g E m ( n + r + s ). Suppose there i sasmoothhomotopy t~Ht / rom/ to  

g such that for every t0E[0 , 1] we can choose a germ K u E m ( n + r + s + l  ), with Kt,(x, u,v, t) = 

Ht,+t(x, u, v)/or xER n, uER r, vER s, tER near 0, such that 

OKu 
(a) ~ E <OKu/Ox>m~n+r+s) e~,+r+s+a ~ + <OKt,/OU>mct+s) etr+s+a) 

+ <OKu/Ov>m~,) a~+ x) + R~. ~(1 + r + s + 1 ), 

where K u  E ~ (n + r + s + 1, 1 + r + s + 1) /s given by K'u(x, u, v, t) = (Ku(x, u, v, t), u, v, t) /or 

(z, u, v, t ) e R  "+'+'+l. 

Then I is (r, s).equivalent to g. 

Proo/. Let  t o E [0, 1] be given and choose Ku as above satisfying equation (a). Then 

the re  are germs ~1 ..... ~ E ~ ( n + r + s ) ~ ( n + r + s +  1), germs Zx ..... Z r E l n ( r + s ) ~ ( r + s + l ) ,  

germs 81 . . . .  , 0 ~ E m ( s )  ~(s+  1) and a germ pE~(1 + r + s + I )  such tha t  

OKt. '* OKt. " OK_~ ~, ~ t  - = Z 7 ~ , +  Y- Xj+ 0,+K~,(p). 
0t i-1 0~t 1-1 v~] 1 

By Lemma 1.10 there is agerm ~ E ~ ( n + r  + n +  1, n + r + s )  and a germ2E~(1 + n + r + s + l )  

such that  
�9 (z, u, v, 0) = (~, u, v) 

(b) for xER n, uER' ,  vER',  zER. 
2(T, ~, u, v, 0) =~ 
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(e) 

(d) 

Ku(d~(x, u, v, t), t) =~(Kt,(x, u, v, 0), x, u, v, t) for x ~R  a, u ~ R  ~, v~R ~, t~R. 

If  we write (I)= (~, ~, 0) where c p ~ ( n + r + s ,  n), ~ ( n + r + s ,  r) and o ~ ( n § 2 4 7  s) 

then 

~--~ (x, u, v, t) (~ = 1 . . . . .  n), 

Ot ' ' u '  v '  t) ( j  = ~ . . . .  , r) ,  

~ (x, u, v, t) (1 = .... , s ) ,  1 

and 

~ ( ~ ,  ~, u, v, t) =/~(2(~, z,  u, v, t), 7(x, u, v, t), ~(~, u, v, t), t) ~t 

for xER ~, uER ~, vER s, ~ER, tER. 

= - ~ , ( ~ ( x ,  u, v, t), r(x ,  u, v, t), ~(x, u, v, t), t) 

= - Z j ( 7 ( ~ ,  u ,  v ,  t ) ,  e ( x ,  u ,  v ,  t) ,  t) 

= - ~ ( e ( x ,  u ,  v ,  t) ,  ~) 

By (d) a~/~ depends only on t and the value of ~, but  not directly on x and u; more- 

over by (b) ~(x, u, v, 0 )=v  and so does not depend on x and u. The uniqueness of solutions 

of ordinary differential equations with given initial conditions implies tha t  ~ does not  

depend on x and u, i.e. ~ EE(s § 1, s). Hence 8.?]~t depends only on v and t and the value of 

7; and ~(x, u, v, 0 ) = u  and so does not depend on x. By the same argument as before, 

~ E ~ ( r § 2 4 7  r). And now the same argument again shows ~E~(1 § 2 4 7  

Now we claim that  for all t near 0 we have ~(0, 0, 0, t)--0. By (b) this is true when 

t = 0. Moreover by (d), since the ~t, gj and ~ are in r~(n § r + a)~(n § r § 8 § 1)it  follows tha t  

whenever ~P(x, u, v, t) =0  then (8~/~) (x, u, v, t) =0.  Hence clearly ~P(0, 0, 0, t) =0  for all t. 

And from this and the fact tha t  Ka(0, 0, 0, t ) = 0  for all t i t  follows, by  (e), tha t  also 

~(0,0, 0, t )=  0 for all t. 

Choose representatives for ~0, 7, ~ and ~ defined near 0 (we shall retain the same 

names for the representatives as for the germs). For t near 0 in R define germs 

~ E ~ ( ~ + r §  n § 2 4 7  ~t E~(r § r§  Qt E~(s, a) and AtE~(1 + r + s ,  1 + r + 8 )  by  setting 

(I)~(x, u, v)--(~(x,  u, v, t), ~(u, v, t), ~(v, $)); ~t(u, v) --(~(u, v, t), ~(v, t)); qt(v)=Q(v, t); and 

At(~, u, v) = (~(~, u, v, t), ~#~(u, v)) /or  x ~R ~, u ~R r, v ~R ~. Clearly (b) implies tha t  for t near 0, 

the germs (I)z, ~z, ~z and A~ are non-singular; moreover we have seen above tha t  their 

value at  0 is 0, for t near 0. Hence they are in L ( n + r + s ) ,  Z(r+s) ,  L(s) and L ( l + r + s )  

respectively, and from (c) it  is clear tha t  for t near 0, ((I)z, ~pz, ~z, Az) is an (r, s)-equiva- 

lence from H a to H,.+t. 

Hence for any t o ~ [0, 1], Hz. is (r, s)-equivalent to H~ for all t sufficiently near t 0. By  

the compactness of [0, 1] it  follows t h a t / - ~ H  0 is (r, s)-equivalent to g==H r Q.E.D. 
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COROLLARY 4.6. Let it and g6m(n+r+s)  be (r, s)-stable germs. Suppose/[R"+~= 

g[R "+" and su/rpose the map t-+(1 - t ) /  +tg is a 8table homotopy /ram it to g. Then it is (r, s)- 

equivalent to g. 

Proo]. Let t0E[0 , 1]. Define Kt, f i m ( n + r + s + l )  by setting Kt.(x, u , v ,  t )=  

(1- t - to ) i t (x ,  u, v)+(t+to)g(x, u, v) for xfiR", uf iR ~, v i lE ~, t eR.  

By  hypothesis, K u l R  "+'+s =(1- to) i t+ tog  is (r, s)-stable. Hence K u is (r, s+l)-s table ,  

s o  

(a) ~(n + r + s + 1) = <OKu/Ox>e(n+r+s+l ) + <OKt,/tOu>~(r+s+l ) 

+ <OKu[Ov>~(,+l ~ + <OKu/Ot>e(,+x ~ + K'*.(~(1 + r + s + 1)), 

where ~, t .Ef - (n+r+8+l ,  1 + r + s + l )  is defined by K'u(x, u, v, t) = (Ku(x, u, v, t), u, v, t) 

for xER n, u E R  r, vER ~, tER. 

Since g]R ~+' =it]R "+~, it follows that  OKu]Ot=g-/Em(s) g ( n + r + 8 + l ) ,  and from the 

equation which results when both sides of equation (a) are multiplied by  re(s), it is clear 

tha t  there is a germ ~ Era(8)~(s + 1) such that  OKt,/Ot-o~(OKu[Ot) is contained in the right- 

hand side of 4.5 (a). But  1 - ~  is a unit of ~(8+ 1), so OKu[Ot itseff is contained in the right- 

hand side of 4.5 (a), Since this is t rue  for any t o E [0, 1], it  follows by  Lemma 4.5 that  ] is 

(r, 8)-equivalent to g. Q.E.D. 

We can strengthen this result: 

COROLLARY 4.7. Let l a n d  9Em(n+r  +8) be (r, s)-stable r such that it]R"+'= 
gIR "+~. Then] is (r, s)-equivaIent~ o g. 

Proo I. Let h = / ] R " + ' = g [ R  "+'. Define HE,S(n+r, l + r )  by H(x, u)=(h(x, u), u) for 

x E It", u ~.R r. Let C = E(n + r)/((Oh/Ox)ein+r) + <Oh/OuSer + H*s (1 + r)), and let p: E(n + r) ~ C 

be the projection. 

Since ] is (r, 8)-stable, i t  follows by  Theorem 3.6 (b} that  C is generated over R by 

p(O]/Ov 1 [ R n+r) .. . . .  p(O]/~v s [ Rn+t), and hence C is a finite dimensional vector space over R 

of some dimension d ~8. Choose a basis ~1 ..... ~d of C. Since the p(Of/Ovt]R '~+r) (i = 1 .... ~ 8) 

generate C, it  is clear from linear algebra tha t  there is a matrix A =(a~)fiGL(8) such tha t  

Z~=a atjp(O//OvjlR'+r)=at for i = 1  ..... d. Define ] 'em(n+r+8)  by ]'(x, u, v)=f(x, u, vA); 

clear ly/ '  i s  (r, 8)-equivalent t o / a n d  p(Of'/Ov~] R "+r) = ~ for i = 1 ..... d. Moreover i t' [ R "+r -- 

it[Rn+r =h.  Similarly there is a germ g 'em(n+r+s)  such that  g' lR"§ and g'is (r, 8)- 

equivalent t o  g and p(ag'/Ov I ] R n+~) = ~t for i = 1 ..... d. 

For tfi[0, 1], set Ht-=(1 , t ) ] '  +tg'. Clearly, for any tfi[0, 1] we have Ht ]R "+r =h and 
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P(SH~[~v|[ Rn+~) =at ,  for i=1 ,  ..., d. Hence by Theorem 3.6 (b), H~ is (r, @stable for every 

t e [0, 1], so by Corollary 4.6 ]' is (r, s)-equivalent to g', and this implies [ is (r, s)-equi- 

valent to g. Q.E.D. 

COROLLARY 4.8. Let f and g e m ( n + r + s )  and sUlXlmSe [ is (r,s)-stable. Suppose 

g - ] s re(s) m(r + s )~  (n + r + s) + nt(s)~ (n + r + s). Then g is (r, s)-stable and is (r, s)-equivalent 

to/ .  

Proo/. Let U = f [ R ' = g l  Rn. Since I is (r, @stable, ~} is finitely determined, so for some 

integer k we have m(n)~g (b~l[Sx)e(~). Let q=Ic(s +1). 

Let h = / I R  ~+~. Since t is (r, @stable it  follows from Theorem 3.6 (c) that  

(a) g(n  + r) = (~h/~X~c,+,~ + (~hl~u)~c,> + 41, h . . . . .  h~-~)~c,~ + (~//av [ lt"+')R 

+ m(r)~+lg(n + r) + m(n + r) ~. 

Since g - ] 6 re(s) m(r + s )~  (n + r + s) + m(s)~ (n + r + a) it follows that  for each i, 1 < i ~< s, 

we have ~g/~v, ] R ~+" - al]~v~] R ~+' 6 m(r)'~(n + r); moreover from (a) it follows by Coronary 

1.8 (c) that  

m(r)~(n + r) ~_ (Sh/~x)e(~+r) + (~h/~u)e(~ + (1, h .. . .  , ha-~)~(~ +m(n  + r) a. 

Hence clearly (a) still holds if we replace (Sl/Sv I R~+')~ by (eg/Sv ]R~+')~; since g IR ~+" = h 

this implies, by Theorem 3.6 (e), tha t  g is (r, s)-stable. And by Corollary 4.7 it  then follows 

that  / is (r, s)-equivalent to g. 

LEM~A 4.9. Let / and g E m(n + r + s) be (r, s).stable germs. Suppose ~ -  g G 

m(r +s)~+l~(n +r +s) and suppose the map t - ~ ( l ' t ) ~ + t g  is a stable homotol~y /rein / to g. 

Then ] is (r, s)-equivalent to g. 

Proo/. Suppose t0E[0,1 ]. Let H=(1 - t0 ) /+ t0g .  Define K t o E m ( n + r + s + l )  by 

Ks(x,  u, v, t )= ( 1 -  t o -  t)/(x, u, v)+ (t  o + t)g(x, u, v) for (x, u, v, t)G R n+r+s§ 

L e t / ~ = H  I R';  since H is by hypothesis stable there is a k such that  m(n)~(O/~[ax)e(n), 

and if we set q = k ( s + l )  we have 

(a) E(n + r + s) = (~Hla~}Ec,+,+8 ~ + (aH/0u)~c,+8 ~ + (~Hl~v}~c~ 

+ (1, H, ..., H~-I}e(,+,) + m(n + r  + s) q 

(here we have used the fact that  H a em(n + r  +s)~). 

As in the proof of Theorem 3.6 ((e)~(a)), m(n)kc_(81~lSx}e(,) implies m(n+r+a)a~_ 

{SHlSx)e(,+r+e)+m(r+s)'+lE(n+r+s), so on the right of (a) we may replace the term 

m ( n + r + s )  ~ by m(r +s) '+1. 
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By Corollary 1.8 the resulting equation implies 

(b) ~:(n + r + , )  = (OH/Oz)~c.+,+, ~ + ( a H / ~ ) , c , + .  ~ + (OH/~),.c.) + (1. H . . . . .  Hq-1)~c,+. ), 

and 

(c) mCr + ,)'~:(n + r  + , )  _c <aH/az>~.,+,+,~ + <aH/~>~(,+,~ 

+ ( 1 ,  H . . . .  , H'~-x),.~r+,~ + m(8) ~(n  + r + ~). 

Let  A = ~KJ~r  + ~K~/Ou)~r+s+l) + (1, K a . . . . .  K~, ' - l )~(r+s+l) .  

We have Kb-H=t(g-/)Em(1)m(r+s)*+X~(n+r+a+l) .  Hence 8Ka/Sz~-SH/SziE 

m ( 1 ) m ( r + s ) ' + l ~ ( ~ + r + , + l )  for i = 1  ..... n; 8K~/Ou~-~H/i)u~Em(1)m(r +a)'~(Tt+r +a + l) 

for ~ = i  .. . . .  r; and K~o-H~Em(1)m(r+,)~+X~(n+r+s+l) for l = l  . . . .  , q - 1 .  Moreover 

m(r +*)*~(n+r + ,+  l)=m(r +s)s(~(n +r +,) +m(1)F.(n +r +a+ l)). 

Hence (c) clearly implies 

(d) m ( r + , ) ' ~ ( ~ + r + s + l ) ~  A+m(s)E(n+r+,+l)+m(1)m(r+s) 'F. (n+r+*+l) .  

From (b) it follows that  E(n+r+a+l)=A+(SKa/Sv),~,+~)+m(1)E(~+r+s+l) and 

hence, by Corollary 1.7, we have (e) : E(n + r + s + 1) = A  + (~K~./19v)~,+l). Let C = 

E(~+r+,+l ) /A ,  considered as an E ( r + , + l )  module. By  (e) it is clear tha t  C is finitely 

generated over ~(r  + s + 1), and so m(r + ,)*C is also finitely generated over ~(r + ,  + 1). 

Moreover (d) imp~es m(r + a)*C_~ re(s) C + m(r + s + 1) m(r + s)sC, so by Nakayama's lemma 

(Lemma 1.4) m(r + ,)'C___ re(s) C and hence m(r + ,) '~(,t  § r + ,  + 1) ~ A + re(s) ~(n + r + ,  + 1 ). 

From this and (e) we find m(r+s)*+XE(n+r+,+l)~_m(r+*)A+m(a)E(n+r+a+l)= 

m(r + ,) A + (8Ka/Ov)mr hence m(r + s)*+x~(n + r + ,  + 1) is contained in the right-hand 

side of Equation 4.5 (a). Since this holds for any t0E[0, 1], and since for any t0E[0, 1] 

we have ~Ka/~ = l l - / E m ( r  +s) ~+l, it  follows from Lemma 4.5 t h a t / i s  (r, ,)-equivalent to g. 

COROLLARY 4.10. Let }' and g E m ( n + r + 8 )  and 8utrpose / i,s (r, ~).aable. Euppose 

g - / E m ( r  +s)s+sE(n +r + 8). Then / is (r, e)-equivalent to g (and g i,s also (r, s)-aable). 

Proof. If tE[O, I], set Ht=(l-t)/+~j, and set Jt=Ht[Rn+L Let/o=/[R "+'. Let~}= 

/JR n. Then ~1 is finitely determined, so for some integer b we have m(n)~_c (~q/~x)ecn). Set 

q-- -k(s+l ) .  

Since / is (r, s)-stable we have, by Theorem 3.6 (o): 

+ (1, 1o . . . . .  ld-~)e~,~ + m(r)*+~s + r) + m(n + r)~. 
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Let rE[0, 1]. Then H t = / + t ( g - / )  and hence H ~ - / E m ( r + s ) ~ + ~ ( n + r + s ) .  This im- 

plies that  all the first-order partial derivatives of Ht, restricted to R n+r, differ from the cor- 

responding derivatives o f / ,  restricted to R n+r, by an element of m(r)S+l~(n+r), and the 

powers of J ,  differ from corresponding powers of ]0 by an element of m(r)8+9~(n +r). So it 

clearly follows from (a) t h a t  

E(n + r) = (~Jt/Sx)e(,+r) + (~J~/~u)~(,) + (~Ht/~vl R"+r)a 

+ (1, J t  ..... j~-i)~(,) + m(r)S+ 1~( n + r) T 11~(~ + r) q 

and hence H~ is (r, s)-stable, by Theorem 3.6. This holds for any tel0,  1] (so in particular 

g=H~ is (r, s)-stable), and certainly g- /Em(r+s)~+~E(n+r+s) ,  so by Lemma 4.9 / is 

(r, s)-equivalent to g. 

With the aid of the preceding lemmas and corollaries, we can now prove a strengthen- 

ed form of Lemma 4.2: 

THEOR~.~ 4.11. Let g E m(n + r + s) be an (r, s).stable un/oldlng of ~Em(n), and suppose 

~Em(n+r +s) is an (r +s)-stable un/olding el ~. Then there exists a l~ermutatlon a E T  and 

polynomial map.germs p, ~1 . . . . .  ~ s ~ ( r ,  s), with p(0)=0 and ~,(0)=0 /or i=1 ,  ..., s, such 

that p has degree at most s + l ,  and ~1 ..... ~ have degree at most s - I ,  and mw~h that i/ we de- 

line hEra(n +r +s) by 

(a) h(x, u, v) =/Ax, u, v+l~(u)+ Z~_lv~(u))  for x e R  ~, uER' ,  v e I t  ~, 

then g is (r, s)-equivalent to h. 

(Remark. Observe that  when s = 1, the ~, are all 0, so h is of the form h(x, u, v)= 

h(x, u, v +p(u))). 

Proo]. By Lemma 4.2 there is a a E T  and a germ flEE(r+s,  s) such that  fl(0)=0, 

f l [ 0 x R  s is nonsingular and g is (r, ,)-equivalent to the germ ]hEm(n+r+s)  given by 

/~(~, u, v) =l~(x, u, ~(u, v)). 
Define ~EL(s) by ~(v)=fl(0, v) and define f l 'E~(r+s,  s) by fi'(u, v)=fl(u, ~--1(~))). I)e- 

fine h2Em(n +r +s) by h2(x, u, v)=f~(x, u, fl'(u, v))=lh(x, u, Q-l(v)); clearly h z is (r, s)- 

equivalent to h t and hence to g. Clearly fl' ] 0 • R s =idm., so one can find a g e m  7 E ~(r + s, s) 

such that  fl'(u, v) --v+7(u, v) and such that  7(0, v )~0  for all vEIL*. We can find a germ 

gEm(r)~(r ,s ) ,  polynomial map g e m s  ~1 ..... ~sEm(r)~(r,s)  of degree ~<s-1, germs 

lal ..... /a~ E m(r)8~(r, s), and a germ ~ E m(s)~(r  +s, s) such tha t  

7(u, v) = Z(u) +Z~.lv,(~,(u) +/~(u)) +~(u, v) for ueR ' ,  v e R  s. 
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Define ~,'E,~(r+s,s) by setting 7"(u,v)=g(u)+Z[=lv,~(u) for u ER T, vER~,i.e. 

~,'=~,-O-Z~=lvda t. Define h 3 E m ( n + r + s  ) by setting ha(x, u, v)=/~(x, u, v+~'(u,  v)) for 

xER n, uER r, vE R  ~. 

Clearly h 3 - h~ E re(s) m(r + s)~s + r + s) + m(s)2g(n + r + s). Moreover, h 2 is (r, s)-stable, 

since h 2 is (r, s)-eqnivalent to g. By Corollary 4.8 it follows that  h a is (r, s)-stable, and is 

(r, s)-eqnivalent to h e and hence to g. 

Finally, we can find a polynomial mapping iDEm(r)s of degree ~<s+l and a 

germ ~em(r)~+2s s) such that  ;~=p+~.  Define hEm(n+r+s )  by setting h(x, u, v)= 

/~(x, u, v + p ( u ) + Z [ f l v ~ ( u ) )  for xER ' ,  u ER r, vER'. Obviously h-haEm(r)S+~,~(n +r +s). 

Since h s is (r, s)-stable it follows from Corollary 4.10 that  h is (r, s)-equivalent to h a and 

hence to g. This completes the proof. 

With the aid of Theorem 4.11 we can now state the algorithm we have sought for 

determining (up to (r, s)-equivalence) all (r, s)-stable unfoldings of a given germ ~/. 

For  any non-negative integer d we may identify the set of polynomial mappings in 

1Tt(r) s s) of degree at most d with the finite-dimensional real vector space Jd(r, s). Now 

suppose ~Em(n), r and 8 are given. Choose some (r+s)-stable unfolding / of ~ (asm]ming 

one exists); for example, we may take for / a constant unfolding of the minimal stable 

unfolding of ~ given by Theorem 2.20. If  ~ E T, and if p E J$ + 1 (r, 8) and ~1 . . . .  , ~ E J~- 1 (r, 8), 

we define an unfolding H((~,p,~ 1 ..... ~ )Em(n+r+8)  by equation 4.11 (a), i.e. we set 

H(a,p,  ~t .... .  ~)(x, u, v)=/~(x, u, v+p(u)+~_lVl~(u) )  for xER ~, u ER r, vER ~. For each 

of the finitely many a E T we can compute, using Theorem 3.6 (c), for which p EJ~+l(r, 8) 

and ~1 ..... ~sEJ~)-~(r, 8) the germ H(a ,p ,  ~ ..... ~)  will be (r, 8)-stable. In fact, condition 

3.6 (c) holds if and only if Jq-~(n + r, 1) is generated over R by certain finitely many elements 

which depend algebraically on p and the ~,  so this computation is an exercise in linear 

algebra, and it yields, for each aE T, an algebraic subset A~ of J~+~(r, 8) • (J~)-~(r, 8)) ~ such 

that  H(a,p,  ~ .....  ~) is (r, 8)-stable if and only if (p, ~ ..... ~)~A~. And by Theorem 

4.11 the set of all (r, 8)-stable H(a, p, ~e .....  ~) for aE T, pEJ~+i(r, 8) and ~EJ~)-~(r, s) 

contains representatives of every (r, 8)-eqnivalence class of (r, 8)-stable unfoldings of 7, 

so by  this means we may determine them all. 

Of course, this algorithm is somewhat unsatisfactory in tha t  it doesnot  yield a unique 

representative for each (r, 8)-eqnivalenco class, and the set of "s tandard"  (r, 8)-stable 

unfoldings of ~ which it produces is much larger than one would like (after all, the condi- 

tion on the p and ~ for H(ffl ~, ~t . . . .  , ~)  to be (r, 8)-stable is an open condition!), 

However, in practice one can reduce the size of this set considerably, for one can either 

make further applications of Lemmas a n d  Corollaries 4.5-4.10 in" special cases, or one 

can often by inspection write down (r, s)-equivalences between some of the "standard" 
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unfoldings given by the algorithm, For example, in the next  section we shall compute 

analogues to Thorn's list for the cases of (1, 3) and (3, 1)-stability, and the lists we shall 

compute will contain only one representative of each equivalence class. 

Here we can make one general remark, which somewhat reduces the size of the set of 

"standard" unfoldings one must consider: 

Remark 4.12. If, for some ~ E T  and pEJ~+l(r,s)" there are germs ~1,.-.,$8 and 

$'1, ..., $'8Ej~=1( r, s) such that  both H(a, p, $1, ..., $8) and H(a, p, $1, ..., ~ )  are (r, s)-stable, 

then H(a, p, $i ..... $8) and H((r, p, $~ ..... ~)  are (r, s)-equivalent. (This is an immediate 

consequence of Corollary 4.7). Hence for each a E T  there is in fact an algebraic subset 

Br s) such that  we need include only one unfolding of the form H(~, p, $1, -.-, $8) 

in our "standard" list, for each p in the complement of B#. 

The algorithm described above involves a computation using Theorem 3.6 (e). This 

computation can sometimes be simplified slightly if one uses instead the following corollary 

of Theorem 3.6 (which is really of interest only for this purpose). 

COROLLARY 4.13. Let ]Ern(n +r +s) un/old ~Em(n). Suppose ~ is ]initely determined 

and choose a number k such that re(n) ~_ (ib?/ax~(~). Suppose that in/act ~Em(n) ~, /or some 

integer d such that l <.d<~lc, and let p be the largest integer such that p < k ( s +  l)/(d+ l). 

Set q=k(s+ l). Let [o=[I R~+T. Then / is (r, s)-stable i /and only i/ 

+ (1,/0 .... ,/0~)e(~) + re(r) ~+ l~(n + r) + m(n + r) q. 

(Remark. This corollary is of interest only if one can choose d>~2, for if ~ m ( n )  ~, 

then E(n+r)=(~/o/~x~e(n+r ) (since some ~/o/~X~ is a unit) and h e n c e / i s  automatically 

(r, s)-stable by Theorem 3.6 (b)). 

Proo/. "I f"  is clear, for obviously (a) implies equation 3.6 (c). To prove "only if" we 

shall show equation 3.6 (c) implies (a). 

First we show that  ~ E re(n) ~ implies ~-d- lZ~=l  x i~ /~x  t Era(n) d+i. We proceed by in- 

duction on d. Surely the claim is true if d = 1, as one easily verifies. Suppose d > 1 and the 

claim is true for d -  1. Let  ~ = 9 -  d - l ~ ] ~  =1 x~@/ax~. TO show ~ E re(n) a+l it is enough to show 

that  for any ], 1 ~<~ ~<n, we have ~a/~xj E re(n) d. But  

- - =  - 2 ,  x~ . . . .  ~..x, ~"1 | ,  
aX] aX~ dax~ d,=l axiax ~ d\~x~ d - l t = l  Ox]Ox~/ 

and b y  the induction hypothesis this is in re(n) d, since ~/ax~Em(n) ~-1. This proves the 

claim above. 
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I t  follows that/o E (O/o/ax)e(,+ o + re(n) d +~ + re(r) ~(n + r). Moreover mCr)~(n + r) = re(r) + 

re(r) re(n) 8(n + r). Hence we can find a germ fl E re(r) and a germ 7 E (O/o/~x)e(,+~) + re(n) a+t + 

re(n) re(r) ~(n + r) such tha t /o  =fl +7. 

Now if a >10 then there are polynomials Q(w, z) and R(w, z) in two variables w and z, 

such that  Q has degree at most  1o in z, and such that  (w+z)~=Q(w, z)+zV+~R(w, z). Hence 

/o ~ = (/5 +y)~ =Q(fl,7) + 7 v+~ R(fl,7). N~ Q(fl,7) =Q(fl,/o - f l )  and hence can be writtenas a poly- 

nomial expression in fl and /o  of degree at  most 10 in/o; this implies Q(fl, 7) E (1,/o ..... /o~)~(~) �9 

And clearly 

(b) yJ'+lR(fl, ~) ETn+l~(n +r)  

c_ (~fo/ax),(.+,) + X~+o~(m(n)a +')'(re(n) m(r))n+l-'~(n +r)  

- -  p + l  p + l + i d  p + l - f  
- ( ~ / o / O X ) e ( n + r )  + Z~-0 re(n) re(r) ~(n + r). 

Since re(n) ~ ~ (~/~x)~(n) we have re(n) k _~ (a/o/~x)e(,~+~) + re(r) 5(n + r), and hence for any 

non-negative integer c we have 

(c) re(n) ~ _~ (OIo/Ox)e(,,+~) + m(r)*~(n + r). 

By the definition of p we have 10 + 1 i> k(s + 1)/(d + 1), and since d ~< ]r this is readily seen 

to imply tha t  for any i, O~<i~<p+l, we have k ( s + l - ( p + l - i ) ) 4 p + l + i d .  Hence by 

(c) it follows that  m(n)~+l+~ag (O/0/~x)~(n+,) +m(r)~+l-(~+l-~)E(n +r),  for any i, 0 ~<i ~<P + 1. 

Therefore it  is clear from (b) tha t  7n+XR(fl, ~) E (O/o/OX)e on+,) + re(r) s +l~(n + r). So We have 

shown that  for any integer a >10, we have 

(d) ]o ~ E (1, /o . . . .  ,/~)e(r) + (~/O/~X)*(n+r) + m(r) '+'~(n + r). 

Now suppose / is (r, 8)-stable. Then Equation 3.6 (c) holds; moreover since ~o e E m(n + r) e 

we may clearly replace the term F~E(1 +r)  on the right of 3.6 (c) by (1, ~0 ..... /oe-1)e(r); but 

by virtue of (d) we may then replace this term by (1,/0, -.-,/0~)e(~); this yields equation (a), 

so we are done. 

Thus far in this section we have restricted our attention to the problem of classifying, 

for a given r and 8, the (r, s)-stable unfoldings of a given germ ~. We should now like to 

consider the more general problem of determining all (r, 8)-stable unfoldings ~, for fixed r 

and 8 but  without having specified the germ ~ which / unfolds. 

One way to at tack this problem is first to t ry  to show tha t  a general (r, s)-stable un- 

folding f is (r, 8)-equivalent to an unfolding/ '  such that  the germ ~ =/ ' l  Rn is of some stan- 

dard form; one can then, knowing ~, use the algorithm described after Theorem 4.11 to 
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determine wha t / '  can look like. In other words, one tries first to classify the germs ~ which 

have (r, s)-stable unfoldings, and hopes that  one can apply the results of this classification 

to the problem of classifying the unfoldings. 

This approach works quite well, at  least when (r § s) is sufficiently small; in fact, a simi- 

lar approach can be used in the ease of ordinary stability to prove the validity of Thom's 

list of the seven elementary catastrophes, Theorem 2.26 (see [11, Chapter 5]). If 7 has 

(r, s)-stable unfoldings, then the codimension of ~ must be at  most r § Mather [4, Chapter 

II] has classified the germs of codimension ~ 5 (actually Mather classifies the germs whose 

right-eodimension (which is ~(~)-1)  is ~<5, but  these are the same germs for which q(~)= 

right-left codim (7)45); Siersma [5] (see also Siersma, Classification and Deformation of 

Singularities, thesis, Amsterdam, 1974) extends Mather's classification to germs of right- 

codimension < 8 and the same methods should work for germs of right-left eodimension 

8. For a published version of Mather's classification up to right-left codimension 4, see 

[11, Th. 5.15]. (Note: Siersma's thesis extends the classification up to right-codimension 9). 

To conclude this section, we shall prove some lemmas which will enable us to apply 

the results of a classification of germs to the problem of classifying (r, s)-stable unfold- 

ings. In the next  chapter we shall then use these lemmas to prove, for (r, s)-stability, 

analoga to Thom's theorem (Theorem 2.26). 

De/inition 4.14. Let  7 and/~Em(n). We say ~ and/z  are equivalent if there is a germ 

qEL(n) and a germ ~tEL(1) such that  ~ =2/~ .  

Notation: In the remainder of this section, we shall often be considering germs in 

m(n + d) for some n and d, and nnfoldings of such germs. We shall take coordinates x 1 ..... xn, 

Yl .... , y~ on R ~+~ and denote elements of R ~+~ by pairs (x, y), where xER ", yER ~. 

De/inition 4.15. Let  7Em(n+d )  and let #Era(n). We shall say ~? reduces to/a if there 

is a non-degenerate quadratic form Q on R d such that  7 is equivalent to the germ ~u' E m(n + d) 

given by #'(x, y)=#(x)+Q(y)  for xER n, yER ~. If  d >0 ,  we say # is a proper reduction of 7. 

If ~ has no proper reduction, we say ~ is irreducible. 

De/inition 4.16. L e t / E m ( n + d + r + s )  and let gEm(n +r +s). We say ] (r, 8)-reduces 
to g if there is a non-degenerate quadratic form Q on R d such that  / is (r, s)-equivalent to 

the germ g 'Em(n§247 given by g'(x, y, u, v) =g(x, u, v) § for xER n, y ER d, 

uER r, vER s. 

If d > 0, we say g is a proper (r, s)-reduction of ]. If  ] has no proper (r, $)-reduction, we 

say ] is (r, s)-irreducible. 
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Remark. H [ E m(n + d + r + s) unfolds y E m(n + d), and if g E m(n + r + s) unfolds # E re(n), 

and if / (r, s)-reduces to g, then one easily sees that  ~ reduces to p. Hence if ~7 is irreducible, 

then [ is (r, s)-irreducible. 

L~.MMA 4.17. S u p p o s e / E m ( n + d + r + s )  (r, s)-reduces to gEm(n +r +s). Then / is 

(r, s)-stable i / and  only i / g  is (r, s)-stable. 

Proo/. Clearly it suffices to give the proof in the ease when ~ is of the form/(x,  y, u, v) = 

g(x, u, v) + Q(y) (x E It", y E R ~, u E R ~, v E R*), where Q is a non-degenerate quadratic form on 

R ~. Let  F E E ( n + d  +r+s ,  1 +r+s )  and GEE(n+r+s ,  1 + r + s )  be defined by F(x, y, u, v) = 

(/(x, y, u, v), u, v) and G(x, u, v)=(g(x, u, v), u, v) for xER", yER ~, uER ~, veR ' .  

By definition 3.5, / is (r, s)-stable if and only if 

(a) g (n  + d + r + s) = ( a / / a x ~ ( . .  ~+.+.) + (a/ /ay~( .§247 + (al/au~(r+~) 

+ (allav)~(.) + F*s + r + s) 

and g is (r, s)-stable if and only if 

Let :r  be the restriction homomorphism given by a(h)-- 

h ] R ~ • 0 • R ~ • R ~ for h E E(n + d + r + s). Since Q is non-degenerate, we clearly have 

(O//Oy)~(,+d+~+,) = (aQ/~y)~(,+d+r+s) ffi re(d) E(n +d  + r  +s). 

Applying ~ to both sides of equation (a) yields equation (b) (hence (a) implies (b)); but  

since the kernel of ~, which is m ( d ) ~ ( n + d + r + s ) ,  is contained in both sides of equation 

(a), it also follows that  (b) implies (a). This completes the proof. 

The following lemma is a converse to the remark following Definition 4.16. 

L~.~MA 4.18. L e t / E m ( n + d + r + s )  be an (r, s).stable un/olding o/~ Em(n+d) ,  and sup- 

pose ~ reduces to a germ # E re(n). Then # has an (r + s)-dimensional un/olding g E m(n + r + s) 

such that / (r, s).reduces to g. 

Proo/. Since ~ reduces to/~, there  is a non-degenerate quadratic form Q on R a and 

there are germs q~EL(n+d) and 2EL(l)  such that  2 ~  =# ' ,  where/z' Em(n+d)  is given by 

#'(x, y)=/~(x)+Q(y) for xER n, yER ~. Define O E L ( n + d + r + s )  by setting q)(x, y, u, v)---- 

(~-l(x, y), u, v) for (x ,y)ER n+d, uER r, vER 8, and define A E L ( I + r + s )  b y  setting 
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A(t, u, v)=(2(t), u, v) for fe l t ,  uEI t  ~, vEIt  ~. Clearly ((I), /dR,+,, /da,, A) is an (r, s)-equival- 

enee from / to some unfolding/ '  of / t ' .  

Let  A = E(n +d)/((~l~'l~x)e(n+a) + (~tz']aY)e(~+n) +/~'*E(1)). Observe that  (~#'/ay)e(~+a) = 

(~Q/Sy)e(~+a) =rn(d)E(n +d), since Q is non-degenerate. 

S ince / '  is an (r, s)-stable unfolding of # '  we have eodim (/z')=dima A < r + s .  Hence 

we can find germs b 1 . . . . .  b~+sE,~(n+d) whose classes in A generate A over It; moreover 

since rrt(d) E(n +d) is contained in the denominator of A we may in fact choose b x ..... br+s 

to be in ~(n). Define hEIrl(n + r +s)  by h(x, u, v) =/u(x) +ulb l ( x  ) +. . .  +u~br(x) + 

Vl br + ~ (x) + ... + vsb~ + ~(x) for x E It~, u E It ~, v E It 8. Define h' E rrt(n + d + r + s) by h' (x, y, u, v )= 

h(x, u, v) +Q(y) =#'(x,  y) +Z~=lU~b~(x) +Z~=lvjb~+j(x) for x Eft ' ,  yEI t  n, u Eft ~, vEIt  ~. By the 

choice of the b~ it is clear from Theorem 2.9 that  h' is an (r+s)-stable unfolding of/~'. 

Hence by Lemma 4.2 there is a permutation aE T and a germ f lEE(r+s,  s), with fl(0)=0, 

such that  / '  is (r, s)-equivalent to the germ g ' E l r t ( n + d + r + s )  given by g'(x, y, u, v )= 

h'(x, y, u, fl(u, v)) for (x, y, u, v)EIt ~+a+'+8. If  we define g E m ( n + r + s )  by g(x, u, v) = 

hr u, fl(u, v)) for (x, u, v) El/~+r+8, then g unfolds # and clearly g'(x, y, u, v) =g(x, u, v) + 

Q(y), so g' (r, s)-reduces to g and hence / (r, s)-reduees to g. This completes the proof. 

LEM•A 4.19. Let / E m ( n  +d + r + s). Suppose [ (r, s)-reduces to gErrt(n +r  +s), and 

suppose g is (r, s)-equivalent to h E m ( n  +r  § Then / also (r, s)-reduces to h. 

Let ((I), ~v, Q, A) be an (r, s)-equivalenee from g to h. Then A = (2, ~v) for some 2 E 

~(1 + r + s). Letting ~ denote the first coordinate of It1 + r +8, we have (~2/i~v) (0) =~0; without loss 

of generality we may assume (~2/~) {0) >0, for if not  we may achieve this by  replacing h 

by - h  and 2 by - 2 ,  and clearly if / reduces to - h  then / also reduces to h. 

Since / (r, s)-reduees to g, there is a non-degenerate quadratic form Q on It~ such 

that  / is (r, s)-equivalent to the germ g' E m(n + d + r § s) given by g'(x, y, u, v) = g(x, u, v) § 

Q(y). Define h ' E m ( n + d + r + s )  by h'(x, y, u, v)=h(x ,  u, v)+Q(y) for xEt t  ", y e i t  ~, u e t t  ~, 

v Eft 8. Clearly it suffices to show g' is (r, s)-equivalent to h'. 

Define k E m ( n + d + r + s )  by setting 

k(x, y, u, v) = 2(gdP-l(x, u, v)+Q(y), W-l(u, v)) for xEi t  n, yEi t  n, u E i t  r, vER ~. 

One sees immediately from this definition that  k and g' are (r, s)-equivalent; to  complete 

the proof we shall show k is (r, s)-equivalent to h'. 

For tE[0, 1], set H , = t k + ( 1 - t ) h ' .  If t0E[0, 1], define K u E m ( n + d + r + s + l  ) by set- 

ting Kt.(x, y, u, v, t)=Ht,+t(x, y, u, v) for xER n, yER n, u E R  r, vER ~, t e l / .  

7 -  752905 Acta mathematica 135. Imprime le 19 D6cembre 1975 
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We have  OKt,/~t=]~-h'. F r o m  the definit ion of k, and  since h'(x, y, u, v ) =  

2(g(I)-l(x, u, v), ~- l (u ,  v))+Q(y), one easily computes  t h a t  for x E R  ", u E W ,  v E R '  and  

t ~ R  we have  (OKt./~t)(x, 0, u, v, t)=O and  since QGm(d) ~ we have  for  i = 1  . . . .  , d t h a t  

(02Ku/~c~y~) (x, 0, u, v, t) = 0. Hence  OK~./~ ~ m(d)~(n +d + r + s + 1). 

For  i = 1 . . . . .  d we have  

OKU~y~ (x,y,u,v, ,)  - ~~ (y)[(t0 + , ) ~ l g ( I ) - ( x , u , v ) +  Q(y),~v-l(u,v)) + 1 - t - , o ]  

When  x, y, u, v and  t are 0, the  funct ion in square brackets  evaluates  to  ( ~ / ~ )  (0) + 1 - to ,  

which is cer ta inly not  0 since (a2/i~v)(0)>0 and It01 ~< 1. Hence  the  funct ion in square 

bracke ts  above is a uni t  of ~ ( n + d + r + s + l ) .  I t  follows t h a t  

( a K t , / ~ y ) g ( n + d + r + s + l )  = (OQ/ay )E(n+d+r+s+l )  --- re(d) E(n + d + r + s + 1). 

Therefore  ~Kt./Dt E in(d) 2 E(n+ d+ r+ s+ l)  = (OK~./i~J)r.(d) E(n+a+~+s+l), 

so the  h o m o t o p y  t -~Ht  clearly fulfills condit ion 4.5 (a), and  hence by  L e m m a  4.5 k is 

(r, s)-equivalent  to h'. This completes  the  proof.  

The  following l emma  is a converse to L e m m a  4.19. 

L]~MMA 4.20. Let /Em(n+r+s) .  Suppose / (r,s)-reduces to gEm(nl +r+s  ) and to 

hem(n2 +r +s) and suppose g [ R " e m ( n l )  3 and  h [ R " e m ( n 2 )  3. Then n l = n  ~ and g is (r, s)- 

equivalent to h. 

Proo/. The idea of the  proof  is t aken  f rom Thom [7, w 5.2 D, p. 76] and  Tougeron [9, 

Ch. V I I I ,  Th. 3.6 (1), pp. 166-7]. 

Wi thou t  loss of general i ty  we m a y  assume n 1/> n2; otherwise interchange g and  h. 

The  hypotheses  imply  n 1 < n and  n2 ~< n. Le t  dl = n -  nx and  let dz = n -  n 2. Then  there  

is a non-degenerate  quadrat ic  form Q on R a' and  a non-degenerate  quadrat ic  fo rm R on R a' 

such t h a t  / is (r, s)-equivalent  to the  germs g' and h'Em(n+r+s)  given byg'(x, y, u, v)= 

g(x, u,v)+Q(y) for x E R  nl, y E R  d', u E R  r, v E R  8 and  h ' (w ,z ,u ,v )=h(w,u ,v )+R(z )  for  

w E R  n~, z E R  a', u E R  r, v E R  8. 
Zd, +~. B y  the Morse lemma,  there  is a germ ~EL(dl)  such t h a t  Q~(Yl . . . . .  yd , )=  ~ffil 

Define g" E m(n + r + s) by setting g" (x, y, u, v) =g' (x, q)y, u, v) =g(x, u, v) + zd'ffil • y2 for xERn' ,  

y E R  d', u E W ,  vERL Clearly g~ is (r, s)-equivalent  to  g'. Similarly h" is (r, s)-equivalent  to 

a germ h"Em(n+r+s)  of the  form h~(w, z, u, v)=h(w, u, V)+zd'~I• for  w E R  ~', z E R  ~', 

u E R  r, vERL 
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Since g" and h" are (r, s)-equivalent, there is a coordinate change o n  R s+r+s Of the 

form (x, y, u, v)~(x'(x, y, u, v), y'(x, y, u, v), u'(u, v), v'(u, v)) (where x E R  s', x 'ER s', y E R  ~1, 

y 'ER ~', u, u 'ER ~, v, v'ER~), and there is a germ ~tE~(1 +r-l-s) satisfying (~2/~)(0)~:0 

(where ~ denotes the first coordinate of RI+~+~), such that  everywhere near 0 in R s+r+s 

we have 

d~ dl 
(a) h(x', u' v') + 5 + Y;2 = ~(~(~, u, v) + ~ + y~, u, v) 

|=1 |=1 

Define yEm(nl+r+s)  by y(x, u, v) =2(g(x, u, v), u, v) for xER s', uER',  vER ~. Clearly 

y is (r, s)-equivalent to g. 

If we differentiate (a) with respect to y~ and then set y =0,  we find, for each i, 1 ~<i ~d~, 

that  when y = 0 we have 

(b) • [j__~l ~xj (~' ~' y) = '~ |  = 0 y `  / 1-21 0~j-- (X, 2~, V) 

If, for some It, 1 <]r we differentiate equation (b) with respect to xk (we may do this 

because (b) holds for all x near 0 when y=0) ,  and then evaluate at  0ER s+r+8, then we 

find, for any i, 1 ~i~d2,  and for any ]c, 1 ~<k~<nl, that  (c) (Oy~/axk)(O) =0 (the right-hand 

side evaluates to 0 because g I t t~ E m(nx) a, which clearly implies also ~ [ It s` E m(nl)a). 

But  the map of It s to itself given by (x, y)F->(x'(x, y, O, 0), y'(x, y, 0, 0)) is non-singular 

at  0; because of (c) this can only be the case if the matrix ((~x~/axk)(0))i<j<s.:l<k<,, has rank 

n 1. Since by assumption nl ~> n~, this implies n 1 = n 2. 

Moreover it follows that  the germ (~PE~(nl+r+s , n l + r + s  ) given by  ~P(x, u, v)= 

(x'(x, O, u, v), u'(u, v), v'(u, v)) is non-singular at 0, so if we define ~Em(nl +r +s ) by h =  

h(I), then )~ is (r, s)-equivalent to h. We shall show )~ is (r, s)-equivalent to y. 

Let  F=)~-~ .  If tE[0, 1], define H~Em(nl+r+s ) by setting Ht=~+t/a. If t0E[0, 1], 

define Kt, Em(nl +r +s+ l) by setting K~.(x, u, v, t)=Hu+t(x, u, v) for xER s', u ER  T, 

vER ~, tER. 

From (a) and (b) it follows that  pE((O~/~x)e(n,+~+~)) ~. For any i, 1 <~i<n], we have 

(~Kt. ~ )  
~x~ ( x ' u ' v ' t ) = ( t ~  (x'u'v) for xERnl, uERT, vERS, tER. 

If  J is the ideal of ~(n l+r+s  ) generated by the germs ~2~/axjaxk, 1<.], k<.nl, then 

clearly ~/a/~x, EJ'<~/ax>ecn,+r+s) (for l<~i<nl). Moreover, since ylRS'em(nl)  8 we have 

(O2~l/Oxjax~)(O)=O (for 1 <], k<~nl) and hence J ~ m ( n l + r + s )  (note tha t  by a similar 

argument we also have <~/~x>e(s,+r+s ) ~_ m(n 1 + r +s)). 
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So we have 

(~l/OX)e(,,+,+,+l) ~- (OKulOx)~(,,+,+,+l) + (~julOx)e(=,+,+,+l) 

(~Kt,/Ox)e(~,+,+,+l) + (~y/~X)m(na+r+s+l). 

By Nakayama's lemma (Lemma 1.4) this implies 

(a~tlax)~(,,+r+,+ l> ~- (OK~olOz)~(,,+, +~+I~. 

Hence we find that  

aK~ol~ = ~ e ((ay/~x)~c.,+,+,+l>) ~ ~ (aylax)m(. ,+,  +,~ ~(.,+.+,+1~- (aKu/ax)m(.,+, +~) e ( . , + ~ + 8 + 1 )  

Since this holds for any t0e[0, 1], it follows by Lemma 4.5 that  ~t=H o is (r, s)-equivalent 

to }~= H 1. Q.E.D. 

Remark. I t  is a well known fact that  for a germ ~]Em(n) 2 the condition ~Em(n) s is 

equivalent to the condition "7 is irreducible" (see e.g. [11, Corollary 5.13 (a)]). Moreover 

if / is an (r, s)-stable unfolding of ~], then by virtue of Lemma 4.18 / is (r, s)-irreducible 

if and only if ~] is irreducible. Hence in Lemma 4.20 we may replace the condition 

g lR ~' E re(n1) s by the condition g lR " E re(n1) 2 and g is (r, s)-irredueible; and similarly for h. 

Note also that  if 7]em(n) is non-singular at  0, i.e. ~] ~m(n) 2, then any (r+s)-dimen- 

sional unfolding of ~] is (r, s)-stable and any two (r+s)-dimensional unfoldings of ~] are 

(r, s)-equivalent. 

So by virtue of Lemmas 4.17-4.20 we have reduced the problem of classifying all 

(r, s)-stable unfoldings to that  of classifying the (r, s)-irredueible (r, s)-stable unfoldings. 

This simplification will prove useful in the next  section. 

w 5. Time-stable and space-stable unioldlngs: the "Thom lists" 

Thorn's celebrated list of the seven elementary catastrophes (Theorem 2.26) is a 

classification theorem for r-stable unfoldings when r~<4. In this section we shall compute 

analogous lists for (r, s)-stable unfoldings in two important special eases: the cases of 

(3, 1)-stability and (1, 3)-stability. 

Why are these cases of particular interest? In  fact, why is (r, s)-stability of interest 

at all? The answer lies of course in the applications to catastrophe theory. 

Recall that  in Thorn's catastrophe theory models for natural processes are obtained 

in the following way: Two manifolds B and M are given. The manifold B, the "control 

space", is the space in which the process is observed or in which it takes place; in the ap- 
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plications, either B represents physical space-time or B may  be a space of control para- 

meters which govern the event to be described (for example, B may  be parametrized by  

certain physical variables whose effect on the outcome of an experiment is to be described). 

Usually B is of quite low dimension, generally ~<4. The manifold M, the "s ta te  space", 

is parametrized by  all the physical variables which are relevant to the process under s tudy 

and which play a rhle in describing the physical " s t a te"  (in a general sense) which reigns 

at  various points of B; the state space can be of very high dimension. 

We consider B x M to be fibred over B via the projection ~: B x M ~ B .  0he  may  

define a physical process s to be a subset of B x M ;  if bEB, then the set 8b = s  N ({b} x M )  

(considered as a subset of M) can be interpreted as the set of possible physical states which 

can reign at  the point b E B. A point b E B is said to be regular for the process if the set of 

possible states "looks the same" everywhere near b, i.0. if there is a neighbourhood U of 

b E B and a homeomorphism h: U x M-~ U x M such tha t  ~ h ~  on U x M and such tha t  

h(8 N (U x M))~-U xs~. The non-regnlax points of B axe called catastrophe points. In  ob- 

serving a process occurring in nature, one does not  notice continuous changes of state; one 

only sees something happening if the state changes abruptly.  So what  one observes in 

nature is the set of catastrophe points of a process. 

In  the simplest case (but one which is adequate to explain a large var iety of pheno- 

mena) one supposes the set s is obtained as follows: One takes a smooth function V: 

B x M ~ R ,  and one supposes s~_ {(b, x) E B x M: V[ ({b} • M) has a local minimum at  (b, x)} 

(which subset of this set one chooses s to be is governed by  various conventions which we 

shall not discuss here). In  other words, g is considered as a family of potential functions 

on M, parametrized by  B, and for b E B, the set s~ of possible states a t  b consists of states 

a t  which the potential function above b has a local minimum. Models of this sort are called 

gradient models. 

Natural ly it is of great interest to classify such functions V, at  least locally; the clas- 

sification should respect the character of V as a ]amily of potential  functions on M. That  

is, we wish to classify the functions V locally up to the action on the left of families of dif- 

feomorphisms of R, parametrized by  B, and up to the action on the right of diffeomor- 

phisms r of B x M which have the property tha t  there is a local diffeomorphism yJ of B 

such tha t  ~ 0  = ~ .  

I f  B has dimension r and M has dimension n, then locally such a function V is just 

an r-dimensional unfolding of a germ ~ era(n) and two such functions are locally equi- 

valent in the manner  described above exactly when the corresponding unfoldings are r- 

equivalent. 

Before performing the classification we may  reasonably make two additional restric- 
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Fig. 1. 

tions. Firstly, since B is usually 4-dimensional space-time and in any  case is usually of 

very low dimension, we may  assume r~<4. Secondly, to say tha t  a process is "observable 

in nature"  usually means tha t  the process occurs repeatedly or can be evoked again and 

again in repeated experiments; however, the initial conditions for such a process can never 

be reproduced exactly. Hence it is reasonable to assume tha t  the function l z does not 

change its appearance under slight perturbations; this corresponds to assuming tha t  the 

associated unfolding is r-stable. 

I f  we adopt  these two additional restrictions, then Thorn's list of the seven elementary 

catastrophes (Theorem 2.26) is precisely a classification theorem of the sort we require. 

Unfortunately, however, this classification is inadequate for m a n y  applications; it is 

too coarse. The reason is tha t  in many  cases the control space B is not physically isotropic, 

in the  sense tha t  different control parameters  need not have the same physical importance. 

This is the case, for example, when B is space-time; the time-coordinate plays a special 

rSle; t ime is not just another spatial dimension. However  the equivalences up to which 

unfoldings are classified in Thorn's list can operate on B via an arbitrary local diffeomor- 

phism. They take no note of the possible auisotropy of B and they can therefore identify 

�9 �9 

increasing t ime-~ t ime ~- 0 

Fig. 2. 
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increasing t ime-~ t ime -- 0 

Fig. 3. 
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two processes wMch would look entirely different to an observer studying them in nature.  

An example will make this clear. 

For simplicity, we shall take B to be a three-dimensional space-time, with one tem- 

poral and two spatial coordinates; locally, B is R a, with coordinates x, y and z. Suppose 

we are observing a process whose catastrophe set is the cone z ~ = x  2 +y2 (see figure 1). 

What  we will actually see happening in t ime is not uniquely determined by  this descripm 

tion of the catastrophe set; it depends on which direction we choose to be the time direc- 

tion, or more precisely on how B is foliated into "spatial" planes of constant time. I f  

we choose z to be  the t ime coordinate (so tha t  planes of constant t ime are those which are 

parallel to the xy-plane), and if we make a film of what  we then observe, then successive 

frames of the film would look as in figure 2. We should see a bubble collapsing to a point 

and then expanding again. I f  instead we choose x as the t ime coordinate and planes paral- 

lel to the yz-plane as planes of constant time, then a film of the event would look as in 

figure 3, and we should see two hyperbolas approaching each other, merging to form a 

cross, and then separating again. 

Clearly we should say these two events are different, but  the unfoldings which generated 

them would certainly be 3-eqnivalent, since we have merely interchanged two coordinates 

of B = R L  

This example demonstrates tha t  if we wish to obtain, by  means  of catastrophe theory, 

an adequate description of events which are seen as developing in time, if we are to be 

able to describe the spatial configuration a t  fixed moments  of time, then we must  classify 

un/oldings up to  equivalences which preserve simultaneity, tha t  is, whose action on B 

respects the foliation of B into planes of constant time. I f  we consider the action on B as 

a change of local coordinates, then the new t ime coordinate m a y  depend only on the old 

t ime coordinate, not on the spatial coordinates. (Note tha t  the new t ime coordinate need 

not be the same as the old t ime coordinate; w0 may  change the t ime scale). And of course 

stability must  also be defined using this more restricted sort of equivalence of unfoldings. 
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The equivalence notion which we need for this purpose (when B is 4-dimensional space- 

time) is obviously (3, 1)-equivalence. 

There are other applications of catastrophe theory in which the converse problem 

arises; that  is, one does not need to be able to describe global spatial configurations at  in- 

dividual moments in time, but  it is important to be able to say what happens at  fixed 
points o/space as time progresses. For example, Zeeman has a description of gastndation 

in which points of space represent individual cells of the embryo. Each cell undergoes the 

same temporal development; the change in shape of the embryo as a whole is accounted 

for by the fact tha t  the temporal development of the cells occurs on a different time 

scale for different cells. For his model, Zeeman needs to be able to follow the development 

of individual cells through time; he must be able to identify a given cell at different mo- 

ments of time. Simultaneity of stages in the development of different cells is not important  

to the description. For applications of this sort, one needs a classification of unfoldings 

via equivalences which preserve identity of location, tha t  is, which respect the foliation 

of space-time into lines of constant position. If we consider the action on space-time 

as a coordinate change, then the new spatial coordinates may depend only on the old 

spatial coordinates, but  not on the old time coordinate. Again stability must also be 

defined using this sort of equivalence. The type of equivalence needed here is just (1, 3)- 

equivalence (when B is 4-dlmensional space-time). 

One can conceive of other applieatious of catastrophe theory, in which B need not be 

space-time but  perhaps instead a space of control parameters for a process or a series of 

experiments, where some of the control parameters might be physically more important  

than the others or play a different rSle from that  of the others; for such applications a 

classification of (r, s)-stable unfoldings for other values of r and s would be of interest. 

But  clearly the eases of (3, D-stability and (1, 3)-stability are the most important, so we 

make the following definition. 

De/initi~m 5.1. A four-dimensional unfolding is said to be time.stable if it  is (3, 1)- 

stable; it  is said to be spave-stab/e if it  is (1, 3)-stable. 

Similarly we shall say "time-equivalent" and "time-reduces" for "(3, 1)-equivalent" 

and "(3, 1)-reduces" respectively; '*space-equivalent" and "space-reduces" for "(1, 3)- 

equivalent" and "(1, 3)-reduces" respectively. 

Theorems 5.2 and 5.3 below classify the time-stable and the space-stable unfoldings 

respectively. In  stating these theorems we adopt the following notational convention: The, 

unfoldings listed in Theorems 5.2 and 5.3 are germs in re(n+4)  for some n. We shall use; 

letters x, y etc. to denote the coordinates of R n. We shall denote the unfolding parameters 
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(i.e. t he  coordina tes  of R ~) b y  u, v, w and  t, whereby  in bo th  theorems  t is to  be i n t e rp re t ed  

as t he  t ime-coord ina te  and  u, v, and  w as  spa t i a l  coordinates  (so in Theorem 5.2 t cor- 

responds  to  vt in the  n o t a t i o n  used in  previous  sect ions a n d  u, v, w cor respond to  ul ,  us, 

u3; in Theorem 5.3 t co r responds  to  ut  and  u, v, w to vx, v~, v3). The  proof  of bo th  theo rems  

is g iven af te r  Theorem 5.3. 

THEOREM 5.2. Le t /Era(n+4)  be a time-stable un/olding o/~Em(n) 2. Then either/has 

a simple singularity at O, or / time-reduces to a unique one o/the/ollowing 12 un/oldings h~ 

o/germs v~: 

N a m e  vt 

~'old~: the  fold ~I(X) =X 3 

bubb le  collapse v~(x) = x 3 

fission va(x) = x a 

fusion v4(x) = x  a 

bubb le  fo rmat ion  Vs(X) = x a 

Cusps: t he  cusp re(x) = x  4 

bec-~-bec vT(x) = x  a 

bec-~-bec to  l ip vs(x) = x  a 

t he  l ip Vg(X) = x  a 

The swallowtail vlo(x)=x 5 

The hyperbolic 

umbilic 

The elliptic 

umbiliv 

h~ 

h2(x, 

h3(x, 
h~(x, 
h~(x, 

h~(x, 
hT(X, 

hs(x, 

u, v, w, t ) = x a + u x  

u, v, w, t) --xa + tx + u~x + v2x + w=x 

u, v, w, t ) = x a + t x + u ~ x + v = x - w 2 x  

u, v, w, t ) = x a + t x + u 2 x - v 2 x - w 2 x  

u, v, w, t ) = x a + t x - u 2 x - v 2 x - w 2 x  

u, v, w, t ) = #  +ux2 +vx  

u, v, w, t) =x4 + ux2 +tx  + ux +v2x + w2x 

u, v, w, t ) = x a + u x 2 + t x + u x + v ~ x - w 2 x  

ha(x, u, v, w, t ) = x a + u x 2 + t x + u x - v ~ x - w ~ x  

hie(X, u, v, w, t )=xS+uxa+vx~+wx  

vn(x, y ) = x a + y  3 hn(x, y, u, v, w, t ) = x a + y a + u x y + v x + w y  

~,l~(x, y ) = x a - z #  hlg=, y, u, v, w, O = ~ - = y ~  + u(z~ +y~) +vx +wy 

All o/the h~ are time-stable and clearly time.irreduclble. 

THEOREM 5.3. Let /Era(n- t -4)  be a space-stable unfolding o[ a germ ~]Em(n) 2. Then 

either f has a simple singularity at O, or f space-reduces to a unique one o/ the following unfold- 
�9 P" t ,ngs h t o I germs ~j: 

t 
N a m e  v~ 

Folds: n(x)  ==3 

~(~) =~  
h'dx, t, u, v, w) = ~ + t x  
h~(x, t, u, v, w) =xa +ux+t~x 
/~(x, t,u, v, w)=xa +ux-t~x 



Name 

Cusps: 

SwaUvw~ails: 

t 

~(x) = x  ~ 

~'(~) = ~  

�9 ~(~) = ~  

�9 ;(~) = ~  

~(~) = 

~ ( ~ )  = ~  

~'~(~) = ~  

G .  W A S S E R M A N N  

h'4(x, t, u, v, w ) = ~  + ux  + vtx + t3x 

h'dx, t, u, v, w ) = x a + u x + v t x + w t 2 x + t a x  

h~(x, t, u, v, w) =xa + ux  + vtx + wt2x- t4x  

h'7(x, t, u, v, w) =za+ux2 +tx~+tx  

h~(x, t, u, v, w ) = x 4 + u x ~ + v t x 2 + t x  

h~(x, $, u, v, w) = z a + ux 2 + tx 2 + vx + t2x 
IF  hlo(X, t, u, v, w )=x4+ux2 -F tx2q -vx§247  

h~(x, t, u, v, w)=x4 q-ux~ § § vx § §  

h'12(x, t, u, v, w) = x a + ux 2 - t2x 2 + vx + t~x + wtx 

h'~3,(x, t, u, v, w) = x 5 + ux  a + ctx a + vtx a + tx ~ + wx + tx 

(ceIt, c#i)  
h~4(x, t, u, v, w ) = x S + u x a + t x a + v x ~ + t w x 2 + t x  

h~(x, t, u, v, w ) = x S + u x 3 - t x 3 + v x ~ + t w x 2 + $ x  

All  o] the h~ are 8pace.stable and clearly space.irreducible. 

Remark. L e t  r and s be arbitrary and suppose h E m ( n + r + s )  unfolds ~Era(n). By the 

remark at the end of w 4, if v era(n) 2 then h is automatically (r, s)-stable and is (r, s)-equi- 

valent to any other (r + s)-dimeusional unfolding of ~. 

Suppose vEto(n) ~ but h has a simple singularity at 0. Then again h is automatically 

(r, s)-stable, for ~ reduces to the trivial germ 0 Era(0), so u is equivalent to a non-degenerate 

quadratic form on R n and it is then easily seen (using Theorem 2.9) tha t  any r-dimensional 

unfolding of ~ is r-stable and hence, by Corollary 3.7, any (r +s)-dimensional unfolding of 

is (r, s)-stable. Furthermore, by Lemma 4.18 it  follows that  h (r, s)-reduees to an (r+s)-  

dimensional unfolding of 0Era(0), i.e., to a germ in m(r+s) .  Again any germ in m(r+s)  

is (r, s)-stable and they are all (r, s)-equivalent, for if g' and g" are in m(r+s) ,  and if we 

define AEL(1 + r + s )  by A(v, u, v)---(v+g"(u, v ) - g ' ( u ,  v), u, v) for vfiR, uf iR ~, vER s, then 

(/da,+,, idR,+,,/dR,, A) is an (r, s)-equivalence from g' to g". Hence the classification up 

to (r, s)-equivalence of unfoldings with a simple singularity is also completely trivial. 

Obviously, in Theorems 5.2 and 5.3, if ] time-reduces to one of the unfoldings ht or 

space-reduces to one of the unfoldings h~, then ] does not have a simple singularity. 

Proo] o /Theorems 5.2 and 5.3. The method of proof is the same for both theorems. If  

] is time-stable or space-stable, then f is 4-stable and hence / has a simple singularity or f 

reduces (in the sense of Definition 2.24) to a unique one of the unfoldings g~ in the list of 

Theorem 2.26. If  the latter is the ease, then T/reduces to a unique one of the germs #~ in 

the list of Theorem 2.26 (7 cannot reduce to more than one of the/~t, for then, by Lemmas 
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4.18 and 4.17, / (4 ,  0)-reduces to  stable unfoldings of more than one of the ~u~ and by Corol- 

lary 2.23 and Lemma 4.19:it follows that  I reduces (in the sense of Definition 2.24) to more 

than one of the g~). 

By  Lemma 4.18, if ~ reduces to ~u~ then ] time-reduces (in Theorem 5.2) or space- 

reduces (in Theorem 5.3) to a four-dimensional unfolding h of ~u~ which by Lemma 4.17 

must be time-stable (resp. space-stable). Moreover by Lemma 4,19 I also time-(space-) 

reduces to any other unfolding of /~  which is time-(space-)equivalent to h, but  on the other 

hand, by Lemma 4.20 the time-(space-)equivalence class of h is uniquely determined by I. 

Hence to complete the proof we need only show that  for each germ ~ in the list of Theorem 

2.26, the lists of Theorems 5.2 and 5.3 contain exactly one representative of each time- 

(resp. space-)equivalence class of time-(resp, space-)stable unfoldings of #~. 

To show this, we first apply the algorithm given after Theorem 4.11 to obtain lists 

containing at least one representative of each of these equivalence classes; special argu- 

ments will then be used to reduce these lists to those given by Theorems 5.2 and 5.3; 

finally we shall show that  the size of the lists cannot be reduced further, i.e. tha t  we have 

a unique representative of each class. The remainder of the proofs of Theorems 5.2 and 5.3 

will be conducted separately. 

Proo[ ot Theorem 5.2 continued. By applying the algorithm given after Theorem 4.11, 

one finds that  up to time-equivalence an arbitrary time-stable unfolding of ~ul(x ) =x  3 is 

either x3+ ux (which is hi) or is of the form 

x s +tx  + (Au + By + Cw + Du ~ + Euv + Fuw + Gv ~ + Hvw + l w  ~) x, 

where A, B, O, D, E, F, G, H, I ER and either A,  B or C is non-zero or 

det 2G 

H 

=~0. 

If A, B or C is non-zero then by Lemma 4.9 the unfoldings we get fo r  different values of 

D, E, F, G, H and I are all time-equivalent, so we may assume D = E = F = G - - H = I = O ;  

by a linear change of coordinates in uvw-space we may then arrange tha t  A - ' 1 ,  B = C = O ;  

tMs gives x 3 +tx +ux  and changing coordinates b y  setting u'  = u  + t (the other coordinates 

unchanged) gives xs + u'x, which is h 1 again. If  A = B = 0 =0,  then wehave  

det 2G =~0; 

H 21 



1 0 8  o .  W ~ S S ~ R M ~ N ~  

this is the de terminant  of the  Hessian a t  0 of the  form D u 2 + E u v + ~ u w + G v S +  

Hvw + Iw  s on R a, so this quadrat ic  form is non-degenerate and  by  a linear change of co- 

ordinates on uvw-space we m a y  assume E = F = H = 0, and either D = G = I --- 1; or D = G = 1, 

I = -  1; or D = 1, G = I = -  1; or D = (7 = I = -  1. These four possibilities give h s, h a, h a, 

and  h a . 

We must  show t h a t  no two of these unfoldings h~ - h ~  are t ime-equivalent.  To simplify 

the notat ion,  we denote u, v, and  w by  uz, us, u s respectively. I f  h~ is t ime-equivalent  to  

he then  there is a germ ~tfi~(5) and  a coordinate change (x, u~, Uz, us, t ) ~ ( x ,  u~, u~, u~, t ) 

on R a such t h a t  

(a) I l t 
h~(x', u~, u~, u~, r) = t(h~(x, u~, us, %, t), u,, us, %, t) 

and  such t h a t  the u~ do no t  depend on x, t '  depends only on t, and ( ~ / ~ )  (0) # 0  (where v 

is the first coordinate). 

Suppose first j = 1, i 4= 1. I f  we apply  the operator  O2/~x~t to  (a) and  evaluate at  0 E R 5, 

we find (Ox'/Ox)(Ot'/Ot)(0)=0, which is impossible, so h 1 is not  t ime-equivalent  to  any  

of the  others. So we m a y  suppose i, j * 0 .  Then ht=xa+tx+Q~(ul, u 2, ua)x and  h j = x a +  

tx+Qj(ul, us, ua)x where Q~, Qs are non-degenerate quadrat ic  forms on R 8. If,  for k = 1, 2, 3, 

we apply  aa/~x2~u~ to (a) and  evaluate at  0, we find 6(Ox'/Ox)Z(~x'/O%)(O)=O which 

implies (Sx'/0ua)(0)=0. F r o m  this it follows tha t  if we apply  ~]OxOu~u, to  (a), for 

1 < k, 1 ~<3, and evaluate at  0, then we find 

(b) (0) ~<v. ~q~a ~ q  (0) ~ (0) ~ (0) = ~ (0) ~ (0) (for k, l =- 1, 2, 3). 

Moreover, if we apply  ~ /ax  a to  (a) and evaluate a t  0, we find 6(Sx'/Ox)a(O)=6(O~]~)(O), 

so (~x'/~x)(0) and  (~X/~)(0) have the same sign; hence it follows from (b) t h a t  Qi and  Qj 

have the  same index, so i =-j. So no two of ]h .. . . .  h 5 are t ime-equivalent.  

B y  applying the  algori thm given after  Theorem 4.11 and by  subsequently reducing 

the  size of the  list so obtained via  arguments  similar to  those we used for the  unfoldings 

of/{gl, it is easily verified t h a t  up  to  t ime-equivalence an  arb i t rary  t ime-stable unfolding of 

/~s(x) = z  4 is either x4+uxZ+vx (which is h6) or is of the form ~ + u x Z + t x + A ~ + v S x + _ w S x  

(where A 4=0) or of the  form ~4+txS+BvxS+uSx2+wSxS+vx (for some B4=0). Unfoldings 

of the  last t ype  are t ime-equivalent  to  unfoldings of the  second type;  for t he  unfolding 

z 4 + tx s + Bvx s + eu uSx z + e,o wSxa + v x  ( w h e r e  eu = _+ 1, ew = + 1) becomes 

, 1 , e[_~v,  Sx_~,[_~w, Sx x4+u'xS+ t x + ~ u  x -  
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(which is of the second type  above) if we change coordinates by  sett ing 

u = V I B I v ' ;  1 , v = ' ~ ( u  - e~[B[v '~ -8~[B[w '2 )+ t ' ;  w =] / IB Iw ' ;  and t = - B t ' .  

Finally, we claim any  unfolding of the form # + u x ~ + t x + A u x + _ # x + _ w 2 x  (A #0 )  is 

t ime-equivalent  to  an unfolding of the form x a + ux ~ + tx + ux +_ v2x +_ w2x (and hence clearly 

to  h 7, h s or hal  For  suppose we change coordinates by  sett ing x = a x ' ,  u=flu ' ,  v=~v' ,  

w =Sw' and t =et', where a, fl, ~, ~, e are non-zero real numbers.  Then  xa+ ux~ +tx+Aux+_  

v2x+_w2x becomes (*) odx'a+zt2flu'x'2+aet'x'+Aaflu'x'+_a?2v'2x'+_aOhv'2x '. I f  we can 

choose ~, fl, ?, ~, and e such tha t  (**) od=ot2f l=o~=A~fl= +_0t72= _+aO2, then  the unfold- 

ing (*) will be a real multiple of (and hence t ime-equivalent  to) an unfolding of the  form 

x 'a + u'x '2 + t'x' + u'x' +_ v'Zx ' -4- w'2x ' (for some choice of the_+ signs). Bu t  equat ion (**) can 

be solved by  setting ~ = A ,  fl = A  n, ~ = l/[ Aa], ~ = ~/[Aa[, ~ =Aa; this proves the claim. 

We must  show tha t  no two of h a - h  9 are t ime-equivalent .  If  h a were t ime-equivalent  

to ht for i = 7, 8, or 9, then  clearly h a ] t=0 would be 3-equivalent to  h~ [ t=0. Bu t  this is impos- 

sible, for one easily checks (using Theorem 2.9) t ha t  h a [ t=0 is 3-stable and hi[ t=-0 (i = 7, 8, 

or 9) arc not.  

For  i = 7 ,  8, 9, the  unfolding h~ has the  form x 4 + u x 2 + t x + u x + Q t ( v ,  w)x,  where Qt 

is a non-degenerate  quadrat ic  form in v and w. I f  7 ~< i, j ~< 9, and if ht is t ime-equivalent  
__> t t p to h~, then  there  is a coordinate change (x, u, v, w, t) (x ,  u ,  v ,  w', t') on R 5, and there  is 

a germ ~E~(5), such t ha t  

(c) h~(x', u',  v', w', t') = ;~(hAx, u, v, w, t), u, v, w, t) 

I I W t and such tha t  u ,  v ,  do not  depend on x and t' depends only on t, and such tha t  

(8~]8~) ( 0 ) # 0  (where ~ is the first coordinate). If  we apply  85/~x ~ to (e) and evaluate a t  0 

we find 

( ~  ) 3~2xt ~2Xt 
(d) 240 (0) ~ x  2 ( 0 ) = 0  so ~ x  2 ( 0 ) = 0 .  

If  we apply  82/SxSv to (c) and evaluate at  O, we find 

ax' ~u' 8u' Ou' 
(e) 8-~(O)~v ( 0 ) = 0  so ~v(O)=O;  similarly ~w(O)=O" 

If  we apply  ~418xSSv to (c) and evaluate  a t  0, t hen  because of (e) we find 

(f) 24 ~x(0)  (0) = 0 ,  so (0 )=0 ;  similarly Ox' Uw (0) = 0. 
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If we apply ~/~x~Ov ~ to (c) and evaluate at O, then because of (d), (e), and (f) we find 

t )2  t t 
(g) 2 ~x(0) ~-~(0)--0;  so - ~ ( 0 ) = 0 ;  similarly ~ ( 0 ) = ~ ( 0 ) = 0 .  

If  we apply ~/8x a to (c) and evaluate at  O, we find 

24 (~(0 ) )~=24~_r (0 )  so ~--~v(0)>0. 

If we apply ~/Ox~u to (c) and evaluate at  O, then because of (d) we find 

[~x' \ ~ ?)u' 82 ~u ' ) so  (o1>o. 

If we apply OZlOxau to (c) and evaluate at  0 we find 

~x ( 0 ) ~  (0)= (0), so (0) >0. 

Finally ff we apply ~/Ox2v 2 to (c) and evaluate at O, then because of (e) and (g) we find 

L a,~ z~--~uj-~ (o)) ]~ (o)=~(o)~u ( ); 

by applying ~/Ox~v~w and a3/~x2w 2 to (c) and evaluating at 0 we obtain corresponding 

equations involving (SZQj/OvOw)(O) and (8~Qj/~w2)(O) respectively on the right. Since 

(Sx'/Sx) (0) and (~2/~v)(0) are both positive, and since (because of (e)) the matrix 

is non-singular, it follows that Q~ and Q~ have the same index, so i =j.  Hence no two of the 

unfoldings h e -h~ are time-equivalent. 

By  applying the algorithm given after Theorem 4.11 and by using arguments similar 

to those used in classifying the unfoldings of #1, one easily verifies that  up to time-equiva- 

lence hi0, h l l  , and hl~ are the only time-stable unfoldings of/ua(x)=xS, jus(x, y ) = ~ + y 3  

and ~ue(x, y ) = x  3 - x y  9 respectively; the algorithm also shows that  p4(x)=x e and ~uT(x, y )=  

x~T +y4 have no time-stable unfoldings. This completes the proof of Theorem 5.2. 
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PrOo] of Theorem5.3  continued. We first make an observation which will enable us 

to shorten the computations considerably. To simplify the notation, we shall for the 

purposes of this remark denote the spatial coordinates u, v and w by vt, v~. and vs respec- 

tively. Let  # era(n) for some n and suppose # has a 4-stable unfolding g of the form 

g(x, t, v~, v~, v~)=#(x)4-Z~=~v~b~(x), where the b~ are in ~(n). Note tha t  g is linear in the 

v~ and does not depend on t. (By virtue of Theorem 2.20 and the other results of w 2, # has 

a 4-sgable unfolding of this form exactly when a(#)<3. )  

We claim tha t  in this ease any space-stable unfolding of # is space-equivalent to a 

space-stable unfolding h of the form 

(*) h(x, t, v~, v~, va) = g(x, t, w~(t, v~, v~, va), w~(t, vl, v~, va), wa(t, v .  v~, va)), 

where each w~ is of the form 

(**) w~(t, v .  v~, v~)=v~ +p~(t) + Z~.I v~C,~(t), 

the p~ and ~j being polynomials in t without constant term, the p~ being of degree at  

most 4 and the ~ of degree at  most 2. By  Theorem 4.11 we know tha t  any space-stable un- 

folding f of # is space-equivalent to a space:stable unfolding h' of the form h'(x, t, Vl, v~, v3) = 

g~(x, t, wl, w~, wa), where a is some permutat ion in T (see Def. 4.1) and the w~ are of the form 

(**). What  we must  prove is tha t  we may  without loss of generality take a to be the iden- 

tity. I f  a is not the identity then for some i0, 1 ~<i0~<3 , we have h'(x, t, Vl, v2, va) =/~(x) 4- 

Zl<t<j. ~.~oW~(t, vl, v 2, v3) b~(x) 4- tb~o(X). If  in this we replace t by  t + v~0 we obtain a space-equiv- 

alent unfolding h" of the form h~(x, t, Vl, v~, v3)=[~(x)+Y,l<~<8.t.|oW~(t4-V~o, Vl, v2, v3)b~(x)4- 

v~~176 ) +tb~o(x). Clearly for suitably chosen polynomials ~j(t) of degree at  most 2 and without 

constant term, and for suitably chosen germs ~(t ,  v 1, v~, vs) in (v l t  a, v~t 3, v3t3~e(4) + 

((vl, v2, v3)e(4)) 2, and for suitably chosen real numbers c~, we may  write (for i :~i0) 

w~(t 4- v~0, v 1, v~, v3) = v~ 4-p~(t 4- vt~ + Z~ lVj~ ( t  +v~0) 

= v~ +c~v~. +p~(t) + Z~_~ v~;~(t) +r~(t, v .  v~, v~). 

For i 4 i  o set w; (t, v 1, v~, v~)=v~+c~v~~ 4- Z ~ v ~ ( t ) ,  and set W;o(t, v 1, v~, v~)=V~o+t. 

By virtue of Corollary 4.8 h" is space-equivalent to the unfolding ~ given by  h(x, t, v~, v~, va) = 

~(X) 4- Z I < / <  s W' t (t, Vl, V2, VS) b~(x). Now for i :~ i 0 set w~(t, Vx, v~, v~) = v~ 4-p~(t) 4- Z~ <~<~. ~.~~ v~ ~ ( t )  4- 

V~o(~'~o(t)-Zl<~<a,~.~oc~'~(t)) and set w~". =W;o. (Note tha t  each w~ is of the form (**), and 

tha t  w~ is obtained from w~ by  replacing each v~, for ] 4 i  0, by  v~-c~V~o.) I f  in ]~ we replace 

each v~(] 4io) by v~ -c~v~~ then we obtain an unfolding h which is space-equivalent to h (and 

hence to / ) , a n d h i s o f t h e f o r m  (*),forwehaveh(x,t,v~,v~,v~) s ,, =l~(x) + Z ~ I  w~ (t, Vl, v~, v~) b~(x) = 

g(x, t, w'~, w~, w~): This completes the proof of the claim above. 
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We now proceed to find all space-stable unfoldings of the germs/x~ in the list of Theo- 

rem 2.26. We shall revert  to denoting the spatial coordinates of R 4 by  u, v and w (rather - 

than  Vl, v~, Vs). We also agree on the following notational convention: polynomials in t 

will be denoted by  capital letters (P, Q, R, S, .4, B, C, D, etc.), and if (for example) P is 

such a polynomial, then we shall write P~ to denote the coefficient of the term t i in P(t). 

By  applying our algorithm (and making use of our observation above) we easily find 

tha t  any  space.stable unfolding of/~l(x) = x  8 is space-equivalent to an unfolding of the form 

(a) x 3 + ux  +P(t) x + Q(t) ux  + R(t) vx + S(t) wx, 

where P, Q, R, and S are polynomials in t without a constant term, P is a t  most quartic, 

Q, R, and S are at  most quadratic, and where one of the following conditions is satisfied: 

either (i) PI~=0 or (ii) P I = 0 ,  P2~=0 or (iii) P I = P z = O ,  Psi=0, and R x or S x is non-zero, 

or (iv) P x = P 2 = P s = O ,  P4=~0, and RIS2-SIR~q=O.  In  case (i) there are no conditions on 

Q, R or S, so by  remark 4.12 we may  assume they are 0. Since P x 40,  the map (x, t, ~t, v, w)-+ 

( x '=x ,  t ' = P ( t ) + u ,  u ' = u ,  v '=v ,  w ' = w )  is a coordinate change on R 5, under which the 

unfolding (a) becomes x 'S+t 'x  ', which is h~. In  case (ii) we may  again a s s u m e Q = R = S - = O ,  

by virtue of Remark  4.12, and we have P(t )=P~tg+Pst3§  with P2 ~=0; under a suit- 

able change of the t-coordinate t ~ t '  the polynomial P can be transformed to __+t 'z, and 

the unfolding (a) becomes h~ or ~ .  

In  case (iii) we may  assume R I = I ,  R~=0, S = Q = O  by virtue of Remark  4.12, and by 

virtue of Lemma 4.9 we may  assume P~t=O. I f  we then change coordinates by  setting 
3 3 

t '=  V~st, v '=v/V~a,  the other coordinates unchanged, then (a) becomes x S + u x + t ' 3 x +  

$'v'x, which is hl. In  case (iv) we may  by  virtue of Remark  4.12 assume R1=$2=1 ,  R2= 

S 1 =0,  Q =0,  and by virtue of Lemma 4.9 we may  assume P4=  ___ 1; this gives h~ or h~. 

By methods similar to those used in the proof of Theorem 5.2, one can easily show 

tha t  no two of the unfoldings h~ -h~  are space-equivalent We omit the details. 

Again, by  using our algorithm and by virtue of the observation at  the beginning of 

the continuation of the proof, we easily find tha t  any space-stable unfolding of ~t2(x ) = x  4 

is space-equivalent to an unfolding of the form 

(b) x 4 + ux  2 +P(t)  x 2 + Q(t) ux 2 + R(t) vx 2 + S(t) wx 2 + vx + .4(t) x + B(t) ux  + C(t) vx + D(t) wx, 

where P, Q, R, S, .4, B, C, D are polynomials in t without constant term, P and A are at  

most quartie, the other polynomials are at  most quadratic, and where one of the following 

conditions is satisfied: 

either: (i) P1 ~=0, -41 =~0; or (ii) P1 = 0, A 1 =~0, and either 2P 2 ~=A 1R 1 or S 1 =~0; or (ili) .41 = 0, 
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P t + O ,  A~4:0, and 2 A 2 + P 1 B t  or DI+0 ;  or (iv) P I + 0 ,  A I = A 2 = 0 ,  Aa~:0 a n d P t B 1 D  a -  

Pt  D1 Be + 3Aa Dt 4=0; or (v) P1 = At = 0, P~ =~0, A S ~0,  Pa D 1 4 : A ~  1. 

Suppose ease (i) holds�9 By Remark 4,12 we may assume Q ~ - R = S = B = G = D = O .  

I t  follows easily from the implicit function theorem that  we can find germs ~ and 

fl~E(1), of functions of t, such that  a and fl are units of E(1) and such that  for a l l tnear  0 

we have 

(c) ~(t) = (Ptfl(t)  q-P~tflz(t) + Pat~fla(t) + P ,  tafl'(t) ) as(t) 

= (Atf l( t)  +A~tfl~(t) +Aat~fl~(t) +A~t~fl '( t))  aft) 

(simply define a function F: RZ~R ~ by setting 

F(t, a, b) = (a 4 - (P1 b + P~b~t + P3b3t ~ + P4b~Z)a ~, a 4 - ( A l b  + A2bZt + Azb3t ~ + A4b4tZ)a); 

we have F(O, A I / P  1, A~/P~I)= (0, 0 ) an d  the matrix 

~ a  (0, A x / P  1, A~I/N) 

is non-singular, so by the implicit function theorem there are germs ~ and fl in E(1), 

with ~(0)=A1/P ~, fl(O) =A~/1~11, such tha t /v( t ,  ~(t), fl(t))=0 for t near 0). 

In (b) let us replace X by ~(t)x; t by fl(t)t; u by (A~I/P~)u; and v by (ASl[l:~l)V; and let us 

divide the resulting unfolding by ad(t). Since ~ and fl are units of E(1) we then obtain an un- 

folding which is space-equivalent to (b), and because of (c) this unfolding will have the form 

(d) x 4 + ( ( A~/P~) u/~2(t) ) x ~ + tx 2 + ( (A~/P81) v/o~(t) ) x  + tx  

(recall that  we have set Q, R, S, B, C, D to 0!) Now clearly, for suitably chosen polynomials 

Q'(t) and C'(t) ,  at most quadratic in t and without a constant term, and for suitably chosen 

germs ? and 6 in lrt(1) z, we may write the unfolding (d) as x a + u x 2 + t x ~ + Q ' ( t ) u x ~ + v x +  

tx + C' ( t )vx  + ? ( t )ux  ~ + 6(t)vx; moreover this unfolding is space-stable since it is space-equiv- 

alent to an unfolding of the form (b)for which condition (i) holds. By virtue of Corollary 4.8, 

the unfolding (d) is space-equivalent to (e): x ~ + u x  2 + tx ~ + Q'(t) u x  + vx  + tx + C'(t) vx.  This 

unfolding is again of the fo rm  (b) and such that  condition (i) holds; so by  virtue of  Re- 

mark 4.12 we may replace Q' and C' by  0. In  other words, the unfolding (e) is space-equi- 

valent to (f): x 4 + u x 2 +  tx ~ + v x  + iX, since both (e) and (f) are of the form (b), with the same 

polynomials P and A, and since they are both space,stable (because both satisfy condition 

(i)). Finally, if in (f) we replace t by t - v  and u by u + v  we obtain the space-equivalent 
! 

unfolding hr .  
8 - 752905 Mathematica 135. I m p r i m e  le 19 D6cernbre 1975 
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Suppose case (ii) holds. By  Remark  4.12 we may  assume S I = I ,  S~=0, Q = R = B =  

C = D = O ,  so the unfolding (b) is x a + u x 2 + P ( t ) x 2 + w t z 2 + v x + A ( t ) x .  I f  we set t '=A( t )  

(since A14=0 the map t ~ t ' = A ( t )  is a change of coordinates on R), and if we set w' = w / A  1, 

then for a suitable polynomial P'(t ' )  without constant term, of degree a t  most  4, and such 

tha t  P~=0,  and for a suitable real number  S~ and suitable germs flEm(1) 5 a n d ~ e m ( 1 )  a 

we may  write the unfolding above as x 4 + u x ~ + P ' ( t ' ) x ~ + w ' t ' x 2 + S ~ w ' t ' 2 x 2 + v x + t ' x +  

fl(t ')x~+w'~,(t ')x ~. By Corollary 4.8, Corollary 4.10 and Remark  4.12 this is space-equi- 

valent to x 4 + u x 2 + p ' ( t ) x 2 + w t x 2 + v x + t x ,  which is again of the form (b) and such tha t  

case (ii) holds. By  Remark  4.12 this unfolding is space-equivalent to x 4 + u x 2 + P ' ( t ) x 2 +  

2P~tvx2+3P~t%x2+wtx2+vx+tx ;  since this is space-stable no mat ter  what  the value of 

P~ we may  by  Lemma 4.9 assume P~=0.  I f  we now replace t by  t - v  and u by  u + w v +  

P~v ~ - 2P~v s, we obtain the space-equivalent unfolding x 4 + ux z + P'(t) x 2 + wtx 2 - 3P~v2tx 2 + 

tx; replacing w by  w+3P~v  2 gives the space-equivalent unfolding x 4 + u x 2 + P ' ( t ) x ~ +  

wtx2+ tx. We shall show this is space-equivalent to h~. 

I f  v0 E [0, 1], define a 5-dimensional unfolding K~, of x 4 by  setting K~,(x, t, u, v, w, ~) = 

x 4 + u x 2 + ( v o + v ) P ' ( t ) x 2 + w t x ~ + t x  for x, t, u, v, w, vER. Then ~K~,/&r=P'( t )x  2. To simplify 

the notation in the following let us set ~ = u + ( % + v ) P ' ( t ) + w t ;  then Kro=X4+eJx~+tx. 

Now 4K~o-Z2K~o[SX=2~x~+3tx.  Hence (4K~~ I f  we 

subtract  (Oax+3eJt)aK~o/~X from this we get -2~3x~-7~2tx-3Ot~+9t2x2;  if we add 

30t ~ ( =38t~(K~~ ~ to this we get - 28Sx~ 7~ tx  + 9tZx2; if we add O~(4Kro- x2K~o/~X) 

(which equals 8~(2eJx2+3tx)) to this we get -4~ t x+9 tax~;  if to this we add 4eJ2t2K~o/~t 

we get 9t2x 2 + 4~nvtx ~ + 8P~(vo +~)02t~x ~ + 12P~(~0 +~r)O2tSx ~ (recall P~ = 0); if we subtract  

2~wt( 4K~~ - xOK~,/~x) ( = 2&v$(20x ~ + 3ix)) from this we get 9tax 2 - 6eJwt~x + 8Po'(v 0 + v)(J2t~x ~ + 

12P~(vo + ~:)O~tax~; if we add 6~wt~K~~ we get 9t~x~ +6&v~t2x~ +12P~(~o + v)OwtSx~+ 

18P~ (Vo + ~) &vt~x2 + 8P~' (~o + ~) (~t~x~ + 12P~(vo +v) (~2tsx2; dividing this by 9 + 6(~w ~ + 

12P~(~ o +~)(~wt § 18P~(vo § (which is a germ of a 

function of t, u, w, and ~ and is non-zero near O) gives t2x ~. We have shown tha t  t2x 2 

is an element of 

(here ~(5) is the ring of germs a t  0 of smooth functions of t, u, v, w, and v); consequently 

tSx ~ is also an element of the same sum of E(5) submodules of ~(6); hence 8K~,/Bv =P~t~x 2 + 

P ~ x  2 is also an element of this sum of modules, and this is true for any  v0E[0, 1]. From 

this it follows by  Lemma 4.5 tha t  x 4 + u x 2 + P ' ( t ) x ~ + w t x ~ + t x  is space-equivalent to x4+ 

ux 2 +wtx 2 +tx,  which is clearly space-equivalent t o /~ .  

I f  case (iii) holds, then by  arguments similar to those used for case (i), the unfolding 
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(b) is space-equivalent to h~. Similarly in case (iv) the unfolding (b) is space-equivalent 

to h~0. 

In  case (v) one may  by Remark  4.12 assume D I = I ,  D3=O, Q = R = S = B = C = O .  

By the implicit function theorem one can find units ~ and fl of E(1) such tha t  

~(t)  = + (P~fl2(t) + P ~ @ ( 0  +P , t~4(0 )  ~(t) = ( A ~ ( t )  + A~@(O + A,t~4(t)) a(t) 

for t near 0, where the + sign is taken to be + if P~ > 0 and - if P2 < 0. By  continuing the 

argument as in case (i) one can easily show tha t  in case (v) the unfolding (b) is space- 

equivalent to h~l or to h~2. 

I t  can easily be shown, by arguments similar to those used in the proof of Theorem 
/ J  h r 5.2, tha t  no two of the unfoldings , , 7 -  12 are space-equivalent. 

By using the usual algorithm and applying the observation at  the beginning of the 

continuation of the proof of Theorem 5.3, one readily computes tha t  an arbi trary space- 

stable unfolding of #3(x) = x 5 is space-equivalent to an unfolding of the form 

(g) x 5 + uz  3 +P(t) x a + Q(t)ux a + R(t) vx 3 + S(t) wx 3 + vx 2 + A(t) x ~ 

+ B(t) ux  2 + C(t) vx 2 + D(t) wx 2 + wx + E(t) x + F(t) ux  + G(t) vx + H(t) wx, 

where P, Q, R, S, A ,  B, C, D, E, F,  G and H are polynomials in t without constant term, 

P,  A, and E of degree at  most 4, the others at  most quadratic, and where the coefficients 

of these polynomials satisfy the following conditions: E l # 0  and 4 P 1 E x # 3 A ~  and the 

determinant  

/)1 A1 E1 2P2 2A2 2E2 

0 0 0 2P 1 A 1 0 

0 0 0 - P 1  0 E x 

1 0 0 Q1 B1 F1 

0 1 0 R 1 C 1 G 1 

0 0 1 S 1 D 1 H 1 

#0.  

Suppose first A I # 0 .  By Remark  4.12 we m a y  assume Q = S = B = C = D = F = G = H = O ,  

R 2 =0,  and we may  choose R 1 to have any value such tha t  the determinant above does not  

vanish (note tha t  by  choosing R 1 appropriately we can in fact ensure tha t  the determinant  

does not vanish). By  the inverse function theorem there are units a and fl E ~(1) such tha t  

for t near O. 

Cr = (Al•(t)  q- A2]~2(t) t q- Aa]~a(t) t 2 + Aa]~a(t) t 3) ~2(t) 

= (El~(t)  + E~fl~(t) t + E3~3(t) t~ + E,~' ( t )  ~) ~(t) 
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By the same argument as was used in case (i) for the unfoldings (b) of as, it  follows 

that  the unfolding (g) (when A 14=0) is space-equivalent to an unfolding of the form 

(h) as + uas + P' ( t )as  + R'~tvx a + v x  ~ + tx ~ + w x  + tx, 

where P '  is a polynomial in t without constant term, of degree at  most 4, and R~ is a real 

number, and where (since this unfolding is of the form (g) and is space-stable) we have 

P; =~ and Ri :~2P~. 

We shall show that  any space-stable unfolding of the form (h) is space-equivalent to 

an unfolding of the same form in which P~ =P~ =P', =0. First, since (h) is stable no 

matter  what the value of P~, we may by Lemma 4.9 assume P~ --0. By Remark 4.12 we 

may assume that  R'~ 4 0  and that  R'I is of opposite sign to P~ if P~ 40.  Now suppose P~ 

and P~ are not both zero. For v0e[0, 1], define a 4-dimeusional unfolding Hr, of as by 

setting 

Hr,(x,  t, u, v, w) = as + uas + P~ tas + 3o(P~ t ~ + P~ t a) x a + R~ tvas + vx ~ + tx ~ + wx  + tx, 

and define a 5-dimensional unfolding K,,  of aS by setting 

K, , (x ,  t, u, v, w, 3) = Hr.+r(x, t, u, v, w), for x, t, u, v, w, 3 E R .  

Because of the way we chose R'~, we have that  Hr, is space-stable for each z0E[0, 1]. 

Because Kro is a 1-dimensional unfolding of Hr~ it follows easily from this, using Corollary 

1.7, that  

~(6) = (~K~~ + (OKro/at)e(5) + (~KT~ OK~~ aKro/aW)~(,) + K*o E(6), 

where E(6) is the ring of germs of functions of x, t, u, v, w, and 3, and ~(5)gE(6)  consists 

of those germs which do not depend on x, ~(4) consists of those germs which do not 

depend on x nor t, and where/{~0 EE(6, 6) is defined by setting /~r,(x, t, u, v, w, 3) = 

(Kr0(x, t, u, v, w, 3), t, u, v, w, 3) for x, t, u, v, w, 3ER. 

In particular, we can find germs y(x, t, u, v, w, 3) E ~(6); 8(t, u, v, w, 3) E E(5); e(u, v, w, 3), 

~(u, v, w, 3), and ~(u, v, w, 3) E~(4); and germs n(t, u, v, w, 3), 2(t, u, v, w, 3 ) e E ( 5 )  and 

/z(a, t, u, v, w, 3) EE(6) such that  

(i) = P~t2xa + P~tax a = ~,(x, t, u, v, w, 3) ~ + 8(t, u, v, w, 3) ~--r____, 
~ o x  ~t 

�9 OK~. ~K~. + e(u,v,w,3)~-~'+ r 3~ ~-+~(u,v,w,7:) 

+ u ( t , u , v , w , ' c ) +  ]t( t ,u ,v ,w,  3) Kro + la(K~~176 
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Now we claim that  when x, t, u, v, and w are 0, then the germs 7, ~, ~, ~ and ~/vanish (no 

matter  what the  value o f  ~), i.e. we claim 7 Eli t(5)~(6), ~ Ell t(4)s and ~, ~ and ~/are 

in m(3) s 

To prove this claim, we differentiate equation (i) and evaluate the resulting equation 

for x =t  = u  =v  = w =0 (after substituting the correct expressions for K,o and its deriva- 

tives). If we differentiate once, twice .. . .  , etc., up to seven times with respect to x, and 

evaluate for x = t  = u  =v = w =0, we find respectively that: 

(h) ~(0, ~) +~(0 ,  ~) = o; (h) 2~(0, ~) +2~(0,  ~) = o; 

(J3) 6P~(~(O,~)+6e(O,~)=O; (j~) 1207(0,~)=0; 

(h) 600er /~(o ,  ~) + 120 2(0, ~) = o; (j~) lSOO ~b,/~x~(o, ~) =0;  

(jT) 4200 8aT/Sx3(0, ~) = 0. 

and 

If we differentiate equation (i) once with respect to t and then once, twice, or thrice with 

respect to x and evaluate when x = t  = u = v = w  =0, we find respectively: 

(J.) 

(J,) 

(ho) 

aT/ax(o, ~) +27(0, ~) +e(~/~t(o, ~) +2(0,~) = 0; 

6P'17(0, ~) +4~]8x(0 ,  ~) +8~7/8x2(0, ~) + 28~/8t(0, ~) +22(0, ~) = 0; 

lSPiSr/~x(O, "~) + 68~7/~x2(0, ~) + ~aT/Sxa(0, ~) + 6P'~8(~/St(O, ~) 

+ 12(~ o + v)P~'~(0, ~) + 6R~(0, ~) + 6P'12(0, ~) = 0. 

Now by (J4) we have ~,(0, T)=0, i.e. yem(5)E(6) .  By (Js) we have 2(0, T)= 

-587/8x(0, T), Substituting into (Js) we find &~/~t(O, ~) =4~/8x(0,  ~). By (Je) 8~/ax~( 0, ~) =0; 

by (Jg) we now find 87/8x(0, 7;) =0, and hence also &~/St(0, T) =2(0, ~) =0. Also, by  (J7) w e  

have 837/8xs(0, ~)=0. Hence (Jlo) reduces to: 12(~0+~)P~'~(0 , T)+6R1~(0, ~)=0.  But by 

(Jz) we have ~(0, T)+r ~)=0, and since R~ was so chosen that  for no (v0+~)E[0 , 1] is 

12(~o+~)P~=6R'1, it follows from the last two equations that  5(0,~)=~(0, ~)=0  (i.e. 

(~Em(4)s and r163 and by (Jl) and (J3) it now follows that  ~ and e are in 

m(3) s This proves the claim. 

Since the claim above holds for any roe [0, 1] it follows by  Lemma 4.5 that  H 1 (which 

is the unfolding (h) with t)'4=0) is space-equivalent to Ho=x~+uxa+P~txa+R'dvxa+ 

vx~+tx2+wx+tx .  By Remark 4.12 we may assume R~=I .  If  we replace t by  t - v  and w 

by w + v and u by u +P~v + v ~, we then get the space-equivalent unfolding x 5 + ux a +P~tx a + 

tvx s + tx2 + wx + tx, which is a member of the continuous family h' is of space-stable unfold, 

ings. This takes care of the case A~ ~=0. 
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Let us now consider the unfolding (g) when A 1 =0.  The conditions for (g) to be space- 

stable now reduce to the following: E l # 0 ,  P l y 0 ,  and 2 A 2 # P 1 B I + E 1 D  1. By Remark  

4.12 we may  assume Q = R = S  = B = C = F = G = H  =0,  D2 = 0, and D 1 # 2 A 2 / E  r 

By the inverse function theorem we can find units ~ and fl in E(1) so tha t  for t near 0 

a~(t) = + (Plfl(t) + p~fl~(t) t + p~#~(t) t2 +p,/~4(t) t3) ~(t) 

where the _ sign is taken to be the sign of P 1 / E r  

By the same argument  as was used above in the ease A 1 =~0, it follows tha t  the un- 

folding (g) (when .41 =0) is space-equivalent to an unfolding of the form 

(k) x 5 + u x  s +_ tx s + vx  2 + A f  (t) x 2 + D'ltwx 2 + w x  + tx, 

where A'( t )  is a polynomial in t without constant term, of degree a t  most  4, and with A~ =0,  

and where D~ is a real number  and D~ ~=2A~. By Remark  4.12 we may  assume D~ g=0 

and is of opposite sign to A '  " ' 2 if A2 4 0 .  

We may  then argue as we did for the unfoldings of the form (h), to show tha t  in (k) 

we may  assume A'  =0.  By Remark  4.12 we may  then set D~ =1.  This gives the unfoldings 

xS+uxa•  and if in these we replace t by t - w ;  v by v+w~;  and u 

by u + w  we get h~4 or h~ (depending on the + sign). 

By  the same arguments used before one can easily show tha t  none of the unfoldings 

in the family h~s is space-equivalent to h~4 or h~5 , that  h'14 and h'15 are not space-equi- 

valent to each other, and tha t  no two o/ the un/oldings h~sc, /or diHerent values of c, are space- 

equivalent to each other (so x 5 has infinitely many  non-equivalent space-stable unfoldlngs!). 

In  other words the space-stable unfoldings of x 5 given in the list are all essentially different. 

We claim tha t  p 4 ( x ) = x  e has no space-stable unfoldings. This can easily be seen by  a 

dimension argument  as follows: By  virtue of Theorem 4.11 and Theorem 2.26, if x s has a 

space-stable unfolding, then it has a space-stable unfolding / of the form 

(1) / ( x , t , u , v , w ) = x e + P ( t , u , v , w ) x 4 + Q ( t , u , v , w ) x a + R ( t , u , v , w ) x 2 + S ( t , u , v , w ) x  

where P, Q, R, and S are suitable polynomials in t, u, v, and w, without constant terms. 

Moreover, since / is space-stable, we must  have, by  virtue of Corollary 4.13, tha t  

(m) E(2) = {~//~ I a~.(~) + {~l/~ I a~(~) + (~/l~ula~. ~/lav lit ~, a l l . l i n e R  

+(1 . / IR  ~,/siRs. f i lm). . . .  + (t').(~. 

(where R s denotes the x, t-plane (i.e. u = v = w =0), E(2) is the ring of germs of smooth func- 

tions of x and t, and ~(1) is the ring of germs of smooth functions of t). 
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Now let C = ~(2)/(<8//~x [ R~>e(~)+ <ta>e(~)) and let ~t: ~ (2 )~  C be the projection. Because 

/ has the form (1) it is clear tha t  the 20 elements ~(t'x~), 0<<.i<~3, 0~<~<4, form a basis of 

C over R, so dim~ C=20.  Let  us consider the germs /~IR ~, j =0, 1, 2, 3. Clearly 

(6f - x~//~x)]R ~ = (2Px ~ + 3Qx a + 4Rx  ~ + 5sx) I m  is divisible by  t, so g(/[ R ~) can be written 

as a sum of monomials divisible by t. I t  follows that  ~t(p [R ~) is a sum of monomials divis- 

ible by F and g(/a]R~) is a sum of monomials divisible by t a. But  since any germ divis- 

ible by t a is in the kernel of zr, this implies dima zt(</~ I R~>e(~)) ~< 4 - ], for 0 ~< ~ ~ 3. Hence 

dim~ ~(< 1 , / [ a  ~, p lm,  p ] m>~(,)) < 4 + 3 + 2 + 1 = 10. Moreover a~,,~ zt(<O/]~tIR~>e(i)) < 4 and 

dim~(~//~ulIV,~//~vlm,~//~wlR~>a)<-.3, so  if (m) held we would have d i m a C <  

1 0 + 4 + 3 = 1 7  <20, which is impossible. Therefore f cannot be space-stable and x ~ has no 

space-stable unfoldings. 

We shall show that/~a(x, y ) = x a + y  a has no space-stable un/oldings. For  suppose F~ 

has a space-stable unfolding l(x, y, t, u, v, w), and le t /~=1[  u=v=w=0. By virtue of Theorem 

4.11 and the observation at the beginning of the continuation of the proof of Theorem 

5.3, we may clearly choose / such tha t /0  has the form 

/o(X, y, t) = z a +ya + P(t) xy  + A( t )x  + E( t )y  

for suitable polynomials P,  A, and E without constant term and of degree at  most 4. Let  

9 = E(3)/(<ta)~(8)+ in(3)1~ + <1, t, F)~) and let ~ :  ~(3)-~D be the projection. Let  M be the 

subspace of D generated over R by the elements ~(x~),  ~(y~)  and ~(xy$~), for i =0,  1, 2. 

We claim ~x(<S/0/~x, O/o/Sy>e(s))f~ M =- {0}. 

For  let u and fl be in ~(3) and suppose ~r~(~/o/Sx+flS/o/Sy)eM. Since nx(m(3)xz+ 

<ts>e(~)) =0,  we may assume u and fl are polynomials in x, y, and t, and we may write 

~, J~Z f ,  SeZ 

where ~j and/~,~ are suitable polynomials in t and all but  finitely many of them are 0, and 

where, of course, we set ~ t j = ~ = 0  if either i or ~ is negative. Let  us denote by/,~(t) the 

coefficient of x'y j in ~Z~/o/~X+fl~o/~y (so/~j is a polynomial in t). Then we have, for all 

i , / , t h a t  

(n) 

Since ~.(~d.:~./o/ax+fl~/o/~ ) EM we know t~j is divisible by  ~ whenever i >12 or ~ >/2, and 

i +  j<12 .  To show ~l(~2t0/~x +flafe/ay) =0  , we must show /o.1, ~1.o! and/1. t  are divisible 
b y t  3. 
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Now when i~>2 or ~'>~2, i + j < 1 2 ,  we may solve equation (n) to find that  

(o) a~-2.~+flt.~-~ = -~(Po~.~_l+Aoq.~+Pfl~_l.~+Efl~.~) modulo t s (i~>2 or)'>~2, i+~<12) .  

By repeatedly substituting from equations (o) into the equations (n) for [o.1, [1.o and 

[1.1, one easily finds, because P, A and E are divisible by t, that  [0.1,/1.0, and/1.1 are divisible 

by t a. In  other words, ~rl(oa~/o/ax+fl~[o/ay)=0, and our claim has been proved. 

Now l e t / ) ' =  D/~tl(<a/o/~X , ~/0/0y>e(3)) and let g2: E(3)-* D'  be the projection. From the 

form of/0 and because of what we have just proved above it is clear that  the 9 elements 

:rg.(xtt), 7ra(yt f) and :r~(xy~), i=O, 1, 2, form an R-basis of D'. 

Corollary 4.13 clearly implies that  for [ to be space-stable it is necessary that  D'  be 

generated over R by  the following 9 elements: the 3 elements :r~(t~[o/~t), for i=0 ,  1, 2; 

the three elements :r~(O//0u I u_ v_ w=0), ~z~(O//Ov ]u-v- w =o), and ~r~(O[/Ow[ ufv= w=0); the two ele- 

ments zr~(/o ) and xt2(/ot ) (note tha t  3/o-XO/o/OX-yO/o/Oy=Pxy+2Ax+2Ey,  so xr2(/0) is a 

linear combination of monomials divisible by  t; hence :r~(/ot ~) = 0); an d  finally the element 

~r~(/o 2) (note tha t  since g~(/o) is a sum of terms divisible by t, it follows readily that  zr2(/o 2) 

is a linear combination of terms divisible by t 2, so zr2(/o2t) =0). 

But  if we denote by P1, A1, and E 1 the coefficient of t in P,  A, and E respectively, 

then in terms of the basis of D'  given by ~z(xt~), zt~(yt ~) and ~2(xyt~), i=0 ,  l, 2, we have: 

and as is easily seen: 

~r2(t2O/0/0t) = Plxyt2 +Alxt2 + Elyt2, 

:r2(3/ot ) = PlxY~ 2 -4- 2Alxt 2 + 2Elyt~, 

~z2(9/o 8 ) = 4A 1 Elxyt  2, 

and as these three elements of D'  can clearly not  be linearly independent, no matter  what 

P,  A, and E are, it follows that  the 9 elements listed in the preceding paragraph cannot 

generate D'  (since dim R D' =9), so [ is not space-stable. Hence x a +ya has no space-stable 

unfoldings. 

A similar argument shows that  po(x, y ) = x  8 - x y  2 has no space-stable unfoldings. 

Finally, pT(x, y ) = x S y + y  a has no space-stable unfoldings. This can be seen most 

easily as follows: Suppose / is a representative, defined near OfiR e, of a space-stable un- 

folding of PT. Let  g be a representative of the 4-stable unfolding 97 of p~ given in the 

list of Theorem 2.26 (recall g T ( x , y , t , u , v , w ) = z 2 y + y 4 + u x 2 + v y ~ + w x + t y ) .  Then for 

(x, g, t ,  u, v, w)ER e sufficiently n e a r  0, we may consider the germs /(z.y.t.u.v.w) and 

9(x. ~.t.u.v. ~) q m(6) (see Definition 2.3). 
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If aER  is close enough to 0, then we have that  g(0.~.s~'.-a.-6a,.o)(X, y, 0, 0, 0, 0) = 

x~y+y~+4ay 3. Suppose a < 0 .  Introduce new coordinates x', y' on R ~ near 0 by setting 

x' = y(4a + y)US and y' ~ x( - 1](4a + y))lle. Since a 4=0 this is a smooth change of coordinates 

on R 2 near 0, and clearly x~y+y4+4ay3=x'3-x'y'2. So for a < 0  but  near 0, we have that  

g(0. ~. sa'. - ~. -6a~. 0)] R ~ is equivalent to ~ue(x , y) = x 3 - xy 2. 

By assumption the germ /r is space-stable, hence 4-stable, and hence 4- 

equivalent to the unfolding g(0.e.e.0.e,e). This clearly implies tha t  for any point zER e near 

0, there is a z 'ER e near 0 such that  the germ g~lR2Em(2)is equivalent to /z.IR2Em(2). 

In  particular it follows that  there are z'E R e arbitrarily close to 0 such t h a t / e l R  2 is equi- 

valent to the germ ~ueEm(2). Now since/(0.0.0.o.0.o) is space-stable, equation 3.6 (c) holds 

for this unfolding, in fact for any q. But  this equation is an algebraic condition on the q- 

jet of the unfolding, so clearly this equation will also hold for the unfolding ]~ if zER G is 

close enough to 0 (how close depends on q, of course). In  any event, it follows that  for any 

q there is a z E R e near 0 such that  f~lR ~ is equivalent to Pe and such that  equation 3.6 (c) 

holds for/z.  If q was chosen large enough, it  follows/z is space-stable, contradicting the 

fact that/~e has no space-stable unfolding. This proves that  ~7 cannot have a space-stable 

unfolding. 

This completes the proof of Theorems 5.2 and 5.3. 

Remark. The family h~a of space-stable unfoldings of x 5 in the list of Theorem 5.3 shows 

that  for suitable r and 8 it is possible for a germ to have infinitely many (in fact, continu- 

ously many) nonequivalent (r, s),stable unfoldings. 

w 6. Pictures of the time-stable unfoldings 

In this section we present drawings of the unfoldings in the list of Theorem 5.2. 

The drawings show the bi/urcation set of the unfoldings, which is defined as foUows~ 

Suppose /Em(n +r)  is an r-dimensional unfolding. Let  g: R'+r-~R r be the projection, and 

let S___R n+r be the germ at  0 of the set {(x, u)ERn+r: / ]R n x {u} has a degenerate singu- 

larity a t  (x, u)}: Then the bifurcation set of f is the Set-germ g(S), which is ~the germ at 0 

of a subset of R ~. 

Remark. In  the language o f  catastrophe theory (see the beginning of w 5), if the un- 

folding [ locally represents a gradient model for some natural process, then the catastrophe 

set of the gradient model (which describes what an observer would actually see in nature) 

will in general ne t  be the same locally as the bifurcation set of ~, so the pictures we give 
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t < 0  t f f i0  t > 0  

Fig. 1 Bubble collapse: the bifurcation set of the unfolding h2. 

here do not  actually show what  happens in nature if we use the time-stable unfoldings as 

models for natural  processes in catastrophe theory. However, the catastrophe set of a 

model is not uniquely determined; the catastrophe set can be chosen in one of several ways 

depending on the application. Therefore we cannot actually draw the catastrophe set of 

the time-stable unfoldings. However, pictures of the bifurcation set are useful because 

they provide a great deal of information about  what  the catastrophe sets can look like, 

and hence they enable one to see which natural  processes can be described locally by  which 

unfoldings in the list. In  this sense our pictures can be interpreted as showing what hap- 

pens in nature during a process whose local model is a given time-stable unfolding. 

The pictures we give are in the form of a simplified cine-film, each frame of which 

shows the spatial configuration of the bifurcation set a t  a fixed moment  of time. A frame 

taken a t  t ime t of one of these films shows a two-dimensional section of the bifurcation set 

ra ther  than  the actual 3-dimensional spatial configuration a t  t ime t; this lends clarity and 

exactness to the pictures, since we have been able to plot the actual curves to scale, and the 

actual 3-diraensional configuration can easily be visualized from the two-dimensional sec- 

tions. 

Each frame shows the coordinate axes as well as the actual curves. Where it is mean- 

ingful the scale of the pictures is given next  to the films. 

We do not  give pictures of the unfoldings hi, he, hx0, hn or 42, since these unfoldings 

(and their bifurcation sets) are constant in time, and pictures of their bifurcation sets a t  

any  fixed moment  of t ime are well known and have been published elsewhere (see for 

example Them [7] or Woodcock and Poston [12]). 

The folds h ~ -  h 5 have as bifurcation sets the set-germs {(u, v, w, t) ] t + u S + v 2 + w 2 = 0}, 

where the choice of the • signs depends on which unfolding we are considering, and cor- 

responds to the signs of the terms u2z, v2z and w2z in the unfolding in question. 
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const 

Fig.  2 T h e  b i fu r ca t i on  se t  of  t h e  u n f o l d i n g  hs. 

Figure 1 is a film of the bifurcation set of h2; each frame shows a plane section through 

the origin of R 3 for a fixed value of t. The three-dimensional configuration a t  each fixed 

time can be obtained by  rotating the frames about  any  line through the origin. When t 

is negative, the bifurcation set is a sphere (colloquially, a bubble). The spheres become 

smaller with increasing time until they are reduced to a point (at t =0)  and vanish. For 

positive t the bifurcation set is empty.  

The film does not show the rate  of collapse of the bubbles. Instead of making a film 

we can draw a picture of a 3-dimensional section of the bifurcation set in which we include 

two spatial coordinates and the t ime coordinate (we set one of the spatial coordinates =0).  

Such a section is shown in figure 2: we see a paraboloid of revolution, whose axis is 

normal to the planes of constant time. In  this picture we see how the size of the bubbles 

changes with time; the radius of the bubble a t  t ime t is ~ In  particular, when the bubble 

vanishes, a t  t=O, it is collapsing with infinite velocity. 

A picture of the bifurcation set of h 5 can be obtained b y  running the film in figure 1 

backwards a t  the same speed. 

Figure 3 shows a film of the bifurcation set of ha; each frame shows a section by  the 

plane v =0, and the actual 3-dimensional configuration can be obtained by  rotating about  

the vertical (w-) axis. At each t ime t =~0 the bifurcation set is a hyperboloid of revolution 

(the plane sections shown in the film are hyperbolas); a t  t - -0  the bifurcation set is a cone. 

If, for t <0,  we visualize the region of space enclosed by  the hyperboloid as being a blob 

of liquid, then as t ime progresses this blob is pinched until, after t=0 ,  i t  separates into 

two blobs which move apart;  hence the name "fission". The apices of the hyperbolas shown 
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t < O  t--O t > O  
Fig.  3 Fiss ion:  t h e  b i fu rca t i on  se t  of  t h e  un fo ld ing  h s. 

in figure 3 for t ime t are at  a distance ~ from the origin; in particular the "pinch" in 

the bifurcation set for negative t narrows with infinite velocity at  t ime t =0,  and the two 

components which appear when t is positive separate with infinite velocity a t  t ime t = 0. 

A film of the bifurcation set of h 4 can be obtained by  rotating the flames of figure 3 

about  the horizontal (u-) axis rather  than  the vertical (w-) axis, or equivalently, as far 

as the bifurcation set is concerned, by  running the film in figure 3 backwards a t  the same 

speed. 

t =  - 0 . 2  tffi - 0 . 1  t r iO 

)/ 
t--O.1 

J/ 
t = 0 . 2  

[~ 
I ~'~ -0 .51 I I ~ - 0 . 5  0 0 .5  

V u 

Fig.  4 Bec-~-bec:  t h e  b i fu rca t i on  se t  of  t h e  un fo ld ing  h 7. 
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~ 
- 0 . 5 ~  I I 

_ ~ -  0.5 0 05 

t < 0  

\ 
t = 0  t = 0 , 1  t = 0 . 2  

Fig.  5 T he  lip: t h e  b i fu rca t ion  se t  of t he  un fo ld ing  h~. 

The cusps h~ - h 9 have as bifurcation sets the set-germs {(u, v, w, t) lt + (4/(3 ~/6)) u ~  + 

u-kv~+w~=O}, where the sign of the terms ___v ~ and ___w ~ is to be chosen to correspond to 

the sign of the terms v~x and wax resp. in the unfolding in question. 

:Figure 4 shows the bifurcation set of the "bee-s unfolding h~; each frame shows 

a section of the bifurcation set at some fixed time by the plane w =0. When t is negative 

we see two cusps; as time progresses they approach, join at  t=0 ;  and subsequently two 

smooth curves appear which move apart  and away from the origin. The points of the cusps 

seen when t < 0 lie at a distance ~ from the origin. In  particular, the cusps are moving 

together at infinite velocity when they join. However, the two curves which form when 

t > 0 move away from the origin with finite non-zero velocity at  t = 0 (the actual velocity 

is l in the scale we have chosen) and move away from each other with zero velocity when 

t=0 :  

The above discussion refers to the plane sections of the bifurcation set shown in fi- 

gure 4; the actual bifurcation set of h~ is obtained by rotating about the horizontal (u-) 

a x i s .  

Figure 5 shows the bifurcation set of the "lip" unfolding :hg; each frame shows a sec- 

tion of the bifurcation ~ set at some fixed time by the plane v =0. When t is negative the 
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t < O  

t = 0  

Fig.  6 Bec-~-bec to lip: t he  bi furcat ion set  of t he  unfold ing  hs. 

bifurcation set is empty; a t  t = 0  a point appears a t  the origin; subsequently a crescent ap- 

pears and grows in size. The horns of the crescent are cusps whose points lie on the w-axis 

a t  a distance Vt from the origin (so the horns move apar t  with infinite velocity a t  t=0) .  

The midpoints of the two curves forming the crescents move away from the origin with 

finite non-zero velocity ( = 1 in the scale we have used) at  t =0,  and they move away from 

each other with zero velocity a t  t = 0. 

The above discussion refers to the plane sections shown in figure 5; the actual bi- 

furcation set of h 9 is gotten by  rotating the pictures about the horizontal (u-) axis. 

Figures 3, 4 and 5 together can be used to visualize the bifurcation set of the "bec-~- 

bec to lip" unfolding h s. At t ime t, a section of the bifurcation set of h a by  the plane w = c  

looks like the frame of figure 4 for t ime t - c~ ;  a section by  the plane v =c  looks like the 

frame of figure 5 for t ime t + c  ~. Sections by planes u = c o n s t a n t  are empty  if u > 0 ;  if 

u = O  we see the film of figure 3 as t ime progresses; if u < 0  we see simultaneously two co- 

pies of the film of figure 3 with a time-lag between them of ( 8 / ( 3 ~ ) ) ] u  I V]u[. 

Globally we can describe the spatial configuration of the bifurcation set of h s as fol- 

lows (for a crude sketch, see figure 6; for convenience we have changed the orientation of 

the coordinate axes): At negative times we see two "wedges" located symmetrically about  

the plane v ~0;  each wedge consists of two surfaces which meet cuspally along a branch 
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of an hyperbola. As t ime progresses the two wedges approach each other and meet at  the 

origin when t=0 ;  a t  this t ime the two surfaces forming each wedge are joined along the 

lines v = • w. When time becomes positive the two wedges have merged to form a tube 

whose cross-section is a crescent (as shown in figure 5); the tube has a "seam",  lying along 

the branches of an hyperbola, where the two surfaces forming the tube meet cuspally. 

Remark. In  this paper we do not give pictures of the space-stable unfoldings, those 

in the list of Theorem 5.3. One reason for this is tha t  the bifurcation sets of these unfold- 

ings can not as easily be shown pictorially as for the time-stable unfoldings. I t  would be 

meaningless to show a film of the bifurcation set, since the sequence of spatial configura- 

tions at  fixed moments  of t ime is not invariant under space-equivalence. The most reason- 

able sort of drawing for the space-stable unfoldings would probably be one showing the 

regions of space in which different sequences of events occur in time. I f  we denote the 

bifurcation set of some space-stable unfolding by  A___R 4, and if we let ~: R4-~R 3 be the 

projection (t, u, v, w) ~-> (u, v, w), such a drawing would show where in u, v, w-space the 

fibres of g lA have different topological types, where the topological type of the fibre 

changes, and above which points (u, v, w) two or more "branches" of A come together or 

branches appear or disappear. Such pictures would seem not to have as immediate an 

interpretation as the films of the time-stable unfoldings. 

Notes added in proo/: N. Baas in [13] studies a global stabili ty notion (stability of com- 

posed mappings) which is closely related to the (local) notion of (r, s)-stability t reated in 

the present papers; Baas and I wish to point out tha t  these notions are not, however, 

exactly the same (primarily because of important  (though technical) differences between 

the local and global cases). 

Baas's preprint  [13] also contains a proof, due to Mather in an unpublished manu- 

script, of my  Corollary 1.7 to the Malgrange Preparat ion Theorem in a somewhat more 

general form. I t  should also be mentioned tha t  for the case/r = 2 a version of this corollary 

was proved by F. Latour  in [14, p. 1333]. 

To correct an oversight in the text  it should be mentioned tha t  the classification of 

germs of low codimension by  Mather and Siersma referred to on page 95 has, as is well- 

known, been extended considerably by  V. I. Arnol 'd in [(I)yHIr AHa~Ha, 9 B~HI. 1 (1975), 

49-50; YcnexH MaT. HayK, 30 s~aiL 5 (1975), 3-65, and earlier papers cited there]. 
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