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O. Introduction 

In  this paper, we are mainly interested in the construction of certain Hilbert spaces 

of holomorphic functions on an irreducible hermitian symmatric space D = G/K on which 

G acts by a natural unitary representation. Our construction will produce some new ir- 

reducible representations of the simple group G. 

In  this introduction we shall indicate the nature of our methods and results, leaving 

the full statements to the text. We shall be looking at the unbounded realization of G/K, 

as a Siegel domain D = D(~2, Q) of type I I ;  however our methods are here more easily ex- 

plained for tube domains. Thus, in this introduction, we shall consider G/K as a tube 

domain D = R ~ §  c C ~, where ~2 is a homogeneous irreducible self-dual convex cone in 

R ~. We reiterate that  our results appear, in the text, for the general case. 

Let G(~2)= {g E GL(R~), g(~)=  ~}. Let G(D) be the connected component of the group 

of holomorphie transformations of D and ~(D) the universal covering of G(D). 

There is a natural unitary irreducible representation of G(D) on the I-Iilbert space of 

holomorphic functions on D which are square integrable, i.e., the Bergman space 

H1---{F holomorphic in D such thatfn%~a[F(x+iy)[2dxdy< (1) 

The group G(D) acts on H 1 according to the formula 

(Tl(g) F) (z) -- d(g-1; z) F(g-1. z) (2) 

where d(g; z) is the complex Jaeobian of the holomorphic map u ~ g . u  at the point z. I t  

can be seen that  this representation % is a member of the discrete series of G(D), i.e., 

contained in L2(G(D)). Let P ( z - ~ )  be the Bergman kernel, i.e., P is a holomorphie function 
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on D such tha t  for P ~ ( z ) = P ( z - ~ ) ,  F ( w ) = ( F ,  P~)H~ for every F in H 1. As an immediate 

corollary of the unitari ty of T 1, we have 

d(9; z)-~P(z - ~v) d(~, w) -~ = P(g .  z - g. w). 

As Koranyi  remarked in [11], the Hardy  space 

H 2 = ( F  holomorphic in D; suPt~fl f R  ~ I F ( x  + it)]~dx = I I F II 2 < c~ } (3) 

has a reproducing kernel which is a fractional power P~' (zq < 1) of the Bergman kernel. 

Then it is easily seen tha t  the representation 

(T(g)  F )  (z) = d(g-1;  z)aF(~t -1" z) (4) 

(~ = ~1) is a unitary irreducible representation of ~(D) in H2, but  this representation is no 

longer discrete. More precisely, it can be easily seen via boundary values, tha t  this re- 

presentation can be identified with a proper subrepresentation of a representation induced 

by a unitary character of a maximal  parabohc subgroup of ~(D). 

I t  is then natural  to pose the following question: 

Problem A. For which real numbers ~ is P~ the reproducing kernel for a Hilbert  

space of holomorphic functions on D? 

We can restate this as follows: Find the set P of ~ such tha t  (P): Given z 1 . . . .  , z ~ E D ,  

and cl, ..., CNC C, 

~ e ~ P ~ ( z ~ - ~ j )  >10~. 

For ~ in P, the representation T~ given by the formula (4) is unitary and irreducible 

on the Hilbert space H~ of holomorphie functions on D defined as the completion of the 

~ - 1  c,P~j with the formula in (P) giving the norm of such holomorphic functions (see 

[14, 15]). 

In  this paper we shall give a complete answer to problem A. Originally we had found 

a half-line contained in P, and we felt that  this was the entire set. However, Wallach, 

working with a purely algebraic formulation of this problem (as in Harish-Chandra [8]), 

found, in addition to our half-line, a discrete set of points which formed the entire set (to 

be called the Wallach set). We took up the problem again, and using a classical theorem 

of Nussbaum [17], we were able, independently and  by  completely analytic means, to 

find the Wallach set P, and to associate to each ~ in _P a concrete Hilbert space of holo- 
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morphie functions on D. The Hilbert  spaces occuring in the half line are defined by a choice 

of norm, whereas those corresponding to the discrete set are given as solutions of certain 

systems of partial differential equations (similar to an example of Ehrenpreis [4]). As a 

corollary of special interest we produce some generalized Ha rdy  spaces which will be 

natural ly imbedded (in terms of appropriate boundary values) inside certain unitary 

principal series representations. 

Let  us now sketch the "plan"  of this article. In  chapters 1 and 2, we begin by  recalling 

notations and results of [20a] concerning the realization of the relative discrete holomor- 

phic series of O(D) as spaces of holomorphic functions on D. 

In  chapter 3, using a theorem of Nussbaum [17], we prove tha t  c~ has property (P) 

if and only if P :  has an integral representation: 

(5) 

where dju~(~) is a positive Borel measure supported on the closure ~ of the cone ~.  (The 

corresponding representation in Siegel I I  domains is easily deduced from this). Using this 

integral representation, the Hilbert  space H~ is seen to be 

Many such results (as well as those of [20], a) are closely related with the paper of Ko- 

ranyi-Stein [12] and the Gindikin integral representation. 

The representation (5) being unique, in chapter 4 we see tha t  dtt ~ has to transform 

under the action of G(~) by the character g-+ [det~ gJ-2=. We determine all such meas- 

ures; the description is as follows: 

First of all, for each ~, there exists a unique semi-invariant measure d/~ supported in 

f2. We can calculate rather  easily the integral (5) in group coordinates after identifying 

s with the " Iwasawa"  solvable subgroup of G(s and we show tha t  the integral converges 

if and only if c~ >e  >~0, where c is an explicit constant associated to the cone f~. In  parti- 

cular, c = 0  if and.only if the rank r of the cone, the real rank of G ( D ) ,  is 1. 

Secondly, the boundary ~ - ~  of [2 in R n breaks into r orbits O1, --., 0~, ..., Or where 

O1 = {0} and O~ c 0~+r Each of these orbits carries a unique semi-invariant measure d#~ 

(the character is determined); the r values of the associated character are I det g1-2~ 

with x 1 = 0 ,  Xr=C,  and x I . . . . .  x r dividing [0, c] into equal intervals. For each dch in this 

discrete set, the integral (5) is convergent. 
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We thus obtain the following diagram of the Wallach set, 

x 1~0 x~ x s ..o x,~c ~i ~ ... ~r~Ca 

( 
.oo ooo 

r discrete points r points holomorphic discrete series 

The values xj correspond to Hilbert  spaces defined by  certain systems of partial  differential 

equations, while the values ~j correspond to various " H a r d y  spaces"; in both cases these 

are determined by  certain boundary orbits. 

In  chapter 5, we investigate the possibility of describing the norms of some of the 

spaces H a for ~ > c intrinsically in terms of the holomorphic functions in H a. Of course, if 

is sufficiently large, i.e., if ~>ca, Ha is in the holomorphic discrete series, where c a was 

determined by  tIarish-Chandra. Recall tha t  in [20a] we calculated ca in terms of the con- 

vergence of some simple integral on ~ and here H~ has an intrinsic description as a space 

of holomorphie functions, square integrable on D, for some measure dxd#~(y), (dtt ~ on ~).  

Now for the r points situated equidistantly between ~r=ca and ~ we show tha t  

the abstract  norm in H~ is a Ha rdy  type norm; namely 

H ~  = {F holomorphic in R n + i ~  such tha t  

IIFI]2 = sup IF(x+i(y+t))l~dxd#,(y)< ~} .  
t e ~  x ~ n  

yEO~ 

Of course if i = 1 ,  i.e., 0 ~ { 0 }  we find the usual Hardy  space H ~. 

We can t~ke boundary values on E~ = R~+iO~ in the corresponding L2-norms; a~d if 

O~ 4 {0}, we can characterize the space of boundary values as weak solutions of certain 

first order left invariant  differential operators. These are the tangential Cauehy-Riemann 

equations on the real submanifold E~. 

In  chapter 6, we produce for each ~ ,  1 <i<~r, a maximal  parabolic subgroup P~ of 

the group G(D) and a unitary irreducible representation of P~ such tha t  the corresponding 

induced representation T~ is reducible, having H~ i as proper irreducible subspace. These 

are new examples of reducible principal series representations. I f  i :~ r, the series are de- 

generate. I f  i = r, the corresponding representation was studied by  Knapp  and Okamoto 

[10]. 

Except  when i = 1 in the tube case (where E1 is totally real and has no "holomorphio 

tangent  space"), these tangential Cauchy-Riemann equations on Z~ characterize the space 

H~.  In  this case then, we cannot find an irreducible piece of T~ by  "holomorphie induction", 

but  we have to allow more general differential equations. Otherwise put, when, in general, 
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we cut down a representation by introducing a complex Lie algebra ~ c 6~ we should not 

require that  ~ +~ is also a Lie algebra; our spaces H~ provide such an example. 

We here acknowledge that  K. Gross and R. Kunze, in their s tudy of the decomposi- 

tion of a metapleetic representation in [7], produced some of these spaces H~, suggesting 

to us that  there should be some analytic continuation through the limit point of Knapp- 

Okamoto [10] (for the universal covering of SL(2;R) see [19] and [22]). Our present results 

concern the ease of scalar valued holomorphic functions, corresponding to holomorphic 

sections of a line bundle on G/K. We wish to thank Nieole Conze, Ray Kunze, Mustapha 

Rais, Eli Stein and Nolan Wallach for much friendly help and conversation on the topics 

of this work. 

1. An algebraic result 

1.1. Let 9 be a simple Lie algebra and g = ~ + p  a Caftan decomposition for ft. We 

shall suppose that  ~ has a non.empty center 3; then 3 = RZ, where the eigenvalues of the 

adjoint action of Z on pc are __+ i. Let 

~+ = { x  e ~~ [z, x ]  = ix} ,  

~- = { x  e ~~ [z, x ]  = - i x } .  
We have ~ = [f, ~] | RZ. 

Let ~ be the simply connected group with Lie algebra 9" For X E 9 and r a differentiable 

function on O, we shall let r(X) ~ denote the function (r(X) ~) (g) = (d/dt) r exp tX)[t ~o. 
For X E fie, we define r(X) by I/nearity. 

Let K be the analytic subgroup of ~ with Lie algebra f. Then 0[f~ is a hermitian sym- 

metric space. The holomorphie functions on ~[K can be identified as the space of functions 

on ~ which are annihilated by all the vector fields r(X), with XEfC+p -. Notice t h a t / ~  

is not compact: ~ = [ ~ ,  ~] -exp RZ, ~ t h  [~, ~] compact. 

Now let ~ be a maximal abelian subalgebra of ~. We have ~ = ~ (I [~, r] + RZ, (~ (/[~, ~])e 

is a Caftan subalgebra of [f, t] c and ~z is a Caiman subalgebra of tic. We shall let <, } de- 

note the Killing form, and x ~ 2  the conjugation in gc relative to the real form g of fie. 

Let A denote the system of roots of tic relative to ~c; these roots take purely imaginary 

values on ~. We have 
A =AtUA~ 

where 
A~ = (y~A; (g~ c ~o} 

Choose an ordering on the roots so that  p + = ~ + f l ~ ,  and let 

~EA+ 
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If yEA, let H e be the unique element of i~ N [(go)y, (9c)-e] such that  ?(He) =2. We have 

2 
<Y, Y> </4e' H> = y(H). 

For y 6 A~, choose E v 6 (gc)e so that  [Ev, Ee] : He, and put  E~ = E_ e, and X e : E e + E_ e. 

Then 
O = ~ ~> R X y  + ~ (D R( iE  e - iE_y). 

Let r be the real rank of g, and 7r the highest root; then Hyr6 (~ N [L ~])c. 

1.2. Realization of ( ; /K as a bounded domain ([8], IV, or [9]) 

Let  Gc be the simply connected group with Lie algebra gc and G, K, Kc, P+ and P_ 

the connected subgroups of Gc with Lie algebra g, ~, ~c p+, ~-, respectively. Note that  

~//~ is canonically isomorphic to G/K. Every element of P+KcP_ can be written in a 

unique way: 
g = exp ~(g). ~(g). exp ~'(g) 

with ~(g)E O +, /c(g)E Kc, and ~'(g)E O-. We have G c P+KcP- ,  and the map g->/c(g) lifts to 

a map also denoted It(g) of G into/~c,  the universal cover of K c. The map g ~ ( g )  induces 

a biholomorphism of the complex manifold G/K onto a bounded domain ~ in p+. For 

X 6 ~ ,  we shall denote by g. X the unique element of ~ such that  

gexp  XE exp ( g . X ) K c P .  

We know th'~t the action of G on D extends continuously to the closure ~ of D in p+; i.e., 

for any X ~ ,  g.exp X E P + K c P .  

1.3. The discrete holomorphic series ([8], V and VI) 

Let  A o be a dominant weight of [L ~], i.e., A0 is a linear form on (~ N [L ~])c such that  

Ao(H~) is a non-negative integer for every compact positive root cr Let  U o be the repre- 

sentation of [K, K] with highest weight A0; U 0 acts in a finite dimensional Hilbert space 

VAo. We shall let VAo denote the vector of highest weight A0, normalized so that  HVAoll = 1, 

For 2 any real number let A = (A0, 2) be the linear form on ~)c whose restriction to (~ N [L ~])c 

is Ao and such that  <A, Her } ~2.  Let  U A be the representation of K of highest weight 

A; UA acts on VA = VAo, restricting to [K, K] as UA0 and vA. is also the highest weight 

vector for U A and we have 

H'VAo = <A, H}VAo for all H 6~. 

The pair (A0, 2) = A parametrizes the irreducible unitary representations of K. 
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1.3.1, Definition. 0(A) ~ {r C ~~ function on 0 with values in VA such that  

(i) r162 g e 0 ,  kC/~. 

(if) r(X).r  =0 for all XCp-}.  

0 acts by left translations in O(A), we denote this action by TA: (TA(X)r (g) = r 

Now O(A) can be realized as the space O(VA) of VA-valued holomorphic functions on 

0//~ as follows. Letting U A also denote the (holomorphic) representation of/~c which re- 

stricts to U A on/~,  we put 

(1.3.2) r = UA(k(g)). 

r  is an operator-valued function on 0, and we obtain 

(1.3.3) O(A) = {4 :r = r176 with F e O(VA)}. 

Thus, corresponding to any v EVA, we obtain the element ~fX in 0(VA) given by 

~ ( g )  = 4~(g)-1. v. 

1.3.4. De/inition. Given A and the highest weight vector VA, we define the scalar 

function on 0 

~A(g) = (~A(g), VA~ = (r176 VA~ 

(where the inner product is in VA). 

Let /:A be the subspace of O(A) generated by the left translates of r  

I t  is easy to see that  because of the invariance conditions defining O(A), the cor- 

respondence 

0.3.5) ~-~(r vA) 

identifies O(A) as a space of functions on 0. In fact, taking ~_ = ~<0  6a, and 

O'(A) = (4; C~ functions on 0 with scalar values such that  

r ( x ) . r  x e ~ _  

r ( H ) . r  - ( A , H ) r  Hr 

the correspondence (1.3.5) is an isomorphism of O(A) with 0'(A). 

Now, if r E O(A), r transforms o n  the right by  a unitary character of the center Z(G) 

of 0; (as Z(0) c / s  and r = UA(z)-lr We introduce the  Hilbert space 

H(A)={r162 r ~} .  (1.3.6) 
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Harish-Chandra ([8], VI) has proven that  H(A) 4= {0} if and only if < i  + e, H~,> < 0. Since 

H(A) is (viewed as a subspaee of O'(A)) a space of functions on ~, square inf~grable over 

O/Z(G), and (viewed as a subspaee of O(VA)) is a space of holomorphie veetorvalued 

functions on ~[I~, the representation TA is seen to be an irreducible unitary representation 

of G, which belongs to the relative discrete series of 0.  Thus T A is said to belong to the 

discrete holomorphic series of ~. 

Now H(A) (when non-zero), is in one interpretation, a Hilbert space of holomorphic 

functions and admits a reproducing Kernel function. This kernel function is realized in 

O'(A) by the function YJA. This assertion is based on the following computations ([8], V, 

VI): 

When H(A) #{0),  the function y~A is in H(A), and for 1 the identity of ~ we have, 

for r EH(A) 
1 

<r v>v A = <yj~A, yjs <r ~vX> Hc~. 0.3.7) 

Let  

(1.3.8) 

We have 

(1.3.9) c(A) = (1-i <h + e, HB>]-I 
U>0 <e,/4B> / " 

Now, by (1.3.8), taking ~b = TA(x)W~A, (1.3.7) becomes 

(1.3.10) @~,~, TA@) ~A> = c(A) WA(x). 

This is essentially equivaIent to (1.3.7), for EA is dense in H(A), since TA is irreducible. 

Finally, by (1.3.10) the norm of an element of EA becomes 

(1.3.11) H ~ c, T ( g , ) ~  H 2 = c(h)] ~c, ej~,A(e;~ej)] 
Lt  

1.4. Analytic continuation of the discrete series 

More generally, let us fix A0, a linear form on (3 N [3, ~])c such that  A0(H~) is a non- 

negative integer, for every positive compact root ~. For 2 E R, we denote by  A = (A 0, 2) 

the linear form on ~c given by  

A I (1) 0 [L ~])c = Ao ' A(Hr,) = 2, 

and now in this general context, we define as above the s 0(A), %0 A. 

1.4.2. De/inition. PA,={A6R; VA is of positive type, i.e., for all {c~6O), {g,6G), 
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For 2 EPA0, we can define a left-invariant scalar product on s by 

t 

We shall let He(A ) denote the completion of s in this norm, and s 4) the norm of 

CEEA. Thus, by (1.4.1), if H(A) =~{0}, i.e., if (A+r Hy,} <0, FA is of positive type, 2 ePA,, 

and H0(A ) =H(A) with 

N(A; 4) ~ 
hTo(A;r e(A) " 

1.4.3. LEM~A. For 2 EP2,o, HdA) can be identi]ied with a subspaee o/ O(A). We have 

IIFII =o q an~ only q F=O, ~nd 

(1.4.4) 

The representation by le/t translation, T A, o / ~  on H0(A ) is unitary and irreducible. T A is a 

member o/the relative discrete holomorphic series o /G only i / ( A  + e, HTr) < O. 

JProo/. By  (1.3.4), the definition of ~fA, we have 

(1A.5) (TA(g) ~0L~, ~o~}  . , ( ~  ---- ~oA(g -1) = (TA(~) ~o~A(1), vA}, 

which is just (1.4.4) for 2 '= TA(g)y~a. Taking linear combinations, the equation persists, 

so (1.4.4) is proven. More generally, for FE s we have 

( F (go), IC . V A}v A = ( F, TA(go)~0~."A)~~ 

so that point evaluation of functions in L~A is H0(A)-norm continuous. Thus the identifica- 

tion of CA as a subspaee of O(VA) realizes EA as a normed space of VA-valued holomorphie 

functions on ~]K for which point evaluations are norm continuous. From this one easily 

proves in the standard way that the norm completion H0(A ) of s is a Hilbert subspace of 

the space O(VA) of VA-valued holomorphic functions on ~/K. That TA is irreducible and 

unitary follows as in [14]. 

Finally, by (1.4.5), the coefficient corresponding to ~fXA is ~aA; and ~a A is square-in- 

tegrable on ~]Z(~) only if (A +Q, Hyr} <0. 

Thus, for 2 EPAo, one constructs an irreducible unitary representation T A of ~ in a 

Hilbert subspace of O(A). Our problem is to determine explicitly the set PA,, and to iden- 

tify in some reasonable way, the corresponding representations T a. 
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1.5. Associated infinitesimal modules 

We shall denote the enveloping algebra of gc by ~.  Let  u-+~u be the linear antiauto- 

morphism of ~/which extends the map x - + - x  on gc and u-+u* the antilinear antiauto- 

morphism which extends the map x-+ - ~  on gc. Let  M be a ~/-module and B a hermitian 

form on M. We shall say that  B is g-invariant if B(u.m,  m') = B(m, u*m'). Let  fi+ = ~ + g ~  

and (as before) g- = ~ r ~_ g~. We have ~/= (~/fl+ (i) g-~/) | ~/(~)c. We shall let y(u) represent 

the unique element of ~/(~))c such that  u - y ( u )  is in ~/$+| g-~. Since the algebra ~(~)c 

is canonically identified with t h e  algebra $(~)c of polynomials on the duM of ~c, we can 

calculate <A, u> for all u E ~/(~)c. The form Ba(u, v) = <A, y(v*u)> is clearly a g-invariant 

hermitian form. Let  Sa be the form on ~/defined by 

~ ( n )  = <h,  7('u)>. 

Now the enveloping algebra of ~c operates on the left in O(A) by extending the action 

of fl given by 
d 

( z .  r  (.q) = h~ r  ( - tz)  ~)[~:o. 

Let WA = ~/.F~v; WA ~ Oh, and we have the following fact: 

1.5.1. L ]~ M ~ A. (i) ~o~A is an extreme vector o/weight A. (if) W A is an irreducible ~-module. 

The annihilator M A o / ~ v  is the kernel o/ BA: 

MA = {n; <A, y(v*u)) = 0 ]or all v e "bl). 

B A thus defines a nondegenerate form on WA, and every other g-invariant hermitian form is 

proportional to B A. 

Pro@ Notice that  the map r162 given by 

~(u) = <('u.r vA> 

sends WA onto ~ .  ~A ~ ~*- This map is injective. I t  is known [24a] that  the module ~/. ~A 

is irreducible. The rest of the lemma is in ([8], IV). 

1.5.2. PP.OPOSlTION. s176 i/ and only if (A ,  y(u*u)} >~0 for all uE ~.  In  this case 

W A can be identified as the ~Tace e/K-]ini te  vectors in H0(A ) and 

~o(A, u .  ~A)~ = (A, y(u*u)>. 

Pro@ Suppose 2 EP~0. Then ~o~x is in :H0(A) and is K-finite. Since the representation 

TA on tH0(A ) is irreducible, WA is the space of K-finite vectors for this representation. Thus 

we can define 
{u, v} = <u. ~ ,  v .  ~A>~oIA ~, 
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a g-invariant hermitian form. Then, by 1.5.1, {u, v}=c(A,  7(v*u)} for some c. Since 
v A v A (10A , ~o A )u~(et)=l, c = l  so that  

(A,)J(u*u)} = No(A, u.  ~fgA) 2 >t O. 

Conversely, suppose (A, 7(u'u)} >10 for all u. Then 

(u .  ~o~, v,  ~ � 9  = (A,y(v*n)) 

defines an invariant scalar product on WA. In particular, 

(1.5.3) ( (u .  ~0~A) (1), va)v~ = (A, r(u)} = (u .  ~o~, ~v~}. 

Let ~/0(A) be the completion of WA in this inner product. Because of (1.5.3); we prove 

(as in Lemma 1.4.3), that  N0(A) is a t t i lbert  space of functions in O(A) on which G acts 

unitarily by left-translations. By continuity, (1.5.3) is true for U-~f~A replaced by any 

function r in ~0(A); in particular, r = T(g-1)~0~A. We obtain 

VA VA ~A(g) = @~(g) ,  VA)v~ := (T(g-~)~o2~, va)v~ = (T(g -~) ~0A, ~0A ), 

from which it immediately follows that  lPA is of positive type. Thus ,t EPA0 (and ~0(A)= 

7ggA)). 

1.5.4. COnOLLARY. I /~EPA~ , then 2 <~0. 

Proof. For )~ EPAo, 
(A,  y(E*- ~,rE-vr)} ~ O. 

But E*_:,~ = - E y r  and EyrE_~, r = E_vr Eyr + Hvr , so that  we must have ~ ~ (A, HTr ) <~ O. 

Let us now consider the Verma module M(A + 0) whichis the universal module of highest 

weight A; (see [3]), ~hat is for IA the left ideal generated by g+ and H - A ( H )  (HE~ c) 

and M(A+~))= U/IA; let 1A denote the image of 1 in M(A+o) ;  the module Wet is there 

the unique simple quotient of M(A + ~). 

Let a A be the annihilator of v a in the enveloping algebra ~/({c) of ~c. Then Met, the 

annihilator of ~0~A contains JA= IA+ UaA and is the unique maximal left ideal in 

containing J~x- As Nicole Conze has shown to us, we have 

1.5.5. PnOPOSlTION (N. Conze). / / ( A  +~, HT} ~${1, 2 ...... n . . . .  } /or  every noncompact 

positive root y, then J h is a maximal te/t ideal in ~.  

Pro@ We have to show that  M(A +~)/JA" IA is a simple module. Let  2V be a submo- 

dule of M(A+~)  containing JA" lh, then there exists a form tt on ~e and a vector e~ i n n  

such that  
X . %  =0, XEg + 

and H.e,~ =I,t(H) e~,, H E ~c and so M(/, +0) c M(A +~)). 
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Let  us show that  A - #  is a linear combination of compact positive roots. If # 1 - # 3  

is a linear combination with non-negative integral coefficients of positive roots, we will 

write #1 >g~. If  ~ is a root, we will denote by  S~ the symmetry with respect to the root a; 

i.e., S:(fi)=fl-fl(H~)o~. By Bernstein-Gelfand-Gelfand (Th. 7.6.23, [3]), there exists 

~1, ~ .. . .  , ~ positive roots such that  

A +  q > S~,(A + q) >S~:- S~,(A+ e) > "" > 8 ~  ... S~,(A + q) = # +  0 

and so i t  is sufficient to prove tha t  the ~ are compact roots; ~1 is compact, as A + ~ >  

S:~(A +e)  means that  <A+ e, H~,> e{1, 2 ..... }. 

Let  us suppose that  we have proved that  ~1, ~2 ..... ~ are compact positive roots. 

We then have 

<&~ ... & d A  + q), H~+~> e {1, 2, a , . . .}  = <h + q, Hz~ ... z~(~,+~)>. 

But  if ~,+, was a non-compact positive root, as p+ is stable by  fo, so will S~, ... Sa,(oq+l), 
and we will reach a contradiction, and so ~*+1 is a compact positive root. 

We conclude as in Harish-Chandra ([8], IV): i.e., as M(A+q)= N(p-)" N(~c). 1A, we 

see that  it is necessary that  eg belongs to ~/(Ic). 1A" After factorizing through aA, we see 

that  eg, being an extreme vector of the simple module VA, is equal to 0 or 1A mod a A. 

Remark. We can see in some particular examples tha t  the condition of Proposition 

1.5.5 is not necessary for the irreducibility of JA. 

1.5.6. COROLLARY. Let An(A0;  4). I ]  <A+e,  Hrr)~<1, then ~6PAo. 

Prool. If (A+~ ,  H ~ r ) < l ,  then if 7 is another positive noncompaet root we have 

7-=7~-~.mf~q, with ~ E A  + and mi>0,  so 

<y,y> s/r, <y, 7> &,, 
- < 7 7 r , >  - 

and as <~, Ha, > >0  for all positive roots and <y, Y> <<Y,, Y,> (7, is a large root), we see that  

<A+q, Hv> ~ < A + q ,  H~,> <1.  

So the module WA can be identified with 'R/JA='U(p-)|174 VAo which is 

fixed when A0 is fixed. The hermitian form BA is non-degenerate on this module, wherever 

2+<~, H~,> < 1. So by  continuity argument, it remains positive definite, at  least where 

+ <~, H~r > < 1, and positive semi-definite if X + <~, H~,> ~< 1. 

By this corollary, we see already the possibility of passing through the limit point 

2 + <Q, HTr> = 0 for the construction of the representation T A. But  in this paper, we will 

mainly be concerned with the ease where A 0 = 0. 
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2. The relation of ~^ with the reproducing kernel function 

2.1. Realization as a Siegel domain D ( ~ ,  Q) 

2.1.1. De/inition. [18]. Let  gs be an open convex cone in a real vector space V. The 

dual cone ~* is the cone 

s = (~E V*; (~, y ) > 0  for all y E ~ - ( 0 } } .  

We shall say tha t  s is a proper cone when ~2"4~.  We shall le~ D(~2) ~ V c be the tube over 

~2:/)(g2) = V§ Such a tube is called a Siegel domain o/type I (SI). 

Let  W be a complex vector space, and Q a hermitian form on W taking values in F c 

such tha t  
Q(u, u) E ~ - ~0} for all u e W, u ~= 0. 

We let D(~2, Q) be the open subset of V e • W defined by 

D(~, Q) = {p = (x +iy, u); y-Q(u,  u)E~). 

Such a domain is called a Siegel domain o/type I I  (SII). 

2.1.2. We know tha t  for G, K as in the preceding section, the hermitian symmetric 

space G/.K m a y  be realized as an S I I  domain [13]. In  order to fix the notation, let us 

recall this construction (see [13]; also I l l ]  and [20a]). 

Le t  ~F be a maximal  set of orthogonal non-compact positive roots, chosen as follows. 

Pu t  the largest root in 1I/and successively choose the largest root orthogonal to those al- 

ready chosen. This process ends when we have obtained r roots: iF = (~1, ~'2 ... . .  ~r), where, 

for each j, ~ is the largest non-compact positive root orthogonal to Yl+z .... .  ~'r- (Notice 

tha t  ~r is the largest root; thus our convention differs from tha t  of C. C. Moore [16]). 

For X v = E z + E_v, let a = ~ RX~,. a is a maximal  abelian subalgebra of p, and r 

is the real rank of g. Let  ~ r = ~ w ~  RH~,. Identifying ~ with its restriction to ~ ,  we have 

y~(Hvj ) = 2 ~  and the theorem of C. C. Moore: 

2.1.3. T ~ E O R E ~  ([16]). The non-zero restrictions o /A  to ~r /orm one o/ these two sets: 

(Case 1): {+~y~+_�89 1 ~i<~j<~r}, 

(Case 2): (___�89177189 1 ~i<~j<~r) U ( • 1 8 9  1 <~i<~r). 

In  case 1, the non-zero restrictions of the positive compact roots form the set ( �89 

]>i). The restrictions of the positive non-compact roots are non-zero and form the set 

(�89 ]>~i). The only root of restriction y~ to ~r is y~. In  case 2, the non-zero restric- 

tions of the positive compact roots form the set (�89 (�89 l<~i<~r). The 
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restrictions of the non-compact positive roots are non-zero and form the set 

{�89 ]>~i} U {�89 1 •i•r}. The only root of restriction 74 to ~r is 7~" In both cases, 

tile 7~ have the same length. 

2.1.4. LEMMA. Hv~-H~,tE(~ N [~, ~])c. 

Proo]. Since 7~ and 7j have the same length, it suffices to see that  7~-YJ is zero on $. 

But  this is clear since 74 and ~f iA~.  

2.1.5. The Cayley trans/orm. Let  Go be the simply connected Lie group with Lie al- 

gebra go. If y e A~, we define c v e G c by 

Z E  c v = e x p ( - ~ ( , - E - v )  ) -  

Adc v is an automorphism of go taking H v to X v. The Cayley trans/or~ ined as 

r 

c = c ~  = YI  % (~F) = (TJ . . . .  ~)).  
i -1  

(The cv, commute since 7~ and 7J are strongly orthogonal). We introduce the partial Cayley 

trans/orms 

Z=J 

Thus c=cl, ct=cvr and the following formulae are valid (as is easy to see by looking at 

SL(2, C) [9]). 

2.1.6. For 7eA~,  teR,  

exp (~/4) (E_ v - Ev) = exp ( - Ev). exp (log V2Hv) .exp (E v) 

= exp (E v).ex p ( - l o g  ~ H v ) . e x  p ( - Ev). 

exp t(E~, + Er) = exp (tanh tEv).ex p ( - l o g  (cosh t)Hr).ex p (tanh tE_v). 

(2.1.7) %(Ev) = �89 v - E _  v -Hv).  

c = exp ( - Z E . ) .  exp (log V2 Z/ /v , )  "exp (Z E_v, ) 

(2.1.8) = exp (Z E-v,)" exp ( - log [/2 Z Hr,)" exp (~ Ev~ ). 

2.2. The Iwasawa decomposition 

For a a linear form on a, we shall write 

~ = {X eg; [A, X] = , (A)X,  A Ea}. 



ANALYTIC CONTIIqUATION O1~ IIOLOMOI~I)I-IIC DISCRETE SEI~IES 15 

Let  ~1, "",  gr be the  restrict ions to a of the  Cayley t ransforms of the  roots  ?1, -.', ?~- Then  

~j(Xw) = 2 ~ .  We shall fix an order on the  dual  vector  space a* so t h a t  gl < ~2 <-. .  < ~r. 

2.2.1. T~EOREM. (C. C. Moore [16]). (a) The system o/positive roots o/ g with respect 

to a are (corresponding to the two cases o/ Theorem 2.1.3): 

(Case 1) { � 8 9  1 <.<i<~}<~r} U {�89162 1 <<.]<i<~r}, 

(Case 2) {�89162 ccj); 1 <~i <~j <r} U { � 8 9  1 -< j <i  <r} U {�89 1 <~i <~r}. 

The set S o/simple roots is 

(Case 1) S = {g~, �89 o~1) . . . .  , �89162162 

( C ~ 8 e  2)  Z = {1~1, �89 . . . . .  �89 ~ r_ l )} .  

The vectors space ~ is one dimensional. 

(h) The action o/ the Weyl group on n* consists o/ all tran~/ormations ~-~ • ~o~ /or all 

permutations ~ o/ {1, ..., r}. 

Par t  (a) of this theorem follows immedia te ly  f rom Theorem 2.1,3. F rom pa r t  (b) it 

follows tha t  the integers 

(2.2.2) p = dim fl~l~(~+~), # = dim f l ~ %  

are independent  of i and  ], and  p=dimfl~/e(~r~r ). Note  t h a t  for r > l ,  we have  p > 0  and 

# >~ 0. F = 0 only in case 1. 

Le t  f l = ~ > 0 f l  ~. Then  ~ = ~ ) a G ~ .  Le t  l ~ = q ~ ,  5+=~Cn (~eop+), 5-=I~CN (~c~p_),  

so t ha t  5 c = 5 + ~ 5  -.  Since 5+N 5 - { 0 } ,  5 + is complemen ta ry  (in 5 c as real spaces) to 5, 

as well as i5. Thus 5 + is the  graph  of a t r ans format ion  of 5 to i5. Le t  J :  5-+ 5 be defined 

so t h a t  5 + = { X -  iJX;  X 6 b}. I t  follows tha t  5 -  = {X + i JX;  X E b}. Note  t ha t  

U~ = 1 (iHv~ - i(E~,, - E_vi)) 

is real. B y  (2.1.7), c~r(Evi ) =iUi,  so U~6~ ~. Since 

1 " 1 

r 1 r JU~=�89 w. Now let s = ~ = l  U~, so t h a t  J 8 = ~ i =  1 X w. J8 is semi-simple and  has eigen- 

values 0, ___ I ,  ~+ 1 on g. We consider the decomposi t ion of g into Js-eigenspaces 

9 = 9 ( - 1 ) | 1 7 4 1 8 9 1 7 4  �9 

Then  5=~H0| with ~/oCg(0), ~/1,~=~(�89 ~/~=~(1). More explici t ly 

(2.2.3) :Ho ~ a + .~. ~ 1/2(~r~j), :H1/2 = ~ ~12 ~, :H1 = ~ V 112(~+~j~. 
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2.2.4. LElg~IA. (a) c(E~,~)=iU~. 

(b) J~o = ~1, J(~11~)= rlt11~ and J X  = [s, X]/or X 6 ~lt o. In  particular/or i >] fixed, 

j(~l/2(~-~p) = V112(~+~p, and J X  = [Uj, X], j(~1/2~) = ~1/2% 

+ ~/- ~'~1/2, (c) Let ~/~=~+N ~ ,  ~i)~=~-N ~/~2. Then ~ = ~ l 1 2 Q  ~12, and ~/{/2=c(p +) N c 
~52=c(F) n c + c 

This is easily proven. For example, for (c): let 7 be a root of A with restriction �89 on 

~r. Using Theorem 2.1.3, it follows from (2.1.8) that  

1 E Ev] ). c(E~) =~(E~+[ _~,, 

Thus, if ? is compact, c(E~,)6 ~i)2, and if 7 is noncompact and thus positive, c(E~,)s ~ 2 .  

2.3. Let B, A, N, H 0 be the connected subgroups of G with Lie algebra ~, a, ~1, ~/0 respec- 

tively. Since these are simply connected groups we can denote by the same symbols the 

corresponding subgroups of (~. Then ~ =/~.  B and G = K . B .  B is a solvable group, and 

every element of B can be written uniquely in the form b =ho'ex p U.exp X with h06H 0, 

U6~1/2, X 6 ~  1. Let .] l={g6k; ga=afl for all a6A}. Then ~ has Lie algebra m={Z6~; 

[X, A] =0 for all A 6a}. Let G(0)={g6~; g.Js=Js}.  ~(0) has fi(0) as its Lie algebra, and 

leaves ~/~/~, ~/~ invariant under the adjoint action. Similarly, let G(0)-  {g 6 G; g.Js =Js}. 

2.3.1. Definition. Let ~=G(0)-s ,  the orbit of s under the adjoin~ action of G(0) on 

~ .  Let 
e = ( ~ e ~ ,  <~, x > > o  for all x e ~ - ( o } } .  

Let 0 be the Cartan involution (O(X)=X, X6{, 0(X)= - X ,  X6p). The form S(X, Y)= 

- <X, 0 Y> is a symmetric positive definite form on g and thus its restriction %o ~x defines 

an isomorphism ~: ~ - ~ * .  Let ~o=~U*; ~o is determined by the equations 

~ 0 ( ~ V  1/2(gt+~cj)) ~-~-0, ~:0(Ut) = 1. 

~0 is a positive multiple of ~(s). 

Let g-~g* be the involutive antiautomorphism of G defined by (exp X)* = (exp O(X)) -~. 

Then K={g;  gg*=id}, and S(g.X, Y) =S(X, q'Y) for all g6G. The involution g-+g* pre- 

serves G(0), and K, and therefore K(0) = G(0) A K. I t  follows that  

(2.3.2) ~(g.X)=(g*)-~.~(X), ge(~(0), Zeal .  

2.3.3. PROrOSITION. [13] ~ is an open convex cone in ~1" The correspondence ~ is an 

isomorphism of g2 and ~*. K(O) is the isotropy group o/ s 6 ~  and ~o6s *. The map h-+h.s 

is a dil/eomorphism of H o onto ~. Similarly h-+h.~o is a di//eomorphism o /H  o onto ~*. 
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For tE~ ,  we shall let t-~h(t) denote the inverse to the above diffeomorphism of H 0 

onto ~;  i.e., h(t) is the unique element of H 0 such tha t  t=h(t).s.  Similarly, for ~E~*, 

h(~) E H 0 is defined by  ~ = h(~)" 40. 

I f  r is a continuous, compactly supported function defined on ~,  resp. g2*, we have 

far f.~~162 far162 

f~, r ~) det~,~( h( ~) ) d~ = f .~ c(h " ~o) dh = f a(o) C(g " ~o) dg 

(here dh is the left-invariant Haar  measure of H 0 and dg is the Haar  measure of G(0) 

(which is unimodular)). 

Now, ~1/~ is J-s table and, since [ ~ e ,  ~ e ]  ~ 5+ fi ~ = (0}, we have [Ju, Jv] = [u, v] 
c for all u, v E ~ 2 .  Since ~ 2  is the §  eigenspace of J on ~1/2, the map v: ~ i / 2 - + ~ 2  de- 

fined by  ~(u)= �89  is a complex isomorphism of ~41/2 (furnished with the complex 

structure J)  and ~ 2 .  G(0) leaves ~4~2 invariant. We introduce the hermitian ~lC-valued 

form Q on ~t~2: 

i Q(u, v) = ~ [u, ~]. 

2.3.4. LEMMA. Q is an s /orm. We have 

Q(go.u, go.v) =go.Q(u, v) /or all u, ver i ly ,  goeG(O). 

We shall see tha t  G/K is isomorphic to the Siegel domain D(~,  Q) ~ ~41 c O ~4~9.. 

Let  us recall the map (section 1.2) ~ of G into O + which determines an isomorphism 

of G/K onto a bounded domain ~ in p+. We know tha t  c-lG ~P+KcP_.  Thus we can de- 

fine ~: G - ~ c |  by ~(g)=c.~(c-~g). 

2.3.5. PROPOSITION. ~ determines a G-invariant biholomorphism o] G/K onto D(~;  Q). 

In  this realization B acts as a group o/ a/line trans/ormations o/ ~1C ~) ~-~1+[2" 

More precisely, let b =ho-ex p Xo.ex p Uo~B. Then 

(2.3.6) b. (z, u) ~ (ho.Xo + ho.z +Q(ho.u, ho.v(Uo)), ho.u + ho.~(Uo) ). 

Let Oo(t ) = detu,,~ h(t) -~ detu, h(t) -~ (these determinants are taken in the sense of real vec- 

tor spaces). I f  F is a continuous compactly supported function on D(~,  Q), 

where dg is t t aa r  measure of G, db is left-invariant Haar  measure for B and dxdydu is 

Lebesgue measure on ~ c  O T~e. 

2 - 752907 Acta mathematbica 1~5. I m p r i m 5  le l~ Avri l  1975 
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2.3.7. Definition. Let P =G(0) exp (~41/2@~1). 

P is a maximal parabolic subgroup of G. I t  can be shown that P acts on D(~, Q) by 

affine transformations given by the formula (2.3.6) (with go replacing ho). Then P is the 

group of all affine transformations leaving D(f2, Q) invariant. We have c-lPccKCP+ 

and c-lG(O)v~K v. If gE~(0), we can thus define the element c-lgc in K c. We shall let U A 

denote the representation of ~cp+ which trivially prolongs UA on/~c along P+. 

2.4. Identification of O(A) as a space of holomorphle functions on D ( ~ ,  Q) 

We now recall, and amplify, the discussion of O(A) given in chapter 1. Since c-lG~ 

P+KCP_, we can consider for gEG, k(c-lg)~K v. Extend the mapping to a map of ~ into 

~c. Let 

(2.4.1) r  = VA(k(r -1" UA(k(c-lg)), 

so that OA(e)= id. Clearly 

r geO. ke~, 

r(X). Oh = O, X e p-. 
Consequently, for any r E O(VA), 

(2.4.2) (PAt) (r ---- (PA(g)-Ir E O(A). 

2.4.3.1)RO~OSI~ION. qb A is a representation of P in GL(VA): 

(i) /or g ~ a(O), CA(g) = UA(~-lgc), 

1 
(fi) /or Ue~11~, (I)A(exp U) ~- U (exp -~c-~U), 

(iii) /or X e'~l, tA(exp X) = id. 

Proo/. For g EP, c-lgc e IfcP + and 

CA(g) = (Ua(k(c-~)) -~ .  Ua(c-~gc). UAk(~-~)) .  

Now from (2.1.8), k(c -~) =exp (log V25Hr,). Since c-1(~40) commutes with 5H~, and SHy, 

acts as the identity on c-1(~1z2), the proposition follows. 

2.4.4. De/inition. Let | D(fl, Q)~GL(VA) be ddined by @A(~(b))=CA(b). 

Then 
0A(X + iy, U) -~ O'S(U)o O'A(y-Q(u, u)) = 0A(y, u), 

with 

0~((u) = UA(ex p V2c-l(~-l(u))), 

O'A(y-Q(u, u)) = th(h(y-Q(u, u)), 

and 0~ is a real polynomial in u. 
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Now PA, as defined by (2.4.2) is an isomorphism of O(VA) with 0(A). Left transla- 

tion TA(9o), for go E~ is written in O(VA) by (2.4.5) TA(g0) (F) (g) = CA(g) o ~PA(g~g)-lF(g~lg). 

We shall let JA(9o, g)=r -1, SO that  (2.4.5) becomes 

(2.4.6) TA(go) (F)(a) = JA(g~ 1, g)-~F(g~g). 

JA is a function on G x G/K, holomorphic in p E G/K( = D(f2, Q)), and satisfying 

JA(gogl, P) = J A(go, glP) " J A(gl, T). 

If  1% = a(1) = (is, 0), JA(ko; 19o) = UA(ko). For g EP, and 19 e D(~, Q), JA(g; P) = (I)A(g), and so 

is independent of/o. Thus PA intertwines the restriction of T A to P and the representation 

of P in O(VA) given by 

(~(go) F)(p) = r F ( g ~ ) .  
Furthermore, 

( P X I ~  A) (g) = (I)A(g) �9 (qp~(g)-i. VA). 

Thus PXI~y,x is a holomorphic function on G/K with values in VA = VAo, and for A = 

(A0; 2), clearly (PXI~p~,A) (p) varies analytically in 2. 

2.4.7. De/inition. Let 

~4(A) = {F, holomorphic on D(s Q) with values in VA~ 

N(A: F) ~ = J-I-(~. Q)]] OA(y, u)-lF(x + iy, u) H ~A~ Oo(y - Q(u, u)) dx dy du }. < 

The following proposition follows easily from the above remarks. 

2.4.8. PROPOSI~IO~r ([20a]). PA is a unitary isomorphism between :H(A) and H(A). 

2.5. The kernel function 

Suppose that  <A +q, H ~ ) < 0 ,  i.e., 74(A)#(0}. For p e D(~2, Q) and v E VA, the func- 

tional _~-+<E(T), v>v A is a continuous linear functional on the Hilberb space ~4(A). I t  fol- 

lows that  there is a function RA( p, p') with values in GL(VA) such that  

(a) 

(b) 

(c) 

RA(p, P')* = RA(p', P), 

RA(* , p ' )  is holomorphic for all p', 

<F(p), V>vA = <F, RA(', lo)v>~(~. 
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R A will be called the reproducing kernel/unction of ~(A). Since T A is unitary on :H(A) we 

easily obtain 

(2.5.1) R A(g "p, g'p') =- JA(g; P) RA(p, P ' )J  A(g; P')*. 

2.5.2. PI~OPOSITIo~. 1] <A+~, HTr ) <0, 

_ . c ( A )  
PXI~A = ~ (RA( �9 P0)" v). 

In  fact, since (Pxlr = r we have 

<pxlr  p X l ~ >  = <r ~v~) = c(A) (r v> _ c(A) 
<v, v> <v, v> ((P7"1 r (po), v> 

c(A) ~ . - 1 1  
- <-~,v) \ ~ h  ~ ,  R A ( ' ,  P0) V>. 

2.5.3. De/inition. If (A+~ ,  H~r ) <0, let 

R~ p') = c(A) R~ p'). 

The formulas (2.5.1, 2.5.2) show that  R~ is defined for all A = (Ao, 2), and is analytic 

in 2. We shall thus consider R~ so defined for all A = (Ao, 2). R ~ has these properties: 

(2.5.4) (a) R~(.,  p) is holomorphic on D(~,  Q) for all p, 

R 0 t ~  ~ t ~ ,  (b) A~ ,  t- J = R~ ', P) 

(e) R~(p0, P0)'vA = vA 

(d) R~ g'P2) = JA(g, p~)R~ P~)Jh(g P2)*. 

I~ fact, at P0, for v E V~, 

R~ ' , P0)" v = ((v, v>)PXlyJ~, 

and (d) serves to continue R~ throughout D(~,  Q) • D(FZ, Q). 

2.5.5. De/inition. R ~ is a kernel/unction if the following property (P) is satisfied: 

(P) For all NEZ+, Pl ..... pNED(~, Q), v 1 .. . .  , vNE V A, 

<R~ p~) v~, v~> >10. 

Clearly if ~ (A)#{0) ,  R~ and since RA is a reproducing kernel for :H(A), it  

satisfies (P), and so also does R~. Now, in any case, when property (P) holds, one can (see 
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[15]) determine uniquely a Hilbert space ~40(A) of VA-valued functions holomorphic on 

D(~2, Q) whose reproducing kernel is R ~ More precisely, define the norm 

hr 

[I. l[ on (F = y R~,(., p,)v,} 

by 

II *']1 ~= ~ <R~(p,, p~)v,, ~>, 
Lt  

and let ~/0(A) be the completion. The relation (2.5.4 d) shows that the representation 

(TA(gd F) (p) = J A ( ~ ;  p)-~- F(g~ ~ �9 p) 

is a unitary irreducible representation of ~ in W0(A). I~eealling definition 1.4.2 and the 

relationship of R~ with ~v~A, we easily obtain the result: 

2.5.6. T*z~O~M. _For A=(Ao, ~), ~EPAo i /and only i/ RA~ veri/ies (P). For such ~, 

P A is a unitary trans/ormation o/ ~o(A) onto Ho(A ) which intertwines the representations o/ 

and satis/ies 
P A ( R ~  �9 , po ) .  vA)  = ~o~A. 

Now, since B acts transitively on D(~, Q) and JA(b, P0) =CA(b), the formulas (2.5.4e 

and d) allow us (in principle) to compute the value of R~ p) on the diagonal of D(s Q) • 

D(~, Q). Furthermore, since R~ p') is holomorphie in (p, ~'), it is determined by its 

restriction to the diagonal, so R~ is completely determined by CA. 

2.6. The  case  of  a character  

In the case A0 =0, where UA is a character of 2 of/~, these expressions become parti- 

cularly simple. We shall make explicit the expression for R~ (to be denoted R~). 

First of all, if A0=0 , <A, Hv~)=(A, H~r ) =;t (from Lemma 2.1.4), and thus CA is a 

character of G(0), given by r tXw)=e t~, r =1 on exp (~/~/~.| ~/i). 

2.6.1. Definition. The Koecher/unction K for the domain D(~) is defined by 

= J~'* e 2,~<~' ~> d~. K(z) 

(d~ is normalized so that K(is)= ~e -2~<~' Z>d~ = 1). 

This integral converges absolutely for all z E D(~) to a non-vanishing holomorphie 
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funct ion [21]. Since D(~)  is s imply  connected,  we can uniquely  define all powers  K a of 

K with K~(is) = 1. Le t  us notice two i m p o r t a n t  facts: 

(2.6.2) K(i(h. s)) = (de%,h) -~ for h fi H o 

(because f~* is H0-invar iant  ). 

I f  (z~,ux), (z~, u~)eD(f~,Q), t hen  z~-5~-2iQ(u~,u~)~D(f~). For,  if we let z i=xi+ 
i(t~+Q(u~, u~)), with t ~ ,  then  

I m  (z 1 -  5~ - 2iQ(u~, u~)) = t~ + t2 + Q(u~, u~) + Q(u~, u~) - Q(u~, u~) - Q(u~, u~) 

(2.6.3) = t~ + t~ + Q ( u~ - u~, u~ - u~) ~ ~, 

since Q(u, u )E~  for all uE~l l~ ,  and  t , E ~ ,  and  fs is a convex open cone. 

L e t  n = d im ~41 = r 

2.6.4 .  P R  o:P o SITIO:N. 

r(r- 1)p 
2 , (p = d im ~e(~+~P) b y  (2.2.1,2) 

Proo]. I t  suffices to  show t h a t  bo th  functions coincide on the  diagonal  of D ( ~ ,  Q) • 

D(f~, Q). Le t  p--(x+i( t+Q(u,  u)), u), wi th  t=h(t).s. Then  

= exp X-  cxp z-l(U), h(t). (is, 0), 
so t h a t  

The  r ight  h a n d  side is 

R](p, p) -- r 

~Tow for  h = exp tX~,~, we can  compute  t h a t  these two expressions are the  same: 

Cx(exp tX~,) ~ = e TM 

( d e ~  exp tX~, )(~)t~ = exp t ((2 + (r n l  ) ") ~r) = e'~t. 

W e  thus  conclude t h a t  2 e P ,  ((0, 2)eP0)  if and  only if ~2,~jR~ u~), (z~, us) ) t>0 for  all 

(z,, u,) e D(~,  Q). 
On the other  hand,  we shall keep in mind  t h a t  p c  {~; ~ ~<0~. 
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3. Hilbert spaces of holomorphic functions on a Siegel domain D ( ~ ,  Q) 
and reproducing kernel functions 

3.1 An abstract theorem of Nussbaum 

Let  ~ be a proper convex cone in the real vector space V, and let Q be an ~-hermitian 

form on the complex vector space W. We form the Siegel domain 

D(~,  Q) = {(z, u) e Vc| W; Im z -Q(u ,  u) e~2}, 

without assuming homogeneity nor symmetry. For F a holomorphie function on D(~,  Q), 

we introduce the function RF holomorphic on D(~,  Q) • D(~,  Q) by 

RF((zl, ul), (z2, u2)) = F ( z l - ~ - 2 i Q ( u l ,  us)). 

We need conditions on F in order that  RF be a reproducing kelalel, i.e., satisfies the pro- 

perty 
N 

(P): • ~,~jRF(pj, P,) >~0, (Pl . . . . .  PN}c])(g2, Q), ( ~  . . . . .  ~N} Ca .  
f. 1=1 

Furthermore, when (P) is satisfied, we wish to describe, in a concrete way, the Hilbert 

space ~(RF) for which B~ is the reproducing kernel. 

Letting r  y E~, the property (P) implies, in particular, that  

(3.1.1) ~ ~, ~j r + yj) >/0. 
Lt  

Now, such functions on semi-groups determine tIilbert spaces, on which translation 

acts unitarily, thus giving a representation of the semi-group gs Such representations of 

semi-groups have been widely studied; we shall need the following representation theorem 

of A. E. 2qussbaum [17]. The condition (3.1.3) below is a condition on the uniform conti- 

nuity of the representation, which we shall be able to verify in our case: 

3.1.2. THEOREM [17]. Let r be a continuous/unction on ~ satis/ying (3.1.1) and 

(3.1.3) r <r for Y0, y E ~ .  

Then there is a positive measure/~ supported in 

~* = (~ e V*; (~, y)  >~ 0 /or all y E ~) ,  

such that 

(3. r  = dF,(e). 

Conversely, given any such a measure i~, clearly the /unction r de/ined by (3.1.4) satis/ies 

(3.1.1) and (3.1.3). 
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I t  should be pointed out that  Nussbaum allows 0 as a value of y in (3.1.1) and asks 

that  r be continuous at 0, and concludes tha t /x  is a finite measure. However the connec- 

tion between this added hypothesis and conclusion is direct, and its deletion leaves the 

above result. In our case Nussbaum's result produces the following. 

3.1.5. PROPOSITION. Let F be holomorphic on D(~).  Suppose that 

.6) F(iy) = f e -2~<~' ~> (3.1 

/or some positive measure # supported on ~*. Then 

(3.1.7) F(z) = f e 2~'<'" z> dtt(~) ' 

and R~ satis/ies property (P). Conversely, i~ RF satis/ies property (P) and, in addition 

(3.1.8) F(i(yo+y)) <~ F(iy) /or y, yoEs 

then there is a positive measure tt supported on ~* such that (3.1.7) holds. 

Proo/. The convergence of the integral in (3.1.6) means that  the integral in (3.1.7) 

converges absolutely. That  integral is holomorphic, as we can see by Morera's criterion: 

for 17 a closed curve in a complex plane, we have 

by Cauehy's theorem. Thus, if F, holomorphic on D(~) satisfies (3.1.6), F must be given 

by (3.1.7), for a holomorphic function on D(~) is determined by its values on {Re z =0}. 

Now, we verify that  R~ satisfies property (P). Let  p~=(z~, u~), 1 ~i~<~V, be in D(~), 

and 2~EC, 1 ~<i~<N. 

I~ As RF(p~, pj) = I--, 2~ ~ j " 

I t  suffices to show that  the integrand is nonnegative on ~*. But  that  integrand is 

~#~fij exp (m~3), where ju~=~ exp (2~i<~, z~>), m~ 3 =<~, Q(u~, uj)}. Now, for ~E~*, u E ~ ,  

<~, Q(u, u)} >~0, so the matrix (m~) is positive semidefinite. I t  follows that  the matrices 

(I/n!) (mt~) are also positive semidefinite, and thus also (exp (m~i))= ~n~_0 (m~/n!). Thus R~ 

verifies (P). 

Conversely given F so that  R~ satisfies (P) and (3.1.8) holds, by the theorem of Nuss- 

baum, 

F(iy) 

for some positive measure/z. Thus, as observed above, F is given by (3.1.7). 
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3.2. Description of H(R~)  

Let/z be a positive measure supported on ~*. We shall assume that  the form 

Q~(u, u) = <~, Q(u, u ) >  

has constant rank for ~ in a set O ~ c ~ *  whose complement is of/z-measure zero. For  

~E~*, define 

Wr = {u o E W; Q~(u o, %) = O} = {u o 6 W; Q~(u, %) = 0 for all u E W}. 

Then W~ is of constant dimension on 0~. 

3.2.2. Definition. For ~ E~*, let d ~  refer to Lebesgue measure on W/W~ so normalized 

/(0) = I /(u) e-4~Q~ TM U) d~ie = </, 1>, 
J w~ w~ 

that  

f w/W~ e-4:*Q~(u' u) d~ ~ ~ 1. 

(Since Q~ induces a positive definite form on W/W~, clearly exp ( -4z~Q~(u, u)) is integrable). 

Let  H(~) be the space of holomorphic functions F on W such that  

(a) F(u+Uo) = F(u) for uo6 W~, 

<b) IIrll : f ,wIF<u)12 exp <- 4=Q,(u, 

H(~) is nonempty: it includes all polynomials independent of W(~); this space of functions 

is dense. 

Let us note tha t  for ~6~*, W~--{0}, and W / W ~ =  W. If  we let du represent Lebesque 

measure (relative to a basis of W fixed once and for all) on W, then 

weXp ( 4uQ~(u, u)) = (det 4Q~) -1, du 

where det Qr is the determinant of the hermitian form Qr relative to this basis. Thus 

d ~  = (det 4Qf) du for ~ 6 ~*. 

3.2.3. LEMMA. For ~E~*, H(~) has the reproducing kernel 

k~(u, v) = e 4~<~" Q(~' ~)>. 

Proo]. For /EH(~) ,  we have 
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as is easily seen by the mean-value theorem (integrating in polar coordinates on W/W~ 

relative to the unit sphere in the Q~-norm). Thus ]% 0--- 1. ~ow, for v ~ W, we define 

(T~(v) F )  (u) = c - ~ r  ~' ~) e ~ ' ~  (~' ~) F ( u  - v). 

(3.~.6) 

Define 

T~(v) acts unitarily on H(~). Thus, for E eH(~), 

( F , / %  , )  = F(v )  = e2:~r ' '  ") T d v ) - ~ F ( 0  ) = e~'Q~ ('" ") ( T d v ) - ~ F ,  1) = e~O~ (~' ~) (F ,  T~(v) 1)) .  

Thus 
k d u ,  v) = k~. ~ (u) -- e ~  ~" ~) T d v  ) (1) (u) = e~Q~ (~' ~) 

I t  follows from this, that  (~c~e4~Q~ ('' up; c~E C, v~E W~ is dense in H(~), and that  the 

norm of such a function is given by 

Also we have for teH(~), 

since I/(u) I ~ = (],/Q. u) ~, applying the Sehwarz inequahty. 

3.2.5. De/inition. Let E(/~; Q) be the space of functions on O# • W of the form 

N 

2'(~,u) = ~l~(~)e ~<~" ~(~'~P>, l~Co(~*), v ~ W .  

and let H(#, Q) be the Hilbert space completion of this space. 

Otherwise put, H(#, Q) is the space of square integrable sections of the fibration 

H(~)->~ over 0 z. The following characterization is more valuable: 

3.2.7. L ~ .  Let ~(y,  Q) be the space o] Borel measurable /unctions E de]ined on 

~* • W such that 

(a) E(~, ")eH(~) /or almost all ~(d#), 

Then H(I~ , Q) is naturally identi/ied with the equivalence classes o/~(l~, Q), modulo d# • du- 

null ]unc~ions. 
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Proo/. Let H0(#, Q) be this space of equivalence classes, and (I): ~(/z, Q)-+Ho(t~, Q) 
the equivalence relation. First of all, H0(/~ , Q) is a ~Iilbert space in the norm []. ]]0 given 

above. 

For s GEH(~) and B a fixed ball in W, we have clearly 

f iG(u )  CM(~)H Glib, <~ 

where M(~) =max  (exp ( +4~Q~(u, u)); u6B}, and C depends only on B. Then if U is a 

small open set in ~*, and M = m a x  {M(4); 46 U}, for any GGH(/z, Q), 

f la(4, <Kllall 
9 •  

where K depends only on B • U. 

Now, let (F~}c ~/(#, Q) be Cauchy in II" 110. Then, for such B, U, {F~} is Cauehy in 

L2(B • U, du • d#). Thus {F~} has a limit in L[oo(du • d#) on ~* • W; let F be this limit. 

We then have 

so, as functions of 4, the inner integrals eonverge to 0 in Z,I(U, dl~ ). We can choose a sub- 

sequence Fnk such that  the inner integrals converge pointwise to zero a.e. (d/~); or, what is 

the same -~'~(4, ")~F(4,  ") in L2(B, du) for almost all 4. Thus F(4, ") is holomorphic on 

B for almost all 4(d/~). Covering W by a tom,table set of such B, we see that  for almost all 

~e .F(~, �9 ) is holomorphic on W. Similarly, since {/~'r,} is II" ]]0-Cauchy, we can conclude that  

for almost atI 4, {Fn(4, ")} is Cauehy in H(~), and F~(4, .) ~ F ( ~ , . )  on W. Thus  F(~,  �9 ) e l l (4 )  

also and IIF (4, . ) - F ( 4 ,  .)11  0 in Ll(d/z). We concIude that  a l l "  l[0-Cauchy sequence 

in H0(#, Q) actually converges to an element of Ho(/~ , Q), so H0(/z , Q) is a tIilbert space. 

1Yow, f o r / '  of the form (3.2.6), clearly _E6 ~4(~u, Q). Since exp (4zQg(u, v)) is the kernel 

function of H(4), we have 

jll (4, .)ll  d (4)--IIFII , IIFii  = 

so the correspondence F ~  (I)F is an isometry of/ : (~,  Q) into H0(/~ , Q). I t  remains to show 

that  the image is dense. 

Let r 6Ho(/~, Q), and suppose tha t  r is orthogonal to the image of s Q). Then for 

all 16Co(gl*), v6 W, r u)[l(4) exp (4~Qg(u, v))]- is in Ll(exp (-4~Q~(u, u)du~du), so by 

Fubini's theorem, 
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Now, since e~'Q~ (~' v) is the kernel function for H(~), the inner integral is 6(~, v), a.e. (~). 

Thus, for all y e W ,  all l~Co(~*), ~ ($ ,  v)l(~)d/x(~) =0. This implies that  r v)=O for al- 

most all ~, i.e., r = 0 in Ho(#, Q). 

3.2.8. T~EOREM. Let ~ be a positive measure on ~* such that 

= f e  2.<~. ~> F(iy) dg(~) 
t l  

converges/or all y E ~.  Let 

For r E ~(t  ~, Q) (as de/ined in Lemma 3.2.7), the integral 

(3.2.9) ~ (~, u) = fe  ~'<~' ~> r u) d~(~) 

converges absolutely/or all (z, u) e D(g2, Q). Let 

/t(#, Q)= {r ll~ll~. = II r 
v 

H is a Hilbert space of functions holomorphic on D(g2, Q) with 

F ( z i -  5~-2iQ(ui, u2)) as reproducing kernel. 

~2~((Zi, Ul), (Z2, U 2 ) ) =  

Proo/. Let ~E~(#,  Q). Let (z, u )ED(~,  Q), with z=x+i ( t+Q(u ,  u)), tE~.  We have 

and by (3.2.4), since e-4'~<~'~162 , u)l~<llr "/11%~,, this last is dominated by 

F ( 2 i t ) l ' ~ l l r  ~, so  the integral is absolutely convergent. In that  ease, applying Morera's 

criterion, we can use l)'ubini's theorem to prove that  since e ~'~<~' z>r u) is holomorphie 

in D(~, Q) for almost all ~, so is (3.2.9). I t  remMns to verify that  R~ is the kernel function. 

Let r E'~/(,a, Q). 

r (z, u)  = J~( �9 r  u) e ~"~ '  Z>d~(~) 

= (r  V) e 2~(~" z> e4na~(v, u) e-tZtQ~(v, v)) d~ ?) dlx (~) 
• 

Fr v) exp ( - 2~i<~, 5 + 2iQ(v, u)>) e-4Q~ (~' ") d~O d#(~) = <r dp( .... )} 
J 
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by Lemma 3.2.7, where O(~. u) is the expression under the bar. But, by definition, this is 
v v 

(r O(z. u)}, so (~(~. u) is the kernel function for H(tt , Q). But 

0(~. 4) (z', u') = f e ~(~' z,> exp ( - 2~i(~, 5 + 2iQ(u', u)}) dtt(~ ) = RF((Z', u'), (z, u)). 
J 

3.3. The case where dlt is absolutely continous 
v 

In this section we shall describe the inverse isomorphism of H(~, Q) wi~h ~(~, Q) 

when d#(~)=/(~)d~ on ~l*. This includes, in particular, the spaces ~(2) corresponding to 

the discrete holomorphic series. We shall make explicit their reproducing kernels in the 

following section. 

For J a continuous positive function on the cone ~*, we consider the measure d#(~) - 

J(~)-lde~ QJ~. Here 0/~=~*, and for ~E~*, H(~) is the space of functions F hotomorphie 

on W such that  

J 

The correspondence ~-~/~, defined by 

fl(~, u) = j(~)-I det Q~ zr u), 

determines an isomorphism of ~4(#, Q) with the space ~(~1", Q; J) of functions r measur- 

able on g2* • W such that  

(a) r -) is holomorphic for almost all $, 
(3.3.1) 

(b) /e-4~Q~ (~" 4) Ir u) l~J(~) d~du< ~ .  

As in [20a], p. 345, we introduce the space P(s Q) of functions of the form ~li(~)Pi(u), 

l~ E C0(~*), P~ a complex polynomial on W, and its completion H(~*, Q; J) in the norm 

f a  [r u)12e-'~<~" u)> J(~)d~du" Ilcll Q(u, 

3.3.2. L E p t A .  H(~*, Q; J) is the space o/ equivalence classes (modulo null /unctions 

relative to Lebesgue measure d~du) o~/unctions in ~(~*, Q; J). 

Proo/. Let H0(~l* , Q; J) be the space of such equivalence classes; by Lemma 3.2.7, 

this is a Hilbert space in the norm (3.3.1). Clearly, if r EP(~*, Q), it is in ~4(~*, Q; J), and 
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the correspondence is isometric. I t  remains only to show that  P(~*, Q) is dense. But this 

(replacing Iv by J), is just the argument on the top of p. 346 of [20a]. 

_Remark. I t  is here appropriate for us to disclaim Theorem 2.30 of [20a], which, if it  

made sense, would still be incorrect. 

3.3.3. Definition. We shall say that  J satisfies the condition (C) if 

= fa, e-2"<~' ~> j(~)-i  det Qi d~ F(iy) 

converges for all y E g2. 

Notice that  whenever the integral converges for some Y0 E g2, i~ converges for y ~ Y0 + 

(since exp ( -2~(~ ,  t ) ) ~ l  for tE~).  In particular, if J is homogeneous with respect to 

homotheties (J(ty)= taJ(y) for some real ~, all t E R+), then J satisfies condition (C) if and 

only if the integral converges for some Y0 E ~.  When condition (C) holds, 

F(z) = fa* e2~l(~' ~ j(~)-I det Q~ d~ 

is holomorphic in D(~). The following proposition paraphrases Theorem 3.2.8 for the 

present case. 

3.3.4. PROPOSITION. Let J be a positive continuous/unction on ~* satis]ying condi- 

tion (C). :For r a measurable ]unction on ~* x W, holomorphic on W / o r  almost all ~ E~* 

such that 

r ill = ~I r u)I s exp ( -  4z~Q~(u, u))g(~)d~du< oo, II 
J 

(we shall say r EH(D, J)), then the integral 

(3.3.5) r (z, u) = �9 e 2~(~' ~ r u) d~ 

converges absolutely ]or all (z, u) in D(~, Q). 
Y Y y 

The space H(D, J) of all such r endowed with the norm llr 11r is a ttilbert 

space of holomorphie functions on D(~, Q), with kernel function 

kj(zl, ul), (%, %) = Sa, exp (2~i(~, z 1 -- zo - 2iQ(ul, %))) j (~)-1 det O~ d~. 
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y 

We note that,  in case J = l ,  the space H(D; J) is already studied by Koranyi-Stein (see 
Y 

[12]). In  this case H(D; 1) is the Hardy  space H 2 of holomorphie functions on D(~,  Q) 

such that  

IIFil~r = sup f IF(x + i(t + Q(u, u)), u)I~dxdu< ~ .  

3.4. Eondition (HC) 
We begin by recalling the Plaey-Wiener theorem of [20a] (see also [20b]). For F a 

C ~ function on D(~,  Q) such that  t~(x + iy, u) is a Schwartz test function of x for all fixed 

(y, u), define 

~(~, y, u) = e 2~'" y> f F(x + iy, u) e -2~<~" x> dx. (3.4.1) 

Now, let ~ be a positive continuous function on ~ which is homogeneous relative to homo- 

theties. We introduce the following: 

He(D, yJ) ~ (F  holomorphic on D(~, Q), such that  

= .( I F(x + iy, u) l ~V(Y -Q(u,  u)dxdydu < ~} .  (3.4.2) 

(3.4.3) I~(~) = f e -4~<'' Y>y~(y) dy. 

3.4.4. LEM~.~. (a) Iv(~ ) is a convex/unction o/ ~ which is identically in/inite o / /~*.  

(b) Iv(~0) < ~ / o r  some ~oEg2* i/ and only i/  Iv(~ ) < ~ /or all ~Eg2*. 
(c) He(D, y~) r i/ and only i/ Iv(~) < oo in ~*. 

3.4.5. De/inition. For such a % we shall say that  y~ satisfies condition (HC) if I~ is 

finite somewhere (and thus finite throughout ~*). Given J defined on ~*, we shall say that  

J satisfies condition (HC) if J = I  v for such a yJ. 

3.4.6. TE]~OR]~. Suppose yJ satislies condition (HC). Then the correspondence (3.4.1) 

induces an isometry o/H~(D, yJ) with H(D; Iv) de/ined as in Proposition 3.3.4. 

We shall denote this isometry by the formula (3.4.1) where the integral is interpreted 

as the Fourier transform. Notice that  for •EH2(D, y~), _~(~, y, u) is independent of y. We 

shall denote this as _P(~:, u). 

V 
3.4.7. T~]~ORE~. I] yJ satis/ies condition (HC), then H(D, Iv) =H~(D, yJ); in parti- 

cular I v satisfies condition (C). 

Proo]. The first assertion is just the affirmation of Fourier inversion, whether or not 

I v satisfies condition (C). That  it does so follows easily, as we now show: 
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Let  r u) = l(~)P(u) a funct ion in P(f2*; Q). B y  Fourier  inversion, for y 6 ~ we  have  

On the  other  hand,  we know t h a t  H~(D; V) being a Hi lber t  space of holomorphic  funct ions 

square integrable on the  domain  D has a reproducing kernel  and  so b y  3.4.6 we have  

(3.4.9) 

wi th  k(~, u)6H(D; lv). Since (3.4.8), (3.4.9) hold for all 16 C0(fl*), the  integrat ing factors  

are identical,  so t h a t  

fP(u)  e -4~<a Q(u. U)>du J(~)-le-~<~" y> k(~, U) P(O) 

for every  polynomial  P .  

Since the  polynomials  are dense, in H(~) and  k(~, u)EH(~) for a lmost  all ~, 

k(~, u)J (~)e  ~<~' ~> is the  reproducing kernel  of H(~) a t  0, so 

k(~, u) = e -~<a ~> j (~ ) - i  det  Q~, 

for all y. Since k(~, u) 6H(D, Iv) , 

fe-2~<~, j (~ ) - i  Q~ < oo, y> det  d~ 

as desired. 

Thus  condit ion (HC) implies condit ion (C), bu t  not  conversely, since J =  1 satisfies 

condit ion (C), bu t  is no t  of the  fo rm I v for some % Finally,  f rom the  last  assert ion of 

Proposi t ion 3.3.4 we obta in  

3.4.10. P R O P O S I T I O n .  The kernel [unction o/H2(D, V) is 

kr((zl' ul)' (z~ %)) = Jnl* exp (2~ri<~, z 1 - 5 0 - 2iQ(ul, u0))) Iv(~) -1 det  Q~ d~. 

3.5. Description of the spaces ~/(k) 

Le t  us now suppose t h a t  D(f2; Q) is a homogeneous symmet r i c  Siegel domain;  then  

we have  ~: G/K-~D(~,Q), W=~-/1/2,+ ~C~-/1 ,  in the  no ta t ion  of chapter  2. Le t  2 be a 
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character of K,  and A = (0, 2). Let Ca = (I) A. Then CA is a character of B such that  

r tX~)  -- e ~. 

Let/za be the function defined on f2 by 

/zx(h �9 s) = tz(h)-2(detu~,~ h)-~(detn, h)-3. 

Then, if we let ~t/(2) designate the space of the holomorphie discrete series associated to 

the character 2 of K, we have ~t/(2) = {/-~ holomorphic on D(~, Q) such that  

(35,) = fl +iy, u) l*/,a(y-Q(u, u))dxdydu < + oo}. 

Thus we are led to consider 

(3.s.2) foe 
so tha t  

I~(h. ~) = r h)-~(det~,~ h) -~ I~($0). 

We shall calculate I~(r explicitly later (in section 4.4) and show that  I~(r < co if and 

only if 2+<@, HTr><0, which is fortunate, for that  is Harish-Ohandra's condition for 

H(2) 4{0}, and we have affirmed that  

R(2) 4{0} if and only if ~/(2) +{0}. 
Define Jx on ~* by 

(2.5.3) Jx(h. ~0) = r h)-~(det~,, h) -~ 

J~ is defined for all 2ER, but if 2+<@, Hv~) <0, then Ix(~ ) =I~(~o)Jx(~) , thus J~ is of the 

form Iv; i.e., J~ satisfies condition (HC) if and only if 2 satisfies the condition of I-Iarish- 

Chandra for (0, 2) to be in the discrete holomorphic series. This gives us the following de- 

scription of ://(2). 

3.5.4. PROPOSITION. Let 2 +<~, H r , ) < 0 .  Then the correslgondence F-->jO i8 an iso- 

metry o/7/(2) with H(g2*, Q; In). For every r ~H(f2*, Q; Ja), the integral 

(3.5.5) ~(z, ~) = f e ~'<~. ~> r u) d~ 

absolutely to a function o/ H(2), and ~=9~,N(2;f~)~=IR(r162 More ex- converges 

plicitly, 

f lF(x + iy, u)I~#~(y - Q(u, u)) dxdydu = I~($o) ( + I1~($, u)[~e-~=Qc (~" u)]a(~) dSdu 

3 - 762907 Actc mathemathica 136. Imprim6 le 13 Avril 1976 
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/or all F E :H(A). The reproducing kernel Kx o/71-t(2) is 

i).(~0)_lfe2~,<~, z , - 2 o -  2tQ(~t . . . .  )>j~(~)-i det Q~ d~, (3.5.6) 

and the integral converges absolutely. 

We shall see that  in the next  chapter J~ satisfies condition (C) for values of 

,~>-<@, Hy~>. In this case, the spaces H(~*, Q, J~) shall be isometric to the spaces 

~/0(~) and as such, define irreducible unitary representations of ~. In particular, if 
v 

~ = - - ( ( r - 1 ) / 9 § 2 4 7  then J x = l  (by 3.5.3) and H is the Hardy space H 2. This value 

is larger than - (9, H~> : (r - 1)/9 + 1 +#/2.  

4. Hiibert spaces of holomorphic functions on the symmetric domains D ( ~ ,  Q) 

We shall consider the realization of G/K as a Siegel domain D(fL Q) as described in 

chapter 2. We shall consider specifically the function Fz on D(f2) defined by 

F~(z) = K(z)-~r!~, 

(see section 2.6). We shall describe the set P of those ~ ~<0 such that  R~.x (see 2.6.4) has the 

property (P). This set was described completely first by Wallach ([24b], II) using com- 

pletely different techniques. 

Note that,  since K(z)=~a. exp2:ri<~,z>d~, we have, automatically K(i(y§ 

K(iy), and thus since A~0, Fx(i(y+yo) ) <~F~(iy), so we may apply the theorem of Nuss- 

baum (3.1.2). Thus R~. satisfies property (P) if and only if 

with d#x a positive measure supported on ~*. Such a representation is unique [17]. We 

shall now use the homogeneity of our situation to discover all permissible #4. 

Since Fx transforms (under G(0)) by  the character Zx, 

z~(exp tX w) = e 2tx, 

it follows that  d#x is semi-invariant under the G(0) action: 

<d~, l(x0)r = X~(Xo)<d#~., r 

for all CEC0(~*), where l(x0) is left translation by x~ 1. We thus need to describe the semi- 

invariant measures (under G(0) action) on ~*, i.e., the measure transforming by a character 

of G(O). 
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4.1. Orbits of G ( 0 )  on 

The map ~: ~/1-+://* given in 2.3.1 has the property $(g.X)=(g*)-t-~(X),  so the G- 

orbits in ~ and ~* are in one-one correspondence 

4.1.1. PROrOSITIO~.  Let s~=O, s ~ = ~ :  1 U~. Then {s~ ..... s~, s} is a complete system 

o/representatives o/ the G(O)-orbits in ~2. We have G(0) -s 1 = {0}, and s~ E G(O). s~_l. 

:Proo/. Since s, =lim~_oo (exp tXr,) 8i+1, w e  have s~ e G(O). S~+l, and thus s, E g2--, 1 ~< i < r. 

Now, let mE~, ~= l img~ . s .  Since G(O)=KoAK o with K 0 compact, we can write 9,~= 

k~'an'k~ and ~ = l i m  (k~.a~.s). Extract ing a convergent subsequenee, we see tha t  ~ is 

conjugate (under K0) to an element of the form s2 = ~,  ~ ~ U~. Thus, we can find a permuta-  

tion (o in the Weyl group, fixing Js and thus in G(O), such tha t  o~.s~ =s e for some e (unless 

already ~Eg2 and sz=s ). 

Let O~ denote the G(0)-orbit of s~. Thus ~ = ~2 U U ~=~ Oe. We introduce the following 

notation: fix e, 1 <~e<~r, and let C~={1, 2, ..., e - l ) ,  C'~={e, ..., r}. Let g(C~) be the derived 

algebra of 

m ~ a |  ~ ~7•174 ~ 17 ~(~r 
l.]eCe i~Ce 

Let 

(4.L2) 

~o(c~) = g(Q) n g(0), 

ieCe i. jeCe 

~(c~) = g(c'~) n L p ( Q ) =  g(c~) n O, 

~o(C2 = go(C,) n ~, 

and G(Ce), G0(C,) , H0(Ce) , K(Q),  Ko(Ce) the corresponding connected subgroups of G. Let  

G(Q), Oo(Ce), Ho(Ce), /~(C~), /{o(C~) be the eorrespondiug subgroups of ~. Finally, let 

74' o.~= ~ 17 (~r~P/2, 
ir 
jeC~ 

ir 
]r 

We shall calculate the stabilizer S~ of se in G(O), and its Lie algebra $~. 

4.1.3. LEM~A. o 

Proo]. I t  is easy to see tha t  the space on the right is contained in So; on the other hand 

the map X-~ [X, se] coincides with J and is bijeetive on the complement ~4o(Ce)| ~o, e. 

Let  T~ = ~o(C~)| ~4~, ~. % is a subalgebra of ~4o; let T e be the corresponding connected 

subgroup of H o. 
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0 ! 4.1.4. L~I~IA.  S~=Go(C~)Ko(C~)M exp ~90.~. 

Clearly S O contains the group on the right; we shall prove equality in chapter 6 (Corol- 

lary 6.2.5)). 

4.1.5. L~MMA. T~.S ~ has a complement of measure zero for the Haar  measure on 

G(0). 

Proo/. Te .S  ~ contains the fat cell of G(0). 

4.1.6. LEM~IA. The orbit Te'se has a complement o/measure zero/or the (unique) class 

o] quasi-invariant measures on Oe. 

Proo]. Using Lemma 4.1.4, we have G(0) = K o/to(C~) S ~ The functional r ~r se) dk dh 

(r defines a quasi-invariant measure on Oe. If k'h'seSTs"se, then k~Te'S~ 

For, otherwise k .h  would belong to T,S~ ~ But, by Lemma 

4.1.4, the complement of TeS ~ is of dk-measure zero. 

4.2. Semi-lnvariant measures  on the orbit Oe 

Let  us consider the character Ze on S o defined by  

Ze(h) = det~(0)/s~ h. 

ge is trivial on [Go(C~) , Go(C'e)]'Ko(Ce)M exp ~o.e. On the other hand, if X~Ego(C~) (i.e., 

if i ~> e) then 

Tr~olSOe X w  = Trub. e X ~  = (e - 1) p. 

Thus Xe admits a unique extension (since e 4 r  + 1) to a character ~e of G(0). ]/e takes positive 

real values and 
Ze(exp tX~)  = e ~(~-1) ~, 1 < i <~ r. 

Let Ke=(r r has compact support modS~ and r162 gEG(O), 

h eS~ C(Oe)= (r e C(G(0)); r has compact support rood S~ and r is invariant under right 

multiplication by So}. C(Oe) can be identified with the set of continuous functions on Oe 

of compact support. Let  I~ designate the unique positive linear functional on Ke which is 

invariant under left translation by G 0. Since r 1 6 2  is an isomorphism of C(Oe) with Ke, 

we obtain from I e (by composition) a positive measure d#~ on C(Oe) which satisfies 

Furthermore, d/~ is the unique semi-invariant measure on Oe; i.e., if d#' is semi-invariant, 

transforming by the character Z', then X'=Xe (see [27], chapter 7, w 2.6, Corollary 1), 

and d#' is proportional to d#~. 
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Since T~. s~ has a complement of d/z~-measure zero, it  follows that  for r E C(Oe), 

(d/z,, r  = ;~  r s,) 2,(t) at. 
e 

Notice that  ~ has a G(0)-invariant measure a/z =detu, h(t)-ldt, and thus all the meas- 

ures (detu~ h(t))adt are G(0)-semi =invariant.  

L~t ~ ~ - i  US, ~t =0,  ~+~=~0. Now, we move these results to ~* using the map ~. ~ ~=/~,_~ 

These {~,} form a complete system of representatives of the G(0)-orbits in ~*. Let  O*~ be 

the orbit of ~,  and its isotopy group is (So) *. The T~-orbit of ~,  under the action ~-~ (t*) - L  ~, 

has a complement of measure zero in O* (relative to d/z*, the transpor$ of d/z~ to O*). We 

have 

<a/z*, ~(~0)r = ~(x0)-~<a/z *, r 
where 

~,(exp tX~,~) = exp t ( e -  1) p, e ~< r, Z~+I = I. 

<a/z*, 4> = jrle4((t*)-~e) ~(t) dr, (4 6C(Oe)). 

If e ~< r, every semi-invariant measure on O* is proportional to d/z*. On ~* (e = r + 1), every 

measure, semi-invariant by the character Z~: 

g~(exp tXw) = exp 2t~, 

is proportional to 

(4.2.1) ~(~) (detu, h(~)) d~, 

where ~,~(9"~o)=Z~(g)" For C EC0(~*), 

4.3 

f r ax(~) def., h(~) d~ =fHo r176 ~o) X~(ho)dho = fCo r ~o) Z,~(g) dg 

= f~or ~o)z~(g)-~ag = f,, r ~o)z~(h)-~ah. 

We now ask: for what ~ does there exist a positive measure d/z~ on ~* with F~(iy) = 

Such a d/z~ is semi-invariant by  the character %~. Letting/Z~ by the restriction of/Z~ 

to O* (/z~(E)=/Z~(E fl Oe)), we have/Z~ = ~ d ~ ,  and each/Z~ is also semi-invariant. Thus 
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4.3.1. PROrOSITIO~r I /  --1r p/2 .... , �89 the only possibility i8 that d#z is 

proportional to ~(~) det~,h(~)d~. I / ~  = - � 8 9  (1 <~e <~r), then d~u~ is in the linear span 

o/d/** and ~(~)det~lh(~)d~. 

Finally, we must find out, for which i and the possible d/& is the integral fe <'~' V>d/& 

convergent for y E ~.  I t  suffices to consider only y = 8. Since 

<(t*) -1" ~, 8} = <~e, t*'8~ =~(8e, t's) = S(tse, S) = <~0, t'se}, 

we must thus calculate 

/~( i s )=  f e-e=<~~ , all aeR ,  
J H  0 

(4.3.2) 

and 

(&3.3) Fe(iS) = /Te e-zn<$~ t'%>~(t) dt, l ~e<~r. 

4.4. Certain integrals on the cone ~ (see [5]) 

In this paragraph we shall calculate the above integral (4.3.2) as well as the integral 

I~(~0) as given by  (3.5.2). The condition (tIC) for H(i)  ~={0} comes out of this calulation. 

In  addition, these calculations shall determine, for Jz(~)= I~(~)/I~(~o) the condition for Ja 

to satisfy condition (C) (recall 3.3.3). Since (recall 3.5.3) 

j~(~)-i det Q~d~ = o~(~) det~,h(~)d~, 

and det Qa.~=(det~,~h)-ldetQg, it follows that  Jz satisfies condition (C) if and only if 

F~(is) < + oo. 

and 

EO~ 4.4.1. P~OPOSITIO~. There is a basis { s3} o/~1~(~-~), 1 < ~ < p ,  ( ]>i)  such that/or 

and ~ = ~ uk U~, we have 

r 

h0 = 1-I exp as Xvs" exp LI . . .  exp L,_I, 
t=1 

Li 6 E ~ ~(~J-% Ls = ~ x -~-,,~ E u ,  
J . j > t  ~,1 

(4.4.2) 
e - I  

<~,ho'se> = ~ (e2asu, q- ~ uje2ai(~ (xa~.i)2)), 
1=1 Y>l a~ 

Proo/. This is just Theorem 4.10 of [20a], where 8 = ~ r ~  1 U s is replaced by s~=/~s~lx'r Us. 

This proposition gives the formula on which our computations are based. We consider 

a generic integral, which includes both P~(is) and I~(~0) as eases. Let  A be an arbitrary 



A N A L ~ f T I O  C O N T I N U A T I O N  OF tIOLOMORPiqlC DISOR]~T]~ SERIES 

purely imaginary  linear form on ~. Let  CA be the character  on H o defined by 

~A(exp the) = e *A~, where A, = (A,  H~,>. 

Le~ 

(4.4.3) I(~o; A) = f.oe ~ "  Ch(h)-2(detu, h)- l(detu, ,  h)-~dh. 

Then J~(is)= I($o; A) for 

A~ = ~ - 1(2 +/~ +p(r - 1)). 

I n  the coordinates given by  Proposit ion 4.1, we have 

dh = d a  I . . .  da~. Ildx~,j, 

T r~adX~= ( r -  1 ) p +  2, Tr~,~adX w =/~, 

2.2.2, and thus 

Make the change of variable x~-~e~x~,j (~ fixed). There are ( ] -  1)p such variables, thus  

= Xr162 2 

• exp -- ~ aj(2Aj + (~ - 1) p + (r - 1) p + 2 +/~ dal.. ,  da~ l~ dx~.j. 

4.4.4. De/inition. For  1 ~<i ~< r, let l, = �89 + i - 2)p + 2 +#] .  

4.4.5. T ~ O R E M .  I(~o, A ) <  +co i /and only i /A~+l t<0 , l <~i <~r. In this case 

I(~ 0, A) = f ]  �89 - A , -  1,). 

Proo]. Normalize the measure IIdx~,j so tha t  exp (-2zZ(x~, j )  2) has integral 1. Then 

I(~ 0, A ) =  exp[-2~e~a~-a~(2A~+ ( i -  1 ) p +  ( r -  1 ) p +  2 + #)] da~ 

Let t ing t = 2~e ~ ,  the theorem fMls out. 

39 
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Note that  l~=(Q, H w ) = ( r - 1 ) p + l + / ~ / 2  and that  l l<. . .<l  ~. If  A is a dominant 

weight, we also have As ~<A~. In fact, since ~ is the largest root, we have y~=~-~msccs  

with ms ~>0 and the :r are compact positive roots. Since Ys, ~', have the same length, it fol- 

lows that  H~,s=H~r-~m'~H~s with m~ ~0,  and thus (A, H~s~ ~<(A, H~r). The condition 

of Harish-Chandra easily follows ([20a]). 

4.4.6. CO~OLL~RY. I] As-~<A~ /or all i, then I(A; to) converges i/ and only i] 

<A +Q, Hw> <0.  

4.4.7. COROLLARY:. Let ~ be a character o/ K. Then I~(~0)< c~ i/ and only i/ 

+(~,  Hvv > <0  and in this case 
r 

I~,(~o) = 1-I �89  ~+z~ F(  - (4 + ls)). 
t~1  

4.4.8. COROLLARY. F ~( is) converges i /and only i /~  + l (r -- 1)p <0, and in this case 

r 

P~(is) = 1-I �89  ~+ �89 ~ F (  - (4 + �89 - ~) p) ) .  

4.4.9. C o ~ o ~ . ~ u  J~ satis/ies condition (C) i] and only i / ~ + � 8 9  In  this 

case ~ satis/ies condition (P) and ~ ~P. 

4.5.  Certain integrals on  the  orbit O~ 

I t  remains to consider the integrals (4.3.3): the case 4 = - � 8 9  with d#~=d#*. 

As above, we consider 

= [_ e-2~<~~162 I,(~o; A) 
e 

so ~hat #~(is)~-I~(~0; A) with 

(4.5.1) A~=A~_~= ( e -  1)p 2 + # + p ( r - 1 )  l<~i<~r. 
2 2 ' 

4.5.2. T a v . o ~ ] ~ .  Ie(~0, A) < + ~ i /and  only i / A s + l , < 0 / o r  1 <~i < e - 1 .  In  this case 

e - 1  

I,(~o, A) = 1-I (�89 (2~)At+hr( - At - Is). 
S=I 

Proo[. We follow the proof of Theorem 4.4.5, noting that  ff hoe Te, 

e - 1  

h o = 1-[ exp a s X w �9 exp / ' 1 . . ,  exp Le_l 
t=1 
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(as in 4.4.1), so all the variables corresponding to Xw, L~, i >~ e are missing. Then, simply 

e ~ l f  
(4.5.3) L(~o,A)= I-I e x p [ - 2 ~ e ~ ]  exp[-a~(2A~+ ( i -  1) p +  ( r -  1) p + 2 + # ) ] d a ~ .  

4.5.4. CO'~OLI~ARu J~e(is) < + c~, 1 ~<e~<r. 

Proo/.  Since the l~ are increasing, it suffices to note (using (4.4.4) and (4.5.1), 

Ao_~ +~_~ = - (p[21 <0.  

4.6. Description of the set P and the corresponding spaces ~/o(~.) 

I t  follows from the preceding sections that  the set P of ~t such that  RF~ is of positive 

type (see 2.6.4) is as determined by  Wallach [24b]: 

2e ( e - 1 ) p  l < ~ e ~ r .  
2 ' 

First, let us consider 2 < - � 8 9  As in section 4.4, consider 

J~(h .  ~o) = r h)-l(detu,,, h) -1. 

Ja satisfies condition (C) (recall (3.3.3)) and 

d~. 

Let ~/(~*, Q; Ja) be the space of measurable functions r of ~, u such that  

(a) r u) is holomorphie in u, for almost all ~e~*,  

For 9~ e 74(~*, Q; J~), let 

(4.6.1) ~ (z, u) = j~ ,  e ~"~<~' ~> r u) d~. 

This integral is absolutely convergent for all (z, u)ED(~2, Q) and the correspondence 
V 

~-~r is an isomorphism between ~(~*, Q; J~) and ~0(2) with 

Y 2 -u r  = ~(i~)H r ]]i~ 

r 
(4.6.2) l~a(is) = I-I �89 ~(~+~-1) ~)F( - �89 + (i - 1) p)). 

i=l 
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v 

I n  part icular ,  if 2 = --lx = - ~ ( ( r -  1)p +re +2),  then  J_~, = 1 and  r162  is an i somet ry  

of ~(s Q; Jz) onto  the H a r d y  space H 2 of functions holomorphic  on D(s Q) such t ha t  

sup ~lF(x +i(t + Q(u,u)),u)12dxdu=lt-Fli~< + ~ .  
t e ~  d 

y 

Now, if the  addit ional  condition (tIC) is satisfied: 2+<~ ,  H w ) < 0 ,  then  r162 is an  

i somorphism of ~/(~*, Q; J~) with 

74(4) = { f  e O(D); ~(2, F)' = f l f(~ + iy, ~) I~x(y -Q(~, ~))~x dy d~ < ~}. 

and x ( 2 ;  = 5( o)II 

Ix(S0) = ~ �89 x+<~ ~rr >+~-~) vF(  - (2 + (e, Hrr} + �89 - 1) p)). 

Now let us tu rn  to 2~= - � 8 9  1 <~e<~r, and to describe the  space ~H0(2~) Here  

~ = 1  U*, the  form Qg~ has  as kernel  Wg~ - ~,~e ,j - ~ / z ~ j  = ~i=~ ~ , For  ~ = e - 1  _ ~ r  a~(cei/2) Let  ~l /,~ ,, ~ e - 1  (a i /2 )  

:H~j2(Q) + ~ 7/lj2(C~) c A ~1~, and  Q~ the  restr ict ion of Q to  :HII2(C~) +. Then  ~4(~=~) (recall 

definit ion 3.2.2) is easily identified wi th  the  space of holomorphic  funct ions on :HI/2(Ce) + 

such t h a t  

lf ~( C e) + 

Now, t -+( t* ) - l "~  iS an isomorphism of the  group T ~ c H  o on the  set Te.~ ~ whose com- 

p lement  in O* is of d/t*-measure zero. Consequently,  the  correspondence 

(Ar u) =2~(t)l:~r (t*)-a.u), tOTe, uC~4~:2(C~) + 

gives an isomorphism o f  H(d~t~, Q) (recall 3.2.7) and  L2(T~, H(~)). For  5 ELZ(Te, H(~)), 
the  integral  

r u) = I_  e2"i<~' t*z> r t'u) Z~(t)l:~dt 
8 

V 

converges absolute ly  and  the  correspondence r162  is an isomorphism of L2(T~, ~(4~)) on 

H0(2~). 
Note  t h a t  for 21 = 0, we have  ~40(2~) = C. 
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5. The space 740(R,) and boundary  values of holomorphic  fnnctlons 

5.1. Boundary  orbits (work of KorAnyi and Wolf) 

In  this section we state some of the results of KorAnyi and Wolf on boundary orbits 

which are useful in this paper. 

Let  us temporari ly return to the realization, via the map  ~, of G/K as a bounded do- 

main ~ in p+ as in section 1.2. Then the action of G on ~ extends smoothly to O and the 

topological boundary ~ - 9  is a union of r G-orbits. There is the following description of 

these orbits (see [13], [25]). As in 2.1.5, let %=Cve'CTe§ ... c~ be the partial Cayley trans- 

forms (for 1 ~< e ~ r). The formulae 2.1.6 show tha t  ce EP+KcP- so tha t  ~(c~) ~ 0% Letting 

exptXr~=expt(E~,~+E_r~ ) act, we see tha t  ~(%) is in G'~(c~+l) and the points {~(c~); 

1 <e  ~r}  form a complete system of representatives of the orbits of G on ~ - 9 .  We have 

cl=c and G.~(c) is the Silov boundary of 9 .  

We now turn to the unbounded realization D = D(~,  Q) of G/K given by  the Cayley 

transform, and relate these G-orbits with the orbits described in 4.1. Let  ~: 9 ~ D  be 

given by  a(x)=c.~(c -1 exp x). Since D is unbounded, some points of ~ - 9  are sent to 

infinity, so the action of G cannot extend to D. However, if we recall the group P (2.3.7) 

of affine automorphisms of D, we can compare an orbit G.~(cs) with the orbit P'~(ce). 

We shall see in the next  chapter (section 6.2) tha t  G.~(cs)-P.$(c~) is of measure zero, 

with respect to the (unique) class of quasiinvariant measures on G. ~(c~). Furthermore,  by  

2.1.6, 

~(~(c~)) = c .  ~ ( c - ~ .  c~) = c .  ~ (~ /  . . .  %_~)=c-~ z~,~ = (ise, o ) .  
i 

Thus c~ extends smoothly to P.$(c~) and sends it onto P(is~, 0) = ~ .  Thus except for 

an ambigui ty  on a set of measure zero, the {Ee} are the "orbi ts"  of G in 0 - 9 .  

Now (recalling 4.1), let O~=G(O).s v Then 

= E + Z. {(x+i(t+Q(u,u)),u); teO~, xe~, ,  u ~.~} 

= {(x+iy, u); y-Q(u,  u)EOe}. 

Let  /1 ,  [2 . . . .  , lr be the number  defined by  (4.4.4). We shall show tha t  for R = - 4 ,  

1 <~e<~r, we can describe the norm of a function FE~40(2) as the integral of its boundary 

value on ~]~. For example: the case e = 1 of the Hardy  class on the Silov boundary. Here 
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For tE~,  (x, u)EE1, the Silov boundary of D, and for FEH2, letting Ft(x , u ) =  

_F(x+i(t+Q(u, u)), u), it is known that  E t converges in L ~, as t-~0, to a funct ion/~ in 

L~(E1, dxdu), and F-+/~ is an isometry of H 2 into L2(E1, dxdu) [12]. Our result exactly 

generalizes this theorem, replacing ~'1 by E~. 

5.2. Geometric description of ~-~ and the space ~/0(--le) (e # 1) 

Once again, Oe is the G(0)-orbit of s~ in ~ -  ~,  and 

Zo = {(z + iy ,  u); y-O(u, ~) e O,}. 

5.2.1. LWMMA. Eor e # l,  the closed convex hull o/Oe is ~.  

Proof. Clearly the closed convex hull of an orbit is also G(0)-invariant, so it  suffices 

to show that  there is a point in ~ which is a convex combination of points in O~. Given a 

permutation a of {1 . . . .  , r), there is a co~EG transforming Xvt to X~(v,). Thus o)~EG(0), 

and eo~(se)E O~. Now ~co~(8~) is clearly proportional to s E~, so is also in ~.  

Now let J~ be the function defined by 3.5.3 with 2 = -l~: 

(5.2.2) J~(h. 20) = r h)-l(detul,, h) -1. 

Since T r u , + u , , X w = 2 + # + ( r - 1 ) p  and 2 4 = 2 + t t + ( r - 1 ) p + ( e - 1 ) p ,  we see that  Je 

transforms by the character Z~l(z~(exp tXv, ) =exp t(e - 1)p). Let us dualize the results of 

the preceding chapter. ]For any 2, let )t~ E ~* be defined by 

e -2~t(~' Y> ~Y ~rln 

Then J~ transforms by the character Z~ and we have 

(5.2.4/ J.(~) = 1~(~) for ,~ = - ( e - 1 ) p / 2 .  

(We shall simply write ]~e) for this value of 2. Now in the preceding chapter (i.e., Proposi- 

tion 4.3.1) we obtained an integral representation for/(~) over the orbit O*. Interchanging 

the roles of ~41 and ~H~, ~ and y, we obtain the representation for/~e) = Je: 

J,(~) = c (5.2.5) e-4~<& t> d/%(t) , 
d o  e 

where d~e is the unique G(0)-semi-invariant measure on O~- By Corollary 4.5.4, c is a posi- 

tive and finite constant. 
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We return to the space ~/0(-l~) of holomorphie functions of the form 

~(z, u) = fn  e ~'~" ~) r u) d~, 

where 6(~, u) is holomorphic in u for almost all ~, and 

fl r ~)I ~e-'~<~" ~r =~>J,(~) d~du< + co. 

Now Z~ is naturally parametrized by ~/z • ~/~2 • O,: we consider the measure d~e = 

dxdud#e on Ze. For  tE~ ,  ~e . ,= (a+( i t ,  0); ~ E Z , ) c D .  

5.2.6. THE ORE~I. Let :lte= {F holo~nor29hic in D, 

t e ~ l d Z e , $  

Then 7tt~ = ~-to(- le) and the norms are proportional. 

Proo[. This theorem and the following are direct applications of the results in [20 b]. 

We need only show that,  for e ~ 1, Je(~) = + co for ~ E ~*. Now, since 08 is a cone, O, = 

/~+ • Se where R+ is the group of positive real numbers and ~q, is the intersection of Oe 

with the unit sphere in ~/r Let  (r, t) be the coordinates of this product representation. 

Since d~ e is G(0)-semi-invariant and G(0) includes the dilation in R+, we have for any 

s>0 ,  dlxe(sr, t)=s~dlze(r, t). I t  follows easily from the uniqueness of the dilation invariant 

measure on R+ that  dFe(r, t) =r-r • dr(t), where dv is a measure on Se, thus 

(5.2.7) J~(~=c f e-'~<"t~dl4(t)=c~ ( f+~176 dv(t). 
J o  e J ,Se \ d O / 

Now if ~r  we have (~, t ) < 0  for some t E ~ - { 0 ) ,  and thus since the closed hull of O, 

is ~,  we must have (~, t ) < 0  for some tE O,. By linearity and continuity this implies tha t  

($, t) <0  for t in an open subset U of S,. Since d/4 is semi-invariant, U has positive dr. 

me~sure, and clearly for t e U, the inner integrand in (5.2.7) is infinite. Thus Je(~) = + co- 

Now, as in [20b] the space ://e can be described in terms of its boundary values on Ze. 

As in tha t  article, we introduce the tangential Cauchy-Riemann operator, to be denoted 

~. This can be defined as follows: for e~eh point pE]~,  let -/4 be the largest subspaee of 

the tangent space T~(Z,) which is invariant under multiplication by i. Then we say, for 

F E C~176 , ~ satis]ies the induced Cauchy-Riemann equations, or ~e F = 0 if the differential 

of F restricted to A~ is linear over the complexes, for all p. 
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5.2.8. Definition. H~ = {F, measurable on Z,; ~x~ ] F(a)] 2 dG < + c~, satisfying ~e F = 0 

in the sense of distributions}. 

5.2.9. THEOR]~I.  For FEte ,  and tE~, FIF,8.t=F t converges as t--+O to a function 

vs(F) in H~. The correspondence F--->v,(F) is isometric. I/e=~l, or if e = l ,  but G/K is not a 

tube domain, v8 is an isometry onto H~. 

This theorem is a corollary of the main theorem in [20 b]; for if e =~ 1, we know by Lemma 

5.2.1 tha t  O8 generates ~ .  I f  e = 1, and G/K is not a tube domain, then the values of Q(u, u) 

generate ~ as a convex hull. In  5.2.9 the case e-~ 1 was originally proven by Vagi [23]. 

(When G/K is a tube domain, there are no tangential  Cauchy-Riemann equations and 

therefore no intrinsic defining conditions for the space of boundary values re(F)). 

5.3. Real izat ion of D as a Siegel domain  of type III 

We shall now give a description of Y8 which is more appropriate to the s tudy of sub- 

representations of the principal series. 

Let  08 = Te'se = Ho'ss. 08 is "almost"  equal to Oe (in the sense of the unique quasi- 

invariant  class of measures). Similarly, we consider 

E~ ~ ((x+iy, u); y-Q(u,  u) E O~}. 

Since O8 and O8 generate the same convex cone, it follows from the theorem of [20b] tha t  

the restriction from E8 to ~8 is a unitary isomorphism which sends H~ onto (/EL2(F,~, dae); 

~ d = 0  in the sense of distributions}. We shall thus refer to this latter space as H~ also. 

We now describe the representation of the situation which we are after. 

First, we shall find a fibration 7~: D-+D~, where D 8 is a Siegel domain in fewer dimen- 

sions. Associated to this fibration is a representation of D as a Siegel domain of type I I I  

([26]; see also [18], 1969 edition): 

D = ((Pl, z', u'); p~ED~, I m  z'-L~1(u', u') E~2'}, 

where L~I is the real part  of a semi-hermitian form, depending differentiably on Pl and f l '  

is a proper cone in a subspace V ' ~  :Hp The fiber map is the projection ~8(Pl, z', u')=pl. 

Letting 

E~={(pl, z',u')' Imz'=L~,(u',u')} 

be the Silov boundary of the fiber D~ above P1, it is the case tha t  E , =  U~,~D8 E~; i.e., 

zz,: Es-*Ds, and the fibers of this projection are the surfaces E~. In  this setup, for FEH~, 

F ] E~, is in the Hardy  space H ~  associated to DD,, for almost all Pl E D 8. 



ANALYTIC CONTISIUATIO~ OF HOLOMORPHIC DISCRETE SERIES 47 

I n  order to obta in  this descript ion of H~, we will need results of Kors  and  Wolf  

[26], which we shall now expose in our present  context .  First ,  we recall the  te rminology 

of section 4.1, where C~={1 . . . .  , e - l } ,  C'~={e . . . .  , r}. Here  it is appropr ia te  for  us to mi- 

nimize the notat ional  complications,  thus we shall let ~40(e) = ~o(C~), ~0(e) - ~0(Ce), ~0 = ~0. ~, 

where the  right hand  sides are as defined in section 4.1. I n  addition, let 

(5.3.1) 74~(e)= ~ ~/~(~+~P, 74,,,(e) = ~ ~" ,, 7/+~(~) = 7/~,~(~) ~ n ~/+., 
i ,  j e C e  i ~ C e  

and let 7/o(e'), 74v~(e'), H~z(e'), ~/~(e') be similarly defined with C: replacing C e. Let  

Then, we have the decompositions: 

~ 1  = ~1(~)  (~ ~'~1(~') ~ ~ ; "  
4- ! 

! f ! ! f Let  741/2=~1/2(e )(~Ho(~741; this is the  subspace of ~ with eigenvalue �89 for Jse. I t  fol- 

lows, f rom computa t ion  of the eigenvalues of Js~ t h a t  

[~/0(e), 740]~ 7/o, 

(5.3.2) [740(e'), 7/o] ~ 74o, 

[740(e'), 7/;]~ 74;. 

Let  ~e=74o(e)~flllR(e)(~741(e), ~e=Go(e)'se=Ho(e)'se, (recall section 4.1), which is an 

open proper  convex cone in 741(e). Le t  ?e be the restr ict ion of ? to 74~2(e), and  SeE(2* 

given by  $ - w - 1  * e -  .'-~=1 U~. Final ly  

De = De(he;  Q~) = {pl  = ( z .  u l ) e  7/~(e)~| ~/L~(e); Im  z~ -Q(u. u~)e~}. 

Let  ~e: B~ ~ D ( ~  e, Q~) be given by  ~(bl)  = b 1, (is~, 0). 

For  p=(z ,  u )ED(~ ,  Q) write p = ( z l  +zR+z' , Ul+U~) with zxET/l(e) e, z~E:ttl(e')e~ 
t C  + t z'E:l-ta , ul EH~/z(e), uzEH1/e(e ). Then  

(5.3.4) ~e(z, u) - (z 1, Ul). 

5.3.5. L ~ M A .  ze is a sur]ective map o/ D on De. 

Proo]. Le t  g R ~ = { x E ~ ( e ) ;  ~here is a tE74z(e')| such t h a t  x + t ~ } .  Clearly m 

maps  D onto D(s Qe); so we mus t  show s  e. Le t  s ' = ~ = ~  U~. Then  gRe+s '=  

Ho(e)" se + s' = Ho(e ) �9 s ~ gR, so ~ e ~  ~ .  
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Now let txE~ ~. There are t2E~l(e'), t'e~'~ such that  tl+tz+t'E~. Let hiEHo(e), 
hseHo(e'); then h~h2(t~+ts+t')~ also. For ~0 = ~ 2 ~  U~ + ~ =  ~ '  U~* =~e + ~e,' 

SO 

0 < (~o, h~h~(t~ + ts + t')> = (~ ,  hi" h)  + (~ ,  hs" ts), 

<},, h~.h> +<hr t=> >0.  

Since we can choose h 2 so that  hfl.~'e is as close to the origin as we please, we have 

(~e, hl.tl)>~O for all hleHo(e ). Thus t l ~  , since ~ can be described as (t~4~(e); 

(~e, Ho(e) "t) >/0}. Thus ~e c ~ c ~ .  Since ~ is obviously open, we must have ~n = ~e- 

Now let 

(5.3.6) 1~' = ~0(e') + :H~/.~ + ~Hl(e'). 

This is the decomposition of lJ' into eigenspaces according to Js'~ with eigenvalues 0, �89 1 

respectively. 5' is invariant under J and is an ideal in 1~. Since ~ / s  is J-stable we can de- 

fine ~H~/~ the eigenspace according to J of eigenvalue + i  in ~H~/~. Let  Q' be defined by 

Q'(u', u') =2[u', (t']. 

On ~11s we have [Ju, Jv] =[u, v]. Let ~': ' '+ ' ~1/2->~1/2 be defined by 

~'(u') = �89 

i ! ! H ! t t Since ~lls=~lls(e )|174 1 and T~=J~41, we have defined an isomorphism of complex 

vector spaces: ~41'c +741/~(e+ ')-+~l/e'+ by  (x' +~y," ' u2)-+(~'(x'+Jy'), us). Transporting Q' via 

this isomorphism we find 

Q'(x' +iy' +us, x' + iy' + us) =~ ([Jx', x'] + [Jy', y']) +Q'(us, us). 

t ! LetD'=D(~e;Q )={(z2,zt+u~);z2e~l(e')C,z'e~'lc, use:H~2(e'),Imz~-Q . . . .  (z +us, z +u2) es 

The map =': B'-->D(~'e, Q) given by ~'(b') =b'. (is'e, 0) defines an isomorphism of B' onto D', 

Since ~ =l~e| and 5' is an ideal in 5, we can write B=B(e). B'. Identifying B with 

D via ~, B(e) with D e via ~e, B' with D' via =', this defines a diffeomorphism i of D e • D* 

onto D. 

5.3.7. L v . ~ A .  Let pl=(zl, ul)eDe with yl-Qe(ul, ul)=hl"se, hleHo(e). Le~ p '= 
(zs, z' + us) E D'. Then 

1 
i ' (P1, P ) = (zl +z~-~ [Jz', z'] +2iQ(us, ul)+hl"z', ul+us). 

Proo]. This is a direct calculation, which we omit. 
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5.3.8. COROLLARY. :~e(U(pl, p'))=Pl" The map i~l(p')=i(pl, p') is a di//eomorphism 

o / D '  onto the/iber :~1(pl). 

l~ow, let, as in ([20b], (3.2)), z" =h;l (z  ' -2iQ(u2, ul) ) and So(z' +u~, z' +u~) be the real 

quadratic form on 7/~ c O ~i/~.(e') c given by  

So(z' § u~, z' +%) = �89 y'] +Q(u 2, u2). 

For Pl = (Zl, ul), and hl .s  e =Yl -Q(%,  ul), 

S~(z' +u2, z' +u~) = So(Z" + u~, z" + u2). 
Then we have 

D = {(z~+z~+z',  ul+u~);  (~1, ~l)CDe, Im  ~ , - S A z ' + ~ ,  ~ '+us))e~ 'e}.  

This is the realization of D as a Siegel domain of type I I I .  

5.4. The fibering of ~ 

The map  i extends continuously to a map of De • 13. Let  E '  be the Silov boundary 

of D',  and for t ' E ~ ' ,  ~ ,  is the surface of level t' in D': 

E~. = {(z', u'); I m  z ' -Q ' (u ' ,  u') = t'} = E '  +(it', 0). 

5.4.1. P R o l ' o s I ~ I O ~ .  Ee=((z l+z~+z ' ,  u~+us); I m  z 2 - S p , ( z ' 4 - u ~ , z ' + u ~ ) = O } =  
. f . t 

Up~oip,(E ' ) .  Further, F, + (~t, O) = UpleDe~pl(Et.) C D, 

Pro@ Let Ne=N '=exp(~ /~ !~ |  . . . .  ( ~ 4 0 | 1 7 4 1 7 4  )). ~V' acts 

simply transitively on E '  and on F,~. The formulae of Lemma 5.3.7 show tha t  

~AE;.) = {(zl + ~ + z', u~ + u~); Im z~ - ~Az '  + u~, ~' + u~) = t'}, 

i , , ( ~ ' )  = {(z~ + zs + ~', ~ + us); Im zs - ~'~,(z' + us, z' + '~s)  = 0}.  

Let Pl = bl" (ise, 0) and p' = n' .  (it', O) = n' .  hs(i'). (is:, 0). By  definition, we have 

i ~ ( p ' )  = b~ . n "  . h ~ ( t ' )  . ( i ( s~  + s : ) ,  O) = b l  . n '  . ( i ( s e  + t'), 0), 

which is in D(~2, Q). Thus 

O~, i~,(Y/) = B(~)- ~V'. (iso, 0). 

On the other hand, B=B(e ) .N ' .Ho(e '  ). Since Ho(e' ) stabilizes (ise, 0), LI~, i ~ ( E ' ) =  

B'(iSe, 0)=Ee,  and thus Ee is the union of the Silov boundaries of the fibers of the 

fibration :~e. The rest of the proposition is easy. 

4-762907 Acta mathemathica 136. Imprim6 le 13 Avril 1976 
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We return now to the map ~'e: b ~ b .  (ise, 0) of B onto ~]e. As noted in Proposition 

3.1.6 of [20hi r C G~176 satisfies the tangential Cauehy-l~iemann equations if and only if 

r (ise, 0)) is annihilated by  all vector fields r(X), X E f)y = ~/0(e') (9 W~ | We can 

identify ~]~ with B(e) . • '  under the map considered above: i(bl, n ' )=bl .n ' . ( i s~ ,  0). We 

also may consider the identification ~]e-~N'. B(e) by j(n', b l )=n '  .b 1. (ise, 0). 

5.4.2. LE~MA. I n  the representation j: IV'. B(e)--~ Ee, the measure d(Ye is r ' 

( 4  = -le). 

Proo/. By definition dae = dxdudtte(t) (under the parametrization v~e-+N(Q ) �9 Te" (ise, 0)). 

The lemma follows from a computation based on a variable change. 

Let  ]: D'  • De-~D be given by  

j(b'. (is', 0), b 1" (ise, 0)) = b'. b 1. (is, O) = b'. (z 14- ise, ul) = i(b 1" (is, 0), b~lb'bl �9 (is', 0)). 

j thus extends continuously t o / ) '  • D e and clearly ~2e=j(E' x De). Clearly if pE/3'  is fixed, 

the map j~.: pl---~j(p', 191) is holomorphic in ~1- This j defines a foliation of ]~e whose leaves 

are complex analytic manifolds isomorphic to De (these are the holomorphic arc-compo- 

nents of [26]) and transversal to the fibration rre. Clearly the tangential Cauchy-l~iemann 

operator includes the Cauchy-Riemann operator along the leaves (however, these are not 

the only condition). Then 

5.4.3. LEM~A. _For _FEH~, _F(j(n', Pl)) is holomorphic in Pl, /or almost all PxEDe. 

Since j is not biholomorphic, the holomorphic structure on the fibers of xre pulled back 

via the map j is not that  of D' and varies with p~. Let  D~, be the space D' furnished with 

this structure. (These differing structures are obtained by conjugation by B(e) acting on 

the subgroup B'). 

For F a holomorphic function on D, let 

]]-F]]~/~,p,=Sllp f [-F(j(6t 4- it t, ~l)]2do ",, 
t'e~" jE ,  

i.e., this is the Hardy  norm of _F on the space D~,. Let  H~, be the space of boundary values 

on Z~,. Note that  j(E~, x De) =Z~,v. Le t  dme be the measure on De which corresponds to 

r (4 = - l e )  under the identification bv-->b 1. (iSe, 0), i.e., 

dme = r 1 - Q(u 1, Ul))) -2 detu,(~) h~ 2 detu.,(~)h; 1 dx 1 dy 1 du v 

Let ~(De, - l e ) =  {_F holomorphic on D e such that  

f [  _F(Xl iyl, Ul)12 dme(pi) < }. + O O  
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Thus, for F E ~0(-l~) we have that  2'(j(., Pl)) is in the Hardy space of D~, for all Pl, and 

/~(j(p', -)) is in ~(D~, -l~) for all p '  eD ' ,  and 

In conclusion 

II F �9 

5.4.4. T~EORE~.  I f  F E ~ ,  the map _F~(v~F)](n',pl) is an isomoetry of ~ onto a 

proper subspace of L2(N'; ~(D~, -le)). I] we identify L2(N ', ~4(D~, -le) ) as a space o] holo- 

morphic functions on D~ with values in L2(~'), this subspace is defined by the property 

tZ(p~,. ) CH~ /or all Pl EDe. 

6. The space ~/o(--l~) and invariant subspaces ot principal series modules 

6.1 

First we describe, in a rough way, the purpose of this section. Let ~ be a character of 

K (not K) and let 0(4) be the space of C ~ functions r defined on G satisfying 

r =i(~)-~r 

r(X)r xeo-. 

Such a function can be extended as a holomorphic function on GKeP_ =exp OKeP_c  Go, 

which transforms on the right under KcP- according to the character ~ which extends 

trivially to P_. Since the left action of G extends to ~,  left translation by G preserves the 

subspace of such functions which extend to exp ~KcP_. Clearly V~ is such a function, and 

thus every function r in C~ (recall definition 1.3.4) extends continuously to ~ on 

exp ~KcP_. Since G. c e a exp D~KcP_, we can define, for r e s 

(6.1.1) (Aer (g) = 5(g.c~). 

Now let lV~=q.(lc+p -) and let c~(2) be the character on the algebra m~ defined by 

(cr163 ce(X)> = <~, X>. Clearly, for r e s Ae satisfies 

(6.1) r(X).Aer -<co(~), X>r Xeme, 

(6.1.3) (A~r (g.m) =~(m)-l(A~r m e M .  

Since Ae is defined by  right multiplication, it commutes with the left action of G. Thus, 

"formally" Ae is an interwining operator between the representation "holomorphically 

induced" from the character 2 on ~c§ p-  and the representation "Cl~-induced" from the 
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character  ce(2) on rOe. (Note t h a t  rOe + ~e is not a subalgebra  of go, and  in fact ,  generates  

gc as a Lie algebra). 

Now, when  2 = - le ,  the  isomorphism Px (defined in 2.4) identifies s with a subspace 

of :H0(- l  e )=  :He. Similarly, we shall define an isomorphism Pa between the  space of func- 

t ions satisfying (6.1.2,3) and  the  space of CI~ boundary  values H~. We shall show t h a t  

these isomorphisms t ranspor t  Ae into the i somet ry  ve of Theorem 5.4.4, while, a t  the  same 

t ime,  we will see t h a t  L2(N'; :H(De; -le))  can be identified as the  space of a representa t ion 

% belonging to  a un i t a ry  principal  series. We  exhibi t  a proper  invar ian t  subspace for %. 

Fur thermore ,  as 1 e is either an integer or a half-integer, all the representat ions  which occur 

are representat ions of a group G 1 (between G and G) wi th  a finite center, we can then  embed  

G1 in a complexified group G f and  calculate the  preeeeding formulae for Ace , r E s in 

G1 c. I n  order to minimize the  notat ion,  we will continue as if G = G 1. 

6.2. Study of the G-orbits on 

Let  us now write the orbit  G. ~(Ce) as De, and  otherwise continue the  nota t ions  of 

chapters  4 and  5. G(e)/K(e) (recall 4.1.2) is identified with a bounded domain  De in 

13~+c 13+ via the m a p  ~e. Clearly 

G(e). ~(%) = B(e).  ~(ce) = De  = ~(ce) c D c 13+. 

We know ([26], see also [25]) t ha t  De +~(ce) is the  holomorphic a rc-component  passing 

th rough  ~(ce). Le t  Pe be the  max ima l  parabol ic  corresponding to the subset  Se of s imple 

roots defined b y  
Se =S--{ �89 (~ > 1), 

Se = S -  {~1}, e = 1 in the  tube  case, 

Se { } otherwise. = S -  ~ ,  

Le t  ae = n ~ ~ se Ker  ~. Then  ae = RJs'e with Js'e -- l~;,2z, e Xr~. Let  

= g~( -  1)@ge(- �89 @ ge(0) G g~(�89 @ ge(1) 

be the eigenspace decomposi t ion of ~ under  A d J @  I n  par t icular  

f ! ! 
~e(1) = ~1 /2  = ~ 0  @ ~1/2(e )  @ ~ 1 ,  

ge(1) = :H~(e'), ge(O) = g(e)@go(e'). 
Define 

ue = ~ e ( 1 ) |  = n ' ,  

13e = g ~ ( - � 8 9  1) = t)', 

13e = g~(O)@ ~3' = g(e)| t/,  
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and let N', V' be the connected subgroups of G corresponding to n', ~'. Let  M~=(g6G; 

g'Js'e=JS'e}. Me has a a Lie algebra g~(0), and (by [1, 26]), M =M.G(e).Go(e' ). M norma- 

lizes G(e) and Go(e' ). We define Pe =Me" V'. Pe is a maximal parabolic subgroup of G hav- 

ing pe as its Lie algebra. Every maximal parabolic is conjugate to one of these Pe (1 ~<e ~<r) 

[26]. In the complexification, we have 

Let 

~(e) c = f(e)COp(e)+~p(e) -. 

p ;  = ~(e) c (D p(e)-|  ~o(e')C| ~,c, 

me = ce(V| 

6.2.1. PROPOSITIOn. m e = p j |  so that c / l ( p ~ ) ~ c |  -, 

and me N ~e = PJ N ~; = ~(e)C~o(e')~(t)') c. 

Proo/. We have -~ ' ~ r ce (Js~)=~(~e H~,~). The decompositions of ~c, P% P- into eigenspaces 

for c;~(Js'~) are 

i ~ = L(0)  ~> L( - �89 | L(�89 

~+ = p~+(O) |189174  

P- = P;(O)~)Pe(-�89 
We first establish the 

I +  I _  t-~ I _  6.2.2. LEM~).. Writing ~/c=~41/2r we have tHl/~ =ce(p~(�89 , ~ll2=ce(~e(�89 

Proo/. ' c  - c  1 1 ~1 2-- e(~e(~)(~Oe(~))" NOW if ~ is a root with restriction to ~r given by one of 

�89 iec'~, j~ce; �89 iec; ,  jece; �89 icc'~, 

the formula for cer , analogous to (2.1.8) shows that  ce(X) is proportional to X + [~E_v , ,  X]. 

Thus, if X r Pc(�89 

ce(Z)e(fcQ~+) n ~41~ c ~ '  1/2, 

and if X6fe(�89 , ce(X)6(~c| -) ~ ~ l  c ~ ' -  1/2" 

We return to the proposition. Since c~ is the identity on g(e), and coincides with c 

on g0(e'), we see tha t  cel(~(e)CQo(e)-@~o(e')c)~ ~c+O-. 011 the other hand, since ~' is the 

sum of the eigenspaces with negative eigenvalues for AdJs'e, it follows that  c~1(~ ') ~ fcQ p-, 
+ t-- Thus C e l ( p j | 1 7 4  -. But  g=p(e)+|174174 and c;l(p(e)+|174 

~4;~) ~ ~+. 
The following proposition is known. 
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6.2.3. P ~ o ~ o s I T I o ~  ([26], see also [25]). The subgroup of G which leaves Oe+~(c~) 

invariant ia the subgroup P .  

We deduce 

6.2.4. LnMMA. The stabilizer S~ o/~(c~) in G is the group M.  K(e).Go(e'). V'. 

Proof. I t  is easy to verify tha t  Se contains the above group. Now, if g fixes ~(ce), i t  

leaves invariant its holomorphie arc-component De + ~(%), and thus g EP, = B(e). M .  K(e). 

Go(e' ) �9 V'. Since B(e) acts simply (without fixed points) on Oe +~(ee), the lemma follows. 

We may  now give the proof promised in chapters 4 and 5. 

6.2.5. COROLnARY. (See Lemma 4.1.4). The stabilizer S o of se in G(O) is S~ �9 

Ko(e ) �9 M.  exp V0,e. 

Proof. I f  g E G(0) leaves s e fixed, then it also leaves ~(ce) fixed, so it is in S~. But  Se ~ G(0) 

is clearly the group on the right. 

And now the density asserted in section 5.1: 

6.2.6. PROPOSITZO~. B'$(Ce) has a complement of zero measure with respect to the 

unique class of quasi-invariant measures on G. ~(ce) = 0~. 

Proof. G=K.P~=K'B(e) .S~=K.G(e) .Se ,  and thus the measure 

d~: r ~ 5r g" ~(ce))d~ ~g 

is a quasi-invariant measure on Oe. Now if k E 57'.Pe then k. G(e). ~(ce) e B.  ~(ce) since 

57'(~e + ~(ce)) = 57'" B(e). ~(ce) = B" ~(c~). 

But  57' "P~ has a complement of zero measure for dg and (57' "Pe) fi K has a complement of 

zero measure in K. I t  follows tha t  ((57' "Pe) N K)" G(e)" ~(ce)~ B.  ~(ce) has a complement of 

zero measure with respect to d/~. 

We now turn to the map ~ which transforms the bounded realization of G/K into the 

realization as D(~;  Q): ~ extends continuously to P.~(ce) and sends P'~(ce) onto 

P .  (/s~, 0) = ~-e. Thus ~e is "a lmost"  the transform (under a) of the orbit G- ~(ce) on ] 0 -  ~ .  

6.3. An irreducible unitary representation of P~ 

For 2 = - le ,  extended trivially to p- ,  let ce(2) represent the character of p~ defined by  

(ce(~), X~ = (4, c ; l (X)) .  

We consider the space 
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C(2, Oj;P~)={r C ~ functions on P~; r (X)r  X>r for all XEO[,  r = 

X(m)-Xr g~Pe, m~M}. Such a function is completely determined by its restriction to 

B(e). Introduce the norm 

and let H(~; Pe) be the I-Iilbert space of norm-finite functions. The correspondence 

( P ~ f f )  (b l )  = r -x. F(~e(bl)) 

defines a unitary isomorphism between :H(De, -l~) and H(2; Pc)- Let  we be the representa- 

tion of P~ on this space given by left translation. Let  o~(X)=�89 for XEO~, and le$ 

~oe represent also the corresponding character on Pc. 

6.3.1. PROPOSITION. 0[1| is an irreducible unitary representation o/ P~ which 

coincides on G(e) with the holomorphic discrete series o/ G(e) corresponding to the character 

-l~ o/~(e) and is trivial on Go(d ) V'. 

Proo/. For g EG(e), C EC(~; p;, Pc), we have 

(we(g0) r (g) =r  goEG(e), 

(we(m)r = ~(m)r meM,  

and we is trivial on [Go(d), Go(e')]V'. On the other hand, if i>~e, Xnego(e' ) and 

(w~(exp tX~) r (g) = e -t~ r t towever 

_ 1  X _ 1  . 1 �89 Xvt - Qe(XTi) = - �89 ~Trn, 7~- ~TrmXyi@ ~Tr~,~X~, l + 

=�89 (r- 1)p)=~e. 

The proposition easily follows from these formulae. 

6.4. The corresFonding principal series representation 

The representation ve=Indpeta(~l |  is then a representation in the principal 

series for G. Let  us make this representation explicit. Let  ~(we, G) be the space of continu- 

ous functions on G with compact support modulo Pc, and values in H(2; Pc), verifying 

r =we(p)-lr For such a function 

2 = z o ( p ) I I  - 

with Z~(P) = [det ad~/~ep I. 
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As in the notation of ([2], chapter 5) we form the norm 

 o,,ellr ll dg= IIr 

and re is realized by  left translation in the Hilbert space completion H(%) of ~(~r G) in 

this norm. Since G = N '  .P~ but for a set of measure zero, this norm is given by ~N.]lr ', 
2 t. and thus H(ve) can be realized as L2(N'; H(2; Pe)) =L  ( N ,  H(De; -le)), using yet  another 

isometry. Thus 

6.4.1. LEMMA. Define I on :~(we; G) by 

( I6)  (n, bz) = r162 

I induces a unitary trans]ormation o/H(ve) onto L2(/V'; ~4(D~; -le)). 

Now, the Lie algebra of S e is Se =P~ ~ ~. Let  us consider the one-dimensional unitary 

representation ~ of Se, which is trivial on Go(e' ) V' and equal to ~ on M.  K(e). As ~ is 

compatible with ce(2) on S~, we can form the holomorphically induced representation of 

Pe, corresponding to (~z, ce(2)), i.e., it is the subspace of the induced representation 

Indse~e~ az formed by the the functions on Pe satisfying in addition r(X) r = - <Ce(2), X> r 

for X in p7 (see the exact definition in [2], chapter 5). Clearly this is the representation 

From the property of transitivity of holomorphieally induced representations ([2], 

chapter 5), we see that  the space H@e) is the completion of the space :K(2, p~, G) of C ~ 

functions r on G satisfying 

r (X) r  = - <L ~ ( X ) > r  

r162 geG, 

in the norm 

x e p ; ,  

mEM,  

II r II = fl dbl. 

The correspondence I is written, in this realization, on ~(2, pe,  G) as (Ir  

r162 

6.4.2. T H ~ O ~ .  The map F ~ e (  F) o] Theorem 5.4.4 is an operator intertwining the 

representation o/ G on 74o(- le) with a proper subspace o/ the representation v realized in 

L~(N ', ~(De-l~)  ). 
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Proo/. Consider A e as in the beginning of this chapter. As Pe ~ ~ve, we have Ae(I:(2))c 

:K(~; OZ; G) and with all the conventions here established, it is easy to verify tha t  the 

diagram 

~(~) . . . .  ~4~ 

N()I; ~2; G) ,L~(~V'; 7/(D0; -Z~)) = H(~,2 

is commutative.  Since A~ commutes with left translations, and the left sides are dense in 

the spaces on the right, the theorem follows. 

6.5. Spaces of C.R. functions and subspaces of some principal series 

If e~ l ,  or if e = l  and G/K is not a tube domain~ we can give a characterization by  

first order differential equations of the proper subspace of H(%) obtained as ve(:~e). Let  

~C()~; Ire; G) be the subspace of functions in ~(~; PZ; G) satisfying r(X)r = --<2, c~1(X))r 

XElVe. Let  H(~; lye; G) be the closure of ~(~; lye; G) in H(ve). 

6.5.1. PROPOSITION. The map I de/ines an isomorphism o/H()~; lye; G) with H~. 

Proo/. Since 1Oe n 5 c =  ~Z (see 5.4), the image of K(2; lye; G) clearly satisfies the tan- 

gential Cauchy-Riemann equations on ~:e. Thus, I :  H(X; W~; G) -~Hg. On the other hand, if 

e # 1, or if e = 1 and G/K is not a tube domain, the representation of G in H~ is irreducible 

(H~ ~ ~o(-le)), so I is surjective. The remaining ease is trivial. 

Thus, if e # 1, or e = 1 and G/K is not a tube domain, we obtain an irreducible proper 

invariant subspace of H(%) by adding to the defining equations coming from •e those 

coming from all of Y0e =Pc  G ~/~.  These are the tangential Cauchy-Riemann equations of 

F,~. In  the case e = 1, G/K a tube domain, the tangential Cauchy-Riemann equations are 

trivial; but the space in question is nevertheless well-understood: it is the Hardy  space 

[12]. We shall say tha t  lv~ is a CR-polarization. Here l o ~ |  is not a Lie algebra; on the 

contrary, it generates all of tic as a Lie algebra. We shall say tha t  the representation of G 

in H($; lye; G) is a Cl~-induced representation which selects an irreducible proper subspace 

of the holomorphically induced representation H(2; OZ; G). Thus, it is seen tha t  it is some- 

times necessary to cut down induced representations by  algebras more general than  

polarizations. 

6.6. A simple example 

The representation T 1 (corresponding to ~ - 1 1 )  is a representation induced by  a 

uni tary character of P1. Let  G=Sp(n;  R) = { g =  C D ; A, B, C, D n x n  matrices verifying 
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t A o C = t C o A ,  t D o B = t B o D ,  t D o A - t B o C = I d } .  Then the representation 31 is realized 

in the space L2(V) of real symmetric (n x n)-matrices via the formula 

(T(g -x) .F) (X) = det (CX + D)-(n+I)/2-F((AX -k B)" (CX + D) -1 ) 

(if n + 1 is not even, this is a representation of the metaplectic group). The representation 

is reducible since the Ha rdy  space H 2 is a proper subspace. 

In  particular, if 4 divides n + 1, this representation is the quasi-regular representation 

{ ( A D )  } Thus one finds examples of representations induced induced by  the parabolic P = 0 " 

by  the identi ty representation of a parabolic, which are reducible (see [6]). 

I t  would be interesting to s tudy the decomposition of this representation into irre- 

ducible ones. 

More generally, it will be interesting to s tudy the decomposition of the representation 

~1, i.e., the decomposition of the action of G in L~(Z1) where Z =Z1 is the Silov boundary. 

In  a subsequent article we shall consider the decomposition of the action of B in L2(Z). 
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