A CLASS OF IDEMPOTENT MEASURES ON COMPACT NILMANIFOLDS

BY
LEONARD F. RICHARDSON
Louisiana State University, Baton Rouge, La. 70803, USA (1)

Contents

Introduction 129

1. Idempotent measures on compact homogeneous spaces 130
2. Structure of L^{2} of a compact nilmanifold 133
3. Irreducible idempotent measures 135
4. Transformations of measures 148
5. Applications to compact solvmanifolds 151
References 154

Introduction

If G is a locally compact topological group and D a cocompact discrete subgroup, it would be interesting to be able to classify the bounded Borel measures on the compact homogeneous space $D \backslash G$ in terms of the representation theory of G and the structure of D. In the case of abelian groups, this is accomplished by means of the Fourier-Stieltjes transform. In Theorem 1.1 of this paper, we take G to be unimodular, and we show that the continuous projections in $L^{2}(D \backslash G)$ which commute with all right translations and map continuous functions into continuous functions correspond one-to-one with those twosided D-invariant Borel measures on $D \backslash G$ which are idempotent. Although idempotence is normally defined only for measures on spaces having a well-defined multiplication of points (such as groups and semi-groups), the concept can be readily extended to twosided D-invariant measures on homogeneous spaces $D \backslash G$.

After section 1, we restrict our attention to finite dimensional, real, connected, simply connected nilpotent Lie groups N with cocompact discrete subgroups D. Corollary (3.5) presents our basic tool for the study of two-sided D-invariant Borel measures on $D \backslash N$. We map the measure v on $D \backslash N$ into a measure v_{F} on a torus of the same dimension, and we show that the Fourier-Stieltjes transform \hat{v}_{F} can be evaluated by finding the value at a
${ }^{(1)}$ Research supported in part by National Science Foundation Grant GP-43068.
9-752905 Acta mathemathica 135. Imprimé le 19 Décembre 1975
special point of $T_{v} \varphi$, where φ is a certain function on $D \backslash N$ and T_{v} is the transformation in $L^{2}(D \backslash N)$ corresponding to v. In order to be able to use the structure theory of $L^{2}(D \backslash N)$ to evaluate $T_{v} \varphi$ at a specific point, we show in Theorem (3.6) that $T_{v} \varphi$ enjoys a weakened form of continuity at that point. The main results of section 3 are contained in Theorems (3.9)-(3.12), classifying all the idempotent measures corresponding to irreducible representations induced from characters of normal subgroups. In Theorem (4.1) we show that if the projection T_{v} corresponding to the idempotent measure v projects $L^{2}(D \backslash N)$ orthogonally onto an N-invariant subspace H, and if $V: H \rightarrow H^{1}$ is a unitary equivalence, then V induces a transformation of measures which carries v into a measure which projects onto H^{1}. It is interesting that mutually orthogonal projections can be thus interrelated.

It is important to note that nilpotence is used only in (3.1)-(3.3) to obtain suitable global coordinates on N, and in (3.6), where the polynomial multiplication which is characteristic of nilpotent Lie groups is used to prove the "semi-continuity" of $T_{v} \varphi$ at one point. In section 5, we present four special hypotheses subject to which our theorems hold on compact solvmanifolds. We call such special solvmanifolds type F, and, to illustrate the fact that compact nilmanifolds are not the only type F solvmanifolds, we show that many three dimensional compact solvmanifolds are type F. Our theorems (3.9)-(3.12) then classify all those idempotent measures on three dimensional compact solvmanifolds which correspond to projections onto irreducible translation-invariant subspaces.

The author is deeply indebted to Dr Jonathan Brezin, who made many valuable suggestions. In particular, it was Dr Brezin who first saw that the results of this paper could be extended from compact nilmanifolds to suitable solvmanifolds. He also greatly simplified the proof of Theorem (3.10), and made several improvements in the terminology. Thanks are due also to Dr O. C. McGehee for useful suggestions concerning abelian harmonic analysis, and to Dr F. P. Greenleaf for pointing out gaps in the original versions of the proofs of Theorems (1.1) and (3.8).

We lean heavily on the multiplicity theory and L^{2}-structure theory for compact nilmanifolds. The first results on multiplicities were obtained by C. C. Moore in [8], and exact multiplicity formulas were discovered independently by R. Howe in [5] and also in [11]. The structure theory in [11] has been extended to compact solvmanifolds by L: Auslander and J. Brezin in [1], while L. Corwin and F. Greenleaf have obtained new results concerning multiplicities in [3], as have C. C. Moore and J. Wolf in [9].

§1. Idempotent measures on compact homogeneous spaces

Suppose that G is an arbitrary locally compact unimodular topological group and D a closed unimodular cocompact subgroup. Then the compact homogeneous space $D \backslash G$ will
possess a right G-invariant measure [10]. Suppose that T is an arbitrary continuous projection onto a right-translation invariant subspace of $L^{2}(D \backslash G)$. Thus $T(g \cdot f)=g \cdot(T f)$, where $(g \cdot f)\left(D g_{0}\right)=f\left(D g_{0} g\right)$. Suppose also that $T: C(D \backslash G) \rightarrow C(D \backslash G)$, the space of continuous functions on $D \backslash G$. The mapping T, being a continuous projection, is continuous in the L^{2} norm. Now suppose $f_{n} \rightarrow f$ and $T f_{n} \rightarrow g$ in the sup-norm, where f_{n}, f, g_{n} and g are all continuous. Then, since sup-norm convergence implies L^{2}-norm convergence, and since T is continuous in the L^{2}-norm, $T j=g$. But then T is also continuous in the sup-norm, by the closed graph theorem.

Define $E: C(D \backslash G) \rightarrow \mathbf{C}$, the complex numbers, by $E f=f(D e)$, where e is the identity of G. Then $E \circ T$ is a continuous linear functional on $C(D \backslash G)$ in the sup-norm. By the Riesz-Markov-Kakutani Theorem, there is a bounded measure v on $D \backslash G$ such that

$$
(E \circ T) f=(T f)(D e)=\int_{D \backslash G} f(D g) d v(D g) .
$$

But, since T commutes with right translations, we have

$$
(T F)\left(D g_{0}\right)=\left(g_{0} \cdot(T f)\right)(D e)=\left(T\left(g_{0} \cdot f\right)\right)(D e)=\int_{D \backslash G}\left(g_{0} \cdot f\right)(D g) d v(D g)=\int_{D \backslash G} f\left(D g g_{0}\right) d v(D g)
$$

(The above argument is similar to the proof of Wendel's theorem for locally compact abelian groups in [13].)

Now we will make use of the fact that f and $T f$ are both well-defined on $D \backslash Q$. Thus, if $d \in D,(T f)\left(D d g_{0}\right)=(T f)\left(D g_{0}\right)$, so that

$$
\int_{D \backslash G} f\left(D g g_{0}\right) d v(D g)=\int_{D \backslash G} f\left(D g d g_{0}\right) d v(D g)=\int_{D \backslash G} f\left(D g g_{0}\right) d v\left(D g d^{-1}\right)
$$

for all d in D and for all $f \in C(D \backslash G)$. Thus $v(E)=v(E d)$, for all $d \in D$ and for all Borel sets $E \subset D \backslash G$.
The fact that v must be two-sided D-invariant enables us to define a natural convolution of v with any one-sided D-invariant measure w on $D \backslash G$. Namely, $(v * w)(E)=$ $\int_{D \backslash G} v\left(E g^{-1}\right) d w(D g)$, which is well-defined since v is right D-invariant. We can now verify that if v corresponds to the projection T, then v must be idempotent. Recall that $T^{2}=T$, and let ψ_{E} denote the characteristic function of the Borel set $E \subset D \backslash G$. Observe that
and that

$$
\left(T \psi_{E}\right)\left(D g_{0}\right)=\int_{D \backslash G} \psi_{E}\left(D g g_{0}\right) d v(D g)=v\left(E g_{0}^{-1}\right)
$$

$$
\left(T^{2} \psi_{E}\right)\left(D g_{0}\right)=\int_{D \backslash G}\left(T \psi_{E}\right)\left(D g g_{0}\right) d v(D g)=\int_{D \backslash G} v\left(E g_{0}^{-1} g^{-1}\right) d v(D g)=\left(T \psi_{E}\right)\left(D g_{0}\right)=v\left(E g_{0}^{-1}\right)
$$

Thus v is idempotent: i.e., $v * v=v$.
(1.1) Theorem. Let G be a locally compact unimodular topological group and D a cocompact discrete subgroup. Then $T: L^{2}(D \backslash G) \rightarrow L^{2}(D \backslash G)$ is a continuity-preserving continuous projection which commutes with all right translations by elements of G if and only if $(T f)\left(D g_{0}\right)=\int_{D \backslash G} f\left(D g g_{0}\right) d v(D g)$ for some two-sided D-invariant idempotent Borel measure v on $D \backslash G$. In this case we write $T=T_{v}$.

Proof. We have already proved that if T is as stated, then $T=T_{v}$. Conversely, suppose v is idempotent and

$$
\left(T_{v} f\right)\left(D g_{0}\right)=\int_{D \backslash G} f\left(D g g_{0}\right) d v(D g),
$$

and suppose $f \in C(D \backslash G)$. Since $D \backslash G$ is compact, if $g_{n} \rightarrow g_{0}$ in $D \backslash G$, then $f\left(D g g_{n}\right) \rightarrow f\left(D g g_{0}\right)$ uniformly. Since v is bounded, $(T f)\left(D g_{n}\right) \rightarrow(T f)\left(D g_{0}\right)$; thus $T f \in C(D \backslash G)$. Also, T commutes with right G-translations, since left and right translations commute, and $T^{2}=T$, since v is idempotent. Finally, to show that T_{v} is L^{2}-continuous, observe first that $D \backslash G$ has a precompact Borel section F contained in G. Then, since D is discrete, $\boldsymbol{F F}=$ $\left\{g g_{0} \mid\left(g, g_{0}\right) \in F \times F\right\}$ is contained in the union of a finite subcollection of the set $\{d F \mid d \in D\}$. Let p denote the number of sets of the form $d F$ needed to cover $F F$. Then it is easy to show that $\left\|T_{v}\right\| \leqslant \sqrt{p}\|v\|$. Hence T_{v} is L^{2}-continuous, and the proof of the theorem is complete.

If D is discrete, let us denote by $(D \backslash G)^{\wedge}$ the set of all those equivalence classes of irreducible unitary representations of G which occur in the decomposition of $L^{2}(D \backslash G)$ into a direct sum of mutually orthogonal irreducible translation invariant subspaces. Then, for each $\pi \in(D \backslash G)^{\wedge}$, the multiplicity with which π occurs in $L^{2}(D \backslash G)$ is finite [4]. We will call any irreducible translation invariant subspace corresponding to $\pi \epsilon(D \backslash G)^{\wedge}$ an irreducible π-space. We will call the closed linear span of all irreducible π-spaces the π-primary summand.
(1.2) Corollary. If T_{v} is as in Theorem (1.1), and $T_{v}\left(L^{2}(D \backslash G)\right)$ is an irreducible π-space H for some $\pi \in(D \backslash G)^{\wedge}$, then $T_{v} h=0$ for all $h \in L^{2}(D \backslash G)$ such that h is orthogonal to the π-primary summand \mathcal{H}_{π}.

Proof. We can decompose $\mathcal{H}_{n}^{\frac{1}{n}}=\oplus_{n \in \mathbb{Z}} H_{n}$ into an orthogonal direct sum of irreducible subspaces. Then $h=\Sigma_{n \in \mathbb{Z}} h_{n}, h_{i} \in H_{i}$ for each i. But $T_{v}(g \cdot h)=g \cdot\left(T_{v} h\right)$, which implies that $T_{v}\left(H_{i}\right)=0$, since H is not unitarily equivalent to H_{i}. Thus $T_{v} h=0$.

We remark that Corollary (1.2) is trivial for abelian groups, since multiplicities never exceed one in such cases. Thus, in the case in which G is abelian, the projection T_{v} is zero throughout the orthogonal complement of the irreducible π-space $T_{v}\left(L^{2}(D \backslash G)\right)$.

§ 2. Structure of L^{2} of a compact nilmanifold

Let N be any real finite dimensional connected simply connected nilpotent Lie group and D a cocompact discrete subgroup. We will describe in greater detail the decomposition of $L^{2}(D \backslash N)$ alluded to in section one for general compact homogeneous spaces. All the results in this section, except for Lemma (2.1), are contained in [11].

A character χ of a subgroup M of N is given by $\chi(m)=\exp 2 \pi i \lambda(\log m)$, where λ is a linear functional on the Lie algebra n of N, and log is the inverse of the exponential map, which is one-to-one and onto. The condition that χ is a character is equivalent to the condition that $\lambda:[M, W] \rightarrow 0 . M$ is called maximal (relative to χ) if and only if M is of maximal dimension so that $\lambda:[m, m] \rightarrow 0$. An integral maximal character is a pair (χ, M), where χ is a character of $M, \chi: D_{M} \rightarrow 1$, where $D_{M}=D \cap M$ is cocompact in M, and M is maximal. (M is thus a rational subgroup of N.) It is known that $\pi \in(D \backslash N)^{\wedge}$ if and only if π is induced, in the sense of Mackey, by an integral maximal character.

We define an action of the group N on (χ, M) by $(\chi, M) \cdot n=\left(\chi^{n}, n^{-1} M\right), n \in N$, where $\chi^{n}(p)=\chi\left(n p n^{-1}\right)$ and ${ }^{n^{-1}} M=n^{-1} M n$. If (χ, M) and $(\chi, M) \cdot n$ are both integral maximal characters, then we call n an integral point of $N . M$ acts trivially on (χ, M), and D maps integral maximal characters into integral maximal characters. If we denote the set of integral points of N by $(M \backslash N)_{D}$, then the number of distinct orbits of D in $(M \backslash N)_{D}$ is known to be the multiplicity with which π occurs in the decomposition of $L^{2}(D \backslash N)$ into a direct sum of irreducible translation invariant subspaces. We define $\operatorname{Int}(\chi, M)=(M \backslash N)_{D} / D$, the set of distinct D-orbits in $(M \backslash N)_{D}$. Int (χ, M) is always a finite set, since multiplicities are finite.

If $\pi \in(D \backslash N)^{\wedge}$, we can construct a full complement of irreducible subspaces of the π primary summand as follows. Let (χ, M) be an integral maximal character inducing π, and let K be the set of all functions $F: N \rightarrow \mathbf{C}$, the complex numbers, such that $F(m n)=$ $\chi(m) F(n)$ for all $m \in M$, and such that $|F| \in L^{2}(M \backslash N)$ and $|F|$ has compact support in $M \backslash N$. Let H be the linear span of function of the form $\tilde{F}(D n)=\Sigma_{d \in D_{M} \backslash D}(F \cdot d)(n)$, where $F \in K$ and thus \tilde{F} is well-defined on $D \backslash N$. Then Fig. (2.1) is a commutative diagram, and the unitary map $F \rightarrow \tilde{F}$ can be completed, making H an irreducible N-invariant subspace of $L^{2}(D \backslash N)$.

Now, let $\operatorname{Int}(\chi, M)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}, x_{0}=e$, the identity of N. Apply the above $\operatorname{map} F \rightarrow \tilde{F}$, called the lift map to each $(\chi, M) \cdot x_{i}$, to obtain a lift space H_{i}. It is known that H_{i} is independent of the choice of integral maximal character in $(\chi, M) \cdot x_{i} D$. Then $\left\{H_{0}, H_{1}, \ldots, H_{n-1}\right\}$ is a set of mutually orthogonal irreducible π-spaces which span the entire π-primary summand. $\left\{H_{0}, H_{1}, \ldots, H_{n-1}\right\}$ is called a constructible basis for the π primary summand.

(Fig. 2.1).

Let us note that there exist at most countably many constructible bases for the π primary summand since there exist at most countably many rational subgroups M of N. Yet there exists a whole continuum of irreducible π-spaces whenever the multiplicity of π exceeds one. The following lemma will be useful for dealing with this difficulty.
(2.1) Lпмма. Suppose the orthogonal irreducible π-spaces H_{0}, \ldots, H_{n-1} generate the π primary summand of $\pi \in(D \backslash N)^{\wedge}$. Suppose $V_{k}: H_{0} \rightarrow H_{k}$ is a unitary equivalence, $k=0, \ldots, n-1$. Suppose T is the orthogonal projection of $L^{2}(D \backslash N)$ onto an irreducible π-space H, and $T_{k^{:}} L^{2}(D \backslash N) \rightarrow H_{k}$ is an orthogonal projection, $k=0,1, \ldots, n-1$. Then there exists a complex vector $c=\left(c_{0}, \ldots, c_{n-1}\right) \in \mathbf{C}^{n},|c|=1$, such that

$$
T \varphi=\sum_{k . l=0}^{n-1} c_{l} \bar{c}_{k} \nabla_{l} V_{k}^{-1} T_{k} \varphi, \quad \text { for all } \quad \varphi \in L^{2}(D \backslash N)
$$

Furthermore, the family of all such subspaces H can be identified with the points of the complex projective space $C P^{n-1}$.

Proof. Since H must have a non-trivial projection onto at least one of the irreducible subspaces $H_{0}, H_{1}, \ldots, H_{n-1}$, we can assume without loss of generality that $T_{0}(H) \neq 0$, and, since T_{0} commutes with right-translations, T_{0} must be onto. It follows from Schur's lemma that $T_{i} f=\lambda_{i} V_{i} T_{0} f$, for all $f \in H$, for some $\lambda_{i} \in \mathbb{C}$. Thus
or

$$
\begin{aligned}
& H=\left\{T_{0} f+\lambda_{1} V_{1} T_{0} f+\ldots+\lambda_{n-1} V_{n-1} T_{0} f \mid f \in H\right\}, \\
& H=\left\{t+\lambda_{1} V_{1} f+\ldots+\lambda_{n-1} V_{n-1} f \mid f \in H_{0}\right\} .
\end{aligned}
$$

Recalling our initial hypothesis, the set of all such subspaces $H \subset H_{0} \oplus H_{1} \oplus \ldots \oplus H_{n-1}$ can be paired with the set of straight lines through the origin in \mathbf{C}^{n}. We can then choose a vector c of length one in the direction of the line through the origin of \mathbf{C}^{n} to designate the subspace H_{c}. ($-c$ would do just as well.)

To evaluate $T \varphi$, for each $\varphi \in L^{2}(D \backslash N)$, we note that $T \varphi=T\left(T_{0} \varphi+T_{1} \varphi+\ldots+T_{n-1} \varphi\right)$ and we evaluate $T T_{i} \varphi$ by finding an $h \in H,\|h\|=1$, such that $\left\langle T_{i} \varphi, h\right\rangle$ is maximized, so that $T T_{i} \varphi=\left\langle T_{i} \varphi, h\right\rangle h$. Thus

$$
h=\frac{1}{\left\|T_{i} \varphi\right\|}\left(c_{0} V_{i}^{-1} T_{i} \varphi+\ldots+c_{i} T_{i} \varphi+\ldots+c_{n-1} V_{n-1} V_{i}^{-1} T_{i} \varphi\right)
$$

since $\left\|T_{i} h\right\|$ must be $\left|c_{i}\right|$, if $h \in H$ and $|c|=1$.
Hence

$$
T T_{i} \varphi=\bar{c}_{i}\left\|T_{i} \varphi\right\| h=\bar{c}_{i}\left(c_{0} V_{i}^{-1} T_{i} \varphi+\ldots+c_{i} T_{i} \varphi+\ldots+c_{n-1} V_{n-1} V_{i}^{-1} T_{i} \varphi\right)
$$

Therefore,

$$
T \varphi=\sum_{i=0}^{n-1} T T_{i} \varphi=c_{0} \sum_{i=0}^{n-1} \bar{c}_{i} V_{i}^{-1} T_{i} \varphi+\ldots+c_{n-1} \sum_{i=0}^{n-1} \bar{c}_{i} V_{n-1} V_{i}^{-1} T_{i} \varphi,
$$

or

$$
T \varphi=\sum_{l, i=0}^{n-1} c_{l} \bar{c}_{i} V_{l} V_{i}^{-1} T_{i} \varphi
$$

This proves the lemma.

§ 3. Irreducible idempotent measures

An idempotent measure v on $D \backslash N$ will be called irreducible if and only if the corresponding projection T_{v} maps $L^{2}(D \backslash N)$ onto an irreducible, N-invariant subspace H of $L^{2}(D \backslash N)$. (This definition of irreducibility is not related to the concept of the same name in abelian harmonic analysis.)

Now we will outline a technique whereby any Borel measure v on an l-dimensional compact nilmanifold can be identified with a Borel measure v_{F} on an l-dimensional torus T^{t}, and any Borel measurable function φ on $D \backslash N$ can be identified with a Borel measurable function φ_{F} on T^{l}.

In [7], Malcev proved that if M is any rational, normal Lie subgroup of N, then N has a system of one-parameter-subgroups $d_{1}(t), \ldots, d_{l}(t) ; t \in \mathbf{R}$, the real numbers, which can be described as follows.
(3.1) Malcev coordinates corresponding to a rational normal Lie subgroup M of N :

$$
\begin{gathered}
\left\{d_{l}\left(t_{l}\right) d_{l-1}\left(t_{l-1}\right) \cdot \ldots \cdot d_{j+1}\left(t_{j+1}\right) \mid\left(t_{l}, \ldots, t_{j+1}\right) \in \mathbf{R}^{l-f}\right\}=M \\
\left\{d_{l}\left(n_{l}\right) d_{l-1}\left(n_{l-1}\right) \cdot \ldots \cdot d_{j+1}\left(n_{j+1}\right) \mid\left(n_{l}, \ldots, n_{j+1}\right) \in \mathbf{Z}^{l-j}\right\}=\mathcal{D}_{M}=D \cap M
\end{gathered}
$$

where \mathbf{Z} denotes the integers

$$
\left\{d_{l}\left(t_{l}\right) d_{l-1}\left(t_{l-1}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right) \mid\left(t_{l}, \ldots, t_{1}\right) \in \mathbf{R}^{l}\right\}=N
$$

and

$$
\left\{d_{l}\left(n_{l}\right) d_{l-1}\left(n_{l-1}\right) \cdot \ldots \cdot d_{1}\left(n_{1}\right) \mid\left(n_{l}, \ldots, n_{1}\right) \in \mathbf{Z}^{l}\right\}=D .
$$

Also, if

$$
N_{i}=\left\{d_{l}\left(t_{l}\right) d_{l-1}\left(t_{l-1}\right) \cdot \ldots \cdot d_{i}\left(t_{i}\right) \mid\left(t_{l}, \ldots, t_{i}\right) \in \mathbf{R}^{l-i}\right\}
$$

then N_{i} is normal in N for each $i=l, \ldots, 2$.
(3.2) Lemмa. Let $F=d_{l}[0,1) \cdot d_{l-1}[0,1) \cdot \ldots \cdot d_{1}[0,1)$, where d_{1}, \ldots, d_{l} are as in (3.1). Then F is a fundamental domain for $D \backslash N$. Furthermore, $F_{M}=d_{t}[0,1) \cdot \ldots \cdot d_{j+1}[0,1)$ is a fundamental domain for $D_{M} \backslash M$.

Proof. Clearly, $d_{l}[0,1)$ is a fundamental domain for $\left(D \cap N_{\lambda}\right) \backslash N_{\lambda}$. Suppose inductively that $d_{i}[0,1) \cdot \ldots \cdot d_{i}[0,1)$ is a fundamental domain for $\left(D \cap N_{i}\right) \backslash N_{i}$. We need only show that $d_{i}[0,1) \cdot \ldots \cdot d_{i}[0,1) d_{i-1}[0,1)$ is a fundamental domain for ($\left.D \cap N_{i-1}\right) \backslash N_{i-1}$. Let $n=$ $n_{i} d_{i-1}\left(t_{i-1}\right) \in N_{i-1}$, where $n_{i} \in N_{i}$. Then $d_{i-1}\left(t_{i-1}\right)=d_{i-1}\left(p_{i-1}\right) d_{i-1}\left(s_{i-1}\right)$ for some $p_{i-1} \in \mathbb{Z}$ and $s_{i-1} \in[0,1)$. Thus

$$
n=d_{i-1}\left(p_{i-1}\right) d_{i-1}^{-1}\left(p_{i-1}\right) n_{i} d_{i-1}\left(p_{i-1}\right) d_{i-1}\left(s_{i-1}\right)
$$

and $d_{i-1}^{-1}\left(p_{i-1}\right) n_{i} d_{i-1}\left(p_{i-1}\right)=d_{i} d_{l}\left(s_{l}\right) \cdot \ldots \cdot d_{i}\left(s_{i}\right)$ for some $d_{i} \in D \cap N_{i}$ and $\left(s_{i}, \ldots, s_{i}\right) \in[0,1)^{l-i}$, since N_{i} is normal in N_{i-1}. This completes the proof.

We will often identify the cube F in \mathbf{R}^{l} with a torus T^{l}, since F is clearly a fundamental domain for T^{l} as well as for $D \backslash N$. It is proved in [7] that $\left(t_{l}, \ldots, t_{1}\right) \rightarrow d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right)$ is a diffeomorphism of \mathbf{R}^{l} onto N. It follows that the one-to-one pointwise correspondence between $D \backslash N$ and T^{l} determined by the fundamental domain F carries Borel sets to Borel sets and enables us to identify any Borel measure v on $D \backslash N$ with a Borel measure v_{F} on T^{l} and any Borel measurable function φ on $D \backslash N$ with a Borel measurable function φ_{F} on T^{l}.
(3.3) Lemma. If m denotes the normalized right N-invariant measure which $D \backslash N$ inherits from Haar measure on N, then m_{F} is Lebesgue measure on the torus T^{l}.

Proof. Writing $N=\left\{d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right)\right\}$, we need only show that $d t_{l} d t_{l-1} \ldots d t_{1}$ is right N invariant on N. If $l=1$, this is trivial. Suppose inductively that the result is true when the dimension of N is less than l. Hence it is true for $N_{2}=\left\{d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{2}\left(t_{2}\right)\right\}$, which is normal in N. Let E be any Borel set in M and $\operatorname{let} \varphi_{E}$ be the characteristic function of E. Then, if $n_{2} \in N_{2}, n_{1} \in d_{1}(\mathbf{R})$,

$$
\begin{aligned}
& \int_{N} \psi_{E}\left(d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{2}\left(t_{2}\right) d_{1}\left(t_{1}\right) n_{2} n_{1}\right) d t_{l} \ldots d t_{2} d t_{1} \\
& \quad=\int_{N} \psi_{E}\left(d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{2}\left(t_{2}\right)\left[d_{1}\left(t_{1}\right) n_{2} d_{1}^{-1}\left(t_{1}\right)\right] d_{1}\left(t_{1}\right) n_{1}\right) d t_{l} \ldots d t_{2} d t_{1} \\
& \quad=\int_{N} \psi_{E}\left(d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{2}\left(t_{2}\right) \cdot d_{1}\left(t_{1}\right)\right) d t_{l} \ldots d t_{2} d t_{1}
\end{aligned}
$$

since N_{2} is normal in N and $d_{1}\left(t_{1}\right)$ and n_{1} both lie in $d_{1}(\mathbf{R})$. This proves the lemma.
We note that the coordinates of (3.1)-(3.3) are a special case of those constructed for non-normal M in [3] and [11].

Next, we will develop the fundamental connection between v_{P} and T_{v}, where v is any two sided D-invariant Borel measure on $D \backslash N$. Namely, we will relate the Fourier-Stieltjes transform \hat{v}_{F} to the action of T_{v} in $L^{2}(D \backslash N)$.
(3.4) Definition. Let n denote any vector $\left(n_{1}, \ldots, n_{l}\right)$ where $n_{i} \in \mathbf{Z}$ for each $i=1,2, \ldots, l$. Let φ_{n} denote that unique function defined at each point of $D \backslash N$ such that $\left(\varphi_{n}\right)_{F}\left(t_{l}, \ldots, t_{1}\right)=$ $e\left(n_{l} t_{l}+\ldots+n_{1} t_{1}\right)$, where $e(a)=\exp$ (2лia). (We are using the coordinates of (3.1)-(3.3).)
(3.5) Corollary. If v is any two sided D-invariant Borel measure on $D \backslash N$, then $\hat{\vartheta}_{F}\left(n_{l}, \ldots, n_{1}\right)=\left(T_{v} \varphi_{n}\right)\left(D d_{l}(0) \ldots d_{1}(0)\right)$.

Proof. Note that $T_{v} \varphi_{n}$ is defined for each point of $D \backslash N$. Recall that

$$
\begin{aligned}
\left(T_{v} \varphi_{n}\right) & \left(D d_{l}\left(t_{l}^{\prime}\right) \cdot \ldots \cdot d_{1}\left(t_{1}^{\prime}\right)\right) \\
& =\int_{D \backslash N} \varphi_{n}\left(D d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right) \cdot d_{l}\left(t_{l}^{\prime}\right) \cdot \ldots \cdot d_{1}\left(t_{1}^{\prime}\right)\right) d v\left(D d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right)\right) \\
& =\int_{T_{l}} e\left(n_{l} t_{l}^{\prime \prime}+\ldots+n_{1} t_{1}^{\prime \prime}\right) d v_{F}\left(t_{l}, \ldots, t_{1}\right)
\end{aligned}
$$

where $t_{i}^{\prime \prime}$ is some polynomial function of t_{l}, \ldots, t_{1} and $t_{l}^{\prime}, \ldots, t_{1}^{\prime}$. Substituting $t_{l}^{\prime}=\ldots=t_{1}^{\prime}=0$ makes $t_{i}^{\prime \prime}=t_{i}, i=1, \ldots, l$. This completes the proof.

It is extremely important to note that although $\left(\varphi_{n}\right)_{F}$ is continuous on the torus T^{l}, φ_{n} is not continuous on $D \backslash N$. Thus $T_{v} \varphi_{n}$ need not be continuous on $D \backslash N$. However, $T_{v} \varphi_{n}$ does have a property at $D d_{l}(0) \cdot \ldots \cdot d_{1}(0)$ which is a form of semi-continuity, and we will use this property heavily in this paper.

Define an $a \varepsilon$-slab in $d_{l}[0,1) \cdot \ldots \cdot d_{1}[0,1)$ to be a set $d_{l}(\varepsilon / 2, \varepsilon) \cdot d_{l-1}\left(a_{l-1}(\varepsilon / 2), a_{l-1} \varepsilon\right) \cdot \ldots \cdot$ $d_{1}\left(a_{1}(\varepsilon / 2), a_{1} \varepsilon\right)$, where $a=\left(1, a_{l-1}, \ldots, a_{1}\right)$. 9†-752905 Acta mathematica 135. Imprimé le 19 Décembre 1975
(3.6) Theorem. There exists a vector a such that

$$
\operatorname{Lim}_{o \rightarrow 0}\left(T_{v} \varphi_{n}\right)\left(D d_{l}\left(t_{l}^{\prime}\right) \cdot \ldots \cdot d_{1}\left(t_{1}^{\prime}\right)\right)=\left(T_{v} \varphi_{n}\right)\left(D d_{l}(0) \cdot \ldots \cdot d_{1}(0)\right)
$$

where t^{\prime} is restricted to the ac-slab.
Proof. Denote $f\left(t^{\prime}\right)=\left(T_{v} \varphi_{n}\right)\left(D d_{l}\left(t_{l}^{\prime}\right) \cdot \ldots \cdot d_{1}\left(t_{1}^{\prime}\right)\right)$, where $t^{\prime}=\left(t_{l}^{\prime}, \ldots, t_{1}^{\prime}\right)$.
Using the 1-parameter coordinates of (3.1)-(3.3), we write $d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right) \cdot d_{l}\left(t_{l}^{\prime}\right) \cdot \ldots$. $d_{1}\left(t_{1}^{\prime}\right)=d_{l}\left(s_{l}\right) \cdot \ldots \cdot d_{1}\left(s_{1}\right)$, where $s_{i}=t_{i}+t_{i}^{\prime}+P_{i}\left(t_{i-1}^{\prime}, \ldots, t_{1} ; t_{i-1}^{\prime}, \ldots, t_{1}^{\prime}\right)$ and P_{i} is a polynomial having only terms with mixed products of t and t^{\prime} coordinates [7]. By making $1 \gg a_{i-1} \gg$ $\ldots \gg a_{1} \gg 0$ we can guarantee that, if t^{\prime} lies in an a ε-slab and if t has all its coordinates between 0 and 1 , then s has all its coordinates non-negative.

Now we will prove that, as $\varepsilon \rightarrow 0, f\left(t^{\prime}\right) \rightarrow f(0)$, if t^{\prime} lies in the $a \varepsilon$-slabs, where a is restricted as above. We must show that

$$
\int_{F} \varphi_{n}\left(d_{l}\left(s_{l}^{\prime}\right) \ldots d_{1}\left(s_{1}^{\prime}\right) d v_{F}\left(d_{l}\left(t_{l}\right) \ldots d_{1}\left(t_{1}\right)\right) \rightarrow \int_{F} \varphi_{n}\left(d_{l}\left(t_{l}\right) \ldots d_{1}\left(t_{1}\right)\right) d v_{F}\left(d_{l}\left(t_{l}\right) \ldots d_{1}\left(t_{1}\right)\right)\right.
$$

as $\varepsilon \rightarrow 0, t^{\prime}$ in the $a \varepsilon$-slabs, where $d_{l}\left(s_{l}^{\prime}\right) \ldots d_{1}\left(s_{1}^{\prime}\right)$ is the unique representative in F of $d_{l}\left(s_{l}\right) \ldots d_{1}\left(s_{1}\right)$.

Now, if the t_{i} 's are all in $[0,1)$ and bounded away from 1 , then our choice of a guarantees that, for small $\varepsilon, s^{\prime}=s \in F$, and $\varphi_{n}\left(s^{\prime}\right)$ is uniformly close to $\varphi_{n}(t)$. On the other hand,

$$
\left|v_{F}\right|\left(d_{i}[0,1) \cdot \ldots \cdot d_{i+1}[0,1) d_{i}(1-\delta, 1) d_{i-1}[0,1) \ldots d_{1}[0,1)\right) \rightarrow 0
$$

as $\delta \rightarrow 0$, since these sets form a descending chain of Borel sets with empty intersection. Hence $f\left(t^{\prime}\right) \rightarrow f(0)$ as $\varepsilon \rightarrow 0, t^{\prime}$ restricted to the a ε-slabs.

This completes the proof of the theorem.
Next we turn our attention to the problem of classifying all the irreducible idempotent measures on a compact nilmanifold $D \backslash N$. The following theorem suggests that this problem is equivalent to the problem of classifying all idempotent measures on $D_{1} \backslash N_{1}$, where $N_{1} \subset N$ is a rational subgroup of codimension one and $D_{1}=D \cap N_{1}$.
(3.7) Theorem. Suppose the orthogonal projection onto the lift space H corresponding to (χ, M), which induces $\pi \in(D \backslash N)^{\wedge}$, is given by T_{v}, where v is some irreducible idempotent measure on $D \backslash N$ as in (1.1). Then there exists a rational subgroup $N_{1} \subset N$ with codimension one and a one-parameter subgroup $d_{1}(\mathbf{R})$ such that $N=N_{1} \cdot d_{1}(\mathbf{R})$ (semi-direct product) and there exists an idempotent measure v_{1} on $D_{1} \backslash N_{1}, D_{1}=D \cap N_{1}$, such that v is the Cartesian product measure $v_{1} \times \delta_{0}$, where δ_{0} is the unit mass at the identity of $d_{1}(\mathbf{R})$.

Proof. M must be contained in a rational (normal) subgroup N_{1} of codimension one in N [8, II]. We can apply (3.1)-(3.3) using N_{1} in place of M to decompose $N=N_{1} \cdot d_{1}(\mathbf{R})$ where $N_{1}=d_{l}(\mathbf{R}) \cdot \ldots \cdot d_{2}(\mathbf{R})$. Since v_{F} is a Borel measure on the torus T^{l}, we can show that v_{F} is a Cartesian product of a measure on T^{l-1} with the unit mass at zero in $[0,1)$ by showing that $\hat{v}_{F}\left(n_{i}, \ldots, n_{2}, n_{1}\right)$ is independent of n_{1}, where \hat{v}_{F} is defined on $\mathbf{Z}^{l}=\left(T^{l}\right)^{\wedge}$. Recalling the description of the lift map from section 2 , and writing $n=n_{1} x$, where $n_{1} \in N_{1}$ and $x \in d_{1}(\mathbf{R})$, a preimage under the lift map for a typical generating element of H is $F(n)=$ $F\left(n_{1} x\right)$ where $F\left(n_{1} x\right)=f_{1}\left(n_{1}\right) f(x), f \in L^{2}(\mathbf{R})$ has compact support, $f_{1}\left(m n_{1}\right)=\chi(m) f_{1}\left(n_{1}\right)$ for each $m \in M$, and $\left|f_{1}\right| \in L^{2}\left(M \backslash N_{1}\right)$ has compact support in $M \backslash N_{1}$. Then the typical generating element \widetilde{F} of H is given by

$$
\widetilde{F}(D n)=\tilde{F}\left(D n_{1} x\right)=\sum_{\substack{d_{2} d \in D_{M} \backslash D \\ d_{1} \in D_{1}, d \in d(\mathbf{R}) \cap D}}\left(F \cdot d_{1} d\right)\left(n_{1} x\right)=\sum_{d_{1} d} f_{1}\left(d_{1}\left(d n_{1} d^{-1}\right)\right) f(d x)
$$

Since $f_{1}\left(d_{1}\left(d n_{1} d^{-1}\right)\right)$ is independent of x, and since $f \in L^{2}(\mathbf{R})$ is a: bitrary, it follows that H is the closed linear span of $H_{1} \times L^{2}[0,1)$, where H_{1} is some subspace of $L^{2}\left(D_{1} \backslash N_{1}\right)$.

Define φ_{n} as in (3.4) and invoke (3.5). Now T_{v} is the orthogonal projection of $L^{2}(D \backslash N)$ onto $H=$ closed linear span of $H_{1} \times L^{2}[0,1)$, and, by Lemma (3.3), inner products in $L^{2}(D \backslash N)$ are carried into inner products in $L^{2}\left(T^{l}\right)$ by the pointwise map $D \backslash N \rightarrow T^{l}$. Thus

$$
e\left(n_{1} t_{1}^{\prime}\right) T_{v} \varphi_{\left(n_{1}, \ldots, n_{2}, 0\right)}\left(t_{l}^{\prime}, \ldots, t_{1}^{\prime}\right)=f\left(t^{\prime}\right),
$$

and $T_{v} \varphi_{n}\left(t_{t}^{\prime}, \ldots, t_{1}^{\prime}\right)=g\left(t^{\prime}\right)$ are square integrable functions which are equal almost everywhere. We can conclude that $\hat{v}_{F}(n)$ is independent of n_{1} by proving that $f(0)=g(0)$. This follows however, from (3.6), since if $f(0) \neq g(0) f$ and g would be unequal on a set of positive measure. Hence \hat{v}_{F} is independent of n_{1} and v and v_{F} can be decomposed into a Cartesian product measure as required: $v=v_{1} \times \delta_{0}$. It is necessary only to prove that v_{1} is idempotent on $D_{1} \backslash N_{1}$.

Let $E=E_{1} \times E_{x}, E_{1} \subset D_{1} \backslash N_{1}, E_{x}=d[0,1)$, be a product of Borel sets, and let ψ_{E} be the characteristic function of E. Then

$$
\begin{aligned}
& \int_{D \backslash N} \int_{D \backslash N} \psi_{E}(D r s) d v(D r) d v(D s) \\
& \quad=\int_{D N_{1} \backslash N} \int_{D_{1} \backslash N_{1}} \int_{D N_{1} \backslash N} \int_{D_{1} \backslash N_{1}} \psi_{E}\left(D r_{1} x_{r} s_{1} x_{s}\right) d v_{1}\left(D_{1} r_{1}\right) d \delta_{0}\left(x_{r}\right) d v_{1}\left(D_{1} s_{1}\right) d \delta_{0}\left(x_{s}\right) \\
& \quad=\int_{D_{\} \backslash N_{1}} \int_{D_{1} \backslash N_{1}} \psi_{E_{1}}\left(D_{1} r_{1} s_{1}\right) d v_{1}\left(D r_{1}\right) d v_{1}\left(D s_{1}\right)
\end{aligned}
$$

10-752905 Acta mathemathica 135. Imprimé le 19 Décembre 1975

$$
\begin{aligned}
& =\int_{D_{N} \backslash N} \int_{D_{1} \backslash M} \psi_{E}\left(D r_{1} x_{r}\right) d v_{1}\left(D_{1} r_{1}\right) d \delta_{0}\left(x_{r}\right) \\
& =\int_{D_{1} \backslash N_{1}} \psi_{E_{1}}\left(D_{1} r_{1}\right) d v_{1}\left(D_{1} r_{1}\right) .
\end{aligned}
$$

Thus v_{1} is idempotent on $D_{1} \backslash N_{1}$ since v is idempotent on $D \backslash N$.
This completes the proof of the theorem.
(3.8) Theorem. Let v be any irreducible idempotent measure on $D \backslash N$ such that T_{v} projects $L^{2}(D \backslash N)$ orthogonally onto an irreducible π-space, where $\pi \in(D \backslash N)^{\wedge}$ is induced by (χ, M) and M is normal in N. Then v_{F} is a finite linear combination of idempotent measures on T^{l}.

Proof. It is sufficient to show that \hat{v}_{F} is only finitely many valued on $\mathbf{Z}^{l}=\left(T^{l}\right)^{\wedge}$. Adopt the coordinates of (3.1)-(3.3). Let $\operatorname{Int}(\chi, M)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, where $x_{0}=e$, as in section 2.

Denote $T_{v}=T_{c}=\sum_{k, t=0}^{n-1} c_{k} \bar{c}_{i} V_{k} V_{i}^{-1} T_{i}$, where T_{i} is the orthogonal projection onto H_{i}, the lift space corresponding to $(\chi, M) \cdot x_{i}$, as in Lemma (2.1). Recall that H_{i} is generated by functions

$$
\varphi_{n}\left(d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right)\right)=e\left(n_{l} t_{l}+\ldots+n_{1} t_{1}\right)
$$

such that

$$
e\left(n_{l} t_{l}+\ldots+n_{j+1} t_{j+1}\right) \in\left\{\chi^{x_{i} d} \mid d=d_{j}\left(p_{j}\right) \cdot \ldots \cdot d_{1}\left(p_{1}\right) \text { for }\left(p_{j}, \ldots, p_{1}\right) \in \mathbb{Z}^{j}\right\}
$$

Also, as in (3.5) $\hat{v}_{F}(n)=\left(T_{v} \varphi_{n}\right)\left(D d_{l}(0) \cdot \ldots \cdot d_{1}(0)\right)$. The problem is to calculate $V_{k} V_{i}^{-1} \varphi_{n}$ for φ_{n} a generator of H_{i}, by tracing φ_{n} around the following diagram of the lift map in fig. 3.1.

(Fig. 3.1).

We will construct a preimage under the lift map for φ_{n}. Let the fundamental domain of (3.2) for $D \backslash N$ be denoted by E, and let $E^{\prime}=d_{j}[0,1) \cdot \ldots \cdot d_{1}[0,1)$. Let $F \in K_{i}$ be such that $F(n)=0$ if $n \nsubseteq M d_{0} E^{\prime}$ and $F\left(m d_{0} d_{j}\left(t_{j}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right)\right)=\chi^{x_{i}}(m) e\left(n_{j} t_{j}+\ldots+n_{1} t_{1}\right)$ where $d_{l}\left(t_{l}\right) \cdot \ldots \cdot$ $d_{1}\left(t_{1}\right) \in E$. Then $\widetilde{F}=\varphi_{n}$, where φ_{n} is a typical generator of H_{i}.

It suffices to show that $\left(F \cdot x_{i}^{-1} \cdot x_{k}\right)^{\sim}\left(D d_{l}(0) \cdot \ldots \cdot d_{1}(0)\right)$ achieves only finitely many distinct values as n varies in \mathbf{Z}^{l} such that φ_{n} agrees with $\chi^{x_{1} d_{0}}$ on $D \backslash D M$ and as d_{0} varies in $D_{M} \backslash D$.

We begin by showing that if $x=d_{j}\left(r_{j}\right) \cdot \ldots \cdot d_{1}\left(r_{1}\right) \in \operatorname{Int}(\chi, M)$ then r_{i} is rational for all $i=j, \ldots$, l. In fact, since (χ, M) is an integral maximal character, it is shown in [11] that there corresponds to $d_{1}(1)$ a rational point y_{1} in M such that N_{2} centralizes y_{1} but the commutant of $d_{1}(1)$ and y_{1} is not in the kernel of χ. It follows that r_{1} is rational. We can procede similarly for r_{2}, \ldots, r_{j}.

Now, $\left(F \cdot x_{i}^{-1} x_{k}\right)^{\sim}(D e)=\sum_{d \in D M \backslash D} F\left(x_{i}^{-1} x_{k} d\right)$, where this is actually a finite sum over all d such that $x_{i}^{-1} x_{k} d \in M d_{0} E^{\prime}$. Of course, the finite set of d 's involved in such a sum will vary with d_{0}. Observe that $x_{i}^{-1} x_{k} d=d_{0} d_{l}\left(s_{i}\right) \cdot \ldots \cdot d_{1}\left(s_{1}\right)$ such that $s_{j}=S_{j}\left(x_{k} ; x_{i} ; d ; d_{0}\right)$, a polynomial with rational coefficients in the coordinates of x_{k}, x_{i}, d, and d_{0}, for each $j=1, \ldots, l$. Even as d and d_{0} vary in D, S_{j} can achieve only finitely many distinct values modulo one. Therefore, as n and d_{0} vary, $\Sigma_{d} F\left(x_{i}^{-1} x_{k} d\right)$ achieves only finitely many distinct values. This completes the proof of Theorem (3.8).

In Theorem (3.9) we will utilize a certain Boolean ring of subsets of the character group of a torus. In particular, the coset ring in any discrete group is the smallest family of subsets of that group which contains all cosets of all subgroups and which is closed under finitely many applications of the operations of taking unions, intersections, and complements.
(3.9) Theorem. Suppose $\pi \in(D \backslash N)^{\wedge}$ is induced by a maximal integral character (χ, M), where M is normal in N. Let T be the orthogonal projection of $L^{2}(D \backslash N)$ onto H, where H is the lift space corresponding to (χ, M) as in section 2 . Then T preserves the continuity of functions if and only if $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ lies in the coset ring of the character group $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$, where M_{1} is the commutator subgroup of M and $D_{M}=D \cap M$.

Proof. Following (3.1)-(3.3) coordinatize N with one-parameter subgroups $d_{i}(t)$, $i=1, \ldots, l$, in such a way that $\left\{d_{\imath}\left(t_{l}\right) d_{l-1}\left(t_{l-1}\right) \ldots d_{k+1}\left(t_{k+1}\right) \mid\left(t_{l}, \ldots, t_{k+1}\right) \in \mathbf{R}^{l-k}\right\}=M_{1}$, $\left\{d_{l}\left(t_{l}\right) d_{l-1}\left(t_{l-1}\right) \ldots d_{j+1}\left(t_{j+1}\right) \mid\left(t_{l}, \ldots, t_{j+1}\right) \in \mathbf{R}^{l-j}\right\}=M$, and $\left\{d_{l}\left(t_{l}\right) d_{l-1}\left(t_{l-1}\right) \ldots d_{1}\left(t_{1}\right) \mid\left(t_{l}, \ldots, t_{1}\right) \in\right.$ $\left.\mathbf{R}^{\prime}\right\}=N$. We may also assume that

$$
D=\left\{d_{l}\left(n_{l}\right) d_{l-1}\left(n_{l-1}\right) \ldots d_{1}\left(n_{1}\right) \mid\left(n_{l}, \ldots, n_{1}\right) \in \mathbf{Z}^{l}\right\} .
$$

Then the set $F=d_{t}[0,1) \cdot d_{l-1}[0,1) \cdot \ldots \cdot d_{1}[0,1)$ is a fundamental domain for $D \backslash N$. Also, $F_{1}=d_{l}[0,1) \cdot d_{l-1}[0,1) \ldots d_{i+1}[0,1)$ is a fundamental domain for $D_{M} \backslash M$.

Next, recall that H, as described in section 2 , is the closed linear span of the set

$$
\left\{\chi^{d}(m) e\left(n_{j} t_{j}+\ldots+n_{1} t_{1}\right) \mid\left(n_{j}, \ldots, n_{1}\right) \in \mathbf{Z}^{j}, d \in D_{M} \backslash D\right\}
$$

so that every function in H is constant on M_{1}-cosets, since this is the case for χ^{d}. Working on T^{l}, we have

$$
f_{F}\left(t_{l}, \ldots, t_{1}\right)=\sum_{\left(n_{l}, \ldots, n_{1}\right) \in \mathbb{Z}^{l}} f_{F}\left(n_{l}, \ldots, n_{1}\right) e\left(n_{l} t_{l}+\ldots+n_{1} t_{1}\right)
$$

Now, $(T f)_{F}$ corresponds to the subseries of the series for f_{F} with terms of the form $\left[e\left(n_{1} t_{1}+\ldots+n_{j} t_{j}\right)\right] \chi^{d}(m), d \in D$, where we note that $\chi^{d}(m)$ can be identified with a trigonometric monomial on F_{1}, since χ^{d} is constant on M_{1}-cosets and $D_{M} M_{1} \backslash M$ is a $(j-k)$-dimensional (abelian) torus. Thus, H can be regarded as a direct sum of irreducible subspaces of an abelian torus; a convenient phenomenon which we will exploit.

Suppose T does preserve the continuity of functions on $D \backslash N$, so that $T=T_{v}$ for some idempotent measure v on $D \backslash N$, in the sense of section 1 . We will show that v can be written as a Cartesian product measure $v\left(t_{l}, \ldots, t_{1}\right)=v_{1}\left(t_{l}, \ldots, t_{j+1}\right) \times \delta_{0}\left(t_{j}, \ldots, t_{1}\right)$, where δ_{0} is the unit mass at the identity, and v_{1} is a bounded Borel measure on $D_{M} \backslash M$. To do this, it suffices to show that, if we view v_{F} on T^{l} via the natural $1-1$ pointwise map between F and $D \backslash N$, then $\hat{v}_{F}\left(n_{l}, \ldots, n_{1}\right)$ is independent of n_{f}, \ldots, n_{1}. Defining φ_{n} as in (3.4), we have $\hat{v}_{F}\left(n_{l}, \ldots, n_{1}\right)=\left(T_{v} \varphi_{n}\right)\left(d_{l}(0) \cdot \ldots \cdot d_{1}(0)\right)$. But $T_{v} \varphi_{n}=\varphi_{n}$ if $e\left(n_{l} t_{l}+\ldots+n_{j+1} t_{j+1}\right)=\chi^{d}$ for some $d \in D_{M} \backslash D$, and $T_{v} \varphi_{n}=0$ otherwise. Thus, using (3.6) as we did in (3.7), $\hat{v}_{F}\left(n_{l}, \ldots, n_{1}\right)=$ $\left(T_{v} \varphi_{n}\right)\left(D d_{l}(0) \cdot \ldots \cdot d_{1}(0)\right)=1$ if $e\left(n_{l} t_{l}+\ldots+n_{1} t_{1}\right) \in\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ and $\hat{v}_{F}\left(n_{l}, \ldots, n_{1}\right)=0$ otherwise, independent of n_{f}, \ldots, n_{1}.

Thus $v=v_{1} \times \delta_{0}$, where v_{1} is a bounded measure on $D_{M} \backslash M$, and $\hat{v}_{1_{F}}$ is also zero unless $n_{k+1}=\ldots=n_{l}=0$, since χ^{d} is trivial on M_{1} for all $d \in D$. Thus $v=m \times w \times \delta_{0}$, where m is the translation-invariant measure on $D_{M_{1}} \backslash M_{1}$ derived from Haar measure on M_{1}, and w is a bounded Borel measure on $D_{M} M_{1} \backslash M$, determined by the Fourier-Stieltjes transform of $v_{1_{F}}$. We will prove that w is idempotent on the torus $D_{M} M_{1} \backslash M$, which will prove that the support of \hat{w}, namely $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$, lies in the coset-ring of $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$, by the Helson-Rudin-Cohen idempotent measure theorem [12].

Recall that $m \times w \times \delta_{0}$ is idempotent on $D \backslash N$, and that this measure is 2 -sided D invariant. Pick an arbitrary Borel set $H \subset D_{M} M_{1} \backslash M$, and let $E=\left(D_{M_{1}} \backslash M_{1}\right) \times H$. Let ψ_{E} denote the characteristic function of E, and note that $m\left(D_{M_{1}} \backslash M_{1}\right)=1$. Also, if $x \in D_{M} \backslash M$, write $x=D x_{1} x_{m}$, where $x_{1} \in M$, and x_{m} has the form $d_{k}\left(t_{k}\right) \cdot \ldots \cdot d_{j+1}\left(t_{j+1}\right)$. Then, we show that w is idempotent on $D_{M} M_{1} \backslash M$ by using Fubini's Theorem several times as follows:

$$
\begin{aligned}
\int_{D_{M M} \backslash M} \psi_{H}\left(D_{M} M_{1}\right. & \left.x_{m}\right) d w\left(x_{m}\right)=\int_{D_{M} \backslash M} \psi_{E}\left(D_{M} x_{1} x_{m}\right) d m\left(x_{1}\right) d w\left(x_{m}\right) \\
& =\int_{D_{M} \backslash M} \psi_{E}\left(D_{M} x\right) d(m \times w)(x)=\int_{\left(D_{M} \backslash M\right)^{2}} \psi_{E}\left(D_{M} x y\right) d(m \times w)(x) d(m \times w)(y) \\
& =\int_{\left(D_{M} \backslash M\right)^{2}} \psi_{E}\left(D_{M} x_{1} x_{m} y_{1} y_{m}\right) d m\left(x_{1}\right) d w\left(x_{m}\right) d m\left(y_{1}\right) d w\left(y_{m}\right) \\
& =\int_{\left(D_{M \backslash M)^{2}}\right.} \psi_{E}\left(D_{M} x_{1}\left(x_{m} y_{1} x_{m}^{-1}\right) x_{m} y_{m}\right) d m\left(x_{1}\right) d m\left(y_{1}\right) d w\left(x_{m}\right) d w\left(y_{m}\right) \\
& =\int_{\left(D_{M M M} \backslash M\right)^{2}} \psi_{H}\left(D_{M} M_{1} x_{m} y_{m}\right) d w\left(x_{m}\right) d w\left(y_{m}\right)
\end{aligned}
$$

since $y_{1} \rightarrow x_{m} y_{1} x_{m}^{-1}$ is an automorphism of M_{1} and leaves m invariant because it has Jacobian 1 , as can be easily computed relative to a Jordan-Holder basis.

Conversely, suppose $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ lies in the coset-ring of $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$. Define the idempotent measure w on $D_{M} M_{1} \backslash M$ by requiring that \hat{w} be the characteristic function of this set. Then, we must show that $m \times w \times \delta_{0}$ is an idempotent measure on $D \backslash N$ yielding T, where m and δ_{0} are as before, and $m \times w \times \delta_{0}$ on F yields a measure of the same name on $D \backslash N$. Define φ_{n} as in (3.4). We can check both the right D-invariance of $m \times w \times \delta_{0}$, and the fact that $T_{m \times w \times \delta_{0}}=T$, by examining

$$
\int_{D \backslash N} \varphi_{n}\left(D d_{l}\left(t_{l}\right) \ldots d_{1}\left(t_{1}\right) d_{l}\left(t_{l}^{\prime}\right) \ldots d_{1}\left(t_{1}^{\prime}\right) d\left(m \times w \times \delta_{0}\right)(t),\right.
$$

where $t=\left(t_{l}, \ldots, t_{k+1} ; t_{k}, \ldots, t_{j+1} ; t_{j}, \ldots, t_{1}\right)$. We integrate first with respect to δ_{0} to reduce to an integral over D_{M} / M, with $t_{j}=\ldots=t_{1}=0$, we note that M_{1} is normal in M and that the integral with respect to m is zero unless $n_{l}=\ldots=n_{k+1}=0$, and we are left with either zero, or, if $n_{l}=\ldots=n_{k+1}=0$, we get

$$
\int_{D_{M M} \backslash M} e\left(n_{k} t_{k}+\ldots+n_{j+1} t_{j+1}\right) d w\left(t_{k}, \ldots, t_{j+1}\right)
$$

If $t_{l}^{\prime}, \ldots, t_{1}^{\prime}$ are integers, we see that $m \times w \times \delta_{0}$ is right D-invariant. And we see that $T_{m \times w \times \delta_{0}}=T$.

This completes the proof. Examples appear in (3.15a-c).
(3.10) Theorem. If $\pi \in(D \backslash N)^{\wedge}$ is induced by (χ, M), where M is normal and $N=$ $M \cdot X$ (semi-direct product) with X an abelian Lie subgroup of N, then the following two statements are equivalent:
(i) $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ is in the coset-ring of $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$.
(ii) Every projection orthogonally onto any irreducible π-space preserves continuity.

(Fig. 3.2).

Proof. (ii) \Rightarrow (i) by Theorem (3.9). We need only prove that (i) \Rightarrow (ii).
Let H_{0}, \ldots, H_{n-1} be a constructed basis for the π-primary summand corresponding to $\operatorname{Int}(\chi, M)=\left\{x_{0}, \ldots, x_{n-1}\right\}$ with $x_{0}=e$. Let $T_{i}: L^{2}(D \backslash N) \rightarrow H_{i}$ be an orthogonal projection, $i=0,1, \ldots, n-1$. To show that each T_{i} preserves continuity, it is necessary and sufficient to prove that $\left\{\chi^{x_{i} d} \mid d \in D_{M} \backslash D\right\}=\left\{\chi^{d x_{i}} \mid d \in D_{M} \backslash D\right\}$ lies in the coset-ring of $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$. However, the mapping $\wedge \rightarrow \wedge^{x_{i}}$ in $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$ carries cosets of subgroups onto cosets of subgroups: For example, $\wedge+S \rightarrow \wedge^{x_{i}}+S^{x_{i}}$, where $S^{x_{i}}$ is a subgroup. The same applies to finite unions, intersections, and complementations. Hence T_{i} preserves continuity, for each $i=0,1, \ldots, n-1$.

Next, suppose $T: L^{2}(D \backslash N) \rightarrow H_{c}$, where H_{c} is an arbitrary irreducible π-space and T is an orthogonal projection. Then, by Lemma (2.1), $T \varphi=\sum_{l, i=0}^{n-1} c_{l} \bar{c}_{i} V_{l} V_{i}^{-1} T_{i} \varphi$, for each $\varphi \in L^{2}(D \backslash N)$. We need the following lemma.
(3.11) Lemma. If K_{0} and K_{i} are the pre-images of H_{0} and H_{i}, respectively, under the lift map, and if $N=M \cdot X$ (semidirect), M normal, X abelian, then the diagram in fig. 3.2 is commutative.

Proof. For each $d \in D$, we write $d=d_{M} d_{1}$ where $d_{M} \in D_{M}$ and $d_{1} \in D \cap X$. Recalling that X is abelian, we have

$$
\begin{aligned}
\left(F \cdot x_{i}\right)^{\sim}(D n) & =\sum_{D_{M} \backslash D}\left(F \cdot x_{i}\right)(d n)=\sum_{D_{M} \backslash D} F\left(x_{i} d n\right)=\sum_{D M \backslash D} F\left(x_{i} d_{M} x_{i}^{-1} x_{i} d_{1} n\right) \\
& =\sum_{D M \backslash D} F\left(x_{i} d_{1} n\right)=\sum_{D M \backslash D} F\left(d_{1} x_{i} n\right)=\tilde{F}\left(D x_{i} n\right)=\left(\tilde{F} \cdot x_{i}\right)(D n),
\end{aligned}
$$

which is thus well-defined.
Thus $V_{i} f=f \cdot x_{i}$ for each $f \in H_{0}$. To complete the proof of (3.10), it is sufficient to show that each V_{i} and V_{j}^{-1} preserves continuity. But this follows from the fact that V_{i} and V_{j}^{-1} are essentially left-translations, by (3.11).

To be precise, any continuous function on $D \backslash N$ can be regarded as a left D-invariant continuous function on N. So viewed, V_{i} and V_{j}^{-1} act as left translations having the special property of leaving functions in either H_{0} or H_{j} left D-invariant, and thus still continuous when viewed on $D \backslash N$.

This completes the proof of Theorem (3.10).
Next, we consider the delicate question of when the existance of an arbitrary idempotent measure v corresponding to $\pi \in(D \backslash N)^{\wedge}$ implies that every projection onto an irreducible subspace corresponding to π is given by some idempotent measure. Very few irreducible subspaces are constructible, in the sense of section 2 . It is only for these that theorems (3.9) and (3.10) answer this question in the affirmative.

We suppose again that M is normal and $N=M \cdot X$ (s.d.) with X abelian, and (χ, M) induces ' $\dot{x} \in(D \backslash N)^{\wedge}$. We will adopt the coordinatizing Malcev subgroups of (3.1). Let $\operatorname{Int}(\chi, M)=\left\{x_{0}, \ldots, x_{n-1}\right\}$, with $x_{0}=e$, and write $x_{i}=d_{j}\left(x_{j}^{(i)}\right) \cdot \ldots \cdot d_{1}\left(x_{1}^{(i)}\right)$, where $0 \leqslant x_{j}^{(i)}, \ldots$, $x_{1}^{(i)}<1$. Denote the lift space corresponding to x_{i} by H_{i}. We can designate any irreducible π-space $H \subset H_{0} \oplus \ldots \oplus H_{n-1}$ as H_{c}, where $c=\left(c_{0}, \ldots, c_{n-1}\right)$ is a unit vector in \mathbf{C}^{n}, by Lemma (2.1). We will call H_{c} singular relative to $\left\{H_{0}, \ldots, H_{n-1}\right\} \Leftrightarrow$ the following condition holds:

If we let $A(n)$ be the complex conjugate of $\sum_{l=0}^{n-1} c_{l} e\left(n_{f} x_{j}^{(l)}+\ldots+n_{1} x_{1}^{(l)}\right)$, then for each $k=0, \ldots, n-1$, there exists an $l \neq k$ such that

$$
A(n) c_{l} e\left(n_{j} x_{j}^{(l)}+\ldots+n_{1} x_{1}^{(D)}\right)=A(n) c_{k} e\left(n_{j}^{\prime} x_{j}^{(k)}+\ldots+n_{1}^{\prime} x_{1}^{(k)}\right)
$$

for some $\left(n_{j}, \ldots, n_{1}\right)$ and $\left(n_{j}^{\prime}, \ldots, n_{1}^{\prime}\right) \in Z^{j}$.
We will call an irreducible π-space singular \Leftrightarrow it is singular relative to every constructible basis for the π-primary summand. Using the ordinary (hemispherical) measure on $C P^{n-1}$, we see that the set of singular subspaces of the π-primary summand has measure zero.
(3.12) Theorem. Suppose (χ, M) induces $\pi \in(D \backslash N)^{\wedge}, M$ is normal and $N=M \cdot X$ (s.d.) with X abelian. Suppose H is any non-singular irreducible π-space and v is an idempotent measure such that $T_{v}: L^{2}(D \backslash N) \rightarrow H$ is an orthogonal projection. Then every orthogonal projection onto any irreducible π-space is given by an idempotent measure

Proof. Pick a constructible basis $\left\{H_{0}, \ldots, H_{n-1}\right\}$ relative to which H is not singular, where H_{i} is the lift space corresponding to the integral point $x_{i} \in \operatorname{Int}(\chi, M)$. Denote $H_{c}=H$, where $c=\left(c_{0}, \ldots, c_{n-1}\right)$. We will use the coordinates of (3.1)-(3.3) and define φ_{n} as in (3.4). Then, as in Theorem (3.5),

$$
\hat{v}_{F}\left(n_{l}, \ldots, n_{1}\right)=\left(T_{v} \varphi_{n}\right)\left(d_{l}(0) \cdot \ldots \cdot d_{1}(0)\right) .
$$

Recall from Lemma (2.1) that

$$
T_{v} \varphi_{n}=\sum_{i, i=0}^{n-1} c_{l} \bar{c}_{i} V_{l} \nabla_{i}^{-1} T_{i} \varphi_{n}
$$

Furthermore,

$$
T_{i} \varphi_{n}=\varphi_{n} \quad \text { iff } \quad e\left(n_{l} t_{l}+\ldots+n_{j+1} t_{j+1}\right) \in\left\{\chi^{x i d} \mid d \in D_{M} \backslash D\right\}
$$

and $T_{i} \varphi_{n}=0$ otherwise. Recall also the description of V_{i} in Lemma (3.11). Then, denoting $x_{i}=\left(x_{j}^{(i)}, \ldots, x_{1}^{(i)}\right)=d_{j}\left(x_{j}^{(i)}\right) \cdot \ldots \cdot d_{1}\left(x_{1}^{(i)}\right)$, where all $x_{k}^{(i)}$ are necessarily rational, and recalling that X is abelian, we have

$$
\begin{aligned}
\hat{v}_{p}\left(n_{l}, \ldots, n_{1}\right)= & \sum_{l=0}^{n-1} c_{l} \bar{c}_{l} \varphi_{n}\left(d_{l}(0) \cdot \ldots \cdot d_{j+1}(0) d_{j}\left(x_{j}^{(l)}-x_{j}^{(i)}\right) \cdot \ldots \cdot d_{1}\left(x_{1}^{(\eta)}-x_{1}^{(t)}\right) \quad\right. \text { iff } \\
& e\left(n_{l} t_{l}+\ldots+n_{j+1} t_{j+1}\right) \in\left\{\chi^{x_{i d}} \mid d \in D_{M} \backslash D\right\}, \quad \text { or } 0, \text { otherwise. }
\end{aligned}
$$

Now, \hat{v}_{F} has only finitely many distinct values. In particular, if $n \in Z^{j}$ and if $T_{i} \varphi_{n} \neq 0$, then

$$
\hat{v}_{F}\left(n_{l}, \ldots, n_{1}\right)=V_{i}^{n}=\bar{c}_{i} \exp \left[-2 \pi i\left(n_{j} x_{j}^{(i)}+\ldots+n_{1} x_{1}^{(l)}\right)\right] \sum_{i=0}^{n-1} c_{l} \exp 2 \pi i\left(n_{j} x_{j}^{(l)}+\ldots+n_{1} x_{1}^{(l)}\right)
$$

which, for each $i=0, \ldots, n-1$, runs through only finitely many distinct values for $n \in \mathbf{Z}^{j}$ since $x_{j}^{(k)}$ is rational for each j, k. Thus v_{P} is a finite linear combination of measures which are idempotent on the torus T^{l}.

By hypothesis, H_{c} is not singular, so we can pick an i such that $V_{i}^{n} \neq V_{j}^{n^{\prime}}$ for all n, n^{\prime} and $j \neq i$. Then the subset of the support of \hat{v}_{F} on which $V_{i}^{n}=\hat{v}_{F}(n)$ must lie in the coset-ring of Z^{l}. Hence $\left\{\chi^{x_{1}} \mid d \in D_{M} \backslash D\right\}$ lies in the coset-ring of $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$. Now we apply Theorems (3.9) and (3.10) and the proof is complete.
(3.13) Theorem. Suppose (χ, M) induces $\pi \in(D \backslash N)^{\wedge}$, where M has codimension one in N. Then the following four statements are equivalent.
(1) $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ lies in the coset ring of $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$.
(2) Orthogonal projections onto all irreducible π-spaces preserve continuity.
(3) The orthogonal projection onto the π-primary summand preserves continuity.
(4) The orthogonal projection onto at least one irreducible π-space preserves continuity.

Note: We will make specific use of the polynomial multiplication in N, so that this theorem is not listed in section 5 as being extendable to suitable solvmanifolds.

Proof. $(1) \Leftrightarrow(2),(1) \Rightarrow(3)$, and $(1) \Rightarrow(4)$ by Theorems (3.9) and (3.10). We need the following lemma.
(3.14) Lemma. Let p_{1}, \ldots, p_{l} be polynomials and let $x_{0}=0, x_{1}, \ldots, x_{n}$ be rational numbers. If $\bigcup_{i=0}^{n}\left\{\left(p_{1}\left(n+x_{i}\right), \ldots, p_{l}\left(n+x_{i}\right)\right) \mid n \in \mathbf{Z}\right\}$ lies in the coset-ring of \mathbf{Z}^{l} then $\left\{\left(p_{1}(n), \ldots\right.\right.$, $\left.\left.p_{l}(n)\right) \mid n \in \mathbf{Z}\right\}$ must also lie in the coset-ring of \mathbf{Z}^{l}.

Proof of lemma. If each polynomial p_{i} is linear then we are done. Suppose some p_{i} has degree greater than one. Since projections onto the coordinate axes map the cosetring of \mathbf{Z}^{l} onto the coset-ring of \mathbf{Z}, we have $\mathcal{U}_{i=0}^{n}\left\{p_{j}\left(n+x_{i}\right) \mid n \in Z\right\}$ in the coset-ring. Note that the gaps between successive elements of this set approaches infinity as $n \rightarrow \infty$. This is a contradiction, since subsets of \mathbf{Z} in the coset ring are essentially equal except at finitely many points to periodic sequences. This proves the lemma. (Unfortunately, if the variable n has a multidimensional lattice for its domain, then the condition on the degree of p_{j} is false.)
(3) $\Rightarrow(1)$. Since the orthogonal projection onto the π-primary summand of $L^{2}(D \backslash N)$ preserves continuity, we can use the same argument as in the proof of Theorem (3.9) to conclude that $U_{x_{i} \in \operatorname{Int}(x, M)}\left\{\chi^{d x_{i}} \mid d \in D_{M} \backslash D\right\}$ lies in the coset-ring of $\left(D_{M} M_{1} \backslash M\right)^{\wedge}$. But $D_{M} \backslash D \cong \mathbf{Z}$, so we can apply Lemma (3.14) to conclude that $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ is also in the coset-ring, the polynomials coming from the Campbell-Hausdorff formula [6].
$(4) \Rightarrow(1)$. Suppose v is some irreducible idempotent measure corresponding to $\pi \in(D \backslash N)^{\wedge}$. It is shown in Theorem (3.8) that v_{F} is a finite linear combination of idempotent measures on a torus, so that \hat{v}_{F} has its support essentially of the form of a union of sets $\left\{\chi^{d x_{i}} \mid d \in D_{M} \backslash D\right\}$, this union lying in the coset-ring. It follows from the lemma that $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ also must lie in the coset ring.

This completes the proof.
(3.15) Examples. (a) Let N_{3} be \mathbf{R}^{3} equipped with the multiplication $(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=$ $\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}\right)$. Let D be the integral lattice points $\mathbf{Z}^{\mathbf{8}}$ in N_{3}. Then any infinite dimensional $\pi \in\left(D \backslash N_{3}\right)^{\wedge}$ is induced by a character χ_{λ} of $M=\{(0, y, z)\}$, where $\chi_{\lambda}(0, y, z)=$ $e(\lambda z)$, for some $\lambda \in Z$. Then the set $\left\{\chi_{\lambda}^{d} \mid d \in D_{M} \backslash D\right\}$ lies in the coset-ring of Z^{2}, so that every irreducible π-space is the image of an orthogonal projection given by an idempotent measure.
(b) Let N_{4} be \mathbf{R}^{4} equipped with the multiplication $(w, x, y, z)\left(w^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)=$ $\left(w+w^{\prime}, x+x^{\prime}, y+y^{\prime}+2 w x^{\prime}, z+z^{\prime}+2 w y^{\prime}+2 w^{2} x^{\prime}\right)$. Let $D=Z^{4}$ and $M=\{(0, x, y, z)\}$. Then every infinite dimensional $\pi \in\left(D \backslash N_{4}\right)^{\wedge}$ is induced by a character $\chi_{(\alpha, \beta, \gamma)}$ on M, where

$$
\chi_{(\alpha, \beta, \gamma)}(0, x, y, z)=e(\alpha x+\beta y+\gamma z), \quad(\alpha, \beta, \gamma) \in Z^{3} .
$$

Furthermore, if π is non-trivial on the center Z, then $\gamma \neq 0$. (If $\pi \mid Z=I$, then we can factor Z out and the situation is reduced to example (a).) Then $\chi_{(\alpha, \beta, \gamma)}^{(n, 0,0)}=\chi_{\left(\alpha+2 n \beta+2 n^{2} \gamma, \beta+2 n \gamma, \gamma\right)}$. Hence $\left\{\chi_{(\alpha, \beta, y)}^{d} \mid d \in D_{M} \backslash D\right\}$ is not in the coset-ring, so that there does not exist any ir-
reducible idempotent measure corresponding to π, by Theorem (3.13).
(c) Now we give an example of a non-Heisenberg group $N, \pi \in(D \backslash N)^{\wedge}, \pi \mid Z \neq I$, and such that every orthogonal projection onto any irreducible π-space preserves continuity. Let N be \mathbf{R}^{5} equipped with the multiplication

$$
\begin{aligned}
& \left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime} \cdot y_{2}^{\prime}, z^{\prime}\right) \\
& \quad=\left(x_{1}+x_{1}^{\prime}, x_{2}+x_{2}^{\prime}, y_{1}+y_{1}^{\prime}, y_{2}+y_{2}^{\prime}+2 x_{2} y_{1}^{\prime}, z+z^{\prime}+2 x_{2} y_{2}^{\prime}+2 x_{2}^{2} y_{1}^{\prime}+2 x_{1} y_{1}^{\prime}\right)
\end{aligned}
$$

Let $D=\mathbf{Z}^{5}$ and $(\chi, M) \uparrow \pi \in(D \backslash N)^{\wedge}$, where $\chi \mid Z \neq I, M=\left\{\left(0,0, y_{1}, y_{2}, z\right)\right\}$. Then $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ lies in the coset-ring of \mathbf{Z}^{3}.

§4. Transformations of measures on $D \backslash N$

Throughout this section we will make the hypothesis that M is normal in N and that $N=M \cdot X$ (semi-direct product) where X is an abelian Lie subgroup of N.

Suppose $\pi \in(D \backslash N)^{\wedge}$ is induced by (χ, M) and $\operatorname{Int}(\chi, M)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ where $x_{0}=e$. Let H_{0}, \ldots, H_{n-1} be a constructed basis for the π-primary summand corresponding to x_{0}, \ldots, x_{n-1}, and let $T_{i}: L^{2}(D \backslash N) \rightarrow H_{i}$ be an orthogonal projection, $i=0, \ldots, n-1$. Then, if $f \in L^{2}(D \backslash N), T_{0} f$ and $T_{i} f$ are not related to each other, since H_{0} and H_{i} are orthogonal subspaces of $L^{2}(D \backslash N)$. However, we will see that, if T_{0} preserves continuity, then the unitary equivalence given in (3.11) between H_{0} and H_{i} induces a transformation of measures which carries the idempotent measure v_{0} which corresponds to T_{0} into the idempotent measure v_{i} which corresponds to T_{i}.

First, we let F denote the fundamental domain of (3.1). If E is any Borel set in $D \backslash N$, we define $x E=\{D x n \mid D n \in E$ and $n \in F\}$. Then $x E$ is also a Borel set, and if v is any Borel measure on $D \backslash N$, we define $v^{x}(E)=v\left(x\left(E x^{-1}\right)\right)$. This seemingly artificial transformation yields canonical, well-defined measures, under the hypotheses of the next theorem.
(4.1) Theorem. Suppose $\pi \in(D \backslash N)^{\wedge}$ is induced by (χ, M), and $N=M \cdot X$ (s.d.), X abelian and M normal. Denote $\operatorname{Int}(\chi, M)=\left\{x_{0}, \ldots, x_{n-1}\right\}$, where $x_{0}=e$. Let H_{i} be the lift space corresponding to $(\chi, M) \cdot x_{i}$, as in section 2 , and suppose $T_{v}: L^{2}(D \backslash N) \rightarrow H_{0}$ is an orthogonal projection, where v is an idempotent measure. Then $v^{x_{i}}$ is that unique idempotent measure such that $T_{v_{i}:} L^{2}(D \backslash N) \rightarrow H_{i}$, an orthogonal projection.

In order to prove the above theorem we first need the following lemma.
(4.2) Lemma. If $g=d_{l}\left(g_{i}\right) \cdot \ldots \cdot d_{1}\left(g_{1}\right) \in N$, using the coordinates of (3.1), and if $\varphi_{g}: D \backslash N \rightarrow$ $D \backslash N$ by $\varphi_{g}(D n)=D g n^{\prime}$, where $n^{\prime} \in F \cap D n$, then φ_{g} is an automorphism of the Borel structure of $D \backslash \boldsymbol{N}$.

Proof of lemma. It is necessary only to show that φ_{g} is one-to-one and onto. Thus, given $a \in N$, we must show there exist unique $d \in D$ and $f \in F$ such that $d g f=a$. Denote $d=d_{l}\left(n_{l}\right) \ldots d_{1}\left(n_{1}\right)$, where $\left(n_{l}, \ldots, n_{1}\right) \in \mathbf{Z}^{l}$. Then we must show there is a unique solution to the equation

$$
d_{l}\left(n_{l}\right) \ldots d_{1}\left(n_{1}\right) d_{l}\left(g_{l}\right) \ldots d_{1}\left(g_{1}\right) d_{l}\left(f_{l}\right) \ldots d_{1}\left(f_{1}\right)=d_{l}\left(a_{l}\right) \ldots d_{1}\left(a_{1}\right)
$$

having $0 \leqslant f_{l}, \ldots, f_{1}<1$. But it is proved in [7] that there exist polynomials P_{l}, \ldots, P_{1} such that

$$
\begin{aligned}
d_{l}\left(n_{l}\right) \ldots & d_{1}\left(n_{1}\right) d_{l}\left(g_{l}\right) \ldots \\
& =d_{1}\left(g_{l}\right) d_{l}\left(f_{l}\right) \ldots d_{1}\left(f_{1}\right) \\
& d_{l}\left(n_{l}+g_{l}+f_{l}+P_{l}\left(n_{l-1}, \ldots, n_{1} ; g_{l-1}, \ldots, g_{1} ; f_{l-1}, \ldots, f_{1}\right)\right) \cdot \ldots \cdot d_{1}\left(n_{1}+x_{1}+f_{1}\right)
\end{aligned}
$$

Clearly, n_{1} and f_{1} are uniquely determined. But then n_{2} and f_{2} are uniquely determined. We procede until the lemma is proved.

It is a simple consequence of the above lemma that

$$
\int_{D \backslash N}\left(f \circ \varphi_{g}\right)(D n) d\left(v \circ \varphi_{g}(D n)=\int_{D \backslash N} f(D n) d v(D n)\right.
$$

for any Borel measure v and for any function $f \in L^{2}(D \backslash N)$.
Proof of Theorem (4.1). To complete the proof it will suffice to show that

$$
\left(v_{F}^{x_{i}}\right)^{\wedge}(n)=\left\{\begin{array}{l}
1 \text { if } e\left(n_{l} t_{l}+\ldots+n_{j+1} t_{j+1}\right) \in\left\{\chi^{d x_{i}} \mid d \in D_{M} \backslash D\right\} . \\
0 \text { otherwise }
\end{array}\right.
$$

since this characteristic function has already been identified in the proof of Theorem (3.10) as the transform of the measure corresponding to $T_{i}: L^{2}(D \backslash N) \rightarrow H_{i}$. Note that if $\left(\varphi_{n}\right)_{F}=e\left(n_{l} t_{l}+\ldots+n_{1} t_{1}\right) \quad$ such that $e\left(n_{l} t_{l}+\ldots+n_{j+1} t_{j+1}\right) \in\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ then $\left(\varphi_{n}^{x_{i}}\right)_{F}=$ $\left(x_{i}^{-1} \cdot\left(\varphi_{n} \circ \varphi_{x_{i}}\right)\right)_{F}=e\left(n_{l}^{\prime} t_{l}+\ldots+n_{1}^{\prime} t_{1}\right)$ such that

$$
e\left(n_{l}^{\prime} t_{l}+\ldots+n_{j+1}^{\prime} t_{j+1}\right) \in\left\{\chi^{d x_{l}} \mid d \in D_{M} \backslash D\right\}
$$

and every element of the latter set arises in this manner. Hence
if

$$
\hat{v}_{F}(n)=\int \varphi_{n}(D n) d v(D n)=\int \varphi_{n}^{x_{i}}(D n) d v^{x_{i}}(D n)=\left(v_{F}^{x_{i}}\right)^{\wedge}\left(n^{\prime}\right)=1,
$$

$$
e\left(n_{l}^{\prime} t_{l}+\ldots+n_{j+1}^{\prime} t_{j+1}\right) \in\left\{\chi^{d x_{i}} \mid d \in D_{M} \backslash D\right\}
$$

where we have applied lemma (4.2). Similarly, $\left(v_{F}^{x_{i}}\right)^{\wedge}\left(n^{\prime}\right)=0$ otherwise. This completes the proof of the theorem.
(4.3) Corollary. If v is the measure in Theorem (4.1), then v is both left and right ${ }^{x}$ D-invariant.

Proof. As a result of Theorem (4.1), $v^{x_{i}}$ is right D-invariant. But, $v^{x_{i}}$ is right D-invariant if and only if, for each $d \in D, v^{x_{1}}(E d)=v^{x_{i}}(E)$, for each Borel set $E \subset D \backslash N$. However, $v^{v^{a}}(E d)=v\left\{D x_{i} d^{\prime} n d x_{i}^{-1} \mid D n \in E, d^{\prime} n d x_{i}^{-1} \in F\right\}=v\left\{D^{x_{i}} d^{\prime}\left(x_{i} n\right)^{x_{i}} d \mid D n \in E, \quad d^{\prime} n d x_{i}^{-1} \in F\right\}=$ $v^{x_{i}}(E)$ if and only if v is both left and right ${ }^{x_{i}} D$-invariant. This proves the corollary.

Note that the right ${ }^{x} D$-invariance of v is also an easy consequence of the fact that T_{v} projects $L^{2}(D \backslash N)$ onto a space of left ${ }^{x_{i}} D$-invariant functions. However, the left ${ }^{x_{i}} D$. invariance of v is not so easy, and the above proof uses the strength of the coset-ring theorem.
(4.4) Corollary. Under the hypotheses of Theorem (4.1), the measure v_{c} corresponding to $T_{c}: L^{2}(D \backslash N) \rightarrow H_{c}$, as described in (2.1) is given by

$$
v_{c}=\sum_{l, i=0}^{n-1} c_{l} \bar{c}_{t}\left(x_{l}^{-1} x_{i}\right) \cdot v_{i}
$$

where $\left(x \cdot v_{i}\right)(E)=v_{l}(E x)$, and $T_{v_{i}}$ projects $L^{2}(D \backslash N)$ onto H_{i}.
Proof. We need only note that

$$
\begin{aligned}
\left(V_{l} V_{i}^{-1} T_{i} \varphi\right)(D n) & =V_{l} V_{i}^{-1} \int_{D \backslash N} \varphi\left(D n_{1} n\right) d v_{i}\left(D n_{1}\right) \\
& =\int_{D \backslash N} \varphi\left(D n_{1} x_{l} x_{i}^{-1} n\right) d v_{i}\left(D n_{1}\right)=\int_{D \backslash N} \varphi\left(D n_{1} n\right) d v_{i}\left(D n_{1} x_{l}^{-1} x_{i}\right)
\end{aligned}
$$

This completes the proof.
(4.5) Corollary. Under the hypotheses of Theorem (4.1), if $T_{0}: L^{2}(D \backslash N) \rightarrow H_{0}$ and $T_{i}: L^{2}(D \backslash N) \rightarrow H_{i}$ are orthogonal projections, we have $\left(T_{i} f\right)=\left(T_{0}\left(f \cdot x_{i}^{-1}\right)\right) \cdot x_{i}$,for all $f \in L^{2}(D \backslash N)$.

Proof. $\left(T_{i} f\right)(D n)=\left(T_{v} x_{i} f\right)(D n)$, where $T_{v}=T_{0}$. But

$$
\begin{aligned}
\left(T_{0}\left(f \cdot x_{i}^{-1}\right) \cdot x_{i}\right)(D n) & =\left(T_{v}\left(f \cdot x_{i}^{-1}\right)\right)\left(D x_{i} n\right)=\int_{D \backslash N} f\left(D x_{i}^{-1} n_{1} x_{i} n\right) d v\left(D n_{1}\right) \\
& =\int_{D \backslash N} f\left(D n_{1} n\right) d v^{x_{i}}\left(D n_{1}\right)=\left(\left(T_{v} x_{1}\right) f\right)(D n)
\end{aligned}
$$

This completes the proof.
Now we will generalize Corollary (4.5) by eliminating the hypothesis that T_{0} is given by a measure.
(4.6) Theorem. Suppose (χ, M) induces $\pi \in(D \backslash N)^{\wedge}$, where M is normal and $N=M \cdot X$ (semi-direct), with X abelian. Let $\left\{H_{0}, \ldots, H_{n-1}\right\}$ be a constructed basis for the π-primary
summand corresponding to $\operatorname{Int}(\chi, M)=\left\{e=x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, and let $T_{i}: L^{2}(D \backslash N) \rightarrow H_{i}$ be an orthogonal projection, $i=0, \ldots, n-1$. Then, letting $f \cdot x_{i}$ denote $f \circ \varphi_{x_{i}}$ (as in Lemma (4.2)), we have $\left(T_{i} f\right)=\left(T_{0}\left(f \cdot x_{i}^{-1}\right)\right) \cdot x_{i}$.

Proof. Denote $S(f)=\left(T_{0}\left(f \cdot x_{i}^{-1}\right)\right) \cdot x_{i}$. Clearly S acts as the identity on H_{i}, so we need prove only that $S: H_{i}^{\perp} \rightarrow 0$. It suffices to show that $f \in H_{i}^{\perp}$ implies $f \cdot x_{i}^{-1} \in H_{0}^{\perp}$ or that

$$
\int_{D \backslash N}\left(f \cdot x_{i}^{-1}\right)(D n) h_{0}(D n) d \mu(D n)=\int_{D \backslash N} f(D n)\left(h_{0} \cdot x_{i}\right)(D n) d \mu(D n)=0
$$

for each $f \in H_{i}^{\perp}$ and $h_{0} \in H_{0}$, where μ is the translation-invariant measure on $D \backslash N$. But this follows from Lemma (4.2). Specifically, we need only note that μ is invariant under $\varphi_{x_{i}}$ since N is unimodular. This completes the proof.

§5. Applications to compact solvmanifolds

We will show in this section that the methods and results developed in section 3 for compact nilmanifolds are also true on suitable compact solvmanifolds. The author is indebted to J. Brezin for pointing out the generalizations in this section.

The compact solvmanifolds which we are able to treat must possess global coordinates similar to those in (3.1)-(3.3), so that (3.4) and (3.5) will remain true. Also, the fundamental domain F for the compact solvmanifold $D \backslash S$ will have to have a rather delicate relationship to the multiplication in S, enabling us to prove (3.6). To be specific, suppose S is a connected, simply connected, solvable Lie group and D a cocompact discrete subgroup. Suppose $\pi \in(D \backslash S)^{\wedge}$ is induced by a character χ of a normal subgroup M such that ($M \cap D$) \M is compact. Then the π-primary summand of $L^{2}(D \backslash S)$ is constructed by means of lift maps exactly like those of section 2 [1].
(5.1) Definition. We will call $D \backslash S$ a type F solvmanifold relative to M provided that $D \backslash S$ has the following four properties.
(1) There exist one-parameter subgroups $d_{l}(t), \ldots, d_{1}(t)$ of S such that $S=d_{l}(\mathbf{R}) \cdot \ldots \cdot d_{1}(\mathbf{R})$ and $S_{i}=d_{l}(\mathbf{R}) \cdot \ldots \cdot d_{i}(\mathbf{R})$ is normal in S_{i-1} for each $i=l, \ldots, 2$.
(2) $D=d_{l}(Z) \cdot \ldots \cdot d_{1}(Z)$, so that $d_{l}[0,1) \cdot \ldots \cdot d_{1}[0,1)$ is a fundamental domain for $D \backslash S$.
(3) There exist integers j and k such that $[M, M]=S_{j}$ and $M=S_{k}, 0 \leqslant k<j \leqslant l$.
(4) If $0<\delta_{1}<1$ and $0<\delta_{2}<1$, then there exists a set $S_{\delta_{1}, \delta_{2}} \subset\left[0, \delta_{2}\right)^{l}$, having positive measure in the invariant measure of $D \backslash S$, such that, if $t \in\left[0,1-\delta_{1}\right)^{l}$ and $t^{\prime} \in S_{\delta_{1}, \delta_{3}}$, then

$$
d_{l}\left(t_{l}\right) \cdot \ldots \cdot d_{1}\left(t_{1}\right) d_{l}\left(t_{l}^{\prime}\right) \cdot \ldots \cdot d_{1}\left(t_{1}^{\prime}\right)=d_{l}\left(t_{l}^{\prime \prime}\right) \cdot \ldots \cdot d_{1}\left(t_{1}^{\prime \prime}\right)
$$

where $t_{i}^{\prime \prime} \geqslant 0$ for each $i=l, \ldots, 1$.
Properties (1)-(3) enable us to use (3.1)-(3.5), exactly as before. However, in order
to use (3.5) effectively, it will be necessary to have a result very similar to Theorem (3.6). That is, the formula $\hat{v}_{F}(n)=\left(T_{v} \varphi_{n}\right)\left(D d_{l}(0) \cdot \ldots \cdot d_{1}(0)\right)$ is not computationally useful by itself since our knowledge of the structure of $L^{2}(D \backslash S)$ can determine $T_{v} \varphi_{n}$ only almost everywhere-not at the specific point $D d_{l}(0) \cdot \ldots \cdot d_{1}(0)$. But (3.6) provides a "semi-continuity" property at this point which enables us to determine $\hat{v}_{F}(n)$ from the structure of $L^{2}(D \backslash S)$. The purpose of property (4) is to enable us to prove a theorem very similar to (3.6), except that $S_{\delta_{1}, \delta_{z}}$ replaces the $a \varepsilon$-slab which worked when the multiplication was given by polynomials. Since $S_{\delta_{1}, \delta_{2}}$ has positive measure, regardless of how small we choose δ_{1} and δ_{2}, our new version of Theorem (3.6) is just as useful as the old version, and the proof requires no further changes and need not be duplicated here. It is then elementary to check that Theorems (3.9)-(3.12) apply just as well to type F solvmanifolds as to compact nilmanifolds.

We will show that many three dimensional compact solvmanifolds are type F, and we will use Theorems (3.9)-(3.12) to classify all the irreducible idempotent measures on these manifolds. It is proved in [2] that there are only two types of three dimensional compact solvmanifolds which are not nilmanifolds. Every such solvmanifold comes from a solvable Lie group which can be identified with a semi-direct product $\mathbf{R}^{2} \cdot \mathbf{R}$, where \mathbf{R}^{2} is normal in $\mathbf{R}^{2} \cdot \mathbf{R}$ under an action of \mathbf{R} on \mathbf{R}^{2} given by a one-parameter subgroup A^{t} of $S L(2, R)$, and where D can be identified with the integral lattice points of \mathbf{R}^{3}. If A is a matrix in $S L(2, Z)$ having positive unequal eigenvalues p and p^{-1} then we will call the group S_{1}. If

$$
A=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

then we will call the group S_{2}. In either case, the group multiplication is given by $(v ; t) \cdot(u ; s)=\left(v+A^{t} u ; t+s\right)$. In either case, all the infinite dimensional $\pi \in(D \backslash S)^{\wedge}$ are induced by integral characters of $M=\{(v ; 0)\}$. [1].
(5.2) Theorem. $D \backslash S_{1}$ and $D \backslash S_{2}$ are both type F solvmanifolds, relative to the normal subgroup $M=\{(v ; 0)\}$.

Proof. Properties (1)-(3) are trivial, so we will concentrate on property (4).
Let us consider $D \backslash S_{1}$ first. The matrices A^{t} have eigenspaces $\mathbf{R} w_{1}$ and $\mathbf{R} w_{2}$ corresponding to the eigenvalues p^{t} and p^{-t} respectively. By choosing the one-parameter coordinate subgroups $d_{3}(t)$ and $d_{2}(t)$ in \mathbf{R}^{2} sensibly, we can insure that one eigenspace extends into the interior of the first quadrant $d_{3}[0, \infty) \cdot d_{2}[0, \infty)$ or else both lie along the axes bordering the first quadrant. In either case, it is clear that, for any first quadrant vector u, lying between two suitable first quadrant rays $A^{t} u$ will again lie in the first
quadrant. Thus (4) is clearly satisfied, provided only that we make a sensible choice of $d_{3}(t)$ and $d_{2}(t)$.

The compact solvmanifold $D \backslash S_{2}$ is also type F, but the verification of property (4) is more delicate. In this case, $\left(v_{1}, v_{2} ; t\right)\left(u_{1}, u_{2} ; s\right)=\left(v_{1}+u_{1} \cos \frac{1}{2} \pi t+u_{2} \sin \frac{1}{2} \pi t, v_{2}+u_{2} \cos \frac{1}{2} \pi t-\right.$ $\left.u_{1} \sin \frac{1}{2} \pi t ; t+s\right)$. Given $0<\delta_{1}<1$ and $0<\delta_{2}<1$, let us restrict t to $\left[0,1-\delta_{1}\right.$) and see whether there are acceptable conditions on (u_{1}, u_{2}) which will guarantee that
(a)

$$
u_{1} \cos \frac{\pi}{2} t+u_{2} \sin \frac{\pi}{2} t \geqslant 0,
$$

and
(b)

$$
u_{2} \cos \frac{\pi}{2} t-u_{1} \sin \frac{\pi}{2} t \geqslant 0 .
$$

Note that $\sin \frac{1}{2} \pi t$ is bounded away from 1 and $\cos \frac{1}{2} \pi t$ is bounded away from 0 for $0 \leqslant t<1-\delta_{1}$. Thus, any first quadrant vector u will satisfy (a) and, if $u_{1} \leqslant u_{2}$, (b) is also satisfied. Hence the existence of $S_{\delta_{1}, \delta_{2}}$ is assured, and (4) is satisfied. This completes the proof.
(5.3) Example. Suppose ($\chi, M)$ induces $\pi \in\left(D \backslash S_{1}\right)^{\wedge}$, an infinite dimensional irreducible representation. We will show that $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ does not lie in the coset ring of $\mathbf{Z}^{2}=$ $\left(D_{M} \backslash M\right)^{\wedge}$, so that, by Theorem 3.12, the orthogonal projections onto all non-singular irreducible π-spaces fail to preserve continuity and hence cannot be given by idempotent measures. In particular, let us write $\chi=n=\left(n_{1}, n_{2}\right)$, where $\chi(u ; 0)=e\left(n_{1} u_{1}+n_{2} u_{2}\right)$. Then $\chi^{d}=(' A)^{d} n$, where ' A denotes the transpose of A, as may be easily calculated. But there is a non-singular linear transformation W such that

$$
\left.{ }^{\prime} A^{d}\right)\binom{n_{1}}{n_{2}}=W^{-1}\left(\begin{array}{ll}
p^{d} & 0 \\
0 & p^{-d}
\end{array}\right) W\binom{n_{1}}{n_{2}},
$$

which does not have bounded gap in each coordinate. Hence $\left\{\chi^{d} \mid d \in \mathbf{Z}=D_{M} \backslash D\right\}$ does not lie in the coset-ring of $\mathbf{Z}^{\mathbf{2}}$.
(5.4) Example. Let (χ, M) induce $\pi \in\left(D \backslash S_{2}\right)^{\wedge}$, an infinite dimensional irreducible representation. We will show that $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ is in the coset-ring of \mathbf{Z}^{2}, so that every orthogonal projection onto any irreducible π-space is given by an idempotent measure. Let us denote χ again by $n=\left(n_{1}, n_{2}\right)$. Then the set $\left\{\chi^{d} \mid d \in D_{M} \backslash D\right\}$ is finite, and hence in the coset-ring, since

$$
\left({ }^{\prime} A\right)^{4}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \text { because } A=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Thus we have shown that on compact solvmanifolds $D \backslash S_{1}$, there are essentially no irreducible idempotent measures, whereas on compact solvmanifolds $D \backslash S_{2}$, there are as many irreducible idempotent measures as one could desire.

References

[1]. Auslander, L. \& Brezin, J., Mackey's little-group method, Weil's theta functions, and analysis on compact homogeneous spaces. To appear.
[2]. Auslander, L., Green, L. \& Hahn, F., Flows on Homogeneous Spaces. Annals of Math. Studies, No. 53, Priceton, 1963.
[3]. Corwin, L. \& Greenleaf, F., Character Formulas and Spectra of Compact Nilmanifolds. To appear.
[4]. Gelfand, I. et al., Representation theory and automorphic functions. W. B. Saunders Co., 1969.
[5]. Howe, R., On Frobenius reciprocity for unipotent algebraic groups over Q. Amer. J. Math., 93 (1971). 163-172.
[6]. Jacobson, N., Lie algebras, Interscience Publishers, 1962.
[7]. Malcev, A., On a class of homogeneous spaces. Amer. Math. Soc. Trans., 39 (1951) 193-206.
[8]. Moore, C., Decomposition of unitary representations defined by discrete subgroups of nilpotent groups. Ann. of Math., 82, (1965), 146-182.
[9]. Moore, C. \& Wolf, J., Square Integrable representations of nilpotent groups. To appear. [10]. Nachbin, L., The Haar integral. D. van Nostrand Co., Inc., 1965.
[11]. Richardson, L., Decomposition of the L^{2} space of a general compact nilmanifold. Amer. J. Math., 93 (1971) 173-190.
[12]. Rudin, W., Fourier analysis on groups. Interscience Publ., 1962.
[13]. Taylor, J., Measure algebras. Regional Conference Series in Math., No. 16.

