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0. Introduction

In this paper, we are mainly interested in the construction of certain Hilbert spaces
of holomorphic functions on an irreducible hermitian symmatric space D=G/K on which
G acts by a natural unitary representation. Our construction will produce some new ir-
reducible representations of the simple group @.

In this introduction we shall indicate the nature of our methods and results, leaving
the full statements to the text. We shall be looking at the unbounded realization of G/K,
ag a Siegel domain D = D(Q, @) of type II; however our methods are here more easily ex-
plained for tube domains. Thus, in this introduction, we shall consider G/K as a tube
domain D= R"+iQ < C", where () is a homogeneous irreducible self-dual convex cone in
R". We reiterate that our results appear, in the text, for the general case.

Let G(Q) ={g €GL(R"), 9(Q)=Q}. Let G(D) be the connected component of the group
of holomorphic transformations of D and G(D) the universal covering of G(D).

There is a natural unitary irreducible representation of G{D) on the Hilbert space of
holomorphic functions on D which are square integrable, i.e., the Bergman space

H,={F holomorphic in D such thatf

R"

| F(a+ iy) Pdady < oo} (1)
+iQ

The group G(D) acts on H, according to the formula
(T1(g) F) () =dlg™% 2) F(g™*+2) @)

where d(g; ) is the complex Jacobian of the holomorphic map #w—g-u at the point z. It
can be seen that this representation 7', is a member of the discrete series of G(D), i.e.,
contained in L%G(D)). Let P(z — ) be the Bergman kernel, i.e., P is a holomorphic function
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on D such that for P (z) =P(z—®), F(w)=<F, P>y for every F in H,. As an immediate

corollary of the unitarity of T';, we have
d(g; 2)*P(z —®)d(g; w)™ = Plg-z—g-w).
As Koranyl remarked in [11], the Hardy space

H,={F holomorphic in D; supf | Pz +it) Pda = || F|]P< oo} (3)
teQ JR®

has a reproducing kernel which is a fractional power P* (&, <1) of the Bergman kernel.

Then it is easily seen that the representation
(T(9) F)(z) = d(g™"; 2)*F(g72) 4)

(¢=a,) is a unitary irreducible representation of G(D) in H,, but this representation is no
longer discrete. More precisely, it can be easily seen via boundary values, that this re-
presentation can be identified with a proper subrepresentation of a representation induced
by a unitary character of a maximal parabolic subgroup of G{(D).

It is then natural to pose the following question:

Problem A. For which real numbers « is P* the reproducing kernel for a Hilbert
space of holomorphic functions on D?
We can restate this as follows: Find the set P of o such that (P): Given z,, ..., 2y€ D,
and ¢, ..., cy€C,
>¢,6, Pz, —%,) = 02

For o in P, the representation 7', given by the formula (4) is unitary and irreducible
on the Hilbert space H, of holomorphic functions on D defined as the completion of the
21 ¢,Pg, with the formula in (P) giving the norm of such holomorphic functions (see
(14, 15]).

In this paper we shall give a complete answer to problem A. Originally we had found
a half-line contained in P, and we felt that this was the entire set. However, Wallach,
working with a purely algebraic formulation of this problem (as in Harish-Chandra [8]),
found, in addition to our half-line, a discrete set of points which formed the entire set (to
be called the Wallach set). We took up the problem again, and using a classical theorem
of Nussbaum [17], we were able; independently and by completely analytic means, to

find the Wallach set P, and to associate to each « in P a concrete Hilbert space of holo-
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morphic functions on D. The Hilbert spaces occuring in the half line are defined by a choice
of norm, whereas those corresponding to the discrete set are given as solutions of certain
systems of partial differential equations (similar to an example of Ehrenpreis [4]). As a
corollary of special interest we produce some generalized Hardy spaces which will be
naturally imbedded (in terms of appropriate boundary values) inside certain unitary
principal series representations.

Let us now sketch the “plan’ of this article. In chapters 1 and 2, we begin by recalling
notations and results of {20a] concerning the realization of the relative discrete holomor-
phic series of G(D) as spaces of holomorphic functions on D.

In chapter 3, using a theorem of Nussbaum [17], we prove that « has property (P)

if and only if P* has an integral representation:
Piz— @)= fez’“'@» P g), (5)

where du,(€) is a positive Borel measure supported on the closure Q of the cone Q. (The
corresponding representation in Siegel I1 domains is easily deduced from this). Using this

integral representation, the Hilbert space H, is seen to be
Y incg, 2
{$i2)= fez GG dp8) L) and ([, =16y}

Many suech results (as well as those of [20], a) are closely related with the paper of Ko-
ranyi-Stein [12] and the Gindikin integral representation.

The representation (5) being unique, in chapter 4 we see that du, has to transform
under the action of G(Q) by the character g— |detyn g| ~** We determine all such meas-
ures; the description is as follows:

First of all, for each o, there exists a unique semi-invariant measure dy,, supported in
Q. We can calculate rather easily the integral (5) in group coordinates after identifying
€) with the “Iwasawa’ solvable subgroup of G({2), and we show that the integral converges
if and only if o>¢>0, where ¢ i3 an explicit constant associated to the cone Q. In parti-
cular, ¢c=0 if and only if the rank r of the cone, the real rank of G(D), is 1.

Secondly, the boundary @ —Q of Q in R” breaks into r orbits O, ..., O, ..., O, Where
0,={0} and O,< O;,;- Each of these orbits carries a unique semi-invariant measure du;
(the character is determined); the r values of the associated character are |det g| *
with z,=0, z,=c¢, and x,, ..., x, dividing {0, ¢] into equal intervals. For each du; in this

discrete set, the integral (5) is convergent.
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We thus obtain the following diagram of the Wallach set,
P={z}V..U{x}VU{a>c}

=0 Zy 3., =C 0 ... =¢C4

I3

r discrete points r points holomorphic discrete series

The values «; correspond to Hilbert spaces defined by certain systems of partial differential
equations, while the values a; correspond to various “Hardy spaces”; in both cases these
are determined by certain boundary orbits.

In chapter 5, we investigate the possibility of describing the norms of some of the
spaces H, for o> ¢ intrinsically in terms of the holomorphic functions in H,. Of course, if
o« is sufficiently large, i.e., if a>¢4 H, is in the holomorphic discrete series, where ¢, was
determined by Harish-Chandra. Recall that in [20a] we calculated ¢, in terms of the con-
vergence of some simple integral on Q and here H, has an intrinsic description as a space
of holomorphic functions, square integrable on D, for some measure dzdu,(y), (du, on Q).

Now for the r points situated equidistantly between «,=c; and o, we show that
the abstract norm in H, is a Hardy type norm; namely

H 2= {F holomorphic in R*4-¢Q such that

IFF=sup |Fl+ily+)Fdwduy)< =}
Ye0;
Of course if i =1, i.e., 0;={0} we find the usnal Hardy space Hz.

We can take boundary values on X,=R"+¢(,; in the corresponding L?-norms; and if
0,+ {0}, we can characterize the space of boundary values as weak solutions of certain
first order left invariant differential operators. These are the tangential Cauchy-Riemann
equations on the real submanifold X,.

In chapter 6, we produce for each «;, 1<i<r, a maximal parabolic subgroup P, of
the group G(D) and a unitary irreducible representation of P; such that the corresponding
induced representation 7; is reducible, having H,, as proper irreducible subspace. These
are new examples of reducible principal series representations. If ¢4=r, the series are de-
generate. If 4=r, the corresponding representation was studied by Knapp and Okamoto
[10].

Except when i=1 in the tube case (where X, is totally real and has no “holomorphic
tangent space”), these tangential Cauchy-Riemann equations on X; characterize the space
H,,. In this case then, we cannot find an irreducible piece of 7; by “holomorphic induction”,

but we have to allow more general differential equations. Otherwise put, when, in general,
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we cut down a representation by introducing a complex Lie algebra § < g°, we should not
require that f)+-5 is also a Lie algebra; our spaces H,, provide such an example.

We here acknowledge that K. Gross and R. Kunze, in their study of the decomposi-
tion of a metaplectic representation in [7], produced some of these spaces H,, suggesting
to us that there should be some analytic continuation through the limit point of Knapp-
Okamoto [10] (for the universal covering of SL(2;R) see [19] and [22]). Our present results
concern the case of scalar valued holomorphic functions, corresponding to holomorphic
sections of a line bundle on G/K. We wish to thank Nicole Conze, Ray Kunze, Mustapha
Rais, Eli Stein and Nolan Wallach for much friendly help and conversation on the topics

of this work.

1. An algebraic result

1.1. Let g be a simple Lie algebra and g=f+p a Cartan decomposition for g. We
shall suppose that f has a non-empty center 3; then 3 = RZ, where the eigenvalues of the
adjoint action of Z on p© are 4. Let

pt={X€p%[Z, X]=1X},
p- = {Xep5% 2, X] = —iX}.
We have {=[f, fl® RZ.

Let G be the simply connected group with Lie algebra g. For X €g and ¢ a differentiable
function on G, we shall let #(X)¢ denote the function ((X)4)(g) = (d/dt)$(g exp tX)]t=0.
For X €¢° we define r(X) by linearity.

Let K be the analytic subgroup of G with Lie algebra f. Then GN/IN{ is a hermitian sym-
metric space. The holomorphic functions on @/12' can be identified as the space of functions
on G which are annihilated by all the vector fields r(X), with X €f°-+ p~. Notice that K
is not compact: K= [1% R IN{]-exp RZ, with [IE' R IE'] compact.

Now let f) be a maximal abelian subalgebra of . We have §=1 n [f, {]+RZ, (§ n [, {])°
is a Cartan subalgebra of [f, f]° and §° is a Cartan subalgebra of g°. We shall let <, > de-
note the Killing form, and x—& the conjugation in ¢ relative to the real form g of g°.
Let A denote the system of roots of g° relative to § these roots take purely imaginary

values on fj. We have

A =ArU Ap
Ar={y€A; (g <%}
Ay = {y€A; (g°) = p°}.
Choose an ordering on the roots so that p=7>,cap+g% and let

e=% 2 «

aeA+

where
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If y€A, let H, be the unique element of if) 0 [(g°)7, (g°)~7] such that y(H,)=2. We have

2

H, H>=y(H).
<%y>< y Hy=y(H)

For y€A;. choose E,€(g%)" so that [E,, Ey] =H,, and put E’7=E_7,, and X, =B, +E_,.
Then.
p=2@®RX,+>®RGE,—iE_,).

Let 7 be the real rank of g, and y, the highest root; then H., €(f) n [f, f])°.

1.2. Realization of G/K as a bounded domain ([8], IV, or [9])

Let G¢ be the simply connected group with Lie algebra ¢ and G, K, K¢, P, and P_
the connected subgroups of G, with Lie algebra g, f, f°, p*, p~, respectively. Note that
GJK is canonically isomorphic to G/K. Every element of P, K P_ can be written in a
unique way:

g =exp £(g)-k(g)-exp {'(9)
with {(g) Ep+, k(g) €K, and {'(g) Ep—. We have G P, K P_, and the map g—k(g) lifts to
a map also denoted k(g) of G into ]%C, the universal cover of K. The map g--{(g) induces
a biholomorphism of the complex manifold G/K onto a bounded domain P in p+. For

X €D, we shall denote by ¢- X the unique element of D such that
gexp X€ exp (g-X) K P_.

We know that the action of G on D extends continuously to the closure D of D in pt; i.e.,
for any X€D, g-exp X€P, K P_.

1.3. The discrete holomorphic series ([8], V and VI)

Let Ay be a dominant weight of [f, {], i.e., A, is a linear form on (§ N [f, £])° such that
Ay(H,) is a non-negative integer for every compact positive root «. Let U, be the repre-
sentation of [IZ , I~{] with highest weight Ay; U, acts in a finite dimensional Hilbert space
V A,- We shall let v,, denote the vector of highest weight Ay, normalized so that |Jva,|| =1
For J any real number let A =(A,, 1) be the linear form on §j° whose restriction to (§) N [§, £])°
is A, and such that (A, H,>=A. Let U, be the representation of K of highest weight
A; Uy acts on V=V, restricting to [K, K] as U Ao and v,, is also the highest weight

vector for U, and we have
H-vy, =<A, Hyw,, forall HEY.

The pair (Ag, A)=A parametrizes the irreducible unitary representations of K.
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1.3.1. Definition. O(A)={¢; C* tunction on G with values in ¥V, such that

(i) $(gk) = Un(k)$(g), 9€G, keK.

(ii) 7(X) =0 forall Xep-}.

G acts by left translations in O(A), we denote this action by 7'x: (T x(x)$)(9) = H(zg).
Now O(A) can be realized as the space O(V ) of V,-valued holomorphic functions on

G/K as follows. Letting U4 also denote the (holomorphic) representation of K, which re-
stricts to U, on K, we put

(1.3.2) $a(@) = Up(k(g)).

#% is an operator-valued function on &, and we obtain
(13.3) O(N) ={$:4(g) = $Ag) ' F(gK), with FEO(Va)}.
Thus, corresponding to any v €V, we obtain the element w3 in O(V,) given by

YAlg) = $alg) ™ - v.

1.3.4. Definition. Given A and the highest weight vector v,, we define the scalar

function on &
palg) = {par(g)s va> = <¢?x(g)"1%, DAY

{where the inner product is in V,).
Let £ be the subspace of O(A) generated by the left translates of ¢ ga.
It is easy to see that because of the invariance conditions defining O(A), the cor-

respondence
(1.3.5) b—~><{b, va>
identifies O(A) as a space of functions on @. In fact, taking 0= u<00% and
O'(A) = {¢; C* functions on G with scalar values such that
7(X)¢=0, X€g_
r(H) ¢ = —(A, Hy$, Hen},
the correspondence (1.3.5) is an isomorphism of O(A) with Q'(A).

Now, if $€O(A), ¢ transforms on the right by a unitary character of the center Z(G)
of G; (as Z(G) < K , and ¢(gz) = U A(2)"14(g)). We introduce the Hilbert space

(1.3.6) H(A)={$€O0(A); f@/z(é)nqb(g)n VAdg=N(A; ¢)*< oo}
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Harish-Chandra ([8], VI) has proven that H(A)+ {0} if and only if (A +¢, H,,> <0. Since
H(A) is (viewed as a subspace of O’(A)) a space of functions on G, square integrable over
@|Z(G), and (viewed as a subspace of O(V,)) is a space of holomorphic vectorvalued
functions on G/K, the representation 7', is seen to be an irreducible unitary representation
of G, which belongs to the relative discrete series of G. Thus 7', is said to belong to the
discrete holomorphic series of G.

Now H(A) (when non-zero), is in one interpretation, a Hilbert space of holomorphic
functions and admits a reproducing Kernel function. This kernel function is realized in
O’(A) by the function y,. This assertion is based on the following computations ([8], V,
VI):

When H(A)=+{0}, the function p24 is in H(A), and for 1 the identity of G we have,
for $€H(A)

1

].. . = J/ H .
( 3 7) <¢(1)’ U>VA <1P}J\A’ ’(/)XA> <¢’ 1/)A> (A
Let

(1.3.8) o(A)=<pas, pas.
We have

A+p, H ,g)) -1

1.3.9 = M T RAY
@59 W (IG5
Now, by (1.3.8), taking ¢ =T, (x) 9S4, (1.3.7) becomes
(1.3.10) CpRa, T alm) pasy = o(A) pa(@).

This is essentially equivalent to (1.3.7), for £, is dense in H(A), since 7', is irreducible.
Finally, by (1.3.10) the norm of an element of £, becomes

(1.3.11) “ Z ¢;T(g;) ’SUKAHZ = C(A)Iichi 511PA(9f197)|

1.4. Analytic continuation of the discrete series

More generally, let us fix Ay, a linear form on (§ N [f, £])° such that Ay(H,) is a non-
negative integer, for every positive compact root «. For A€ R, we denote by A=(A,, )
the linear form on Y° given by

AlONEEC =Ay, A(H,) =4,

and now in this general context, we define as above the £;, O(A), pa.

1.4.2. Definition. Py,={A€R; y, is of positive type, i.e., for all {¢,€C}, {g,€G},
2.1 ¢1659Alg1°g;) >0}
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For A€P,,, we can define a left-invariant scalar product on L, by

I ; e Talg)wAslP =3 c,6palgi'gy).

We shall let Hy(A) denote the completion of £, in this norm, and Ny(A; ¢) the norm of
€ Ly Thus, by (1.4.1), if H(A)+{0},ie., if {A+p, Hy,) <0, p, is of positive type, A€EP,,,
and Hy(A)=H(A) with
N(A; ¢)?
: 2\,
N()(A" ¢) C(A)

1.4.3. LEMMA. For A€P,,, Hy(A) can be identified with a subspace of O(A). We have

| 7| =0 if and only if F =0, and

(1.4.4) CF(1), vp> =<F, pA8 moar

The representation by left translation, T, of G on Hy(A) is unitary and irreducible. T, is a
member of the relative discrete holomorphic series of G only if (A +o, Hy,»<0.

Proof. By (1.3.4), the definition of ¢,, we have

(1.4.5) U@ PR8, PAAY yry =Palg™) =D ag) par(1), 04D,

which is just (1.4.4) for F=T,(9)ypfa. Taking linear combinations, the equation persists,

so (1.4.4) is proven. More generally, for F€L,, we have
CB(go), k- vadv, =<F, Talgo) Y& " nar

so that point evaluation of functions in £, is Hy(A)-norm continuous. Thus the identifica-
tion of £, as a subspace of O(V ) realizes £, as a normed space of ¥ -valued holomorphic
functions on @/I% for which point evaluations are norm continuous. From this one easily
proves in the standard way that the norm completion Hy(A) of £, is a Hilbert subspace of
the space O(V,) of V,-valued holomorphic functions on g/IE . That T, is irreducible and
unitary follows as in [14].

Finally, by (1.4.5), the coefficient corresponding to pf2 is y,; and g, is square-in-
tegrable on G/Z(G) only if (A +9, Hy,> <0.

Thus, for AEP,,, one constructs an irreducible unitary representation 7', of Gina
Hilbert subspace of O(A). Our problem is to determine explicitly the set P,,, and to iden-
tify in some reasonable way, the corresponding representations 7' 4.
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1.5. Associated infinitesimal modules

We shall denote the enveloping algebra of g° by U. Let u—>*u be the linear antiauto-
morphism of Y which extends the map x> —« on ¢° and u—u* the antilinear antiauto-
morphism which extends the map #— —& on ¢°. Let M be a U-module and B a hermitian
form on M. Weshallsay that B is g-invariantif B(u-m, m')=B(m, u*m’). Let g* =2, A+ 0%
and (as before) g~ =72 ,.a-g% We have U=(Ug+t @ g~ U) ® U(H)°. We shall et p(u) represent
the unique element of U(H)¢ such that u—y(x) is in Ug* @ g-U. Since the algebra U(H)°
is canonically identified with the algebra S(§)¢ of polynomials on the dual of §° we can
calculate (A, u) for all u€U(H)°. The form B, (w, v) =(A, p(v*u)) is clearly a g-invariant
hermitian form. Let £, be the form on Y defined by

Ealu) = (A, y(u).

Now the enveloping algebra of q° operates on the left in O(A) by extending the action
of g given by

d
(X-4)(g) =, blexp ( —tX)g)-o-

Let Wa=U-pRv; W< Op, and we have the following fact:

1.5.1. LEMMA. (1) s is an extreme vector of weight A. (i) W 5 is an irreducible U-module.
The annihilator M 5 of RV is the kernel of B,:

My = {w; A, pw*u)> =0 for all v€U}.

B thus defines a nondegenerate form on W ,, and every other g-invariant hermition form is
proportional to B .

Proof. Notice that the map 45—>q§ given by

$(w) = {(u-$) (1), va>
sends W, onto U-&, < U*. This map is injective. It is known [24a] that the module U- &,
ig irreducible. The rest of the lemma is in ([8], IV).

1.5.2. PrROPOSITION. A€P,, if and only if (A, y(w*u)>=0 for all u€U. In this case
W A can be identified as the space of K-finite vectors in Hy(A) and

No(A, w-pia)lE=CA, ywru)).

Proof. Suppose A€P,,. Then pa is in ¥y (A) and is K-finite. Since the representation
T 5 on Hy(A) is irreducible, W 4 is the space of K-finite vectors for this representation. Thus

we can define
{u, v} = Cu- R, v PRga
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a g-invariant hermitian form. Then, by 1.5.1, {u, v} =c<{A, y(v*u}) for some ¢. Since
PRY, YRy =1, c=1 s0 that
A, yu*u)> = No(A, u-pia)2=0.
Conversely, suppose (A, y(u*u)> >0 for all u. Then
CuyRa, v pRad, = Ay (vru)d
defines an invariant scalar product on W . In particular,
(1.5.3) w=pRa) (1), vady, = <A, y(u)) = (u-pRa, piay.
Let 3#(A) be the completion of W, in this inner product. Because of (1.5.3); we prove
(as in Lemma 1.4.3), that H(A) is a Hilbert space of functions in O(A) on which G acts

unitarily by left-translations. By continuity, (1.5.3) is true for u-yZa replaced by any
function ¢ in Ho(A); in particular, ¢ =T(g~1)yr. We obtain

Yalg) = pas(g), vadv, = <TG pis, vady, = <TG pRs, pisd,

from which it immediately follows that 4 is of positive type. Thus A€P,, (and Ho(A)=
HolA)).

1.54. CorROLLARY. If A€P,,, then 2 <0.

Proop. For AEP,,,
A y(BZy, Boy,)) 20.

But B*, = —F, and E, B_, =E_, E, +H,, sothat we must have 1=(A, H,,><0.

Let us now consider the Verma module M(A + p) which is the universal module of highest
weight A; (see [3]), that is for I, the left ideal generated by gt and H —A(f) (H€4°)
and M(A+g)=U/I,; let 1, denote the image of 1 in M(A +g); the module W, is there
the unique simple quotient of M(A + o).

Let a5 be the annihilator of v, in the enveloping algebra U(f°) of f°. Then M, the
annihilator of £ contains J,=1,+ Ua, and is the unique maximal left ideal in U

containing J,. As Nicole Conze has shown to us, we have

1.5.5. Prorosiriox (N. Conze). If (A +p, H,>€{1,2, ..., n, ...} for every noncompact

positive root y, then J 5 is a mawximal left ideal in U.

Proof. We have to show that M(A +g)/J -1, is a simple module. Let NV be a submo-
dule of M(A +g) containing J,-1,, then there exists a form p on §° and a vector e, in N
such that

X-e,=0, Xeg*

and H-e,=u(H)e,, HEHC and so M(u+p) < M(A 4p).
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Let us show that A—u is a linear combination of compact positive roots. If u; —p,
is a linear combination with non-negative integral coefficients of positive roots, we will
write u, 2 u,. If a is a root, we will denote by S, the symmetry with respect to the root «;
ie, SyB)=p—B(H,x By Bernstein-Gelfand-Gelfand (Th. 7.6.23, [3]), there exists
&y, gy +., Oy Positive roots such that

Ato>8,(A+0)>8,, Sop(A+0)> .. >8,, ... 8o (A+o)=u+p
and so it is sufficient to prove that the «; are compact roots; o, is compact, as A+o>
8,,(A +p) means that (A+o, H,>€{1,2, ...}

Let us suppose that we have proved that o, oy, ..., &t; are compact positive roots.

We then have

<Szxi A S«x;(A + Q)’ Hoci+1> e{]" 2, 3, A '} = <A+ @ Hsal .. ‘Soci(“i+1)>'

But if «;,, was a non-compact positive root, as p* is stable by f°, so will S, ... 8,,(;,1),
and we will reach a confradiction, and so o, is a compact positive root.

We conclude as in Harish-Chandra ([8], IV): i.e., as M(A +p)=UWH™)- U(f) 14, we
see that it is necessary that e, belongs to U(I°)-1,. After factorizing through a,, we see
that e,, being an extreme vector of the simple module ¥V 5, is equal to 0 or 1, mod a,.

Remark. We can see in some particular examples that the condition of Proposition
1.5.5 is not necessary for the irreducibility of J,.

1.5.6. CorROLLARY. Let A=(Ay 4). If <A+p, H,,»> <1, then LEP,.

Proof. If (A+p, H,><1, then if y is another positive noncompact root we have

Y=y, — 2m;o, With «;€A% and m,; >0, so

oV <Y
H,= - 1 7t)
Y <yr’ 7r> Hyr Zm <OC¢, “i> '

and as <p, H,> >0 for all positive roots and {y, y> <{y,, ¥,> (¥, is a large root), we see that
<A+Q: H'y> <<A+Q: H'yr> <1.

So the module W, can be identified with U/J,=U(P )@V ,=Up")® V,, which is
fixed when A, is fixed. The hermitian form B, is non-degenerate on this module, wherever
A+<g, H,,><1. So by continuity argument, it remains positive definite, at least where
A+<p, H, > <1, and positive semi-definite if 1+ (o, H,,> <1.

By this corollary, we see already the possibility of passing through the limit point
A+<g, H,,»>=0 for the construction of the representation 7'5. But in this paper, we will

mainly be concerned with the case where Ay;=0.



ANALYTIC CONTINUATION OF HOLOMORPHIC DISCRETE SERIES 13

2. The relation of y, with the reproducing kernel function
2.1. Realization as a Siegel domain D(Q, Q)

2.1.1. Definition. [18]. Let Q be an open convex cone in a real vector space V. The
dual cone ¥ is the cone

Q*={E€V* (& y>>0 {forall yeQ—{0}}.

We shall say that  is a proper cone when Q* +@. We shall let D(Q) < V¢ be the tube over
Q: D(Q) =V +¢Q. Such a tube is called a Siegel domain of type I (SI).
Let W be a complex vector space, and @ a hermitian form on W taking values in V°

such that _
Qu, ) €Q—{0} forallu€W, u=0.

We let D(Q), Q) be the open subset of V°x W defined by

D(Q, Q) = {p = (x+1y, u); y—Qu, u) €Q}.

Such a domain is called a Siegel domain of type II (SII).

2.1.2. We know that for @, K as in the preceding section, the hermitian symmetric
space (/K may be realized as an SII domain [13]. In order to fix the notation, let us
recall this construction (see [13]; also [11] and [20a]).

Let W be a maximal set of orthogonal non-compact positive roots, chosen as follows.
Put the largest root in ¥ and successively choose the largest root orthogonal to those al-
ready chosen. This process ends when we have obtained r roots: ¥' = {y, y, ..., ,}, Where,
for each §, y, is the largest non-compact positive root orthogonal to v, ..., »,. (Notice
that v, is the largest root; thus our convention differs from that of C. C. Moore [16]).

For X,=F,+E_,
is the real rank of g. Let §,=>, v RH »- Identifying y; with its restriction to §,, we have
yi(H,,;) =28} and the theorem of C. C. Moore:

let a=2,cy EX,. a is a maximal abelian subalgebra of p, and r

2.1.3. TEEoREM ([16]). The non-zero restrictions of A to lj, form one of these two sefs:

(Case 1): {+dy,+dy; 1<i<j<r},
(Case 2): {Zdyikdys 1<i<j<r}U{tiy; 1<i<r}.

In case 1, the non-zero restrictions of the positive compact roots form the set {4(y;—y.);
j>1i}. The restrictions of the positive non-compact roots are non-zero and form the set
{4(yi+7y); 1=4}. The only root of restriction ¥, to §j, is ,. In case 2, the non-zero restric-
tions of the positive compact roots form the set {}(y;—y.);§>1} U {dy;; 1<i<r}. The
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restrictions of the non-compact positive roots are non-zero and form the set
{3yi+yy); 1213 U {}ys; 1<i<r}. The only root of restriction y, to §, is y,. In both cases,
the y, have the same length.

2.1.4. Lemma. Hy,—Hy €(H N [E, £))°.

Proof. Since v, and »; have the same length, it suffices to see that y;, —y, is zero on 3.

But this is clear since y; and y,€A{.

2.1.5. The Cayley transform. Let G, be the simply connected Lie group with Lie al-
gebra g. If y €Ay, we define ¢, €G; by

7
Cy = exp (~ 1 (E,— E'_y)) .
Ade,, is an automorphism of ¢° taking H,, to X,. The Cayley transfors ined as

c=er=Tley (¥)= s 7))

(The ¢, commute since y; and y, are strongly orthogonal). We introduce the partial Cayley
transforms

¢;= gcvr
Thus ¢=¢,, ¢,=c,, and the following formulae are valid (as is easy to see by looking at
SL(2, C) [9)).
2.1.6. For yEA;, tER,
exp (n/4) (E_,— E,) =exp (—E,)-exp (log l/éHy)-eXp (E_,)
=exp (E_,)-exp (—log VQHY)-exp (—E,).
exp t{(E_,+ E,) = exp (tanh tE,) exp (—log (cosh t) H,)-exp (tanh tE_).

(2.1.7) ¢(E,) =3B, —E_,~H,).

c=exp(~ 2 B,,)-exp(logV23 H,,)-exp (X H-,)
(2.1.8) =exp (2 H_,,)-exp(—log VeSH,) exp (3 E,).
2.2. The Iwasawa decomposition

For « a linear form on g, we shall write

7t ={Xeq[A4, X]=a(4)X, A€a}.
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Let «;, ..., o, be the restrictions to a of the Cayley transforms of the roots y,, ..., . Then

ay(X,,) =26]. We shall fix an order on the dual vector space a* so that o <o, <... <o,

2.2.1. TaroreM. (C. C. Moore [16]). (a) The system of positive roots of g with respect
to a are (corresponding to the two cases of Theorem 2.1.3):
(Case 1) {E(o+ay); 1<i<j<r}U {(a;—oy); L <G <i<ry,
(Case 2) {3(o;+oy); 1<i <j<r} U{d(a;— o))y 1 <j<i<r}U {dor;; 1 <i<r}

The set S of simple roots is

(Case 1) S = {oy, Fog—0y), ..., F(ot,— 06,1},
(Case 2) 8 = {Lay, Has—ay), .., 2oty —ot,_y)}.
The vectors space n*i s one dimensional.
(b) The action of the Weyl group on a* consists of all transformations o,—~ + as for all
permutations o of {1, ..., r}.
Part (a) of this theorem follows immediately from Theorem 2.1.3. From part (b) it

follows that the integers
(2.2.2) p=dim %% g =dim y'*%,

are independent of ¢ and j, and p=dim %"*® . Note that for r>1, we have p>0 and
#=0. u=0 only in case 1.

Let p=2..0%" Then g=t@a@y. Let b=a®y, b+=0°n (Fap*), b-=0°n (Fap),
so that b°=0b+@®Db~. Since b+ N bH={0}, b* is complementary (in b° as real spaces) to b,
as well as ¢b. Thus b+ is the graph of a transformation of b to 6. Let J: b—b be defined
so that bt ={X —4JX; X €b}. It follows that b—={X +4JX; X €b}. Note that

Ui=3 (Hy,— By, — E_y))
is real. By (2.1.7), c@(E,,) =1U, so U, €n*. Since
§ Xy, —iUy=3 H, + B €0,

JU,=3X,,. Now let s=>] 4 U,, so that Js=4>7 ; X, Js is semi-simple and has eigen-

values 0, +4, +1 on g. We consider the decomposition of g into Js-eigenspaces
g =g(—l@g(-3g0)DgF)®g(1)-
Then b=,@ M, ® W, with H,<g(0), Hys=0(3), H=g(1). More explicitly

(2.2.3) Ho=a+ 2, Wyp=29"% =3 gt

i>j i<y
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2.2.4. LEMMA. (a) o(E,,) =4l
(b) JHy =Wy, J(Hy2) = Hyyp and JX =[s, X] for X €Hy. In particular for i>j fized,

J(fy)llz(“i_“j)) =n1/2(ai+aj)’ and JX — [Uj; X], J(n1/2ai) = ,'71/2 oq.

(¢) Let Hin=0+NHSs, Hio=0"NHSs Then HSjo=Hia® Hip, and Wiz=c(p*) N e,
Hija =) N Hie, o(p*) =Hi O HY.
This is easily proven. For example, for (c): let ¢ be a root of A with restriction $y,; on

B),. Using Theorem 2.1.3, it follows from (2.1.8) that
1
VE(E7+[E~'yp E'y])

Thus, if p is compact, ¢(E,) € Hyjs, and if y is noncompact and thus positive, ¢(Z,) € Hije.

C(E'y) =

2.3. Let B, 4, N, H, be the connected subgroups of G with Lie algebra b, a, 7, H, respec-
tively. Since these are simply connected groups we can denote by the same symbols the
corresponding subgroups of G. Then G=K-B and G=K-B. B is a solvable group, and
every element of B can be written uniquely in the form b =hy-exp U-exp X with h,€H,,
Ue,p, XEN,. Let M={g€j{; ga=ag for all a€A}. Then M has Lie algebra m={X €¥;
[X, 4]=0 for all A€a}. Let G(0) ={g eG; g-Js=Js}. G(0) has q(0) as its Lie algebra, and
leaves y,, H; invariant under the adjoint action. Similarly, let G(0)={g€Q; g-Js=Js}.

2.3.1. Definition. Let Q=G(0)-s, the orbit of s under the adjoint action of G(0) on
;. Let
Q* ={£€MU; <&, X)>0 forall XeQ—{0}}.
Let 6 be the Cartan involution (3(X)=X, X ¢€f, 6(X)=—X, X€p). The form (X, Y)=
—(X, 0Y) is a symmetric positive definite form on g and thus its restriction to 3 defines
an isomorphism &: I, —Hy. Let & =>UT; &, is determined by the equations

ol Z ﬂllz(aﬁaj)) =0, §&U,)=1.
i

&, 1s a positive multiple of &(s).

Let ¢g—¢* be the involutive antiautomorphism of @ defined by (exp X)* = (exp }(X))-.
Then K ={g; gg* =i}, and S(g-X, ¥)=8(X, ¢*Y) for all g€G. The involution g—>g* pre-
serves ((0), and K, and therefore K(0) =@(0) N K. It follows that

(2.3.2) Eg-X)=(g")"&(X), geGO), XEH,.
2.3.3. ProrosiTioN. [13] Q is an open convex cone in H,. The correspondence & is an

isomorphism of Q and QF. K(0) is the isotropy group of s€Q and & €Q*. The map h—~+h-s
18 a diffeomorphism of Hy onto Q. Similarly h—h-&, is a diffeomorphism of H, onto Q*.
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For t€Q, we shall let t—>A(t) denote the inverse to the above diffeomorphism of H,
onto Q; ie., A(f) is the unique element of H, such that {=A(t)-s. Similarly, for £€Q*,
h(§) € H, is defined by &=h(&)-&,.

If ¢ is a continuous, compactly supported function defined on Q, resp. ¥, we have

J' ¢(t)det%(h(t))—1dt=f ¢'(h'8)dk=f $(g-s)dyg,
Q H, 6O

f $(&) det (h(E)) dE = f bl &) dh= f b0 E)dg
Q* Hy GO

(here dh is the left-invariant Haar measure of H, and dg is the Haar measure of G(0)
{which is unimodular)).

Now, W, is J-stable and, since [z, Hiz] b+ N W, ={0}, we have [Ju, Jv]=[u, v]
for all u, v €5 Since W5 is the +¢ eigenspace of J on N, the map 7: Hyn— Hie de-
fined by 7(u)=}(u—¢Ju) is a complex isomorphism of ,,, (furnished with the complex
structure J) and .. G(0) leaves Ui, invariant. We introduce the hermitian HS-valued

form @ on Wi

[u, 7).

| .

Qu, v)=

2.3.4. LEMMA. @ is an Q-hermitian form. We have

Q(go" %, Go~v) =o' Qu, v)  for all u, vEy,, go€G(0).
We shall see that G/K is isomorphic to the Siegel domain D(Q, @) = HY ® s,

Let us recall the map (section 1.2) { of G into p* which determines an isomorphism
of G/K onto a bounded domain D in p+. We know that ¢-2G <P, K P_. Thus we can de-
fine o: G—>HF @ Wi by alg)=c-L{e1g).

2.3.5. PROPOSITION. o determines a G-invariant biholomorphism of G/K onto D(Q; Q).
In this realization B acts as a group of affine transformations of HS ® U is.

More precisely, let b=h,-exp X,-exp U,€B. Then
{2.3.6) b (2, u) = (hy Xo+hg 2+ Qhg-u, hy-T(Uy)), g u+hy-T(Uy)).

Let 0,(t) =dets,,,, h(t)~L det,, k(t)~2 (these determinants are taken in the sense of real vec-

tor spaces). If F is a continuous compactly supported function on D(Q, Q),
JF(zxg)dg =f F(ab)db =f F(x+dy, w)o(y —Q(u, u))dx dy du,
B DL @)

where dg is Haar measure of @, db is left-invariant Haar measure for B and dxdydu is
Lebesgue measure on Y @ Hie.
2762907 Acta mathemathica 136. Imprimé le 13 Avril 1976
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2.3.7. Definition. Let P=G(0) exp (. O H,).

P is a maximal parabolic subgroup of G. It can be shown that P acts on D(Q, Q) by
affine transformations given by the formula (2.3.6) (with g, replacing 4,). Then P is the
group of all affine transformations leaving D(Q, Q) invariant. We have ¢c-1Pecc K°P,
and ¢~1G(0)c< K°. If g€G(0), we can thus define the element ¢c-1gc in KC. We shalllet U,
denote the representation of K°P, which trivially prolongs U, on K¢ along P -

2.4. ldentification of J(A) as a space of holomorphic functions on D(Q, Q)

We now recall, and amplify, the discussion of O(A) given in chapter 1. Since ¢'G<
P, K°P_, we can consider for g€@, k(c~'g) € K°. Extend the mapping to a map of G into
KC. Let
(2.4.1) DA(g) = Unlk(c™)1 Unlk(c™g)),
so that ®,(e)=1d. Clearly
Palg k) = Dal)oUalk), ged kek,

T(X)'(I)A=O, XEP“.
Consequently, for any ¢ € O(V ),

(2.4.2) (Pad)(9) = Palg)h(9) € O(A).
2.4.3. PrRoPosITION. O, is a representation of P in GL(V ,):
(i) for g€G(0), @ A(g) = Ualcge),
(i) for U€Hy;, ®r(exp U)=1U (exp V%c-lU),
(iii) for Xe€H,, alexp X) =id.

Proof. For g€P, c-lgGEIfCP , and
$a(g) = (Ua(k(c™)=1- U s(c71ge) - Up(k(c™)).
Now from (2.1.8), k(c~1) =exp (log V25 H yy)- Since ¢=1(H,) commutes with > H,, and SH,,

acts as the identity on ¢~1(3,,), the proposition follows.

2.4.4. Definition. Let @ : D(Q, @)~ GL(V 5) be defined by O, (x(b)) = (b).
Then
On(z+1y, u) =OK ()0 On(y —Q(u, u)) = O Ay, u),
with
OK(w) = U, (exp V2o (z2(u)),
OXY —Qu, ) = $A(hly —Q(u, u)),

and @ is a real polynomial in .
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Now P,, as defined by (2.4.2) is an isomorphism of O(VA) with O(A). Left transla-
tion 74 (g,), for go €@ is written in O(V 4) by (2.4.5) T o(go) (F) (9) =d4(9)0 Pa(g5'9) "2 F (g5 9).
We shall let J o(gq, 9) =da(gog) 0P a(g)~L, so that (2.4.5) becomes

(2.4.6) T A(g0) (F)(9) =T algo", 9)*Flg5"9).
J 4 is a function on G x G/K, holomorphic in p €G/K(=D(Q, @)), and satisfying
J al9091> P) = I A(go> 910) I A(91> D)-

If po=a(l) =(is, 0), J A(ko; Do) = U a(ko)- For g€P, and p€D(Q, @), J 5(g; p) = D(9), and so
is independent of p. Thus P, intertwines the restriction of 7', to P and the representation
T of P in O(V,) given by

(T(g) F) (p) = DA(g6) Flg5™p)-
Furthermore,

(Pa'9R2) (9)=Dalg) - (PA(g)™ - va)-

Thus Px'ygs is a holomorphic function on G/K with values in V,=7V,,, and for A=
(Ag; A), clearly (Pi'ywia)(p) varies analytically in 2.

2.4.7. Definition. Let

= {F, holomorphic on D({, @) with values in V 5,;

N(A:F)?= f | Oy, w)2F (e + iy, w)|| 7, Ooly — Q(w, u)) dudy du< oo}
D(Q, @)

The following proposition follows easily from the above remarks.

2.4.8. PROPOSITION ([20a]). Py is a unitary isomorphism between H(A) and H(A).

2.5. The kernel function

Suppose that (A -+g, H,,> <0, i.e., H(A)+{0}. For p€D(Q, Q) and v€V, the func-
tional F—>{F(p), vDy, is a continuous linear functional on the Hilbert space #(A). It fol-
lows that there is a function R(p, p') with values in GL(V ) such that

(a) EA(p, )" = BA(p', P),
(b) R,(-, ') is holomorphic for all p’,
(c) CE(D), vy, =<F, BA(*, D)V u>-
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R, will be called the reproducing kernel function of H(A). Since T', is unitary on H(A) we
easily obtain

(2.5.1) Bplg'p, 9:0") = I alg; p) Bal(p, P')J Alg; 2)*.

2.5.2. ProrosiTioN. If (A+g, H,,> <0,

PRYR= (o (Ral- 7))

In fact, since (P3'¢)(py) = $(1), we have

B1), vy _ el
(05 {v,0p

(Px'$, BA(+, po) 0>

(P, PRIYAD = <{¢, ya> = ¢(A)

_ ¢(A)
v,y

(PR $) (o) v)

2.5.3. Definition. It (A +p, H,><0, let

RA(p, p') = c(A) R)(p, D).

The formulas (2.5.1, 2.5.2) show that RY is defined for all A =(A,, 1), and is analytic
in A. We shall thus consider R} so defined for all A =(Ag, 2). B has these properties:

(2.54) (a) RY(-,p)is holomorphic on D(Q, @) for all p,
(b) Ri(p, p')* = RA(Y, p)
(©)  BA(Po Do) va =va
(d)  BAg-p1, 9-p2) =T Ag: 21) BA(Dy, P2)T A(9, P2)*.

In fact, at p,, for v€V,,
R?&( * po) U= (<07 ’U>)P1111P.1/)X:

and (d) serves to continue R} throughout D(£}, Q) x D{(Q, Q).

2.5.5. Definition. RO is a kernel function if the following property (P) is satisfied:
(P) For all NEZ*, py, ..., px€D(Q, Q), vy, ..., vy€V 4,

izj <R9\(pn p1) Uy, vj> = O

Clearly if H(A)=+{0}, R) =c(A)R,, and since R, is a reproducing kernel for FHA), it

satisfies (P), and so also does B%. Now, in any case, when property (P) holds, one can (see
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[15]) determine uniquely a Hilbert space H(A) of V -valued functions holomorphic on
D(Q, @) whose reproducing kernel is B%. More precisely, define the norm

Il o {#= 3R pows

by

7P = 2 CBAps )25 9,

and let ,(A) be the completion. The relation (2.5.4 d) shows that the representation
(Talge) ) () =T alga™s )" - Flga" - p)

is a unitary irreducible representation of G in ,(A). Recalling definition 1.4.2 and the

relationship of R% with y3a, we easily obtain the result:

2.5.6. THEOREM. For A=(A,, A), AEP,, if and only if B, verifies (P). For such 2,
P, is o unitary transformation of Hy(A) onto Hy(A) which intertwines the representations of
G and satisfies
PA(BA(+, Do) - va) = pRA.

Now, since B acts transitively on D(Q, @) and J 4(b, py} =¢ (D), the formulas (2.5.4c
and d) allow us (in principle) to compute the value of B%(p, p) on the diagonal of D(€2, @) x
D(Q, Q). Furthermore, since R%(p, p’) is holomorphic in (p, §'), it is determined by its
restriction to the diagonal, so R is completely determined by ¢,.

2.6. The case of a character

In the case A,=0, where U, is a character of A of K , these expressions become parti-
cularly simple. We shall make explicit the expression for B} (to be denoted RJ).

First of all, if Ag=0, <A, H,>=<(A, H,>=A (from Lemma 2.1.4), and thus ¢, is a
character of G(0), given by ¢,(exp tX,,) =€, ¢; =1 on exp (i, ® Hy).

2.6.1. Definstion. The Koecher function K for the domain D(Q) is defined by
K(z)= f EE D gE
Q*

(d& is normalized so that K(is) = [e > ©d& =1).
This integral converges absolutely for all 2€ D(Q) to a non-vanishing holomorphic
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function [21]. Since D(£2) is simply connected, we can uniquely define all powers K* of
K with K*%(s)=1. Let us notice two important facts:

(2.6.2) K(i(h-s)) = (dety, kY1 for hEH,

(becanse O* is Hy-invariant).
IE (21, uy), (295 u) ED(Q, @), then z; —7, —2iQ(uy, us) € D(Q). For, if we let z,=x,+
38+ Q(uy, uy)), With ¢,€Q, then

Im (2; 25 — 20Q(wy, Us)) = t; +ta+Q(uy, wy) +Q(ths, Ug) —Q(uy, Us) — QU %)
(2.6.3) =y b+ Quy — Uy, Uy —uy) €Q,

since Q(u, ) €Q for all u € H, ,, and ¢,€Q, and Q is a convex open cone.

Let n=dim H¥;=r+ ﬁﬁ‘_l)_?”, (p = dim nV2*+%) by (2.2.1,2)
2 n

2.6.4. PROPOSITION.

— 25— 21Q(u,, '“2)) ~@nim

B (21, %), (a0 ) :K(zl :

Proof. It suffices to show that both functions coincide on the diagonal of D(Q, ) x
D(Q, Q). Let p=(x+i(t +Q(u, w)), ), with ¢=h(¢)-s. Then
p=-exp X-exp v~ H{U)-h{t)" (is, 0),
so that
Ri(p, p) = $a(h(t))2.
The right hand side is
K (ih(t) - 8) P = (dety, h(2)) ',

Now for h=exp tX,,, we can compute that these two expressions are the same:

ye
dalexptX,, )t =¥

(dety, exp X, )" = expt (———————(2 £t ; Lz) M) =,

We thus conclude that A€P, ((0, 1) €P,) if and only if 34,2, B3((z;, wy), (s, u,)) =0 for all
(zb ui) ED(Q: Q)
On the other hand, we shall keep in mind that P< {1; 1 <0}.
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3. Hilbert spaces of holomorphic functions on a Siegel domain D(Q, Q)
and reproducing kernel functions

3.1 An abstract theorem of Nusshaum

Let Q be a proper convex cone in the real vector space V, and let @ be an Q-hermitian
form on the complex vector space W. We form the Siegel domain
D(Q, Q) ={(z, w) EVCDW; Im 2—Q(u, u) EQ},
without assuming homogeneity nor symmetry. For F a holomorphie function on D(Q, @),

we introduce the function Ry holomorphic on D(£}, Q) x D(Q, @) by
Br((21, wy), (225 %)) = F2y ~25 — 20Q(uy, u,)).
We need conditions on F in order that Ry be a reproducing kernel, i.e., satisfies the pro-

perty
N -
(P):{ le,l,Rp(pj, 2)=0, {py,....oa}<=DQ, Q), {4,..., A4} <=C.

Furthermore, when (P) is satisfied, we wish to describe, in a concrete way, the Hilbert
space H(Ry) for which Ry is the reproducing kernel.
Letting ¢(y) = F(iy); y €Q, the property (P) implies, in particular, that

3.L1) glizqu(?/r*'?/f)?o-

Now, such functions on semi-groups determine Hilbert spaces, on which translation
acts unitarily, thus giving a representation of the semi-group Q. Such representations of
semi-groups have been widely studied; we shall need the following representation theorem
of A. E. Nussbaum [17]. The condition (3.1.3) below is a condition on the uniform conti-

nuity of the representation, which we shall be able to verify in our case:

3.1.2. TeEoREM [17]. Let ¢ be a continuous function on Q satisfying (3.1.1) and

(3.1.3) (Yo +y) < ply) fory,, y€Q.

Then there is a positive measure y supported in

Q* = {E€V* (&, y>=>0 forall yeQ},
such that

(3.1.4) dly) = fe“z’“s' v du(§).

Conversely, given any such a measure u, clearly the function ¢ defined by (3.1.4) satisfies
(3.1.1) and (3.1.3).
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It should be pointed out that Nussbaum allows 0 as a value of y in (3.1.1) and asks
that ¢ be continuous at 0, and concludes that u is a finite measure. However the connec-
tion between this added hypothesis and conclusion is direct, and its deletion leaves the

above result. In our case Nussbaum’s result produces the following.
3.1.5. ProrosiTION. Let F be holomorphic on D(Q). Suppose that
(3.1.6) Fliy) = f €72 gy )
for some positive measure y supported on (. Then
(3.1.7) F(z) = fez"m‘ 2 du(&),
and R satisfies property (P). Conversely, if Ry satisfies property (P) and, in addition
(3.1.8) Fliyo+y) < F(iy) fory, y,€4Q,
then there is a positive measure u supported on QF such that (3.1.7) holds.
Proof. The convergence of the integral in (3.1.6) means that the integral in (3.1.7)

converges absolutely. That integral is holomorphiec, as we can see by Morera’s criterion:

for I' a closed curve in a complex plane, we have

f U};m@. z>d,u(§):| dz = f[f 2L z>dz] du(&) =0,
r T

by Cauchy’s theorem. Thus, if ¥, holomorphic on D(Q) satisfies (3.1.6), F must be given
by (3.1.7), for a holomorphic function on D(Q) is determined by its values on {Re z=0}.

Now, we verify that Ry satisfies property (P). Let p;=(z;, u;), 1 <¢ <N, be in D(Q),
and 4;€C, 1 <¢<N.

3 AT Relpy )= | 3 ATyt 0 0 ),
i, * i,

It suffices to show that the integrand is nonnegative on Q* But that integrand is
Suifi; exp (my), where u,=2; exp (2mi§, 2,>), my=<&, @(uy, w;)>. Now, for EEQ*, u€eQ,
<&, Q(u, u)> >0, so the matrix (my;) is positive seridefinite. It follows that the matrices
(1/n!) (mj) are also positive semidefinite, and thus also (exp (m)) = %= (mi/n!). Thus R
verifies (P).

Conversely given F so that Ry satisfies (P) and (3.1.8) holds, by the theorem of Nuss-

baum,

Flig) = f_ e guE)
Q*

for some positive measure u. Thus, as observed above, F is given by (3.1.7).
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3.2. Description of H(Ry)

Let u be a positive measure supported on O*. We shall assume that the form

Qe(u, u) = <&, Qu, u)>

has constant rank for £ in a set 0,< QO* whose complement is of y-measure zero. For
£€Q*, define

We = {ug€W; Qelug, uy) =0} = {ug € W; Qg(u, ug) =0 for all u€ W},
Then W is of constant dimension on O,.

3.2.2. Definition. For £€Q*, let d, % refer to Lebesgue measure on W/W, so normalized
that

f e 4O W g g = 1,
Wiwe

(Since @ induces a positive definite form on W/W,, clearly exp ( —47Q,(w, )) is integrable).
Let H(&) be the space of holomorphic functions # on W such that

(a) F(u-uy) = F(u) for ug€We,

(b) HFH?=j'/ | F(w)? oxp (— dr@Qe(a, w) dg i< oo.
WW5

H(£) is nonempty: it includes all polynomials independent of W(£); this space of functions
is dense.
Let us note that for §€Q*, W,={0}, and W/W,=W. If we let du represent Lebesque

measure (relative to a basis of W fixed once and for all) on W, then
f exp ( — 47l (u, u)) du = (det 4¢Q¢)1,
w

where det @, is the determinant of the hermitian form @, relative to this basis. Thus
dgt = (det 4Q;)du for §€Q*.

3.2.3. LemMA. For E€Q*, H(E) has the reproducing kernel

kg(u, v) = e3<E Qu, 0>

Proof. For f€H(&), we have

ﬂm=f fr) e #7950 i = (£, 1,
w/ WE
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as is easily seen by the mean-value theorem (integrating in polar coordinates on W/W,
relative to the unit sphere in the Q;-norm). Thus k; o=1. Now, for v€ W, we define

(Tg(?)) F) (u) = ¢ Qv ) pAnQe(u, ")F(u — 2)).
T¢(v) acts unitarily on H(£). Thus, for Fe€H(£),
B, ke, py = F () = 2P D T (1)-1 F(0) = 2% DTy (v)~1F, 1) = 2% (P, Tr(0) 1)).
& £ 3 £

Thus
kg(u, v) = ke, , (w) = €796 D T(w) (1) () = 796 2,

It follows from this, that {Dc,e** %™ “9; ¢,€C, v,€ W} is dense in H(&), and that the
norm of such a function is given by

”z ci 647105(”' v{)”2 =zc;‘ c-je4n05(vj, ”i),
Also we have for feH(§),
(38.2.4) e~ B ) P < || e,

since |f(u)|2={f, ke, u)? applying the Schwarz inequality.
3.2.5. Definition. Let L(u; Q) be the space of functions on 0, x W of the form
N —
(3.2.6) F(&,u)= 2 1(§) & 9D, LeCy(Q*), vEW.
=1

Define

”F“i =4Z; fli(f) i;(f) o178 Q@ uy» d,u(&).

and let H(u, @) be the Hilbert space completion of this space.
Otherwise put, H(u, @) is the space of square integrable sections of the fibration
H(£)~§ over O,. The following characterization is more valuable:

3.2.7. Lemma. Let Wu, Q) be the space of Borel measurable functions F defined on
Q* x W such that

(a) F(, -)eH(E) for almost all E(du),
®) 115 = [, o) < o

Then H(u, Q) is naturally identified with the equivalence classes of W(u, Q), modulo dy x du-
null functions.
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Proof. Let Hy(u, @) be this space of equivalence classes, and @: F(u, @)~ Hy(u, Q)
the equivalence relation. First of all, Hy(u, @) is a Hilbert space in the norm |« ||, given
above.

For £€0,, GEH(£) and B a fixed ball in W, we have clearly

L]a(u) [2du < CH @) 6|

where M (&) =max {exp ( +4mQ,(u, u)); w€ B}, and C depends only on B. Then if U is a
small open set in Q*, and M =max {M(&); £€U}, for any GEH(u, Q),

f |68, w)[Pdudp < K|| G|,
BxU

where K depends only on Bx U.

Now, let {F,}<H(u, Q@) be Cauchy in ||-|l,. Then, for such B, U, {F,} is Cauchy in
L¥B x U, duxdy). Thus {F,} has a limit in I, .(du xdu) on Q* x W; let F be this limit.
We then have

[ e -Fe wpas] au—o,

s0, as functions of £, the inner integrals converge to 0 in LU, du). We can choose a sub-
sequence F,, such that the inner integrals converge pointwise to zero a.e. (du); or, what is
the same F, (&, -)—~F(&, -) in L¥ B, du) for almost all & Thus F(, ) is holomorphic on
B for almost all £(du). Covering W by a countable set of such B, we see that for almost all
&, F(&, ) is holomorphic on W. Similarly, since {F,} is || - [|,-Cauchy, we can conclude that
for almost all £ {F (&, -)} is Cauchy in H{£), and F (&, -} > F(&, -)on W. Thus F(£, - YEH(E)
also and ||Fy(&, <) —F(&, )20 in L'(du). We conclude that a | -|[,-Cauchy sequence
in Hy(u, @) actually converges to an element of Hy(u, @), so Hy(u, @) is a Hilbert space.

Now, for F of the form (3.2.6), clearly F € (u, Q). Since exp (47Q,(u, v)) is the kernel
function of H(£), we have

1715 [P - lEdue = 1215

so the correspondence F—®F is an isometry of L(u, Q) into Hy(u, @). It remains to show
that the image is dense.

Let ¢ €Hy{p, @), and suppose that ¢ is orthogonal to the image of £{u, @). Then for
all 1€C,(Q*), vEW, $(&, u)[UE) exp (4nQ¢(u, v))]~ is in LY(exp (—4aQy(u, w)ducdu), so by
Fubini’s theorem,

0= fl(?) [fWIW B(E, u) FCE D g=4nQyu. “)dug] du(&).
&
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Now, since ¢*"%“? is the kernel function for H(£), the inner integral is $(&, v), a.e. (£).

Thus, for all v€W, all I€CHQ*), f$(&, v)UE)du(&)=0. This implies that $(&, v) =0 for al-
most all &, i.e., $=01in Hy(u, @).

3.2.8. THEOREM. Let pu be a positive measure on O* such that
Flig) = [o ¢ duie

converges for all y€CQ). Let
F(z)= fez’”“f' 2du(&); 2€D(Q).

For ¢ €W(u, Q) (as defined in Lemma 3.2.7), the integral
(3.2.9) (2, u) = f D G E w) du(E)
converges absolutely for all (2, u) € D(L, Q). Let

v v
H(u, Q) ={¢: | 1= 8113
v
H is a Hilbert space of functions holomorphic on D(Q, Q) with Bp((z;, 1), (%2, Ug))=

Pz, —7, —2iQ(u,, uy)) as reproducing kernel.

Proof. Let ¢ € W(u, Q). Let (2, w) € D(Q, Q), with z=z+(t +Q(u, u)), tEQ. We have

fl MG D gz u)| du(g) = fe*2n<£. B g2 Q| (£ ) [ dy(E)

1/2

< [Je—4n<6. t> d/l'(s)] vz J‘e_4n<5. Qu. u)>|¢(§’ u) lzd,u(f)] ,

and by (3.2.4), since e ¥ |g(E w)[2<| &, )||%e, this last is dominated by
F(2it)\2||¢]| ., so the integral is absolutely convergent. In that case, applying Morera’s
criterion, we can use Fubini’s theorem to prove that since e2™¢ 2¢(&, u) is holomorphic
in D(€, @) for almost all &, so is (3.2.9). It remains to verify that R is the kernel function.

Let ¢ €H(u, Q).
&)= f ) 2 g

- fg— | (B(E 0) €712 (O o740 V) s ()

= f¢>(f, v) exp ( — 2miC§, 2+ 2iQ(v, w))) ™€ Vg i dp(§) = {4, D, >
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by Lemma 3.2.7, where @, ,, is the expression under the bar. But, by definition, this is

vV Vv Vv
{p, D, wy» 80 D, o is the kernel function for H(u, Q). But

v

D, W)= fegﬂ% 7 exp (— 27, 2+ 20Q(w, u))) du(E) = Re((Z', %), (2, w)).

3.3. The case where dp is absolutely continous

In this section we shall describe the inverse isomorphism of IZT(E, Q) with H(E, Q)
when du(&) =f(£)dé on Q* This includes, in particular, the spaces (1) corresponding to
the discrete holomorphic series. We shall make explicit their reproducing kernels in the
following section.

For J a continuous positive function on the cone Q*, we consider the measure du(£) =
J(&)det @ d&. Here 0,=C0*, and for §€Q*, H(§) is the space of functions F holomorphic
on W such that

7= [1Fofe-t=ose dot @edu< .

The correspondence x->f, defined by

B(&, u) = J (&)~ det Q; (&, u),

determines an isomorphism of H(u, @) with the space H(Q*, @; J) of functions ¢ measur-
able on Q* x W such that

(a) (&, ) is holomorphic for almost all &,
(3.3.1)

(b) f e R W (&, u) PI(E) dE du< oo

As in [20a], p. 345, we introduce the space P(Q*, @) of functions of the form >1,(&)P,(u),
1,€C4(Q*), P; a complex polynomial on W, and its completion H(Q* @; J) in the norm

||¢||2= fgtx Wl‘ﬁ(f’ u)|26*4”<5' Qu, u)>J(£) dédu.

3.3.2. Lemma. H(Q* @Q;J) is the space of equivalence classes (modulo null functions
relative to Lebesgue measure d&du) of functions in H(Q*, Q; J).

Proof. Let Hy(Q*, Q; J) be the space of such equivalence classes; by Lemma 3.2.7,
this is a Hilbert space in the norm (3.3.1). Clearly, if ¢ €P(Q*, Q), it is in H(Q*, @; J), and
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the correspondence is isometric. It remains only to show that P(Q* @) is dense. But this
(replacing I, by J), is just the argument on the top of p. 346 of [20a].

Remark. It is here appropriate for us to disclaim Theorem 2.30 of [20a], which, if it
made sense, would still be incorrect.

3.3.3. Definition. We shall say that J satisfies the condition (C) if

Fliy)= f "2 0 J(£)-1 det Qg d&
Q*

converges for all y €Q.

Notice that whenever the integral converges for some y, €€, it converges for y €y, +Q
(since exp (—2nK§, £))<1 for t€Q). In particular, if J is homogeneous with respect to
homotheties (J(ty) =t%J(y) for some real «, all t€ R+), then J satisfies condition (C) if and
only if the integral converges for some %,€Q. When condition (C) holds,

F(z)= f PHE D J(£)L det Qg dE
O*

is holomorphic in D(Q). The following proposition paraphrases Theorem 3.2.8 for the

present case.

3.3.4. ProrositioN. Let J be a positive continuous function on Q¥ satisfying conds-
tion (C). For ¢ a measurable function on Q* x W, holomorphic on W for almost all &€Q*
such that

e li= j|¢>(§, u)[* exp (— 47Q¢(u, ) J(£) dEdu < oo,
(we shall say € H(D, J)), then the integral
(3:3.5) b= [ emen g
converges absolutely for all (2 w) in D(Q, Q).

v v
The space H(D, J) of all such ¢, endowed with the norm ||¢|,=]|¢||,, is a Hilbert
space of holomorphic functions on D(Q, @), with kernel function

ki(zy, u1)s (295 Ug) = J‘g‘ oxp (27icE, 2, — 2o — 21Q(uy, uy)>) J (&)~ det @ dE.
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v
We note that, in case J =1, the space H(D; J) is already studied by Koranyi-Stein (see
\
[12]). In this case H(D; 1) is the Hardy space H? of holomorphic functions on D(Q, Q)
such that

5= §%pﬁF(x+ i+ Q(u, u)), w)|*drdu< oo.

3.4. Condition (HC)

We begin by recalling the Plaey-Wiener theorem of [20a] (see also [20b]). For F a
C=® function on D(Q, @) such that F(x+1y, u) is a Schwartz test function of # for all fixed
(y, u), define

(34.1) By, u) =™ f Fla+ iy, u)e ™ 2 dy,

Now, let y be a positive continuous function on €2 which is homogeneous relative to homo-
theties. We introduce the following:
H*(D, y) ={F holomorphic on D(Q, @), such that

(8.4.2) [FAE =f| Fx+iy, w)| 2ply —Q(u, w)dwdy du < oo},

(3.4.3) I,(8) = fe‘“@ Vu(y)dy.

3.4.4. LeMMA. (a) I,(£) is a convex function of & which is identically infinite off QF.
(b) I,(&)<oo for some & €Q* if and only if I,(E)<oo for all £EQ*.
(o) H(D, p)={0} if and only of I,(&)<oo in Q*,

3.4.5. Definilion. For such a y, we shall say that ¢ satisfies condition (HC) if I, is
finite somewhere (and thus finite throughout Q*). Given J defined on Q¥, we shall say that
J satisfies condition (HC) if J =1, for such a y.

3.4.6. THEOREM. Suppose y satisfies condition (HC). Then the correspondence (3.4.1)
induces an isometry of H¥(D, y) with H(D; I,)) defined as in Proposition 3.3.4.

We shall denote this isometry by the formula (3.4.1) where the integral is interpreted
as the Fourier transform. Notice that for F€H%(D, p), F(&, y, u) is independent of y. We
shall denote this as P(&, u).

v
3.4.7. TeroREM. If v satisfies condition (HC), then H(D, 1,)=H?¥D,y); in paorti-

cular 1, sotisfies condition (C).

Proof. The first assertion is just the affirmation of Fourier inversion, whether or not

I, satisfies condition (C). That it does so follows easily, as we now show:
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Let ¢(&, u) =U(&) P(u) a function in P(Q*; Q). By Fourier inversion, for y €Q) we have

(3.4.8) qi(%’ , 0) = fe—”@ V(&) P(0)dE.

On the other hand, we know that H%(D); y) being a Hilbert space of holomorphic functions

square integrable on the domain D has a reproducing kernel and so by 3.4.6 we have

(3.4.9) $ (%’ : 0) = f UE) P(u) k(E, u) e~ 9% J(£) dédu

with k(&, w)€H(D; I,). Since (3.4.8), (3.4.9) hold for all [€C\(C)*), the integrating factors
are identical, so that

fp(u) k(&, u) etk QL un g J(§)—1e‘”<5' v P(O)
for every polynomial P.

Since the polynomials are dense, in H(E) and k(¢, w)€H(E) for almost all &,
k(&, u)J(£)e™* ¥ is the reproducing kernel of H(&) at 0, so

k(& w) = ¢ ¥ J(£)1 det @,

for all y. Since k(&, u)€H(D, 1),

fe_2n<s. Y J(E) "t det Qe dE< oo,

as desired.
Thus condition (HC) implies condition (C), but not conversely, since J =1 satisfies
condition (C), but is not of the form I, for some . Finally, from the last assertion of

Proposition 3.3.4 we obtain

3.4.10. ProrosiTioN. The kernel function of H3(D, ) ts

leo (21, 1), (205 o)) = L* exp (271§, 2, — 7y — 20Q(uy, uo)) L,y (€)™ det Qg dé.

3.5. Description of the spaces H())

Let us now suppose that D(Q; Q) is a homogeneous symmetric Siegel domain; then

we have o« GJKS D(Q,Q), W= QcH, in the notation of chapter 2. Let A be a
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character of K, and A =(0, 2). Let ¢,==D,. Then &, is a character of B such that
$alexptX,,)=e.
Let 4, be the function defined on Q by
walh - 8) = pa(h)-2(dety,, k) Y(dety, h)2

Then, if we let 2}(2) designate the space of the holomorphic discrete series associated to
the character 4 of IN{, we have J(A)={F holomorphic on D(Q, @) such that

8.5.1) N, Fy?= ﬁ Fla+iy, u)|2paly —Qlu, w))dedydu < + o0},

Thus we are led to consider

(85.2) IE)=| eSO uytydt=| o 5P §(h)*(dety,, h)N(dety, h)2dh,
) Q

Hy
so that
La(h - &) = $1(h)~*(dety, B)H(dety,,, h) 2 T3(&,).

We shall caleulate I,(%,) explicitly later (in section 4.4) and show that I;(&,) <o if and
only if 1+<p, H,,> <0, which is fortunate, for that is Harish-Chandra’s condition for
H(2)+{0}, and we have affirmed that

H(2)={0} if and only if F(1)=+{0}.
Define J, on Q* by
(2.5.3) Jalh - &) = $a(h)2(dety, b)~Y(dety, , )~
J is defined for all A€ R, but if 1+ g, H, > <0, then I;(§)=1I,(&)J (&), thus J; is of the
form I,; i.e., J; satisfies condition (HC) if and only if 1 satisfies the condition of Harish-

Chandra for (0, 1) to be in the discrete holomorphic series. This gives us the following de-
seription of H(4).

3.5.4. ProvosrrroN. Let 2+<p, H,,><0. Then the correspondence F—~F is an iso-
metry of H(A) with H(Q¥, Q; I,). For every ¢ € H(QF, @; J,), the integral

(3.5.5) bz u)= f 2D B(E o) dE

comverges absolutely to a function of H(A), and ¢ =é, N(& %)2=I 1&) 8113, More ex-
plicitly,

ffF(x + iy, u) [Pua(y — Qu, w)) dady du = Iz(fo)f . | P (&, u)|2e "9 J (&) dE du

Q¥ XYy

3 — 762907 Acte mathemathica 136. Imprimé le 13 Avril 1976
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for all F € H(L). The reproducing kernel K, of H(A) is

(3.5.6) I A(Eo)_lfezni@' BB m 2L J)(£)7 det Qg dé,

and the integral converges absolutely.

We shall see that in the next chapter J, satisfies condition (C) for values of
A>—{g, H,>. In this case, the spaces H(Q* @, J;) shall be isometric to the spaces
H,(2) and as such, define irreducible unitary representations of . In particular, if
A=—((r—1)p-+1+pu), then J;=1 (by 3.5.3) and é is the Hardy space H2 This value
is larger than —<{g, H,>=(r—1)p+1+u/2.

4. Hilbert spaces of holomorphic functions on the symmetric domains D(Q, Q)

We shall consider the realization of G/K as a Siegel domain D(Q, @) as deseribed in
chapter 2. We shall consider specifically the function #, on D(Q) defined by

Fie) =K@,

(see section 2.6). We shall describe the set P of those 1 <0 such that Ry, (see 2.6.4) has the
property (P). This set was described completely first by Wallach ([24b], 1I) using com-
pletely different techniques.

Note that, since K(z)= [g+ exp 2mic&, z)dE, we have, automatically K(i(y +y,)) <
K(iy), and thus since 1<0, F,(¢(y +1v,)) < F,(iy), so we may apply the theorem of Nuss-
baum (3.1.2). Thus Ry, satisties property (P) if and only if

Fi(iy)= fe'zw‘ v dus(€)

with du; a positive measure supported on {*. Such a representation is unique [17]. We
shall now use the homogeneity of our situation to discover all permissible y;.

Since F'; transforms (under G(0)) by the character y,,

2t

XZ(GXP tX')/i) =e,
it follows that du, is semi-invariant under the G(0) action:
{dur, Uzo) $) = xa(@o)<dis, 47

for all ¢ €0y (2*), where I(z,) is left translation by x5'. We thus need to describe the semi-
invariant measures (under G(0) action) on 0Q*, i.e., the measure transforming by a character
of G(0).
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4.1. Orbits of G(0) on O
The map &: H#,—H5 given in 2.3.1 has the property £(g-X)=(g*)1-&(X), so the G-

orbits in Q) and * are in one-one correspondence

4.1.1. PRoPOSITION. Let s, =0, s,=>771 U;. Then {s,, ..., 8, s} is a complete system
of representatives of the G(0)-orbits in Q. We have G(0)-s,={0}, and s,€G(0)-s,,;.

Proof. Since s, =lim,,_, (exp tX,,)s;,;, we have s, Em;, and thus s; €Q,1<i<r.
Now, let «€Q, a=1lim g, s. Since G(0)=K,AK, with K, compact, we can write g, =
k,-a, %, and a=lim (k,-a,-s). Extracting a convergent subsequence, we see that « is
conjugate (under K,) to an element of the form s,=>;.;U,. Thus, we can find a permuta-
tion w in the Weyl group, fixing Js and thus in G(0), such that o -s;=s, for some ¢ (unless
already «€Q and s;=s).

Let O, denote the G(0)-orbit of s,. Thus Q=QU U%_; O,. We introduce the following
notation: fix e, 1 <e<r, and let C,={1, 2, ..., e—1}, C;={e, ..., }. Let g(C,) be the derived
algebra of

Mee® > gt @ Dg T e,

1,7eCe ieC,
Let
80(Ce) = g(C.) N 9(0),
Ho(C)=g(C)n 7-(0= zc RXW@, ZC n(ai—«,-)/z,
(4.1.2) ieCe i.j€Ce

f(Oe) = g(Oe) n f, p(Ce) = g(Oe) npy,
f(Co)=0y(Co) N,

and G{0,), Gy(C,), Hy(C,), K(C,), K,(C,) the corresponding connected subgroups of G. Let
G(0,), Go(Cy), Hy(C,), K(C.), KC.,) be the corresponding subgroups of G. Finally, let
#(’),e___ z n(“i‘“j)lz’

i€C,
jeCq

— - —a;)/2)
190'9_ 217 (Cotg—o5) )
ieC,
j€Ce

We shall calculate the stabilizer S of s, in G(0), and its Lie algebra §).

4.1.3. LEMMA. $§3=£,(C.)D (0 @D Yy 6

Proof. It is easy to see that the space on the right is contained in §% on the other hand
the map X~[X, s,] coincides with J and is bijective on the complement 3,(C,)® s, .-

Let 7,=Hy(Co) ® Ho, - T. is a subalgebra of H; let T, be the corresponding connected
subgroup of H,,.
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4.14. LEMMA. 83=Gy(C,) K(C,) M exp Vo,

Clearly S? contains the group on the right; we shall prove equality in chapter 6 (Corol-
lary 6.2.5)).

41.5. LemMA. T,-8% has a complement of measure zero for the Haar measure on
G(0).

Proof. T, 83 contains the fat cell of G(0).

4.1.6. LEMM A, The orbit T, s, has a complement of measure zero for the (unique) class
of quasi-invariant measures on Q.

Proof. Using Lemma 4.1.4, we have G(0) = K, Hy(C,) 83. The functional ¢ > {$(kh - s,) dkdh
($E€C,(0,)) defines a quasi-invariant measure on O,. If k-h-s, €T, s, then k¢T,-S;.
For, otherwise k-h would belong to T,85H(C,)=T,H(C,)S3=T,8%. But, by Lemma

4.1.4, the complement of 7',89 is of dk-measure zero.

4.2, Semi-~invariant measures on the orbit 0,

Let us consider the character y, on S9 defined by
Zo(h) = detgoy st b

%o is trivial on [Gy(C,), Go(C2)]- Ko(Co) M exp Yo,.. On the other hand, if X, €gy(Ce) (i-e.,
if 2>e¢) then
Trgols:, X')’i = Tr,,b’ e X')'i = (e - 1) p.

Thus y, admits a unique extension (since e #r +1) to a character ¥, of G(0). %, takes positive

real values and
XlexptX, )= PP 1<i<r.

Let K,={$€C(G(0)); ¢ has compact support mod S, and ¢(gh)=y.(h)¢(9), g€G(0),
keSS, C(0,)={4€C(G(0)); ¢ has compact support mod S, and ¢ is invariant under right
multiplication by Sg}. C(O,) can be identified with the set of continuous functions on O,
of compact support. Let I, designate the unique positive linear functional on K, which is
invariant under left translation by G,. Since ¢—¥,-¢ is an isomorphism of C(O,) with K,

we obtain from I, (by composition) a positive measure du, on C(Q,) which satisfies

<d1ue’ Z(xo) ¢> = Ze(xo)<dfu'e’ ¢>

Furthermore, du, is the unigue semi-invariant measure on Q,; i.e., if du’ is semi-invariant,
transforming by the character y', then X'=y, (see [27], chapter 7, § 2.6, Corollary 1),
and dyu’ is proportional to dy,.
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Since T,-s, has a complement of du,-measure zero, it follows that for ¢ €C(O,),
e I A0

Nofice that () has a G(0)-invariant measure du =dety, A(f)~1df, and thus all the meas-
ures (dety, h(t))*dt are G(0)-semi =invariant.

Now, we move these results to o using the map & Let &= ¥ E1=0, &1 =&,
These {£,} form a complete system of representatives of the G(O)-orblts in Q*. Let O% be
the orbit of £,, and its isotopy group is (89)*. The T',-orbit of &,, under the action £~ (t*)1-§,
has a complement of measure zero in O (relative to du}, the transport of du, to O%). We
have

(A, Ug) > = Tolo) i, 6,
where

Xe(exptX,)=exptle—1)p, e<r, X,=1

Az, > = L () EN KL dt,  ($€C(O0,)

If e<r, every semi-invariant measure on O} is proportional to du%. On QF (e =r+1), every

measure, semi-invariant by the character y,:

Zalexp tX,,) =exp 2t4,
is proportional to

(4.2.1) a(€) (dety, h(£)) dE,

where o;(g-£o) =1(9). For ¢ €C(Q2¥),

f $)04(6) ot O 2= [ glha: &) ko) o= f (9 £ 2a(g) dg

= L B((g*)1- &) Xa(g) Mg = L G((*)~1 - &) Za(h) 7 dh.

4.3

We now ask: for what A does there exist a positive measure du; on Q* with F(1y) =

je—2n<é.y>dﬂz(§)'
Such a du; is semi-invariant by the character y,. Letting uj by the restriction of u;
to O% (ui(EB)=p(E N O,)), we have uy=>,u5, and each uj is also semi-invariant. Thus
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4.3.1. ProrositioN. If —A¢{0, p/2, ..., 3(r —1)p}, the only possibility is that du; is
proportional to oy(&) dety h(E)dE. If A= —Fe—1)p (1<e<r), then du; is in the linear span
of du’s and ay(&) dety, h(£)dE.

Finally, we must find out, for which A and the possible du; is the integral fe~¥du;

convergent for y€€). It suffices to consider only y =s. Since

)L &, 8> =&, tF28)> =8(8,, t¥8) = S(ts., 8) = &y, £+ 500,

we must thus calculate

(4.3.2) Fis) = f ety (1)-1dt, all A€ER,
He

and

(4.3.3) F is)= f et sy (ydt, 1<e<r.
TE

4.4. Certain integrals on the cone Q (see [5])

In this paragraph we shall calculate the above integral (4.3.2) as well as the integral
I,(&,) as given by (3.5.2). The condition (HC) for H(A) {0} comes out of this calulation.
In addition, these calculations shall determine, for J (&) =1,(&)/1,(&,) the condition for J;
to satisfy condition (C) (recall 3.3.3). Since (recall 3.5.3)

J(E)7t det Qe dE = o;(£) dety, h(E)dE,
and det @y.;=(dety,,h)"*det @, it follows that J, satisfies condition (C) if and only if
Fﬂ(’):é‘) < 4 oo,

44.1. PRoPOSITION. There is o basis {ES;} of n¥“i~), 1<a<p, (j>1i) such that for
¥ n

hy=1lexpa, X, -expL,...exp L,_,,
i=1
and
Lie > p, L= 3 i B,
1951 &7
and &= u, U, we have

e—1
(4.4.2) & by s = 121 (€1, + 21 u, €% (2 (2 5)%),
= i> o
Proof. This is just Theorem 4.10 of [20a], where s=>7_4 U, is replaced by s,=>¢={ U,.

This proposition gives the formula on which our computations are based. We consider

a generic integral, which includes both F,(is) and I,(£,) as cases. Let A be an arbitrary
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purely imaginary linear form on Y). Let ¢, be the character on I, defined by

palexptH)=e, where A;=<AH,)>.
Let

(4.4.3) I(5 A) = f o B 1 o (B)~2(dety, B)~Y(dety,, h)~1dh.
Hy

Then F;(is) = I(&y; A) for
Ay=2-32+p+plr—1)).

In the coordinates given by Proposition 4.1, we have

dh =da, ... da, - 1ldz},,
Try,0dX, =(r—1)p+2, Try,odX, =gy,
2.2.2, and thus

e )= [oxp| =2a{ 5 e 5 (s ) )|

i=1 ji>1 a
Xexp[—2jZJA7-aj~ 21 ((r— 1)p+2+,u)aj] day ... da, I ]dx? ;.
- j=

Make the change of variable af;—>e% af; (j fixed). There are (j —1)p such variables, thus

B L
i=1 i=i
X exp[— i ;2N -G —1Dp+ ('r—1)10—|-2—|—,u]d0t1 e da, [T dxf;.
5=1

4.4.4. Definition. For 1 <i<r,let I, ={[(r+i—2)p+2+ul.

44.5. TaEOREM. I(&), A)< + o0 if and only if A;+1,<0, 1<i<r. In this case
1€, A f;l% 2T~ A, —1,).
Proof. Normalize the measure 1Id«f; so that exp ( —2x2(xf;)?) has integral 1. Then
I(&, A= H exp[ — 2ne?% —a;(2A;+ i — 1) p+ (r— 1) p+ 2+ )] da,

Letting ¢ = 2me®®, the theorem falls out.
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Note that [,=<g, H,>=(r—1)p+1+u/2 and that {,<..<l. If A is a dominant
weight, we also have A;<A,. In fact, since y, is the largest root, we have y, =y, — >m,«;
with m,;>0 and the a; are compact positive roots. Since y,, y, have the same length, it fol-
lows that H,,=H, —>m;H, with m;>0, and thus <A, H,><<A, H,>. The condition
of Harish-Chandra easily follows ([20a}).

4.4.6. CoroLLARY. If A;<A, for oll i, then I(A; &) converges if and only if
{A+p, Hw> <0.

4.47. COROLLARY. Let 4 be a character of K. Then L&) <oo if and only if
A+<e, H,,> <0 and in this case
Iy(go) = [T3@0) (= @+1).

4.4.8. COROLLARY. F,(is) converges if and only if A+4(r—1)p <0, and in this case
Fofis) = [ 132402 T( ~ 2+ i~ 1) p).

4.4.9. COROLLARY. J; satisfies condition (C) if and only if A+3(r—1)p<O. In this
case F; satisfies condition (P) and AEP.

4.5. Certain integrals on the orbit O,

It remains to consider the integrals (4.3.3): the case A= —}(e—1)p with du;=dus.

As above, we consider

Ligs A) = f e RE 50 4 ()b, h)(doty, . )R,

so that F,(is) =I,(&y; A) with

(e—1)p 2+u+pr—1)

(4.5.1) A=Aea=——; 5 ,

1<e<r.

4.5.2. THEOREM. I (&, A)< -0 if and only if Ay +1;<0 for 1 <i<e—1. In this case

e—-1

I (&, A) = T1(3) @myMHD(— A, = 1,).

i=1

Proof. We follow the proof of Theorem 4.4.5, noting that if s, €T,

e—1
hy= EGXP a;X,,-exp Ly ...exp L. 1
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(as in 4.4.1), so all the variables corresponding to X, L, ¢>¢ are missing. Then, simply

(4.5.8) I(&, A H exp[ — 2me®%1] exp] — a,(2A;+ (i — 1) p+ (r— 1) p+ 2+ )] da,.

4.5.4. COROLLARY. F,(is) < + o0, 1 <e<r,

Proof. Since the I, are increasing, it suffices to note (using (4.4.4) and (4.5.1),
Ae—-l +le—1= - (Z)/2) <0.

4.6. Description of the set P and the corresponding spaces 7{,(1.)

It follows from the preceding sections that the set P of A such that R, is of positive
type (see 2.6.4) is as determined by Wallach [24b]:

={z;z< —“:51—)3‘3} Uldy oo do},

First, let us consider 4 < --}(r —1)p. As in section 4.4, consider
Jl h 50 ¢Z det’#x h)—l(det#uz h)—l'
J 3 satisties condition (C) (recall (3.3.3)) and

Fiz) = Fy(is)? f 22> 7 (£)-1 det Q; dE.

Let F(Q*, @; J,) be the space of measurable functions ¢ of &, u such that

a) ¢(&, u) is holomorphic in u, for almost all £€Q,

(b) l¢ll7,= f | (£, u) [P~ DTy (E) dE< + oo.
For € JHQ*, Q; J,), let
(4.6.1) b (2, u)= f G B(E u) dE.
Q*

This integral is absolutely convergent for all (z, ) € D(Q, @) and the correspondence
v
¢—¢ is an isomorphism between H(Q*, @; J;) and Hy(A) with

No(h:4)2=Fis)| 82,

(4.6.2) Fyis) = Ij-%- m) DT~ LA+ (i — 1) p)).



42 H. ROSSI AND M. VERGNE

v
In particular, if A=—1,=—3((r—1)p+u+2), then J_;, =1 and ¢—¢ is an isometry
of U, Q; J;) onto the Hardy space H? of functions holomorphic on D(£2, ) such that

%.12< -+ oo,

sup f]F(x +i{t+ Qu, ), w)*dedu=|| F
teC)

v
Now, if the additional condition (HC) is satistied: 1+{p, H, > <0, then ¢—~¢ is an
isomorphism of F(Q*, @; J;) with

W) =P €0UDY, N, )= [ P+, 0 |2paty ~ Qs ) dndy <o}
and Nk 60 =18 || 612,
Iy(&g)= I=I1 L(2m)t+e Byprdd-Doy (] 4 <o, Hy» + 1 —1) p)).

Now let us turn to 1,= — (e —1)p, 1 <e<r, and to describe the space Hy(1,) Here
Fye) = P fis) f & gk
0}

For &,= > {21 U, the form Qg has askernel Wy, = >7_. 5. Let Hyo(C,) = 2571 7,
oo (CL)F = Hypo(CL)° 1 Mz, and @, the restriction of @ to Fis(C,)+. Then H(E,) (recall
definition 3.2.2) is easily identified with the space of holomorphic functions on H;,(C,)*
such that

| F(lEen= f e Co Qe | Py [Pdu< + oo.

HiralCqy T

Now, t—(t*)~1-£, ig an isomorphism of the group 7'.< H, on the set T, &, whose com-

plement in OF is of duj-measure zero. Consequently, the correspondence
(AB) (¢, w) =TtV 2((1*)1- &, (¢*)2ouw), tE€T,, u€y(Cr)*

gives an isomorphism of H(du}, @) (recall 3.2.7) and LXT,, H(&,)). For ¢ €LAT,, H(E,)),
the integral

$ () = f G 9 4t pru) 7, (1)t
Te
\
converges absolutely and the correspondence ¢—¢ is an isomorphism of L¥7T,, H(A,)) on

HOM’&)*
Note that for 4, =0, we have Hy(4,)=C.
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5. The space H,(R,) and boundary values of holomerphic functions
5.1. Boundary orbits (work of Koranyi and Wolf)

In this section we state some of the results of Kordnyi and Wolf on boundary orbits
which are useful in this paper.

Let us temporarily return to the realization, via the map {, of G/K as a bounded do-
main D in p+ as in section 1.2. Then the action of & on D extends smoothly to 5 and the
topological boundary D —D is a union of r G-orbits. There is the following description of
these orbits (see [13], [25]). As in 2.1.5, let ¢,=¢,,-¢c, ., ... ¢,, be the partial Cayley trans-
forms (for 1<<e<r). The formulae 2.1.6 show that ¢,€ P+K P~ so that {(c,)€p*. Letting
exp tX, =exp (¥, +E_,) act, we see that [(c,) is in G-ac_g:) and the points {{(c.);
1<e<r} form a complete system of representatives of the orbits of @ on D —D. We have
¢, =c and G-{(c) is the Silov boundary of D.

We now turn to the unbounded realization D =D(Q, @) of G/K given by the Cayley
transform, and relate these G-orbits with the orbits described in 4.1. Let o: D—>D be
given by «(x)=c-{(c™! exp ). Since D is unbounded, some points of D — D are sent to
infinity, so the action of ¢ cannot extend to D. However, if we recall the group P (2.3.7)

of affine automorphisms of D, we can compare an orbit G-Z(c,) with the orbit P-{{c,).

4

We shall gee in the next chapter (section 6.2) that G-(c,)—P-{(c,) is of measure zero,
with respect to the (unique) class of guasiinvariant measures on G-{(c,). Furthermore, by
2.1.6,

e~1

a(lle))=c-L{ete)=c-LG} .. ¢t ) =c(21 Ew) = (0 0)-

Thus « extends smoothly to P-{(c,) and sends it onto P(is,, 0) =Z,. Thus except for
an ambiguity on a set of measure zero, the {Z,} are the “orbits” of @ in D-D.
Now (recalling 4.1), let Q,=G(0)+s,. Then
2e={@+i(t+Qu, w), u); €0, x€W,, u€h}
= {(z+iy, w); y —Qu, ) € O,}.

Let 1,1, ..., 1, be the number defined by (4.4.4). We shall show that for 1= -1,
1<e<r, we can describe the norm of a function F € H}y(4) as the integral of its boundary
value on X,. For example: the case e=1 of the Hardy class on the Silov boundary. Here

Ho(-1) =H2={F€O(D); sup f{F(m%—i(t—i— Q(u, u); w)) Pdedu< oo}.
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For t€Q, (x, u)€X,, the Silov boundary of D, and for FE€H,, letting F,(z, u)=
Flx+i(t+Q(u, ), u), it is known that F, converges in L2, as t->0, to a function F in
Lx(Z,, dvdu), and F—>F is an isometry of H, into L2(Z,, dxdu) [12]. Our result exactly
generalizes this theorem, replacing X, by Z,.

5.2. Geometric description of Z, and the space ¥y(—1,) (e+1)
Once again, O, is the G(0)-orbit of s, in  —€, and

Ze = {(x+’5?/, "66); ?/—Q(% u) € Oe}-
5.2.1. LEMma. For e==1, the closed convex hull of O, is Q.

Proof. Clearly the closed convex hull of an orbit is also G(0)-invariant, so it suffices
to show that there is a point in Q which is a convex combination of points in O,. Given a
permutation « of {1, ..., r}, there is a w,€G transforming X, to X,(,,. Thus w,€G(0),
and w4(s,) € O.. Now 2, w,(s,) is clearly proportional to s€, so is also in Q.

Now let J, be the function defined by 3.5.3 with A = —1;

(6.2.2) Tl Eo) = 1, (B *(dety, by (dety,, h) .

Since  Trypay Xpyy=2+pu+(r—1)p and 2,=2+u-+(r—1)p+(e—1)p, we see that J,
transforms by the character y;*(y.(exp tX.,)=exp t(e—1)p). Let us dualize the results of
the preceding chapter. For any 1, let f; €Q* be defined by

—Arjn
(5.2.3) fi§) = (fe‘”“' ”’dy) (n = dim H,).
Then {3 transforms by the character %2 and we have
(5.2.4) T8 = 28 for = —(e—1)p[2.

(We shall simply write f;, for this value of 1. Now in the preceding chapter (i.e., Proposi-
tion 4.3.1) we obtained an integral representation for f., over the orbit O}. Interchanging
the roles of 3, and N7, £ and y, we obtain the representation for f5, =J,:

(5.2.5) T [ e oau,

where dyu, is the unique G(0)-semi-invariant measure on Q,. By Corollary 4.5.4, ¢ is a posi-

tive and finite constant.
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We return to the space Hy( —1,) of holomorphic functions of the form
$ @ w)= fﬂ €D (&, u) dE,
where ¢(&, u) is holomorphic in « for almost all & and
fl«ﬁ(s, u)[Pem4E QW T (§) dEdu< + oo,

Now X, is naturally parametrized by 3, x Hij2 x O,: we consider the measure do,=
dedudy, on X,. For t€Q, >, ,={o+(it, 0); 6 EZ,} <= D.

5.2.6. THEOREM. Let H,={F holomorphic in D,
HF”§=sup{f | F(z, w)|*do, < + 00}.
teQlJ e, ¢

Then H,=H,(—1.) and the norms are proportional.

Proof. This theorem and the following are direct applications of the results in [20 b].
We need only show that, for e$1, J (&)= + oo for £¢Q*. Now, since O, is a cone, 0,=
R+ xS, where B+ is the group of positive real numbers and S, is the intersection of O,
with the unit sphere in H,. Let (r,t) be the coordinates of this product representation.
Since dg, is G(0)-semi-invariant and G(0) includes the dilation in R+, we have for any
§>0, du,(sr, t)=s*du,(r, t). It follows easily from the uniqueness of the dilation invariant

measure on R+ that du,(r, t) =r~*"Vdr x dv(t), where dv is a measure on S,, thus

+oo
(f g r‘(’“l’dr) dv(t).
2 \Jo

Now if £¢0* we have (£, t) <0 for some €L —{0}, and thus since the closed hull of O,
is §, we must have <&, ty <0 for some t € 0,. By linearity and continuity this implies that

(6.2.7) J(E= cf e~ E D gy (1) = cf

S

<&, ty <0 for ¢t in an open subset U of S,. Since dy, is semi-invariant, U has positive dv-
measure, and clearly for t€ U, the inner integrand in (5.2.7) is infinite. Thus J (&) = + oo.

Now, as in [20b] the space ¥, can be described in terms of its boundary values on X,.
As in that article, we introduce the tangential Cauchy-Riemann operator, to be denoted
Z.. This can be defined as follows: for each point p€X,, let 4, be the largest subspace of
the tangent space 7',(X,) which is invariant under multiplication by ¢. Then we say, for
FeC=(Z,), F satisfies the induced Cauchy- Riemann equations, or 8, F =0 if the differential
of F restricted to 4, is linear over the complexes, for all p.
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5.2.8. Definition. H; ={F, measurable on X; [z,|F(0)|?do, < + oo, satistying 9, F =0

in the sense of distributions}.

5.2.9. TagorEM. For FEW,, and t€Q, F|Z, ,=F, converges as t—0 to a function
v,(F) in HE The correspondence F—v,(F) is isometric. If e==1, or if e=1, but G/K is not a
tube domain, v, is an isometry onto Ho.

This theorem is a corollary of the main theorem in [20b]; for if ¢ &1, we know by Lemma
5.2.1that Q, generates Q. If e=1, and G/K is not a tube domain, then the values of Q(u, )
generate O as a convex hull. In 5.2.9 the case e=1 was originally proven by Vagi [23].
{(When G/K is a tube domain, there are no tangential Cauchy-Riemann equations and

therefore no intrinsic defining conditions for the space of boundary values »,(F)).

5.3. Realization of D as a Siegel domain of type III

We shall now give a description of X, which is more appropriate to the study of sub-
representations of the prineipal series.
Let éezTe'Se:'H 0" e ée is “almost” equal to O, (in the sense of the unique quasi-

invariant class of measures). Similarly, we consider
%, = {@+iy, u); y—Qu, w) €O}

Since O, and O, generate the same convex cone, it follows from the theorem of [20b] that
the restriction from X, to ie is a unitary isomorphism which sends H? onto {f €L2(Z,, do.);
9,f=0 in the sense of distributions}. We shall thus refer to this latter space as H? also.
We now describe the representation of the situation which we are after.

First, we shall find a fibration n: D~ D,, where D, is a Siegel domain in fewer dimen-
sions. Associated to this fibration is a representation of D as a Siegel domain of type IIL
([26]; see also [18], 1969 edition):

D ={(py, z', w); p,€D,, Im 2 — L, (v, u')EQ},

where L, is the real part of a semi-hermitian form, depending differentiably on p, and Q'
is a proper cone in a subspace V'< ;. The fiber map is the projection 7 (p,, 2’, w') =p;.
Letting

Z,={(py, 2, @) Imz =L, u)}

be the Silov boundary of the fiber D, above py, it is the case that S Upien, 2y 1€,
Tyt ie»De, and the fibers of this projection are the surfaces X,. In this setup, for F€Hz,
F|X,, is in the Hardy space Hj, associated to D,

ptd

for almost all p, € D,.
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In order to obtain this description of H2, we will need results of Koranyi and Wolf
[26], which we shall now expose in our present context. First, we recall the terminology
of section 4.1, where C,={1, ..., e—~1}, C;={e, ..., r}. Here it is appropriate for us to mi-
nimize the notational complications, thus we shall let 3y(e) = Ho(C.), gole) = 8o(C.), Ho=Hy, e,

where the right hand sides are as defined in section 4.1. In addition, let

(5.3.1) W)= 2 p*, W (e)= >t Hile)=W.(°n W,

i,jeCe ieCe

and let Hy(e'), Huale'), Hiale'), Hi(e') be similarly defined with O, replacing C,. Let

Hi= 2 nptete,
‘iEC;

7eC,

Then, we have the decompositions:
=)D () OH  Hip=Hiple) ®Hin(e).

Let 0=, (') ®Hy® Hy; this is the subspace of g with eigenvalue } for Js;. It fol-

lows, from computation of the eigenvalues of Js, that
[Hy(e), Hol< Ho,
[Hole), Hi1<= 1.
(5.3.2) [Hq(e'), Hol<= Mo,
[(Hole)), Hil= M.

Let b,=Hy(e) D Hynle) D Hyle), Q,=Gyle)-s,=H(e)"s,, (recall section 4.1), which is an
open proper convex cone in F;(e). Let ¢, be the restriction of @ to His(e), and &, €Q%
given by &,=>¢21 U}, Finally

D, = D(8; Q) = {Pl = {2y, ;) € Hy{e)° D M 2(e); Im 2) —Quy, u;) EQe}-

Let a,: B,—~ D(Q,, @.) be given by a,(b,) =b,- (is,, 0).
For p=(zu)€D(Q,Q) Write p—(3+2 1%, u+u) with 2 €W HEME),
2 €], u € Higle), up€ Hijale'). Then

(534) ne(2> u) = (zl’ ul)'
5.3.5. LEMMA. 7, 1s a surjective map of D on D,.

Proof. Let Q,={x€M(e); there is a t€H ()W such that z+t€Q}. Clearly m,
maps D onto D(,, Q,); so we must show Q.=Q,. Let s'=>;_, U;. Then Q,+s' =
Hy(e) s,+8" =Hye) s=Q, s0 Q, Q.
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Now let ¢, €Q,. There are t,E,(e'), t' €My such that ¢ +8,+1 €Q. Let b €H,e),
ko€ Ho(e'); then hyhy(t, +1,+1') €Q also. For &,=>¢21 UF +51., UF =&, +&.,

0 <& Pyholty +E5+1')> = (&, by t> + <&, byt ty),
s0
(Eo byt + <R3 EL, b >0,

Since we can choose h, so that hg'-&, is as close to the origin as we please, we have
(€ byt =0 for all hy€He). Thus £ €Q, since { can be described as {t€3(e);
(&, Hyle)£) >0}. Thus Q,cQ,<Q,. Since Q,, is obviously open, we must have Q,=0Q,.
Now let

(5.3.6) b = Hy(e') + Hip+ Hale').
This is the decomposition of §’ into eigenspaces according to Js, with eigenvalues 0, }, 1
respectively. b’ is invariant under J and is an ideal in b. Since H1,; is J-stable we can de-
fine 1/ the eigenspace according to J of eigenvalue +4 in 74%. Let Q' be defined by
’ ! ! ": ! =1

Q(u’u)=§[u,u]'
On ;5 we have [Ju, Jv]=[u, v]. Let v": Ui,s—Hi/5 be defined by

(W) = §(w —iJu’').

Since Hijo="H,0(e) O W@ Hi and Ho=J N1, we have defined an isomorphism of complex
vector spaces: HiC -+ Hinle') > % by (@ +iy', ug)~ (T (% +JY'), uy). Transporting Q@' via

this isomorphism we find
oy . ’ o 1 ’ ! ’ ’ ’
Q@ iy -y, &+ iy +upg) =7 (&, X1+ [Ty ')+ Qelug, uy).

Let D' =D(Qu Q') ={(22,7 +1s); 25 € Wy(€')%, 2" € O, ua EHia(e’), Imzy ~ Q' (2 +uy, 2’ +1,) €QL )
The map o’: B'—D(Q;, Q) given by «'(b') =b'- (is,, 0) defines an isomorphism of B’ onto D".

Since b=0,®b’, and ¥’ is an ideal in b, we can write B= B(e)+ B’. Identitying B with
D via «, B(e) with D, via «,, B’ with D’ via o', this defines a diffeomorphism ¢ of D, x D’
onto D.

5.3.7. LemMma. Let p,=(2, u,) €D, with y; —Quuy, w)=hy-s,, hyEHyle). Let p'=
(29, 2’ +uy) €D’ Then

N ’ 1 ! ’ : ’
"py, ') = (zl+z2—1[Jz > 21+ 20Q(%g, Uy) +hy 027, Uy ).

Proof. This is a direct calculation, which we omit.
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5.3.8. COROLLARY. m (u(py, P’)) =p,. The map i, (p")=i(p,, p') is a diffeomorphism
of D’ onto the fiber 77 (p,).

Now, let, as in ([20 b], (3.2)), 2" =h7 (2’ —2iQ(us, u,)) and Sy(z’ +uy, 2’ +u,) be the real
quadratic form on ;D H, (e’ )° given by

So(2" +ug, 2" +1y) = 3[JY, ¥’ 1+ Qug, uy).
For p, = (21, wy), and ky+s, =y, —Q(uy, uy),

Spu(2' + Uy, 2" +up) = So(2" +ug, 2" +uy).
Then we have
D = {(zy+2zp+2', Uy +us); (21, u) €ED,, Tz, — 8, (2 +uy, 2’ +u,)) €Q.}.

This is the realization of D as a Siegel domain of type TII.

5.4. The fibering of Z,

The map s extends continuously to a map of D, xD. Let X’ be the Silov boundary
of D', and for ¢ €QY, 3. is the surface of level ¢ in D’:

Si={, w); Im 2 —Q'(u, w') = '} =3’ +(it’, 0).
54.1. PROPOSITION. 23:{(zl+z2+z', wp+uy); Im 2, =8, (2 + uy, 2/ +up) =0} =

Unennin(E’). Further, 3, + (it',0) = Upep. i, (St < D.

Proof. Let N,=N'=exp (M 2®H(e))=exp (Hi®H oV OH OH (). N acts
simply transitively on 3’ and on X{. The formulae of Lemma 5.3.7 show that

i (B) = {2 T2+ 2wyt uy); Imozy — 82+, 2"+ up) =1},

0 E)={F 2+ utuy); Imzy—8, (2 + up, 2"+ uy) =0}

Let p;=b; - (4s,,0) and p"=n"- (it", 0) =n" - hy(¢') - (¢s,, 0). By definition, we have
(D) =0y -1 - hy(t') - (i(s, + 85), 0) = by - m’ - (i(s, + t'), 0),
which is in D(Q, Q). Thus
U, ip(E) = B(e)- N - (is,, 0).

On the other hand, B=DB(e)-N'-Hy(e'). Since Hy(e') stabilizes (is,, 0), U,, 4,(Z')=
B-(ts,, 0)=§~Je, and thus Z:e is the union of the Silov boundaries of the fibers of the
fibration s,. The rest of the proposition is easy.

4 — 762907 Acta mathemathica 136. Imprimé le 13 Avril 1976
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We return now to the map o: b~>b-(is,, 0) of B onto ie. As noted in Proposition
3.1.6 of [20b] <;S€O°°(ie) satisfies the tangential Cauchy-Riemann equations if and only if
$(b-(is,, 0)) is annihilated by all vector fields r(X), X €f); =Hy(e') D W1z®b(e)~. We can
identify ie with B(e)- N’ under the map considered above: (b, n')=b,-n'-(is,, 0). We
also may consider the identification ie—>N - B(e) by §(n’, by)=n"-b; - (is,, 0).

5.4.2. LEMMA. In the representation §: N ’-B(e)—>)§e, the measure do, ts $,(b,)-2db,dn’
(2': _le)'

Proof. By definition do, =drdudu,(t) (under the parametrization ie—>N (@) T, (is,, 0)).
The lemma follows from a computation based on a variable change.
Let j: D" x D,— D be given by

J(b' - (is', 0, by (is,, 0) =B by~ (15, 0) = b'* (21 +15¢, uy) = i(by* (is, 0), b b’y - (is’, 0)).

j thus extends continuously to D’ x D, and clearly ie=y'(2' % D,). Clearly if p€D’ is fixed,
the map 7, p,—7(p’, p;) is holomorphic in p,. This § defines a foliation of =, whose leaves
are complex analytic manifolds isomorphic to D, (these are the holomorphic arc-compo-
nents of [26]) and transversal to the fibration s,. Clearly the tangential Cauchy-Riemann
operator includes the Cauchy-Riemann operator along the leaves (however, these are not

the only condition). Then

54.3. Lemma. For FEHZ, F(j(n', p,)) 15 holomorphic in p,, for almost all p,€ D,.

Since § is not biholomorphie, the holomorphic structure on the fibers of 7, pulled back
via the map § is not that of D’ and varies with p,. Let D,, be the space D’ furnished with
this structure. (These differing structures are obtained by conjugation by B(e) acting on
the subgroup B’).

For F a holomorphic function on D, let
1F =g | 170G i, po
t'eQ Jxr

i.e., this is the Hardy norm of F on the space D;,. Let 3, be the space of boundary values
on %,. Note that j(Z; x D,) =X, ;. Let dm® be the measure on D, which corresponds to
,(b)2db; (A= —1,) under the identification b, b, - (s,, 0), i.e.,

dm = $1(hy (1 — Q(Uy, 1)) 2 Aetbyqer b ® Aoty o b devy dyy duy.
Let J{D,, —1,)={F holomorphic on D, such that

f' F(z, + iy, uy) Igdme(pl) < oo}
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Thus, for F €y —1,) we have that F(j(-, p,)) is in the Hardy space of D, for all p,, and
F(i(p’, ) is in H(D,, —1,) for all p' €D/, and

%Iz‘ F 2 dme(pl) .

1 Vs 176G 2]

In conclusion

54.4. TuvoreM. If FEN, the map F— (v, F)j(n', p,) is an isomoetry of W, onto a
proper subspace of LAN'; J(D,, —1,)). If we identify L*(N’, #(D,, —1,)) as a space of holo-
morphic functions on D, with values in LX(N'), this subspace is defined by the property
F(p,,-)EH}, for all p, €D,

6. The space H,(—1,) and invariant subspaces of principal series modules
6.1
First we describe, in a rough way, the purpose of this section. Let 4 be a character of
K (not 1%) and let O(A) be the space of C® functions ¢ defined on @ satisfying

Plgk) = Ak) $(9),
r(X)$=0, Xe€p-.

Such a function can be extended as a holomorphic function on GK P_=exp DK ,P_< Gy,
which transforms on the right under K P_ according to the character 4 which extends 1
trivially to P_. Since the left action of @ extends to 5, left translation by @ preserves the
subspace of such functions which extend to exp DKP_. Clearly v, is such a function, and
thus every function ¢ in £, (recall definition 1.3.4) extends continuously to ¢ on
exp 5KCP_. Since G-c,<exp 5KCP_, we can define, for ¢ € ;,

(6.1.1) (A:9)(9) = dlg-co)-

Now let jv,=c,(I°+p~) and let ¢,(4) be the character on the algebra v, defined by
{eoA), o X)> =(A, XD. Clearly, for ¢ € C;, A, satisfies
(6.1) r(X)-d.p = —Lc(d), X> ¢, XEw,
(6.1.3) (4.$)(g-m) = Am)~1(4,$)(g), mEM.
Since 4, is defined by right multiplication, it commutes with the left action of @. Thus,

“formally” A4, is an interwining operator between the representation ‘holomorphically
induced” from the character A on ¥+ p— and the representation “CR-induced” from the
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character ¢,(1) on v,. (Note that iv, +iv, is nof a subalgebra of ¢° and in fact, generates
¢ as a Lie algebra).

Now, when A= —I,, the isomorphism P, (defined in 2.4) identifies £, with a subspace
of Hy(—1,)=,. Similarly, we shall define an isomorphism P, between the space of func-
tions satisfying (6.1.2,3) and the space of CR boundary values H2. We shall show that
these isomorphisms transport A, into the isometry v, of Theorem 5.4.4, while, at the same
time, we will see that L2(N'; H(D,; —1,)) can be identified as the space of a representation
7, belonging to a unitary principal series. We exhibit a proper invariant subspace for z,.
Furthermore, as [, is either an integer or a half-integer, all the representations which occur
are representations of a group G, (between @ and @) with a finite center, we can then embed
@, in a complexified group Gf and calculate the preceeding formulae for 4,4, $€ £(1) in

G¢. In order to minimize the notation, we will continue as if @ =G,.

6.2. Study of the G-orbits on D

Let us now write the orbit G-{(c,) as D,, and otherwise continue the notations of
chapters 4 and 5. G(e)/K(e) (recall 4.1.2) is identified with a bounded domain D, in
pi<pt via the map ,. Clearly

Gle)-L(ee) = Ble)-Llcr) =D =L(c.) = D= pt.
We know ([26], see also [25]) that D, +{{c,) is the holomorphic arc-component passing
through (c.). Let P, be the maximal parabolic corresponding to the subset S, of simple

roots defined by
S, =8- {%(“e_“e—l)}’ (e>1),

S, =8—{e;}, e=11n the tube case,

%
2

Let a;= Nyes, Ker a. Then a,— RJs, with Js,=4>} X,,.. Let
g =gl — 1 @g(—3) D(0)D0.(3) Dge(1)

be the eigenspace decomposition of g under AdJs,. In particular

S,=8 —{ }, otherwise.

0e(3) = Hip = Ho® Wy ae) @ Hi,

go(1) = Hale’),  6.(0) = gle) D gole’)-
Define
n, = ge(%)®ge(1) = n/>
1
3

De = ge(__ )®ge(*1) = D’;
Pe= 95(0)® v’ = Q(€)®go(€')® v,
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and let N', V' be the connected subgroups of G corresponding to n’, v'". Let M, ={g€@;
g-Js,=Js.,}. M, has a a Lie algebra g.(0), and (by [1, 26]), M =M -G(e)-Gy(e'). M norma-
lizes G(e) and Gy(e’). We define P,=M,-V'. P, is a maximal parabolic subgroup of G hav-
ing p, as its Lie algebra. Every maximal parabolic is conjugate to one of these P, (1 <e<r)

[26]. In the complexification, we have

gle)° = te)° @ ple)* @ p(e)~
Let
pe =He)°@ple)~Dgole')°DVC,

0, = c(fCD ).
6.2.1. PROPOSITION. 0, =p; ® M1, so that ¢; (p;)<F@p-,
and e N 10, = pe N . = He)° @ go(e) D ()

Proof. We have ¢;*(Jsc) =4(>% H,,). The decompositions of ¢, p+, p~ into eigenspaces
for ¢;1(Js,) are
= fe(o) @ fe( - %) ® fe(%),
pr =2 (0)Op(3) ©po(l),

P==p: 0)@p 3D p(—1).
We first establish the

6.2.2. LEMMA. Writing Hi5=Hijs®D Wi, we have i =c(0(3)), Hiz=co(E.(}))-
Proof. Wifs =c,(£.(3) D pe(})). Now if « is a root with restriction to §j, given by one of
%(Vi_')’j): ieoe’z: jeoe: %(V{‘}")/J), zeoé; 7609; %’)’u 7’60;7
the formula for ¢, , analogous to (2.1.8) shows that c,(X) is proportional to X -+ [2:E_,,, X].
Thus, if X €p(3),
co(X) E(FDP) NG = Hipe,
and if XEeL(d), c(X)E(FDp) N WG = Hip.

We return to the proposition. Since c, is the identity on g(e), and coincides with ¢
on gy(e’), we see that ¢, (f(e)° @D p(e)~@gy(e')°) =+ p~. On the other hand, since v’ is the
sum of the eigenspaces with negative eigenvalues for AdJs;, it follows that ¢; (v )< @ p-,
Thus ¢;"(b: ®Hiz)=F@p~. But g=p(e)* @ g(1)@Hi@p; ®Hiz and c;'(p(e)* @6(1)®

/4
112) < .

The following proposition is known.
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6.2.3. PROPOSITION ([26], see also [25]). The subgroup of G which leaves D,+{(c,)

wnvariant is the subgroup P .
We deduce

6.2.4. LEMMA. The stabilizer S, of L{(c,) in G is the group M- K(e)-Go(e')- V.

Proof. Tt is easy to verify that S, contains the above group. Now, if g fixes {(c,), it
leaves invariant its holomorphic arc-component D, +{(c,), and thus g€P,=B(e)- M- K(e)-
G,(¢')- V'. Since Bl(e) acts simply (without fixed points) on D, +{(c,), the lemma follows.

We may now give the proof promised in chapters 4 and 5.

6.2.5. COROLLARY. (See Lemma 4.1.4). The stabilizer SJ of s, in G(0) is 82 =Gy(e’)-
Kole)M-exp V...

Proof. If g €G(0) leaves s, fixed, then it also leaves {(c,) fixed, so it is in S,. But .S, N G(0)
is clearly the group on the right.
And now the density asserted in section 5.1:

6.2.6. PRoPOSITION. B-{(c,) has a complement of zero measure with respect to the

wnique class of quasi-invariant measures on G-L(c,) =O0,.

Proof. @=K-P,=K-B(e)-S,=K-G(e)'S,, and thus the measure
dy: ¢ (k- g-L(c.))dkdg

is a quasi-invariant measure on O,. Now if k€N’-P, then k-G{e)-{(c,) € B-{(c,) since
N'(D.+L(e.)) = N+ Be)-L(ce) = B-L(c,)-

But N'-P, has a complement of zero measure for dg and (N'-P,) N K has a complement of
zero measure in K. It follows that ((N'-P,) N K)-G(e)-{(c,)= B-o(c.) has a complement of
zero measure with respect to du.

We now turn to the map « which transforms the bounded realization of G/K into the
realization as D(Q; @): « extends continuously to P-l(c,) and sends P-{(c,) onto
P-(is,;,0)=>,. Thus >, is “almost” the transform (under «) of the orbit G-((c,) on D-D.

6.3. An irreducible unitary representation of P,

For = —1,, extended trivially to p—, let ¢(4) represent the character of p; defined by

<eiA), X =<2, ez (X))
We consider the space
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C4, b;; P,)={¢, C° functions on P, r(X)d=—{c(A), X>¢, for all X €7, d(gm)=
Am)y1d(g), g€P,, m€M}. Such a function is completely determined by its restriction to

Ble). Introduce the norm

= [ 1= s
B(e) Ge)
and let H(4; P,) be the Hilbert space of norm-finite functions. The correspondence

(PEF) (b1) = $20(01) 7 F(0c(by))

defines a unitary isomorphism between H(D,, —1,) and H(; P,). Let w, be the representa-
tion of P, on this space given by left translation. Let g,(X)=4Try,adX for X €p,, and let

0. represent also the corresponding character on P,.

6.3.1. PROPOSITION. 0, ®w, s an wrreducible unitary representation of P, which
coincides on G(e) with the holomorphic discrete series of G(e) corresponding to the character
—1, of (e) and is trivial on Gyle ) V.

Proof. For g€G(e), $€C(A; p;, P,), we have

(we(go) ) (9) = $(9579), 9o €GHe),
(we(m)p) (g) = A(m) p(m=gom), mEM,
and w, is trivial on [Gy(e'), Go(e’)]V’'. On the other hand, if i=>e, X, €gy(e’) and
(wolexp tX,,)4) (9) =e~"$(g). However
—0Xy)=—3Try, X, =34Trn X,,=§Try, X, ®4Try,, X, + 3 Try, X,
=H(le~1)p+u+2+ (r—1)p)=L.

The proposition easily follows from these formulae.

6.4. The corresponding principal series representation

The representation v,=Indp ;(0;'®w,) is then a representation in the principal
series for @. Let us make this representation explicit. Let X(w,, G) be the space of continu-
ous functions on G with compact support modulo P,, and values in H(4; P,), verifying

$(gp) =we(p)~14(g). For such a function

”?5(927) “%1(/1: roy = Xe(D) ” #l9) “%m; Po)s
with x,(p) = |det adyy,p|.
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As in the notation of ([2], chapter 5) we form the norm

§ lslrda=lisie

and 7, is realized by left translation in the Hilbert space completion H(z,) of K(w., G) in
this norm. Since G =N’- P, but for a set of measure zero, this norm is given by § v ||é(n')||2dn’,
and thus H(t,) can be realized as LA(N'; H(A; P,))=L*(N'; H(D,; —1,)), using yet another

isometry. Thus
6.4.1. LEmmaA. Define I on K(w,; G) by

(I$)(n, by) = $a(by) ($(n)) (by)-

I induces a unitary transformation of H(t,) onto LAN'; H(D,; —1.)).

Now, the Lie algebra of 8, is §,=p; N g. Let us consider the one-dimensional unitary
representation a; of 8,, which is trivial on Gy(e’) V' and equal to 4 on M- K{e). As a, is
compatible with ¢,(2) on 8,, we can form the holomorphically induced representation of
P,, corresponding to (ay, c(A)), i.e., it is the subspace of the induced representation
Indg,4p,%; formed by the the functions on P, satisfying in addition 7(X)¢ = —{c(2), X> ¢
for X in p; (see the exact definition in [2], chapter 5). Clearly this is the representation
0:' Owe:

From the property of transitivity of holomorphically induced representations ([2],
chapter 5), we see that the space H(t,) is the completion of the space K(1, b, G) of O

functions ¢ on G satisfying
Y(X)Sé = _<A’ CEI(X)>¢r XEPZ,
dlgm) =Am)(g), 9EG, mEM,

in the norm

I9ll= [180r0rantav,

The correspondence I is written, in this realization, on K(A, p;, &) as (I¢)(n')(b) =

$2(b1) $(n'D,).

6.4.2. THEOREM. The map F—v,(F) of Theorem 5.4.4 is an operator intertwining the
representation of G on Y1) with a proper subspace of the representation T realized in
LZ(N’r ?‘(De“ e))-
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Proof. Consider 4, as in the beginning of this chapter. As p, <w,, we have 4,(C(A))<
H(4; p;; @) and with all the conventions here established, it is easy to verify that the

diagram

L(2) #,

A v,

e

JC(ly ‘pe_; G) —_)LZ(NI; 7'l(l)e; - Ze)) =H(Te)

is commutative. Since 4, commutes with left translations, and the left sides are dense in

the spaces on the right, the theorem follows.

6.5. Spaces of C.R. functions and subspaces of some principal series

If e1, or if e=1 and G/K is not a tube domain, we can give a characterization by
first order differential equations of the proper subspace of H(t,) obtained as »,(). Let
X(4; 1v.; G) be the subspace of functions in K(4; p;; G) satisfying n(X)d= —<4, ¢; (X},
X €w,. Let H(A; v,; G) be the closure of K(4; v,; G) in H(z,).

6.5.1. PrRoposSiTION. The map I defines an isomorphism of H(A; fv,; G) with Hs.

Proof. Since 1, N H°=1; (see 5.4), the image of K(1; v,; @) clearly satisfies the tan-
gential Cauchy-Riemann equations on ie. Thus, I: H(; tv,; G) ~ H;. On the other hand, if
e#+1, or if e=1 and G/K is not a tube domain, the representation of @ in Hj is irreducible
(H = Hy(—1,)), so I is surjective. The remaining case is trivial.

Thus, if e==1, or e=1 and G/K is not a tube domain, we obtain an irreducible proper
invariant subspace of H(z,) by adding to the defining equations coming from p, those
coming from all of tv,=p, @ M. These are the tangential Cauchy-Riemann equations of
Z,. In the case e=1, G/K a tube domain, the tangential Cauchy-Riemann equations are
trivial; but the space in question is nevertheless well-understood: it is the Hardy space
[12]. We shall say that {v, is a CR-polarization. Here v, ®D, is not a Lie algebra; on the
contrary, it generates all of g® as a Lie algebra. We shall say that the representation of G
in H(4; v,; G) is a CR-induced representation which selects an irreducible proper subspace
of the holomorphically induced representation H(; p;; ). Thus, it is seen that it is some-
times necessary to cut down induced representations by algebras more general than

polarizations.

6.6. A simple example
The representation 7, (corresponding to A= —I,) is a representation induced by a

unitary character of P,. Let @=Sp(n; R)={g= (g ﬁ), A, B, C, D n xn matrices verifying
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tAoC='CoA, *DoB='BoD, *DoA-—tBo(=1d}. Then the representation 7; is realized

in the space L#(V) of real symmetric (n x n)-matrices via the formula
(T(97) F)(X) =det (OX + D)~ "+V2F((AX + B)- (CX + D)-1)

(if »+1 is not even, this is a representation of the metaplectic group). The representation
is reducible since the Hardy space H, is a proper subspace.

In particular, if 4 divides »+1, this representation is the gquasi-regular representation

‘3 1‘;)} Thus one finds examples of representations induced

by the identity representation of a parabolic, which are reducible (see [6]).

induced by the parabolic P = {(

It would be interesting to study the decomposition of this representation into irre-
ducible ones.

More generally, it will be interesting to study the decomposition of the representation
Ty, i.e., the decomposition of the action of G in L*(X,) where X =2, is the Silov boundary.

In a subsequent article we shall consider the decomposition of the action of B in L*(X).
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