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1. Introduction 

The main purpose of this paper is to extend the theory of R. Nevanlinna [1] to the 

class A -~  of functions/(z) holomorphic in the unit disk U={z: Iz] <1} and satisfying the 

condition 

I/(z)l -< c i (1-Iz l )  -, (zeu), 01 )  

and to the corresponding class ~ of meromorphie functions h(z), 

h(z) = g(z) t(z) (/,gfiA-~~ (1.2) 

For functions belonging to these classes we obtain a complete description of zeros (and 

poles) as well as a generalization of the notion of boundary measure. In our case the boundary 

measure turns out to be what we call a premeasure o/bounded ~-variation. Although lacking 

many good properties of a regular boundary measure in the classical factorization theory 

of R. 1Nevanlinna for functions of bounded characteristic, this premeasure nevertheless 

generates a regular measure of bounded variation on the so-called Carleson sets: i.e., on 

those closed sets F c ~U of Lebesgue measure zero for which 

2~ 
~(F) = ~ ]/~ (log ~-~] + 1) < c~, (1.3) 

I I t  ] being the angular lengths of the complementary arcs of F.  This regular measure is 

called the u-singular part of the corresponding premeasure. In another paper to follow soon 

we intend to show that  these x-singular measures together with zero sets completely de- 

scribe all the closed ideals (invariant subspaces for the operator of multiphcation by z) 

(1) AMS (MOS) subject classification (1970). Pr imary 30A08, 30A70, 31A10, 31A20. 

13 - 752906 Acta matkematica 135. Imprim6 le 15 Mars 1976 
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of the topological algebra A -~176 roughly in the same manner as the invariant subspaces of 

the H ~ space are described in the classical theory of A. Beurling [2]. 

Closely related to the classes A -~176 ~ is the class ~+ of harmonic functions u(z), u(O) = O, 

such tha t  

1 
- ~<u(z)<~cul~ (zEU), (1.4) 

and a larger class ~ = ~+ - ~+. For functions belonging to ~ we obtain a representation in 

the form of a generalized Poisson integral 

u(z)= 1 (P(r  (1.5) 
2~ Jev 

P(~, z )=  Re (~+z)/(~-z)(~e~U, ze  U) being the Poisson kernel and/z([d~l ) a premeasure 

defined only on arcs 1 c  ~U and having bounded x-variation (~ for Carleson): 

l/z(/')[ (1.6) 
Var (/z)-- supp ~ ~(F) < co, 

sup taken over all finite F c  OU, {Iv} being the complementary intervals of F. This g-varia- 

tion plays essentially the same role as the usual variation 

oVar l ;u ( re '~176  (0< r <  1), (1.7) 

in the classical theory for the class )P of harmonic functions which are differences of two 

positive harmonic functions. I t  is well known tha t  the uniform boundedness of (1.7) is 

necessary and sufficient for a harmonic function u(z) to belong to h I. We get an analogous 

result for ~ in terms of x-variatior/s, as well as a corresponding result for meromorphlc 

functions of  the class ~.  

Note that  our results concerning the distribution of zeros for the class A - ~  have many  

points in common with a s tudy of zero sets for Bergman classes of functions conducted 

recently by C. A. Horowitz [3]. In  particular, what we call the standard or Horowitz distribu- 

tion of zeros (see no. 3.6) is essentially the same as that  of the function 

oo 

/ (z)= lrI ( l + a z  2.) ( a > l ) ,  (1.8) 
k = l  

examined by C. A. Horowitz. On the other hand, we have come to the conclusion tha t  a 

very far reaching generalization of Nevanlinna's theory due to M. M. Djrbashian [4, 5] 

could hardly be applied to the k ind  of problems we are concerned with. 
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The author wishes to thank L. Carleson, M. M. Djrbashian, P. Duren, W. H. Fuchs, 

W. K. Hayman,  C. A. Horowitz, J .-P.  Kahane,  Y. Katznelson, L. A. Rubel, H. S. Shapiro, 

A. L. Shields and others for valuable discussions. 

2. General  definit ions and nota t ions  

A-n(n  > 0) is the class of functions/(z) holomorphic in U and satisfying the condition 

[/(z)[ <cAm-]z l )  -~ (~eu). (2.1) 

I f  provided with the norm ]]t]l-n = min CI, A -~ becomes a Banach space. Ag n is a subspace 

of A -n consisting of those elements / for which 

lim {(1 - [z]) ~ I/(z) [ } = 0. (2.2) 
Iz[-~l  

A~ ~ is separable (in contrast to A-n). 
A-~176 = [.J n >0 A -n consists of all the functions/(z) holomorphic in U and satisfying condi- 

tion (1.1); in other words, every element /EA -~176 'has the form 

0o 

l ( z )  = Z a~z ~ 
0 

with a ~ = O ( ~ ) ( u ~  oo) for some n. A -~176 becomes a topological space (indeed, a topological 

algebra with the usual opera t ion of multiplication) if provided with the following set of 

neighbourhoods of its zero element: 

V({n,}, { ~ ) ) =  {.JS(n~, e~), 

{n~}. {e~) (~=1, 2 ... .  ) being arbi trary sequences (n v t co, ev>0) and S(n, e) the e-ball in 
A-n: 

S(n, e) = {I: l e A - n ,  IlIll-  

The sequential conve rgence /v -+ / i l i a  -~~ means tha t  all the ]v belong to the same A -~ (with 

some n>O) and II1-111_~0. 

A ~176 is the dual of A-~176 it consists of all the functions F(z) holomorphic in  U and in- 

finitely differentiable in U, i.e. 
o0 

F ( z ) = ~ b v z  ~. 
0 
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with b ~ = o ( v - " ) ( v ~ )  for every n>0 .  The linear functionals in A -~  are given by the 

formula 

p(t)= • Um o) t(re'~ (2Z) 
o 2 ~  r--~l-O )0  

(see [6]). 

is the class of meromorphic functions having the form (1.2). 

~+ is the class of harmonic functions u(z)(z E U) satisfying the conditions 

(i) u(O) = O; 
1 

(ii) - 0o < u(z) ~ c, log 1 - ]z[" (2.4) 

~ = ~ + - ~ + ,  i.e. each u(z)E~ has the form u = u l - u  2 with u t, uzE~ +. 

is the set of all open, closed and half-closed ares of the circumference OU, including 

all the single points, OU itself and 0 .  

For every I E ~ put  

2~t + 1~, ~(I) = I2-~ (log ~ (2.5) 
] 

] I  I being the angular length of I; if I is a single point or O put  u ( I )=0 .  Obviously 

o <~(I) < 1 =x(0u). 

A function p: ~ R  is called a premeasure if 

(i) la(I1 0 Iz)=g(I1)+~u(l~) for all 11, I2E~ such that  I t tJ IzE~,  I 1 f) I2=0;  

(ii)/t(OU) =0; 

(iii) lira/~(Ir) =0  for every sequence {Ir}T(I~E~) such that  I1~ I2~ ..., N I ~ = 0 .  

With every premeasure p a function/2(0) =#(I0)(0 <0  ~<2:t) can be associated with I 0 = 

{~: ~E~U, O~<arg ~<0}. 

Thus a one-to-one correspondence is established between all premeasures and all real 

functions/2(0)(0 < 0 ~< 2Jr) satisfying the following conditions: 

(i) #(0-0)(0<0~<27t) and #(0+0)(0<0<27t )  exist; 

(ii) /2(0 - 0 )  =/2(0)(0 <0  <2~t); 

(iii) /2(2g)=0. 

Obviously, /2(0) has at most a countable set of points of discontinuity, all of them of the 

first kind (jumps). 
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A premeasure/~ (and the associated function) is said to be x.bounded ]rom above if 
there is a C > 0 such that  

~(I) < C~(I) (Vle~). (2.6) 

A premeasure ~ (and the associated function) is said to be of bounded x-variation if 

there is a C > 0  such that  for every finite set {I~}, IpE~, (J~ Iv=SU, Iv. N I ~ = 0  (~1~=~2) 

E I~(L)[ < C E ~(L). (2.7) 

Co = min C is called the x-variation of/~: C o =~ Var ~u. 

A set O ~= F c a U is called a Carleson set if 

(i) F is closed and of Lebesgue measure 0; 

(ii) ~(F) = ~ ~(/~) < oo (2.8) 

(see also (1.3)). ~(F) will be called the Carleson characteristic of F. 

The distance d($1, ~)  between two points on aU is determined by the shorter arc: 

1 . f r ~  
d(~l' $2)= ~ m m  l a g  ~1, arg ~},  

so that  the distance between diametrically opposite points is 1. The distance between a 

point ~ E a U and a set F ~ ~ U is 

d($, F) -- inf d(~, ~'). 
UeF 

For every Carleson set E 

1 
k(F) = ~ J a ~  II~ d(L F) I �9 [d$l, (2.9) 

which is easily verified; therefore E l =  F 2 implies ~(F1) ~<~(F2). 

Let  E be a Carleson set, q>~l, 0 < a < l  be some constants. Put  

GF:q.~={z:zE~],l-,z,>~adq(~z,, F)}U{0}.  (2.10) 

Let  ~ = {~} be a (finite or infinite) sequence of points in U, 0 ~= { al { ~< I ~ [ ~ ' "  < 1, and F 

a Carleson set. Pu t  

1 
a~(F) = a~(F; q, a) = ~ log . (2.11) 

eGF; q,a I ~  
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L e t  ](z) be meromorphie  in U and  {~}(0 + ] a~] < I a*l ~<'") be its zeros repeated accord- 

ing to their multiplicities; then the sequence a = {a,} is called the zero set of ]. I n  the same 

manner  the pole set fl = {fly} of a function is defined. 

3. Zero  sets for c lasses  A ", A -~176 

3.1. The m a i n  t h e o r e m  

Definit ion 1. For  n > 0 ,  q~>l, 0 < a < l ,  ~={~ ,}  put  

m~ = m~(n; q, a) = inf {n~(F) - a~(F; q, a)}, (3.1.1) 
P 

i n /be ing  taken over all the finite sets • # F c  ~U or (what is equivalent) over all the Carle- 

son sets F.  

Definit ion 2. A sequence ~ =  {av} is said to  satisfy condition (T , ) (n  >0)  if 

m~(n; 1, a) > - oo (3.1.2) 

with some a, 0 < a < l .  We shall write in this case ~E(T,) .  

Definit ion 3. A sequence ~ = {~,} is said to satisfy condition (T) if it satisfies condition 

(Tn) with some n > 0 :  

(T) = U (Tn). 
n>O 

Obviously, condition (T) is equivalent  to  

a~(F; 1, a) 
sup < co. (3.1.3) 

~(F) 

T H E 0 R E M 1. Condition (Tn) is necessary/or ~ to be the zero set o] a ]unction ](z) 6 A - (( ~' ~)- ~) 

and su]ficient /or it to be the zero set o / a / u n c t i o n  ](z) 6 A (e,+~)(~ > 0  arbitrary). 

COROLLARY 1. Condition (T) is necessary and su/ficient /or ~ to be the zero set o / a  

]unction ](z) e A-~ 

COROLLARY 2. Every subset o / a n  A -~176 zero set is an A -~176 zero set. 

Remark  1. A simple a rgument  shows tha t  condition (T,)  does not  in fact  depend on the 

constant  a, so tha t  for every ~ it holds either for all a E (0; 1 ) or  for none (see also below, 

w 3.3) 
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Remark 2. If F consists of N equidistant points on 0U, then u (F )=  log N + I ;  on the 

other hand, in this case GF; 1. ~ contains the disk I z I < 1 - (C/N) with some constant C > 0. 

Thus we get from (3.1.3) the following necessary condition: 

which in its turn implies 

(1) log 1 1  _ 0  log~ (~-~0), (3.1.4) 

>0). (3.1.5) 

Both the conditions are known [3, 4]. They are easily derived directly from Jensen's 

inequality as well. 

Remark 3. If all the zeros lie on a single radius, say, (0; 1) then we have to choose for 

F the one-point set {1} to get the following necessary (and sufficient) condition 

(see [7]). 

~ log ~ - [ <  oo 

3.2. Proof of the necessity 

Let ~=  {a~} be the zero set of a/(z)  6A -n. Take a finite set F c  aU and consider two 

domains GF; 1. a and G~; 3. b with some b ~< a. Obviously, GF: 1. a c G~: ~. ~. I t  follows from (2.1) 

and (2.10) that  

]/(z)[ ~< Ct.b(min I z -  ~[)-2n (yz6G~:2,b). (3.2.1) 
~eF 

Let w=w(z) be the function that  maps conformally int GF;2.b onto U so that  w(0)= 

O, w'(O) >0. Let  z =z(w) be the inverse function and F~ be the image of F under w =w(z) 

(we assume that  w =w(z) is extended to Gy by continuity). Applying some well-known 

results about the distortion under a couformal mapping [8] we easily obtain that  for each 

e > 0  a b ( 0 < b < l )  exists such that  

_ [w(z) 1) < s  (v ~6 F ,  zeG~:~.~); 1 -e~< ]w(~ Iz~w~(()[ ~ 1  +e ,  arg ( )  1 ) - - a rg  \ w ~ -  

moreover, these inequalities hold for all the finite F (even for all the Carleson F). Thus the 

image of G~; x. a is contained in some G~,: 1. a-~, with e 1 = el(e ) ~ 0 (e-~0). If aw is the image of 

under w =w(z), then we have 
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a~(Fw; 1, a--~l) >7 (1 -e2)a~(F; 1, a), 

12~ f0 v l~ I/(z(w))l" I dwl <~ l~ ctb. + 2n[k(F) + ea] 

with e2, e3-~0 (e-~0). Applying Jensen's inequality to/(z(w)) and taking in /over  all the 

finite F we get 

in/~2n~(F) - (1 - e4) ~ (F ;  1, a)~ > - c~ 
Fj 

with e4 >0 being arbitrarily small, and this is equivalent to ~ satisfying condition (T2n+e), 

which proves the necessity part of our theorem. 

3.3.  S o m e  auxiliary results 

LEMMA 1. / f  ~={~v} satis/ies condition (Tn) , then 

m = ( q n ; q , b ) > - r  (q>~l, 0 < b < l ) .  (3.3.]) 

Proo/. For each Carleson set F a larger one F i c h U  can be found so that  

GF;q,bCGF1;1, a , ~(F1) ~ q~(F) + C (3.3.2) 

with some constant C. TO do that  we have to add to F a countable set of points in each 

complementary interval of F so that  all the angular points of 8Gpl: 1. a fall either on ~U or 

on aGp; q, b. By a straightforward calculation we then verify (3.3.2), and this together with 

(3.1.2) yields (3.3,1). 

LEMMA 2. Let Pl, tt~ be two real measures o/ bounded variation on ~U, and Rr = {z: z E U, 

z/Izl =~o} be the radius going/rom 0 to a point ~oeaU. I /  /or every open arc I ~ a U  with ~o 

at its center 

/~1(1) < p2(/) ,  (3.3.3) 

then 

(3.3.4) 

P(z, ~) being the Poisson ]r 

P ( z , ~ ) = R e ~  (~EOU, zEU). 

Proo/. The required result is easily obtained by partial integration. 
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181 t~ B ( z ) =  - -  
0 * f l e U ,  ~- [ f l [ ,  1 - f l z "  f l '  

S(z)= - ~  + : l o g  1 ~_  'If/~ 

then Ilog B(z) - S{z)i <~ C (1 -[ f l l ' i  ~ (3.3.5) 

C being an absolute constant and the value o] log B(z) being that obtained by analytic continua. 

tion /rom the value log ]fl ] < 0 at z = 0 along the radius to the point z, 

Proo]. We have 

log B(z) = log [~  + log \ ~ - z / ~ - z ]" 

Using Taylor's formula with the second-order remainder term we easily obtain the required 

result. 

LEMMA 4. I /  an arc I c O U  is divided into N non-overlapping arcs I1, 12 ..... In, then 

x(I) < x(I1) + x(I2) +. . .  + g(In) <~ u(I) + ~ log N. (3.3.6) 

This follows immediately from the fact that  ~(1) is a concave function of I I I .  

By this lemma, if in (3.1.1) inf is taken only over those finite F that  contain some 

fixed point w E~U then m~ is changed to another value m~, and the following estimate 

holds: 

w , m~(n; q, a) -~ m~ (n, q, a) = inf {n~(F) - at(F; q, a)} ~< m~(n; q, a) + n log 2. 
w E F  

Condition (Tn) is therefore equivalent to 

mW(n; 1, a) > - c~, (3.3.7) 

and this, according to Lemma 1, implies 

m~(qn; q, b) > - c~ (q >~ 1, 0 < b < 1). (3.3.8) 
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3.4. The main lemrna 

De/inition. Let n > 0 ,  q>~l, 0 < a < l ,  wEOU be fixed. For a given /inite sequence 

a =  {~tv} (~t~E U) a non-negative measure ff on OU will be called w-admissible if 

(i) ff({w})=0; 

(ii) for each open arc I c  0U, w r I, the following inequality holds: 

1 
0 ~< if(I) ~< ,,,,~H~ '~ log ~ ]  + nx(I) (3.4.1) 

with 

{=: =e U, 1 -I=1 < ad" (=/I I, a U \ h } -  

The set of all w-admissible measures will be denoted by ~ or simply by ~w. 

(3.4.1) implies that  if({(})=0 for any (EOU and not just for ( = w .  

(3.4.2) 

THE MAIN LV.MMA. For any/inite ~ = { ~ }  

1 
sup if(0 U) = m w (n; q, a) + ~ log [:r I' (3.4.3) 

and there is at least one "maximal w-admissible measure" fro/or which 

1 
/~(SU) = m~(n; q, a) + ~ log K7-. I- (3.4.4) 

Pro@ Define a finite set FocOU consisting of w and all the points SEaU for which 

and let {Ik} be the set of complementary arcs of F 0. For each ff E~J~ w let/~ denote measure 

which has the following properties: 

(i) /5(Ik)=ff(Ik) (Vk); 

(ii) /~ has a constant Lebesgue density in each Ik. 

In view of the concavity of u(I) expressed by the first inequality (3.3.6), it is easily 

proved that  # E ~w implies f~ E ~w with ff(aU) =[~(OU). So the problem of finding a maximal 

w-admissible measure is in fact a finite-dimensional one with as many unknown quantities 

(densities) as there are points in F 0. Therefore sup in (3.4.3) is attainable, and among 

maximal w-admissible measures there is at least one, say, if0 with/~0 =fro. 

The set of all w-admissible measures ff tha t  have the property/~ =ff is a convex body 
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in a finite-dimensional vector space. This body is defined by inequalities (3.4.1)with I ' s  

having their end points in F 0 and not containing w. Let  9~ be the set of all such arcs. 

A finite system {I,} (I8E9~, 18 are not necessarily all different) and a corresponding 

system {its} of non-negative numbers will be called a w-admissible covering if •, ~tsXs(~) >/1 

(u C E~U), XJC) being characteristic functions of the closed arcs i , .  Using some elementary 

facts from the theory of convex bodies we find tha t  

SUPwl~(~U)=inf{~(~Hlog]-~l)+n~2s~(Is)}, (3.4.5) 

inf being taken over all the w-admissible coverings (Hs=HI,) .  Inf imum in (3.4.5) is not 

altered if only coverings with rational 2s are admitted; therefore our lemma reduces to the 

following proposition: 

For each system of arcs {I8) (Is Eg~) with 

~XJ~)>~N (V~E~U,N>~ 1 entire) (3.4.6) 
8 

the following inequality holds: 

~(~Hl~176 

with equality sign attained for N = 1 and for the I s that  are the complementary arcs of the 

set F c  F0, we F, for which 

n;~(F) -(r~(F; q, a) = mW(n; q, a). 

This proposition is trivial for N = 1. The general case is proved (x) by induction which 

is possible owing to the fact tha t  the point w is not contained in any of the open arcs 18, 

and therefore the coverings {I8} do not contain cycles. 

3.5. Proof  of the sufficleney 

Let  ~ = { ~ }  satisfy condition (T,) and q > 2  be some fixed number. We have to con- 

struct a function/(z) EA -n' (n 1 =qn) with zeros at  ~ .  Take a/ ini te  par t  0~ of ~. We will show 

first tha t  an analytic function ](z) exists which has the following properties: 

(i) ](a,)=0 (apE~); 
(if) lt(:)l <o(1-1:1)-., (:eu); 

(iii) [](0)[ >~ c > 0, 

(1) We can assume that in (3.4 6) the equality sign holds a.e. 
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the constants  c, C being independent  of a part icular  choice of & c  :e. Using a s tandard  argu- 

ment  (involving classical compactness theorems for analyt ic  functions) it will then be 

possible to get  the required funct ion it(z) as a limit of ](z). 

Choose a point  wEOU. Let  ~ be a maximal  w-admissible measure with respect to  & 

and to the parameters  nl; q, a. B y  our main lemma 

1 
/t(aU) - ~G~ ~ "  log ~-1 = m'~ (n,; q, a)>1 m W(nl; q, a) > - oo. 

Consider the  funct ion 

t(~) = exp ~ ~,(Idr 
v ;, 1 - ~ , z  a ,  

(3.5.1) 

(3.5.2) 

and check it for all the above conditions. 

(iii) ](0) = exp {/z(OU) + E .  log 1~1) = exp {mS (~,; q, a(} >~ exp {m: (nl; q, a)} = c. 
ae~E~ 

(ii) Take a pont  ~ E OU and project  every c~ E a t ha t  lies outside the domain G{r ~. ~ = G C 

to the circumference O U. Place at  the point  r = a~/[a~[ thus obtained a negative mass 

mr = log [ ~r ], and let/~1 be the resulting measure. P u t  

~,+z] 

By Lemma 3 we have for zER C and a <1/4:  

~ , 0 ~ 1 - ~  t ~-o~/C:--~l ~ ~ exp{C ~ (1-  = c i  

with C 1 < oo (see (3.1.5)). Therefore 

[t(z)l<-OllS(z)exp{fouCC-~z~,(ldCl)=OlexP{fauP(C,z)~',(laC[)} (g~=g+pl) 

for z E R C. On the  other  hand, for every open are I containing neither ~ nor w we have: 

1 
juz(I) =/u(1) +/ul(I)  ~</ t ( I ) -  ~ log 

according to (3.4.1). By  L e m m a  4 we then have for all the open arcs I c  ~U (with no reserva- 

tions): 

lu~(I) <~ n, [x(l) + ~--J log 3] . 
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Applying Lemma 2 we get the estimate: 

11(=)I ~< o~(1-l=l)-"' (zeRc) 

with C 2 dependent neither on C E~U nor on ~c (u. 

(i) follows from (3.5.2). 

Thus our theorem is proved completely. 

199 

3 . 6 .  S o m e  p r o p e r t i e s  o f  A - ~  z e r o  se t s  

THEOR~.~ 2. Let ~={~v}, ~' = { ~ }  be two sequences o/points in U, and let/or some 

q, 0 < q < l ,  and all the ~, the/ollowing inequalities hold: 

Then o~E(T) implies o:'6(T), and vice versa. 

and 

(3.6.1) 

Proo/. We can choose two constants a, b ( 0 < b < a < l )  so that  for every finite F c ~ U  

~EGF:I.a ~ ~" EGF;1.b 

av(F; 1, a) ~< (1 -q)-*a~,(F; 1, b), a~.(F; 1, a) ~< (1 +q)~a(F; 1, b). 

(n'=(l+q)n), 

(n"=(1-q)-ln) 

Therefore 

This, together with (3.1.1) and (3.1.2), yields: 

~6 (T~) =~ ~' E(T,,) 

~'E(Tn)~E(Tn, ) 

which proves our theorem. 

De]inition 1. To each measurable set G c  U we shall assign the number 

and call it  the ~-area of G, 

An easy calculation shows that  for domains G of the type Gp; 2. a ( F c  0U finite) 

[~sCG)-~CF)[ < C < ~ ( q =  O~.~.~), 

(3.6.2) 
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C being independent  of F.  Therefore condition (T) is equivalent  to the following: 

6,(O) < 
(3.6.3) 

sup being taken over all the domains (7 of the form (TF;La ( F ~ U  finite) and 

1 

= l~ I" (3.6.4) 

We obtain ye t  another  form of condition (T) if we choose domains G in (3.6.3) and 

(3.6A) by means of the following construction. Divide the disk U into a countable set of 

"cells": 

1 cell of rank  O: 

2 cells of rank  1: 

~(~ �89 ~,O<.Argz<zt}, ~(s)={z: �89 ~,~<Argz<2}; 

4 cells of rank  2: 

and so on, so tha t  ~(vlv . . . .  r,0). ~(v,~ . . . .  r,1) are the two cells of rank r + l  (i - 2 - ~ - 1 <  Izl < 

1 - 2  -~-~) adjacent  to the cell ~(w~ .... ~') of rank r. All the cells (except ~ ) a r e  thus  enumer- 

a ted by  means of finite binary sequences y = (VIY2 --. V,), r = 1, 2 .. . .  

Take an arb i t rary  set of cells having the same rank,  and consider the smallest starlike 

domain composed of cells and containing the initial ones; we shall call all domains thus 

obtained the canonical ones. I t  is easily shown tha t  condition (T) can b~ put  in the follow- 

ing equivalent form: 

(T") sup 0,(G) < ~ (3.6.5) 

~a(G) being defined by  (3.6.4) and sup taken  over all the canonical domains. 

According to  Theorem 2 wha t  mat ters  for a sequence ~ = {a~} to satisfy (or otherwise) 

condition (T) is the number  of zeros in each cell: 

~v----~(y)E~ 1 (7 = ( 7 1 ~ - - .  Y~)). (3.6.6) 
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De/inition 2. A table of the form 

n(0) n(1) 
/\ /\ 

n(00) n(0]) n(lO) Tt(ll) 

. . . . . .  . . . . . . . . . . .  . . . . .  

with n v defined by  (3.6.6) is called an a-array; each place in the  table is called a node and 

will be identified with the corresponding subscript X = (X1 ... 7~); the number  n v is called 

the nodal number o/rank r, r being also the rank o/ the node X: r=r (7 ) .  

De/inition 3. A branch is a set of nodes of the type:  

= {(~1), (Xl~2), (~'1~'2~s) .. . . .  (~l~Xs ..- ~'~)}- 

Eve ry  branch is uniquely determined by  its node of the highest rank r; r is called the rank 

of the branch ~ .  

De/inition 4. A tree ~ is the union of a set of branches having the same rank r which 

is called the rank of the three: r = r ( ~ ) .  

De/inition 5. Let  a = {a~} be a sequence (av E U) and nv be its array.  To every tree 

a number  is assigned: 

v~(~) = Z n~. 2 -T(~) (3.6.7) 
~,e3" 

which is called the a-value o/the tree ~. 

De/inition 6. A sequence ~ = (~v} is said to have a standard or Horowitz distribution 

if all the nodal numbers  n v of its a r ray  are equal to  1. I n  this case the a-value of a tree 

is called its standard value: 
r(~) 

h ( ~ ) =  Z 2 -T(r)= Z 2-kbk, (3.6.8) 

bk being the number  of nodes of rank k. 

The numbers  bk have the following property:  

bk ~<bk+l ~<2bk (k = 1, 2 ..... r ( T ) - l ) .  

De/inition 7. An  a-ar ray  is called bounded if for all the trees ~ the inequali ty holds 

v~,(~) <<. Ch(~) (3.6.9) 

with some constant  C. 
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THEOREM 3. A sequence a={av} (a~E U) is an A -~176 zero set i// its a-array is bounded. 

Proo/. I t  is clear that  there is a one-to-one correspondence between all the trees and 

all the canonical domains composed of those cells whose indices belong to the tree: 

~=(~ U ( U (~'). 

We have 
ch(~) < rs(a~) <<. ch(~), 

v~(~) <<. #~(G~) < Cv~(~) 

for all ~ and all a, with c, C being some absolute positive constants. Therefore the bounded- 

ness of an a-array is equivalent to a satisfying condition (T ~) (see (3.6.5)), and the theorem 

is thus proved. 

The function 
ao 

H(z) = 1-I (1 + ez 2~) (3.6.10) 
k - I  

examined by C. A. Horowitz [3] is the example of an A -~  function with the standard 

distribution of zeros. Now we will consider more general functions 

/~(z) = ~[ (1 + ez2~) s~ (s~ >1 O) (3.6.11) 
k = l  

and use them to prove the following 

THEOREM 4. I n  order that an A -~176 zero set a=(a~} exists with prescribed moduli o/ the 

zero8~ 

I~1 =e~ (o <~1 <e2 <...), 

~ l o g l =  0 (log 1_~1  N), (3.6.12) 

or (what is Nuival, em) 

log = O(log N). (3.6.13) 

Proo[. The necessity of (3.6.12) is already proved (see (3.1.4.)). To prove the sufficiency 

observe first that  (3.6.12) is equivalent to 

Sr= ~ Nk2-~Cr ( r = l , 2  . . . .  ) (3.6.14) 
k- - I  

it is necessary and su//icient that 
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l_2-r~<~v < 1 _ 2 - r - 1  
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n v = [2-r(V)Nr(~)] + 1. (3.6.15) 

To prove the theorem it is sufficient to show that  this array is bounded, because the total 

number of its zeros in each annulus 1 - 2 -r  ~< [ z [ - 1 - 2 -r-1 exceeds N r. This could be done 

directly by checking (3.6.9), but  we prefer to prove this result by actually constructing a 

function which has the required array of zeros. I t  is easily seen that  the function 

/ t ( Z )  = f i  (1 ~- e~2~) [N~2-~]+l (3.6.16) 
k=l 

has exactly nv zeros in each cell of Cv. What  remains to be proved is that/~(z) EA -~. Ob- 

viously, I/~(z) l ~</t(Izl); therefore we have to estimate/~(z) on the radius z =e(0 <e  < 1). 

Using partial summation and bearing in mind (3.6.14) we get 

=~  log/7(~)~< ~ (Nk2-k+ 1 ) l o g ( l + e ~  2~) (Sk+k)[log (I +eo2~)-log (l+e02e+l)] 
k=l k~l  

~< (~ + 1) ~ ~[log (1 + e~o2~) _ log (1 + e ~ + l ) ]  = (c + 1) ~ log (1 + ~ )  
k ~ l  k=l  

= (C+ 1)log H(Q), 

H(z) being the Horowitz function (see (3.6.10)). Now, 

k=l  k=l 

s(/c) being the sum of the digits in the binary expression of k. Clearly, s(/c)~< log~ k + 1, and 

therefore H(z)EA -~ (see als [3]). 

To prove the equivalence of (3.6.12) and (3.6.13), observe that  (3.6.12) implies 

(Q1~2 ... ~k) c>~l - ~ k , / c = l ,  2 ..... with some c>0.  Therefore 

(~102 "'" ~k+l) - c -  (~1~2 "'" ek )  - c  = (1 - - ~ I + 1 ) ( ~ 1 ~ 2  "" ~k§ - c  = 0 ( 1 ) .  

Summing up these relations from /c=1 to / c = N - 1  we get (Ql~o= ... @~)-~=O(N) which is 

equivalent to (3.6.13). Conversely, if (3.6.13) holds, then we have 

- - =  0 1 Nlog  1 0 ( l o g N ) , l - - ~ N ~ 0 \  N ] ' l o g N =  
~N 

and, finally, log N = 0  (log 1/(1 - ~ ) ) .  This together with (3.6.13) yields (3.6.12). 

14-752906  Ac ta  ma themath i ca  135. Imprim~ le 15 Mars  1976 
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4. Premeasures  oI bounded x .var ia t ion  

4.1.  General properties 

Definition. A sequence of premeasures {/xk)~ is said to be ~-weakly convergent to a 

g w  
premeasure ~u (Pk -----~p)  if 

(i) Pk have uniformly bounded u-variations, 

g Var/~k ~< C < ~ (k =  1,2 .. . .  ); 

(ii) limfik(O)=#(O) (0<0~<2~) 
k--~o 

at every point of continuity of the associated function fi(O) (for the definition of the as- 

sociated function see Ch. 2). 

Of course, in this case the limit premeasure p is of bounded u-variation too, 

:~ Var la ~ C. 

T ~ ~ o R ~ M 1. (HeUy.type selection theorem). Let {/~k}T be a sequence o/premeasures having 

uni]ormly bounded u.variations. Then there exists a subsequence {pk~) (bl <k2< ...) which is 

u-weakly convergent to a premeasure p. 

We omit the proof because it runs on the same lines as that  of the classical Helly 

selection theorem. 

THEOREM 2. I f  a premeasure p is u-bounded/rom above, 

I~(I) <~.Ou(I) (VleR) ,  

then it is o/bounded n-variation and g Var/~ ~ 2C. 

Proo/. Let (I~} (IvE~) be a finite set of arcs, ( J ~ I v = ~ U ,  Iv, N/ , ,=O(vl#v~) .  We 

have 

I/~(I~) j = • max (p(I~), O) + ~ max ( - /~(I~),  O) = S~ + $2. 

O b v i o u s l y ,  S 1 - S  2 =0 and 0 ~ S  1 ~ C E  v g(Iv), so s +S~ ~<2CZ~ u(I~), and the theorem is 

thus proved. 

T H ~. 0 R E M 3. Let/a be a premeasure, I o = {~: I ~1 = l, o~ < Arg ~ < fl) be an arc, 11 = a U \ I  o. 

Define the premeasure a as ]ollows: 

IIui01 z a(I) = p ( I  U I t ) +  ~ / ~ ( o ) ,  (4.1.1) 
I + t o l  
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so that the associated function 0(0) is linear in the closed interval ~ <~0 <~fl and coincides with 

f~(O) outside the open inServal ~ <0 <ft. Then 

Vat  ~ ~< ~ Var/~. (4.1.2) 

Proo/. Le t  C = ~ Var # < 0% and let {$v}~ v, ~N = Go, be some points  on ~ U ar ranged coun- 

terclockwise wi th  first/r  of t hem belonging to  ]0 (and all the  others lying outside I0): 

< 00 = Arg ~0 < 0x = Arg ~1 < . - .  < 0k-1 = Arg ~k-x < ~. 

Fix  all the  points  {$,}~-* and  consider the  funct ion 

N-1 
~,, 16"(~',+i) -- 0(~,) I (~) (4.1.3) / (0  0, 01 . . . . .  0~-1)  = 

in the  ~-dimensional simplex | 

400 ~<01 ~< ... ~<0k-1 ~<fl. 

I t  is easily seen t h a t  this funct ion is convex in @, because 0(~) is linear in I o. On the o ther  

hand,  the  funct ion 

~(00, 01, "" ,  0k--l) = )~({~0, ~1 . . . . .  ~N)) 

is concave.  At  the  vertices of @ (where 0~, j = 0, 1 . . . . .  k -  1, are equal  ei ther to ~ or to  3) 

we have  
N--1 

/(00, 01 . . . . .  0~_1) = ~ I~(~J+,)-P(r < v~({r 

so this inequal i ty  mus t  hold in ~ as well: 

N-1 

t=1 

which proves  our theorem.  

COROLLARY. I] # is ~-bounded from above, 

~( / )  < C ~ ( I )  ( V l e ~ ) ,  

then She same inequality holds for a. 

(1) We will wri te  somet imes  (}(~)= ~(e i0) i n s t ead  of (}(•). 
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THEOREM 4. Let F =  {$,}~ be a finite set o /poin ts  on ~U, { I , } ~  be the complementary 

arcs o / F  and la be a premeasure o/g-bounded variation. Le t /~  be the measure whose associated 

/unction f~t(~) is linear in each I v and coincides with f~(~) /or ~ E F.  Then 

and 

Var/~l ~ ~ Var/~, 

~ W  
/~ l - - - -~/~ as max [I.[-~0. 

v 

(4.1.4) 

This theorem is a direct consequence of Theorem 3. 

4.2.  The decomposi t ion theorem 

THE o R E M 5. Every premeasure # o / z - b o u ~ e d  variation, 

Var/~ = C < oo, 

is the di//erence o / two premeasures that are g-bounded/rom above: (1) 

/~ =/~1--/~2, /~j(I) < (1 + log 2)C~(I)  ( V I E ~ ,  ?" = 1, 2). (4.2.1) 

Proo/. Take a finite set F c ~ U  containing some fixed point w, and let/~z be the corre- 

sponding piecewise linear measure constructed as in Theorem 4 (that is, having a constant 

density in each of the complementary open arcs {Iv} of the set F). Now, let us first show 

that/~l =/~1)_/z~2), #~1) and #~') having the same structure and satisfying the inequalities 

~u~J)(I) <~ Cg(I) (] = 1, 2; v l e R ,  w / I ) .  (4.2.2) 

Using the concavity of g(I)  and the piecewisc linearity of/2[J)(0) we easily come to the 

conclusion tha t  to ensure the inequalities (4.2.2) for all I ,  w r  it is sufficient to do this 

only for the I ' s  whose end points a r e in  F. Thus the problem becomes a finite-dimensional 

one with a finite system of ineqeualities 4.2.2) and a system of equalities expressing the 

requirements that  p~J) be additive, tha t  p~J)(~U)= 0 and /Jz(I,)= r/~l)(Iv)-p~2)(Iv) (V v). 

Applying the method already used in w 3.4, we can easily prove that  this system of ine- 

qualities and equations has a solution for every F. Letting max II~l tend to 0 and using 

the Helly-type selection theorem, we obtain a decomposition 

/~ = Eq -- 112, /9(1) <~ Cx(I)  ( j -  1, 2; VIE ${, wq I).  

(1) In fact, a somewhat sharper result 14t(1 ) ~ C~.(1) holds. 
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For  those arcs I t ha t  contain w, we get the following estimate,  according to Lemma 4, 

w 

[ + l o g 2  ] 
#j(I)<~C ~(I) - ~ - I / ' [  ~<C( l+ log2)  n(I) ( j = l , 2 ) .  

4.3. The x-s ingular part of a premeasure 

T~EOREM 6. Let # be a premeasure o/bounded ~-variation. De/ine /or every Carleson 

set F 

~ ( F )  = - ~ ( Z ~ ) ,  (4.3.1) 
v 

{Iv} being the set o/ complementary arcs o / F .  There exists a unique countably additive finite 

measure on the (y-ring generated by all Carleson sets F c F0(1) which coincides with la~ /or those 

sets ( F o being an arbitrary [ixed Carleson set). 

Proo[. Fix a Fo, and let {i0} be the set of complementary  arcs of F 0. Let/2(0) be the 

funct ion associated with the premeasure ft. Define a function/2z(O) as follows: 

(i) for e~~ /2z(0)=/2(0); 

(ii) for e*~ ~ i0={~:  I~] =1,  ~v< arg ~<flv}, /2,(0) is linear be tween/2(av+0)  and 

Prove  tha t  fly(0) is of (classical) bounded variation. Le t  ~o, ~1, ~2 . . . . .  ~k =~0 be a finite 

set of points on ~U arranged counterclockwise. Writing/2l(~),/2(~) instead of/2z(0),/2(0) 

(0 = Arg ~, I $ I = 1), we have to prove the boundedness of the sum 

k - 1  

S= ~ I/2t(~+i) -/2($j)[ ~< C< ~o (4.3.2) 
i=0 

for all sets {~v}. Wi thout  loss of generali ty we can assume tha t  none of the ~v belongs to 2' 0. 

Le t  {I~} be the set of those (open) arcs among ~ which contain at  least one point  ~v, {~'} 

be the  set of closed arcs which lie between I~, and F 1 c  F o be the (finite) set of all the  end 

points of the arcs 1~. Taking into account  the l ineari ty of fiz in every  Iv, we get the following 

estimate for the sum (4.3.2): 

J J 

(1) This a-ring is the ring of all Borel sets BCF o. 
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Thus the funct ion ~z(0) is of bounded variation, and therefore it generates a countably  addi- 

tive finite measure defined for all the Borel sets; let jut denote this measure. As l.z,(tOU) =0,  

we get  f rom (4.3.1) the following conclusion ( F ~  F 0 being an  arb i t rary  Carleson set): 

ft,(F) = - E ft,(I,) = - E/a(I,)  = ft,(F). 

Thus our theorem is proved. 

De/inition. fts will be called the x-singular part of the premeasure ft. 

COROLLARY. The u-singular part ft~ o / a  premeasure ft is non-positive i / f t  is u.bounded 

/rom above. 

Proo/. We have to prove tha t  for every Carleson set F fts(F) ~<0. This is trivial if F 

is finite. I n  fact, 

~,(F) = - E f t ( L )  = V_ ft({~}) 4 0 ,  
~eP 

because a premeasure which is u-bounded from above assumes non-positive values on single- 

point  sets. I f  F is infinite, then we first consider a partial  sum (4.3.1): 

J r  being the (closed) arcs which lie between I ~ ( v = l ,  2 .. . .  , N) and F 1 the set of end points 

of these I r. I f  N-~  ~ then 
N 

~(F1) -* ~(F) ,  ~. u(/v) -~ ~(F), 
v = l  

and  consequently fts(F) 40 .  

F r o m  (4.3.1) the  following inequali ty is easily derived which holds for all Carleson 

sets F :  

[fts(F) l ~< u Var ft .  ~(F). (4.3.3) 

Remark. I t  can be proved t h a t  the g-singular par t  of a premeasure of u-bounded varia- 

t ion is concentrated on a uFa-set.  More precisely, if ft is a premeasure of u-bounded varia- 

tion, then a sequence F 1 ~ F 2 C F s c . . .  of Carleson sets exists such tha t  

fts(F) = lim f t , (F t3 F~) 
v-~oo 

holds for all Carleson sets F ,  hence for all Borel sets F contained in a Carleson set. 
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5. Classes ~+, ~ o[ harmonic [unctions 

5.1. Boundary premeasures and generalized Poisson integrals 

THEOREM 1. Let u(z) belong to the class ~+; in other words, u(z) is harmonic in U, 

u(O) = 0 and 

1 
u(z) <clog 1 - [z[  (5.1.1) 

with some c > O. Let 
o o  

u(re '~ = ~ a~ rifle '~~ (a o = O, a_, = ~t~). (5.1.2) 
--00 

Then 

(i) [a~[ ~<Clclog (1-4-[v[), (5.1.3) 

C 1 being an absolute constant; 

(ii) /or every arc I c ~U the/ollowin9 limit exists 

1_ f u(r~)ldr = ~( I ) ;  (5.1.4)  lim 
r----~l - 0 2:Tg 

(iii)/or each e>0  there is a C e (dependent only on e) such that /or  all I c ~ U  

~(1) <. [(2+e)~(1)+V~llI]c; (5.1.5) 

(iv) there is an absolute constant C~ such that 

~r(I) <. C~c~(I) (Vlc~U) .  (5.1.6) 
Proo/. We have 

av= - ~  u(re '~ e-'~~ dO(O < r<  1). 

Therefore 
r-i~t f~ ~' r-M I~' la~l ~< ~ -  lu(~e'~ I dO = u +(rr ~ ~0, 

3o 
because 

r u + (re '~ dO (re '~ dO - -  I u(re'~ I dO. 
J 0  

Using (5.1.1) we get 
1 

i llavi~<2cr-t,ilog l - - r"  

Putting r = 1 - 1 / ( [ v  I ,§ >0) we obtain (5.1.3). Thus (i) is proved. 
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To prove (ii) and (iii) show first that  the integral (5.1.4) is hounded for 0 < r <  1. Let  

(5.1.9) 

I={r I#l =1, Put 

z=fl -~ ,  t=t(O) = min (0 - ~ ,  ~ - 0 ) ,  0 =Q(0) = !(0 -~)(fl-O)(o~<~0 <~). 

We have for ~<~O<fl: 
2 

�89 < o <- t(O), o'(0) <. 1, o"(O) = - -. T 
Therefore for the function q(O)= 1 -  [Q(0)] v (p > 2) the following estimates hold: 

[q'(0) I >~ p[t(O)] "-1, [q"(O)[ <-< p(p - 1) [t(0)] "-2 + 2p [t(0)]v_ 1 ~< p,[t(O)]._~. 
27 

Using these estimates and integrating by parts we get for Iv I > 1, r < 1: 

I S { e - [q(O)]'V'} e"~ = f2 [q(O)]'"-lq' (O) e"~ 

~ ~ , 1 
f= + r" i 

< s 

+ [ ~  f { 1 -  [t(O)]'-2dO 

0<t<m L ~ e -  (t/~)p(Ivl- 1) tp-2 ~,2TIIlaXte-(t/2)P(lvi-2)'2p-22t-i, I }. 

A simple calculation yields: 

I f 2  { 1 -  [q(O)]t'i} e"~ <. Cv ~,v,-~(1-(1/'))(,v, = l, 2 ...; z < l ) (5.1.7) 

with C v ~> 1 dependent only on p. Now, for 0 < r < 1 we have 

2~1 u(rr162 = z z  ~ u(re'~ dO = ~ u[rq(O) e ~~ dO + ~;t {u(re i~ - u[rq(O) e~~ dO. 

(5.1.8) 
For the first of these integrals we get an upper bound using (5.1.1): 

1 f ~  C p f :  2-~ {u[rq(O) e ~~ dO ~ - -  f log 1 cp 2~ .)~ ~ dO~ .~  ]logQ(O)]dO<cp[u(I)+Cz]. 
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C being an absolute constant .  Using (5.1.2), (5.1.3) and (5.1.7) we obtain: 

2~1 ,] ~(~ {u(re*~ - u[rq(O) e*~ d 0 <~ ~_~ ~o a" f ~ rl~' (1- [q(O) ]l~l}e*~~ 

.<C,C~cv ~ log(1 + I~1) , 
"~ --2~r -~/- ivlU(l_(a/v)) = C~c~ 

with U~ < ~ dependent  only on p > 2  and v=f l  - a < 1. 

Now, (5.1.8), (5.1.9) and (5.1.10) yield 

(5.1.10) 

~ / u(rr162 < [p~(I) +GIII ]  c (5.1.11) 

for 0 < r < 1, p > 2 and I I I  < 1, the last restriction being unessential owing to Lemma 4 

(w 3.3). So we have proved tha t  the measures 

if, (~r(I)=2~ ~ u(r$)ld$ I ( 0 < r < l )  

are uniformly u-bounded from above. Using the Hel ly- type selection theorem (Theorem 1, 

~gW 
w 4.1) we can find a sequence rl<r2< .... r ~ l ,  such tha t  a , a ( v ~ ) ,  a being a 

premeasure satisfying (5.1.5). Now, for ] z ] < r < 1 we can write 

Let t ing r tend to 1 and taking into consideration the definition of u-weak convergence of 

measures, as well as the smoothness of the Poisson kernel, we obtain the representat ion of 

u(z) in the form of a generalized Poisson integral: 

u(z)= fe~P(r162 zeU), (5.1.13) 

the integral being unders tood in the following sense: 

d 
(5.1.14) 

with 8(0) = a(Io), Io = {~: I~1 = 1, 0 < Arg ~ < 0}. The boundary  measure a in (5.!. 13) satis- 

fies (5.1.5), and consequently (5.1.6), too. W h a t  remains to be proved is the existence of 

the limit in (5.1.4), and this is the consequence of the following theorem which is analogous 

to  the  classical Fa tou  theorem about  the limit values of a Poisson integral: 
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T H E O R E M  2. L e t  

u(z)= fovP(C,z)~(IdCl)= - f~,(o)[d p(e '~ z)]dO (zeU) (5.1.15) 

be a generalized Poisson integral with the premeasure i ~ o I bounded :~-variatiou, fi(O)=1~(lo), 

Io = {~: I~l = 1, 0 ~< Arg ~ <0}. Then 1or each open arc I c  OU the lollowing limit exists: 

lim 1 ~ u(r~)Id, I = � 8 9  #(1)], (5.1.16) 
r--~l-0 ~ J l  

f being the closure o] 1. 

Proo 1. Let I={~:  Ir =1, ~ <  ~ g  r Integrating (5.1.15) and using some elemen- 

tary properties of the Poisson kernel we get: 

1 1 2~ ~ re'm)] d~}dO 

=12st {f;,(O>,~,'~176 
Using the classical Faf, ou theorem we obtain 

21-- ,I" u(r~)IdOl = ~(~ + O) + ~(n) ~(~ + O) + ~(~)  l ira 
r - ~ l - O  ~ J l 2 2 ' 

which is equivalent to (5.1.16). 

COROLLARY. Premeasure t ~ o I bounded u-variation in the representation (5.1.15) /s 

uniquely determined by the harmonic ]unction u(z). 

5.2. Harmonic |unctions and their representation by generalized poisson integrals 

THEOREM 3. Every harmonic 1unction u(z) belonging to the class ~ can be represented 

by a generalized Poisson integral o t the ]orm 

f: " r d ,o 
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tt being a premeasure ol bounded u.variation which is uniquely determined by u(z); moreover, 

lim 21-- ~u(r~)]d~l - I t ( i )+ I t ( I )  (5.2.2) 
r-~l-0 ~ dz 2 

/or every open arc I ~ ~ U. Conversely, every premeasure tt o/ bounded u-variation determines 

a harmonic/unction u ( z ) ~  by means o/(5.2.1). 

I /  u(z) E~ + and satis/ies (5.1.1), then It is n-bounded/rom above; moreover, the/ollowing 

inequality holds: 
~(1)<[2+e)u(I)+C, III]c (vle~,e>o),  (5.2.3) 

which implies 
It(I) <<. Ccu(I) (V I E~), (5.2.4) 

C being an absolute constant. Conversely, i/It(I)<.cu(1) (V IE~)  with some c>0,  then/vr 

the/unction u(z) the inequality holds: 

u ( z )~c ( log l l_ - -~+a)  (zE U), (5.2.5) 

with an absolute constant a > O. 

Proo/. Let It in (5.2.1) be n-bounded from above: It(I)<-..cu(I) (V IE~) .  A straightfor- 

ward computation then shows that  the function u(z) satisfies (5.2.5). All the other state- 

ments of the theorem follow from Theorems 1 and 2 (Ch. 5) and Theorem 5 (Ch. 4). 

THEOREM 4. Let u( z ) be harmonic in U, u( O ) = 0. The necessary and su/ /icient condition 

/or u(z) to belong to ~ is 
sup u Varitr < oo, (5.2.6) 

0 < r < l  

Itr being de/ined as/ollows: 

It,(I)=~ u(rC)ldr (vX~). (5.2.7) 

Proo/. Let u(z)E~. By Theorem 3, (5.2.1) holds. Consider the Banach space V~ of all 

premeasures/x of bounded n-variation with the norm Hit[[ =u  Var It. This norm is invariant 

under rotations Tr E~U): 

]ITd]=HItH, (Tr (u IE~) .  

Using (5.2.1) and (5.2.7) we readily obtain the following representation of the premeasure 

Itr in the form of an abstract integral in the space V~: 

1 
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and this yields the required estimate: 

I[~,ll < ~ re (c ,  ~)11 Tc~ll" IdOl = II~ll. 

Conversely, let (5.2.6) hold. We have for 0 < r  < 1: 

if0 u(rz)-~ P(r162 P(g,Z)~r(Idr (5.2.8) 

By Theorem 1 (Ch. 

N W  

/~ being a premeasure of bounded ~-variation. This justifies the transition to the limit in 

(5.2.8) which yields 

u(z) = f o u P( ~' z)tt(I d$l); 

thus u(z) E ~). 

4), we can choose in view of (5.2.6) a g-weakly convergent sequence 

6. Meromorphic functions of the class ~ and their factorization 

6.1. Generalized Blaschke products 

Definition 1. Let  ~={~r} 

0<  I~1 ~< I~1 < ..- <1, and let 

be a (finite or infinite) sequence of complex numbers, 

(1 - I~1) ~ < ~ .  (6.1.1) 
y 

The following product 

["~+z } 
B~(z) = 1-[ ;-~-~-~-z~ 1 - ~, z" ]a~[ " e x p / [ : , [ a ~  �9 log ~ [  , (6.1.2) 

t~l-z 
which converges in view of (6.1.1), will be called the generalized Blaschke product with the 

zero set :r If a = O  we put  B~(z)=l .  

THrOR~.M 1. Let/(z) EA -~, /(0) *0,  and let ~=  {~} be the zero set o//(z) or its subset 
Then 

F(z) =/(z) [B~(z)] -1 E A-% (6.1.3) 
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Pro@ Take an arbi t rary  point  $0 E 0 U and estimate the  modulus of F(z) along the radius 

R~, = {z: r~0 , 0 < r < 1 }. Consider two domains: G 1 = Gtt,); q. ~ and G(r 2q. a with some q > 2 

and 0 < a  < �88 Obviously, GI=  G~. Now prove the following 

L ~ M M n. For z 1 ~ G1, Z 2 ~ U\G~ the/oUowing inequality holds: 

[ zl - z2_ 
1-~,~ >~1-c(1-[~,1), (6.1.4) 

with C > 0 dependent only on q and a. 

Proo/o / the  lemma. (6.1.4) is trivial if a t  least one of the points Zl, z 2 lies outside a fixed 

neighbourhood V~ = {z: ]z - ~01 < e} of the point  ~0. We can therefore assume tha t  zl, z 2 E V~. 

Mapping conformally U onto the halfplane I m  w > O  with W(~o)=0 we therefore reduce 

(6.1.4) to the following inequality: 

u,~-w______~ >1 1 - C I m w ~ ( l w ,  I < 1, [w~l< 1, Im w, ~> a lRewl l  ~, o <  Imw2<~alRew212q) .  
I w l  - w21 

Pu t  w l = x  + iy, w2=u  + iv, so tha t  y>~a]x[ q, O<v<~a[ul 2q. We have 

W l  __ W2 2 = (U - -  X) 2 -V (V - -  y)2 = 1 - 4y v 1 - a lu r"q 
W l - - W  2 ( u - x ) 2  + ( z + y )  2 ( u - x ) ~  + ( v + y )  2>~ 4Y ( u - x ) ~  +a21ul2q" 

An easy computa t ion  shows tha t  

alu l  2q m a x  
- ,~< x~<l ( u -  v )  2 + a2lx[ 2q 
- 1 4 u ~ 1  

Ca, q<  00 7 

which proves the lemma. 

If  l E A  -n, then by  Theorem 1, Ch. 3, and Lemma 1, w 3.3, 

( 1 -  I~1) <C1 < ~ 1 7 6  , 
~EGI 

with C 1 dependent only  oll n, [[/[[_,, q, a. Using (6.1.4) we obtain that  the Blasehke product 

~ - ~  I~l  (6.1.5) B,(z) = .~.~a, i ~- ~ z  o~,. 

satisfies the inequality: 

Therefore the function 

]Bl(Z)[/> C 2 > 0  (ze0G2). 

_t~l(Z ) = f(z)[Bl(Z)] -1 
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has the property 

I~,(z)l ~< C, ll!ll-.Iz-r176 (zeaq,), 

and by  the Phragmen-Lindel6f principle a similar inequality holds in G2: 

iF~(z)l < O ,  ll!ll_,lz-C01 -~--0 (zeG,). (6.1.6) 

On the other hand, applying Lemma 3, w 3.3, we can evaluate from below the modulus of 

tha t  par t  of the generalized Blaschke product/~a(z) which is determined by the zeros a~ ~ GI: 

~ - z  I~,1 e x p ] L ~ _ _ _ . l o g ~ _ l  . 

We have for z 6 R~0: 

(I -i~I) ~] i ~i)~_,~,~} ~" - - - - - ~ > ~ e x p  ~ ( 1 -  =C~<O, (6.1.7) 

ct~ 

with C 7 dependent only on n, IIfll-,, q, a .  

Now, taking into account (6.1.6) and (6.1.7) we obtain for zERr 

Ip(z)l ~< IF,(z)I .  I ~ ( z ) l - '  ~<c,11111_.cr162 -="~ = C ,  lz-r -'"~ (6.Ls) 

with C a dependent only o n  n, I1!11--, q ,"  Thus our theorem is proved, since this estimate holds 

for all the radii Rr176 In  fact a sharper result holds true: 

Co~o,.,.AR~ 1. X! yeA-", II!ll-,<b, t~n FeA--"-" a n d  

I IFII-, .- ,  < c < oo, (6.1.9) 

with C dependent only on n, b and e. 

COROLLARY 2. A generalized Blaschke product belongs to the class ~I~ i![ its zero set o: 

satis[ies condition ( T). 

Proo[. The zero set ct of function ! 6 ~ ,  [=g/h (g, hEA-~176 is a subset of the zero set 

of g and therefore, by  the Corollary 2 of Theorem 1, Ch. 3, an A-~~ set itself. Con- 

versely, if ~ E (T), then by  Theorem 1, Ch. 3, a function [ E A -~176 exists for which ~ is the 

zero set. By  the theorem we have just proved, the function 

F(z) = I(z)[B,,(z)] -~ 

belongs to A -~176 as well, and consequently Ba(z)=[(z)/B(z) belongs to the class ~ .  
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6.2. M e r o m o r p h l e  func t ions  

THEORgM 2. Every meromorphic /unction /(z), /(0) 4=0,/(0) 4=~,  belonging to the class 

~,  admits a unique representation in the/orm 

} 
Be(z) 

2 ~=0 being a complex number, ~ and fl being two disjoint sequences satis/ying condition (T) 

and i~ a premeasure o/ bounded u-variation; in/act, 2 =/(0), ~ is the zero set and fl is the pole 

set o~/(z). Conversely, every/unction o/ the/orm (6.2.10) under above restrictions belongs to 

the class ?R. 

This theorem is a direct consequence of Theorem 1, Ch. 6, and Theorem 3, Ch. 5. 

THEOREM 3. Let/(z) be a meromorphic /unction in the unit disk U,/(0) = l ,  o~= (av} be 

the zero set and fl = {ft,} the pole set o//(z). The/ollowing conditions are necessary and su//i- 

cient /or /(z) to belong to the class ~: 

(i) a and fl satis/y condition ( T); 

(ii) sup u V a r / ~  < 
0 < r < l  

where 

# ~ ( I ) = ~  logl / ( r r  [dr  

(6.2.2) 

r r 
log + log (vI e a). 

(~vll~vl)e I (flv/]/~vl) e I 

Proo/. L e t / ( z )  =g(z)/h(z), g(O)=h(O)=1, g(z), h(z)EA -n. We can assume t h a t  the  zero 

set of g(z) is a and  t h a t  of h(z) is fl; otherwise we could, b y  Theorem 1, Ch. 6, divide bo th  

g(z) and h(z) by/3v(z)  with y = {Yv} consisting of the  common  zeros of g(z) and  h(z). I t  is 

evident  t h a t  the funct ions gr(Z)=g(rz) and  hr(z)=h(rz) have  uni formly  bounded  norms  in 

A -n for 0 < r  < 1. Therefore if the  functions /r =gdhr (0 < r  < 1) are factorized according 

to  the  formula  (6.2.1), then  the  corresponding premeasures  ~u ~ mus t  have  uni formly  bounded  

u-variat ions.  Thus  we have  proved  the  necessity of (i) and  (ii). To  prove  the  sufficiency we 

first  factorize/~:  

B~,(z) 

with a ' =  {o~/r} (I av I < r), f l ' =  {fl~/r} (I fl, I < r). To carry  out  the  t ransi t ion to  the  l imit  for 

r ~  1 - 0  we have  to  use the  Hel ly - type  selection theorem (Theorem 1, Ch. 4) which yields 

L(z) ex /(z) = ~ )  p 
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# being some premeasure  of bounded u-variat ion.  In  view of Theorem 2, Ch. 6, this 

implies / (z)  E~.  

:Now we can introduce the not ion of the  n-singular measure  associated with a funct ion 

/ E ~ .  For  convenience, we assume t h a t / ( 0 )  4=0,/(0) + cr 

THEOREM 4. Let / (z)  E ~ and let (6.2.1) be the/actorization o//(z) .  De/ine /or every Carte- 

son set F ~ O U  

1 1 
y(f)(F) = - ~ y( I , )  + ~ log ~ log (6.2.3) 

{I~} being the set o/complementary arcs o~ F.  There exists a unique countably additive/inite 

measure on the q-ring o/ all Borel sets B contained in a / i x e d  Carleson set F o which coincides 

w i t h / ~ ) ( F ) / o r  all the Carleson sets F ~  F o. 

Proo/. Let  F 0 be a fixed Carleson set. In  view of the condition (T) which is satisfied 

by  bo th  ~ = {a,} and fl = {fl,}, we have  

Therefore 

1 1 
log ~ , < ~ ,  ~ log i-Z-i 0 0 .  

a(B)= 5 log 1 1 , = ~ log  , ~ ,  

are countably  addi t ive measures  defined for all the  Borel sets B c  F0, and so is the  u- 

singular pa r t  /~ of the premeasure/~,  in accordance with Theorem 6, Ch. 4. For  Carleson 

sets F c  F 0 we have  
/z(J'(F) = #~(F) + ~(F) - /3(F) .  (6.2.4) 

which proves  the  theorem. 
^ 

De/inition. /~)=~as + ~ - f l  will be called the x-singular measure  associated with  the 

funct ion / E ~ .  

This not ion seems to be ve ry  useful, perhaps  even indispensable, for the  description 

of closed ideals ( invar iant  subspaces) of the  topological algebra A -~~ 

T H ~ o R E M 5. The n-singular measure associated with a /unc t ion  /E A -~~ is non-positive. 

Proo/. I f / E A  -~~ then  the  premeasure  y in the  factor izat ion (6.2.1) is n-bounded f rom 

above.  Therefore its n-singular part /~8 is non-posi t ive (see Theorem 6, Ch. 6, and the  

Corollary). Using (6.2.4) we find for every  Carleson set F: 

1 
#~)(F) < &(F) = ~ log . (6.2.5) 
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On the other  hand, if we divide/(z)  by  

B~(z)= I-[ ~ - z  
I~pl<r 1 -- ~ Z  

then the funct ion 

~1 (0<r<l) 

has the same singular measure: 

and (6.2.5) yields: 

l~(z)  = l ( z )  [B~(z)]-~ 

/~(sf)(F) -- ~-s"(r')/F~, ' <(~,l~l)~v.~ I~l;rl~ ~ l - ~  0 (r-~ 1 -- 0), 

which proves the theorem. 
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