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Introduction 

T h e  in f in i t e s ima l  t r a n s f o r m a t i o n s  of a L ie  p seudog roup ,  a c t i n g  on  a m a n i f o l d  X ,  a re  

so lu t ions  of a l inear  p a r t i a l  d i f f e ren t i a l  e q u a t i o n  R k w h i c h  is a L i e  e q u a t i o n  in  t h e  t a n g e n t  

b u n d l e  T of X ;  t h e  space  Roo., of f o r m a l  so lu t ions  of Rk a t  a p o i n t  x 6 X is a t opo log ica l  L ie  

a lgeb ra  and ,  if t h e  p s e u d o g r o u p  is t r ans i t i ve ,  i t  is a t r a n s i t i v e  L ie  a l geb ra  in  t h e  sense of  

G n i l l e m i n - S t e r n b e r g  [13]. 

(1) This work was supported in part  by National Science Foundation Grants MPS 72-05055 A 02 
and MPS 72-04357. 
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Using the theory of Lie equations elaborated by Malgrange, Kumpera and the second- 

named author (see [22], [19] and [18]) and the results of Guillemin and Sternberg on 

transitive Lie algebras (see [13] and [12]), the first-named author initiated, in preceding 

papers [8], [9] and [10], a program (announced in [7]) of investigating the relationship 

between Lie equations and transitive Lie algebras in order to show in what way certain 

properties of a formally transitive and formally integrable analytic Lie equation R k depend 

only on the transitive Lie algebra Ro0.x of formal solutions of R k at x E X  and to what 

extent  the classical theory of finite-dimensional Lie groups and their Lie algebras can be 

generalized to Lie equations and transitive Lie algebras. In  [10] it  was shown, in parti- 

cular, tha t  the graded Lie algebra H*(Rk) ~ = 0 j>~oH~(Rk)x of linear Spencer(1) cohomology 

at  x EX of an analytic Lie equation depends, up to an isomorphism, only on the topol- 

ogical Lie algebra R~. x. On identifying two graded Lie algebras of cohomology which are 

isomorphic, there is associated to every transitive Lie algebra L a graded Lie algebra 

H*(L) = | of linear Spencer cohomology with the following properties: 

(i) the graded Lie algebra H*(L) depends only on the isomorphism class o/ L as a topological 

Lie algebra; 

(ii) a graded Lie algebra H*(JL, I ) =  ~) j>~oHJ(L, I) o/linear Spencer cohomology can be de- 

f ined/or a closed ideal I o / L  such that H*(L, L) ~H*(L) and it depends only on the isomor- 

phism class o/ (L, I)  as a pair o/ topological Lie algebras; 

(iii) to each exact sequence 

O, , I  , L  ~ ,L"  ,0  

where I is an ideal o / L  and r L ~ L  't is a continuous homomorphism o/transitive Lie algebras, 

there corresponds an exact sequence o/linear cohomology 

... , HJ(.L, I) , Hi(L) H~(r H~(L ") , HJ+I(L, I)  , . . . .  

One of the purposes of the present paper is to extend these results to the non-linear 

Spencer cohomology /~l(Rk) of a formally integrable Lie equation Rk~ In general, the 

notion of a structure associated to a Lie equation can be defined as well as the notions of 

equivalence and integrability of such structures. Then /~l(Rk) ~ is the set of equivalence 

classes of germs at  x E X of formally integrable R~-structures; it is a set with distinguished 

element 0 and we say that  it vanishes if it is equal to 0. We write/ t l(Rk) =0  if i~l(Rk)x=O 

for all x E X .  The vanishing of /tl(Rk) expresses tha t  the integrability problem for R k- 

(1) Despite the misgivings of the second author, we employ a terminology adopted in preceding 
papers. 
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structure is solvable, namely that  an Rk-structure which satisfies the requisite compati- 

bility conditions is in fact an integrable Rk-structure. We now list most of the known re- 

sults about the integrability problem and the Spencer cohomology of Lie equations. 

(I) If  Rk is of finite type, that  is if there is an integer 10>~0 such that  Rk+z is isomorphic 

to Rk+z0 for all l ~> 10, where Rk+z is the l-th prolongation of the equation Rk, then HJ(Rk)= 0 

for )" >0  and the integrability problem for R k is solved. This is a consequence of Frobenius' 

theorem. 

(II) If Rk is analytic with respect to a real-analytic structure on X, then, in the category 

of analytic manifolds and mappings, we have HJ(Rk)=0 for ] > 0  and / t l (Rk)=0.  This 

result is a consequence of the Cartan-K~hler theorem. 

(III) If  R k is elliptic and is either analytic with respect to a real-analytic structure on X 

or formally transitive, then HJ(Rk)=O for ?'>0 and / t i (Rk)=0.  The vanishing of/t1(R~) 

for equations R k which are elliptic and analytic was proved by Malgrange [19], generaliz- 

ing an earlier theorem of Newlander-Nirenberg which asserts the solvability of the in- 

tegrability problem for complex-analytic structure. In  [9] it is shown that  Malgrange's 

result implies tha t  a formally transitive, elliptic Lie equation is analytic with respect to a 

real-analytic structure on X. 

(IV) The integrabflity problem for flat Lie pseudogroups has been studied and, in a con- 

text  different from the present one, partial results have recently been obtained by Buttin- 

Molino [2] and Pollack [20]. For example, let g c  gl(n, R) be a Lie subalgebra. If (x 1 ..... x ~) 

are the standard coordinates on R ~ and ~ = ~ = 1  ~s~/~ xj is a vector field on an open subset 

U of R n, the differential equation (~S(x)/~x k) E g for all x E U is a flat Lie equation Rl(g ) 

of order 1. 

(V) Gnillemin and Sternberg [15] have given an example, based on tt .  Lewy's counter- 

example to the local solvability of partial differential equations, which shows that  the 

integrability problem is not always solvable. 

We say that  two non-linear cohomologies are isomorphic if they are connected by a 

bijective mapping sending 0 into 0, and we shall identify two cohomologies if there is an 

isomorphism of cohomology between them. In the case of a formally transitive and form- 

ally integrable analytic Lie equation R k on a connected manifold X, the cohomology 

/tl(Rk) z is then independent of the point x E X and we show that  its vanishing depends only 

on the transitive Lie algebra Roo, z. We associate to every transitive Lie algebra L a non- 

linear cohomology/t1(L) with the following properties: 

(i) The cohomology i:il(L) depends only on the isomorphism class o/ L as a topological Lie 

algebra. 
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(ii) A non.linear cohomology [11(L, I) can be defined /or a closed ideal I ol L such that 

/~I(L, L)=/]I(L) and it depends only on the isomorphism class o/(L,  I) as a pair o/topological 

Lie algebras. 

(iii) Let r L--->L" be an epimorphism o/transitive Lie algebras and I =  L, I " c  L" be closed 

ideals of L and L ~' such that r  F ;  let I '  be the closed ideal o / L  which is the kernel o/ r 

I--> F ~. I / /~I(L,  I ' ) = 0  and/~I(LH, I") =0, then/~I(L, I )=0 ;  i] r I---> I '~ is an isomorphism, 

we have an isomorphism o/cohomology 

Ytl(L, I) ~ ~I(L", I"). 

I n  particular, i] J is the kernel o] r and HI(L, J )=0 ,  HI(L ") =0, then ~I(L) =0. 

(iv) Let R~ be a ]ormally transitive and /ormally integrable Lie equation on a mani/old Y 

and let y E Y. I /  the transitive Lie algebras L and R~.~ ~ are isomorphic, then we have a bijective 

mapping 
pI(L) -~/~1(/r 

This last property together with the third fundamental theorem (Theorem 7.1) re- 

duces the computation of the non-linear Spencer cohomology of formally transitive Lie 

equations to the case of analytic equations. 

The systematic study of transitive Lie algebras~ a program which was initiated by Guil- 

lemin and Sternberg in their paper [13], resulted in the fundamental paper [12] of Guille- 

rain in which a Jordan-tlSlder decomposition is constructed for a closed ideal of a transi- 

tive Lie algebra. This decomposition is an outgrowth of a program outlined by Guitlemin 

in the introduction of [12] which is motivated by the integrability problem. Our results 

(see w 10) reduce the integrability problem to the vanishing of the non-linear eohomology 

of the quotients of successive ideals in Jordan-H61der decompositions. In particular, con- 

sider the following three conjectures: 

I. Let L be a transitive Lie algebra and I a non-abelian minimal closed ideal o /L .  Then 

HJ(L, 1)= 0/or  j > 0 and fll(L, I) = O. 

II. JLet L be a transitive Lie algebra and I a closed ideal o/ L. Let 

I ~ IoD l i d  . . .~ I~ = 0 

be a Jordan-HSlder sequence /or (L, I), that is, a nested sequence o/closed ideals o/ L such 

that,/or each ], where 0 <~] ~ Ic-  1, either Ij/Ij+ 1 is abelian or there are no closed ideals o/ L 

properly contained between I j  and Ij+ 1. I /  /or each j /or which IHIj+ 1 is abelian, where 

0 <~ j <~ k -  l, we have HI(L/Ij+I, Is/Ij+l)=0, then Hi(L, 1)= 0 and/ql(L,  1)= 0. 

III.  Let L be a transitive Lie algebra and I a closed ideal o /L .  I~ there exist a/undamental 

subalgebra L ~ o /L ,  closed subalgebras A,  B o/ L such that A is abelian and 
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L = L ~  

[A, B] = 0 ,  [B, I ]  = 0 ,  

then Hi(L, I)=0/or ] > 0  and FII(L, I ) = 0 .  

We prove (Theorems 13.1 and 13.2) tha t  I implies I I  and I I I  and we outline a proof 

of I which is based on Guillemin's structure theorem for a non-abelian minimal closed ideal 

of a transitive Lie algebra (Theorem 2 of [12]), on the classification of infinite-dimensional 

simple real transitive Lie algebras, the Newlander-Nirenberg theorem, and on theorems 

of [10] and w 10 of this paper. Conjecture I I  implies tha t  the solvability o/the integrability 

problem /or /ormally transitive and ]ormally integrable Lie equations is reduced to the local 
solvability o/overdetermined systems o/linear partial di//erential equations. We have the fol- 

lowing consequence of I I I  (see w 13): 

Assume tha t  X is connected. Let  RkcJk(T) be a formally transitive and formally 

integrable Lie equation and Nk~ Rk a formally integrable Lie equation such tha t  Noo.a 

is a closed ideal of Roo.a for all aEX. Let xEX; if there is a fundamental  subalgebra L ~ 

of R~o.x and an abelian subalgebra A of R~o. z such tha t  

R~,z =L~174 
then 

Hs(Nz)a = 0, HS(R~)~ = 0, / ~ l ( N k )  a = 0,  t - I I ( R k ) :  = 0 

for ?" > 0 and all a E X. 

In  particular, I I I  implies tha t  the integrability problem is solved for all Lie pseudo- 

groups acting on R = which contain the translations, afor t ior i  for all flat pseudogroups. 

We now give a brief summary  of the contents of this paper. In  w 1 we recall certain 

facts from the formal theory of linear partial differential equations, the constructions of 

the "naive" linear Spencer operator D, of various brackets and Lie algebras arising from 

the s tudy of jets of vector fields; we also give the fundamental  formulas relating the 

operator D to these objects. The corresponding non-linear theory is described in w 2, 

namely the operations of jet bundles of diffeomorphisms on jets of vector fields, the non- 

linear Spencer complexes, the fundamental  formulas involving the "naive" Spencer opera- 

tors ~ and ~ and the facts from the formal theory of non-linear differential equations 

which are used in Chapter I I .  Although much of w 1 and w 2 is a reorganization of known 

material, mainly from [19] and [18], with the purpose of fixing notation and terminology 

which we use throughout the paper, new results required in the sequel are also proved. In  

particular, in w 2 we examine the relationship between the structure of affine bundle and 

the structure of groupoid which certain jet bundles of diffeomorphisms possess, using the 
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methods developed in [4] and expressing the relationship in terms of the operations of 

these bundles on jets of vector fields. We usually do not  prove facts whose proofs are 

readily found in [19] or [18]. In  w 3 we begin by  recalling results of [6] concerning fibrations 

and the naive operator D which we complement by Lemma 3.1. The remainder of the 

section is devoted to the construction and properties of a generalization of the naive opera- 

tor D (see Proposition 3.1) which is required in w 5 in order to define the structure equation 

of an extension of the classical Cartan fundamental form. In the next  section, w 4, a non- 

linear complex for a bundle of Lie groups is defined in terms of the Maurer-Cartan form 

and the exactness of the complex, a consequence of Frobenius' theorem, is used at a cru- 

cial point in the proof of the basic Theorem 9.1. In  the following section, w 5, the extended 

Cartan fundamental form mentioned above is defined on the bundle of (k+ l)-jets of dif- 

feomorphisms X o X  and takes its values in the bundle of k-jets of vector fields; it is re- 

lated to the form on this jet bundle described in [11] and its restriction to the bundle of 

(k + 1)-jets with fixed source (bundle of frames of order k + 1) is the classical fundamental 

form of Cartan. The structure equation for the classical fundamental form follows directly 

from the Cartan structure equation for the extended form. The naive non-linear operator 

has a natural definition in terms of the extended Cartan form. Finally, the connection 

between the theory of Lie equations of Spencer and Malgrange and the work of Guillemin 

and Sternberg [14] is clarified. In w 6, the last section of Chapter I, using the extended 

Cartan form, we show how a surjeetive submersion @ of X onto another differentiable 

manifold Y induces a projection of the non-linear D-complex, restricted to sheaves of jets 

of @-projectable sections, onto another complex which is a non-linear analogue of the 

complex occurring in [6], whose linear operators are the exterior differential along the 

fibers of @ followed by a projection. The latter non-linear complex is related to the complex 

of w 4. The essential purpose of this section is to construct a finite form of the linear theory 

developed in [6]; its results are crucial in proving the main theorems of w 9. 

In  Chapter I we have considered arbitrary vector fields and diffeomorphisms; in 

Chapter I I  we consider vector fields and diffeomorphisms which satisfy respectively linear 

and (in general) non-linear partial differential equations, namely so-called Lie equations. 

In  w 7 we begin by defining a linear Lie equation Rk (of order k) for vector fields (infinites- 

imal form) and a corresponding non-linear Lie equation Pk (finite form). Next, under the 

assumption that  the prolonged equations R~+z are vector bundles for l~>0, the two non- 

linear Spencer cohomologies of Pk or R k are defined in terms of the naive complexes cor- 

responding to the operators D and ~ and are shown to be isomorphic; hence they are 

identified and denoted by //l(Rk), where ~ l (Rk)= Ux~x/Z/l(Rk),. If  Rk is formally in- 

tegrable,/=/I(R~) is also isomorphic to the cohomology defined in terms of the sophisticated 
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Spencer complex corresponding to the operator ~ .  I f  two formally transitive and formally 

integrable Lie equations are transformed one into the other by  a section of a jet bundle, 

it is shown tha t  the corresponding cohomologies are connected by  a bijective mapping 

(Proposition 7.9); from the third fundamental  theorem (see [9] and Theorem 7.1), we 

deduce tha t  the computation of the cohomology ~l(Rk) of a formally transitive and form- 

ally integrable Lie equation Rk is reducible to the case where Rk is analytic. The next  sec- 

tion, w 8, contains a proof, based on Frobenius'  theorem, tha t  the non-linear cohomology 

of a certain multifoliate Lie equation(1) vanishes; this fact is an essential step in the proof 

of Theorem 9.1. The results of w 6-5 8 are used in w 9 to prove non-linear analogues (finite 

forms) of certain results of the linear theory of [6]. Theorem 9.1 establishes the key fact 

that ,  if R k is a formally integrable ~-projectable Lie equation on X satisfying the conditions 

(I) and (II) of w 9, then its non-linear cohomology is isomorphic to the non-linear cohomo- 

logy defined in terms of ~-projectable sections. Under the same hypotheses an exact se- 

quence of non-linear cohomology is constructed (Proposition 9.1) relating the cohomology 

of R k to the cohomology of a Lie equation R~, on Y and to the cohomology of a kernel Lie 

equation •k on X. This sequence has the disadvantage tha t  the equation -~k is in general 

not formally integrable. Under additional assumptions one can modify this exact sequence 

and replace the cohomology of _~ by  the cohomology of the formally intcgrable Lie equa- 

tion R~o obtained from/~k by  the technique of [5] or [6] (see Theorem 9.2). Finally Theorem 

9.3 gives more precise results when R~~ vanishes; in particular, the cohomology/~l(Rk) ~ 

of Rk at  a E X  is isomorphic to the cohomology A (Rk,)~.(a) of R~I at  ~(a). In  w 10 the results 

of w 9, combined with results and techniques of [10] (and [9]), enable us to associate to 

every transitive Lie algebra L a non-linear cohomology/ t l (L)  with the properties briefly 

described above. In  w 11 we examine the structure of abelian Lie equations and prove 

Conjecture I I I  in the case where I is abelian (Theorem 11.5); the proof is based on the 

theorem of Ehrenpreis-Malgrange, which asserts the local solvability of differential opera- 

tors with constant coefficients (see Theorem 11.2). The stability under classical prolonga- 

tion of the hypotheses of Conjecture I I I  is established in w 12, and we remark tha t  under 

prolongation the subalgebra B, even if it is assumed initially to be zero, reappears and 

contains a subalgebra corresponding to transformations along the fibers of a principal 

bundle and the transitive Lie algebra L corresponds to a closed ideal of a transitive Lie 

algebra. Thus in studying the cohomology of transitive Lie algebras, one is necessarily led 

(1) The multifoliate Lie equation considered here is of a slightly different nature from that of the 
ones defined in [17], which correspond to flat psoudogroups and are of the type Rl(g) for appropriate 
Lie algebras g. 
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into examining the cohomology of closed ideals of transitive Lie algebras. The results of 

the final section of the paper, w 13, have been described above. 

We conclude this introduction with some short remarks on notation, terminology 

and background. For the definitions and properties of fibered manifolds and jet bundles 

as affine bundles, we refer the reader to [4]. Notation and terminology are the same as in 

the papers [8], [9], [10], and essentially the same as in [19]. However, it is perhaps worth- 

while to explain one piece of notation which might be confusing. Namely, if E, F, G are 

finite-dimensional vector spaces, we always identify E * |  with Horn (E, F) and, if 

u E E*| F, v E F*| G, we denote by v o u the element of E*| G defined by composition. 

CHAPTER ~. DIFFERENTIAL EQUATIO~IS~ FIBRATIONS AND CARTA~T FORMS 

1. Linear differential equations and vector fields 

Let X be a differentiable manifold of dimension n and class C ~176 whose tangent bundle 

we denote by T = T x. We write Ox for the sheaf of real-valued, differentiable functions on 

X. If  E is a fibered manifold over X, we denote by E the sheaf of sections of E, and by 

E x (resp. Ex) the fiber of E (resp. the stalk of E) at xEX;  sometimes, however, we write 

E(x) for the fiber E ,  of E at x E X .  The bundle of vertical tangent vectors of E will be de- 

noted by V(E)= T(E/X) .  We denote by Jk(E) the fibered manifold of k-jets of sections of 

E, by ]k: E->Jk(E) the differential operator of order k which sends a section s of E over a 

neighborhood of x E X  into the k-jet jk(s) of this section, and by 7ek: J~+l(E)--->Jk(E) and 

7e: J k ( E ) ~ X  the natural projections sending jk+z(s)(x) into ]~(s)(x) and ]k(s)(x) into its 

source x respectively. The natural injection 

2z: Jk+,(E) --> J,(Jk(E)), 

which sends ]k+z(s)(x) into ~z(]k(s))(x), where s is a section of E over a neighborhood of 

x EX, is a monomorphism of fibered manifolds. If  F is another fibered manifold over X 

and ~: E-+F is a morphism of fibered manifolds over X, then 

gk(~): Jk(E)~ J~(F) 

is the morphism of fibered manifolds over X sending jk(s)(x) into ]k(~os)(x) (see [4]). We 

shall always suppose that  the fibers of a vector bundle are of the same dimension. 

If  E is a vector bundle over X, we have the exact sequence of vector bundles 

0 , S k T , |  E s , j k (E)  7e k 1 jk_l (E ) ,0  (1.1) 
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which yields the exact  sequence 

0 , T*OJk,I(E)  s ,Jl(Jk_l(E) ) zr o , jk_l(E ) ,0 .  

We define a f irst-order differential opera tor  

b y  the  formula  
D: J~(5)-~ if* | Jk-~(8) 

,~DU=il(~k_lU)--~tlU, u Egk(5), (1.2) 

and obta in  the  Spencer complex, which is an exact  sequence, 

0 ' 5  Jk 'Jk(5) D ,~,,| ) D ,  A2~.,| ) D 

... , A~ff* |  ,0 ,  (1.3) 

where Jk(E)=0 for k <0 ,  by  set t ing 

D ( o  A u) = do) A Jrk_~u + ( -- 1)Jo A Du (1.4) 

for eoE AJfI *, uE A 9"*| Then  

(1.5) 

for uE~l*OJk(5) and all ~, ~Eff.  

LEMM_~ 1.1 (see [5], Proposi t ion 6). I /  F is a vector bundle over X and q): E---> F is a 

morphism o/vector bundles, the diagram 

D 
AJff * o gk(5) 

i d |  Jk(q~) 

D 
Asff * | Jk (7 )  

' AJ+lff * | J k - l ( 5 )  

l id | Jk - l (~)  

, A~+~ff*| J~_l(:~ ) 
is commutative. 

Proo/. I n  vi r tue  of (1.4), it suffices to show t h a t  the  d iagram is commuta t i ve  for j =0 .  

F r o m  the d iagram 

D 
Jk(5) 

Jk(q?) 

D 
Jk(~)  

' if* | Jk - l (5 )  e ' J l ( Jk - l (5 ) )  

id |  v) [Jl(Jk 1(90) 

* [l*| ' Jl(Jk-l(~)), 
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whose right-hand square is commutative (see [3]) and whose mappings e are monomor- 

phisms of vector bundles, we see that  it is sufficient to show that  its outer rectangle com- 

mutes. By (1.2), we are now reduced to verifying that  the diagrams 

and 

gk(~ ) 7~k:-1 j k _ l ( ~  ) Jl ~ j l ( jk_l(~)  ) 

]Jk((P) I Jk-l(~ ~ ) Jl(Jk-l((P)) 

;7~k 1 �9 ]1 Jk(:~)- - 'J~-l(:~) ' Jl(Jk-l(:~)) 

21 Jk(E) ' Jl(Jk-l(E)) 

[J~(T) ]Ji(J~-l(~)) 

Jk}F ) 2~ , j l ( jk_l (F)  ) 

are commutative; however this last fact follows immediately from the definitions of the 

maps involved. 

By (1.4), the restriction of --D to A j 7" |174 ~) is Ox-linear and therefore comes 

from a morphism 

~: AJT*|174 AJ+IT*|174 

of vector bundles, and we obtain an exact sequence of vector bundles for k > 0 

0 ' S k T * Q E  (~ , T * Q S k - I T * Q E  ~ , -A~T*OS~-~T*|  (~ 

... ' AnT*OS~- 'W*|  ' O, 
where 

~(o~ Au) = ( -  1)Jo~ A &  

(1.6) 

for me AJT *, u e  A T * | 1 7 4  (see [3], [21]). 

A vector sub-bundle R k c J k ( E  ) is a linear di//erential equation of order ]c on E. A 

solution of R~ over an open set U c X  is a section s of E over U such that  ]k(s) is a section 

of Rk, and we denote by Sol (Rk) the sheaf of solutions of Rk, namely the sub-sheaf of 

of elements s satisfying jk(s) e ~k- For 1 >0, we associate to Rk its l-th prolongation (Rk)+zc 

Jk+l(E) with possibly varying fiber, namely 

(Rk)+z = Jk+z( E) fl J z( Rk), 

which we often denote by Rk+ z when no confusion arises. Here we have identified Jk+z(E) 

with a sub-bundle of Jz(Jk(E)) by means of 2~. We set 
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Roo = l im  Re+ z. 

Recall that ,  if (Re)+z is a vector bundle, then the m-th prolongation of (Re)+l is equal to 

(Re)+(Z+m). 

The following lemma is part  of Proposition 5.1 of [3] and its proof will be omitted. 

L~.~MA 1.2. Let Re~Jk (E  ) be a di//erential equation. For l>~l, let R~cJz(Rk) be the 

image o/Re+ z under the map 21: Je+z(E)-~Jt(Je(E)) �9 I] .Re+ 1 is a vector bundle, then 

(R~)+z = R;+~ 
]or all 1 >~ O. 

Let R e c  Je(E) be a differential equation. If, for each 1 ~>0, Re+z is a vector bundle and 

the projection ne+z: Re+l+l~Be+l is surjective, we say tha t  Re is /ormal ly  integrable. We 

say tha t  R e is integrable if, for all l>~0. and ueRe+l.~ with xEX,  there exists a section s of 

E over a neighborhood of x which is a solution of Re such that/e+~(s) (x)=u.  I f  X is end- 

owed with the structure of an analytic manifold and E is an analytic vector bundle and if 

Re is an analytic, formally integrable differential equation on E then, according to Theo- 

rem 7.1 of [3] or the appendix of [19], R e is integrable. Let  ~e+z=(~e)+t be the sheaf of 

sections of Re+l (which determines Rk+z if the latter is a bundle). An element u of Jk+l+l(ff) 

belongs to }~e+~+l if and only-ff ~re+lue~k+z and Dueff*| By restriction of (1.3), 

we obtain the Spencer complex 

D D D 
0 'R rn  � 9  ' A 2 f f * O ~ _ 2  , . . .  , A ~ f f * |  ,0 ,  (1.7) 

where Rm=Jm(E) if m<k.  The cohomology of (1.7) a t  AJff*| will be denoted by  

HJ(Re)m_j. Moreover, let g,n C SmT*QE be the sub-bundle with possibly varying fiber such 

tha t  the sequence 
E 7gm_l 

0 "grn ' Rm R~n- 1 

is exact; then (1.6) gives by  restriction a complex 

0 'gm ~T*| ' A2T*| ' ... �9 AnT*| .... 0, (1.8) 

whose cohomology at  AJT*|162 we denote by  Hm-J'J(ffk). We say tha t  gk is r-acyclic if 

Hk+l'~(gk) = 0  for l>~0 and O<~j<~r, and we remark tha t  gk is always 1-acyclic if k>~l. We 

say tha t  ge is involutive if ge is n-acyclic. There exists an integer k 0 >~ k, which depends only 

on n, k and rank E such tha t  ge, is involutive. 

I f  the /-th prolongation Re+z of R e is a vector bundle for 1/> 0 and if the mappings 

zero: Rm+I~R m are of constant rank for m>~k, there exists an integer ml>~k such tha t  

8 - 762907 Acta mathernatica 136. Imprim~ le 13 Avril 1976 
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:~m: HJ(Rk)m+loHJ(Rk)m is an isomorphism for m ~> m 1. Then HJ(Rk),n is independent of m 

for m>~m 1 and we denote HJ(Rk),n with m>~m I by  H~(Rk), the j-th Spencer cohomology 

group of R~; the group H~ is the sheaf of solutions of Rk. Here, as in the sequel, we al- 

ways identify two cohomology groups if they are isomorphic (see [3], [5]). 

We next turn  to the consideration of vector fields and their brackets (see [18], [19]). 

Let  A be the diagonal of X • X and let prl, pr2 denote the projections of X x X onto the 

fh'st and second factor respectively. A sheaf on X (resp. on A) will always be identified 

with its inverse image by  prl: A ~ X  (resp. with its direct image by  A-~X • X). Consider 

now the tangent bundle T of X, and identify Jk(~) with the sheaf of vector fields on X • X 

which are prl-vertical, modulo those which vanish to order ]r on A. We call diagonal the 

vector fields on X • X which are prl-projectable and tangent to A, and we denote by 

gk(9") the sheaf of diagonal vector fields modulo those which vanish to order ]c on A. The 

vector bundle over X corresponding to ]k(ff) will be denoted by  Jk(T). The mapping which 

sends a diagonal vector field on X • X into its prl-vertieal component yields, by  passage 

to the quotient, a vector bundle isomorphism 

~': JI,( T) -+ J~( T). 

In  the sequel it will be convenient to identify Jo(T) with T. The sheaf Jk(~) of vector fields 

on X • X which are prl-projectable modulo those vanishing to order/c on A corresponds 

to a vector bundle j~(T) over X which is the sum of Jk(T) and Jk(T), where 

J~ T) - {  ~ ~ J~( T) I~o~ = O) -= J~( T) n J~( T). 

We denote by  xek: J~:+z(T)'-.'-J~k(T) the natural  projection. The projection pr 1 gives the 

exact sequence 
0 ~ Jk(T) ~]~:(T) --+ T + 0 (1.9) 

which enables us to identify T* with a sub-bundle of ]k(T)*. The injection Jk(T)~ , ik (T  ) 

gives, by  passage to the quotient, an isomorphism 

Jk( T)/J~ T) ~,~k( T) /J~:( T). 

Since the kernel of the projection ~0: Jk(T)-+Jo(T) is J~ we obtain an exact sequence 

0 "+ J~(T) ~,)'k(T) .-+ go(T) -+ O, (1.10) 

which gives, by  duality, an injection Jo(T)*.-+Jk(T)*; we shall identify Jo(T)* with its 

image under this mapping. 

The bracket  of vector fields on X • X gives, by  restriction and passage to the quoti- 

ent, a bracket  
Jk(T) • x Jk(T) ~ J~,_~(T) (1.11) 
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which is defined fiber by  fiber in the following way: if ~, ~ are sections of T over a neigh- 

borhood of x e X ,  then [i~(~)(x), ?'~(~)(x)] =?'~_~([~, ~])(x). I t  also gives the brackets 

J~(~l) • ~ 2~(ff) -~ .1~(~1); (i.12) 

Y~(ff) x x J~(ff) -+ J~-~(ff); (1.13) 

J~:+x(ff) • xJ~(ff) ~ J~(ff)" (1.14) 

We note in particular that  Ju(~l) is a sheaf of Lie algebras. If  ~, ,/~J~+~(ff) and ~ =v-x~, 

~ =v-l~, then 

and 

Write 

(1.15) 

(1.16) 

]~(T) =li_m ]k(T), ]oo(T)* = li~m ]k(T)*, 

and define similarly J~(T),  J~(T),  J~(T)*, Joo(T)*. Then ]oo(ff) is a sheaf of Lie algebras 

and J~(ff), J~(ff) are sub-sheaves of Lie algebras. 

Following Malgrange [19], we next define a bracket on A ]r174 Firs$, from 

the bracket on J~(~)  we obtain, by duality, an exterior differential d on A ]oo(ff)* which 

is defined as follows. For / 6 0 x =  A~ *, we define d / t o  be the usual differential o f /  

which is identified with its image in ]oo(ff)*- For a 6 J~(ff)*, we define da by the familiar 

formula 
<~ A ~, d~> = s <~, ~> - s <$, ~> - <[& ~], ~>, 

where ~, ~ ed?oo(~7), and extend this operation as a derivation of degree 1 of A Jo~(~l)*. We 

see, by  a classical calculation, that  d 2 =0. The natural injection pr*: A ff*-~ A J~(ff)* com- 

mutes with d, and hence the identification of A if* with its image under pr~ is justified. 

For u=o~| A~Jo~(ff)*| fEJo~(~)*, we define a derivation i(u) of degree p - 1  

of A ~oo(ff)* by  i (u) f  =o~ A i(~)f, where i(~) is the derivation of A Jo0(~7)* of degree - 1 ,  

interior product with ~, and extend this operation to arbitrary u by  linearity. For 

u E A~J~(ff)*| we define the Lie derivative s by the formula 

s  = [ i (u) ,  d]  = i ( u )  . d - -  ( - 1 ) " - 1 d  �9 i (u);  

if u = a |  and fie A Jm(ff)*, then 

(1.17) 

For u=o: |  AVJoo(~)*| v = f @ ~ e  AaJ~(g)*| we define [u, v] by  the 

formula for the Nijenhuis bracket (see [18] and [19]), namely 
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[a|174 = (~ A/~)| 7]+ s174174 1F~s174 ~| (1.18) 

and extend this definition to arbitrary u, v by bilinearity. Then [~, u] = E(~)u, for ~ elm(if), 

u6 AP]~(~)*| if v6 Aq]oo(ff)*| and wE A]o~(ff)*| then 

l~[u, vJ = [l~(u), l~(v)] = E(u) o E(v) -- ( -- 1)~qE(V) o/~(u) 

and Jacobi's identity holds: 

In, iv, %] = [[u, v], w] + ( - I F ' I v ,  In, w]]. 

Thus A Joo(f')*QJoo(ff) is a sheaf of graded Lie algebras. 

We obtain by restriction brackets on A J0(ff)*Q2oo(~r), A ff*| and A '7*@J~(ff), 
which, for /c~>0, by passage to the quotient, induce on AJo(f')*| ), A '7*@]k(ff) 

structures of graded Lie algebras and a bracket 

( A~T*QJ~+x(T))| -+ A~'+qT*| (1.19) 

In order to verify that  A J0(~I)*QJoo(ff) is a sub-sheaf of graded Lie algebras of A Joo(ff)*| 

Joo(~7), it is sufficient, in view of (1.17) and (1.18), to verify that  

for ~EJoo(~7), ~E A'Jo(ff)*, fie AqJo(9") *. These assertions follow from the fact that  Jo(T)* 
is the annihilator of ]oo(T) (a consequence of (1.10) by duality). Furthermore, l:(~)fl 

depends only on/~ and the projection of ~ in 21(9") (see [19]). Hence, for/c ~> 1, A J0(ff)*| 

2k(~7 ) is a sheaf of graded Lie algebras, a quotient of the preceding. Since d preserves A if* 

and, if ~EJoo(9"), the restriction of i(~) to A ~7" is the usual derivation i(~o) of A ~y*, where 

~0 is the projection of ~ in Jo(ff) = if, we see that  ~(~)fl is the usual Lie derivative of fl E A if* 

along ~o E ft. Hence A ff*| is a sub-sheaf of graded Lie algebras of A Joo(ff)*| 

according to (1.17) and (1.18), and, for/r A ff*| is a sheaf of graded Lie algebras,. 

a quotient of the preceding. Finally, since T* is the annihilator of Joo(T) (a consequence of 

(1.9) by duality), formula (1.18) induces a bracket on A ff*| defined fiber by fiber 

by the formula 
[~| fl |  = (~ A fl) | [~, n], 

where ~,/~E A T*, ~, ~EJ~o(T), and a quotient bracket (1.19) defined by the same formula 

with ~, V EJ~+~(T). 
In [22] and [18], another bracket on A ff*|  is introduced; it can be obtained by 

transport of the bracket on A J0(ff)*| Namely, one defines 

[u, v] = (v* | [(v *-z | u, (~*-~ | v] 

for u, v E A ff*| this bracket does not coincide with the bracket on A ff*| 
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obtained above by  restriction from the bracket on A J~(~)*| but  is related to it 

(see formula (3.13.2) of [19], and [18], p. 115). However, in this paper, we shall not use these 

brackets on A ff*QJ~(ff).  

We note that,  if u E A'J0(ff)* | Jk(ff) (resp. A~'T * @ Jk(T)), v E AqJo(~) * | Jk(ff) (resp. 

AqT*| where /c>~l, and if u and v satisfy ~0 u =0  and gov=O, then ~0[u, v] =0.  

This can be seen from (1.18). 

We list two formulas which are direct consequences of the definition of the brackets 

and which will be used in the sequel: 

where u, veT*| and ~1, ~ e T ;  

+ (1~(~ 2 ~ u)~l) ~ v - (C($1 ~ v)$~) ~ u § ( s  ~ V)~l) ~ u (1.21) 

where u, veJ0(ff)*| and ~i, ~eJ0(ff) .  A formula analogous to (1.21) holds for u, 

veff*|  and ~l, ~ e f f ,  namely formula (3.3) of [9]. 

We shall identify S~:Jo(T)*| with the kernels of the projections ~k-l: ]k(T)-+ 

Jk_l(T) and ~k-l: Jk(T)--)'J~:-I(T); this identification will not lead to difficulties when we 

have to consider diagonal automorphisms of X • X. Then - D gives by restriction a mor- 

phism of vector bundles 

AJT*|174 AJ+IT*|174 

which we shall denote by ~. Denote by ~ the isomorphism 

~*| AJo(T)*| ) ~ A T*| 

and b y / )  the differential operator 

O-~oDo~: A Jo(ff)*| A J0(ff)*| 

Then - / )  gives by restriction the morphism of vector bundles 

~: A~Jo(T)*|174 ~ A~+~J~(T)*|174 

Consider the sheaf ~4 of vector fields on X • X which are pr~-pr~jectable and pr~- 

vertical modulo those which vanish to infinite order on A. Then ~4 is a sub-sheaf of Jo0(ff) 

and 
J~o(ff) =~4| J~(ff)  =74| 

The two projections of J~o(ff) onto ~ parallel to Joo(ff) and J~o(ff) respectively, by the 

exactness of (1.9) and (1.10), are determined by  maps T-."Jo~(T), Jo(T)-->Joo(T), and 

therefore by sections g of T*| and ~ of Jo(T)*| respectively. In  fact 
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-- (v*-l| 
and 

ZOgo = id -v :  doo(T) -~j~(T), 

~o~ o = ~-1 - i d :  Joo(T) ~ j ~ ( T ) .  

We shall also denote by g and ~ the sections of T*| and Jo(T)*| correspond- 

ing to ~ezog and ~zo~ respectively. We have the formulas (see [19]) 

Du=[~,u],  for u6  Af/*| (1.22) 

/)u = [Z, u], for u6  AJ0(ff)*|162 (1.23) 

Set 

B~ = A~Jo( T)* | T)/~( A~-~Jo( T)* | S~+~ Jo( T)* | T) ) 

and B~ = | We remark tha t  B, is a sheaf of graded Lie algebras for the bracket which 

is the quotient of that  on h J0(~)*| a n d / )  induces a differential operator 

/•. ~ p  ~'np + 1 
l:~k--> E)~ . 

The "sophisticated" Spencer complex 

where ]k=v-los is acyclic. 

b 
, ~ . . . .  , B~ , 0 ,  (1 .24)  

The differential operators D, /), b are compatible with the corresponding brackets, 

namely for uE A~'*| vE Aq~*| ~=(v*-l |  ~(~*-1| we have, 

if/c>~2, 
D[u, v] = [ Du, ~k_l v] + ( - 1F[~k_lu, Dv]; (1.25) 

/)[~, ~] = [/)~, ~k_l~]  + ( -- 1 )~[~k_l~ , / )~ ] ;  (1.26) 

and, for u E B~, v E B~, if b >~ 1, 

b[u,  v] = [/)u, v] + (-1)~[u,/)v].  (1.27) 

Thus Bk is a differential graded Lie algebra for each k/> 1. These formulas arc direct con- 

sequences of (1.22) and (1.23) by use of the Jacobi identity. 

For U6Jo(~)*| we set ~=(~*|174 Uo=~oU6Jo(ff)*| and ~o= 

~o4Eff*| 

LE~M)~ 1.3. Let u be a section of Jo(T)*QJI(T). Then 

D u -  �89 u] = 0 (1.2s) 
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i[ and only i/, /or all ~ ,  ~eJo(ff) ,  ~x~_v-l$~, ~=~-~2 ,  we have 

[~  - ~ 0 ( ~ ) ,  ~2 - ~o(~2)] = ( id - ~o) ( [~1,  ~ ]  - ~ -~(I : (U(~ l ) )  ~ - s  ~1)}. ( 1 . 2 9 )  

Proo/. By (1.5) (with k = 1) and (1.21) for ~,  ~eJo( f f ) ,  ~x = v - ~ ,  ~ = v - z ~ ,  we have 

(~1 A ~ ,  J ~ u -  �89 ~o[U, u]~ = ~ ~ ~ u ( ~ )  - ~ ~ J3U(~l) - ~0([~1, ~]) -- [~0(~), ~o(~)] 

+ (~(U(~l)) ~)  ~ u o -  (s ~)  ~ Uo. (1.3o) 

Next, using (1.16), we have 

[~1- ~o(~), ~ -  ~o(~)] = [~, ~]  + [~o(~), ~0(~)] 

+ ~-l{s ~1 - ~:(U(~l)) $~}- ~1 ~ /3u(~)  + ~ ~/SU(~l). 

Substituting from this last identity into (1.30), we obtain 

<~1 A ~ , , / 3 u -  �89 ~0[u, u]> = - [~  - ~o(~), ~ -  ~o(~)] 

"~ [~1, ~2] - -  ?~0[~1, ~2] - -  { s  ~2 ~ (y -1  - -  U0 ) - -  ~(U(~2))  $1 7~ (y-1  - -  U0)} ' 

and so the vanishing of the left-hand side of (1.30) is equivalent to (1.29). 

Following Malgrange [19], we set X a = X  • X • X,  let pri: Xa-~X be the projection on 

the i-th factor (i = 1, 2, 3), and pr~j = (pr i, prj): X 3 ~ X  • X be the projection onto the pro- 

duct of the i-th and the j-th factors. We denote by  ~(z.k) the ideal of Ox, generated by 

pr~2Y (z) + P~2~* "7(~), where J is the ideal of functions of Ox• x which vanish on the diagonal A 

of X x X. The support of the sheaf 0 ~ / 3  ~l+1' ~+1)is the diagonal A~ of X 3. A sheaf on X 

(resp. on A2) will be identified with its inverse image by prx: A2~X (resp. with its direct 

image by A~-~X3). We identify J~(Jk(ff)) with the sheaf of vector fields on X 3 which are 

prl~-vertical , modulo jr k+l). A vector field ~ on X a will be called bidiagonal if it is tan- 

gent to pr~(A) and prx~-projectable with prl2,(~) diagonal on X • X. We denote by gr 

the sheaf of bidiagonal vector fields on X 3, modulo ~a+l. k+l), and by  gct.k)(T) the cor- 

responding vector bundle over X. The mapping which sends a bidiagonal vector field on 

X 3 into its prl2-vertical component yields, by passage to the quotient, a vector bundle 

isomorphism 

�9 : J(~.k)(T) ~ Jl(Jk(T)). 

We identify Jz(J~(~r)) with the sheaf of vector fields ~ on X a which are tangent to pr~l(A) 

and are prl~-projectable with pr12.(~) prl-vertical on X • X, modulo 3 (z+l' k+l) 

The bracket of vector fields on X a gives, by  restriction and passage to the quotient, 

brackets 
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J(,.~)(ff) • xJ(,.~)(ff) -~ J(,.~)(ff), (1.31) 

J,(Jk(T)) • xJ,(Jk(T)) '+ J,(Jk_~(T)), (1.32) 

gz(gk(T)) • xg~(Jk(T)) '+ Jz_l(Jz(T)). (1.33) 

The brackets (1.32) and (1.33) are defined fiber by fiber in the following way: if ~, ~ are 

sections of Jk(T) over a neighborhood of x 6 X  and ~=v-l~, ~)=v-b?, then 

[~,(~) (x), ?',(~)(x)] = ?',([~, ~])(x), (1.34) 

[j,(~) (x), j , (~)(x)]  = j,_l([~, ~]) (x), (1.35) 

where [~, U] and [~, ~] are defined in terms of the brackets (1.1t) and (1.12) respectively. 

For k/> 1, the diagram 

Jk§ • xJ,~§ , J~§ 

Jz(Jk(T)) • xJ,(Jk(T)) ' J,(J~:-I(T)), 

(1.36) 

whose horizontal arrows are given by (1.11) and (1.32), is commutative. If 

lz: Jk+,(T) -~ g~(gk(T)) 

is the composition 

the diagram 

Jk+~(T) , Jz(Jk(T)) 

J~+,(T) • ~J~+,(T) 

Jz(J~(T)) x xJ,(Jk(T)) 

Jz(v-1))  J , (Jk(T) ) ,  

' J k §  

1 i,_1 

, J . ( J ~ ( T ) ) ,  

(1.37) 

whose horizontal arrows are given by (1,11) and (1.33), is commutative. With the bracket 

(1.31), J(z.~)(~) is a sheaf of Lie algebras. If 

;~z: 2~+,( T) + J.,~)( T) 

is the canonical injection equal to v-lo~zov, the corresponding sheaf map is a morphism 

of sheaves of Lie algebras. The mapping ~: Jk(ff)-~g(z.k)(~) defined by v-io],ov is also a 

morphism of sheaves of Lie algebras. 

LEMMA 1.4. Let Rk, Nk, Sk be /ormally integrable di//erential equations in Jk(T). I /  

[Rk+l, Nk+l] c Sk, then/or all 1 ~ 0 
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[Rk+z+l, Nk+z+l] C Sk+z (1.38) 
and 

[Sol (Rk), Sol (Nk)] c Sol (Sk). (1.39) 

Proo]. The bracket (1.32) induces a bracket 

J l ( R k + l )  • x Jz(~V1,+~) ~ Jz(Sk); 

since we have Rk+z+l=(Rk+l)+t, Nk+Z+l= (Nk.l)+z and Sk+l=(Sk)+~, from the commuta- 

t ivi ty of (1.36) we deduce (1.38). If ~ is a solution of Rk and ~ is a solution of ~ ,  then 

[ j k+~(~ ) ,  J~+l(~)] = J, , ( [$,  ~]), 

and so [~, ~] is a solution of Sk. 

LE~M~ 1.5. Let R k, IV k be /ormally integrable di//erential equations in J~(T). Then, 

i/Rk+z = v-I R~+~ /or 1 >~ 0, the ]ollowing assertions are equivalent: 

(a) [R.+. N.+~]= N.; 
(b) [Rk+z+l, Nk+z+I]~-N~+z, /or all l >/0; 

(d) [~+z+l, ~ + z ] ~ k + z ,  /or all l >i0. 

Proof. The equivalence of (a) and (b) follows from Lemma 1.4. Since 7~+~: Z~z+~+~-~ZT~+z 

is surjeetive, the equivalence of (a) and (c) or of (b) and (d) is deduced from (1.15). 

2. Jets of transformations 

Consider E = X  • X as a bundle over X via the projection pr 1 and identify a m a p / :  

X - * X  with its graph ]: X - + X  x X and the k-jet Jk(/) (x) of ] at x with the/c-jet  ]k(]) (x) of 

] at x. In accordance with the usual terminology, we call /(x) the target of ]~(/)(x). If  

F=?'k(/) (b), G=jk(g)(a)eJk(E), where /: X ~ X ,  g: X ~ X  are maps defined on neighbor- 

hoods of b and a respectively satisfying g(a)--b, then F.G=jk(/og)(a)  is a well-defined 

element of Jk(E). 

Let Qk be the open fibered submanifold of Jk(E) of jets of order/c of local diffeomor- 

phisms X-*X;  in fact, Qk=~IQ1, for k~>l. We consider, unless it is explicitly stated to 

the contrary, Qk to be a bundle over X via the projection "source" g: Qk~X.  The multi- 

plication on J~(E) defined above determines a structure of differentiable groupoid on Qk. 

Let  Qk(a) (resp. Q~(a,b)) be the set of jets of order/C of Qk with source a (resp. with source 

a and target b). 
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Consider mappings F: X • X-+ X • X of the form (/o/), where /: X • X--> X and/o:  

X - + X  is defined by ]~ =l(x, x) for x ~ X .  These mappings preserve A and are prl-projeet- 

able; moreover, we shall say that  F is diagonal if, in addition, for each x E X  the germ at 

x of the mapping x%->/(x, x') is invertible. To the diagonal mapping /7, we associate the 

section of Q~ whose value at  x is equal to the jet of order ]c at x of x%->](x, x'). Two diagonal 

mappings F and G determine the same section of Q~ if and only if F and G have the same 

principal part of order k, that  is to say if they coincide on A together with their partial 

derivatives of orders not exceeding/c. We shall regard a section of Qk as the principal part 

of a diagonal mapping; such a section F = (1 ~ 1) is invertible if and only if to is invertible. 

We denote by Qk the sub-sheaf of O~ of invertible (dtales) elements of Q~. Let Aut (X) be 

the sheaf of local diffeomorphisms X ~ X ;  i f / E A u t  (X), ]k(]) is the principal part of order 

k of the germ of diagonal mapping (x, x')~+(l(x), ](x')) (see [19]). 

Let Q(z,k) be the bundle of jets of order l of sections of Qk. The composition of jets 

assigns to it a structure of groupoid and we denote by (~(z,k) the sheaf of invertible (dtales) 

sections of Q(z.k). The mapping Jz: (~k--~(~(l.k) induced by Jz: Q~--> Jl(Qk) is a homomorphism 

of groupoids; the natural inclusion 25 Qk+~-~Q(z.~) is a homomorphism of groupoids. 

The action of diagonal automorphisms of X • X on vector fields gives, by passage to 

the quotient, for each section F of Q~+I the following mappings: 

F: Jk(T)a ~ Jk(T)b, (2.1) 

F: Jk+l(T)~ -~ ]~+l(T)b, (2.2) 

F: Jk( T )a~  J'~( T)b, (2.3) 

where a E X  and b =target/~(a).  The mapping (2.1) depends only on F(a), while the map- 

pings (2.2) and (2.3) depend only on ~I(F) (a) EQ(1.k+I ). Thus (2.2) gives us a mapping 

Q(1.~) > xJk(T) --> Jk(T) 

sending (H, ~) into H(~); if FEQk+I(a, b), then the mapping 21-~: ]k(T)~-~Jk(T)b is given 

by (see [19], formula (6.2)) 

~1 ~(~)  = ~- -1~(~) ,  ~ E Ja(T)~. (2.4) 

However the restriction of (2.2) to J~ Jkr does not depend on the 

1-jet of F~Q~+~ but only on F(a); thus we have a mapping 

Q~ • x J~(T) ~ J~ 

We have a canonical section I~ of Q~ over X sending x ~ X  into I~(x), the k-jet of the 

identity mapping of X at  x. If  ~ is a one-parameter family of sections of 6~, with ~0 = I~, 

then ~ =d$'~[dtl~_~eF(X, ]~(T)) where the sections of J~(T) are regarded as diagonal vec- 
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tor fields on X • X; every section of Jk(T) can be written in this way locally. We can also 

regard ~(x) as a vector tangent  to Qk(x) at Ik(x); hence we have an isomorphism 

J~(T)~  ~ , Vi~(~, (Q~) 

which enables us to identify these two spaces. In  fact, if ], is a one-parameter family of 

local diffeomorphisms of X defined on a neighborhood of x with ]0=id, and ~=d/,/dt[,_ o 
is its ir~finitesimal generator, then the image of ?'k(~) (x) under this map is the tangent vec- 

tor djk(/,) (x)/dt[,~ o to Qk. 

I f  GEQk(a , b), then the mapping Qk(b)-+Qk(a) sending F into F.G is a bijeetion. 

Therefore we obtain an isomorphism 

Tp(Qk(b))-* TF.a(Qk(a)) 
o r  

V~(Q,) ~ VF.o(Q~) 

sending ~ into ~. G. Taking F = Ik(b), we obtain the isomorphism 

Jk(T)~-> ra(Qk(a)). 

I f  ~EF(X, gk(T)), the vector field Tk(~) on Qk whose value at  FEQk is ~(b)-F, where b =  

target  F,  is clearly invariant  under this right action of Qk. Moreover ~k is a morphism of 

Lie algebras from F(X, J~(T)) to the algebra of vector fields on Qk. 

Let  G be a section of g~k. For aEX the mapQ~(a)-*Qk(a ) sending/v into G(b).F, where 

F EQk(a ) and b = ta rge t  F, is an automorphism of Qk(a). Therefore we obtain mappings 

T~(Q,) -,- T ~(,).,~(Q,), 

VF(Q,) ~ V ~(~). ~(Q~), 

sending ~ into G~; this left action on V(Qk) commutes with the right action defined above. 

These mappings depend only on H=jl(G)(b)GQa.k ) and we write H~=G~, for ~ETF(Qk). 
Taking F = Ik(a), we obtain the isomorphism 

Jk( T)~--~ Va(~)(Qk), 

which depends only on the 1-jet of G at  a, and a mapping 

Q(1.k) x x,].~(T) ~ V(Qk) 

sending (H, ~) into H~. The isomorphism (2.2) is given b y  

F(~) = F.~. i~(a)-~ (2.5) 

for F ~(~, ~GJ~(T)a. We therefore obtain, by  (2.4), the formula 
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~1 F(8) = Ax F" } ":z~/~-1 = v-l_y(v}) (2.6) 

for .FeQ~:+l(a), ~e,]k(T)a (see [19]). 

For x E X, we have an isomorphism 

2(,.k) (T)~ , rn(~k)(x ) (Q(~.~)) (2.7) 

which enables us to identify these two spaces. In fact, if F t is a one-parameter family of 

sections of (~  over a neighborhood U of x, with F0----Ik, then ~=dFddt  ] ~=0~P(U, Ja(T)), 

and (2.7) sends j~(~)(x) into the tangent vector dj~(F~)(x)/dtl~ o to Q(~.~). If  F ~Q(~.~) and 

F 0 =~0Y eQ~, with source 2'o=a, target -~o =b, the mapping Q(~.~)(b)-+Q(~.~)(a) sending G 

into G. F is a bijeetion. Therefore we obtain an isomorphism 

T~(Q(~.~)(b)) ~ Ta.~(Q(~.~)(a)) 
o r  

Va(Q(~.~))-+ Va.~(Q(~.~)). 

Taking G =j~(I~) (b), we obtain the isomorphism 

2(,.~)(T)0-+ V~(Q<,.~)). 
If  F ~Q~+~ with b =target  ~', it is easily seen that  the diagram 

?~+,(T)~ ~- V~(Q~+,) 

(2.8) 

whose horizontal arrows are given by the right action of F on Qk+z and of ~ F  on Q(z.k) 

respectively, commutes. If  ~EF(X, J(z.k)(T)), the vector field ~(l.k)(~) on Q(z.k) whose 

value at F E Q(z,k) is ~(b)" F, where b--target ~z 0 ~, is clearly invariant under the right ac- 

tion of Q(~.k). Moreover, T(z,k) is a morphism of Lie algebras from F(X, J(~.k)(T)) to the 

algebra of vector fields on Q(z.~)- 

If $'EJk(E) and / :  X--,-X is a mapping defined on a neighborhood of x E X  such tha t  

F =s (x), we denote by 

F , :  Tx " T~_IF(J~-I(E)) 

the map J~-l(]),; in fact, F ,  depends only on :F and determines F uniquely. If  ]c = 1, then 

:F,: T~-+T?(x)(E)=T x • T[(~) is the graph of the m a p / = / , :  Tx--+T[(x), the differential of 

] at x, which is given by (2.2) when / is a local diffeomorphism. The map ~: Jo(T)x -+ 

J0(T)r(~) sending ~ into tv~=~,(/v-l~) is the map (2.1) when ]c=0 and / is a local diffeo- 

morphism. We remark that  _~ EQ1 if and only f f / :  T~-+ T1(x) is invertible. 
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According to Proposition 5.1 of [4], Jk(E) is an affine bundle over Jk_l(E) whose as- 

sociated vector bundle over Jk_l(E) is induced from the vector bundle 

S~T * | ~ V ( E) = (pr~ l SkT *) |  (Pr21T) 

over E, since V(E) can be identified with pr~lT. I f  k = 1 and il(f) (x) 6 JI(E), u 6 T* | Ti(x), 

then 
(]l( l)(x)+u),# = (~,l~+u(#)), ~ET=. (2.9) 

Hence ] l ( f ) ( X ) ~ - U  belongs to Q1 if and only i f / + u :  Tx~Tf(~ ) is invertible. 

We now examine the compatibili ty relations between the multiplication on Jk(E) 

and the operations on Jk(E) given by  its structure of affine bundle over Jk_l(E). We as- 

sume tha t  k >~ 1. 

PROPOSITION 2.1. Let F, G6J~(E) where source G=a, target G=b=source F, 

target F=c .  

(i) I f  uESkT*QT~, then 

F-  (G +u)  = F -  G + (id| v-10nx F o r )  u, (2.10) 

where ( id |  Fov) u6SkT* @ T c. 

( i f ) / / u 6 S k T * |  then 

(F +u) .  G = F .  G + (v*O~l Go v*-~| u, (2.11) 

where (~* oz  1 Go v *-1 | u E SkT * | T c. 

(iii) Let uESkT*a| and assume that GEQk. I f / r  then G +uEQk and 

(G ~-u)  -1  = G -1  - -  (72* O~1G--10 V *-1 | Y- lopTIG- lo~ ' )  U, (2.12) 

where (v*o~lG-iov*- i |174 I / ]c=1 ,  then G+uEQ 1 if and only if 

G + vouov- l :  J,(T)~->Jo(T)b is invertible; i / this  condition holds then 

(G + u) -1 = G - 1 -  [v*oG-lov*-l|  (G +vouov-1) - lo~]u ,  (2.13) 

where [v* oG-lov*-l |  +vouo~- l ) - iov]uE * Tb | Ta. 

Proof. (i) Let /: X - + X  be a map such tha t  ~ ( ] ) (b )=F .  Consider the morphism of 

fibered manifolds Jk(f): Jk(E)~J~(E)  over X sending H into ~k(f)(x). H,  with x = target  H; 

in fact, J,(/) is the k-th prolongation of the map id • E--->E over X, and J ~ ( / ) H = F . H  

when target  H=b.  Hence, by  Proposition 5.6 of [4], J,(]) is a morphism of affine bundles 

over J~_x(f): J~_I(E)~J~_I(E) whose associated morphism of vector bundles is induced 

by  the endomorphism id |  of (pri-~S~T *) |  ~ T) over the map id • ]. Therefore 

Jk(f) ( G + u) = J~(f) G + (id| u 

which gives us (2.10). 
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(ii) I t  is sufficient to verify (2.11) when uESkT*|  is of the form 8-1jk(h)(b)@~ 

where h is a local real-valued function on X satisfying ~k_l(h)(b)=0. Let  F=?'k(/)(b), G = 

]k(g)(a), where ], g are local maps X ~ X ;  let )r: U •  be a one-parameter family of 

maps of a neighborhood U of b into X such that  fix, 0) =/(x), for x e  U, and d[(b, t)/dt I ~=0 =~- 

Then according to Lemma 5.1 and Proposition 5.1 of [4] 

F +u = s h(x)))(b) 
and 

(F + u)" G = s h(g(x)))) (a) = s g) (a) + e-1]k(ho g) (a) @~, 

since the local map ~0=[o(gxid): X x R ~ X  is a one-parameter family of maps X ~ X  

defined on a neighborhood of a such that  cp(x, O)=](g(x)) and dq~(a, t)/dt[t=o=~. Since 

e-i?'k(hog) (a) =g*~-i]k(h ) (b), we obtain (2.11). 

(iii) We suppose first that  k > l .  We have by (2.10) 

Ik(a ) = (G § U) -1" (G § U) = (G §  -1" G § ( i d @ v - l O ~ l G - i o r )  u. 

Hence 

(G §  - i  = [Ik(a) - (id| �9 G -i, 

and therefore, by (2.11), we obtain the formula (2.12). We now consider the ease /c=l;  

then G +u: Jo(T)a-~Jo(T)~ is given, according to (2.9), by 

(GWu)~ = (G§ 

for ~EJo(T)~. Hence O+ufiQ1 if and only if this map is invertible. Assume that  this is 

the ease; the mapping 

is given by 

By  (2.10), 

and hence 

(G +u)- l :  Jo( T)~ -~ Jo( T)a 

(G + u) -1  = (G + vo  u o  v-1)-~.  

Ii(a) = (G §  +u) = (G + u)-l .G + (id| +u)- iov)u 

(2.14) 

(G + u) -1 = [ I i ( a ) -  (id| § = G - l _  (~*oG -1o~*- l |  

by (2.11). Substituting into this formula from (2.14), we obtain (2.13). 

Assume that  b >~ 0. By Proposition 5.1 of [4], Jl(Qk) is an affine bundle over Qk whose 

associated vector bundle is T*| and Q(1.k) is an open submanifold of Jl(Qk). 

Identifying Q0 with E = X  • X,  then Jl(g0): JI(Qk)-+JI(E) is the map sending jl(F)(x) into 

jl(zoF)(x), where F is a section of Qk over a neighborhood of x. I f / = z o F ,  then ]l(F)(x) 

belongs to Q(1.k) if and only if ?1(/) (x) EQ1 , tha t  is if ]: Tx -~ Tf(x) is invertible. Thus Q ( i , 0 )  = 

Q1 and Q(1.~)=JI(zo)-IQ1. If  FEQk, with source F=a,  target F=b,  let 
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T*a| T)o ~ T* | VF(Qk) 

u~-~uF 

be the isomorphism sending g | into g | (~F). If H e Jl(Qk) with go H = F and u E T* | 

Jk(T)~, then the affine bundle structure of JI(Q~) over Q~ gives an element H + u F  of 

JI(Q~) with g0(H + u F ) =  F. We examine the compatibility relations between the structure 

of affine bundle of Jl(Qk) over Qk and the structure of groupoid of Q(1.k). 

P R o P o s I ~ I o ~  2.2. Let FEQk with source $ '=a,  target ~ = b .  

(i) Let H ~Q(~.~) with ~oH = F and J~(~o)H =~(/)(a), where ] is a local di/feomorphism 

of X defined on a neighborhood of a. I / u ~ T * |  then H § u F  belongs to Q(~.~) if and 

only i / / + ~ u :  T a ~  T~ is invertible. 

(ii) Let H e Q(~. ~) with 7e~ H = F, and u e T* | J~( T) ~. I / H  § u.F ~ Q(1. ~), we have 

(H + uF) (~) = H(~) + (~o~) -f u (2.15) 
[or all ~ ( T ) ~ .  

(iii) I~ H~,HEQ(~.~) with g o H ~ = ~ o H = F ,  then H~ = H  if and only q H~(~)=H(~) for 

all ~ e J~( T)~. 

(iv) I / F  1 ~ Q~ with source F 1 = b, target F 1 = c and H~, H e Q(1.~) with 7~ H~ = FI, ~o H = F, 

then 
H V (H + uF)  = H I. H + [(id| u] FI" F 

/or u e  T*| T)o such that H + u F  eQ(1.~) , where in the second term of the right member 

H 1 is the map J~(T)~J~(T)~;/urthermore 

(HI + vF1) " H = Hl" H + [(/ | ~'l" F 

for v e T~ | Jk( T)~ such that H 1 + v.F~ eQ(Lk). 

Proof. (i) We have H+uFEQ(1 .k ) i f  and only if Jl(~zo)(H+uF)EQ1. By Proposition 

5.4 of [4], Jl(x~0): JI (Qk)~JI(E)  is a morphism of affine bundles over z0: Qk -->E whose as- 

sociated morphism of vector bundles T*|174 sends u F  into 

(id| =:z0u , if uE T*| Therefore 

Jl(~Zo) (H + uF)  = Jl(~0)H + (id |  = Jl(/) (a) + ~o u, 

and H+uF~Q(1,k)  if and only if jl(/) (a) +~ZouEQ1 , from which we deduce (i). 

(ii) If H 1 = H + u F  E Q(1.k) then, by formula (2.4) of [8], we have for ~ E Jk(T)a, 

HI(~) -H(~)  --- (~o$) ~ ((H1--H) F-*) = (~o$) T u, 

since H 1 - H  = u F  E T* | VF(Qk), from which the identity (2.15) follows. 
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(iii) We can write H I = H + u F  for a suitable uET*|  I f  HI (~)=H(~  ) for all 

~EJ~(T)a, we conclude from (2.15) tha t  u = 0  and hence HI=H.  

(iv) I f  uE T*QJk(T)b and H+uFEQr , then for ~EJk(T)a we have by  (2.15) 

HI((H + u.F)(~)) = HI(H(~ ) +~0(~) ~ u) 

= HI(H(~)) + H1(7co(~ ) ~ u) = (Hi" H + [(id| u] F 1. F) (~). 

I f  vE T*| and H~+vF 1 eQ{~,k), then for ~eJk(T)~ we have by  (2.15) 

(H1 + vF1) (H(~)) = HI(H(~)) + (z0H(~)) ~ v 

= H~(H(~)) + (zc0~) 7~ [(/ |  = (H~. H + [(~ |  (~). 

From these two identities and (iii) we deduce the formulas of (iv). 

Assume tha t  k ~> 1. Let  v(Qk) be the sub-bundle of vectors of V(Qk) whose projection 

in V(Qk-~) vanishes. Then, for aEX,  we see tha t  v~k(a)(Qk) is identified with SkJo(T)*| 

Jo(T)~ when we identify V~k(,)(Qk ) with Jk(T),.  The structure of affine bundle of Jk(E) 

over Jk_l(E) gives us an isomorphism for G EQk, with source G =a, target  G =b, 

g(O): Z~T*~| T~-~ v~(Q~) 

sending u into d(G + tu)/dtIt=o, where t e It. One verifies easily that ,  for a e X ,  the diagram 

S~T * | Ta ' lu(X~(a)) �9 v~(a)(Qz) 

_ ( 2 . 1 6 )  

S~:Jo(T) * | Jo(T)a 

is commutative,  where 

sourceIG=a , target  G=b, then the diagram 

S k T , |  b #(G) �9 Va(Qk) 

~*~174 ~ l {~t 

SkJo(T)'~ | Jo(T)b ~ Jk(T)b 

is commutative.  Indeed, if uESkT*| Tb, we have by  (2.11) 

the vertical arrow is the natural  identification. If  G E Qk, with 

(2.17) 
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J f /  
(~(~) U) G -1 = ~ (G -~ tu) . G -] It •o = ~ (~k(b ) -~ t( ~)* o 7/: 1 ~ - 1 o  ~)r | id )  u)[$= 0 

= I~(I~(b)) 0'* o ~1G-~ o ~*-~ | id) u, 

and  so the  c o m m u t a t i v i t y  of (2.17) follows f rom t h a t  of (2.16). 

P R o P o s I T I O ~  2.3. Assume that Ic>~O. 

(i) Let 2, E Qk+a, with source F = a, target 2' ~ b, and u E S k+lTa * @ To; i / 2 ,  + u  E Qk+I, then, 

2l(F+u) =212,+vG, /or/c >~ 1, (2.18) 

where G=TekF and v = (id|174 T*|174 and/or ~eJk(T)a 

(F+u)~ : F~+(~0~)  ~ (v* - l | 174  /or/c 1>1, (2.19) 

(2,-~-U)~ : ~ - ~ - ~ A  ( 'P*--I |  /or k =0. (2.20) 

(ii) I /  2,1,2,EQ~+1, with source Fl=source F=a,  target 2,1=target F=b,  then 2,~=F 

i /and only i /2,1~=2,~/or all ~EJ~(T)a. 

Proo]. (i) Firs t  assume t h a t  k~>l. According to Proposi t ion 5.6 of [4], 21: Jk+l(E) ~ 

Jl(Jk(E)) is a morph i sm of affine bundles over  Jk(E) and 

21(F + u )  = 21F + ( id |  

for FEQk+I, with source F=a,  t a rge t  F=b,  and k+l �9 uES Ta| where G=TekF and 

(~u E T* @SkT * | T b. Now (2.18) follows f rom the c o m m u t a t i v i t y  of (2.17) and,  using (2.4), 

we see t h a t  (2.19) is a direct consequence of (2.18) and  (2.15). For /c  =0 ,  by  (2.4) we deduce 

(2.20) f rom (2.9). 

(ii) Assume t h a t  Fi, 2, E Qk+i satisfy F 1 ~ = F~ for all ~ E Jk(T)~. We  prove  t h a t  F 1 = 2, 

by  induct ion on /c. Le t  k ~>0 and suppose tha t ,  if ]c >~ 1, our assert ion holds for /~-1 .  I f  

k >/1, we have  ~k-1 F1 = z k - 1 F  b y  our induct ion hypothesis .  Therefore we can always write 

2,1=F+u,  with uESk+IT*| F r o m  (2.20) i f / c = 0  and (2.19) if /c~>l,  we conclude t h a t  

u = 0 and  t h a t  2,1 = 2,. 

For  ]c>~0, let Q~+I be the bundle of the  GEQk+I satisfying gkG=Ik(a), where a =  

source G. Assume t h a t  ]c >~ 1. The  bundle Q~+I is an  affine bundle over  X whose associated 

vector  bundle is Sk+IT*| T; it  possesses a canonical section Ik+l, which induces a bi ject ion 

Q~+I~Sk+IT*| 

sending G eQ~+a(a) into G -  Ik+l(a). Composing this mapp ing  with  

v*- l |  S~ * IT* | T -~ Sk + l Jo( T)* | Jo( T), 

9 -  762907 Acta mathematica 136. Imprim5 le 13 Avril 1976 
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we obtain a bijection 

~: Q~+I--> Str | Jo(T) 

which is an isomorphism of bundles of Lie groups over X, by Proposition 2.1, (i) and (ii). 

For GeQ~+l(a), we have 
G,  - Ik+l(a),: T a -+ vzga)(Q~:) 

and 
G,  - Ik+ l(a),  = ~G, (2.21) 

by the definition of ~ (see [4], w 5). 

For /c~>0, let Q~ be the set of the GEQ<I.k) which project in Qk onto Ik. The bundle 
0 Q(~.k) has a canonical section ]l(Ie)=A1(I~+1) over X and we therefore obtain the injection 

O: Q[~.~>-,. T* | J~,(T) 

sending HEQ~I.k)(a) into H-] l ( I z ) (a ) ,  whose image is, by Proposition 2.2, (i), 

( f* |  ^ = {ue T*|  lid +zou: T-+ T is invertible}. 

By (2.18), for k>~ 1 the diagram 

Q~+~ ,~i o 
-" Q(1.k)  

1 ; 
S~'+~Jo(T)*| ~ ,T*| (T) 

(2.22) 

is commutative. For k=0 ,  ,~r ~ " ~1"~~ ._> ,,~o~a. o> is a bijection and we define ~: Q~->Jo(T)*| 

so that  the diagram (2.22) is commutative, where ~ = ~*| v-1. Then (2.21) holds with k ~ 0. 

We now list fundamental formulas which will be used in the sequel (see [19], [18]). 

We have the following non-linear Spencer complex, a finite form of the initial portion of 

(1.3) (with T replacing E and k + 1 replacing k): 

Aut (X) ]k+l  d~+~ O , (ff . |  ^ 

which is exact, where (finite form of (1.22)) 

for E E {~+x, and 

and 

01 , A2~,| (2.23) 

O F  = z - F - l ( z )  e if* | J~(ff), 

O F  = F - l ( v )  - ~ EJ~(ff)* |  Jk(ff), 

OlU "~- Du-�89 u], ue~'*| 

(T* |  ^ = {u E T* | ~' +~ou: T -+ JD(T) is invertible}. 

(2.24) 

(2.25) 

(2.26) 
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We have (finite form of (1.2)) 

O[(,li F)  -1" ]i(n~ F)]  = (id | v -1) O F ,  F e (~k+l, (2.27) 
and hence also 

(n0~) ~ D F  = d ( Z lF ) - l . nkF . ~ -~ ) ,  ~ e Jk(ff), F e t~+i. (2.28) 

I f  G e Q ~ + 2, then  since ji(I~) = 21 I~+i, we have b y  (2.27) 

~(21 G)-i  = (id | v -i)  DG, 

where DGE~7*|176 if b>~l, and by  (2.22) 

~(21G) -i = ~21G-i = r - l .  

By Proposi t ion 2.1, (iii), we therefore have for Ge(2~+l 

DG = -~g ,  if/c >~ 1, (2.29) 

DG = - ( i d  +g)-~ogo~ = [(id + g)-~ - id]o~, if/c = 0, (2.30) 

where g = aG. I f  u e (if* | Jk(~7))u, F e Qk+l. ~ with (n 0 F)  (x) = y, we define 

u F = Y-X(u) +?OF. (2.31) 

This r ight operat ion of (~+i on ~7*| conserves (ff*| ^. 

LEMMA 2.1. Let Fe(3k+~, Ua, u~e(ff*| ^. Then u~=u~ i] and only i] 

~1 ~~  (jl(Ik) -~ ~--lou2) = ]l(~7~ki~) -~ ('p--lOUlO/)nk ~ 

as elements o/ Q(i.~), where / - -n  o F and (V-IOUlO/)(a) ETa* | [(v-lOUlO])nk F] (a) E 

Proo/. I t  follows from (2.28) tha t  u~ =u~  if and only if we have,  for all ~ E Jk(~7), 

u2(~o~) = ~'((~1 F) - l .nk  F .  ~--  ~) + lv-~((ulol) (not)), 

i.e., by  (2.6) and (2.5), 

.~ ~--1. U2(n0~ ) = 21 F -1  "n~ F .  ~ .n  k F -1 .he F d-/~ i i~- l ( (v- io  u io / )  (no ~)) 

= 2 i F-i(n~ F"  ~ "ha F -1 + (v - io  u io/)  (n o ~)) 

= i l  F-~(fi(n~ F) (~) + (~-lOUlO/) (n0f)). 

According to  (2.15), this equat ion is equivalent  to  

(i~(I~) + ~-~ou~)(~) = ;tlF-~((il(n~F) + (~1OUlO l)n~ F)(~)); 

hence, by  Proposi t ion 2.2, (iii), the  equat ion u~ =u~  holds if and only if 

i1(I~) + v -a ouz = ~i F - l "  (il(nk F)  + (v-~oulo/)7~ F), 

which implies the  desired assertion. 
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Next, the non-linear Spencer complex 

Aut (X) ~-~ *d~+l ~ ' (Jo(3")*| ^ 

is exact, where (finite ~orm of (1.23)) 

for F e (2~+1, and 

and 

~1 ,  A2J0(~),| ]k_l(~ ) 

~ u  = .Du-�89 u], u eJo(~I)*| ), 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(Jo(T)*| ={UEJo(T)*|  Jo(T)-~ T is invertible}. 

The ~nalogues of (2.27)-(2.30) are: 

~[(Jl(:T~k F)) -1" (~1F)] = - (~* | ~ F ,  F E (~k+~; (2.36) 

(~0r~) ~ ~ F  = ~--7ekF -1" (~lF)'~, ~ eJk(ff), F E (~+1; (2.37) 

~G = -~g, if k >~ 1, (2.38) 

~G = -(idQv-1)g, if k = 0, (2.39) 

where 9 = ~G, for G fi Q ~+1. If  u fi (Jo(~Y)* | J~(ff))~, F e Qk-l-l.x with (~o F) (x) = y, we define 

u P = F-l(u)  + ~ F .  (2.40) 

This right operation of FE(~e+l on J0(ff)*| conserves (J0(ff)*| ^ and the 

action of F -1 on A J0(ff)*| depends only on ~e F if ]c >~ 1; hence, if ]~ >~ 1, 

u ~ = ( ~ ) - ~ ( u )  + ~ F .  

We have the following important identities whose analogues are also valid for the operators 

O, O1 and h ff*| if ~E(~k+l.x, GE(~k+I, z with (~oF)(x)=y and (~oG)(z)=x, then 

~ ( F .  G) = G-I(~F) + ~ a ,  (2.41) 

u p~ = (uP) a, (2.42) 

and 

for u E (Jo(ff)*| 

There is a canonical bijection 

( T* | Jk( T) ) ̂  -~ ( Jo( T)* | Jk( T) ) ̂  (2.44) 

sending the element ue (T* |  ^ into ae(Jo(T)*|  ^, which is defined as follows. 

Let u ~ ( T* | J~(T)) ̂ ; then 
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+ u o z 0 :  Jk(T) -~ Jk(T) 
is invertible since 

i d+v-~ouo~0 :  Jk(T)-~ Jk(T) 

is invertible by  Proposi t ion 2.2, (i), with H=~lI~=,~llk+ 1 and u replaced by  v-lou. Let  

be the element of Jk(T)*| which is defined by  v - 1 - 4  = (v +uo~0) - l ;  we have 

id = (v-1 - ~ ) o  (~ + uo~0) = i d - 4 o v  + (v-1 _4)ouoXeo 
and hence 

4 o r  = (v - 1 - ~ ) o u o u ~ :  J~(T) -~ J~(T). 

Since u o ~  0 vanishes on J ~  and  v is the ident i ty  on J~ we conclude tha t  

vanishes on  j o ( T ) ;  hence 4 = 4 o ~ 0 where ~ E (Jo(T)* | 2~(T)) ̂  and  4 is the  image 

of u in (2.44).  Since T*~ ]~(T)*, Jo(T)*~ J~(T)*, we can drop ~0 and  define 4 by  

v - 1 - 4  = (~ + u)-~: J~(T) -+ J~(T). 

L E M ~ A  2.2 The/ollowing assertions are true/or the mapping (2.44): 

(i) Let Rk be a sub-bundle o/ Jk(T) and Rk=v-lRk, and let u e ( T * |  ^. Then 

uE T*QRk i/and only i/ 4EJo(T)*| k . 

(ii) I /uE(~T* |  ^, then 

u r = uF, /or Fe(~k+l. 
(iii) We have 

OF = ~F,  /or F e Qk§ 

(iv) I/uE(9"*| ^, then Olu=O i/and only i/ ~14=0. 

Proo i. We have 

and hence 

Similarly 

and hence 

id = ( v - l _ 4 ) o ( u + u )  = i d - 4 o ( v + u )  -~- ?)--Iou, 

v - l o u  = 4o  (v + u): 2k(T) -~ 2k(T ). 

id = (v + u ) o ( v - l - - 4 )  = i d - ~ o 4 + u o ( ~ - l - 4 ) ,  

vo• = uo(v - l - a ) :  Jk(T) ~ J~(T). (2.46) 

(2.45) 

Assertion (i) follows immediate ly  from (2.45) and (2.46). 

I f  uE(CI*| ^, F e  (~k+l, we have b y  (2.25) 

~)~-U F = F - - I ( ~ - ~ U )  = F-lo(y+u)oF, 
and hence 

= .N--I __ (,N--I __ .F - l ( , y - l ) )  _ . F - I ( ~ )  : ,~-I _ ( ~ F  -l- F - l ( u ) )  = ?.,-1 _ 4  F 
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by (2.34), that  is to say, (if) holds. Taking u = 0  in (if), we obtain (iii). Finally let u~ 

(~Y*| then, by the exactness of (2.23), DlU=0 if and only if u = ~ 2 ' ,  F e ( ~ + l  and 

hence by (iii), ~ - - ~ F ,  which, by the exactness of (2.32), is equivalent to ~ ) ~ = 0 .  

LEMMA 2.3. Let u be a section ol Jo(T)*|  over X and/:  X - + X  a mapping. Let F be 

the section ] 1 ( 1 )  - - I  0 UO 72 0 1 JI(E). Then: 

(i) F~ = v(/(v-l--u)~), /or ~EJ0(T); 

(if) F is a section o I (~1 i / and  only i I v - l - u :  Jo(T)-+ T is invertible and / is an immer- 

sion; 

(iii) i / F  is a section o I (~, we have ~ F  = u. 

Prool. According to Proposition 2.1, (i), we have 

F = j ~ ( / ) ' ( I ~ - u o v ) ,  (2.47) 

so (i) holds since 11 -uo r :  Jo(T)~Jo(T)  is equal to i d - r o u .  Hence F is a section of {~1 if 

and only i f / e ( v - l - u ) :  Jo(T)-+T is invertible, and so we obtain (if). Applying ~ to (2.47) 

we obtain, by (2.41) and (2.39), 

~ = ~ ( I i - u o ~ )  = u. 

Finally let/}~ be the set of the u E B~ whose projection ~0u in Jo(T)*| T satisfies the 
-- ~ 

condition that  v- l_z0u:  Jo(T)-+ T is invertible. The operator O: Qk+v+J0(ff)*| in- 

duces a differential operator ~:  dk-+ }}~ for ]c ~> 1 and, for u E B~, let O~u = n u  - ~  [u, u] E B~. 

We thus obtain the "sophisticated" version of (2.32) 

which is an exact sequence for ]c >i 1. Let F ~ (~k where k ~ 1; the action of F -  1 on A Jo(ff)* | 

2k(~7) gives by passage to the quotient an action on ]~k and we define 

u F = F-l(u) §  (2.49) 

for u E ]~. y, F E (~k.x with (~0 F) (x) = y. This right action of dk on B~ conserves ~ and the 

analogues of formulas (2.41)-(2.43) hold for the operators ~ ,  ~,  and the sheaf ~k- 

We conclude this section by recalling the definition and some properties of a non- 

linear partial differential equation. A (non-linear) partial differential equation Pk (of order 

b) in Jk(E) is a fibered submanifold of ~: Jk(E)->X. The 14h prolongation of Pk is the sub- 

set of Jk+~(E), 

(p~)+~ = ~ l ( g , ( p ~ )  n ~,(&+~(s))),  

where ~z is the injection J~+z(E)->Jl(Jk(E)). A solution of Pk is a mapping/ :  U-+X de- 
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fined on an open set U ~ X  and satisfying ]~(/)(x)EPk for all xe  U; then ?k+l(/) is a section 

of (Pk)+z over U, for all l~>0. The mapping ~k+z: Jk+z+x(E)~Jk+z(E) induces a mapping 

z~+z: (P~)+(z+l)-~ (Pk)+z. Following [4], we say that  P~ is/ormaUy integrable if for all 1 >1 0, 

~: (Pk)+,~X is a fibered submanifold of ~: J~+z(E)~X and 7~+z: (P~)+(z+~)-~(P~)+z is a 

fibered submanifold of g~+~: J~+~+~(E)i(p~)+~(P~)+z. According to Proposition 7.1 of [4], 

if P~ is formally integrable, then ~+~: (P~)+(,+~)-~(P~)+~ is an affine sub-bundle of 

x~+,: J~+t+~(E)I(p,)+,-->(P~)+~. We say that  P~ is integrable if, for all l~>0 and P ~ (P~)+,.,, 

there exists a solution / of P~ on a neighborhood of x such that  ~+z(/) (x) =p .  If  X is endowed 

with a structure of an analytic manifold and P~ is an analytic, formally integrable dif- 

ferential equation in J~(E) then, according to Theorem 9.1 of [4] or the appendix of [19], 

it is integrable. 

If P ~ Q e  and k>~l, then a solution of P~ is necessarily a local immersion X ~ X ;  

furthermore, if ]~(P~) =J~(P~) N Q(~.~), we have 

(P.~)+~ --,~i-~(J,(P~) N ;~z(Q~+z)), 

where ~z is the mapping Qa+l~Q(z.k). 

3. Jet bundles and fibrations 

Let Y be a differentiable manifold, whose tangent bundle we denote by T r, and let 

~: X-~ Y be a surjeetive submersion, V= T(X/Y) the integrable sub-bundle of T = Tx of 

vectors tangent to the fibers of ~. If  ~ =~. :  T-+ T r is the differential of ~, then 

0 , V -~T ~ , ~ - l T r - - - - - * 0  

is an exact sequence of vector bundles over X. Let E and F be fibered manifolds over X 

and Y respectively and g: E-~F a morphism of fibered manifolds over Q. We denote by 

~, :~x the sheaves of sections of F over Y and of @-iF over X respectively. We say that  a 

section s of E over U c  X is g-projectable if gs(a)=gs(b) for a, b 6 U whenever ~(a)=@(b). 

Then the section go of F over 0(U), which sends ye~(U) into gs(a) where ae U, ~(a) =y, is 

well-defined. We denote by E~ the sheaf of sections of E which are g-projectable and by 

Jk(E; g)cJk(E ) the set of k-jets of sections of ~r If  g: E--->F has constant rank, Jk(E; g) 

is a bundle and if, moreover, E, F are vector bundles and g is a morphism of vector bund- 

les, it is a vector bundle; the sheaf of solutions of Jk(E; g) is ~ .  If  Jk(F; Y) is the bundle 

of k-jets of sections of F over Y, we have a mapping 

g: Jk(E; g)--->Jk(F; Y). (3.1) 

We now assume that  E, F are vector bundles and that  g: E--->F is a morphism of 
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vector bundles. If K is the kernel of ~: E--+~-IF and if this mapping is surjective, then 

J~(K) is the kernel of the mapping (3.1). 

Let  F~+~(~) be the sub-bundle A~T*| A ~ T*) of A~++T * for ?'>~0; we set F~++(~)= 

F~+~(~) for j < 0 .  Then ~.~+~-~+~ F~+~(~) and F0~(~)= A~T *. We define, for j~>0, 

F~++(J~(E) ; cp) = (u ~ A '+~T* | J~(E; ~0) [ (id | of) u ~ F~+'(~) | :c J~(F; Y)} 

and, for ?" < 0, we set 

Then 

and 

F~+J(Jk(E); of) = A ~+JT * |  

F~o(J~(E) ; of) = A ~ T *  | J~ (E;  of), 

F~?~(J~(E); of) c F~+~(Jk(E); of), 

~I+%) | J~(E; ~) ~ ~+~(J~(E) ; ~). 

We suppose henceforth that  ~: E--+~-IF is surjective. Then the sequence 

0 , F~+~(~+J Jk(E); cp) ,F~+J(J~,(E);cp) q~ ~ AJV*|174 Y)) ,0  

of vector bundles is exact for ]~>0, where ~ sends uEF~+i(Jk(E); of) into the element ~u 

defined by the formula 

(~u) ( ~  A.. .  A ~S|  A...  A 4,) = ~(U(~l A...  A ~j A V~ A...  A ~,)) 

where ~1 ..... ~j E V, ~1 .. . .  , ~ ~ E T and ~z ~ ( ~  z) E T r for 1 ~< l ~<i. In  particular, we have the 

exact sequence 

O. A 'T* |  ) F~(J~,(E);q~) ~ 0 - 1 (  ' * . . . .  A T r |  Y)) ,0  
and 

F~(J~(E); of) = A 'T* | + e*( A ~T~)| el). 

We denote by ( Ai~*| ~))+ the sheaf of ~0-projectable sections of F~(Jk(E); T);! we 

then have the mapping 

cp: ( A' ff*| ~0))+ -+ A'ff*| Y). 

According to Proposition 3 of [6], 

and so, in particular, 

D(.F~+i(Jk(~)* ~ ~o)) c F ~ + J + l ( J k _ l ( ~ )  ; ~0), 

D(Jk(E; ~ ) )c  ~*|  ~). 

For ]c >~ 1, the sub-bundle Jk(E; (f) of Jk(E) is in fact a formally integrable equation whose 
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l-th prolongation is J~+z(E; ~) (see [6], Corollary 3). Furthermore, if 

dx/r: / \~* |  A~+~*| 

is the exterior derivative along the fibers of ~: X-~ Y, then the diagram 

1. 
D 

7~k_ 1 �9 dx] r 1. 
, AJ+~q*|174 Y))x 

commutes. In particular, we have the commutative diagram 

D 
/ \ i f f* |  ~) ' / \ t + l f f * |  ~ )  

I. 1. A~*| Y)x ~k-~'dx~y A~§174 Y)x- 

(3.2) 

The following lemma complements Proposition 4 of [6] and will not be used in this 

paper. 

LEMMA 3.1. Assume that cf: E-+Q-1t z is surjective and let uEJk(E; ~); then uEJk(E; cf)r 

i /and only i/ DuE (ff*| ~))~. 

Proof. By Proposition 4, (ii) of [6] we know that,  if uEJk(~; T)v, then DuE(•*| 

Jk-l(~; ~))~. We now prove the converse. We have the following commutative diagram: 

F~(Jk_~(E); ~0) q0 , T, |  y) 

Jl(Jk_l(E; ~0); ~0) , JI(J~_I(F; Y); Y) 

Jk(E;~) ' 4 ( F ;  Y) 

all of whose vertical arrows are injections. The mappings e, ~1 in the left column are re- 

spectively the restrictions of the mappings 

~: T*| qo) -+ Jl(Jk_l(E; qo)), ~1: J k ( E )  --> J l ( J k - l ( E ) )  �9 

We remark that  the commutativity of the upper square of the diagram follows from the 

fact that,  if s is a q0-projectable section of Jk_l(E) and / is the pull-back to X of a function 
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on Y, then / ,  s is also ~-projectable. Let u e Jk(E; ~) and suppose that  D u e  (if* | Jk-l(8; q~))r 

By the commutativity of the lower square of the diagram, u is ~0-projectable if and 

only if 21u is f-projectable. By Proposition 4, (i) of [6], we know that  ~k_luEJk_l(E; qJ)r 

and hence }l(~k_lu)EJl(Jk_l(~; ~))r Finally, we infer from formula (1.2) that  21u is ~- 

projectable if and only if eDu is if-projectable and the ~-projectability of eDu follows 

from the commutativity of the upper square of the diagram. 

LEMMA 3.2. Let x E X  with y=~(x). All linear maps 

D~: J~(7; Y)x.~ ~ T*| Y)~ 

satis/ying the/ollowing two conditions are equal: 

(i)/or s e :$~, 
D~(]~(s)o~) ~ o; 

(ii)/or/eO:~,~, ueJd:~;  Y)x.~, 

D~(/u) = (d/| 1 u) (x) +/(x) D~u. 

Proo/. Suppose that  Dx, D'~ are two such maps satisfying these conditions. Then for 

s E :~, we have by (i) 
t �9 (Dx - D,)()k(s) oe) = 0. 

By (ii), for leOx.x,  ueJ , (~ ;  Y)x. , ,  

(D~-  D'x) (/u) =/(x)  (D~ - D'~) u. 

Since Jk(:~; Y)x.x is generated as an Ox.x-module by the elements of the form jk(s)oe, 

with s E:~, these two relations imply that  D~-DE. =0. 

We now construct a generalization of the differential operator D of w 1. 

PROPOSITION 3.1. There exists a unique linear, ]irst-order di//erential operator 

D: J~(:~; Y)x-+ff*| Y)x (3.3) 

satis/ying one o/ the /ollowing equivalent conditions: 

(i) For all sections s o / F  over Y, 

D(s oe) = 0 (3.4) 
and 

D(fu) = d/ | u +/Du,  (3.5) 

/or/cOx, ueJ~(~; r)x. 
(ii) /1/~ = e - i F  and q~: E ~ - I F  is the identity map, the diagram 
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J~(E; ~) 

1. 
J~(~; r)~ 

D 
' if* |  (P) 

i d |  

D 
' g*  | Jk-l(:~; Y)x 
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(3.6) 

commutes. 

(iii) I[ u E Jk(:~; Y)x. z and u(x) = •(s) (~(x))/or s e :~0(z), 

(sDu) (x) = il(~k_lu)(x) -/l(]k_l(s)oq)(x). (3.7) 

(iv) I / T  is any section o/~: X ~ Y defined on a neighborhood o / y E  Y and x(y) =x, then 

/or all sections u o/Jk(:~; Y)x  over a neighborhood o / x  and ~ E Tx, 

(~, D u ) = ( 8 - v , e , 8 ,  dxlrZ~k_x u ) + (e ,8 ,  D(uov)), (3.8) 

as elements o/Jk_l(F; Y)v, where the operator 

D: Jk(:~; Y) -+ff*| Y) (3.9) 

on the right-hand side is the one defined in w 1. 

(v) 1 / v  is any section o/e: X ~ Y then, for all sections u o/J~(:~; Y)x, 

(~*| (Du) ov = D(uo~) (3.10) 

as sections o/ T* |  Y) over Y, where T*: T~(u)* -~ Ty.v,* /or yE Y, and the operator D on 

the right-hand side is the one defined in w 1, namely (3.9), and 

(Du) lv = z~k-V dx/rU. (3.11) 

Proo/. If  D is a linear operator (3.3) we define, for xEX ,  

Dx: Jk(~; Y)x.x ~ T*| Y)e(~) 

by setting Dxu = (Du)(x), for uEJk(:~; Y)x, ~; then D satisfies the conditions (i) if and only 

if the operator D z satisfies the conditions of Lemma 3.2 for all x E X. In  particular, this 

permits us to deduce from Lemma 3.2 the uniqueness of an operator D satisfying the 

conditions (i). We begin by proving the existence of an operator D satisfying (i). Let  

E =Q-1F and (p: E-->~-IF be the identity map; then 

q~: Jm(E; ~) -~ Q-~Jm(F; Y) 

is an isomorphism and sends ~m(SO~)(X) into ~m(S)(~(X)), where x E X  and s is a section of 

F over a neighborhood of ~(x). Therefore there exists a unique map (3.3) such that  the 

diagram (3.6) is commutative; it remains to verify tha~ this operator satisfies (i). If s is a 

section of F over Y, we have 

D(s oe) = (id| Dcf-~(s = (id| D:k(soq) = O, 
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and for /EOx,  uEJk(~; Y)x, by (1.4), 

D(/u) = (id| = (id| 

= (id| (d/Qgk_l~-~u + f D ( ~ o - i u ) )  = d/Qug_lu +/(id| D(cf-lu) = d]| +/Du, 

which gives us the existence of an operator D satisfying (i) and shows that  (i) and (ii) are 

equivalent. 

Let xEX, ~ a section of ~: X-~ Y defined on a neighborhood of y e  Y with ~(y) =x, 

and let 
D;, D~: Jk(7; Y)x,x -~ T*| Y)~ 

be the mappings defined by setting eD'x u equal to the right-hand side of (3.7) and <~, D~ u> 

equal to the right-hand side of (3.8), for uEJk(~; Y)x,x and ~E Tx, with u(x)=-~k(s)(y) and 

s E ~ .  We now show that  these mappings s~tisfy the conditions of Lemma 3.2, from which 

it follows by Lemma 3.2 that  (3.7) and (3.8) hold and that  assertions (i)-(iv) are equiv~- 

lent. If s E ~y, 
] . . . .  0 

E D x ( ~ k ( 8 ) o o )  = } l ( ~ k _ l } k ( 8 ) O ~ ) ( Z )  - - } 1 ( } k _ 1 ( 8 ) O ~ ) ( X )  = 0 

and, for $ E T~, 
<~, D:(ik(s)o~)> =<q,8, D(ik(s))> = O, 

since dx/r(jk(s)o~)----O and j~(s)o~oz=~(s). If  ]~0:q~, u ~Jz(~; Y)x.~ with u(x)=~(s)(y) 

where s E ~ ,  we have (/u)(x)-=/(x)~(s)(y) and 

~D" C/u) =- ]~(~-~/u) (x) -- ]l(](x) ]~_~(s) oe) (x) 

= tiff/-/(z))~_~u)(z) +/(~)fi(~_~u) (x) -1(~)fi(~_~(~)~ (~) 

-- ~(d/| + /(z)~)'~ u. 

On the other hand for ~ E T~, since (/u)oz =v*/.(uo:) and : - z , ~ , ~  ~ Vz, we have:by (1.4): 

= <$-~,~,~, dx~/| + <~-~.~,~, /dx~ ~_lu> 

+ <~,~, d~*/| + <~,$, z*/. D(uo~)> 

-= <~- ~,e,$, d/> ~_~ u(x) +/(x) <~-~,~,~, 4~ ~ ~_~ u> 

+ <e*~, z*d/>~_lu@(y)) + @*/)(y) <0,~, D(uoz)> 

-- <~, (d/ | u) (z)>- <~,~,~, d/>~_~u(~) 

+ /(x) <$-r .e .$ ,  dx,~_~u> + <z.O.$, d/>~_~ u(x) + /(z) <~.~, D(uo~)> 

Thus D~ and D~ satisfy the conditions of Lemma 3.2. 
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To complete the proof of the proposition, we now show that  (v) implies (iv) and then 

that  (i) implies (v). Let  z be a section of ~: X-~ Y defined on a neighborhood of y e  Y and 

x=~(y).  Assume that  D satisfies (v) and let }eTa;  then } - v . ~ , } E V ~  and, by (3.10) 

and (3,]1), if ueJ~(:~; Y)x,  

(~, Du}  = ( ~ - ~ . e * ~ ,  Du)  + (~ .~ .~ ,  Du}  

= ( ~ - v . e . ~ ,  ~_~dx~r u} + (e*~, (~* | 

and thus (iv) holds. Finally, to show that  (i) implies (v), we take u=]~(s)o~ in (3.10) and 

(3.11), where s is a section of F over Y; then both sides of each of these equations vanish 

by (3.4) and the facts that  D]~(s)=0, dx~r(]~(s)o~)=0. I f / ~ O x  and u ~J~(~; :Y)x then, by 

(1.4) and (3.5), 

(~* | ( D(~u) ) ox - D( (/u) o~) 

= (~* |174 + (/ox)(x* |174 D(uox) 

-- (Ion) [(r* | (Du) o T -  D(uo~)]. 

Similarly, if ~ E V, we have by (3.5), 

(~, D(/u) -- ~k_l d x/ y(/'et) ) : (~, d/ | u + / JDu - d  x/ r / | u -- /'Tek_l d x/r u )  

= ( ~ , / ( D u - ~ _ ~ d x l y  u)).  

Since Jk(9:; Y)x,x is generated as an Ox.x-module by the elements ]g(s)o~, where s Eg:q(z), 

for all x E X ,  we obtain the identities (3.10) and (3.11). 

We now define 

D: A'9"*| Y)x  ~ A~+lff*| Y)x  
by setting 

D(~|  = d~| u + ( - 1)~ A Du 

for ~E Aiff *, uEJk(:~; Y)x; this is a well-defined operator because of (3.5). The operator 

D: A ff*| Y ) x ~  A ff*| Y)x (3.12) 
satisfies 

D(~ h u) = d~ A ~k_lu + ( - 1)~ h Du, (3.13) 

for c~E A~ff *, u e  A 9"*| Y)x,  and 

(8 A ~], D u )  = 8 -A D(~], u )  -~7 -~ D($,  u )  - :~-1([~,  ~7], u ) ,  (3.14) 

for ~, ~? E ~', u E 7"  | Jk(~; Y)x.  Since D2= 0, as is easily seen, we obtain a complex 
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0 ~ ~-~:~ ]~ ' J~(:~; Y)x 
D D 

' if* |  Y)~ 

, Anff*| Y)  ' 0 

where the map ?k is induced from ]k: :~-~J~(:~; Y) by ~. This complex is not exact at 

A ~ ff*| Y) for i >i 0; however, the corresponding complex with k-- ~ is exact. 

If  E = ~ - I F  and ~: E--->~-IF is the identity mapping, it follows from (3.6), (1.4) and 

(3.13) tha t  the diagram 

D 

(3.15) 

is commutative, where the vertical arrows are isomorphisms, generalizing assertion (ii) 

of Proposition 3.1. 

Let  i: V--->T denote the natural inclusion. Combining diagrams (3.2) and (3.15), we 

obtain the commutative diagram 

D 
A ~9'* | Y)x- -  , A~+lff * |  Y)x 

(3.16) 

which generalizes relation (3.11). 

If  v is a section of 9: X-~ Y and yE Y, and if u is a section of A~ff*| Y)x over a 

neighborhood of x=~(y), let T*u be the section of A t T*| Y)  over a neighborhood 

of y defined by 
('~*u)(a) = (~*| for a e  Y, (3.17) 

where 7" on the right-hand side is the map 

t * 

Then, by (3.10), (3.13) and (1.4), we see that  

7:* Du = Dr*u, (3.18) 

where the operator D on the right-hand side is the one defined in w 1, namely (3.9). The 

relation (3.18) generalizes (3.10). 

We now give a construction of the operator (3.12) similar to the one given by Malt- 

range [19] for the Spencer operator D of w 1. Let  Ax. r be the subset X • r Y of X • Y. Let  
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prl: X • Y - + X  be the projection onto the first factor. We shall identify a sheaf on X 

(resp. on Ax. r) with its inverse image by  prl: Ax. r -~X (resp. with its direct image by  the 

inclusion Ax. ~ X  x Y). Let  y~+l be the sub-sheaf of Oy• r of functions which vanish to 

order k on the diagonal A r  of Y x Y. Let  ~+lz. r be the inverse image of this sheaf by Q • id: 

X • Y-+ Y • Y. I f  l r  is the trivial line bundle over Y, we see tha t  Ox• r/Y~c.+r ~ is the sheaf 

of sections of ~-lJ~(1 r; Y) over X. Furthermore 

Jk(~; Y)x = (Ox~ y/Y~.+~) | pr~lor pr~l~, (3.19) 

where pr~: X x Y-+ Y is the projection onto the second factor. Lilting differential forms 

on X to X x Y by pr~, we may  regard elements of 

A f t * @  [O / ~ k + l /  oX~ x x  Fl,J x . Y ]  

as germs of differential forms on X • Y modulo Y~+'x.y. The exterior differential operator on 

X x Y with respect to the first factor X gives by passage to the quotient a map 

D: Aff*|215 /'7~+,, rl-, x. r j ~ A~7* | ox(O x• r/Ykx, r). (3.20) 

Since D is pr~lOr-linear, by  applying the funetor 

| r pr~l:~ 

to (3.20) and using (3.19), we obtain an operator 

D: A ff*| Y)x-+ A ff* |  Y)x 

which is none other than  our operator (3.12), as it is easily seen tha t  it satisfies conditions 

(i) of Proposition 3.1 and (3.13). 

Finally, the operator (3.20), or more generally (3.12), is easily written in terms of 

local coordinates. For simplicity of notation, we shall consider only the case 

1"Ik+1_.~c']'$ 
D :  UXxyI . ,X .  r o |  ). 

We introduce on X the local coordinate (v, y), where v = (v I . . . . .  v ~) is the coordinate along 

the fiber of ~: X-+ y and y = (yl . . . . .  ym) is a local coordinate for Y. I f  u represents a germ 

of Ox• 1~+1 r/-,x. 3, we have in the usual multi-index notation, 

, (Y'-Y)~ ( ~ + a ]  u =  ~ a~(v,y) ~ \ m ~  .~x.r], 

where a = ( u  1 . . . . .  ~m), ( y ' _y )~=(y ' l  y l) , , . . .  (y,m ym)~,, a!=(~l!)(g~!)..-(am!), [ a [ =  

aa +. . .  + ~m, and (y, y') are respectively the coordinates along the first and second factors 
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of Y • Y. Then we have 

- -  , , . ]  X , Y ) ~  lal~<k_l [~=1 Or' 'y=l  \Oy,--aa+ltJ j ~. (mod 

where 1~ denotes the multi-index with 1 in the y-th position and 0 elsewhere. This for- 

mula should be compared with (3.8). 

4. A complex associated with Lie groups 

Let G be a bundle of Lie groups over Y; the multiplication map G • rG~G is a mor- 

phism of fibered manifolds over Y. Let  T(G/Y) denote the bundle of vectors tangent to 

the fibers of G-+ Y. If  q~G~, the mappings G~Gy sending h into 9.h and h'9 respectively 

induce isomorphisms T~(Gy)-~ Tgh(Gy), Th(Gy) ~ T~g(G~) sending ~ into g. ~ and ~. g respec- 

t ively for all h E Gy. Let  I be the section of G over Y sending y E Y into the identi ty element 

I(y) of the group Gv. The Lie algebra f of G is the vector bundle over Y whose fiber fly at  

yE Y is Tm,~(G/Y ) = Tz(~)(Gy ). I f  ~Ef~ and gEG~, then we write 

Ad g.~ = q.$.g-1. 

The bracket on ~ is a morphism of vector bundles over Y 

~ |  

which, when restricted to the fiber gy, is the usual bracket  defined in terms of left . invariant 

vector fields on Gy. The Maurer-Cartan form of G 

oj: T(G/Y)~fi 
is defined by  

<~, ~o> = 9-1.~, for ~ETg(G/Y); 

if yE Y and gEGy, its restriction to Tg(G/Y)=Tg(G~) is the left-invariant Maurer-Cartan 

form of the Lie group Gy with values in g~. 

We define a bracket  

(T*(X/Y)| ~)|174 ~) ~ AZT*(X/Y)| 9 (4.1) 
by  the formula 

[~| f o r ]  = (~ Afi)| v], 

for ~, fl E T*(X/Y), ~, ~] q f. Then the Maurer-Cartan form of G satisfies the equation 

de/to) + �89 o)] = 0, (4.2) 

where the bracket is given by  (4.1) with X replaced by G. 

For i/> 1, let A ~ * |  q denote the sheaf of sections of A t V*| g. We introduce the 

differential operator 
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DxiY: qx-*Y*| g, 

which sends CEOx into r174 If r is a section of ~x over UcX, then 

<~, Dx~yr = <r ~> = r162 (4.3) 

for all }EVa, ae U, where r  Tr and  r Tr Hence  

Ox/rr = 4"r = 0 if and  only if r  = 0 for  all ~e  V. (4.4) 

We have,  for r E Ox, 

dx/r(Dxn,r = ax/r(r = r162 = -- �89162 co] = -- �89162162 r 

by  (4.2), i.e., 

d ~ , ( D ~  r + �89 4, D ~  4] = 0. (4.5) 
Therefore  defining 

~1, xl1,:/q*| -* A219*| fi 
b y  the  formula  

we obta in  the  complex 

e -1 Dxj r /9"  Ol xlr 
I ' q ' g x  |  ' A2~0* |  g �9 (4.6) 

This complex is clearly exact  a t  ~ x  in view of (4.4). 

I f  uE A V*| where xEX and  Q(x) = y ,  and  gEG~, we define 

q(u) = ( id |  g)u. 

I f  r F are sections of ~ x  over  an  open set U c  X, we obta in  a section r of Ox over  U by  

set t ing 
( r  (a) = r a E U. 

Then  

~x / r ( r  "~P) = YJ-l(Ox/r r + O x / r ~ .  (4.7) 
Indeed,  if ~ EVa, a E U, 

(r : r162  

and  so, according to  (4.3), 

(~, Dx/y(r lp)) = (r ~. 1])(a) q- r  "~)r ~) 

= y)(a) -1 .  r  - 1 .  r  ~-~p(a) + ~f(a) -1  "V* ~ = ~p(a)-~((~,  Ox/ r  r  + (~, Oxzr ~P) 

which gives (4.7). Replacing yJ in (4.7) b y  r we obta in  

D~/Y r = _ r r 

I f  uE~*| CE~x ,  we define 

9t -- 762907 Acta malhematica 136. Imprim6 1r 13 Avril 1976 

(4.s) 

(4.9) 
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Then, if ~O~x, we have by (4.7) 

i.e.~ 

We have 

2r  = ~--l((~--l(q~)) _~_ DX/~(r  "~0) ----- ~)--1(r -~ OX/F r -'~ OX/F~I), 

u r = (ur ~. (4.10) 

:Dx.x/yU ~ = r for ue'O*@g, r  (4.11) 

To establish (4.11), we first make the following digression. 

Let r be a section of ~x  over a neighborhood U of a point aEX and let xt be a curve 

in U with Xo=a and ~(xt)=o(a)=y; set dxt/dt I t=o=~e V a. For simplicity, we write Ct= 
r then, for CE~, we have the formula 

~ A d  Ct" ~[t~o = Ad r ([(~, ~x/ r  r  ~]). (4.12) 

In fact, we have 

Ad Ct" ~ = r {(/)~-1 . (jbt " ~.. , ~ - 1  , (J~O} " ( ~ - 1  = Ad r Ad ( r  r ~' 
and hence 

d A d  Ct" ~[~=o = A d  r "ad (Jr r  "Ct[t~~ " ~ = A d  r ( [ d  r Ct]t=o, ~]) ,  

since the differential of Ad at the identity of the group Gu is equal to ad (see [16], p. 118). 

Since, by (4.3), 

d 1 
~ t r  (a) .  r = r  "Ib*~: = <~:, "D./r  r 

we obtain (4.12). 

Next, if ~ E Va and ~ is a section of ~--1~ and r is a section of ~x  over a neighborhood 

U of a, we have 

~" (Ad r r = Ad r (~. ~) + Ad r ([(~, Ox/rr  ~(a)]). (4.13) 

For let x t be a curve in U as above with dx~/dt I t=0=~, and write ~=~(xt),  Ct=r then 

d 
(Ad r ~t)It~o = Ad r (~. ~) + d t Ad Ct" ~(a)[t~o ~ . ( A d r  

and we obtain (4.13) by substitution from (4.12). 

We obtain, for uE~*| CEQx, 

d~/y r - r -- r  r  u]). 

In  fact, let ~, ~/E ~0; then 

(4.14) 
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= $" (7 '  r --7" ($, r -- <[$, ~], r -- ~kd r (~, U) --~" <$,:U) -- ([$, ~], U>) 

= $. (Ad r u))  -fl" (Ad r u)) - A d  r 02, u)) +Ad  r ($, u~), 

since Ad r ~/], u ) = ( [ $ ,  ~], r and the two terms of this form cancel. By (4.13), 

with r replaced by r and with ~ replaced by (V, u), (~, u) ,  we obtain 

<~ A n, dx/rr -r = Ad r ~x / r  r <~], u ) ] -  [<~], Px/Y r <~, u>]) 

= Ad r A ~, [Ox/rr -1, u])) 

and this is (4.14). 

We now prove (4.11). In  fact, for u E ~ * |  C e ~ x ,  we have, using (4.5), 

01. x / ~ u ~  = ~,  x / ~ ( r  + p x ~  r 

= d x / y  r ~ �89162 r ~- [ ~ x / Y  r  r 

= r 1 8 9  , u])~-r162162 u] ~-[Ox/y r -1, u]) 

by (4.14). Since r r  - O x / r r  -1 by (4.8), we obtain (4.11). 

PROPOSITION 4.1. The complex (4.6) is exact. Moreover, suppose that there is given a 

section v o/ V * |  over a neighborhood U o / a  point x o e X  satis/ying ~ l . x / rv=O,  a local 

section s: Y - + X  mapping ~(U) into U such that s(Q(Xo) ) =xo, and a local section Co: Y-+G 

de/ined on Q(U). Then there are a neighborhood U' c U o / x  o and a unique section r U ' ~ x  

satis/ying ~ x / r r  = v and r = r all y e~( U'). I/V(Xo) = 0 and r = I, then ?'1(r (Xo) = 

s (xo). 

Proo]. Consider the fibered manifold G x = X  xy  G over Y; let prl: Gx-+X, pr2: Gx-+G 

be the projections onto the first and second factors respectively, which are morphisms of 

fibered manifolds over Y. Let  v be a local section of V*|  9 over X; set 

o5 = pr~' co : T(Gx/Y)-+ 9, 

~=pr~v :  T(Gx/Y)-->~. 

Let r be a local section of Gx over X; if ~: X - + X  x r G is the graph of r which sends x E X  

into (x, r then prlo ~ =id,  pr~o~ =r  and hence 

v - r = ~*(pffv - p r ~  co) = ~*(~-  o5). (4.15) 

Therefore r162 =v if and only if ~*(~-o5) =0  where 

v-co: T(Gx/Y)-+ g. (4.16) 

Let  K be the kernel of prl . :  T(Gx /Y ) -+T(X /Y ) .  

10- 762907 Acta rnathematica 136. Imprim6 le 13 Avril 1976 
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L E M ~ i  4.1. Let v be a section of V*| over X.  Then ker ( ~ - ~ )  is a distribution on 

G x such that 
K |  ( ~ - ~ )  = T(Gx/Y); (4.17) 

i / ~ L x / r V  =0, it is integrable. 

Proof. If y is the image in Y of geG, then r T~(G/Y)~g~ is an isomorphism, so 

V-cS: T ~ ( G x ) - ~  is sur]ective and ~: K~-~g~ is an isomorphism, for all zEGx whose pro- 

jection in Y is y. Since ~l~=0, it follows that  ker (3-c5) is a sub-bundle of T(Gx/Y) of 

rank equal to d i m X - d i m  Y and K A ker (3-c5)=0.  By a dimension argument, we see 

that  (4.17) holds. Next, we have 

d~x/r~ + �89 ~] = 0 
and, if OLx/rv=O, we have also 

dax/r3 + �89 3] = 0, 

where the brackets a r e  g i v e n  by (4.1) with X replaced by Gx. Hence 

d ~ / ~ ( 3 - ~ )  = �89 ~ ] - [ ~ ,  3]) = - � 8 9  ~+~].  

Let~,  ~ be sections of ker (3-c5) over Gx. Then 

= - (,,~ A ~,  d ~ x / y ( 3 - ~ ) >  = � 8 9  (~), (~ +~)  (~)] - [(~-o~) (~), (3 +~)  (~)]) -- 0 .  

Hence [~, ~] is a section of ker (~-c~), i.e., ker ( ~ - ~ )  is an integrable distribution. 

Let  us return to the proof of Proposition 4.1, and let v, s, r be as described in the 

proposition. Since ker (~-c5) is an integrable distribution, Frobenius' theorem asserts 

that,  through each point of U x rG  lying over yEQ(U)c Y, there passes a leaf of the cor- 

responding foliation lying in Uy x G~. Because of (4.17), if U is replaced by a possibly smal- 

ler neighborhood U' which, for simplicity, we again denote by U, then there exists a 

morphism of fibered manifolds $: X ~ G  x over Y defined on U, which is a section of the 

fibered manifold pri: G x ~ X  and therefore the graph of a map r U~G,  such that  $(U~) 

is the leaf of the foliation containing the point (s(y), r for all y E Q(U). Then $*(~-c5) = 0 

and hence, by (4.15), r If r  then r ) and the equality ?'i(r 

ji(loQ) (x0) is equivalent to 

r  -- (Io~),~, lot  all ~E T~o. (4.18) 

We write Tz,= V~o@Hzo , where Hzo=s, Tr.q(~,). Suppose that  v(xo)=O. If  ~e Vz,, then 

r  by  (4.4), and ( I o o ) , ~ - ~ I , O , ~ = 0 .  If ~eH~,, then ~=s ,~ ,  with $=O,~eTr.~(~,), 

and 
r  = r  = I , $  = I , e , ~  = ( loe) ,$.  

Thus (4.18) holds under our assumptions on r and v(xo) and we obtain the desired equality. 
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5. Caftan fundamental forms 

As in w 2, we regard E = X  • X as a bundle over X via the projection pr  1. We begin 

by  recalling the definition of the fundamental  form on J~+I(E) given in [11], namely the 

mapping 
a: T(J~+I(E))-~ V(Jk(E)), 

which is a morphism of vector bundles over ~:Jk+l(E)-->Jk(E). I f  FEJk+I(E), 
~ Ty(Jk+I(E)), the form a is defined by  the formula 

<~, ~ = ~ , ~ -  F , ~ , ~ ,  (5.1) 

where F , :  T~:~T,kp(Jk(E)) and (~, (~)~V,kF(Jk(E)). I f  u ' i s  a section of Jk+l(E) over 

X, then u*g is the V(Jk(E))-valued 1-form on X defined by  

<~, u*(~) = <u, ~, a~, for ~ e T. 

Then, according to Propositions 1.1 and 1.2 of [11], a section u of J~+I(E) over U ~ X  
satisfies u*a =0 if and only if it is equal to ]~§ where s ~g0u.  

The Cartan fundamental  form on Qk+l with values in J~:(T) is the mapping 

co: T(Qk+O ~ Jk( T), 

which is a morphism of vector bundles over g: Q,~+~-~X defined by  

(~,  (.D} = ?J(~l F ) - i ( ~ ,  (T~ (5.2) 

for .FeQ~+I, ~e T~(Qk+O. In  fact, <~, co) belongs to Jk(T),~ if ~e T~(Q~+~), where a = g F .  I f  

F ~+~( ] ) ( a ) ,  where ] is a locul diffeomorphism of X defined on a neighborhood of a, the 

mapping 

( ~ F )  -~- F , :  T~ -~ Ta(~)(Q~) 

sends ~] into ]~(/)-1-]~(]),~] = I~.~]. Therefore, by  (5.1) and (5.2), 

The restriction 

of w to V(Qk+O is given by  

toy: V(Q~,+I) ~ Jk(T)  

(5.3) 

for F EQk+I, ~ E V~(Qz+O. The further restriction of to or of to v to the fiber Qk+l(a), the "bundle 

of frames of order k + 1 with source a",  is the fundamental  form of Cartan on the principal 

bundle Qk+l(a) with values in J~(T),~ (see [14]). 

(5.4) 
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I f  F is a section of Qk+l over X, then F*o) is the Jk(T)-valued 1-form on X defined by  

(~, F*eo) = ( F ,  ~, w), for ~ e T, 

which we shall also consider as a section of T* | over X. 

PROPOSIWION 5.1. The ]undamental /orm eo on Qk+l has the/oUowing properties: 

(i) I/SeJk+l(T)b, GeQ~+I, with target G=b, 

(~G, o~) = r  (5.5) 

(if) 1/ F is a section o/Qk+l over U c  X,  then iF*co=0 i] and only i/ -F=]k+l(/), where 

/: U ~ X is an immersion. I / F  is a section o/0~+1, then 

O F  = F*w. (5.6) 

(iii) Jr/F is a section o/Ok+l over U c X,  then 

(iF" $" q ,  OJ) -- ($" q ,  (O) = G--1((:7~0 ~) ~ OFF), (5.7) 

]or ~ E Jk+l(T)~, G E Qk+l with target G = b E U;/urthermore 

/or all ~ E Ta(Q,+I), G eQk+l with targets lying in U, Q and only i] iF =}k+l(]), where ]: U ~ X  

is an immersion. 

Remark. Let a EX and ~ be the restriction of r or of o) v to Qk+x(a). Some of the asser- 

tions of Proposition 5.1 are related to properties of ~ given in [14]. Namely, the equi- 

variance of ~ corresponds to (5.5). Furthermore,  if h is a diffeomorphism of Qk+x(a), then 

the operator h ~ - > h * ~ - ~  is connected to ~ by  formula (5.7) and the conditions of [14] for 

the vanishing of h * ~ -  F2 are analogous to the second par t  of (iii). 

Proo/ o/ Proposition 5.1. (i) We have SG e Vv(Qk+I) and 

according to (2.6). 

(if) We have iF*co = 0 if and only if iF*a = O. From the properties of a, it follows tha t  

the lat ter  condition is equivalent to F=]k+l(/), where / :  U--*X is an immersion, because 

~1 o iF is a section of Q1. I f  iF is a section of (~k+l over U and a E U, then 2x iF(a) -1" ]'x(x~ F) (a) E 

Q0 , and we have by  (5.3}, for ~e T~, 

v-x(iF,~, ~o) = ((2~iF(a))-~xe~, iF, - I ~ , ) ~  

= (2~ iF(a)-1, i~ (~  iF) (a) ,  - h(1~) (a) ,)  

= ((~ iF(a) :1 .h(g~ iF)(a)), --?'1(I~)(a),) ~ 

= ~ 7~ ~(21 iF(a) -1. ]1(~ iF) (a)) = v-~(~ ~ DF)  
according to (227). 
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(iii) B y  (i), (5.3) a n d  (2.6), we have 

( F .  ~" G, co) - (~." G, co) = r(21(F(b). G)-I~k.(F �9 ~. G) - G-l(r:~k ~)) 

= ~(21G -1"41 F(b)-i "~k F . ~  ~ .:g~ G - G-l(wk $)) 

= G-I(~(~ 1 ~ ( b ) - l . ~  F . ~  $ - ~  ~)) = G-~((~o $) ~ ~ F )  

according to (2.28). If  (5.8) holds for all ~E Va(Qk+l), then by (5.7), 

G-I(~ ~ ~ F )  = 0, for all ~7 E Tb, b = target G, 

and (~F) (b)=0;  hence if (5.8) holds for all ~E Va(Qk+l), GEQk+I whose targets lie in U, 

then ~ F = O  and F=jk+l(/),  where / is a section of Aut (X) over U. Conversely, i f / :  U->X 

is an immersion, ~ E TG(Q~+I) and G eQk+l with target lying in U, then by  (5.3) 

(/~+:(])~, co) = ~(21(]k+:(])(b)'G)-:j~,(j)ze~.~--Ik, rt.jk+:(])'~) 

= V((~ 1G)-1~1(~k+l( / )  (b))-~],(/)gk. -- I~ .~ , )  

= ~,((;~ G ) - ~ i ~ ( f ) - ~ i k ( f ) ~ . -  I ~ . : ~ . ) ~  = (~,  co). 

If ~ is a vertical vector field on Q~+I which is the infinitesimal generator of a one-para- 

meter family of diffeomorphisms qb~ of Q~+I defined on an open set W~Q~+~ and satisfying 

~o(I)~=~, (I) o =id, we define the Lie derivative s of co along ~, which is a section of 
T*(Q~+~)| over W, by the formula 

d 

for $ e Ta(Q~+x), G 5 W. We set 

for u eJ~(O')o~+~. Then, if .~ is a vector field on Q~+x, the usual type of formula holds, namely 

<~, /~(~)co) = }" <~', co) -- <[}, ~], co). (5.9) 

Now let $ be ~ vector  field on an open set U ~ X  and write $~+1=~+1(]~+~($)), t ha t  is 

$~+~(G) = ~+~(~) (b) G e V~(Q~+~), 

for G~Q~+~ with target G = b ~  U. From Proposition 5.1, (i), we see that  

(~+I(G), co) = G-I(]~(~ .) (b)). (5.10) 

If  $ is the infinitesimal generator of a one-parameter family of diffeomorphisms/~ of X de- 

fined on U'~  U, with /0=id ,  then by Proposition 5.1, (iii), 

- d d 
(~, c~5§ co} = ~ (s  �9 ~, co}L0 = ~ (~, ~}[,=0 = 0, 
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for ~ E Ta(Qk+l), with target GE U'; hence 

t:(~+i)o) =0.  (5.11) 
Next, we define brackets 

(T*(Q~+,) | Q~+IJk(T))| (T*(Qk+,) | J~(T)) ~ A2T*(Q~+1) | Q~+, Jk-,(T), 

( V*(Qk+I) | | (V*(Qk+I) | J~(T)) -~ A s V*(Q~r ) |247 J~_I(T), 

by the formula 
[a@~, fl |  = (~ Afl)| v], 

for a, fl ~ T*(Qk+1) or V*(Qk+I), 2, V EJk(T). Regarding O) as a section of T*(Q~+I)| ) 

and O)v as a section of V*(Q~+I)| ) over Qk+l, we thus obtain sections [o), O)] of 

A2T*(Qk+I) | and [COy, O)v] of A2V*(Qk+I) | over Q~+I satisfying 

[o), O)]l^'v(o~+l> = [o)v, O)v]- 

Taking X=Qk+~, Y = X ,  F = T  and ~=~:Q~+x~X in w we obtain a section Do) of 

A~T*(Q~+~) | satisfying 

(Do))l ̂ ,v(~+p = z~_~. d~+~/xo)v (5.12) 

by the commutativity of diagram (3.16). 

1 ) g o r o s I ~ o N  5.2. The /undamental /orm O) on Qe+I regarded as a section el 

T*(Qe+~) | xJ~( T) over Q~+x satis]ies the Cartan structure equation 

Do) -�89 O)] = 0. (5.13) 

The /orm O)), regarded as a section el V*( Q~ + ~) | ~ + ~ J~( T) over Qz + ~ satis/ies the Caftan struc- 

ture equation 

(5.14) :~_~ , d~+~l~o)~,-  ~[o)v, O)v] = O. 

Remark. Formul~ (5.14) is given in [14]. 

Proo[ of Proposition 5.2. We show first tha t  Do)-�89 O)] vanishes on A~V(Q~+I); the 

proof is similar to that  of the formula (5.14) given in [14]. Let  ~, ~ be vector fields on an 

open set U :  X, and let ~k§ =T~-t-l(~4-1(~)), ~k-F1 =Tk4-1(~k4-1(~))" Then 

[~+1, ~+~] =~+~([i~+1(~), ~+~(~)])= ~+1(7~+~([~, #])) = [~, ~]~+~- (~.15) 

We have by (5.12), (5.9) and (5.11), 



ON THE NON-LINEAR COHOMOLOOY OF I~IE ]~QUATION$. I 153 

(g~+~ A ~+1,  Do)> = (~+1 ~ ~+~, ~-~" d,~++~o~,> 

= u~-i($~+l" (~+1,  ~> - ~ + ~ "  (~+~, o~> - ([$~+~, ~ + d ,  ~o>) 

= ye~-i(([$~+l, ~ + d ,  ~o>-  ([~+1,  ~+1], o,> -([$~+~, ~+~], o~)) = ye~_i<[$~+~, #~+l], ~o>. 

I t  follows from (5.10) and (5.15) that, for GEQ~+ 1 with target G=b E U, 

(~k+l A ~?]k-I-1, �89 (D]>(~) = <~k+l A ~k-t-1, �89 ~OF]>(G ) 

= [<~+1, co>, (~+~, co>] = [G-~(s (b)), G-i(s (b))] -- yek G-~([s (b), s (b)]) 

= ye~_~([~+~, ~+~], ~> (~). 

Therefore 

Since V(Qk+l) is generated by vector fields of the form ~+l, this proves that  Do)-�89 oJ] 

vanishes on A~V(Qk+i). 

Next, let ~ be a section of ~k+i: Qk+2-+Q~+i defined on an open subset W of Qk+i and 

let ~ be a vector field on yeW; we define a vector field ~ on W by the formula 

~(o) =~:(G),~(~), ~ W .  

Then ~,~(G)=~(~G) and, by (5.1), 

<~, ~> ( o )  = ~ , ~ ( ~ ) , ~ ( ~ )  - ~ , y e , ~  = o , ~ ( y e ~ ) - ~ , ~ , ~  = 0 ,  

SO 
<~, ~> = 0 .  ( 5 . i 7 )  

Assume that  the mapping "target": Q~+I--->X sends W into U. Then by (5.9), (5.17) and 

(5.11), 
<[~k+l, ~], O)} = --<~, ~(~k+l)~O} = 0. (5.18) 

We have by (3.14) 

(~+~ A ~, Do)> =~+~ Z D(~, w> - ~  -d 9<~x+~, co> -ye~_~([~+l, $], co> (5.19) 

where the first and last terms on the right-hand side vanish in view of (5.17) and (5.18) 

respectively. Now let G E W and let ~ be a local diffeomorphism of X defined on a neigh- 

borhood of a eX such that  ~(G)=Jk+2(g)(a); by (3.8) we have 

C(G) ~ D<~k+l, co> = (C(G)-i~+I(g).:c.C(G), ye~_l'dQ~+flz<~k+i, o>> 

+ <7~,$(G), D(<~k+l, r 

The first term on the right-hand side of this equation vanishes since 
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We now examine the second term; we have by  (5.10) 

(<~+1, o> os = s  -~" (s = s 

where 4' is the  vector  field on X given by  

~'(x) = g,~(g-l(x)). 
I-Ience 

D((~k+~, o>oj~+~(g)) = njk(~') = 0 
and it follows t ha t  

7, D<~.+.  o> = 0; 
therefore,  by  (5.19), 

<~+~ A ~, Do> = 0 .  

:By (5.17), 

<~+~ A ~, �89 o]> = [<~+.  o>, <~, o>] -- 0, 
and so 

<~+x A ~, D o  - �89 o]> = 0. (5.20) 

Finally, let ~' be another  vector  field on ~ W  and $' the  vector  field on W given by  

$'(G)='~(G),~'(~G), GeW.  

Let  G E W and assume tha t  v(G)=]k+~(g)(a); then  

<~ A ~', Do> (G) = <s ~(a) A s ~'(a), Do> 

= <s A ~'), Do> (G) = <~ A ~', s (a) 

= <~ A ~', D(i~+~(g)*o)> (a) = 0 

by  (3.18) and Froposit ion 5.1, (ii). B y  (5.17) 

<~ A ~', �89 o]> = [o(~), o(~')] = 0 
and so 

<~ A ~', D o - � 8 9  o]> = 0. (5.21) 

Since T(Q~:+I) is generated by  vector  fields of the type  ~k+l and $, we deduce (5.13) from 

(5.16), (5.20) and (5.21). Formula  (5.14) is a consequence of (5.12). 

F rom (5.13) we derive the ident i ty  

~ I D F  = D~.F-�89 ~F]  = 0 ,  for Fe(~k+l 

(see w 2). Indeed,  if F is a section of (~k+l, then  by  Proposit ion 5.1, (ii), and (3.18) 

DO_F - �89 D F ]  = D F * o -  �89 ~v*o] = F ' D o  - �89 o]  

= F*(Do - �89 o])  = 0. 
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The form (Dr on Qk+l is the natural  generalization of the iKaurer-Cartan form on a 

Lie group. In  fact, let 

Q~ = ( F e Qk+l I~o F = Io(a ), a = rcF). 

The fiber Q~ ) of Q~ over a E X  is equal to Qk+l(a, a). Thus Q~ is a bundle of Lie 

groups over X and J~ is identified with the Lie algebra Vz,+l(a)(Q~ when we 

identify j~+l(T)a with Vi~+l(a)(Qk+l ). The bracket 

o 0 9 Jk+l(T) | Jk+~(T) ~ Jk+~(T), (5.22) 

which is obtained from the bracket  on Jk+l(J), gives a structure of Lie algebra on the vec- 

tor bundle J~ ) over X. I f  tEJ~k+l(T)a, the vector field vk+l($) on Q~ whose value 

at  F EQ~ is $. F, is a right-invariant vector field on this Lie group. Since the mapping 

Tk+~from F(X, Jk+l(T)) to the Lie algebra of vector fields on Q~+I is a morphism of Lie 

algebras, we can identify the Lie algebra J~ with the Lie algebra of right-invariant 

vector fields on Q~ ). Therefore the natural  identification 

V 0 J~ Ik+l(a)(Qk+l) (5.23) 

is an anti-isomorphism of Lie algebras. Using this identification, we regard the Maurer- 

Cartan form of Q~ of w 4 as a mapping 

(DO : 0 ..+ 0 . V(Qk+I) Jk+l(T), 
equation (4.2) becomes 

dQ~+I/x(DO _ �89 (Do] = 0, (5.24) 

where the bracket is given by  (4.1) with X=Q~ Y = X  and g=J~ ) considered as a 

Lie algebra with the bracket  (5.22). The restriction of (Dr to Q~ is equal to the composi- 

tion of the Maurer-Cartan form o) ~ of Q~ and the projection gk of J~ ) onto J~ 

6. Jets ot projectable vector fields and ~ransformations 

Consider the mapping ~: T ~ - I T r ,  whose kernel is V; taking E = T, F =  Tr,  ~ = ~  

in (3.1), we obtain a projection 

Q: Jk(T; e) ~ J~(Tr; Y). 

We note that ,  for k~>l, the sheaf of solutions of Jk(T; ~) is ffQ, the sheaf of sections of T 

which are ~-projectable, and tha t  7~0: Jk(T; ~)~Jo(T) is surjective. We have the exact 

s e q u e n c e s  

11 - 7 6 2 9 0 7  Acta mathematica 136. Impr i ra~ lc 13 Avr i l  1976 
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0 

0 
We set 

and thus obtain a projection 

We have (see [10]) 

, J~(V) , J~(T; ~) ~ ,~-~J~(Tr; Y) 

' Jk(~) ' gk(~; ~)q ~ ' ~-lgk(ffI'; Y) 

J~(T; e) = v-~J~( T; e), J~( V) = v-~J~( V), 

~: J~(T; ~) -->]~(Tr; Y). 

[J~+~(ff; e), J~(Y)]~ J~(Y), 

and conversely if $ e J~+l(ff) satisfies [$, J~(]9)] ~ J~(]q), then ~ ~J~+~(ff; e)- 

;0, (6.1) 

,0. (6.2) 

(6.3) 

L~M~A 6.1. Let Rk ~J~(T)  be a [ormally integrable di[/erential equation, with k >~l. 

Assume that R I = n l  R k is a vector bundle and Rk ~ (R1)+(k_l). Let Bk c J~( T), B~+l C J~+I( T ) 

be diHerential equations with B~+I ~ (B~)+~. I /no:  B~+v+ Jo( V) is sur]ective, go(B~)~ Jo(V) 

and [R~+~, B~+~]~ J~( V), then R~ c J~( T; ~). 

Remark. If R 1 = n  I R k is a vector bundle and Rk is integrable, then Rk~ (R1)+(~-1). 

Proo I o/Lemma 6.1. Let ~ E~k+l, ~/E]~k+l; then if ~= =~-1~, by (1.15), 

i : ($)n~ = [~, ~] + (no ~) ~ D~ eJk(~ 0) § Bk. 

Hence since R 1 is a vector bundle and no(Bk)c Jo(~O), we have 

I:(~r 1 ~) nov e Jo(~) 

and [~1, Jo(~q)] c Jo(~), where/~1 = ~ - 1 R 1 ,  which implies that  R 1 c JI(T; Q). As Rkc (R1)+ck_l), 

we have Rkc (JI(T; e))+(k-1) or RkcJ~(T;  e). 

The following bracket relations hold: 

[Jk(T; e), J~(T; e) ]c  Jk_l(T; e), 

[]k(ff; e), Jk(9"; e ) ]c  Jk(9"; e), (6.4) 

[2k+1(~7; e), Jk(ff; e)]~ Jk(9'; e)" 

If ~, V eJ~(T; e), then 
e[~, ~] = [e~, e~/], (6.5) 

which implies that  
[Jk(T; e), Jk(V)] ~ Jk-l(V). (6.6) 

If ~, ~ eJk(ff; e)~, then [$, ~] eJ~(~; e)~ and 

e[~, ~] = [e$, e~]" (6.7) 
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Moreover, if ~' =~r then [~, ~'] eJ~_x(~; @)5 and 

el8,  v'] = [e~, ev'].  (6.8) 

Let ueF[i+J'(Jk(T); e), veF[i+J'(Jk(T); e); then it can be verified, by use of (6.6), that  

In  particular, we have for ueF~(J~,(T); q), veF~(Ja(T); e), 

[u, v]r " O) and 0[u, v ] : [ qu ,  0v], (6.9) 

where Q is the mapping 

e: F$(Jm(T); @) -~ A ~ T~ | Jm(Tr; Y), 

with p=i  or ?" and re=k, or p=i+] and r e = k - l ,  and where the brackets are given by 

(1.19). From (6.9) it follows that  if ue(A*~Y*| vr174 then 

[u, v] e( A*+Jff*| @))e and 

O[u, v] = [@u, @v]. (6.10) 

We have the bracket 

( A'V*@xJk(Tr; Y))| AJV*| Y))~  A'+JV*| Y) (6.11) 

defined by the formula 

for a E A  ~V*, flEA ~V*, 
by (6.5) 

~, ~eJk(Tr;  Y). If ue A~:T*QJk(T; e), ve AJT*| O), then 

e[u, v] = [eu, ev], (6.12) 

where ~ is the mapping 

Q: A T*| @) ~ A V*| Y), 

with m ~ k  or k - l ,  

Writing Jo(Tr)=J0(Ty; Y) and 

( A~J0(ff)*O]k(ff; e))e= (~,-10~-1) ( A~'*| jk(~; @))e, 

we have the mapping 

@: ( A'J0(ff)*| e))e -§ A'J0(ffr)*| Y). 

If u6(  A'Jo(ff)*| e))e, rE( AJJo(ff)*eJk(ff; e))e, then [u, v]6( A'+JJo(ff)*| ~))e 

and 
e[u, v] = [eu, ev]. (6.13) 
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Let Qk(e) be the bundle of invertible jets of order k of e-projectable mappings X-->X 

(i.e., which induce mappings Y ~  Y). The automorphisms of X which are solutions of 

Qk(e), k>~l, regarded as a differential equation in J~(E), where E = X  • X is viewed as a 

bundle over X via prl, are the e-projectable automorphisms of X. Let 

e: Q~(e) -~ Qk(Y) (6.14) 

be the natural projection of Qk(e) onto the bundle Q~(Y) of invertible jets of order k of 

mappings Y-~ Y; it is a homomorphism of groupoids over e: X-~ Y. The sub-bundle 

Qk(V) of Qk(~) of jets, whose image by e in Qk(Y) is equal to the jet of order k of the identity 

mapping Y-~ Y, is a sub-groupoid of Qk(e). 

Let Qk(e) be the sub-sheaf of Q~(e) of invertible elements and let (~k(e)Q be its sub- 

sheaf of e-projectable sections. The mapping e: Qk(e)q-+Qk(Y) gives by restriction a map- 

ping 
e: (~k(e)q -~Qk(Y). 

We denote by Q(t.k)(e) the bundle of /-jets of sections of (~(e)Q; it is a sub-groupoid of 

Q(z.k). Let Q(~.~)(Y) be the bundle of /-jets of sections of Qk(Y). The mapping e: 

Jz(Q~(e); e)~Jz(Qk(Y); Y) induces a mapping 

e: Q.,~)(e) -~ Q(z,~)(Y); 

it is a homomorphism of groupoids since (6.14) is, and the diagram 

Q(z.~)(e) ~0 , Q~(e) 

Q(l.k)(Y) ~ o  Qk(r) 

commutes. 

phism of groupoids and the diagram 

is commutative. 

The inclusion 2z: Q~+z(e)-~Qtz.k)(e) induced by 2z: Qe+z~Q(t.~ is a homomor- 

Q,+z(e) ~ Qcz.k)(e) 

Qk+z(Y) ' Q(I.I,)(Y) 

(6.15) 

For a E X, it is easily seen that  Jk(T; e)a is identified with V1,(aj(Qk(e)) when we iden- 

t ify gk(T)a with V1,ta~(Qk ) and that  the diagram 
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Yk(T;ee), - , V~,(,) ioQi(e)) 
l ~ (6.16) 

Yk(T~; Y)~,> Ti~..,<~(a)) (Qk(Y)/Y) 

is commutative, where Ir.~(y) is the k-jet of the identity of Y at yE Y. Since Qk(~) 

is a groupoid it follows that, for EEQk(9) with target E = b  and ~EJk(T;~)0, we have 

~FE Vp(Qk(9)); furthermore, if G is a section of (~k(9) over a neighborhood of bEX, for 

E TF(Q~(t)) the mapping ~ ~->G~ induces isomorphisms 

In particular, taking F = I~(b), we obtain the isomorphism 

J~(T; q)b--* V,(b)(Q~(9)), 

which depends only on H=]I(G)(b ) and sends ~ into H,~=G.~; hence we have a cor- 

responding mapping 

Q(1.~)(e) • xJk(T; q) -+ V(Q~(~)) 

(H, ~) ~+H~. (6.17) 

From these considerations and (2.5), we conclude that  the mapping (2.2) induced by G 

restricts to give a mapping 

G: J~(~; ~)~-, 2~(T; e)~, 

where c=targe t  G(b), which in turn determines a mapping 

QcL~)(e) • x 3~(T; e) -* 2k(T; e) 

(H, ~)~+//(~). (6.1S) 

From (2.4) we deduce next that  if F EQk(~), a =source F,  b =target  E, then the mapping 

(2.1) restricts to give a mapping 

i f :  J k - l ( T ;  ~)a --~ J k - l ( T ;  Q)b. 

Since the mapping (6.14) is a homomorphism of groupoids we see, by  the commuta- 

t ivity of (6.16), that  the diagram 
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Jk(T; ~)b F , V~CQ~,(~)) 

Jk(Tr; Y)o(b) r ' T~(Q~(Y)/Y) 

(6.19) 

is commutative, where r =~FEQk(Y), with target r =Q(b), and F, r operate on the right. 

Since (6.14) is a homomorphism of groupoids, if (7 is a e-projectable section of (~(~) over 

a neighborhood of b and y~ =QG is the corresponding image section of (~k(Y) over a neigh- 

borhood of o(b), the diagram 

(7 
TF(Qk(e)) ' Ta(b).F(Q~(e)) 

(6.20) 

is commutative, where (7, yJ operate on the left. From the commutativity of (6.20) and 

(6.16), it follows that  the diagram 

G 
JdT; e)b , V~o)(Qdq)) 

Jk(Ty; Y)~(b) T,~(o(~) (O~(Y)/Y) 

is also commutative, where G, ~p operate on the right, as is the corresponding diagram 

Q(l.k) (q) • q) 

l ~xQ 

Q(Lk)( Y) • Y) 

, V(Q~(q)) 

, T(Od r l / r l  

(6.22) 

whose top horizontal arrow is (6.17). From the commutativity of (6.19) and (6.22), it fol- 

lows by  (2.5) that the diagram 

Q(1.~)(Y) • Y) "2k(Tr; Y), 

(6.23) 
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whose horizontal arrows are induced by  the mapping (2.2), is commutative. From (6.23), 

we deduce that  (~(~)r operates on ]~(ff; ~)r and J~(~), and that  the diagram 

d~(r) • r)-----~2~(ffr; r) 

(6.24) 

is commutative. From the commutativity of (6.15) and (6.23), we see by (2.4) that  the 

~ a ~ a m  

Q~+~(e) x~J~(T; e) , J~(T; e) 

Q~+~(Y) x rJ~(Tr;  Y) ' J~(Tr; Y) 

(6.25) 

is commutative, where the horizontal arrows are induced by the mapping (2.1). 

Let  
Q~+~(e) = {F e Qk+l(~) Izk F = I~(a), if a = source F) ,  

and 
g~(T; e) = (uES~Jo(T) * | 77 $uESk-lJo(T) * | for all ~ EJ0(V)). 

One verifies easily that  

is an isomorphism for k >~ 1. 
: Q~+I(Q) -* gk+l(T;  Q) 

PRO]~OSITIO~ 6.1. Let a, bEX and FEQ~+I(a , b). 

(i) F belongs to Q~+I(~) i/and only i/F(J~(V)a)=Jk(V)b. 

(ii) F belongs to Q~+I(V) il and only il Q(a)=~(b) and ~F=~ as mappings 

Jk(T; e)~-~J~(Tr; Y)q(~). 

Proo/. (i) If FEQ~+I(~), then the commutativity of (6.25) implies that  F(Jk(V)a)= 
Jk(V)~- Conversely, we prove that  this last assertion implies that  • belongs to Q~+l(e) by 

induction on k. First, let k = 0  and F=~l(])(a),  where I is a local diffeomorphism of X de- 

fined on a neighborhood of a; then F E QI(~) if and only if (~ o 1). ~ = 0 for all ~ e Va. By (2.4), 

this last statement is equivalent to ~F(~)=O or F(~)EJ0(V)~ for all ~EJo(V)a. Now as- 

sume that  k >~ 1 and that  our assertion is valid for k - 1 .  Then gk F EQk(~) by  our induction 

hypothesis. There exists F1EQ~+I(Q} such that  ~ F I = x ~ F .  Then G=F~ 1. F EQ~+I(a) and 

by (2.19) 
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( x d )  ~ $~a = a($) - ~ e J , ( V ) a  

for all ~EJ~(V)~. Hence OGEgk+I(T; Q) and GEQ~+I(Q). Therefore F=F1.GEQk+I(~ ). 

(ii) If  FEQk+I(V), then QF=Ir.k+i(Q(a)) and so ~(a)=~(b) and we have the equality 

of the mappings QF and Q by the commutativity of (6.25). Conversely if ~(a)=~(b) and 

~ F = ~  as mappings Jk(T; Q)~-~Jk(Ty; Y)e(~), then FEQk+I(O ) according to (i). Hence if 

=~F~Qe+I (y), then by the commutativity of (6.25), r acts on Je(Ty; Y)o(~) as the iden- 

t i ty  map. By Proposition 2.3, (ii), r and I~Q~+~(V). 

We now give criteria in order that  an element HEQ(~.e) belong to Q(t.e~(O), and we 

examine the structure of Qm~)(Q). However, before doing so, we require the following de- 

finitions. For a, b ~ X, let 

~: T* | Je(T; 0)~-~ Va* | Je(Tr; Y)o,~) (6.26) 

be the mapping sending u ~ T* | ~)0 into the element ~u defined by 

(eu)(~) =e(u(~)), for ~ V a. 

Denote by F~(T*| ~)a) the kernel of (6.26) and let 

@ ~ �9 

~: Fi(T*a| Q)~)->Tr.q(a)| Y)e(~) (6.27) 

be the mapping defined by setting 

(eu) (4) = q(u(n)) 

for ~ E Ta, ~ =~(~]) E Tr.o(a). From (6.26), we obtain a similar mapping 

e: T* | e)b-~ V* | Y)o(~) 

generalizing the map defined earlier in the case a = b. 

PROPOSITION 6.2. Let H EQ(1.k) with x~oH= F EQ k, source F=a, target F=b. 

(i) H EJI(Qk(e)) i/and only i/ FEQk(Q) and H(Jk(T; e)a)=gk(T; Q)~. 

(ii) H belongs to Q(1.~)(~) i/and only i/FEQk(~) and 

H(2k(T; Q)a) -- 2k(T; e)o, H(Jk(V)a)  : 2k(W)b" 

(iii) I/HEQ(1.k)(Q ) and Jl(xeo)H=jl(/)(a), where / is a local di//eomorphism o / X  de- 

[ined on a neighborhood o/ a, and uET*| , then H +uF belongs to Q:I.~)(~) i/ and 

only i/: 
(a) /+sou :  Ta ~ T b is invertible; 

(b) uEFI(T*aQJ~(T; ~)b)" 

I/H+uFEQn.~)(~) , then 
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~(H + uF) = QH + (Qu).QF (6.28) 

as elements o/Q(1.k)(Y), where ~u E * - �9 T~,.~(a)| Y)Q(b) iS de]ined by (6.27). 

Proo]. (i) If  HEJI(Qk(~)), then we write H=jl(G)(a  ) for some section G of (~(~) over 

a neighborhood of a, and for ~EJk(T; e)a we know that  H(~)=G(~) belongs to 2~(T; ~)b- 

Conversely if F~Q~(~), let G O be a section of (~k(~) over a neighborhood of a such that  

Go(a) = F. Then there exists u E T* | such that  H =jl(Go)(a)+ uF. Assume now that  

H(2~(T; ~)~)=Jk(T; ~)b. If ~EJk(T; e)a, then by (2.15) 

(~o~) ~ u = H(~) -/1(~o)(a)(~) ~2~(T; ~)~. 

Since ~o:Jk(T;e)-~T is surjeetive, we deduce that  uET*|  b and u F E T * |  

VF(Qk(~)). As Jl(Qk(Q)) is an affine sub-bundle of JI(Qk)[Q~(q), it follows that  ?'1(Go)(a)+uF 

belongs to J~(Q~(~)) or that  H eJ~(Qk(e)). 
(ii) If H=~I(G)(a), where G is a section of Q~(~) over a neighborhood of a, then 

HEQ(L~(Q) if and only if (~oG),~0=0 for all ~oE Va. Let  G O be a section of Q~(~)~ over a 

neighborhood of a such that  Co(a) = F. Since J~(Q~(~)) is an ~ffine bundle over Q~(~), there 

exists u E T* | T; e)~ such that  H=]~(Go) (a) § uF,  where u F  ~ V~(Q~(e) ), and 

for ~ J ~ ( T ) a  , by (2.15). Therefore, for ~EJ~( V)a, by the eommut~tivity of (6.19), 

(co G),(~0~) =e,Go,(~o~) +e,((G(~) - G0(~)) F)  = (eOGo),(~o~) +e(G(~) -Go(~))oeF. 

Since G o is a section of (~(~)e, the first term on the right-hand side vanishes, while ~G0(~ ) =0  

by the commutativity of (6.24). Hence, we obtain 

(~oG),(~0~) = ~(G(~))'eF. 

Therefore (~ o G), ~o = 0 for all ~0 ~ Va if and only if ~(G(~)) = 0 for all ~ ~ 2~( V)a, i.e., H (J~(V)a) = 

J~(V)~. We conclude that  HeQ(,,~)(e) if and only if H(J~(V)~)=J~(V)o; from (i), we now 

deduce (ii). 

(iii) The first part  of (iii) follows directly from Proposition 2.2, (i), (2.15) ~nd (ii), 

since ~o: J~(T; e)-+T is surjective. If  H+uFEQ(Lu)(~), by the commutativity of (6.23) 

and (2.15) 

(~(H + uF))  (V) = e((H + u~)  (~)) = e(H(~) + (~o~) ~ u) 

= (e~)(~) + (z0~) ~ eu = (eH+eu'eF)(~) 

for all ~]EJ~(T~; Y)e(a~ and ~ J ~ ( T ;  ~)a with ~(~)=~. Hence by Proposition 2.2, (iii), we 

deduce (6.28). 
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From the map (6.17) and (5.2), we see tha t  the restriction to Q~+~(~) of the Cartan 

fundamental form co on Q~§ is a map 

co: T(Q~+~(~)) ~ J~( T; ~); 

from Proposition 5.1, (ii), it follows that  if F e0~+~(~), then ~Feff*| ~). Further- 

more, if eo r is the Cartan fundamental form on Q~+~(Y), the diagram 

(6.29) 

commutes. Indeed, if ~ 6 T,(Qk+~(Q)) , E 6Q~+l(q), 

e<~. ~> = ~e(A1 F) -1" (=~,~ - F . ~ , ~ )  = v(A(qF)) -1. e .(uk.  ~ -  F , ~ ,  ~) 

-- ~(~I(qF)) -1" ( ~ , 0 , ~ - ( e F ) . ~ . ~ )  = <q.~. coy> 

by the commutativity of (6.22) and (6.15). 

Definition 6.1. Let (~( Y)x be the sub-sheaf of Qk(Y)x whose sections are local map- 

pings ~: X~Qk(Y) such tha t  sourceor and such that  the composition /= targe tor  

X-~ Y is a submersion. 

If Q~(Y) is the sub-bundle of Qk(Y) composed of the elements F such that  ~oF= 

Ir.o(Y), with y =source F, then (2o( Y)x is the sub-sheaf of Ok(Y)x whose sections r satisfy 

targetor =0. 

The injection O,(Y)~O~( Y)x sending r into r e induces an injection 

d~(r) -~0~(r)~. (6.30) 

Indeed, if ~ is a local section of (~(Y) over Y, then targetor is a submersion. We have 

the mapping 

sending F into @F, where OF=9oF, since targetoQF=Qo~0F is a submersion. 

Next, let Ce(~k(Y)x and let [ be a germ of a diffeomorphism X--~X satisfying e o ] =  

targetor such an f exists by  the implicit-function theorem. We define r  I eOk(Y)x by 

the formula 
r =r xEX. (6.32) 

We have 
target o r = ~ o [-1, 
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r162 = J~y,k(~(/(Z))), r162 = Ir.~(p(X)), 

for xEX. Finally, if Fe{~(~), then ~--1 =r where 1=~0/~ and r =pF. 

We now define 

~X/I: Qk+i( Y)X --~ ~$ | Y)x, (6.33) 
sending r into 

Dx/r r = (r 

If r is a section of (~k+l( Y)x over U c  X, then r  e Tr for ~ EVa, a E U and 

<~, ~ /~r  = <r ~r>. 
By (5.3), we have the formula 

(~, ~x/r  r = ~(2~r -1" (~r  (6.34) 

for ~fi Va, aE U, where (:~r and 

21r 2k(Tr; Y)Q(~) -~ T~,k~,(a)(Qk(Y)/Y) 

is the left-action of Q(1.k)(Y) (~(a)) on ~k(Tr; Y)~(a); therefore 

r(21r -1. (z~r e J~(T~; Y)~(o). 

We also have the mapping 

Ox/y: CI~ Y)x'->'~*|176 Y)x (6.35) 

defined in w 4 in terms of the Maurer-Cartan form of the bundle of Lie groups QO(y) over 

Y, identifying J~ Y) with the Lie algebra of QO(y) by the maps (5.23) (with X replaced 

by Y and k + l  by k). The restriction of (6.33) to Q~ is equal to the composition of 

(6.35) (with k §  replacing k) and the projection i d |  of ~*|176 Y)x onto ~*| 

J~ Y)x- 

L~.~Mi 6.2. For Ce(~k+l(Y)z, we have Ox/rr =0 i] and only q ~kCe{~k(Y). 

Proo I. If q~ is a section of (~k+l(Y)z over U ~ X ,  then by (6.34), ~x/yr  =0 if and only 

if ( ~ r  for all ~e Va, aeU. 
We define 

D1,X/Y: ~0*| Y)x ~ Az~*| Y)x 
by the formula 

Ol.x/rv =z~-l"dx/rv-�89 v], ve~*| Y)x, (6.36) 

where the bracket is given by (6.11); from the definition of ~x/r  and the Cartan structure 
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equation (5.14), we obtain 

O~,~/,.Ox/yr = 0, for Cet~+~(r)~. 

Since (5.23) is an anti-isomorphism of Lie algebras, the restriction of ~Lx/r  to ~q*| 
0 Jk(ffr; Y)x is equal to the composition of the operator 

Z)l.x/r: ~* ~ jo1r . k~,~r, Y)x "--> A2~0*|176 Y)z 

of w 4, if we identify J~ Y) with the Lie algebra of Q~ by (5.23), and the projection 

id| A ~  * ~ J ~  " ~  ~ r ,  Y)x-~ ~ , ~ j o ~  ~-~ar,'~" Y)z. 

Let (~+~( Y)~x be the sub-sheaf of (~k+l( Y)x composed of the elements r satisfying n ~  e {~,(Y). 

Then we have the complex 

O~+l(Y)x d~+l(Y)x Z)x'r~9*| :Y)x ~Lx/r A~Z0,| Y)x (6.37) 

which, by Lemma 6.2, is exact at (~g+~(Y)x. We also have the following complex, which 

is obtained from (4.6) by replacing G by Q~(Y) and the Lie algebra g by J~ Y), 

Oo(y) ,Clo(y)x Oxly ~),~jo,cr . Y)z  ~ 

and which is exact by Proposition 4.1. 

PROrOSITION 6.3. The diagram 

dk+l(0) ~ ' ff*| O) O~ 

" , ~ *  |  Y ) x  Qk+l(Y)x O~/~ 
commutes. 

Ol'X/:f" ; A~q*|176 Y)x (6.38) 

9 (6.39) 

Ol.XJ~ A~,GJk_liffy; Y)x 

Proof. If F is a section of (~k+1(9) over a neighborhood of aEX, then for ~E Va, 

<~, e ( ~ F ) )  = q<~, O F )  = q<~, F*o,) = e<F,~, ~)  = <r o~y) = <~, Ox/Yr 

by (5.6) and the commutativity of (6.29). The commutativity of the right-hand square of 

(6.39) follows from the commutativity of (3.2) and from (6.12). 

Lv.~MA 6.3. Let r be a section of (~k+l( Y)x over U c  X; then 

(r r e V*| Y)t~,etr 

for aE U, and r162 depends only on ~r~r 
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Proof. According to (2.6), we have for a E U, ~ fi J~(Tr; Y)~ar~tr 

r (v(~zr -1.~/.;v~r = ~ .  

Taking in this formula ~/= (z,r162 -~, where ~ e Va, we obtain 

{~, (r r  = r  y(Zl(~(a)) -1.  ( ~ ( ~ ) , ~  = ~((~Tkr ~ "~l~kr 

~f ~ec~+l(e), r =eFec~+~(y)~, /=~oF and u~ff*| Q), then 

Q(uF) = r +Ox/ r  r (6.40) 

This formula follows immediately from Proposition 6.3. 

L ~ z M x  6.4. Let FE(~+I(~), r  and let uEff*| ~). Then r F) depends 

only on 7ok F. 

This lemma is an immediate consequence of (6.40), (6.32) and Lcmma 6.3. 

Let / be a germ of a diffeomorphism of X. Then / is ~-projectable, that  is, is the germ 

of a e-projectable di/feomorphism, if and only if / preserves V. 

L~MMX 6.5. Let FEQ~+I(Q), r /-~o F and let u~*|  ~). I / / i s  ~-project- 

able, then Q(u)=0 i /and only i/Q(u ~) =TDx;rr 

Proo/. By (6.40), we have since ] preserves V 

~(U F) = ef - ioe(U ) O/"~-~X/Y r (6.41) 

Now ~(u)=0 if and only if r  which is equivalent therefore to ~(u ~) =~xlrr 

If ue(T*| ^ A F~(Jk(T); e), it is easily seen that  ~ue(T~| Y))^. Set 

(ff*| e))~ = (ff*| e))q r l  (ff*| ^. 

(ffY| Y))^. Therefore if u e (9'* | Q))~, then ~u belongs to * 

PROPOSITIOZ~ 6.4. (i) ;Let FEQk+i(~); then FE(~k+I(~)Q i] and only i/ 

~ F  e (7* | e))q. 

(ii) Let ul, u~E(ff*| ~))~ and FEQk+I(Q). I / u~=u  F, then FEQ~+I(e) .. 

(iii) We have 
O~: (ff*| e))~ -~ ( A~ff* | Jk-l(ff; Q))~, 

and the diagram 

(6.42) 
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commutes. 

(~§ - ~  , (if* | e))~ 

(~+l (y)  _ 0 ; f fI |  Y) 

~ ~ ( A~ff * |  ~))~ 
/ 

(6.43) 

(iv) I /  u E (~r* | ~))Q, F E (~k+l(Q)~, then u p E (if* | ~))Q and 

e(u F) = (eu)~F. 

Proo/. We first prove that,  if F E (~k+l(~)q, then O F  E (if*| Jk(~r; ~))q. Take F 1 E (~+2(ff) 

with ~k+l-F1 = F. Then, since QF E(~k+I(Y), by Proposition 6.3 and Lemma 6.2 

Q ( ~ F 1 )  = ~ x / r ( e F i )  = 0,  

so OF1E Fl(Jk+l(~); ~). We have 

1 0 = DI(OFi) -~ D(~Fi)  - ~[DF l, OFi], 

where [DF1, OFlJEF~(J~(~'); ~) by (6.9); hence D(OF1)EE~(Jk(ff); e). From Proposition 

4, (i) of [6], it  follows that  ~FE(3"*| e))q" 

We next  prove (if). Let  F be a section of ~k+l(Q) over an open set U ~ X  and/=zc0F;  

let ul, u2 be sections of Y* J A ( | k(ff; e))e over ](U) and U respectively. If  u~ =u~, then 

U 2 = O ~  + F - - I ( U l )  = F--l(~)) - -  ~) + ~- -1 (Ul )  

by (2.25). Hence, since 9(~0ue)=0 and Q(g0v)=0 as sections of V*| xJo(Tr), we have 

0 = ~(z0(F-l(v) - v + F-i(ul)) = ~((zl F) -1~ (~ +~0 ul) o/) = (zl~F)-le((v § 

by the commutativity of (6.25). Therefore the composition 

is zero for all aE U. The mapping ~ +~0ui: T~(~)~Jo(T)~(a) is invertible by hypothesis and 

maps Vf(~) into Jo(V)~r since ~(~0Ul)=0, and so we conclude t h a t / ( V a ) =  Vr(~), tha t  is, 

] preserves V. ~ow let us consider the corresponding germs of our sections; if _F E Q~+x(Q), 

ui, u~E(ff*| ~))~ satisfy u~=u~, then we have shown t h a t / = x r o F  is e-projectable. 

By Lemma 6.5, it follows that  Ox/~(qF) = 0. From Lemma 6.2, we deduce that  ~ F E (~(ff)e. 

By Lemma 2.1, we have 

~1 F = (~'l(7~:kF) -~ (~2--1oUlO/)~7~k F )  �9 (~'l(Ik) § ?,'--lou2)--1. 

To show that  _~(2~+t(~)q, it suffices by this formula and the eommutati@ty of (6.15) to 
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show t h a t  the  two elements  ]l(~k F)  -~(v-loulo/)Y~k/~ and  ~I(Ik)-~-V--Iou2 Of Q(1,k) belong 

to Q(1.k)(Q)q. First ,  t hey  belong to Q(1.k)(Q) according to the  criterion of Proposi t ion 6,2, 

(iii), since ~(u l )=0 ,  / preserves V and ~(u2)=0. F r o m  (6.28) we conclude t h a t  the  former  

belongs to  Q(1.k)(~)q since ~kFE(~k(~)q and  u lE(f f* |  ~))~, and  the  la t ter  belongs to  

Q(Lk)(O)e since u~ E (if* | Jk(~; ~))~. Hence  F ~ (~k+l(~)~" 

I f  F~(~+~(~)  and  if O F = 0  ~ belongs to (ff*|  ~))0, (ii) implies t h a t  F belongs to 

(~+~(~)~, complet ing the  proof  of (i). 

We  now ver i fy  (iii). First,  (6.42) and  the  c o m m u t a t i v i t y  of the  r igh t -hand  square of 

(6.43) are consequences of Proposi t ion 4, (ii) of [6] and (6.10). As for the  lef t -hand square 

of (6.43), let _~ be a ~-projectable section of (~+~(~) over  an  open set U ~  X and r = ~ F  be 

the  corresponding image section of (~+~(Y) over  ~ U ~  Y. Then  for ~ ~ T~, a ~ U, b y  (5.6) 

and  the  c o m m u t a t i v i t y  of (6.29) 

(e~, e (OF)}  = e(~, O F }  = e(~, F*~}  = e(F,~, ~} = ( e ,  r , ~ ,  o)~} 

i.e., e ( 0 F ) = ~ 0 r  

(iv) is an  immedia te  consequence of (i) and  (iii). 
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