ON THE NON-LINEAR COHOMOLOGY OF LIE EQUATIONS. I

BY

HUBERT GOLDSCHMIDT and DONALD SPENCER
Institute for Advanced Study and Princeton University, Princeton, N.J., U.S.A. (${ }^{1}$)

Due to the length of this paper, it is being published in two parts.
Part II will appear at the beginning of the next issue of this journal.

Table of contents

Introduction 103
Chapter I. Differential equations, fibrations and Cartan forms 110

1. Linear differential equations and vector fields 110
2. Jets of transformations 121
3. Jet bundles and fibrations 135
4. A complex associated with Lie groups 144
5. Cartan fundamental forms 149
6. Jets of projectable vector fields and transformations 155
Chapter II. Non-linear cohomology 171
7. Lie equations and their non-linear cohomology 171
8. Vanishing of the non-linear cohomology of a multifoliate Lie equation 187
9. Non-linear cohomology sequences for projectable Lie equations 191
10. Non-linear cohomology of transitive Lie algebras 201
11. Abelian Lie equations and their cohomology 207
12. Prolongations of Lie equations 223
13. The integrability problem 233

Introduction

The infinitesimal transformations of a Lie pseudogroup, acting on a manifold X, are solutions of a linear partial differential equation R_{k} which is a Lie equation in the tangent bundle T of X; the space $R_{\infty, x}$ of formal solutions of R_{k} at a point $x \in X$ is a topological Lie algebra and, if the pseudogroup is transitive, it is a transitive Lie algebra in the sense of Guillemin-Sternberg [13].
${ }^{(1)}$ This work was supported in part by National Science Foundation Grants MPS 72-05055 A 02 and MPS 72-04357.

Using the theory of Lie equations elaborated by Malgrange, Kumpera and the secondnamed author (see [22], [19] and [18]) and the results of Guillemin and Sternberg on transitive Lie algebras (see [13] and [12]), the first-named author initiated, in preceding papers [8], [9] and [10], a program (announced in [7]) of investigating the relationship between Lie equations and transitive Lie algebras in order to show in what way certain properties of a formally transitive and formally integrable analytic Lie equation R_{k} depend only on the transitive Lie algebra $R_{\infty, x}$ of formal solutions of R_{k} at $x \in X$ and to what extent the classical theory of finite-dimensional Lie groups and their Lie algebras can be generalized to Lie equations and transitive Lie algebras. In [10] it was shown, in particular, that the graded Lie algebra $H^{*}\left(R_{k}\right)_{x}=\oplus{ }_{j \geqslant 0} H^{j}\left(R_{k}\right)_{x}$ of linear Spencer ${ }^{(}{ }^{1}$ cohomology at $x \in X$ of an analytic Lie equation depends, up to an isomorphism, only on the topological Lie algebra $R_{\infty, x}$. On identifying two graded Lie algebras of cohomology which are isomorphic, there is associated to every transitive Lie algebra L a graded Lie algebra $H^{*}(L)=\oplus \rho_{\geqslant 0} H^{j}(L)$ of linear Spencer cohomology with the following properties:
(i) the graded Lie algebra $H^{*}(L)$ depends only on the isomorphism class of L as a topological Lie algebra;
(ii) a graded Lie algebra $H^{*}(L, I)=\oplus_{j \geqslant 0} H^{j}(L, I)$ of linear Spencer cohomology can be defined for a closed ideal I of L such that $H^{*}(L, L)=H^{*}(L)$ and it depends only on the isomorphism class of (L, I) as a pair of topological Lie algebras;
(iii) to each exact sequence

where I is an ideal of L and $\phi: L \rightarrow L^{\prime \prime}$ is a continuous homomorphism of transitive Lie algebras, there corresponds an exact sequence of linear cohomology

$$
\ldots \longrightarrow H^{j}(L, I) \longrightarrow H^{j}(L) \xrightarrow{H^{\prime}(\phi)} H^{j}\left(L^{\prime \prime}\right) \xrightarrow{\partial^{*}} H^{j+1}(L, I) \longrightarrow \ldots
$$

One of the purposes of the present paper is to extend these results to the non-linear Spencer cohomology $\tilde{H}^{1}\left(R_{k}\right)$ of a formally integrable Lie equation R_{k}. In general, the notion of a structure associated to a Lie equation can be defined as well as the notions of equivalence and integrability of such structures. Then $\tilde{H}^{1}\left(R_{k}\right)_{x}$ is the set of equivalence classes of germs at $x \in X$ of formally integrable R_{k}-structures; it is a set with distinguished element 0 and we say that it vanishes if it is equal to 0 . We write $\widetilde{H}^{1}\left(R_{k}\right)=0$ if $\tilde{H}^{1}\left(R_{k}\right)_{x}=0$ for all $x \in X$. The vanishing of $\tilde{H}^{1}\left(R_{k}\right)$ expresses that the integrability problem for R_{k} -

[^0]structure is solvable, namely that an R_{k}-structure which satisfies the requisite compatibility conditions is in fact an integrable R_{k}-structure. We now list most of the known results about the integrability problem and the Spencer cohomology of Lie equations.
(I) If R_{k} is of finite type, that is if there is an integer $l_{0} \geqslant 0$ such that R_{k+l} is isomorphic to $R_{k+l_{0}}$ for all $l \geqslant l_{0}$, where R_{t+l} is the l-th prolongation of the equation R_{k}, then $H^{j}\left(R_{k}\right)=0$ for $j>0$ and the integrability problem for R_{k} is solved. This is a consequence of Frobenius' theorem.
(II) If R_{k} is analytic with respect to a real-analytic structure on X, then, in the category of analytic manifolds and mappings, we have $H^{j}\left(R_{k}\right)=0$ for $j>0$ and $\tilde{H}^{1}\left(R_{k}\right)=0$. This result is a consequence of the Cartan-Kähler theorem.
(III) If $R_{t c}$ is elliptic and is either analytic with respect to a real-analytic structure on X or formally transitive, then $H^{j}\left(R_{k}\right)=0$ for $j>0$ and $\tilde{H}^{1}\left(R_{k}\right)=0$. The vanishing of $\tilde{H}^{1}\left(R_{k}\right)$ for equations R_{k} which are elliptic and analytic was proved by Malgrange [19], generalizing an earlier theorem of Newlander-Nirenberg which asserts the solvability of the integrability problem for complex-analytic structure. In [9] it is shown that Malgrange's result implies that a formally transitive, elliptic Lie equation is analytic with respect to a real-analytic structure on X.
(IV) The integrability problem for flat Lie pseudogroups has been studied and, in a context different from the present one, partial results have recently been obtained by ButtinMolino [2] and Pollack [20]. For example, let $\mathfrak{g} \subset \mathfrak{g l}(n, \mathbf{R})$ be a Lie subalgebra. If (x^{1}, \ldots, x^{n}) are the standard coordinates on \mathbf{R}^{n} and $\xi=\sum_{j=1}^{n} \xi^{j} \partial \partial x^{j}$ is a vector field on an open subset U of \mathbf{R}^{n}, the differential equation $\left(\partial \xi^{j}(x) / \partial x^{k}\right) \in \mathfrak{g}$ for all $x \in U$ is a flat Lie equation $R_{1}(\mathfrak{g})$ of order 1 .
(V) Guillemin and Sternberg [15] have given an example, based on H. Lewy's counterexample to the local solvability of partial differential equations, which shows that the integrability problem is not always solvable.

We say that two non-linear cohomologies are isomorphic if they are connected by a bijective mapping sending 0 into 0 , and we shall identify two cohomologies if there is an isomorphism of cohomology between them. In the case of a formally transitive and formally integrable analytic Lie equation R_{k} on a connected manifold X, the cohomology $\tilde{H}^{1}\left(R_{k}\right)_{x}$ is then independent of the point $x \in X$ and we show that its vanishing depends only on the transitive Lie algebra $R_{\infty, x}$. We associate to every transitive Lie algebra L a nonlinear cohomology $\tilde{H}^{1}(L)$ with the following properties:
(i) The cohomology $\widetilde{H}^{1}(L)$ depends only on the isomorphism class of L as a topological Lie algebra.
(ii) A non-linear cohomology $\tilde{H}^{1}(L, I)$ can be defined for a closed ideal I of L such that $\tilde{H}^{1}(L, L)=\tilde{H}^{1}(L)$ and it depends only on the isomorphism class of (L, I) as a pair of topological Lie algebras.
(iii) Let $\phi: L \rightarrow L^{\prime \prime}$ be an epimorphism of transitive Lie algebras and $I \subset L, I^{\prime \prime} \subset L^{\prime \prime}$ be closed ideals of L and $L^{\prime \prime}$ such that $\phi(I)=I^{\prime \prime}$; let I^{\prime} be the closed ideal of L which is the kernel of ϕ : $I \rightarrow I^{\prime \prime}$. If $\tilde{H}^{1}\left(L, I^{\prime}\right)=0$ and $\widetilde{H}^{1}\left(L^{\prime \prime}, I^{\prime \prime}\right)=0$, then $\tilde{H}^{1}(L, I)=0$; if $\phi: I \rightarrow I^{\prime \prime}$ is an isomorphism, we have an isomorphism of cohomology

$$
\tilde{H}^{1}(L, I) \rightarrow \tilde{H}^{1}\left(L^{\prime \prime}, I^{\prime \prime}\right)
$$

In particular, if J is the kernel of ϕ and $\tilde{H}^{1}(L, J)=0, \widetilde{H}^{1}\left(L^{\prime \prime}\right)=0$, then $\tilde{H}^{1}(L)=0$.
(iv) Let R_{q}^{*} be a formally transitive and formally integrable Lie equation on a manifold Y and let $y \in Y$. If the transitive Lie algebras L and $R_{\infty, y}^{*}$ are isomorphic, then we have a bijective mapping

$$
\tilde{H}^{1}(L) \rightarrow \tilde{H}^{1}\left(R_{q}^{*}\right)_{y} .
$$

This last property together with the third fundamental theorem (Theorem 7.1) reduces the computation of the non-linear Spencer cohomology of formally transitive Lie equations to the case of analytic equations.

The systematic study of transitive Lie algebras, a program which was initiated by Guillemin and Sternberg in their paper [13], resulted in the fundamental paper [12] of Guillemin in which a Jordan-Hölder decomposition is constructed for a closed ideal of a transitive Lie algebra. This decomposition is an outgrowth of a program outlined by Guillemin in the introduction of [12] which is motivated by the integrability problem. Our results (see § 10) reduce the integrability problem to the vanishing of the non-linear cohomology of the quotients of successive ideals in Jordan-Hölder decompositions. In particular, consider the following three conjectures:
I. Let L be a transitive Lie algebra and I a non-abelian minimal closed ideal of L. Then $H^{j}(L, I)=0$ for $j>0$ and $\tilde{H}^{1}(L, I)=0$.
II. Let L be a transitive Lie algebra and I a closed ideal of L. Let

$$
I=I_{0} \supset I_{1} \supset \ldots \supset I_{k}=0
$$

be a Jordan-Hölder sequence for (L, I), that is, a nested sequence of closed ideals of L such that, for each j, where $0 \leqslant j \leqslant k-1$, either I_{j} / I_{j+1} is abelian or there are no closed ideals of L properly contained between I_{j} and I_{j+1}. If for each j for which I_{j} / I_{j+1} is abelian, where $0 \leqslant j \leqslant k-1$, we have $H^{1}\left(L / I_{j+1}, I_{j} / I_{j+1}\right)=0$, then $H^{1}(L, I)=0$ and $\widetilde{H}^{1}(L, I)=0$.
III. Let L be a transitive Lie algebra and I a closed ideal of L. If there exist a fundamental subalgebra L^{0} of L, closed subalgebras A, B of L such that A is abelian and

$$
\begin{gathered}
L=L^{0}+A+B \\
{[A, B]=0,[B, I]=0,}
\end{gathered}
$$

then $H^{j}(L, I)=0$ for $j>0$ and $\tilde{H}^{1}(L, I)=0$.
We prove (Theorems 13.1 and 13.2) that I implies II and III and we outline a proof of I which is based on Guillemin's structure theorem for a non-abelian minimal closed ideal of a transitive Lie algebra (Theorem 2 of [12]), on the classification of infinite-dimensional simple real transitive Lie algebras, the Newlander-Nirenberg theorem, and on theorems of [10] and § 10 of this paper. Conjecture II implies that the solvability of the integrability problem for formally transitive and formally integrable Lie equations is reduced to the local solvability of overdetermined systems of linear partial differential equations. We have the following consequence of III (see § 13):

Assume that X is connected. Let $R_{k} \subset J_{k}(T)$ be a formally transitive and formally integrable Lie equation and $N_{k} \subset R_{k}$ a formally integrable Lie equation such that $N_{\infty, a}$ is a closed ideal of $R_{\infty, a}$ for all $a \in X$. Let $x \in X$; if there is a fundamental subalgebra L^{0} of $R_{\infty, x}$ and an abelian subalgebra A of $R_{\infty, x}$ such that

$$
R_{\infty, x}=L^{0} \oplus A
$$

then

$$
H^{j}\left(N_{k}\right)_{a}=0, H^{j}\left(R_{k}\right)_{a}=0, \widetilde{H}^{1}\left(N_{k}\right)_{a}=0, \widetilde{H}^{1}\left(R_{k}\right)_{a}=0
$$

for $j>0$ and all $a \in X$.
In particular, III implies that the integrability problem is solved for all Lie pseudogroups acting on \mathbf{R}^{n} which contain the translations, a fortiori for all flat pseudogroups.

We now give a brief summary of the contents of this paper. In § 1 we recall certain facts from the formal theory of linear partial differential equations, the constructions of the "naive" linear Spencer operator D, of various brackets and Lie algebras arising from the study of jets of vector fields; we also give the fundamental formulas relating the operator D to these objects. The corresponding non-linear theory is described in $\S 2$, namely the operations of jet bundles of diffeomorphisms on jets of vector fields, the nonlinear Spencer complexes, the fundamental formulas involving the "naive" Spencer operators \mathcal{D} and \bar{D} and the facts from the formal theory of non-linear differential equations which are used in Chapter II. Although much of $\S 1$ and $\S 2$ is a reorganization of known material, mainly from [19] and [18], with the purpose of fixing notation and terminology which we use throughout the paper, new results required in the sequel are also proved. In particular, in § 2 we examine the relationship between the structure of affine bundle and the structure of groupoid which certain jet bundles of diffeomorphisms possess, using the
methods developed in [4] and expressing the relationship in terms of the operations of these bundles on jets of vector fields. We usually do not prove facts whose proofs are readily found in [19] or [18]. In § 3 we begin by recalling results of [6] concerning fibrations and the naive operator D which we complement by Lemma 3.1. The remainder of the section is devoted to the construction and properties of a generalization of the naive operator D (see Proposition 3.1) which is required in $\S 5$ in order to define the structure equation of an extension of the classical Cartan fundamental form. In the next section, §4, a nonlinear complex for a bundle of Lie groups is defined in terms of the Maurer-Cartan form and the exactness of the complex, a consequence of Frobenius' theorem, is used at a crucial point in the proof of the basic Theorem 9.1. In the following section, § 5 , the extended Cartan fundamental form mentioned above is defined on the bundle of $(k+1)$-jets of diffeomorphisms $X \rightarrow X$ and takes its values in the bundle of k-jets of vector fields; it is related to the form on this jet bundle described in [11] and its restriction to the bundle of $(k+1)$-jets with fixed source (bundle of frames of order $k+1$) is the classical fundamental form of Cartan. The structure equation for the classical fundamental form follows directly from the Cartan structure equation for the extended form. The naive non-linear operator \mathcal{D} has a natural definition in terms of the extended Cartan form. Finally, the connection between the theory of Lie equations of Spencer and Malgrange and the work of Guillemin and Sternberg [14] is clarified. In § 6, the last section of Chapter I, using the extended Cartan form, we show how a surjective submersion ϱ of X onto another differentiable manifold Y induces a projection of the non-linear \mathcal{D}-complex, restricted to sheaves of jets of ϱ-projectable sections, onto another complex which is a non-linear analogue of the complex occurring in [6], whose linear operators are the exterior differential along the fibers of ϱ followed by a projection. The latter non-linear complex is related to the complex of § 4. The essential purpose of this section is to construct a finite form of the linear theory developed in [6]; its results are crucial in proving the main theorems of § 9 .

In Chapter I we have considered arbitrary vector fields and diffeomorphisms; in Chapter II we consider vector fields and diffeomorphisms which satisfy respectively linear and (in general) non-linear partial differential equations, namely so-called Lie equations. In § 7 we begin by defining a linear Lie equation R_{k} (of order k) for vector fields (infinitesimal form) and a corresponding non-linear Lie equation P_{k} (finite form). Next, under the assumption that the prolonged equations $R_{\kappa+l}$ are vector bundles for $l \geqslant 0$, the two nonlinear Spencer cohomologies of P_{k} or R_{k} are defined in terms of the naive complexes corresponding to the operators \mathcal{D} and $\overline{\mathcal{D}}$ and are shown to be isomorphic; hence they are identified and denoted by $\tilde{H}^{1}\left(R_{k}\right)$, where $\tilde{H}^{1}\left(R_{k}\right)=\bigcup_{x \in X} \tilde{H}^{1}\left(R_{k}\right)_{x}$. If R_{k} is formally integrable, $\tilde{H}^{1}\left(R_{k}\right)$ is also isomorphic to the cohomology defined in terms of the sophisticated

Spencer complex corresponding to the operator $\hat{\mathcal{D}}$. If two formally transitive and formally integrable Lie equations are transformed one into the other by a section of a jet bundle, it is shown that the corresponding cohomologies are connected by a bijective mapping (Proposition 7.9); from the third fundamental theorem (see [9] and Theorem 7.1), we deduce that the computation of the cohomology $\tilde{H}^{1}\left(R_{k}\right)$ of a formally transitive and formally integrable Lie equation R_{k} is reducible to the case where R_{k} is analytic. The next section, § 8, contains a proof, based on Frobenius' theorem, that the non-linear cohomology of a certain multifoliate Lie equation(${ }^{1}$) vanishes; this fact is an essential step in the proof of Theorem 9.1. The results of $\S 6-\S 8$ are used in $\S 9$ to prove non-linear analogues (finite forms) of certain results of the linear theory of [6]. Theorem 9.1 establishes the key fact that, if R_{k} is a formally integrable ϱ-projectable Lie equation on X satisfying the conditions (I) and (II) of § 9, then its non-linear cohomology is isomorphic to the non-linear cohomology defined in terms of ϱ-projectable sections. Under the same hypotheses an exact sequence of non-linear cohomology is constructed (Proposition 9.1) relating the cohomology of R_{k} to the cohomology of a Lie equation $R_{k_{1}}^{\prime \prime}$ on Y and to the cohomology of a kernel Lie equation \bar{R}_{k} on X. This sequence has the disadvantage that the equation \bar{R}_{k} is in general not formally integrable. Under additional assumptions one can modify this exact sequence and replace the cohomology of \bar{R}_{k} by the cohomology of the formally integrable Lie equation $R_{m_{0}}^{\prime}$ obtained from \bar{R}_{k} by the technique of [5] or [6] (see Theorem 9.2). Finally Theorem 9.3 gives more precise results when $R_{m_{0}}^{\prime}$ vanishes; in particular, the cohomology $\tilde{H}^{1}\left(R_{k}\right)_{a}$ of R_{k} at $a \in X$ is isomorphic to the cohomology $\tilde{H}^{1}\left(R_{k_{1}}^{\prime \prime}\right)_{\varrho(a)}$ of $R_{k_{1}}^{\prime \prime}$ at $\varrho(a)$. In § 10 the results of $\S 9$, combined with results and techniques of [10] (and [9]), enable us to associate to every transitive Lie algebra L a non-linear cohomology $\tilde{H}^{1}(L)$ with the properties briefly described above. In § 11 we examine the structure of abelian Lie equations and prove Conjecture III in the case where I is abelian (Theorem 11.5); the proof is based on the theorem of Ehrenpreis-Malgrange, which asserts the local solvability of differential operators with constant coefficients (see Theorem 11.2). The stability under classical prolongation of the hypotheses of Conjecture III is established in § 12 , and we remark that under prolongation the subalgebra B, even if it is assumed initially to be zero, reappears and contains a subalgebra corresponding to transformations along the fibers of a principal bundle and the transitive Lie algebra L corresponds to a closed ideal of a transitive Lie algebra. Thus in studying the cohomology of transitive Lie algebras, one is necessarily led
${ }^{(1)}$ The multifoliate Lie equation considered here is of a slightly different nature from that of the ones defined in [17], which correspond to flat pseudogroups and are of the type $R_{1}(\mathrm{~g})$ for appropriate Lie algebras g.
into examining the cohomology of closed ideals of transitive Lie algebras. The results of the final section of the paper, $\S 13$, have been described above.

We conclude this introduction with some short remarks on notation, terminology and background. For the definitions and properties of fibered manifolds and jet bundles as affine bundles, we refer the reader to [4]. Notation and terminology are the same as in the papers [8], [9], [10], and essentially the same as in [19]. However, it is perhaps worthwhile to explain one piece of notation which might be confusing. Namely, if E, F, G are finite-dimensional vector spaces, we always identify $E^{*} \otimes F$ with $\operatorname{Hom}(E, F)$ and, if $u \in E^{*} \otimes F, v \in F^{*} \otimes G$, we denote by $v o u$ the element of $E^{*} \otimes G$ defined by composition.

Chapter I. Differential equations, fibrations and Cartan forms

1. Linear differential equations and vector fields

Let X be a differentiable manifold of dimension n and class C^{∞} whose tangent bundle we denote by $T=T_{x}$. We write O_{X} for the sheaf of real-valued, differentiable functions on X. If E is a fibered manifold over X, we denote by \mathcal{E} the sheaf of sections of E, and by E_{x} (resp. \mathcal{E}_{x}) the fiber of E (resp. the stalk of \mathcal{E}) at $x \in X$; sometimes, however, we write $E(x)$ for the fiber E_{x} of E at $x \in X$. The bundle of vertical tangent vectors of E will be denoted by $V(E)=T(E / X)$. We denote by $J_{k}(E)$ the fibered manifold of k-jets of sections of E, by $j_{k}: \mathcal{E} \rightarrow J_{k}(\mathcal{E})$ the differential operator of order k which sends a section s of E over a neighborhood of $x \in X$ into the k-jet $j_{k}(s)$ of this section, and by $\pi_{k}: J_{k+l}(E) \rightarrow J_{k}(E)$ and $\pi: J_{k}(E) \rightarrow X$ the natural projections sending $j_{k+l}(s)(x)$ into $j_{k}(s)(x)$ and $j_{k}(s)(x)$ into its source x respectively. The natural injection

$$
\lambda_{l}: J_{k+l}(E) \rightarrow J_{l}\left(J_{k}(E)\right),
$$

which sends $j_{k+l}(s)(x)$ into $j_{l}\left(j_{k}(s)\right)(x)$, where s is a section of E over a neighborhood of $x \in X$, is a monomorphism of fibered manifolds. If F is another fibered manifold over X and $\varphi: E \rightarrow F$ is a morphism of fibered manifolds over X, then

$$
J_{k}(\varphi): J_{k}(E) \rightarrow J_{k}(F)
$$

is the morphism of fibered manifolds over X sending $j_{k}(s)(x)$ into $j_{k}(\varphi \circ s)(x)$ (see [4]). We shall always suppose that the fibers of a vector bundle are of the same dimension.

If E is a vector bundle over X, we have the exact sequence of vector bundles

$$
\begin{equation*}
0 \longrightarrow S^{k} T^{*} \otimes E \xrightarrow{\varepsilon} J_{k}(E) \xrightarrow{\pi_{k-1}} J_{k-1}(E) \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

which yields the exact sequence

$$
0 \longrightarrow T^{*} \otimes J_{k-1}(E) \xrightarrow{\varepsilon} J_{1}\left(J_{k-1}(E)\right) \xrightarrow{\pi_{0}} J_{k-1}(E) \longrightarrow 0 .
$$

We define a first-order differential operator

$$
D: J_{k}(\mathcal{E}) \rightarrow \mathfrak{T}^{*} \otimes J_{k-1}(\mathcal{E})
$$

by the formula

$$
\begin{equation*}
\varepsilon D u=j_{1}\left(\pi_{k-1} u\right)-\lambda_{1} u, \quad u \in J_{k}(\mathcal{E}), \tag{1.2}
\end{equation*}
$$

and obtain the Spencer complex, which is an exact sequence,

$$
\begin{align*}
& 0 \longrightarrow \mathcal{E} \xrightarrow{j_{k}} J_{k k}(\mathcal{E}) \xrightarrow{D} \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{E}) \xrightarrow{D} \wedge^{2} \mathcal{J}^{*} \otimes J_{k-2}(\mathcal{E}) \xrightarrow{D} \\
& \ldots \wedge^{n} \mathcal{J}^{*} \otimes J_{k-n}(\mathcal{E}) \longrightarrow \tag{1.3}
\end{align*}
$$

where $J_{k}(E)=0$ for $k<0$, by setting

$$
\begin{equation*}
D(\omega \wedge u)=d \omega \wedge \pi_{k-1} u+(-1)^{j} \omega \wedge D u \tag{1.4}
\end{equation*}
$$

for $\omega \in \wedge^{j} \mathcal{J}^{*}, u \in \wedge \mathcal{T}^{*} \otimes J_{k}(\mathcal{E})$. Then

$$
\begin{equation*}
\langle\xi \wedge \eta, D u\rangle=\xi \bar{\wedge} D u(\eta)-\eta \bar{\wedge} D u(\xi)-\pi_{k-1} u([\xi, \eta]) \tag{1.5}
\end{equation*}
$$

for $u \in \mathcal{J}^{*} \otimes J_{k}(\mathcal{E})$ and all $\xi, \eta \in \mathcal{J}$.

Lemma 1.1 (see [5], Proposition 6). If F is a vector bundle over X and $\varphi: E \rightarrow F$ is a morphism of vector bundles, the diagram

is commutative.
Proof. In virtue of (1.4), it suffices to show that the diagram is commutative for $j=0$. From the diagram

whose right-hand square is commutative (see [3]) and whose mappings ε are monomorphisms of vector bundles, we see that it is sufficient to show that its outer rectangle commutes. By (1.2), we are now reduced to verifying that the diagrams

and

$$
\left\{\begin{array}{l}
J_{k}(E) \xrightarrow{\lambda_{1}} J_{1}\left(J_{k-1}(E)\right) \\
J_{k}(\varphi) \\
J_{k}\left(F^{\prime}\right) \xrightarrow{\lambda_{1}} J_{1}\left(J_{k-1}(F)\right)
\end{array}\right.
$$

are commutative; however this last fact follows immediately from the definitions of the maps involved.

By (1.4), the restriction of $-D$ to $\wedge^{j} \mathcal{J}^{*} \otimes \varepsilon\left(S^{k} \mathcal{J}^{*} \otimes \mathcal{E}\right)$ is O_{X}-linear and therefore comes from a morphism

$$
\delta: \wedge^{j} T^{*} \otimes S^{k} T^{*} \otimes E \rightarrow \wedge^{j+1} T^{*} \otimes S^{k-1} T^{*} \otimes E
$$

of vector bundles, and we obtain an exact sequence of vector bundles for $k>0$

where

$$
\delta(\omega \wedge u)=(-1)^{j} \omega \wedge \delta u
$$

for $\omega \in \wedge^{j} T^{*}, u \in \wedge T^{*} \otimes S^{m} T^{*} \otimes E$ (see [3], [21]).
A vector sub-bundle $R_{k} \subset J_{k}(E)$ is a linear differential equation of order k on E. A solution of R_{k} over an open set $U \subset X$ is a section s of E over U such that $j_{k}(s)$ is a section of R_{k}, and we denote by $\operatorname{Sol}\left(R_{k}\right)$ the sheaf of solutions of R_{k}, namely the sub-sheaf of \mathcal{E} of elements s satisfying $j_{k}(s) \in \boldsymbol{R}_{k}$. For $l \geqslant 0$, we associate to R_{k} its l-th prolongation $\left(R_{k}\right)_{+l} \subset$ $J_{k+l}(E)$ with possibly varying fiber, namely

$$
\left(R_{k}\right)_{+l}=J_{k+l}(E) \cap J_{l}\left(R_{k}\right),
$$

which we often denote by R_{k+l} when no confusion arises. Here we have identified $J_{k+l}(E)$ with a sub-bundle of $J_{l}\left(J_{k}(E)\right)$ by means of λ_{l}. We set

$$
R_{\infty}=\lim _{\longleftarrow} R_{k+1} .
$$

Recall that, if $\left(R_{k}\right)_{+l}$ is a vector bundle, then the m-th prolongation of $\left(R_{k}\right)_{+l}$ is equal to $\left(R_{k}\right)_{+(l+m)}$.

The following lemma is part of Proposition 5.1 of [3] and its proof will be omitted.
Lemma 1.2. Let $R_{k} \subset J_{k}(E)$ be a differential equation. For $l \geqslant 1$, let $R_{l}^{\prime} \subset J_{i}\left(R_{k}\right)$ be the image of R_{k+l} under the map $\lambda_{l}: J_{k+l}(E) \rightarrow J_{l}\left(J_{k}(E)\right)$. If R_{k+1} is a vector bundle, then
for all $l \geqslant 0$.

$$
\left(R_{1}^{\prime}\right)_{+l}=R_{l+1}^{\prime}
$$

Let $R_{k} \subset J_{k}(E)$ be a differential equation. If, for each $l \geqslant 0, R_{k+l}$ is a vector bundle and the projection $\pi_{k+l}: R_{k+l+1} \rightarrow P_{k_{k+l}}$ is surjective, we say that R_{k} is formally integrable. We say that R_{k} is integrable if, for all $l \geqslant 0$. and $u \in R_{k+l, x}$ with $x \in X$, there exists a section s of E over a neighborhood of x which is a solution of R_{k} such that $j_{k+i}(s)(x)=u$. If X is endowed with the structure of an analytic manifold and E is an analytic vector bundle and if R_{k} is an analytic, formally integrable differential equation on E then, according to Theorem 7.1 of [3] or the appendix of [19], \boldsymbol{R}_{k} is integrable. Let $\boldsymbol{R}_{k+l}=\left(\boldsymbol{R}_{k}\right)_{+l}$ be the sheaf of sections of R_{k+l} (which determines R_{k+l} if the latter is a bundle). An element u of $J_{k+l+1}(\mathcal{J})$ belongs to \boldsymbol{R}_{k+l+1} if and only if $\pi_{k+l} u \in \boldsymbol{R}_{k+l}$ and $D u \in \mathcal{J}^{*} \otimes \boldsymbol{R}_{k+l}$. By restriction of (1.3), we obtain the Spencer complex
$0 \longrightarrow \boldsymbol{R}_{m} \xrightarrow{D} \mathcal{J}^{*} \otimes \boldsymbol{R}_{m-1} \xrightarrow{D} \wedge^{2} \mathcal{J}^{*} \otimes \boldsymbol{R}_{m-2} \xrightarrow{D} \ldots \longrightarrow \wedge^{n} \mathcal{J}^{*} \otimes \boldsymbol{R}_{m-n} \longrightarrow 0$,
where $R_{m}=J_{m}(E)$ if $m<k$. The cohomology of (1.7) at $\wedge^{j} \mathcal{J}^{*} \otimes \boldsymbol{R}_{m-j}$ will be denoted by $H^{j}\left(R_{k}\right)_{m-j}$. Moreover, let $g_{m} \subset S^{m} T^{*} \otimes E$ be the sub-bundle with possibly varying fiber such that the sequence

$$
0 \longrightarrow g_{m} \xrightarrow{\varepsilon} R_{m} \xrightarrow{\pi_{m-1}} R_{m-1}
$$

is exact; then (1.6) gives by restriction a complex

$$
\begin{equation*}
0 \longrightarrow g_{m} \xrightarrow{\delta} T^{*} \otimes g_{m-1} \xrightarrow{\delta} \wedge^{2} T^{*} \otimes g_{m-2} \xrightarrow{\delta} \ldots \longrightarrow \wedge^{n} T^{*} \otimes g_{m-n} \longrightarrow 0, \tag{1.8}
\end{equation*}
$$

whose cohomology at $\wedge^{j} T^{*} \otimes g_{m-j}$ we denote by $H^{m-j, j}\left(g_{k}\right)$. We say that g_{k} is r-acyclic if $H^{k+l, j}\left(g_{k}\right)=0$ for $l \geqslant 0$ and $0 \leqslant j \leqslant r$, and we remark that g_{k} is always l-acyclic if $k \geqslant 1$. We say that g_{k} is involutive if g_{k} is n-acyclic. There exists an integer $k_{0} \geqslant k$, which depends only on n, k and rank E such that $g_{k_{0}}$ is involutive.

If the l-th prolongation R_{k+l} of R_{k} is a vector bundle for $l \geqslant 0$ and if the mappings $\pi_{m}: R_{m+1} \rightarrow R_{m}$ are of constant rank for $m \geqslant k$, there exists an integer $m_{1} \geqslant k$ such that 8-762907 Acta mathematica 136. Imprimé le 13 Avril 1976
$\pi_{m}: H^{j}\left(R_{k}\right)_{m+1} \rightarrow H^{j}\left(R_{k}\right)_{m}$ is an isomorphism for $m \geqslant m_{1}$. Then $H^{j}\left(R_{k}\right)_{m}$ is independent of m for $m \geqslant m_{1}$ and we denote $H^{j}\left(R_{k}\right)_{m}$ with $m \geqslant m_{1}$ by $H^{j}\left(R_{k}\right)$, the j-th Spencer cohomology group of R_{k}; the group $H^{0}\left(R_{k}\right)$ is the sheaf of solutions of R_{k}. Here, as in the sequel, we always identify two cohomology groups if they are isomorphic (see [3], [5]).

We next turn to the consideration of vector fields and their brackets (see [18], [19]). Let Δ be the diagonal of $X \times X$ and let $\mathrm{pr}_{1}, \mathrm{pr}_{2}$ denote the projections of $X \times X$ onto the first and second factor respectively. A sheaf on X (resp. on Δ) will always be identified with its inverse image by $\mathrm{pr}_{1}: \Delta \rightarrow X$ (resp. with its direct image by $\Delta \rightarrow X \times X$). Consider now the tangent bundle T of X, and identify $J_{k}(\mathcal{T})$ with the sheaf of vector fields on $X \times X$ which are pr_{1}-vertical, modulo those which vanish to order k on Δ. We call diagonal the vector fields on $X \times X$ which are pr_{1}-projectable and tangent to Δ, and we denote by $\tilde{J}_{k}(\mathcal{J})$ the sheaf of diagonal vector fields modulo those which vanish to order k on Δ. The vector bundle over X corresponding to $\tilde{J}_{k c}(\mathcal{J})$ will be denoted by $\tilde{J}_{k c}(T)$. The mapping which sends a diagonal vector field on $X \times X$ into its pr $_{1}$-vertical component yields, by passage to the quotient, a vector bundle isomorphism

$$
\nu: \tilde{J}_{k}(T) \rightarrow J_{l c}(T) .
$$

In the sequel it will be convenient to identify $\tilde{J}_{0}(T)$ with T. The sheaf $\check{J}_{k}(\mathcal{J})$ of vector fields on $X \times X$ which are pr_{1}-projectable modulo those vanishing to order k on Δ corresponds to a vector bundle $\breve{J}_{k}(T)$ over X which is the sum of $J_{k}(T)$ and $\breve{J}_{k}(T)$, where

$$
J_{k}^{0}(T)=\left\{\xi \in J_{k}(T) \mid \pi_{0} \xi=0\right\}=J_{k}(T) \cap \tilde{J}_{k}(T) .
$$

We denote by $\pi_{k}: \breve{J}_{k+l}(T) \rightarrow \breve{J}_{k}(T)$ the natural projection. The projection pr_{1} gives the exact sequence

$$
\begin{equation*}
0 \rightarrow J_{k}(T) \rightarrow \check{J}_{k}(T) \rightarrow T \rightarrow 0 \tag{1.9}
\end{equation*}
$$

which enables us to identify T^{*} with a sub-bundle of $\breve{J}_{k}(T)^{*}$. The injection $J_{k c}(T) \rightarrow \breve{J}_{k}(T)$ gives, by passage to the quotient, an isomorphism

$$
J_{k}(T) / J_{k}^{0}(T) \simeq \breve{J}_{k}(T) / \tilde{J}_{k i}(T)
$$

Since the kernel of the projection $\pi_{0}: J_{k}(T) \rightarrow J_{0}(T)$ is $J_{k}^{0}(T)$, we obtain an exact sequence

$$
\begin{equation*}
0 \rightarrow \tilde{J}_{k}(T) \rightarrow \breve{J}_{k}(T) \rightarrow J_{0}(T) \rightarrow 0, \tag{1.10}
\end{equation*}
$$

which gives, by duality, an injection $J_{0}(T)^{*} \rightarrow \breve{J}_{k}(T)^{*}$; we shall identify $J_{0}(T)^{*}$ with its image under this mapping.

The bracket of vector fields on $X \times X$ gives, by restriction and passage to the quotient, a bracket

$$
\begin{equation*}
J_{k}(T) \times_{{ }_{X}} J_{k}(T) \rightarrow J_{k-1}(T) \tag{1.11}
\end{equation*}
$$

which is defined fiber by fiber in the following way: if ξ, η are sections of T over a neighborhood of $x \in X$, then $\left[j_{k}(\xi)(x), j_{k}(\eta)(x)\right]=j_{k-1}([\xi, \eta])(x)$. It also gives the brackets

$$
\begin{align*}
& \tilde{J}_{k}(\mathcal{J}) \times{ }_{X} \tilde{J}_{k}(\mathcal{J}) \rightarrow \tilde{J}_{k 匕}(\mathcal{T}) ; \tag{I.12}\\
& \breve{J}_{k}(\mathcal{J}) \times{ }_{{ }_{x}} \breve{J}_{k}(\mathcal{J}) \rightarrow \breve{J}_{k-1}(\mathcal{J}) ; \tag{1.13}\\
& \tilde{J}_{k+1}(\mathcal{J}) \times{ }_{X} J_{k}(\mathcal{J}) \rightarrow J_{k}(\mathcal{J}) . \tag{1.14}
\end{align*}
$$

We note in particular that $\tilde{J}_{k}(\mathcal{J})$ is a sheaf of Lie algebras. If $\xi, \eta \in J_{k+1}(\mathcal{J})$ and $\tilde{\xi}=v^{-1} \xi$, $\tilde{\eta}=\nu^{-1} \eta$, then

$$
\begin{equation*}
\mathcal{L}(\tilde{\xi}) \pi_{k} \eta=[\xi, \eta]+\tilde{\xi} \pi D \eta, \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}(\xi) \pi_{k} \eta=v\left[\pi_{k} \xi, \pi_{k} \tilde{\eta}\right]+\tilde{\eta} \bar{\pi} D \xi . \tag{1.16}
\end{equation*}
$$

Write

$$
\breve{J}_{\infty}(T)=\lim _{\longleftrightarrow} \breve{J}_{k}(T), \quad \breve{J}_{\infty}(T)^{*}=\underset{\longrightarrow}{\lim } \breve{J}_{k}(T)^{*},
$$

and define similarly $J_{\infty}(T), \tilde{J}_{\infty}(T), J_{\infty}(T)^{*}, \tilde{J}_{\infty}(T)^{*}$. Then $\breve{J}_{\infty}(\mathcal{J})$ is a sheaf of Lie algebras and $J_{\infty}(\mathcal{J}), \tilde{J}_{\infty}(\mathcal{J})$ are sub-sheaves of Lie algebras.

Following Malgrange [19], we next define a bracket on $\wedge \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$. First, from the bracket on $\breve{J}_{\infty}(\mathcal{J})$ we obtain, by duality, an exterior differential d on $\left.\wedge \breve{J}_{\infty}(J)\right)^{*}$ which is defined as follows. For $f \in O_{x}=\wedge^{0} \breve{J}_{\infty}(\mathcal{J})^{*}$, we define $d f$ to be the usual differential of f which is identified with its image in $\mathscr{J}_{\infty}(\mathcal{J})^{*}$. For $\alpha \in \mathscr{J}_{\infty}(\mathcal{J})^{*}$, we define $d \alpha$ by the familiar formula

$$
\langle\xi \wedge \eta, d \alpha\rangle=\mathcal{L}(\xi)\langle\eta, \alpha\rangle-\mathcal{L}(\eta)\langle\xi, \alpha\rangle-\langle[\xi, \eta], \alpha\rangle,
$$

where $\xi, \eta \in \breve{J}_{\infty}(\mathcal{J})$, and extend this operation as a derivation of degree 1 of $\wedge \breve{J}_{\infty}(\mathcal{J})^{*}$. We see, by a classical calculation, that $d^{2}=0$. The natural injection pr ${ }_{1}^{*}: \wedge \mathcal{J}^{*} \rightarrow \wedge \check{J}_{\infty}(\mathcal{J})^{*}$ commutes with d, and hence the identification of $\wedge \mathcal{J}^{*}$ with its image under pr_{1}^{*} is justified. For $u=\alpha \otimes \xi \in \wedge^{p} \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J}), \beta \in \breve{J}_{\infty}(\mathcal{J})^{*}$, we define a derivation $i(u)$ of degree $p-1$ of $\wedge \breve{J}_{\infty}(\mathcal{J})^{*}$ by $i(u) \beta=\alpha \wedge i(\xi) \beta$, where $i(\xi)$ is the derivation of $\wedge \breve{J}_{\infty}(\mathcal{J})^{*}$ of degree -1, interior product with ξ, and extend this operation to arbitrary u by linearity. For $u \in \wedge^{p} \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$, we define the Lie derivative $\mathcal{L}(u)$ by the formula

$$
\mathcal{L}(u)=[i(u), d]=i(u) \cdot d-(-1)^{p-1} d \cdot i(u) ;
$$

if $u=\alpha \otimes \xi$ and $\beta \in \wedge \breve{J}_{\infty}(\mathcal{J})^{*}$, then

$$
\begin{equation*}
\mathcal{L}(\alpha \otimes \xi) \beta=\alpha \wedge \mathcal{L}(\xi) \beta+(-1)^{p} d \alpha \wedge i(\xi) \beta \tag{1.17}
\end{equation*}
$$

For $u=\alpha \otimes \xi \in \wedge^{p} \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J}), \quad v=\beta \otimes \eta \in \wedge^{a} \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$, we define $[u, v]$ by the formula for the Nijenhuis bracket (see [18] and [19]), namely

$$
\begin{equation*}
[\alpha \otimes \xi, \beta \otimes \eta]=(\alpha \wedge \beta) \otimes[\xi, \eta]+\mathcal{L}(\alpha \otimes \xi) \beta \otimes \eta-(-1)^{p q} \mathcal{L}(\beta \otimes \eta) \alpha \otimes \xi \tag{1.18}
\end{equation*}
$$

and extend this definition to arbitrary u, v by bilinearity. Then $[\xi, u]=\mathcal{L}(\xi) u$, for $\xi \in \breve{J}_{\infty}(\mathcal{J})$, $u \in \wedge^{p} \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$; if $v \in \wedge^{q} \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$ and $w \in \wedge \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$, then

$$
\mathcal{C}[u, v]=[\mathcal{L}(u), \mathcal{L}(v)]=\mathcal{L}(u) \circ \mathcal{L}(v)-(-1)^{p \mathcal{L}} \mathcal{L}(v) \circ \mathcal{L}(u)
$$

and Jacobi's identity holds:

$$
[u,[v, w]]=[[u, v], w]+(-1)^{p q}[v,[u, w]] .
$$

Thus $\wedge \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$ is a sheaf of graded Lie algebras.
We obtain by restriction brackets on $\wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{\infty}(\mathcal{J}), \wedge \mathcal{J}^{*} \otimes \tilde{J}_{\infty}(\mathcal{J})$ and $\wedge \mathcal{J}^{*} \otimes J_{\infty}(\mathcal{J})$, which, for $k \geqslant 0$, by passage to the quotient, induce on $\wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k+1}(\mathcal{J}), \wedge \mathcal{J}^{*} \otimes \tilde{J}_{k}(\mathcal{J})$ structures of graded Lie algebras and a bracket

$$
\begin{equation*}
\left(\wedge^{p} T^{*} \otimes J_{k+1}(T)\right) \otimes\left(\wedge^{q} T^{*} \otimes J_{k+1}(T)\right) \rightarrow \wedge^{p+a} T^{*} \otimes J_{k}(T) \tag{1.19}
\end{equation*}
$$

In order to verify that $\wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{\infty}(\mathcal{J})$ is a sub-sheaf of graded Lie algebras of $\wedge \check{J}_{\infty}(\mathcal{J})^{*} \otimes$ $\breve{J}_{\infty}(\mathscr{J})$, it is sufficient, in view of (1.17) and (1.18), to verify that

$$
\mathcal{C}(\alpha \otimes \xi) \beta=\alpha \wedge \mathcal{C}(\xi) \beta, \quad \mathcal{L}(\xi) \beta \in \wedge^{q} J_{0}(\mathcal{J})^{*}
$$

for $\xi \in \tilde{J}_{\infty}(\mathcal{J}), \alpha \in \wedge^{p} J_{0}(\mathcal{J})^{*}, \beta \in \wedge^{q} J_{0}(\mathcal{J})^{*}$. These assertions follow from the fact that $J_{0}(T)^{*}$ is the annihilator of $\tilde{J}_{\infty}(T)$ (a consequence of (1.10) by duality). Furthermore, $\mathcal{L}(\xi) \beta$ depends only on β and the projection of ξ in $\tilde{J}_{1}(\mathcal{J})$ (see [19]). Hence, for $k \geqslant 1, \wedge J_{0}(\mathcal{J})^{*} \otimes$ $\tilde{J}_{k}(\mathcal{T})$ is a sheaf of graded Lie algebras, a quotient of the preceding. Since d preserves $\wedge \mathcal{J}^{*}$ and, if $\xi \in \tilde{J}_{\infty}(\mathcal{J})$, the restriction of $i(\xi)$ to $\wedge \mathcal{J}^{*}$ is the usual derivation $i\left(\xi_{0}\right)$ of $\wedge \mathcal{J}^{*}$, where ξ_{0} is the projection of ξ in $\tilde{J}_{0}(\mathcal{J})=\mathcal{J}$, we see that $\mathcal{L}(\xi) \beta$ is the usual Lie derivative of $\beta \in \wedge \mathcal{J}^{*}$ along $\xi_{0} \in \mathcal{J}$. Hence $\wedge \mathcal{J}^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$ is a sub-sheaf of graded Lie algebras of $\wedge \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$ according to (1.17) and (1.18), and, for $k \geqslant 0, \wedge \mathcal{J}^{*} \otimes \tilde{J}_{h}(\mathcal{J})$ is a sheaf of graded Lie algebras, a quotient of the preceding. Finally, since T^{*} is the annihilator of $J_{\infty}(T)$ (a consequence of (1.9) by duality), formula (1.18) induces a bracket on $\wedge \mathcal{J}^{*} \otimes J_{\infty}(\mathcal{J})$, defined fiber by fiber by the formula

$$
[\alpha \otimes \xi, \beta \otimes \eta]=(\alpha \wedge \beta) \otimes[\xi, \eta]
$$

where $\alpha, \beta \in \wedge T^{*}, \xi, \eta \in J_{\infty}(T)$, and a quotient bracket (1.19) defined by the same formula with $\xi, \eta \in J_{k+1}(T)$.

In [22] and [18], another bracket on $\wedge \mathcal{J}^{*} \otimes \tilde{J}_{\infty}(\mathcal{J})$ is introduced; it can be obtained by transport of the bracket on $\wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{\infty}(\mathcal{J})$. Namely, one defines

$$
[u, v]=\left(v^{*} \otimes \mathrm{id}\right)\left[\left(v^{*-1} \otimes \mathrm{id}\right) u,\left(v^{*-1} \otimes \mathrm{id}\right) v\right]
$$

for $u, v \in \wedge \mathfrak{J}^{*} \otimes \tilde{J}_{\infty}(\mathcal{T}) ;$ this bracket does not coincide with the bracket on $\wedge \mathcal{J}^{*} \otimes \tilde{J}_{\infty}(\mathcal{J})$
obtained above by restriction from the bracket on $\wedge \breve{J}_{\infty}(\mathcal{J})^{*} \otimes \breve{J}_{\infty}(\mathcal{J})$, but is related to it (see formula (3.13.2) of [19], and [18], p. 115). However, in this paper, we shall not use these brackets on $\wedge \mathfrak{J}^{*} \otimes \tilde{J}_{\infty}(\mathcal{J})$.

We note that, if $u \in \wedge^{p} J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})$ (resp. $\left.\wedge^{p} T^{*} \otimes J_{k}(T)\right), v \in \wedge^{\natural} J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})$ (resp. $\left.\wedge^{q} T^{*} \otimes J_{k}(T)\right)$, where $k \geqslant 1$, and if u and v satisfy $\pi_{0} u=0$ and $\pi_{0} v=0$, then $\pi_{0}[u, v]=0$. This can be seen from (1.18).

We list two formulas which are direct consequences of the definition of the brackets and which will be used in the sequel:

$$
\begin{equation*}
\left\langle\zeta_{1} \wedge \zeta_{2},[u, v]\right\rangle=\left[\zeta_{1} \pi u, \zeta_{2} \pi v\right]-\left[\zeta_{2} \pi u, \zeta_{1} \pi v\right] \tag{1.20}
\end{equation*}
$$

where $u, v \in T^{*} \otimes J_{k}(T)$ and $\zeta_{1}, \zeta_{2} \in T$;

$$
\begin{align*}
\left\langle\zeta_{1} \wedge \zeta_{2},[u, v]\right\rangle= & {\left[\zeta_{1} \pi u, \zeta_{2} \pi v\right]-\left[\zeta_{2} \pi u, \zeta_{1} \pi v\right]-\left(\mathcal{L}\left(\zeta_{1} \pi u\right) \zeta_{2}\right) \pi v } \\
& +\left(\mathcal{L}\left(\zeta_{2} \pi u\right) \zeta_{1}\right) \pi v-\left(\mathcal{L}\left(\zeta_{1} \pi v\right) \zeta_{2}\right) \pi u+\left(\mathcal{L}\left(\zeta_{2} \pi v\right) \zeta_{1}\right) \pi u \tag{1.21}
\end{align*}
$$

where $u, v \in J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})$ and $\zeta_{1}, \zeta_{2} \in J_{0}(\mathcal{J})$. A formula analogous to (1.21) holds for u, $v \in \mathcal{J}^{*} \otimes \tilde{J}_{k}(\mathcal{J})$ and $\zeta_{1}, \zeta_{2} \in \mathcal{J}$, namely formula (3.3) of [9].

We shall identify $S^{k} J_{0}(T)^{*} \otimes J_{0}(T)$ with the kernels of the projections $\pi_{k-1}: \tilde{J}_{k}(T) \rightarrow$ $\tilde{J}_{k-1}(T)$ and $\pi_{k-1}: J_{k}(T) \rightarrow J_{k-1}(T)$; this identification will not lead to difficulties when we have to consider diagonal automorphisms of $X \times X$. Then $-D$ gives by restriction a morphism of vector bundles

$$
\wedge^{j} T^{*} \otimes S^{k} J_{0}(T)^{*} \otimes J_{0}(T) \rightarrow \wedge^{j+1} T^{*} \otimes S^{k-1} J_{0}(T)^{*} \otimes J_{0}(T)
$$

which we shall denote by δ. Denote by $\bar{\nu}$ the isomorphism

$$
\nu^{*} \otimes v: \wedge J_{0}(T)^{*} \otimes \tilde{J}_{k}(T) \rightarrow \wedge T^{*} \otimes J_{k}(T)
$$

and by \bar{D} the differential operator

$$
\bar{v}^{-1} \circ D \circ \bar{v}: \wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k c}(\mathcal{J}) \rightarrow \wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k-1}(\mathcal{J})
$$

Then $-\bar{D}$ gives by restriction the morphism of vector bundles

$$
\bar{\delta}: \wedge^{j} J_{0}(T)^{*} \otimes S^{k} J_{0}(T)^{*} \otimes J_{0}(T) \rightarrow \Lambda^{j+1} J_{0}(T)^{*} \otimes S^{k-1} J_{0}(T)^{*} \otimes J_{0}(T)
$$

Consider the sheaf \mathcal{H} of vector fields on $X \times X$ which are pr_{1}-projectable and pr_{2} vertical modulo those which vanish to infinite order on Δ. Then \mathcal{H} is a sub-sheaf of $\breve{J}_{\infty}(\mathcal{J})$ and

$$
\check{J}_{\infty}(\mathcal{J})=\boldsymbol{\mathcal { H }} \oplus J_{\infty}(\mathcal{T}), \quad \check{J}_{\infty}(\mathcal{J})=\boldsymbol{\mathcal { H }} \oplus \tilde{J}_{\infty}(\mathcal{J})
$$

The two projections of $\breve{J}_{\infty}(\mathcal{J})$ onto \mathcal{H} parallel to $J_{\infty}(\mathcal{J})$ and $\tilde{J}_{\infty}(\mathcal{J})$ respectively, by the exactness of (1.9) and (1.10), are determined by maps $T \rightarrow \breve{J}_{\infty}(T), J_{0}(T) \rightarrow \breve{J}_{\infty}(T)$, and therefore by sections χ of $T^{*} \otimes \breve{J}_{\infty}(T)$ and $\bar{\chi}$ of $J_{0}(T)^{*} \otimes \breve{J}_{\infty}(T)$ respectively. In fact
and

$$
\bar{\chi}=\left(v^{*-1} \otimes \mathrm{id}\right) \chi
$$

$$
\begin{gathered}
\chi \circ \pi_{0}=\mathrm{id}-v: \tilde{J}_{\infty}(T) \rightarrow \breve{J}_{\infty}(T), \\
\bar{\chi} \circ \pi_{0}=\nu^{-1}-\mathrm{id}: J_{\infty}(T) \rightarrow \breve{J}_{\infty}(T) .
\end{gathered}
$$

We shall also denote by χ and $\bar{\chi}$ the sections of $T^{*} \otimes \breve{J}_{k}(T)$ and $J_{0}(T)^{*} \otimes \breve{J}_{k}(T)$ corresponding to $\pi_{k} \circ \chi$ and $\pi_{k} \circ \bar{\chi}$ respectively. We have the formulas (see [19])

$$
\begin{gather*}
D u=[\chi, u], \quad \text { for } \quad u \in \wedge \mathcal{J}^{*} \otimes J_{\infty}(\mathcal{J}) \tag{1.22}\\
\bar{D} u=[\bar{\chi}, u], \quad \text { for } \quad u \in \wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{\infty}(\mathcal{J}) . \tag{1.23}
\end{gather*}
$$

Set

$$
B_{k}^{p}=\wedge^{p} J_{0}(T)^{*} \otimes \tilde{J}_{k}(T) / \bar{\delta}\left(\wedge^{p-1} J_{0}(T)^{*} \otimes S^{k+1} J_{0}(T)^{*} \otimes J_{0}(T)\right)
$$

and $B_{k}=\oplus_{p} B_{k}^{p}$. We remark that B_{k} is a sheaf of graded Lie algebras for the bracket which is the quotient of that on $\wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})$, and \bar{D} induces a differential operator

$$
\hat{D}: \mathcal{B}_{k}^{p} \rightarrow \mathcal{B}_{k}^{p+1} .
$$

The "sophisticated" Spencer complex

$$
\begin{equation*}
0 \longrightarrow \mathcal{J} \xrightarrow{\tilde{j}_{k}} \boldsymbol{B}_{k}^{0} \xrightarrow{\hat{D}} \boldsymbol{B}_{k}^{1} \xrightarrow{\hat{D}} \ldots \longrightarrow \boldsymbol{B}_{k}^{n} \longrightarrow 0 \tag{1.24}
\end{equation*}
$$

where $\tilde{j}_{k}=v^{-1} \circ j_{k}$, is aeyclic.
The differential operators D, \bar{D}, \hat{D} are compatible with the corresponding brackets, namely for $u \in \wedge^{\mathcal{D}} \mathcal{J}^{*} \otimes J_{k}(\mathcal{J}), v \in \wedge^{a} \mathcal{J}^{*} \otimes J_{k}(\mathcal{J}), \bar{u}=\left(v^{*-1} \otimes v^{-1}\right) u, \bar{v}=\left(\nu^{*-1} \otimes \nu^{-1}\right) v$, we have, if $k \geqslant 2$,

$$
\begin{align*}
& D[u, v]=\left[D u, \pi_{k-1} v\right]+(-1)^{p}\left[\pi_{k-1} u, D v\right] ; \tag{1.25}\\
& \bar{D}[\bar{u}, \bar{v}]=\left[\bar{D} \bar{u}, \pi_{k-1} \bar{v}\right]+(-1)^{p}\left[\pi_{k-1} \bar{u}, \bar{D} \bar{v}\right] \tag{1.26}
\end{align*}
$$

and, for $u \in \mathcal{B}_{k}^{p}, v \in \mathcal{B}_{k}^{q}$, if $k \geqslant 1$,

$$
\begin{equation*}
\hat{D}[u, v]=[\hat{D} u, v]+(-1)^{p}[u, \hat{D} v] . \tag{1.27}
\end{equation*}
$$

Thus \mathcal{B}_{k} is a differential graded Lie algebra for each $k \geqslant 1$. These formulas are direct consequences of (1.22) and (1.23) by use of the Jacobi identity.

For $u \in J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{1}(\mathcal{J})$, we set $\tilde{u}=\left(v^{*} \otimes \mathrm{id}\right) u \in \mathcal{T}^{*} \otimes \tilde{J}_{1}(\mathcal{J}), u_{0}=\pi_{0} u \in J_{0}(\mathcal{J})^{*} \otimes \mathcal{T}$ and $\tilde{u}_{0}=$ $\pi_{0} \tilde{u} \in \mathcal{T}^{*} \otimes \mathcal{T}$.

Lemma 1.3. Let u be a section of $J_{0}(T)^{*} \otimes \tilde{J}_{1}(T)$. Then

$$
\begin{equation*}
\bar{D} u-\frac{1}{2} \pi_{0}[u, u]=0 \tag{1.28}
\end{equation*}
$$

if and only if, for all $\zeta_{1}, \zeta_{2} \in J_{0}(\mathcal{J}), \tilde{\zeta}_{1}=v^{-1} \zeta_{1}, \zeta_{2}=v^{-1} \zeta_{2}$, we have

$$
\begin{equation*}
\left[\tilde{\zeta}_{1}-\tilde{u}_{0}\left(\tilde{\zeta}_{1}\right), \tilde{\zeta}_{2}-\tilde{u}_{0}\left(\tilde{\zeta}_{2}\right)\right]=\left(\mathrm{id}-\tilde{u}_{0}\right)\left\{\left[\zeta_{1}, \tilde{\zeta}_{2}\right]-\nu^{-1}\left(\mathcal{L}\left(u\left(\zeta_{1}\right)\right) \zeta_{2}-\mathcal{L}\left(u\left(\zeta_{2}\right)\right) \zeta_{1}\right)\right\} \tag{1.29}
\end{equation*}
$$

Proof. By (1.5) (with $k=1$) and (1.21) for $\zeta_{1}, \zeta_{2} \in J_{0}(\mathcal{J}), \tilde{\zeta}_{1}=\nu^{-1} \zeta_{1}, \tilde{\zeta}_{2}=\nu^{-1} \zeta_{2}$, we have

$$
\begin{gather*}
\left\langle\zeta_{1} \wedge \zeta_{2}, \bar{D} u-\frac{1}{2} \pi_{0}[u, u]\right\rangle=\zeta_{1} \pi \bar{D} u\left(\zeta_{2}\right)-\zeta_{2} \pi \bar{D} u\left(\zeta_{1}\right)-\tilde{u}_{0}\left(\left[\tilde{\zeta}_{1}, \tilde{\zeta}_{2}\right]\right)-\left[\tilde{u}_{0}\left(\tilde{\zeta}_{1}\right), \tilde{u}_{0}\left(\tilde{\zeta}_{2}\right)\right] \\
 \tag{1.30}\\
+\left(\mathcal{L}\left(u\left(\zeta_{1}\right)\right) \zeta_{2}\right) \pi u_{0}-\left(\mathcal{L}\left(u\left(\zeta_{2}\right)\right) \zeta_{1}\right) \pi u_{0}
\end{gather*}
$$

Next, using (1.16), we have

$$
\begin{aligned}
{\left[\tilde{\zeta}_{1}-\tilde{u}_{0}\left(\tilde{\zeta}_{1}\right), \tilde{\zeta}_{2}-\tilde{u}_{0}\left(\tilde{\zeta}_{2}\right)\right] } & =\left[\zeta_{1}, \tilde{\zeta}_{2}\right]+\left[\tilde{u}_{0}\left(\tilde{\zeta}_{1}\right), \tilde{u}_{0}\left(\tilde{\zeta}_{2}\right)\right] \\
+ & \nu^{-1}\left\{\boldsymbol{\mathcal { L }}\left(u\left(\zeta_{2}\right)\right) \zeta_{1}-\mathcal{L}\left(u\left(\zeta_{1}\right)\right) \zeta_{2}\right\}-\zeta_{1} \bar{\pi} \bar{D} u\left(\zeta_{2}\right)+\zeta_{2} \pi \bar{D} u\left(\zeta_{1}\right)
\end{aligned}
$$

Substituting from this last identity into (1.30), we obtain

$$
\begin{aligned}
& \left\langle\zeta_{1} \wedge \zeta_{2}, \bar{D} u-\frac{1}{2} \pi_{0}[u, u]\right\rangle=-\left[\tilde{\zeta}_{1}-\tilde{u}_{0}\left(\tilde{\zeta}_{1}\right), \tilde{\zeta}_{2}-\tilde{u}_{0}\left(\tilde{\zeta}_{2}\right)\right] \\
& \quad+\left[\tilde{\zeta}_{1}, \tilde{\zeta}_{2}\right]-\tilde{u}_{0}\left[\tilde{\zeta}_{1}, \tilde{\zeta}_{2}\right]-\left\{\mathcal{L}\left(u\left(\zeta_{1}\right)\right) \zeta_{2} \pi\left(v^{-1}-u_{0}\right)-\mathcal{L}\left(u\left(\zeta_{2}\right)\right) \zeta_{1} \pi\left(v^{-1}-u_{0}\right)\right\}
\end{aligned}
$$

and so the vanishing of the left-hand side of (1.30) is equivalent to (1.29).
Following Malgrange [19], we set $X^{3}=X \times X \times X$, let $\mathrm{pr}_{i}: X^{3} \rightarrow X$ be the projection on the i-th factor ($i=1,2,3$), and $\operatorname{pr}_{i j}=\left(\mathrm{pr}_{i}, \mathrm{pr}_{j}\right): X^{3} \rightarrow X \times X$ be the projection onto the product of the i-th and the j-th factors. We denote by $\mathcal{I}^{(l, k)}$ the ideal of $O_{X^{3}}$ generated by $\operatorname{pr}_{12}^{*} \mathcal{J}^{(l)}+\operatorname{pr}_{23}^{*} \mathcal{I}^{(k)}$, where \mathcal{J} is the ideal of functions of $O_{X \times X}$ which vanish on the diagonal Δ of $X \times X$. The support of the sheaf $O_{X^{3}} / \mathcal{J}^{(l+1, k+1)}$ is the diagonal Δ_{2} of X^{3}. A sheaf on X (resp. on Δ_{2}) will be identified with its inverse image by $\mathrm{pr}_{1}: \Delta_{2} \rightarrow X$ (resp. with its direct image by $\left.\Delta_{2} \rightarrow X^{3}\right)$. We identify $J_{l}\left(J_{k}(\mathcal{T})\right)$ with the sheaf of vector fields on X^{3} which are pr_{12}-vertical, modulo $\boldsymbol{J}^{(l+1, k+1)}$. A vector field ξ on X^{3} will be called bidiagonal if it is tangent to $\operatorname{pr}_{23}^{-1}(\Delta)$ and pr_{12}-projectable with $\mathrm{pr}_{12 *}(\xi)$ diagonal on $X \times X$. We denote by $\tilde{J}_{(l, k)}(\mathcal{J})$ the sheaf of bidiagonal vector fields on X^{3}, modulo $\mathcal{Y}^{(l+1, k+1)}$, and by $\tilde{J}_{(l, k)}(T)$ the corresponding vector bundle over X. The mapping which sends a bidiagonal vector field on X^{3} into its pr_{12}-vertical component yields, by passage to the quotient, a vector bundle isomorphism

$$
\nu: \tilde{J}_{(l, k)}(T) \rightarrow J_{l}\left(J_{k}(T)\right)
$$

We identify $J_{l}\left(\tilde{J}_{k}(\mathcal{J})\right)$ with the sheaf of vector fields ξ on X^{3} which are tangent to $\mathrm{pr}_{23}^{-1}(\Delta)$ and are pr_{12}-projectable with $\mathrm{pr}_{12 *}(\xi) \mathrm{pr}_{1}$-vertical on $X \times X$, modulo $\boldsymbol{J}^{(l+1, k+1)}$.

The bracket of vector fields on X^{3} gives, by restriction and passage to the quotient, brackets

$$
\begin{gather*}
\tilde{J}_{(l, k)}(\mathcal{J}) \times{ }_{X} \tilde{J}_{(l, k)}(\mathcal{J}) \rightarrow \tilde{J}_{(l, k)}(\mathcal{J}), \tag{1.31}\\
J_{l}\left(J_{k}(T)\right) \times{ }_{X} J_{l}\left(J_{k}(T)\right) \rightarrow J_{l}\left(J_{k-1}(T)\right), \tag{1.32}\\
J_{l}\left(\tilde{J}_{k}(T)\right) \times{ }_{X} J_{l}\left(\tilde{J}_{k}(T)\right) \rightarrow J_{l-1}\left(\tilde{J}_{k}(T)\right) . \tag{1.33}
\end{gather*}
$$

The brackets (1.32) and (1.33) are defined fiber by fiber in the following way: if ξ, η are sections of $J_{k}(T)$ over a neighborhood of $x \in X$ and $\tilde{\xi}=\nu^{-1} \xi, \tilde{\eta}=\nu^{-1} \eta$, then

$$
\begin{align*}
{\left[j_{l}(\xi)(x), j_{l}(\eta)(x)\right] } & =j_{l}([\xi, \eta])(x) \tag{1.34}\\
{\left[j_{l}(\tilde{\xi})(x), j_{l}(\tilde{\eta})(x)\right] } & =j_{l-1}([\tilde{\xi}, \tilde{\eta}])(x) \tag{1.35}
\end{align*}
$$

where $[\xi, \eta]$ and $[\tilde{\xi}, \tilde{\eta}]$ are defined in terms of the brackets (1.11) and (1.12) respectively. For $k \geqslant 1$, the diagram

$$
\begin{equation*}
J_{k+l}(T) \times{ }_{X} J_{k+l}(T) \longrightarrow J_{k+l-1}(T) \tag{1.36}
\end{equation*}
$$

whose horizontal arrows are given by (1.11) and (1.32), is commutative. If

$$
\bar{\lambda}_{l}: J_{k+l}(T) \rightarrow J_{l}\left(\tilde{J}_{k}(T)\right)
$$

is the composition

$$
J_{k+l}(T) \xrightarrow{\lambda_{l}} J_{l}\left(J_{k}(T)\right) \xrightarrow{J_{l}\left(\nu^{-1}\right)} J_{l}\left(\tilde{J}_{k}(T)\right),
$$

the diagram

$$
\begin{align*}
& J_{k+l}(T) \times{ }_{x} J_{k+l}(T) \longrightarrow J_{k+l-1}(T) \tag{1.37}\\
& \left(\bar{\lambda}_{l}, \bar{\lambda}_{l}\right) \\
& J_{l}\left(\tilde{J}_{k}(T)\right) \times{ }_{x} J_{l}\left(\tilde{J}_{k}(T)\right) \longrightarrow J_{l-1}\left(\tilde{J}_{k}(T)\right),
\end{align*}
$$

whose horizontal arrows are given by (1.11) and (1.33), is commutative. With the bracket (1.31), $\tilde{J}_{(l, k)}(\mathcal{J})$ is a sheaf of Lie algebras. If

$$
\tilde{\lambda}_{l}: \tilde{J}_{k+l}(T) \rightarrow \tilde{J}_{(l, k)}(T)
$$

is the canonical injection equal to $\nu^{-1} \circ \lambda_{l} \circ v$, the corresponding sheaf map is a morphism of sheaves of Lie algebras. The mapping $\tilde{j}_{l}: \tilde{J}_{k}(\mathcal{J}) \rightarrow \tilde{J}_{(l, k)}(\mathcal{J})$ defined by $\nu^{-1} \circ j_{l} \circ v$ is also a morphism of sheaves of Lie algebras.

Lemma 1.4. Let R_{k}, N_{k}, S_{k} be formally integrable differential equations in $J_{k}(T)$. If $\left[R_{k+1}, N_{k+1}\right] \subset S_{k}$, then for all $l \geqslant 0$

$$
\begin{equation*}
\left[R_{k+l+1}, N_{k+l+1}\right] \subset S_{k+l} \tag{1.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\operatorname{Sol}\left(R_{k}\right), \operatorname{Sol}\left(N_{k}\right)\right] \subset \operatorname{Sol}\left(S_{k}\right) \tag{1.39}
\end{equation*}
$$

Proof. The bracket (1.32) induces a bracket

$$
J_{l}\left(R_{k+1}\right) \times_{X} J_{l}\left(N_{k+1}\right) \rightarrow J_{l}\left(S_{k}\right)
$$

since we have $R_{k+l+1}=\left(R_{k+1}\right)_{+l}, N_{k+l+1}=\left(N_{k+1}\right)_{+l}$ and $S_{k+l}=\left(S_{k}\right)_{+l}$, from the commutativity of (1.36) we deduce (1.38). If ξ is a solution of R_{k} and η is a solution of N_{k}, then

$$
\left[j_{k+1}(\xi), j_{k+1}(\eta)\right]=j_{k}([\xi, \eta])
$$

and so $[\xi, \eta]$ is a solution of S_{k}.
Lemma 1.5. Let R_{k}, N_{k} be formally integrable differential equations in $J_{k}(T)$. Then, if $\tilde{R}_{k+l}=\nu^{-1} R_{k+l}$ for $l \geqslant 0$, the following assertions are equivalent:
(a) $\left[R_{k+1}, N_{k+1}\right] \subset N_{k} ;$
(b) $\left[R_{k+l+1}, N_{k+l+1}\right] \subset N_{k+l}$, for all $l \geqslant 0$;
(c) $\left[\tilde{\boldsymbol{R}}_{\boldsymbol{k + 1}}, \boldsymbol{n}_{\boldsymbol{k}}\right] \subset \boldsymbol{n}_{k}$;
(d) $\left[\tilde{\boldsymbol{R}}_{k+l+1}, \boldsymbol{n}_{k+l}\right] \subset \boldsymbol{n}_{k+l}$, for all $l \geqslant 0$.

Proof. The equivalence of (a) and (b) follows from Lemma 1.4. Since $\pi_{k+l}: N_{k+l+1} \rightarrow N_{k+l}$ is surjective, the equivalence of (a) and (c) or of (b) and (d) is deduced from (1.15).

2. Jets of transformations

Consider $E=X \times X$ as a bundle over X via the projection pr_{1} and identify a map f : $X \rightarrow X$ with its graph $f: X \rightarrow X \times X$ and the k-jet $j_{k}(f)(x)$ of f at x with the k-jet $j_{k}(\tilde{f})(x)$ of \tilde{f} at x. In accordance with the usual terminology, we call $f(x)$ the target of $j_{k}(f)(x)$. If $F=j_{k}(f)(b), G=j_{k}(g)(a) \in J_{k}(E)$, where $f: X \rightarrow X, g: X \rightarrow X$ are maps defined on neighborhoods of b and a respectively satisfying $g(a)=b$, then $F \cdot G=j_{k}(f \circ g)(a)$ is a well-defined element of $J_{l c}(E)$.

Let Q_{k} be the open fibered submanifold of $J_{k}(E)$ of jets of order k of local diffeomorphisms $X \rightarrow X$; in fact, $Q_{k}=\pi_{1}^{-1} Q_{1}$, for $k \geqslant 1$. We consider, unless it is explicitly stated to the contrary, Q_{k} to be a bundle over X via the projection "source" $\pi: Q_{k} \rightarrow X$. The multiplication on $J_{k}(E)$ defined above determines a structure of differentiable groupoid on Q_{k}. Let $Q_{k}(a)$ (resp. $Q_{k}(a, b)$) be the set of jets of order k of Q_{k} with source a (resp. with source a and target b).

Consider mappings $F: X \times X \rightarrow X \times X$ of the form (f^{0}, f), where $f: X \times X \rightarrow X$ and f^{0} : $X \rightarrow X$ is defined by $f^{0}(x)=f(x, x)$ for $x \in X$. These mappings preserve Δ and are pr r_{1}-projectable; moreover, we shall say that F is diagonal if, in addition, for each $x \in X$ the germ at x of the mapping $x^{\prime} \mapsto f\left(x, x^{\prime}\right)$ is invertible. To the diagonal mapping F, we associate the section of Q_{k} whose value at x is equal to the jet of order k at x of $x^{\prime} \mapsto f\left(x, x^{\prime}\right)$. Two diagonal mappings F and G determine the same section of Q_{k} if and only if F and G have the same principal part of order k, that is to say if they coincide on Δ together with their partial derivatives of orders not exceeding k. We shall regard a section of Q_{k} as the principal part of a diagonal mapping; such a section $F=\left(f^{0}, f\right)$ is invertible if and only if f^{0} is invertible. We denote by \tilde{Q}_{k} the sub-sheaf of Q_{k} of invertible (étales) elements of Q_{k}. Let Aut (X) be the sheaf of local diffeomorphisms $X \rightarrow X$; if $f \in \operatorname{Aut}(X), j_{k}(f)$ is the principal part of order k of the germ of diagonal mapping $\left(x, x^{\prime}\right) \mapsto\left(f(x), f\left(x^{\prime}\right)\right)$ (see [19]).

Let $Q_{(l, k)}$ be the bundle of jets of order l of sections of \bar{Q}_{k}. The composition of jets assigns to it a structure of groupoid and we denote by $\tilde{Q}_{(l, k)}$ the sheaf of invertible (étales) sections of $Q_{(l, k)}$. The mapping $j_{l}: \tilde{Q}_{k} \rightarrow \tilde{Q}_{(l, k)}$ induced by $j_{l}: Q_{k} \rightarrow J_{l}\left(Q_{k}\right)$ is a homomorphism of groupoids; the natural inclusion $\lambda_{l}: Q_{k+l} \rightarrow Q_{(l, k)}$ is a homomorphism of groupoids.

The action of diagonal automorphisms of $X \times X$ on vector fields gives, by passage to the quotient, for each section F of \tilde{Q}_{k+1} the following mappings:

$$
\begin{gather*}
F: J_{k}(T)_{a} \rightarrow J_{k}(T)_{b}, \tag{2.1}\\
F: \tilde{J}_{k+1}(T)_{a} \rightarrow \tilde{J}_{k+1}(T)_{b}, \tag{2.2}\\
F: \breve{J}_{k}(T)_{a} \rightarrow \tilde{J}_{k}(T)_{b}, \tag{2.3}
\end{gather*}
$$

where $a \in X$ and $b=$ target $F(a)$. The mapping (2.1) depends only on $F(a)$, while the mappings (2.2) and (2.3) depend only on $j_{1}(F)(a) \in Q_{(1, k+1)}$. Thus (2.2) gives us a mapping

$$
Q_{(1, k)} \times{ }_{X} \tilde{J}_{k c}(T) \rightarrow \tilde{J}_{k}(T)
$$

sending (H, ξ) into $H(\xi)$; if $F \in Q_{k+1}(a, b)$, then the mapping $\lambda_{1} F: \tilde{J}_{k}(T)_{a} \rightarrow \tilde{J}_{k}(T)_{b}$ is given by (see [19], formula (6.2))

$$
\begin{equation*}
\lambda_{1} F^{\prime}(\xi)=\nu^{-1} F(\nu \xi), \quad \xi \in \tilde{J}_{k}(T)_{a} \tag{2.4}
\end{equation*}
$$

However the restriction of (2.2) to $J_{k+1}^{0}(T)=J_{k+1}(T) \cap \tilde{J}_{k+1}(T)$ does not depend on the 1-jet of $F \in \bar{Q}_{k+1}$ but only on $F(a)$; thus we have a mapping

$$
Q_{k} \times{ }_{x} J_{k}^{0}(T) \rightarrow J_{k}^{0}(T)
$$

We have a canonical section I_{k} of Q_{k} over X sending $x \in X$ into $I_{k}(x)$, the k-jet of the identity mapping of X at x. If F_{t} is a one-parameter family of sections of \tilde{Q}_{k}, with $F_{0}=I_{k}$, then $\xi=d F_{t} /\left.d t\right|_{t=0} \in \Gamma\left(X, \tilde{J}_{k}(T)\right)$ where the sections of $\tilde{J}_{k}(T)$ are regarded as diagonal vec-
tor fields on $X \times X$; every section of $\tilde{J}_{k}(T)$ can be written in this way locally. We can also regard $\xi(x)$ as a vector tangent to $Q_{k}(x)$ at $I_{k}(x)$; hence we have an isomorphism

$$
\tilde{J}_{k}(T)_{x} \xrightarrow{\sim} V_{I_{k}(x)}\left(Q_{k}\right)
$$

which enables us to identify these two spaces. In fact, if f_{t} is a one-parameter family of local diffeomorphisms of X defined on a neighborhood of x with $f_{0}=\mathrm{id}$, and $\xi=d f_{t}|d|_{t=0}$ is its infinitesimal generator, then the image of $\tilde{j_{k}}(\xi)(x)$ under this map is the tangent vector $d j_{k}\left(f_{t}\right)(x) /\left.d t\right|_{t=0}$ to Q_{k}.

If $G \in Q_{k}(a, b)$, then the mapping $Q_{k}(b) \rightarrow Q_{k}(a)$ sending F into $F \cdot G$ is a bijection. Therefore we obtain an isomorphism

$$
T_{F}\left(Q_{k}(b)\right) \rightarrow T_{F \cdot G}\left(Q_{k}(a)\right)
$$

or

$$
V_{F}\left(Q_{k}\right) \rightarrow V_{F \cdot G}\left(Q_{k}\right)
$$

sending ξ into $\xi \cdot G$. Taking $F=I_{k}(b)$, we obtain the isomorphism

$$
\tilde{J}_{k}(T)_{b} \rightarrow V_{G}\left(Q_{k}(a)\right)
$$

If $\tilde{\xi} \in \Gamma\left(X, \tilde{J}_{k}(T)\right)$, the vector field $\tau_{k}(\tilde{\xi})$ on Q_{k} whose value at $F \in Q_{k}$ is $\tilde{\xi}(b) \cdot F$, where $b=$ target F, is clearly invariant under this right action of Q_{k}. Moreover τ_{k} is a morphism of Lie algebras from $\Gamma\left(X, \tilde{J}_{k}(T)\right)$ to the algebra of vector fields on Q_{k}.

Let G be a section of \tilde{Q}_{k}. For $a \in X$ the $\operatorname{map} Q_{k}(a) \rightarrow Q_{k}(a)$ sending F into $G(b) \cdot F$, where $F \in Q_{k}(a)$ and $b=$ target F, is an automorphism of $Q_{k}(a)$. Therefore we obtain mappings

$$
\begin{aligned}
& T_{F}\left(Q_{k}\right) \rightarrow T_{G(b) \cdot F}\left(Q_{k}\right), \\
& V_{F}\left(Q_{k}\right) \rightarrow V_{G(b) \cdot F}\left(Q_{k}\right),
\end{aligned}
$$

sending ξ into $G \xi$; this left action on $V\left(Q_{k}\right)$ commutes with the right action defined above. These mappings depend only on $H=j_{1}(G)(b) \in Q_{(1 . k)}$ and we write $H \xi=G \xi$, for $\xi \in T_{F}\left(Q_{k}\right)$. Taking $F=I_{k}(a)$, we obtain the isomorphism

$$
\tilde{J}_{k}(T)_{a} \rightarrow V_{G(a)}\left(Q_{k}\right)
$$

which depends only on the 1 -jet of G at a, and a mapping

$$
Q_{(1, k)} \times_{x} \tilde{J}_{k}(T) \rightarrow V\left(Q_{k}\right)
$$

sending (H, ξ) into $H \xi$. The isomorphism (2.2) is given by

$$
\begin{equation*}
F(\xi)=F \cdot \xi \cdot F(a)^{-1} \tag{2.5}
\end{equation*}
$$

for $F \in \tilde{Q}_{k}, \xi \in \tilde{J}_{k}(T)_{a}$. We therefore obtain, by (2.4), the formula

$$
\begin{equation*}
\lambda_{1} F(\xi)=\lambda_{1} F \cdot \xi \cdot \pi_{k} F^{-1}=\nu^{-1} F(\nu \xi) \tag{2.6}
\end{equation*}
$$

for $F \in Q_{k+1}(a), \xi \in \tilde{J}_{k}(T)_{a}$ (see [19]).
For $x \in X$, we have an isomorphism

$$
\begin{equation*}
\tilde{J}_{(l, k)}(T)_{x} \longrightarrow V_{j_{l}\left(I_{k}\right)(x)}\left(Q_{(l, k)}\right) \tag{2.7}
\end{equation*}
$$

which enables us to identify these two spaces. In fact, if F_{t} is a one-parameter family of sections of \tilde{Q}_{k} over a neighborhood U of x, with $F_{0}=I_{k}$, then $\xi=d F_{t} /\left.d t\right|_{t=0} \in \Gamma\left(U, J_{k}(T)\right)$, and (2.7) sends $\tilde{j}_{l}(\xi)(x)$ into the tangent vector $d j_{l}\left(F_{t}\right)(x) /\left.d t\right|_{t=0}$ to $Q_{(l, k)}$. If $F \in Q_{(l, k)}$ and $F_{0}=\pi_{0} F \in Q_{k}$, with source $F_{0}=a$, target $F_{0}=b$, the mapping $Q_{(l, k)}(b) \rightarrow Q_{(l, k)}(a)$ sending G into $G \cdot F$ is a bijection. Therefore we obtain an isomorphism

$$
T_{G}\left(Q_{(l, k)}(b)\right) \rightarrow T_{G \cdot F}\left(Q_{(l, k)}(a)\right)
$$

or

$$
V_{G}\left(Q_{(l, k)}\right) \rightarrow V_{G \cdot F}\left(Q_{(l, k)}\right)
$$

Taking $G=j_{l}\left(I_{k}\right)(b)$, we obtain the isomorphism

$$
\tilde{J}_{(l, k)}(T)_{b} \rightarrow V_{F}\left(Q_{(l, k)}\right)
$$

If $F \in Q_{k+l}$ with $b=$ target F, it is easily seen that the diagram

whose horizontal arrows are given by the right action of F on Q_{k+l} and of $\lambda_{l} F$ on $Q_{(l, k)}$ respectively, commutes. If $\tilde{\xi} \in \Gamma\left(X, \tilde{J}_{(l, k)}(T)\right)$, the vector field $\tau_{(l, k)}(\tilde{\xi})$ on $Q_{(l, k)}$ whose value at $F \in Q_{(l, k)}$ is $\tilde{\xi}(b) \cdot F$, where $b=$ target $\pi_{0} F$, is clearly invariant under the right action of $Q_{(l, k)}$. Moreover, $\tau_{(l, k)}$ is a morphism of Lie algebras from $\Gamma\left(X, \tilde{J}_{(l, k)}(T)\right)$ to the algebra of vector fields on $Q_{(l, k)}$.

If $F \in J_{k}(E)$ and $f: X \rightarrow X$ is a mapping defined on a neighborhood of $x \in X$ such that $F=j_{k}(f)(x)$, we denote by

$$
F_{*}: T_{x} \longrightarrow T_{n_{k-1} F}\left(J_{k-1}(E)\right)
$$

the map $j_{k-1}(f)_{*}$; in fact, F_{*} depends only on F and determines F uniquely. If $k=1$, then $F_{*}: T_{x} \rightarrow T_{\tilde{f}(x)}(E)=T_{x} \times T_{f(x)}$ is the graph of the map $f=f_{*}: T_{x} \rightarrow T_{f(x)}$, the differential of f at x, which is given by (2.2) when f is a local diffeomorphism. The map $F: J_{0}(T)_{x} \rightarrow$ $J_{0}(T)_{f(x)}$ sending ξ into $F \xi=v\left(f v^{-1} \xi\right)$ is the map (2.1) when $k=0$ and f is a local diffeomorphism. We remark that $F \in Q_{1}$ if and only if $f: T_{x} \rightarrow T_{f(x)}$ is invertible.

According to Proposition 5.1 of [4], $J_{k}(E)$ is an affine bundle over $J_{k-1}(E)$ whose associated vector bundle over $J_{k-1}(E)$ is induced from the vector bundle

$$
S^{k} T^{*} \otimes_{E} V(E)=\left(\mathrm{pr}_{1}^{-1} S^{k} T^{*}\right) \otimes_{E}\left(\mathrm{pr}_{2}^{-1} T\right)
$$

over E, since $V(E)$ can be identified with $\mathrm{pr}_{2}^{-1} T$. If $k=1$ and $j_{1}(f)(x) \in J_{1}(E), u \in T_{x}^{*} \otimes T_{f(x)}$, then

$$
\begin{equation*}
\left(j_{1}(f)(x)+u\right)_{*} \tilde{\xi}=(\tilde{\xi}, f \tilde{\xi}+u(\tilde{\xi})), \quad \tilde{\xi} \in T_{x} \tag{2.9}
\end{equation*}
$$

Hence $j_{1}(f)(x)+u$ belongs to Q_{1} if and only if $f+u: T_{x} \rightarrow T_{f(x)}$ is invertible.
We now examine the compatibility relations between the multiplication on $J_{k}(E)$ and the operations on $J_{k}(E)$ given by its structure of affine bundle over $J_{k-1}(E)$. We assume that $k \geqslant 1$.

Proposition 2.1. Let $F, G \in J_{k}(E)$ where source $G=a$, target $G=b=$ source F, target $F=c$.
(i) If $u \in S^{k} T_{a}^{*} \otimes T_{b}$, then

$$
\begin{equation*}
F \cdot(G+u)=F \cdot G+\left(\mathrm{id} \otimes v^{-1} \circ \pi_{1} F \circ v\right) u, \tag{2.10}
\end{equation*}
$$

where $\left(\mathrm{id} \otimes v^{-1} \circ \pi_{\mathrm{I}} F \circ v\right) u \in S^{k} T_{a}^{*} \otimes T_{c}$.
(ii) If $u \in S^{k} T_{b}^{*} \otimes T_{c}$, then

$$
\begin{equation*}
(F+u) \cdot G=F \cdot G+\left(v^{*} \circ \pi_{1} G \circ v^{*-1} \otimes \mathrm{id}\right) u \tag{2.11}
\end{equation*}
$$

where $\left(\nu^{*} \circ \pi_{1} G \circ \nu^{*-1} \otimes \mathrm{id}\right) u \in S^{k} T_{a}^{*} \otimes T_{c}$.
(iii) Let $u \in \mathbb{S}^{k} T_{a}^{*} \otimes T_{b}$ and assume that $G \in Q_{k}$. If $k>1$, then $G+u \in Q_{k}$ and

$$
\begin{equation*}
(G+u)^{-1}=G^{-1}-\left(\nu^{*} \circ \pi_{1} G^{-1} \circ \nu^{*-1} \otimes \nu^{-1} \circ \pi_{1} G^{-1} \circ \nu\right) u \tag{2.12}
\end{equation*}
$$

where $\left(\nu^{*} \circ \pi_{1} G^{-1} \circ \nu^{*-1} \otimes \nu^{-1} \circ \pi_{1} G^{-1} \circ v\right) u \in S^{k} T_{b}^{*} \otimes T_{a}$. If $k=1$, then $G+u \in Q_{1}$ if and only if $G+\nu \circ u \circ \nu^{-1}: J_{0}(T)_{a} \rightarrow J_{0}(T)_{b}$ is invertible; if this condition holds then

$$
\begin{equation*}
(G+u)^{-1}=G^{-1}-\left[v^{*} \circ G^{-1} \circ v^{*-1} \otimes v^{-1} \circ\left(G+v \circ u \circ v^{-1}\right)^{-1} \circ \nu\right] u, \tag{2.13}
\end{equation*}
$$

where $\left[\nu^{*} \circ G^{-1} \circ \nu^{*-1} \otimes \nu^{-1} \circ\left(G+\nu \circ u \circ \nu^{-1}\right)^{-1} \circ \nu\right] u \in T_{b}^{*} \otimes T_{a}$.
Proof. (i) Let $f: X \rightarrow X$ be a map such that $j_{k}(f)(b)=F$. Consider the morphism of fibered manifolds $J_{k}(f): J_{k}(E) \rightarrow J_{k}(E)$ over X sending H into $j_{k}(f)(x) \cdot H$, with $x=\operatorname{target} H$; in fact, $J_{k}(f)$ is the k-th prolongation of the map id $\times f: E \rightarrow E$ over \bar{X}, and $J_{k}(f) H=F \cdot H$ when target $H=6$. Hence, by Proposition 5.6 of $[4], J_{k}(f)$ is a morphism of affine bundles over $J_{k-1}(f): J_{k-1}(E) \rightarrow J_{k-1}(E)$ whose associated morphism of vector bundles is induced by the endomorphism id $\otimes f$ of $\left(\operatorname{pr}_{1}^{-1} S^{k} T^{*}\right) \otimes_{E}\left(\mathrm{pr}_{2}^{-1} T\right)$ over the map id $\times f$. Therefore

$$
J_{k}(f)(G+u)=J_{k}(f) G+(\mathrm{id} \otimes f) u
$$

which gives us (2.10).
(ii) It is sufficient to verify (2.11) when $u \in S^{k} T_{b}^{*} \otimes T_{c}$ is of the form $\varepsilon^{-1} j_{k}(h)(b) \otimes \xi$ where h is a local real-valued function on X satisfying $j_{k-1}(h)(b)=0$. Let $F=j_{k}(f)(b), G=$ $j_{k}(g)(a)$, where f, g are local maps $X \rightarrow X$; let $f: U \times \mathbf{R} \rightarrow X$ be a one-parameter family of maps of a neighborhood U of b into X such that $f(x, 0)=f(x)$, for $x \in U$, and $d f(b, t) /\left.d t\right|_{t=0}=\xi$. Then according to Lemma 5.1 and Proposition 5.1 of [4]

$$
F+u=j_{k}(\bar{f}(x, h(x)))(b)
$$

and

$$
(F+u) \cdot G=j_{k}(\tilde{f}(g(x), h(g(x))))(a)=j_{k}(f \circ g)(a)+\varepsilon^{-1} j_{k}(h \circ g)(a) \otimes \xi
$$

since the local map $\varphi=\bar{f} \circ(g \times \mathrm{id}): X \times \mathbf{R} \rightarrow X$ is a one-parameter family of maps $X \rightarrow X$ defined on a neighborhood of a such that $\varphi(x, 0)=f(g(x))$ and $d \varphi(a, t) /\left.d t\right|_{t=0}=\xi$. Since $\varepsilon^{-1} j_{k}(h \circ g)(a)=g^{*} \varepsilon^{-1} j_{k}(h)(b)$, we obtain (2.11).
(iii) We suppose first that $k>\mathrm{I}$. We have by (2.10)

$$
I_{k}(a)=(G+u)^{-1} \cdot(G+u)=(G+u)^{-1} \cdot G+\left(\operatorname{id} \otimes v^{-1} \circ \pi_{1} G^{-1} \circ v\right) u
$$

Hence

$$
(G+u)^{-1}=\left[I_{k}(a)-\left(\mathrm{id} \otimes v^{-1} \circ \pi_{1} G^{-1} \circ v\right) u\right] \cdot G^{-1}
$$

and therefore, by (2.11), we obtain the formula (2.12). We now consider the case $k=1$; then $G+u: J_{0}(T)_{a} \rightarrow J_{0}(T)_{b}$ is given, according to (2.9), by

$$
(G+u) \xi=\left(G+\nu \circ u \circ \nu^{-1}\right) \xi
$$

for $\xi \in J_{0}(T)_{\alpha}$. Hence $G+u \in Q_{1}$ if and only if this map is invertible. Assume that this is the case; the mapping

$$
(G+u)^{-1}: J_{0}(T)_{b} \rightarrow J_{0}(T)_{a}
$$

is given by

$$
\begin{equation*}
(G+u)^{-1}=\left(G+\nu \circ u \circ v^{-1}\right)^{-1} \tag{2.14}
\end{equation*}
$$

By (2.10),

$$
I_{1}(a)=(G+u)^{-1} \cdot(G+u)=(G+u)^{-1} \cdot G+\left(\mathrm{id} \otimes v^{-1} \circ(G+u)^{-1} \circ v\right) u
$$

and hence
$(G+u)^{-1}=\left[I_{1}(a)-\left(\mathrm{id} \otimes \nu^{-1} \circ(G+u)^{-1} \circ \nu\right) u\right] \cdot G^{-1}=G^{-1}-\left(\nu^{*} \circ G^{-1} \circ \nu^{*-1} \otimes \nu^{-1} \circ(G+u)^{-1} \circ \nu\right) u$, by (2.11). Substituting into this formula from (2.14), we obtain (2.13).

Assume that $k \geqslant 0$. By Proposition 5.1 of [4], $J_{1}\left(Q_{k}\right)$ is an affine bundle over Q_{k} whose associated vector bundle is $T^{*} \otimes_{Q_{k}} V\left(Q_{k}\right)$, and $Q_{(1, k)}$ is an open submanifold of $J_{1}\left(Q_{k}\right)$. Identifying Q_{0} with $E=X \times X$, then $J_{1}\left(\pi_{0}\right): J_{1}\left(Q_{k}\right) \rightarrow J_{1}(E)$ is the map sending $j_{1}(F)(x)$ into $j_{1}\left(\pi_{0} F\right)(x)$, where F is a section of Q_{k} over a neighborhood of x. If $f=\pi_{0} F$, then $j_{1}(F)(x)$ belongs to $Q_{(1, k)}$ if and only if $j_{1}(f)(x) \in Q_{1}$, that is if $f: T_{x} \rightarrow T_{f(x)}$ is invertible. Thus $Q_{(1.0)}=$ Q_{1} and $Q_{(1, k)}=J_{1}\left(\pi_{0}\right)^{-1} Q_{1}$. If $F \in Q_{k}$, with source $F=a$, target $F=b$, let

$$
\begin{aligned}
T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b} & \rightarrow T_{a}^{*} \otimes V_{F}\left(Q_{k}\right) \\
u & \mapsto u \boldsymbol{F}
\end{aligned}
$$

be the isomorphism sending $\alpha \otimes \eta$ into $\alpha \otimes(\eta F)$. If $H \in J_{1}\left(Q_{k}\right)$ with $\pi_{0} H=F$ and $u \in T_{a}^{*} \otimes$ $\tilde{J}_{k}(T)_{b}$, then the affine bundle structure of $J_{1}\left(Q_{k}\right)$ over Q_{k} gives an element $H+u F$ of $J_{1}\left(Q_{k}\right)$ with $\pi_{0}(H+u F)=F$. We examine the compatibility relations between the structure of affine bundle of $J_{1}\left(Q_{k}\right)$ over Q_{k} and the structure of groupoid of $Q_{(1, k)}$.

Proposition 2.2. Let $F \in Q_{k}$ with source $F=a$, target $F=b$.
(i) Let $H \in Q_{(1, k)}$ with $\pi_{0} H=F$ and $J_{1}\left(\pi_{0}\right) H=j_{1}(f)(a)$, where f is a local diffeomorphism of X defined on a neighborhood of a. If $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$, then $H+u F$ belongs to $Q_{(1, k)}$ if and only if $f+\pi_{0} u: T_{a} \rightarrow T_{b}$ is invertible.
(ii) Let $H \in Q_{(1, k)}$ with $\pi_{0} H=F$, and $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$. If $H+u \mathcal{F}^{\prime} \in Q_{(1, k)}$, we have

$$
\begin{equation*}
(H+u F)(\xi)=H(\xi)+\left(\pi_{0} \xi\right) \bar{\wedge} u \tag{2.15}
\end{equation*}
$$

for all $\xi \in \tilde{J}_{k}(T)_{a}$.
(iii) If $H_{1}, H \in Q_{(1, k)}$ with $\pi_{0} H_{1}=\pi_{0} H=F$, then $H_{1}=H$ if and only if $H_{1}(\xi)=H(\xi)$ for all $\xi \in \tilde{J}_{k}(T)_{a}$.
(iv) If $F_{1} \in Q_{k}$ with source $F_{1}=b$, target $F_{1}=c$ and $H_{1}, H \in Q_{(1, k)}$ with $\pi_{0} H_{1}=F_{1}, \pi_{0} H=F$, then

$$
H_{1} \cdot(H+u F)=H_{1} \cdot H+\left[\left(\mathrm{id} \otimes H_{1}\right) u\right] F_{1} \cdot F
$$

for $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$ such that $H+u F \in Q_{(1, k)}$, where in the second term of the right member H_{1} is the map $\tilde{J}_{k}(T)_{b} \rightarrow \tilde{J}_{k}(T)_{c} ;$ furthermore

$$
\left(H_{1}+v F_{1}\right) \cdot H=H_{1} \cdot H+[(f \otimes \mathrm{id}) \cdot v] F_{1} \cdot F
$$

for $v \in T_{b}^{*} \otimes \tilde{J}_{k}(T)_{c}$ such that $H_{1}+v F_{1} \in Q_{(1, k)}$.
Proot. (i) We have $H+u F \in Q_{(1, k)}$ if and only if $J_{1}\left(\pi_{0}\right)(H+u F) \in Q_{1}$. By Proposition 5.4 of [4], $J_{1}\left(\pi_{0}\right): J_{1}\left(Q_{k}\right) \rightarrow J_{1}(E)$ is a morphism of affine bundles over $\pi_{0}: Q_{k} \rightarrow E$ whose associated morphism of vector bundles $T^{*} \otimes_{Q_{k}} V\left(Q_{k}\right) \rightarrow \mathrm{pr}_{1}^{-1} I^{*} \otimes_{E} \mathrm{pr}_{2}^{-1} T$ sends $u F$ into (id $\left.\otimes \pi_{0 *}\right)(u F)=\pi_{0} u$, if $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$. Therefore

$$
J_{1}\left(\pi_{0}\right)(H+u F)=J_{1}\left(\pi_{0}\right) H+\left(\mathrm{id} \otimes \pi_{0 *}\right) u F=j_{1}(f)(a)+\pi_{0} u
$$

and $H+u F \in Q_{(1, k)}$ if and only if $j_{1}(f)(a)+\pi_{0} u \in Q_{1}$, from which we deduce (i).
(ii) If $H_{1}=H+u F \in Q_{(1, k)}$ then, by formula (2.4) of [8], we have for $\xi \in \tilde{J}_{k}(T)_{a}$,

$$
H_{1}(\xi)-H(\xi)=\left(\pi_{0} \xi\right) \bar{\wedge}\left(\left(H_{1}-H\right) F^{-1}\right)=\left(\pi_{0} \xi\right) \pi u
$$

since $H_{1}-H=u F \in T_{a}^{*} \otimes V_{F}\left(Q_{k}\right)$, from which the identity (2.15) follows.
(iii) We can write $H_{1}=H+u F$ for a suitable $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$. If $H_{1}(\xi)=H(\xi)$ for all $\xi \in \tilde{J}_{k}(T)_{a}$, we conclude from (2.15) that $u=0$ and hence $H_{1}=H$.
(iv) If $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$ and $H+u F \in Q_{(1, k)}$, then for $\xi \in \tilde{J}_{k}(T)_{a}$ we have by (2.15)

$$
\begin{aligned}
H_{1}((H+u F)(\xi)) & =H_{1}\left(H(\xi)+\pi_{0}(\xi) \bar{\wedge} u\right) \\
& =H_{1}(H(\xi))+H_{1}\left(\pi_{0}(\xi) \bar{\wedge} u\right)=\left(H_{1} \cdot H+\left[\left(\mathrm{id} \otimes H_{1}\right) u\right] F_{1} \cdot F\right)(\xi)
\end{aligned}
$$

If $v \in T_{b}^{*} \otimes \tilde{J}_{k}(T)_{c}$ and $H_{1}+v F_{1} \in Q_{(1 . k)}$, then for $\xi \in \tilde{J}_{k}(T)_{a}$ we have by (2.15)

$$
\begin{aligned}
\left(H_{1}+v F_{1}\right)(H(\xi)) & =H_{1}(H(\xi))+\left(\pi_{0} H(\xi)\right) \pi v \\
& =H_{1}(H(\xi))+\left(\pi_{0} \xi\right) \pi[(f \otimes \mathrm{id}) v]=\left(H_{1} \cdot H+[(f \otimes \mathrm{id}) v] F_{1} \cdot F\right)(\xi) .
\end{aligned}
$$

From these two identities and (iii) we deduce the formulas of (iv).
Assume that $k \geqslant 1$. Let $v\left(Q_{k}\right)$ be the sub-bundle of vectors of $V\left(Q_{k}\right)$ whose projection in $V\left(Q_{k-1}\right)$ vanishes. Then, for $a \in X$, we see that $v_{T_{k}(a)}\left(Q_{k}\right)$ is identified with $S^{k} J_{0}(T)_{a}^{*} \otimes$ $J_{0}(T)_{a}$ when we identify $V_{I_{k}(a)}\left(Q_{k}\right)$ with $\tilde{J}_{k}(T)_{a}$. The structure of affine bundle of $J_{k}(E)$ over $J_{k-1}(E)$ gives us an isomorphism for $G \in Q_{k}$, with source $G=a$, target $G=b$,

$$
\mu(G): S^{k} T_{a}^{*} \otimes T_{b} \rightarrow v_{G}\left(Q_{k}\right)
$$

sending u into $d(G+t u) /\left.d t\right|_{t=0}$, where $t \in \mathbf{R}$. One verifies easily that, for $a \in X$, the diagram

is commutative, where the vertical arrow is the natural identification. If $G \in Q_{k}$, with source $G=a$, target $G=b$, then the diagram
is commutative. Indeed, if $u \in S^{k} T_{a}^{*} \otimes T_{b}$, we have by (2.11)

$$
\begin{aligned}
(\mu(G) u) G^{-1} & =\left.\frac{d}{d t}(G+t u) \cdot G^{-1}\right|_{t=0}=\left.\frac{d}{d t}\left(I_{h}(b)+t\left(\nu^{*} \circ \pi_{1} G^{-1} \circ v^{*-1} \otimes \mathrm{id}\right) u\right)\right|_{t=0} \\
& =\mu\left(I_{k}(b)\right)\left(\nu^{*} \circ \pi_{1} G^{-1} \circ \nu^{*-1} \otimes \mathrm{id}\right) u
\end{aligned}
$$

and so the commutativity of (2.17) follows from that of (2.16).
Proposition 2.3. Assume that $k \geqslant 0$.
(i) Let $F \in Q_{k+1}$, with source $F=a$, target $F=b$, and $u \in S^{k+1} T_{a}^{*} \otimes T_{b}$; if $F+u \in Q_{k+1}$, then,

$$
\begin{equation*}
\lambda_{1}(F+u)=\lambda_{1} F+v G, \quad \text { for } k \geqslant 1 \tag{2.18}
\end{equation*}
$$

where $G=\pi_{k} F$ and $v=\left(\mathrm{id} \otimes \pi_{1} G^{-1} \circ \nu^{*-1} \otimes v\right) \delta u \in T_{a}^{*} \otimes S^{k} J_{0}(T)_{b}^{*} \otimes J_{0}(T)_{b}$, and for $\xi \in J_{k}(T)_{a}$

$$
\begin{gather*}
(F+u) \xi=F \xi+\left(\pi_{0} \xi\right) \bar{\wedge}\left(v^{*-1} \otimes \pi_{1} G^{-1} \circ v^{*-1} \otimes v\right) \delta u, \quad \text { for } k \geqslant 1, \tag{2.19}\\
(F+u) \xi=F \xi+\xi \bar{\wedge}\left(v^{*-1} \otimes v\right) u, \quad \text { for } k=0 . \tag{2.20}
\end{gather*}
$$

(ii) If $F_{1}, F \in Q_{t+1}$, with source $F_{1}=$ source $F=a$, target $F_{1}=$ target $F=b$, then $F_{1}=F$ if and only if $F_{1} \xi=F \xi$ for all $\xi \in J_{k}(T)_{a}$.

Proof. (i) First assume that $k \geqslant 1$. According to Proposition 5.6 of [4], $\lambda_{1}: J_{k+1}(E) \rightarrow$ $J_{1}\left(J_{k}(E)\right)$ is a morphism of affine bundles over $J_{k}(E)$ and

$$
\lambda_{1}(F+u)=\lambda_{1} F+(\mathrm{id} \otimes \mu(G)) \delta u
$$

for $F \in Q_{k+1}$, with source $F=a$, target $F=b$, and $u \in S^{k+1} T_{a}^{*} \otimes T_{b}$, where $G=\pi_{k} F$ and $\delta u \in T_{a}^{*} \otimes S^{k} T_{a}^{*} \otimes T_{b}$. Now (2.18) follows from the commutativity of (2.17) and, using (2.4), we see that (2.19) is a direct consequence of (2.18) and (2.15). For $k=0$, by (2.4) we deduce (2.20) from (2.9).
(ii) Assume that $F_{1}, F \in Q_{k+1}$ satisfy $F_{1} \xi=F \xi$ for all $\xi \in J_{k}(T)_{a}$. We prove that $F_{1}=F$ by induction on k. Let $k \geqslant 0$ and suppose that, if $k \geqslant 1$, our assertion holds for $k-1$. If $k \geqslant 1$, we have $\pi_{k-1} F_{1}=\pi_{k-1} F$ by our induction hypothesis. Therefore we can always write $F_{1}=F+u$, with $u \in S^{k+1} T_{a}^{*} \otimes T_{b}$. From (2.20) if $k=0$ and (2.19) if $k \geqslant 1$, we conclude that $u=0$ and that $F_{1}=F$.

For $k \geqslant 0$, let Q_{k+1}^{k} be the bundle of the $G \in Q_{k+1}$ satisfying $\pi_{k} G=I_{k}(a)$, where $a=$ source G. Assume that $k \geqslant 1$. The bundle Q_{k+1}^{k} is an affine bundle over X whose associated vector bundle is $S^{k+1} T^{*} \otimes T$; it possesses a canonical section I_{k+1}, which induces a bijection

$$
Q_{k+1}^{k} \rightarrow S^{k+1} T^{*} \otimes T
$$

sending $G \in Q_{k+1}^{k}(a)$ into $G-I_{k+1}(a)$. Composing this mapping with

$$
v^{*-1} \otimes v: S^{k+1} T^{*} \otimes T \rightarrow S^{k+1} J_{0}(T)^{*} \otimes J_{0}(T)
$$

we obtain a bijection

$$
\partial: Q_{k+1}^{k} \rightarrow S^{k+1} J_{0}(T)^{*} \otimes J_{0}(T)
$$

which is an isomorphism of bundles of Lie groups over X, by Proposition 2.1, (i) and (ii). For $G \in Q_{k+1}^{k}(a)$, we have
and

$$
G_{*}-I_{k+1}(a)_{*}: T_{a} \rightarrow v_{1_{k}(a)}\left(Q_{k}\right)
$$

$$
\begin{equation*}
G_{*}-I_{k+1}(a)_{*}=\delta \partial G, \tag{2.2I}
\end{equation*}
$$

by the definition of ∂ (see [4], §5).
For $k \geqslant 0$, let $Q_{(1, k)}^{0}$ be the set of the $G \in Q_{(1, k)}$ which project in Q_{k} onto I_{k}. The bundle $Q_{(1, k)}^{0}$ has a canonical section $j_{1}\left(I_{k}\right)=\lambda_{1}\left(I_{k+1}\right)$ over X and we therefore obtain the injection

$$
\partial: Q_{(1, k)}^{0} \rightarrow T^{*} \otimes \tilde{J}_{k}(T)
$$

sending $H \in Q_{(1, k)}^{0}(a)$ into $H-j_{1}\left(I_{k}\right)(a)$, whose image is, by Proposition 2.2, (i),

$$
\left(T^{*} \otimes \tilde{J}_{k}(T)\right)^{\wedge}=\left\{u \in T^{*} \otimes \tilde{J}_{k}(T) \mid \mathrm{id}+\pi_{0} u: T \rightarrow T \text { is invertible }\right\}
$$

By (2.18), for $k \geqslant 1$ the diagram

is commutative. For $k=0, \lambda_{1}: Q_{1}^{0} \rightarrow Q_{(1,0)}^{0}$ is a bijection and we define $\partial: Q_{1}^{0} \rightarrow J_{0}(T)^{*} \otimes J_{0}(T)$ so that the diagram (2.22) is commutative, where $\delta=\nu^{*} \otimes \nu^{-1}$. Then (2.21) holds with $k=0$.

We now list fundamental formulas which will be used in the sequel (see [19], [18]). We have the following non-linear Spencer complex, a finite form of the initial portion of (1.3) (with T replacing E and $k+1$ replacing k):

$$
\begin{equation*}
\operatorname{Aut}(X) \xrightarrow{j_{k+1}} \tilde{Q}_{k+1} \xrightarrow{\mathcal{D}}\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge} \xrightarrow{\mathcal{D}_{1}} \wedge^{2} \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{J}) \tag{2.23}
\end{equation*}
$$

which is exact, where (finite form of (1.22))

$$
\begin{gather*}
D F=\chi-F^{-1}(\chi) \in \mathcal{T}^{*} \otimes \breve{J}_{k}(\mathcal{J}), \tag{2.24}\\
\mathcal{D} F=F^{-1}(\nu)-\nu \in \tilde{J}_{k}(\mathcal{J})^{*} \otimes J_{k}(\mathcal{J}), \tag{2.25}
\end{gather*}
$$

for $F \in \tilde{Q}_{k+1}$, and

$$
\begin{equation*}
\mathcal{D}_{1} u=D u-\frac{1}{2}[u, u], \quad u \in \mathcal{J}^{*} \otimes J_{k}(\mathcal{J}) \tag{2.26}
\end{equation*}
$$

and

$$
\left(T^{*} \otimes J_{k}(T)\right)^{\wedge}=\left\{u \in T^{*} \otimes J_{k}(T) \mid v+\pi_{0} u: T \rightarrow J_{0}(T) \text { is invertible }\right\}
$$

We have (finite form of (1.2))
and hence also

$$
\begin{equation*}
\partial\left[\left(\lambda_{1} F\right)^{-1} \cdot j_{1}\left(\pi_{\kappa} F\right)\right]=\left(\mathrm{id} \otimes v^{-1}\right) D F, \quad \vec{D} \in \tilde{Q}_{k+1} \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
\left(\pi_{0} \xi\right) \bar{\wedge} \mathcal{D} F=\nu\left(\left(\lambda_{1} F\right)^{-1} \cdot \pi_{k} F \cdot \xi-\xi\right), \quad \xi \in \tilde{J}_{k}(\mathcal{J}), F \in \tilde{Q}_{k+1} \tag{2.28}
\end{equation*}
$$

If $G \in Q_{k+1}^{k}$, then since $j_{1}\left(I_{k}\right)=\lambda_{1} I_{k+1}$, we have by (2.27)

$$
\partial\left(\lambda_{1} G\right)^{-1}=\left(\mathrm{id} \otimes \nu^{-1}\right) D G,
$$

where $\mathcal{D} G \in \mathcal{J}^{*} \otimes J_{k}^{0}(\mathfrak{J})$ if $k \geqslant 1$, and by (2.22)

$$
\partial\left(\lambda_{1} G\right)^{-1}=\partial \lambda_{1} G^{-1}=\delta \partial G^{-1}
$$

By Proposition 2.1, (iii), we therefore have for $G \in Q_{k+1}^{k}$

$$
\begin{array}{ll}
D G=-\delta g, & \text { if } k \geqslant 1, \\
D G=-(\mathrm{id}+g)^{-1} \circ g \circ v=\left[(\mathrm{id}+g)^{-1}-\mathrm{id}\right] \circ v, & \text { if } k=0, \tag{2.30}
\end{array}
$$

where $g=\partial G$. If $u \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)_{y}, F \in \tilde{Q}_{k+1, x}$ with $\left(\pi_{0} F\right)(x)=y$, we define

$$
\begin{equation*}
u^{F}=F^{-1}(u)+\mathcal{D} F \tag{2.31}
\end{equation*}
$$

This right operation of \tilde{Q}_{k+1} on $\mathfrak{J}^{*} \otimes J_{k}(\mathcal{J})$ conserves $\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge}$.
L®MmA 2.1. Let $F \in \tilde{Q}_{k+1}, u_{1}, u_{2} \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge}$. Then $u_{2}=u_{1}^{F}$ if and only it

$$
\lambda_{1} F \cdot\left(j_{1}\left(I_{k}\right)+v^{-1} \circ u_{2}\right)=j_{1}\left(\pi_{k} F^{\prime}\right)+\left(v^{-1} \circ u_{1} \circ f\right) \pi_{k} F
$$

as elements of $Q_{(1, k)}$, where $f=\pi_{0} F$ and $\left(\nu^{-1} \circ u_{1} \circ f\right)(a) \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{f(a),}\left[\left(\nu^{-1} \circ u_{1} \circ f\right) \pi_{k} F\right](a) \in$ $T_{a}^{*} \otimes V_{\pi_{k} F(a)}\left(Q_{k}\right)$.

Proof. It follows from (2.28) that $u_{2}=u_{1}^{F}$ if and only if we have, for all $\xi \in \tilde{J}_{k}(\mathcal{J})$,

$$
u_{2}\left(\pi_{0} \xi\right)=v\left(\left(\lambda_{1} F\right)^{-1} \cdot \pi_{k} F \cdot \xi-\xi\right)+F^{-1}\left(\left(u_{1} \circ f\right)\left(\pi_{0} \xi\right)\right)
$$

i.e., by (2.6) and (2.5),

$$
\begin{aligned}
\xi+\nu^{-1} \cdot u_{2}\left(\pi_{0} \xi\right) & =\lambda_{1} F^{-1} \cdot \pi_{k} F \cdot \xi \cdot \pi_{k} F^{-1} \cdot \pi_{k} F+\lambda_{1} F^{-1}\left(\left(\nu^{-1} \circ u_{1} \circ f\right)\left(\pi_{0} \xi\right)\right) \\
& =\lambda_{1} F^{-1}\left(\pi_{k} F \cdot \xi \cdot \pi_{k} F^{-1}+\left(\nu^{-1} \circ u_{1} \circ f\right)\left(\pi_{0} \xi\right)\right) \\
& =\lambda_{1} F^{-1}\left(j_{1}\left(\pi_{k} F\right)(\xi)+\left(\nu^{-1} \circ u_{1} \circ f\right)\left(\pi_{0} \xi\right)\right) .
\end{aligned}
$$

According to (2.15), this equation is equivalent to

$$
\left(j_{1}\left(I_{k}\right)+\nu^{-1} \circ u_{2}\right)(\xi)=\lambda_{1} F^{-1}\left(\left(j_{1}\left(\pi_{k} F\right)+\left(\nu^{-1} \circ u_{1} \circ f\right) \pi_{k} F\right)(\xi)\right) ;
$$

hence, by Proposition 2.2, (iii), the equation $u_{2}=u_{1}^{F}$ holds if and only if

$$
j_{1}\left(I_{k}\right)+v^{-1} \circ u_{2}=\lambda_{1} F^{-1} \cdot\left(j_{1}\left(\pi_{k} F\right)+\left(v^{-1} \circ u_{1} \circ f\right) \pi_{k} F\right),
$$

which implies the desired assertion.

Next, the non-linear Spencer complex

$$
\begin{equation*}
\operatorname{Aut}(X) \xrightarrow{\dot{j}_{k+1}} \tilde{Q}_{k+1} \xrightarrow{\overline{\mathcal{D}}}\left(J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})\right)^{\wedge} \xrightarrow{\overline{\mathcal{D}}_{1}} \wedge^{2} J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k-1}(\mathcal{J}) \tag{2.32}
\end{equation*}
$$

is exact, where (finite form of (1.23))

$$
\begin{gather*}
\tilde{\mathcal{D}} F=\bar{\chi}-F^{-1}(\bar{\chi}) \in J_{0}(\mathcal{J})^{*} \otimes \check{J}_{k}(\mathcal{J}), \tag{2.33}\\
\overline{\mathcal{D}} F=\nu^{-1}-F^{-1}\left(\nu^{-1}\right) \in J_{k}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J}), \tag{2.34}
\end{gather*}
$$

for $F \in \tilde{Q}_{k+1}$, and

$$
\begin{equation*}
\overline{\mathcal{D}}_{1} u=\bar{D} u-\frac{1}{2} \pi_{k-1}[u, u], \quad u \in J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J}) \tag{2.35}
\end{equation*}
$$

and

$$
\left(J_{0}(T)^{*} \otimes \tilde{J}_{k}(T)\right)^{\wedge}=\left\{u \in J_{0}(T)^{*} \otimes \tilde{J}_{k}(T) \mid \nu^{-1}-\pi_{0} u: J_{0}(T) \rightarrow T \text { is invertible }\right\}
$$

The analogues of (2.27)-(2.30) are:

$$
\begin{gather*}
\partial\left[\left(j_{1}\left(\pi_{k} F\right)\right)^{-1} \cdot\left(\lambda_{1} F\right)\right]=-\left(v^{*} \otimes \mathrm{id}\right) \overline{\mathcal{D}} F, \quad F \in \tilde{Q}_{k+1} ; \tag{2.36}\\
\left(\pi_{0} \nu \xi\right) \bar{\wedge} \overline{\mathcal{D}} F=\xi-\pi_{k} F^{-1} \cdot\left(\lambda_{1} F\right) \cdot \xi, \quad \xi \in \tilde{J}_{k}(\mathcal{J}), F \in \tilde{Q}_{k+1} ; \tag{2.37}\\
\bar{D} G=-\bar{\delta} g, \quad \text { if } k \geqslant 1, \tag{2.38}\\
\bar{D} G=-\left(\mathrm{id} \otimes v^{-1}\right) g, \quad \text { if } k=0, \tag{2.39}
\end{gather*}
$$

where $g=\partial G$, for $G \in Q_{k+1}^{k}$. If $u \in\left(J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})\right)_{y}, F \in \tilde{Q}_{k+1, x}$ with $\left(\pi_{0} F\right)(x)=y$, we define

$$
\begin{equation*}
u^{F}=F^{-1}(u)+\bar{D} F \tag{2.40}
\end{equation*}
$$

This right operation of $F \in \tilde{Q}_{k+1}$ on $J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})$ conserves $\left(J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})\right)^{\wedge}$ and the action of F^{-1} on $\wedge J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(J)$ depends only on $\pi_{k} F$ if $k \geqslant 1$; hence, if $k \geqslant 1$,

$$
u^{F}=\left(\pi_{k} F\right)^{-1}(u)+\overline{\mathcal{D}} F
$$

We have the following important identities whose analogues are also valid for the operators $\mathcal{D}, \mathcal{D}_{1}$ and $\wedge \mathcal{J}^{*} \otimes J_{k}(\mathcal{J})$; if $F \in \tilde{Q}_{k+1, x}, G \in \tilde{Q}_{k+1, z}$ with $\left(\pi_{0} F\right)(x)=y$ and $\left(\pi_{0} G\right)(z)=x$, then

$$
\begin{gather*}
\overline{\mathcal{D}}(F \cdot G)=G^{-1}(\overline{\mathcal{D}} F)+\overline{\mathcal{D}} G, \tag{2.41}\\
u^{F G}=\left(u^{F}\right)^{G} \tag{2.42}
\end{gather*}
$$

and

$$
\begin{equation*}
{\overline{D_{1}}}_{1} u^{F}=F^{-1}\left(\overline{\mathcal{D}}_{1} u\right) \tag{2.43}
\end{equation*}
$$

for $u \in\left(J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{T})\right)_{y}$.
There is a canonical bijection

$$
\begin{equation*}
\left(T^{*} \otimes J_{k}(T)\right)^{\wedge} \rightarrow\left(J_{0}(T)^{*} \otimes \tilde{J}_{k}(T)\right)^{\wedge} \tag{2.44}
\end{equation*}
$$

sending the element $u \in\left(T^{*} \otimes J_{k}(T)\right)^{\wedge}$ into $\bar{u} \in\left(J_{0}(T)^{*} \otimes J_{k}(T)\right)^{\wedge}$, which is defined as follows. Let $u \in\left(T^{*} \otimes J_{k}(T)\right)^{\wedge}$; then

$$
\nu+u \circ \pi_{0}: \tilde{J}_{k}(T) \rightarrow J_{k}(T)
$$

is invertible since

$$
\mathrm{id}+v^{-1} \circ u \circ \pi_{0}: \tilde{J}_{k}(T) \rightarrow \tilde{J}_{k}(T)
$$

is invertible by Proposition 2.2, (i), with $H=j_{1} I_{k}=\lambda_{1} I_{k+1}$ and u replaced by $y^{-1} \circ u$. Let \tilde{u} be the element of $J_{k}(T)^{*} \otimes \tilde{J}_{k}(T)$ which is defined by $\nu^{-1}-\tilde{u}=\left(v+u \circ \pi_{0}\right)^{-1}$; we have

$$
\mathrm{id}=\left(\nu^{-1}-\tilde{u}\right) \circ\left(\nu+u \circ \pi_{0}\right)=\mathrm{id}-\tilde{u} \circ \nu+\left(v^{-1}-\tilde{u}\right) \circ u \circ \pi_{0}
$$

and hence

$$
\tilde{u} \circ v=\left(v^{-1}-\tilde{u}\right) \circ u \circ \pi_{0}: \tilde{J}_{k}(T) \rightarrow \tilde{J}_{k}(T) .
$$

Since $u \circ \pi_{0}$ vanishes on $J_{k}^{0}(T) \subset \tilde{J}_{k}(T)$ and ν is the identity on $J_{k}^{0}(T)$, we conclude that \tilde{u} vanishes on $J_{k k}^{0}(T)$; hence $\tilde{u}=\bar{u} \circ \pi_{0}$ where $\bar{u} \in\left(J_{0}(T)^{*} \otimes \tilde{J}_{k}(T)\right)^{\wedge}$ and \bar{u} is the image of u in (2.44). Since $T^{*} \subset \tilde{J}_{k}(T)^{*}, J_{0}(T)^{*} \subset J_{k}(T)^{*}$, we can drop π_{0} and define \bar{u} by

$$
\nu^{-1}-\bar{u}=(\nu+u)^{-1}: J_{k}(T) \rightarrow \tilde{J}_{k}(T) .
$$

Lemma 2.2 The following assertions are true for the mapping (2.44):
(i) Let R_{k} be a sub-bundle of $J_{k}(T)$ and $\tilde{R}_{k}=\nu^{-1} R_{k}$, and let $u \in\left(T^{*} \otimes J_{k}(T)\right)^{\wedge}$. Then $u \in T^{*} \otimes R_{k}$ if and only if $\bar{u} \in J_{0}(T)^{*} \otimes \tilde{R}_{k}$.
(ii) If $u \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge}$, then

$$
\overrightarrow{u^{F}}=\bar{u}^{F}, \quad \text { for } F \in \tilde{Q}_{k+1}
$$

(iii) We have

$$
\overline{\overline{D F}}=\overline{\mathcal{D}} F, \quad \text { for } F \in \tilde{Q}_{k+1}
$$

(iv) If $u \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge}$, then $\mathcal{D}_{1} u=0$ if and only if $\overrightarrow{\mathcal{D}}_{1} \bar{u}=0$.

Proof. We have

$$
\mathrm{id}=\left(\nu^{-1}-\bar{u}\right) \circ(\nu+u)=\mathrm{id}-\bar{u} \circ(v+u)+\nu^{-1} \circ u,
$$

and hence

$$
\begin{equation*}
\nu^{-1} \circ u=\bar{u} \circ(\nu+u): \tilde{J}_{k}(T) \rightarrow \tilde{J}_{k}(T) . \tag{2.45}
\end{equation*}
$$

Similarly

$$
\mathrm{id}=(\nu+u) \circ\left(\nu^{-1}-\bar{u}\right)=\mathrm{id}-v \circ \bar{u}+u \circ\left(\nu^{-1}-\bar{u}\right),
$$

and hence

$$
\begin{equation*}
v \circ \bar{u}=u \circ\left(v^{-1}-\bar{u}\right): J_{k}(T) \rightarrow J_{k}(T) . \tag{2.46}
\end{equation*}
$$

Assertion (i) follows immediately from (2.45) and (2.46).
If $u \in\left(\mathcal{T}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge}, \vec{F} \in \tilde{Q}_{k+1}$, we have by (2.25)

$$
v+u^{F}=F^{-1}(v+u)=F^{-1} \circ(v+u) \circ F,
$$

and hence

$$
\begin{aligned}
v^{-1}-\overline{u^{F}}=\left(\nu+u^{F}\right)^{-1} & =F^{-1} \circ(\nu+u)^{-1} \circ F^{\prime}=F^{-1} \circ\left(\nu^{-1}-\bar{u}\right) \circ F \\
& =v^{-1}-\left(v^{-1}-F^{-1}\left(v^{-1}\right)\right)-F^{-1}(\bar{u})=\nu^{-1}-\left(\bar{D} F+F^{-1}(\bar{u})\right)=v^{-1}-\bar{u}^{F}
\end{aligned}
$$

by (2.34), that is to say, (ii) holds. Taking $u=0$ in (ii), we obtain (iii). Finally let $u \in$ $\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge}$; then, by the exactness of (2.23), $\mathcal{D}_{1} u=0$ if and only if $u=\mathcal{O} F, F \in \tilde{Q}_{k+1}$ and hence by (iii), $\bar{u}=\overline{\mathrm{D}} F$, which, by the exactness of (2.32), is equivalent to $\overline{\mathcal{D}}_{1} \bar{u}=0$.

Lemma 2.3. Let u be a section of $J_{0}(T)^{*} \otimes T$ over X and $f: X \rightarrow X$ a mapping. Let F be the section $j_{1}(f)-f \circ u \circ v$ of $J_{1}(E)$. Then:
(i) $F \xi=\nu\left(f\left(\nu^{-1}-u\right) \xi\right), \quad$ for $\xi \in J_{0}(T)$;
(ii) F is a section of \tilde{Q}_{1} if and only if $\nu^{-1}-u: J_{0}(T) \rightarrow T$ is invertible and f is an immersion;
(iii) if F is a section of \tilde{Q}_{1}, we have $\overline{\mathcal{D}} F=u$.

Proof. According to Proposition 2.1, (i), we have

$$
\begin{equation*}
F=j_{1}(f) \cdot\left(I_{1}-u \circ v\right) \tag{2.47}
\end{equation*}
$$

so (i) holds since $I_{1}-u \circ v: J_{0}(T) \rightarrow J_{0}(T)$ is equal to id $-v \circ u$. Hence F is a section of \tilde{Q}_{1} if and only if $f \circ\left(\nu^{-1}-u\right): J_{0}(T) \rightarrow T$ is invertible, and so we obtain (ii). Applying $\overline{\mathcal{D}}$ to (2.47) we obtain, by (2.41) and (2.39),

$$
\overline{\mathcal{D}} F=\overline{\mathcal{D}}\left(I_{1}-u \circ v\right)=u
$$

Finally let \hat{B}_{c}^{1} be the set of the $u \in B_{k}^{1}$ whose projection $\pi_{0} u$ in $J_{0}(T)^{*} \otimes T$ satisfies the condition that $v^{-1}-\pi_{0} u: J_{0}(T) \rightarrow T$ is invertible. The operator $\overline{\mathcal{D}}: \tilde{Q}_{k+1} \rightarrow J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J})$ induces a differential operator $\hat{\mathcal{D}}: \tilde{\mathcal{Q}}_{k} \rightarrow \hat{\boldsymbol{B}}_{k}^{1}$ for $k \geqslant 1$ and, for $u \in \mathcal{B}_{k}^{1}$, let $\hat{\mathcal{D}}_{1} u=\hat{D} u-\frac{1}{2}[u, u] \in \mathcal{B}_{k}^{2}$. We thus obtain the "sophisticated" version of (2.32)

$$
\begin{equation*}
\operatorname{Aut}(X) \xrightarrow{j_{k}} \tilde{Q}_{k} \xrightarrow{\hat{D}} \hat{\mathbf{B}}_{k}^{1} \xrightarrow{\hat{\boldsymbol{D}}_{1}} \mathcal{B}_{k}^{2} \tag{2.48}
\end{equation*}
$$

which is an exact sequence for $k \geqslant 1$. Let $F \in \bar{Q}_{k}$ where $k \geqslant 1$; the action of F^{-1} on $\wedge J_{0}(\mathcal{J})^{*} \otimes$ $\tilde{J}_{k}(\mathcal{J})$ gives by passage to the quotient an action on \boldsymbol{B}_{k} and we define

$$
\begin{equation*}
u^{F}=F^{-1}(u)+\hat{D} F \tag{2.49}
\end{equation*}
$$

for $u \in \mathcal{B}_{k, y}^{1}, F \in \tilde{Q}_{k, x}$ with $\left(\tau_{0} F\right)(x)=y$. This right action of \tilde{Q}_{k} on \boldsymbol{B}_{k}^{1} conserves $\hat{\mathcal{B}}_{k}^{1}$ and the analogues of formulas (2.41)-(2.43) hold for the operators $\hat{\mathcal{D}}, \hat{\mathcal{D}}$, and the sheaf \mathcal{B}_{k}.

We conclude this section by recalling the definition and some properties of a nonlinear partial differential equation. A (non-linear) partial differential equation P_{k} (of order $k)$ in $J_{k}(E)$ is a fibered submanifold of $\pi: J_{k}(E) \rightarrow X$. The l-th prolongation of P_{k} is the subset of $J_{k+l}(E)$,

$$
\left(P_{k}\right)_{+l}=\lambda_{l}^{-1}\left(J_{l}\left(P_{k}\right) \cap \lambda_{l}\left(J_{k+l}(E)\right)\right),
$$

where λ_{l} is the injection $J_{k+l}(E) \rightarrow J_{l}\left(J_{k}(E)\right)$. A solution of P_{k} is a mapping $f: U \rightarrow X$ de-
fined on an open set $U \subset X$ and satisfying $j_{k}(f)(x) \in P_{k}$ for all $x \in U$; then $j_{k+l}(f)$ is a section of $\left(P_{k}\right)_{+l}$ over U, for all $l \geqslant 0$. The mapping $\pi_{k+l}: J_{k+l+1}(E) \rightarrow J_{k+l}(E)$ induces a mapping $\pi_{k+l}:\left(P_{k}\right)_{+(l+1)} \rightarrow\left(P_{k}\right)_{+l}$. Following [4], we say that P_{k} is formally integrable if for all $l \geqslant 0$, $\pi:\left(P_{k}\right)_{+l} \rightarrow X$ is a fibered submanifold of $\pi: J_{k+l}(E) \rightarrow X$ and $\pi_{k+l}:\left(P_{k}\right)_{+(l+1)} \rightarrow\left(P_{k}\right)_{+l}$ is a fibered submanifold of $\pi_{k+l}: J_{k+l+1}(E)_{\left(P_{k}\right)_{+l}} \rightarrow\left(P_{k}\right)_{+l}$. According to Proposition 7.1 of [4], if P_{k} is formally integrable, then $\pi_{k+l}:\left(P_{k}\right)_{+(l+1)} \rightarrow\left(P_{r_{c}}\right)_{+l}$ is an affine sub-bundle of $\pi_{k+l}: J_{k+l+1}(E)_{\mid\left(P_{k}\right)_{+l}} \rightarrow\left(P_{k}\right)_{+l}$. We say that P_{k} is integrable if, for all $l \geqslant 0$ and $p \in\left(P_{k}\right)_{+l, x}$, there exists a solution f of P_{k} on a neighborhood of x such that $j_{k+l}(f)(x)=p$. If X is endowed with a structure of an analytic manifold and P_{k} is an analytic, formally integrable differential equation in $J_{k}(E)$ then, according to Theorem 9.1 of [4] or the appendix of [19], it is integrable.

If $P_{k} \subset Q_{k}$ and $k \geqslant 1$, then a solution of P_{k} is necessarily a local immersion $X \rightarrow X$; furthermore, if $\tilde{J}_{l}\left(P_{k}\right)=J_{l}\left(P_{k}\right) \cap Q_{(l, k)}$, we have

$$
\left(P_{k}\right)_{+l}=\lambda_{l}^{-1}\left(\tilde{J}_{l}\left(P_{k}\right) \cap \lambda_{l}\left(Q_{k+l}\right)\right),
$$

where λ_{l} is the mapping $Q_{k+l} \rightarrow Q_{(l, k)}$.

3. Jet bundles and fibrations

Let Y be a differentiable manifold, whose tangent bundle we denote by T_{Y}, and let $\varrho: X \rightarrow Y$ be a surjective submersion, $V=T(X / Y)$ the integrable sub-bundle of $T=T_{X}$ of vectors tangent to the fibers of ϱ. If $\varrho=\varrho_{*}: T \rightarrow T_{Y}$ is the differential of ϱ, then

$$
0 \longrightarrow V \longrightarrow T \xrightarrow{\varrho} \varrho^{-1} T_{Y} \longrightarrow 0
$$

is an exact sequence of vector bundles over X. Let E and F be fibered manifolds over X and Y respectively and $\varphi: E \rightarrow F$ a morphism of fibered manifolds over ϱ. We denote by $\mathcal{F}, \mathcal{F}_{X}$ the sheaves of sections of F over Y and of $\varrho^{-1} F$ over X respectively. We say that a section s of E over $U \subset X$ is φ-projectable if $\varphi s(a)=\varphi s(b)$ for $a, b \in U$ whenever $\varrho(a)=\varrho(b)$. Then the section φs of F over $\varrho(U)$, which sends $y € \varrho(U)$ into $\varphi s(a)$ where $a \in U, \varrho(a)=y$, is well-defined. We denote by \mathcal{E}_{φ} the sheaf of sections of E which are φ-projectable and by $J_{k}(E ; \varphi) \subset J_{k}(E)$ the set of k-jets of sections of \mathcal{E}_{φ}. If $\varphi: E \rightarrow F$ has constant rank, $J_{k}(E ; \varphi)$ is a bundle and if, moreover, E, F are vector bundles and φ is a morphism of vector bundles, it is a vector bundle; the sheaf of solutions of $J_{k}(E ; \varphi)$ is \mathcal{E}_{φ}. If $J_{k}(F ; Y)$ is the bundle of k-jets of sections of F over Y, we have a mapping

$$
\begin{equation*}
\varphi: J_{k}(E ; \varphi) \rightarrow J_{k}(F ; Y) . \tag{3.1}
\end{equation*}
$$

We now assume that E, F are vector bundles and that $\varphi: E \rightarrow F$ is a morphism of
vector bundles. If K is the kernel of $\varphi: E \rightarrow \varrho^{-1} F$ and if this mapping is surjective, then $J_{k}(K)$ is the kernel of the mapping (3.1).

Let $F_{i}^{i+j}(\varrho)$ be the sub-bundle $\wedge^{j} T^{*} \otimes \varrho^{*}\left(\wedge^{t} T_{Y}^{*}\right)$ of $\wedge^{i+j} T^{*}$ for $j \geqslant 0$; we set $F_{i}^{i+j}(\varrho)=$ $F_{i+j}^{i+j}(\varrho)$ for $j<0$. Then $F_{i+1}^{i+j}(\varrho) \subset F_{i}^{i+j}(\varrho)$ and $F_{0}^{j}(\varrho)=\wedge^{j} T^{*}$. We define, for $j \geqslant 0$,

$$
F_{i}^{i+j}\left(J_{k}(E) ; \varphi\right)=\left\{u \in \wedge^{i+j} T^{*} \otimes J_{k}(E ; \varphi) \mid(\operatorname{id} \otimes \varphi) u \in F_{i}^{i+j}(\varrho) \otimes_{X} J_{k}(F ; Y)\right\}
$$

and, for $j<0$, we set

$$
F_{i}^{i+j}\left(J_{k}(E) ; \varphi\right)=\wedge^{i+j} T^{*} \otimes J_{k}(K)
$$

Then

$$
\begin{aligned}
& F_{0}^{j}\left(J_{k}(E) ; \varphi\right)=\wedge^{j} T^{*} \otimes J_{k}(E ; \varphi), \\
& F_{i+1}^{i+j}\left(J_{k}(E) ; \varphi\right) \subset F_{i}^{i+j}\left(J_{k}(E) ; \varphi\right),
\end{aligned}
$$

and

$$
F_{i}^{i+j}(\varrho) \otimes J_{k}(E ; \varphi) \subset F_{i}^{i+j}\left(J_{k}(E) ; \varphi\right)
$$

We suppose henceforth that $\varphi: E \rightarrow \varrho^{-1} F$ is surjective. Then the sequence

$$
0 \longrightarrow F_{i+1}^{i+j}\left(J_{k}(E) ; \varphi\right) \longrightarrow F_{i}^{i+j}\left(J_{k}(E) ; \varphi\right) \xrightarrow{\varphi} \Lambda^{j} V^{*} \otimes_{X}\left(\wedge^{i} T_{Y}^{*} \otimes J_{k}(F ; Y)\right) \longrightarrow 0
$$

of vector bundles is exact for $j \geqslant 0$, where φ sends $u \in F_{i}^{i+j}\left(J_{l c}(E) ; \varphi\right)$ into the element φu defined by the formula

$$
(\varphi u)\left(\xi_{1} \wedge \ldots \wedge \xi_{i} \otimes \bar{\eta}_{1} \wedge \ldots \wedge \bar{\eta}_{i}\right)=\varphi\left(u\left(\xi_{1} \wedge \ldots \wedge \xi_{j} \wedge \eta_{1} \wedge \ldots \wedge \eta_{i}\right)\right)
$$

where $\xi_{1}, \ldots, \xi_{j} \in V, \eta_{1}, \ldots, \eta_{i} \in T$ and $\bar{\eta}_{l}=\varrho\left(\eta_{l}\right) \in T_{Y}$ for $1 \leqslant l \leqslant i$. In particular, we have the exact sequence

$$
0 \longrightarrow \wedge^{i} T^{*} \otimes J_{k}(K) \longrightarrow F_{i}^{i}\left(J_{k}(E) ; \varphi\right) \xrightarrow{\varphi} \varrho^{-1}\left(\wedge^{i} T_{Y}^{*} \otimes J_{k}(F ; Y)\right) \longrightarrow 0
$$

and

$$
F_{i}^{i}\left(J_{k}(E) ; \varphi\right)=\wedge^{i} T^{*} \otimes J_{k}(K)+\varrho^{*}\left(\wedge^{i} T_{Y}^{*}\right) \otimes J_{k}(E ; \varphi)
$$

We denote by $\left(\wedge^{i} \mathcal{J}^{*} \otimes J_{k}(\mathcal{E} ; \varphi)\right)_{\varphi}$ the sheaf of φ-projectable sections of $F_{i}^{i}\left(J_{k}(E) ; \varphi\right) ;$ we then have the mapping

$$
\varphi:\left(\wedge^{i} \mathfrak{T}^{*} \otimes J_{k}(\mathcal{E} ; \varphi)\right)_{\varphi} \rightarrow \wedge^{i} \mathfrak{J}_{Y}^{*} \otimes J_{k}(\mathfrak{F} ; Y)
$$

According to Proposition 3 of [6],

$$
D\left(F_{i}^{i+j}\left(J_{k}(\mathcal{E}) ; \varphi\right)\right) \subset F_{i}^{i+j+1}\left(J_{k-1}(\mathcal{E}) ; \varphi\right),
$$

and so, in particular,

$$
D\left(J_{k}(\mathcal{E} ; \varphi)\right) \subset \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{E} ; \varphi)
$$

For $k \geqslant 1$, the sub-bundle $J_{k}(E ; \varphi)$ of $J_{k}(E)$ is in fact a formally integrable equation whose
l-th prolongation is $J_{k+l}(E ; \varphi)$ (see [6], Corollary 3). Furthermore, if

$$
d_{X_{/} Y}: \wedge^{j} \vartheta^{*} \otimes \mathcal{F}_{X} \rightarrow \wedge^{j+1} \vartheta^{*} \otimes \mathcal{F}_{X}
$$

is the exterior derivative along the fibers of $\varrho: X \rightarrow Y$, then the diagram

commutes. In particular, we have the commutative diagram

The following lemma complements Proposition 4 of [6] and will not be used in this paper.

Lemma 3.1. Assume that $\varphi: E \rightarrow \varrho^{-1} F$ is surjective and let $u \in J_{k}(\mathcal{E} ; \varphi)$; then $u \in J_{k}(\mathcal{E} ; \varphi)_{\varphi}$ if and only if $D u \in\left(\mathcal{J}^{*} \otimes J_{k-1}(\mathcal{E} ; \varphi)\right)_{\varphi}$.

Proof. By Proposition 4, (ii) of [6] we know that, if $u \in J_{k}(\mathcal{E} ; \varphi)_{\varphi}$, then $D u \in\left(\mathcal{J}^{*} \otimes\right.$ $\left.J_{k-1}(\mathcal{E} ; \varphi)\right)_{\varphi}$. We now prove the converse. We have the following commutative diagram:

all of whose vertical arrows are injections. The mappings ε, λ_{1} in the left column are respectively the restrictions of the mappings

$$
\varepsilon: T^{*} \otimes J_{k-1}(E ; \varphi) \rightarrow J_{1}\left(J_{k-1}(E ; \varphi)\right), \quad \lambda_{1}: J_{k}(E) \rightarrow J_{1}\left(J_{k-1}(E)\right) .
$$

We remark that the commutativity of the upper square of the diagram follows from the fact that, if s is a φ-projectable section of $J_{k-1}(E)$ and f is the pull-back to X of a function
on Y, then $f \cdot s$ is also φ-projectable. Let $u \in J_{k}(\mathcal{E} ; \varphi)$ and suppose that $D u \in\left(\mathscr{J}^{*} \otimes J_{k-1}(\mathcal{E} ; \varphi)\right)_{\varphi}$. By the commutativity of the lower square of the diagram, u is φ-projectable if and only if $\lambda_{1} u$ is φ-projectable. By Proposition 4, (i) of [6], we know that $\pi_{k-1} u \in J_{k-1}(\mathcal{E} ; \varphi)_{\varphi}$ and hence $j_{1}\left(\pi_{k-1} u\right) \in J_{1}\left(J_{k-1}(\mathcal{E} ; \varphi)\right)_{\varphi}$. Finally, we infer from formula (1.2) that $\lambda_{1} u$ is φ projectable if and only if $\varepsilon D u$ is φ-projectable and the φ-projectability of $\varepsilon D u$ follows from the commutativity of the upper square of the diagram.

Lemma 3.2. Let $x \in X$ with $y=\varrho(x)$. All linear maps

$$
D_{x}: J_{k}(\mathcal{F} ; Y)_{X . x} \rightarrow T_{x}^{*} \otimes J_{k}(F ; Y)_{y}
$$

satisfying the following two conditions are equal:
(i) for $s \in \mathcal{F}_{y}$,

$$
D_{x}\left(j_{k}(s) \circ \varrho\right)=0
$$

(ii) for $f \in O_{X, x}, u \in J_{k}(\mathcal{F} ; Y)_{X, x}$,

$$
D_{x}(f u)=\left(d f \otimes \pi_{k-1} u\right)(x)+f(x) D_{x} u
$$

Proof. Suppose that D_{x}, D_{x}^{\prime} are two such maps satisfying these conditions. Then for $s \in \mathcal{F}_{y}$, we have by (i)

$$
\left(D_{x}-D_{x}^{\prime}\right)\left(j_{k}(s) \circ \varrho\right)=0 .
$$

By (ii), for $f \in O_{X, x}, u \in J_{k}(\mathcal{F} ; Y)_{X, x}$,

$$
\left(D_{x}-D_{x}^{\prime}\right)(f u)=f(x)\left(D_{x}-D_{x}^{\prime}\right) u
$$

Since $J_{k}(\mathcal{F} ; Y)_{X, x}$ is generated as an $O_{X, x}$-module by the elements of the form $j_{k}(s) \circ \varrho$, with $s \in \Im_{y}$, these two relations imply that $D_{x}-D_{x}^{\prime}=0$.

We now construct a generalization of the differential operator D of $\S 1$.
Proposition 3.1. There exists a unique linear, first-order differential operator

$$
\begin{equation*}
D: J_{k}(\mathfrak{F} ; Y)_{X} \rightarrow \mathcal{J}^{*} \otimes J_{k-1}(\mathfrak{F} ; Y)_{X} \tag{3.3}
\end{equation*}
$$

satisfying one of the following equivalent conditions:
(i) For all sections s of F over Y,

$$
\begin{equation*}
D\left(j_{k}(s) \odot \varrho\right)=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
D(f u)=d f \otimes \pi_{k-1} u+f D u \tag{3.5}
\end{equation*}
$$

for $f \in O_{X}, u \in J_{k}(\mathcal{F} ; Y)_{X}$.
(ii) If $E=\varrho^{-1} F$ and $\varphi: E \rightarrow \varrho^{-1} F$ is the identity map, the diagram

commutes.
(iii) If $u \in J_{k}(\mathcal{F} ; Y)_{X . x}$ and $u(x)=j_{k}(s)(\varrho(x))$ for $s \in \mathcal{F}_{e(x)}$,

$$
\begin{equation*}
(\varepsilon D u)(x)=j_{1}\left(\pi_{k-1} u\right)(x)-j_{1}\left(j_{k-1}(s) \circ \varrho\right)(x) . \tag{3.7}
\end{equation*}
$$

(iv) If τ is any section of $\varrho: X \rightarrow Y$ defined on a neighborhood of $y \in Y$ and $\tau(y)=x$, then for all sections u of $J_{k}(\mathcal{F} ; Y)_{X}$ over a neighborhood of x and $\xi \in T_{x}$,

$$
\begin{equation*}
\langle\xi, D u\rangle=\left\langle\xi-\tau_{*} \varrho_{*} \xi, d_{X \mid Y} \pi_{k-1} u\right\rangle+\left\langle\varrho_{*} \xi, D(u \circ \tau)\right\rangle, \tag{3.8}
\end{equation*}
$$

as elements of $J_{k-1}(F ; Y)_{y}$, where the operator

$$
\begin{equation*}
D: J_{k}(\mathfrak{F} ; Y) \rightarrow \mathcal{J}_{Y}^{*} \otimes J_{k-1}(\mathfrak{F} ; Y) \tag{3.9}
\end{equation*}
$$

on the right-hand side is the one defined in § 1.
(v) If τ is any section of $\varrho: X \rightarrow Y$ then, for all sections u of $J_{k}(\mathcal{F} ; Y)_{X}$,

$$
\begin{equation*}
\left(\tau^{*} \otimes \mathrm{id}\right)(D u) \circ \tau=D(u \circ \tau) \tag{3.10}
\end{equation*}
$$

as sections of $T_{Y}^{*} \otimes J_{k}(F ; Y)$ over Y, where $\tau^{*}: T_{\tau(y)}^{*} \rightarrow T_{Y, y}^{*}$, for $y \in Y$, and the operator D on the right-hand side is the one defined in § 1, namely (3.9), and

$$
\begin{equation*}
(D u)_{\mid V}=\pi_{k-1} \cdot d_{X / Y} u \tag{3.11}
\end{equation*}
$$

Proof. If D is a linear operator (3.3) we define, for $x \in X$,

$$
D_{x}: J_{k}(\mathcal{F} ; Y)_{X, x} \rightarrow T_{x}^{*} \otimes J_{k}(F ; Y)_{e(x)}
$$

by setting $D_{x} u=(D u)(x)$, for $u \in J_{k}(\mathcal{F} ; Y)_{X, x}$; then D satisfies the conditions (i) if and only if the operator D_{x} satisfies the conditions of Lemma 3.2 for all $x \in X$. In particular, this permits us to deduce from Lemma 3.2 the uniqueness of an operator D satisfying the conditions (i). We begin by proving the existence of an operator D satisfying (i). Let $E=\varrho^{-1} F$ and $\varphi: E \rightarrow \varrho^{-1} F$ be the identity map; then

$$
\varphi: J_{m}(E ; \varphi) \rightarrow \varrho^{-1} J_{m}(F ; Y)
$$

is an isomorphism and sends $j_{m}(s \circ \varrho)(x)$ into $j_{m}(s)(\varrho(x))$, where $x \in X$ and s is a section of F over a neighborhood of $\varrho(x)$. Therefore there exists a unique map (3.3) such that the diagram (3.6) is commutative; it remains to verify that this operator satisfies (i). If s is a section of F over Y, we have

$$
D\left(j_{k}(s) \circ \varrho\right)=(\mathrm{id} \otimes \varphi) D \varphi^{-1}\left(j_{k}(s) \circ \varrho\right)=(\mathrm{id} \otimes \varphi) D j_{k}(\Omega \circ \varrho)=0,
$$

and for $f \in O_{X}, u \in J_{k}(\mathcal{F} ; Y)_{X}$, by (1.4),

$$
\begin{aligned}
D(f u) & =(\mathrm{id} \otimes \varphi) D \varphi^{-1}(f u)=(\mathrm{id} \otimes \varphi) D\left(f \varphi^{-1} u\right) \\
& =(\mathrm{id} \otimes \varphi)\left(d f \otimes \pi_{k-1} \varphi^{-1} u+f D\left(\varphi^{-1} u\right)\right)=d f \otimes \pi_{k-1} u+f(\mathrm{id} \otimes \varphi) D\left(\varphi^{-1} u\right)=d f \otimes \pi_{k-1} u+f D u,
\end{aligned}
$$

which gives us the existence of an operator D satisfying (i) and shows that (i) and (ii) are equivalent.

Let $x \in X, \tau$ a section of $\varrho: X \rightarrow Y$ defined on a neighborhood of $y \in Y$ with $\tau(y)=x$, and let

$$
D_{x}^{\prime}, D_{x}^{\prime \prime}: J_{k}(\mathcal{F} ; Y)_{X, x} \rightarrow T_{x}^{*} \otimes J_{k}(F ; Y)_{y}
$$

be the mappings defined by setting $\varepsilon D_{x}^{\prime} u$ equal to the right-hand side of (3.7) and $\left\langle\xi, D_{x}^{\prime \prime} u\right\rangle$ equal to the right-hand side of (3.8), for $u \in J_{k}(\mathcal{F} ; Y)_{X, x}$ and $\xi \in T_{x}$, with $u(x)=j_{k}(s)(y)$ and $s \in \mathcal{F}_{y}$. We now show that these mappings satisfy the conditions of Lemma 3.2, from which it follows by Lemma 3.2 that (3.7) and (3.8) hold and that assertions (i)-(iv) are equivalent. If $s \in \mathcal{F}_{y}$,

$$
\varepsilon D_{x}^{\prime}\left(j_{k}(s) \circ \varrho\right)=j_{1}\left(\pi_{k-1} j_{k}(s) \circ \varrho\right)(x)-j_{1}\left(j_{k-1}(s) \circ \varrho\right)(x)=0
$$

and, for $\xi \in T_{x}$,

$$
\left\langle\xi, D_{x}^{\prime \prime}\left(j_{k}(s) \circ \varrho\right)\right\rangle=\left\langle\varrho_{*} \xi, D\left(j_{k}(s)\right)\right\rangle=0,
$$

since $d_{X / Y}\left(j_{k}(s) \odot \varrho\right)=0$ and $j_{k}(s) \circ \varrho \circ \tau \approx j_{k}(s)$. If $f \in O_{X, x}, u \in J_{k}(\mathcal{F} ; Y)_{X . x}$ with $u(x)=j_{k}(s)(y)$ where $s \in \Xi_{y}$, we have $(f u)(x)=f(x) j_{k}(s)(y)$ and

$$
\begin{aligned}
\varepsilon D_{x}^{\prime}(f u) & =j_{1}\left(\pi_{k-1} f u\right)(x)-j_{1}\left(f(x) j_{k-1}(s) \circ \varrho\right)(x) \\
& =j_{1}\left((f-f(x)) \pi_{k-1} u\right)(x)+f(x) j_{1}\left(\pi_{k-1} u\right)(x)-f(x) j_{1}\left(j_{k-1}(s) \circ \varrho\right)(x) \\
& =\varepsilon\left(d f \otimes \pi_{k-1} u\right)(x)+f(x) \varepsilon D_{x}^{\prime} u .
\end{aligned}
$$

On the other hand for $\xi \in T_{x}$, since ($\left.f u\right) \circ \tau=\tau^{*} f \cdot(u \circ \tau)$ and $\xi-\tau_{*} \varrho_{*} \xi \in V_{x}$, we have ${ }_{*}^{\mathrm{E}}$ by (1.4):

$$
\begin{aligned}
\left\langle\xi, D_{x}^{\prime \prime}(f u)\right\rangle= & \left\langle\xi-\tau_{*} \varrho_{*} \xi, d_{X / Y}\left(f \pi_{k-1} u\right)\right\rangle+\left\langle\varrho_{*} \xi, D\left(\tau^{*} f \cdot(u \circ \tau)\right)\right\rangle \\
= & \left\langle\xi-\tau_{*} \varrho_{*} \xi, d_{X / Y} f \otimes \pi_{k-1} u\right\rangle+\left\langle\xi-\tau_{*} \varrho_{*} \xi, f d_{X / Y} \pi_{k-1} u\right\rangle \\
& \quad+\left\langle\varrho_{*} \xi, d \tau^{*} f \otimes \pi_{k-1}(u \circ \tau)\right\rangle+\left\langle\varrho_{*} \xi, \tau^{*} f \cdot D(u \circ \tau)\right\rangle \\
= & \left\langle\xi-\tau_{*} \varrho_{*} \xi, d f\right\rangle \pi_{k-1} u(x)+f(x)\left\langle\xi-\tau_{*} \varrho_{*} \xi, d_{X / Y} \pi_{k-1} u\right\rangle \\
& \quad+\left\langle\varrho_{*} \xi, \tau^{*} d f\right\rangle \pi_{k-1} u(\tau(y))+\left(\tau^{*} f\right)(y)\left\langle\varrho_{*} \xi, D(u \circ \tau)\right\rangle \\
= & \left\langle\xi,\left(d f \otimes \pi_{k-1} u\right)(x)\right\rangle-\left\langle\tau_{*} \varrho_{*} \xi, d f\right\rangle \pi_{k-1} u(x) \\
& \quad+f(x)\left\langle\xi-\tau_{*} \varrho_{*} \xi, d_{X / Y} \pi_{k-1} u\right\rangle+\left\langle\tau_{*} \varrho_{*} \xi, d f\right\rangle \pi_{k-1} u(x)+f(x)\left\langle\varrho_{*} \xi, D(u \circ \tau)\right\rangle \\
= & \left\langle\xi,\left(d f \otimes \pi_{k-1} u\right)(x)\right\rangle+f(x)\left\langle\xi, D_{x}^{\prime \prime} u\right\rangle .
\end{aligned}
$$

Thus D_{x}^{\prime} and $D_{x}^{\prime \prime}$ satisfy the conditions of Lemma 3.2.

To complete the proof of the proposition, we now show that (v) implies (iv) and then that (i) implies (v). Let τ be a section of $\varrho: X \rightarrow Y$ defined on a neighborhood of $y \in Y$ and $x=\tau(y)$. Assume that D satisfies (v) and let $\xi \in T_{x}$; then $\xi-\tau_{*} \varrho_{*} \xi \in V_{x}$ and, by (3.10) and (3.11), if $u \in J_{k}(\mathcal{F} ; Y)_{X}$,

$$
\begin{aligned}
\langle\xi, D u\rangle & =\left\langle\xi-\tau_{*} \varrho_{*} \xi, D u\right\rangle+\left\langle\tau_{*} \varrho_{*} \xi, D u\right\rangle \\
& =\left\langle\xi-\tau_{*} \varrho_{*} \xi, \pi_{k-1} d_{X / Y} u\right\rangle+\left\langle\varrho_{*} \xi,\left(\tau^{*} \otimes \mathrm{id}\right) D u(\tau(y))\right\rangle \\
& =\left\langle\xi-\tau_{*} \varrho_{*} \xi, d_{X / Y} \pi_{k-1} u\right\rangle+\left\langle\varrho_{*} \xi, D(u \circ \tau)\right\rangle
\end{aligned}
$$

and thus (iv) holds. Finally, to show that (i) implies (v), we take $u=j_{k}(s) \circ \varrho$ in (3.10) and (3.11), where s is a section of F over Y; then both sides of each of these equations vanish by (3.4) and the facts that $D j_{k}(s)=0, d_{X I}\left(j_{k}(s) \circ \varrho\right)=0$. If $f \in \mathcal{O}_{X}$ and $u \in J_{k}(\mathcal{F} ; Y)_{X}$ then, by (1.4) and (3.5),

$$
\begin{aligned}
&\left(\tau^{*} \otimes \mathrm{id}\right)(D(f u)) \circ \tau-D((f u) \circ \tau) \\
&=\left(\tau^{*} \otimes \mathrm{id}\right)\left(d f \otimes \pi_{k-1} u\right) \circ \tau+(f \circ \tau)\left(\tau^{*} \otimes \mathrm{id}\right)(D u) \circ \tau-d \tau^{*} f \otimes \pi_{k-1} u \circ \tau-\tau^{*} f \cdot D(u \circ \tau) \\
&=(f \circ \tau)\left[\left(\tau^{*} \otimes \mathrm{id}\right)(D u) \circ \tau-D(u \circ \tau)\right] .
\end{aligned}
$$

Similarly, if $\xi \in V$, we have by (3.5),

$$
\begin{aligned}
\left\langle\xi, D(f u)-\pi_{k-1} d_{X / Y}(f u)\right\rangle & =\left\langle\xi, d f \otimes \pi_{k-1} u+f D u-d_{X / Y} f \otimes \pi_{k-1} u-f \cdot \pi_{k-1} d_{X / Y} u\right\rangle \\
& =\left\langle\xi, f\left(D u-\pi_{k-1} d_{X / Y} u\right)\right\rangle .
\end{aligned}
$$

Since $J_{k}(\mathfrak{F} ; Y)_{X, x}$ is generated as an $O_{X, x}$-module by the elements $j_{k}(s) \circ \varrho$, where $s \in \mathcal{F}_{Q(x)}$, for all $x \in X$, we obtain the identities (3.10) and (3.11).

We now define
by setting

$$
D: \wedge^{i} \mathfrak{J}^{*} \otimes J_{k}(\mathfrak{F} ; Y)_{X} \rightarrow \wedge^{i+1} \mathfrak{J}^{*} \otimes J_{k-\mathbf{1}}(\mathfrak{F} ; Y)_{X}
$$

$$
D(\alpha \otimes u)=d \alpha \otimes \pi_{k-1} u+(-1)^{i} \alpha \wedge D u
$$

for $\alpha \in \wedge^{i} \mathcal{J}^{*}, u \in J_{k}(\mathcal{F} ; Y)_{X}$; this is a well-defined operator because of (3.5). The operator

$$
\begin{equation*}
D: \wedge \mathcal{J}^{*} \otimes J_{k}(\mathcal{F} ; Y)_{X} \rightarrow \wedge \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{F} ; Y)_{X} \tag{3.12}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
D(\alpha \wedge u)=d \alpha \wedge \pi_{k-1} u+(-1)^{i} \alpha \wedge D u \tag{3.13}
\end{equation*}
$$

for $\alpha \in \wedge^{i} \mathcal{J}^{*}, u \in \wedge \mathcal{T}^{*} \otimes J_{k}(\mathcal{F} ; Y)_{X}$, and

$$
\begin{equation*}
\langle\xi \wedge \eta, D u\rangle=\xi \bar{\wedge} D\langle\eta, u\rangle-\eta \bar{\wedge} D\langle\xi, u\rangle-\pi_{k-1}\langle[\xi, \eta], u\rangle, \tag{3.14}
\end{equation*}
$$

for $\xi, \eta \in \mathcal{T}, u \in \mathcal{T}^{*} \otimes J_{k}(\mathcal{F} ; Y)_{X}$. Since $D^{2}=0$, as is easily seen, we obtain a complex

$$
\begin{aligned}
0 \longrightarrow \varrho^{-1} \mathcal{F} \xrightarrow{j_{k}} J_{k}(\mathcal{F} ; Y)_{X} \xrightarrow{D} \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{F} ; Y)_{X} \xrightarrow{D} \\
\ldots \longrightarrow \wedge^{n} \mathcal{J}^{*} \otimes J_{k-n}(\mathcal{F} ; Y) \longrightarrow 0
\end{aligned}
$$

where the map j_{k} is induced from $j_{k}: \mathcal{F} \rightarrow J_{k}(\mathcal{F} ; Y)$ by ϱ. This complex is not exact at $\wedge^{i} \mathcal{J}^{*} \otimes J_{k-i}(\mathcal{F} ; \boldsymbol{Y})$ for $i \geqslant 0$; however, the corresponding complex with $k=\infty$ is exact.

If $E=\varrho^{-1} F$ and $\varphi: E \rightarrow \varrho^{-1} F$ is the identity mapping, it follows from (3.6), (1.4) and (3.13) that the diagram

$$
\begin{array}{|lll}
\wedge^{i} \mathcal{J}^{*} \otimes J_{k}(\mathcal{E} ; \varphi) & \xrightarrow{D} & \wedge^{i+1} \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{E} ; \varphi) \tag{3.15}\\
\mathrm{id} \otimes \varphi & & \left.\left\lvert\, \begin{array}{l}
\text { id } \otimes \varphi \\
\wedge^{i} \mathcal{J}^{*} \otimes \\
\downarrow
\end{array}\right.\right) \\
J_{k}(\mathcal{F} ; Y)_{X} & \xrightarrow{D} & \wedge^{i+1} \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{F} ; Y)_{X}
\end{array}
$$

is commutative, where the vertical arrows are isomorphisms, generalizing assertion (ii) of Proposition 3.1.

Let $i: V \rightarrow T$ denote the natural inclusion. Combining diagrams (3.2) and (3.15), we obtain the commutative diagram

$$
\begin{align*}
& \wedge^{i} \mathcal{T}^{*} \otimes J_{k}(\mathfrak{F} ; Y)_{X} \xrightarrow{D} \wedge^{i+1} \mathfrak{J}^{*} \otimes J_{k-1}(\mathcal{F} ; Y)_{X} \tag{3.16}\\
& \Lambda^{i^{*} \otimes \mathrm{id}} \begin{array}{l}
i^{*} \otimes \mathrm{id}
\end{array} \\
& \Lambda^{i} \vartheta^{*} \otimes J_{k}(\mathcal{F} ; Y)_{X} \xrightarrow{\pi_{k-1} \cdot d_{X \mid Y}} \wedge^{i+1} \vartheta^{*} \otimes J_{k-1}(\mathcal{F} ; Y)_{X}
\end{align*}
$$

which generalizes relation (3.11).
If τ is a section of $\varrho: X \rightarrow Y$ and $y \in Y$, and if u is a section of $\wedge^{i} \mathcal{J}^{*} \otimes J_{k}(\mathcal{F} ; Y)_{X}$ over a neighborhood of $x=\tau(y)$, let $\tau^{*} u$ be the section of $\wedge^{i} T_{Y}^{*} \otimes J_{k}(F ; Y)$ over a neighborhood of y defined by

$$
\begin{equation*}
\left(\tau^{*} u\right)(a)=\left(\tau^{*} \otimes \mathrm{id}\right) u(\tau(a)), \quad \text { for } a \in Y \tag{3.17}
\end{equation*}
$$

where τ^{*} on the right-hand side is the map

$$
\tau^{*}: \wedge^{i} T_{\tau(a)}^{*} \rightarrow \wedge^{i} T_{Y, a}^{*}
$$

Then, by (3.10), (3.13) and (1.4), we see that

$$
\begin{equation*}
\tau^{*} D u=D \tau^{*} u \tag{3.18}
\end{equation*}
$$

where the operator D on the right-hand side is the one defined in § 1 , namely (3.9). The relation (3.18) generalizes (3.10).

We now give a construction of the operator (3.12) similar to the one given by Malgrange [19] for the Spencer operator D of $\S 1$. Let $\Delta_{X, Y}$ be the subset $X \times_{Y} Y$ of $X \times Y$. Let
$\mathrm{pr}_{1}: X \times Y \rightarrow X$ be the projection onto the first factor. We shall identify a sheaf on X (resp. on $\Delta_{X, Y}$) with its inverse image by $\mathrm{pr}_{1}: \Delta_{X, Y} \rightarrow X$ (resp. with its direct image by the inclusion $\Delta_{X, Y} \rightarrow X \times Y$). Let \mathcal{J}_{Y}^{k+1} be the sub-sheaf of $O_{Y \times Y}$ of functions which vanish to order k on the diagonal Δ_{Y} of $Y \times Y$. Let $\mathcal{J}_{X, Y}^{k+1}$ be the inverse image of this sheaf by $\varrho \times$ id: $X \times Y \rightarrow Y \times Y$. If $\mathbf{1}_{Y}$ is the trivial line bundle over Y, we see that $O_{X \times Y} / \mathcal{J}_{X, Y}^{k+1}$ is the sheaf of sections of $\varrho^{-1} J_{k}\left(\mathbf{1}_{Y} ; Y\right)$ over X. Furthermore

$$
\begin{equation*}
J_{k}(\mathcal{F} ; Y)_{X}=\left(O_{X \times Y}\left(\mathcal{J}_{X, Y}^{k+1}\right) \otimes_{\mathrm{pr}_{2}^{-1} \mathrm{o}_{Y}} \mathrm{pr}_{2}^{-1} \mathcal{F}\right. \tag{3.19}
\end{equation*}
$$

where $\mathrm{pr}_{2}: X \times Y \rightarrow Y$ is the projection onto the second factor. Lifting differential forms on X to $X \times Y$ by pr_{1}^{*}, we may regard elements of

$$
\wedge \mathcal{J}^{*} \otimes_{o_{X}}\left(O_{X \times Y} / \mathcal{J}_{X, Y}^{k+1}\right)
$$

as germs of differential forms on $X \times Y$ modulo $\mathcal{J}_{X, Y}^{k+1}$. The exterior differential operator on $X \times Y$ with respect to the first factor X gives by passage to the quotient a map

$$
\begin{equation*}
D: \wedge \mathcal{J}^{*} \otimes_{o_{X}}\left(O_{X \times Y} / \mathcal{J}_{X . Y}^{k+1}\right) \rightarrow \wedge \mathcal{J}^{*} \otimes_{o_{X}}\left(O_{X \times Y} / \mathcal{J}_{X, Y}^{k}\right) \tag{3.20}
\end{equation*}
$$

Since D is $\operatorname{pr}_{2}^{-1} O_{Y}$-linear, by applying the functor

$$
\otimes_{\mathrm{pr}_{2}^{-1} o_{F}} \mathrm{pr}_{2}^{-1} \mathcal{F}
$$

to (3.20) and using (3.19), we obtain an operator

$$
D: \wedge \mathcal{J}^{*} \otimes J_{k}(\mathfrak{F} ; Y)_{X} \rightarrow \wedge \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{F} ; Y)_{X}
$$

which is none other than our operator (3.12), as it is easily seen that it satisfies conditions (i) of Proposition 3.1 and (3.13).

Finally, the operator (3.20), or more generally (3.12), is easily written in terms of local coordinates. For simplicity of notation, we shall consider only the case

$$
D: \mathcal{O}_{X \times Y} / \mathcal{J}_{X, Y}^{k+1} \rightarrow \mathcal{T}^{*} \otimes_{\mathcal{O}_{X}}\left(O_{X \times Y} / \mathcal{J}_{X, Y}^{k}\right)
$$

We introduce on X the local coordinate (v, y), where $v=\left(v^{1}, \ldots, v^{q}\right)$ is the coordinate along the fiber of $\varrho: X \rightarrow Y$ and $y=\left(y^{1}, \ldots, y^{m}\right)$ is a local coordinate for Y. If u represents a germ of $O_{X \times Y} / J_{X, Y}^{k+1}$, we have in the usual multi-index notation,

$$
u=\sum_{|\alpha| \leqslant k} a_{\alpha}(v, y) \frac{\left(y^{\prime}-y\right)^{\alpha}}{\alpha!}\left(\bmod \mathcal{J}_{X, Y}^{k+1}\right),
$$

where $\quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right), \quad\left(y^{\prime}-y\right)^{\alpha}=\left(y^{\prime 1}-y^{1}\right)^{\alpha_{1}} \ldots\left(y^{\prime m}-y^{m}\right)^{\alpha_{m}}, \quad \alpha!=\left(\alpha_{1}!\right)\left(\alpha_{2}!\right) \ldots\left(\alpha_{m}!\right), \quad|\alpha|=$ $\alpha_{1}+\ldots+\alpha_{m}$, and $\left(y, y^{\prime}\right)$ are respectively the coordinates along the first and second factors
of $Y \times Y$. Then we have

$$
D u=\sum_{|\alpha| \leqslant k-1}\left\{\sum_{i=1}^{q} d v^{i} \otimes \frac{\partial a_{\alpha}}{\partial v^{i}}+\sum_{j=1}^{m} d y^{j} \otimes\left(\frac{\partial a_{\alpha}}{\partial y^{j}}-a_{\alpha+1_{j}}\right)\right\} \frac{\left(y^{\prime}-y\right)^{\alpha}}{\alpha!}\left(\bmod \mathfrak{J}_{X . Y}^{k+1}\right),
$$

where 1_{j} denotes the multi-index with 1 in the j-th position and 0 elsewhere. This formula should be compared with (3.8).

4. A complex associated with Lie groups

Let G be a bundle of Lie groups over Y; the multiplication map $G \times{ }_{Y} G \rightarrow G$ is a morphism of fibered manifolds over Y. Let $T(G / Y)$ denote the bundle of vectors tangent to the fibers of $G \rightarrow Y$. If $g \in G_{y}$, the mappings $G_{y} \rightarrow G_{y}$ sending h into $g \cdot h$ and $h \cdot g$ respectively induce isomorphisms $T_{h}\left(G_{y}\right) \rightarrow T_{g h}\left(G_{y}\right), T_{h}\left(G_{y}\right) \rightarrow T_{h g}\left(G_{y}\right)$ sending ξ into $g \cdot \xi$ and $\xi \cdot g$ respectively for all $h \in G_{y_{3}}$. Let I be the section of G over Y sending $y \in Y$ into the identity element $I(y)$ of the group G_{y}. The Lie algebra g of G is the vector bundle over Y whose fiber g_{y} at $y \in Y$ is $T_{I(y)}(G / Y)=T_{I(y)}\left(G_{y}\right)$. If $\xi \in \mathfrak{g}_{y}$ and $g \in G_{y}$, then we write

$$
\operatorname{Ad} g \cdot \xi=g \cdot \xi \cdot g^{-1}
$$

The bracket on \mathfrak{g} is a morphism of vector bundles over Y

$$
\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}
$$

which, when restricted to the fiber \mathfrak{g}_{y}, is the usual bracket defined in terms of left-invariant vector fields on G_{y}. The Maurer-Cartan form of G

$$
\omega: T(G / Y) \rightarrow \mathfrak{g}
$$

is defined by

$$
\langle\xi, \omega\rangle=g^{-1} \cdot \xi, \quad \text { for } \xi \in T_{g}(G / Y) ;
$$

if $y \in Y$ and $g \in G_{y}$, its restriction to $T_{g}(G / Y)=T_{g}\left(G_{y}\right)$ is the left-invariant Maurer-Cartan form of the Lie group G_{y} with values in g_{y}.

We define a bracket

$$
\begin{equation*}
\left(T^{*}(X / Y) \otimes_{X} \mathfrak{g}\right) \otimes\left(T^{*}(X / Y) \otimes_{X} \mathfrak{g}\right) \rightarrow \Lambda^{2} T^{*}(X / Y) \otimes_{X} \mathfrak{g} \tag{4.1}
\end{equation*}
$$

by the formula

$$
[\alpha \otimes \xi, \beta \otimes \eta]=(\alpha \wedge \beta) \otimes[\xi, \eta],
$$

for $\alpha, \beta \in T^{*}(X / Y), \xi, \eta \in g$. Then the Maurer-Cartan form of G satisfies the equation

$$
\begin{equation*}
d_{G / Y} \omega+\frac{1}{2}[\omega, \omega]=0 \tag{4.2}
\end{equation*}
$$

where the bracket is given by (4.1) with X replaced by G.
For $i \geqslant 1$, let $\wedge^{i} \vartheta^{*} \otimes_{x} g$ denote the sheaf of sections of $\Lambda^{i} V^{*} \otimes_{X} \mathfrak{g}$. We introduce the differential operator

$$
\mathcal{D}_{x / Y}: \mathcal{G}_{x} \rightarrow V^{*} \otimes_{x} g,
$$

which sends $\phi \in \mathcal{G}_{X}$ into $\phi^{*} \omega \in \mathfrak{V}^{*} \otimes_{X} g$. If ϕ is a section of \mathcal{G}_{X} over $U \subset X$, then

$$
\begin{equation*}
\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle=\left\langle\phi_{*} \xi, \omega\right\rangle=\phi(a)^{-1} \phi_{*} \xi, \tag{4.3}
\end{equation*}
$$

for all $\xi \in V_{a}, a \in U$, where $\phi_{*} \xi \in T_{\phi(a)}(G / Y)$ and $\phi(a)^{-1}: T_{\phi(a)}(G / Y) \rightarrow \mathrm{g}$. Hence

$$
\begin{equation*}
\mathcal{D}_{X / Y} \phi=\phi^{*} \omega=0 \text { if and only if } \phi_{*} \xi=0 \text { for all } \xi \in V \tag{4.4}
\end{equation*}
$$

We have, for $\phi \in \mathcal{G}_{x}$,

$$
d_{X / Y}\left(\mathcal{D}_{X / Y} \phi\right)=d_{X / Y}\left(\phi^{*} \omega\right)=\phi^{*}\left(d_{G / Y} \omega\right)=-\frac{1}{2} \phi^{*}[\omega, \omega]=-\frac{1}{2}\left[\phi^{*} \omega, \phi^{*} \omega\right]
$$

by (4.2), i.e.,

$$
\begin{equation*}
d_{X / Y}\left(\mathcal{D}_{X / Y} \phi\right)+\frac{1}{2}\left[\mathcal{D}_{X / Y} \phi, \mathcal{D}_{X / Y} \phi\right]=0 \tag{4.5}
\end{equation*}
$$

Therefore defining

$$
\mathcal{D}_{1, X / Y}: \mathfrak{Z}^{*} \otimes_{X} \mathfrak{G} \rightarrow \wedge^{2} \mathfrak{V}^{*} \otimes_{X} \mathfrak{G}
$$

by the formula

$$
\mathcal{D}_{1, X / Y} v=d_{X / Y} v+\frac{1}{2}[v, v], \quad v \in \mathfrak{V}^{*} \otimes_{X} \mathfrak{g}
$$

we obtain the complex

$$
\begin{equation*}
I \longrightarrow \mathcal{G} \xrightarrow{\varrho^{-1}} \mathcal{G}_{X} \xrightarrow{D_{X / Y}} \vartheta^{*} \otimes_{x} \mathfrak{g} \xrightarrow{D_{1, X / Y}} \wedge^{2} \vartheta^{*} \otimes_{X} \mathfrak{g} \tag{4.6}
\end{equation*}
$$

This complex is clearly exact at \mathcal{G}_{X} in view of (4.4).
If $u \in \wedge V_{x}^{*} \otimes \mathfrak{g}_{y}$, where $x \in X$ and $\varrho(x)=y$, and $g \in G_{y}$, we define

$$
g(u)=(\mathrm{id} \otimes \operatorname{Ad} g) u
$$

If ϕ, ψ are sections of \mathcal{G}_{X} over an open set $U \subset X$, we obtain a section $\phi \cdot \psi$ of \mathcal{G}_{X} over U by setting

$$
(\phi \cdot \psi)(a)=\phi(a) \cdot \psi(a), \quad a \in U
$$

Then

$$
\begin{equation*}
\mathcal{D}_{X / X}(\phi \cdot \psi)=\psi^{-1}\left(\mathcal{D}_{X / Y} \phi\right)+\mathcal{D}_{X / Y} \psi \tag{4.7}
\end{equation*}
$$

Indeed, if $\xi \in V_{a}, a \in U$,

$$
(\phi \cdot \psi)_{*} \xi=\phi_{*} \xi \cdot \psi(a)+\phi(a) \cdot \psi_{*} \xi
$$

and so, according to (4.3),

$$
\begin{aligned}
\left\langle\xi, D_{X / Y}(\phi \cdot \psi)\right\rangle & =\langle\phi(a) \cdot \psi(a))^{-1}\left(\phi_{*} \xi \cdot \psi(a)+\phi(a) \cdot \psi_{*} \xi\right) \\
& =\psi(a)^{-1} \cdot \phi(a)^{-1} \cdot \phi_{*} \xi \cdot \psi(a)+\psi(a)^{-1} \cdot \psi_{*} \xi=\psi(a)^{-1}\left(\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle\right)+\left\langle\xi, \mathcal{D}_{X / Y} \psi\right\rangle
\end{aligned}
$$

which gives (4.7). Replacing ψ in (4.7) by ϕ^{-1}, we obtain

$$
\begin{equation*}
D_{X / Y} \phi^{-1}=-\phi\left(\mathcal{D}_{X / Y} \phi\right) . \tag{4.8}
\end{equation*}
$$

If $u \in \mathfrak{V}^{*} \otimes_{x} \mathfrak{g}, \phi \in \mathcal{G}_{X}$, we define

$$
\begin{equation*}
u^{\phi}=\phi^{-1}(u)+\mathcal{D}_{X i X} \phi \tag{4.9}
\end{equation*}
$$

9†-762907 Acta mathematica 136. Imprimé le 13 Avril 1976

Then, if $\psi \in \mathcal{G}_{\mathrm{x}}$, we have by (4.7)

$$
u^{\phi \cdot \psi}=\psi^{-1}\left(\phi^{-1}(u)\right)+\mathcal{D}_{X / Y}(\phi \cdot \psi)=\psi^{-1}\left(\phi^{-1}(u)+\mathcal{D}_{X / Y} \phi\right)+\mathcal{D}_{X / Y} \psi,
$$

i.e.,

$$
\begin{equation*}
u^{\phi \cdot \varphi}=\left(u^{\phi}\right)^{\varphi} \tag{4.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathcal{D}_{1, X / Y} u^{\phi}=\phi^{-1}\left(\mathcal{D}_{1, X / Y} u\right), \quad \text { for } u \in \mathfrak{\vartheta}^{*} \otimes \mathfrak{g}, \phi \in \mathcal{G}_{X} \tag{4.11}
\end{equation*}
$$

To establish (4.11), we first make the following digression.
Let ϕ be a section of \mathcal{G}_{X} over a neighborhood U of a point $a \in X$ and let x_{t} be a curve in U with $x_{0}=a$ and $\varrho\left(x_{t}\right)=\varrho(a)=y$; set $d x_{t}|d t|_{t=0}=\xi \in V_{a}$. For simplicity, we write $\phi_{t}=$ $\phi\left(x_{i}\right)$; then, for $\zeta \in \mathfrak{g}_{y}$, we have the formula

$$
\begin{equation*}
\left.\frac{d}{d t} \operatorname{Ad} \phi_{t} \cdot \zeta\right|_{i=0}=\operatorname{Ad} \phi(a) \cdot\left(\left[\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle, \zeta\right]\right) \tag{4.12}
\end{equation*}
$$

In fact, we have

$$
\operatorname{Ad} \phi_{t} \cdot \zeta=\phi_{0} \cdot\left\{\phi_{0}^{-1} \cdot \phi_{t} \cdot \zeta \cdot \phi_{t}^{-1} \cdot \phi_{0}\right\} \cdot \phi_{0}^{-1}=\operatorname{Ad} \phi_{0} \cdot \operatorname{Ad}\left(\phi_{0}^{-1} \cdot \phi_{c}\right) \cdot \zeta
$$

and hence

$$
\left.\frac{d}{d t} \operatorname{Ad} \phi_{t} \cdot \zeta\right|_{t=0}=\operatorname{Ad} \phi_{0} \cdot \operatorname{ad}\left(\left.\frac{d}{d t} \phi_{0}^{-1} \cdot \phi_{t}\right|_{t=0}\right) \cdot \zeta=\operatorname{Ad} \phi_{0} \cdot\left(\left[\left.\frac{d}{d t} \phi_{0}^{-1} \cdot \phi_{t}\right|_{t=0}, \zeta\right]\right)
$$

since the differential of Ad at the identity of the group G_{y} is equal to ad (see [16], p. 118). Since, by (4.3),

$$
\left.\frac{d}{d t} \phi^{-1}(a) \cdot \phi_{t}\right|_{t=0}=\phi^{-1}(a) \cdot \phi_{*} \xi=\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle,
$$

we obtain (4.12).
Next, if $\xi \in V_{a}$ and ζ is a section of $\varrho^{-1} \mathrm{~g}$ and ϕ is a section of \mathcal{G}_{x} over a neighborhood U of a, we have

$$
\begin{equation*}
\xi \cdot(\operatorname{Ad} \phi \cdot \zeta)=\operatorname{Ad} \phi(a)(\xi \cdot \zeta)+\operatorname{Ad} \phi(a)\left(\left[\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle, \zeta(a)\right]\right) . \tag{4.13}
\end{equation*}
$$

For let x_{t} be a curve in U as above with $d x_{t} /\left.d t\right|_{t=0}=\xi$, and write $\zeta_{t}=\zeta\left(x_{t}\right), \phi_{t}=\phi\left(x_{t}\right)$; then

$$
\xi \cdot(\operatorname{Ad} \phi \cdot \zeta)=\left.\frac{d}{d t}\left(\operatorname{Ad} \phi_{t} \cdot \zeta_{t}\right)\right|_{t=0}=\operatorname{Ad} \phi(a) \cdot(\xi \cdot \zeta)+\left.\frac{d}{d t} \operatorname{Ad} \phi_{t} \cdot \zeta(a)\right|_{t=0}
$$

and we obtain (4.13) by substitution from (4.12).
We obtain, for $u \in \mathfrak{\vartheta}^{*} \otimes_{x} \mathfrak{g}, \phi \in \mathcal{G}_{X}$,

$$
\begin{equation*}
d_{X / Y} \phi^{-1}(u)-\phi^{-1}\left(d_{X / Y} u\right)=\phi^{-1}\left(\left[\mathcal{D}_{X / Y} \phi^{-1}, u\right]\right) \tag{4.14}
\end{equation*}
$$

In fact, let $\xi, \eta \in \mathcal{\vartheta}$; then

$$
\begin{aligned}
\langle\xi & \left.\wedge \eta, d_{X / Y} \phi^{-1}(u)-\phi^{-1}\left(d_{X / Y} u\right)\right\rangle \\
& =\xi \cdot\left\langle\eta, \phi^{-1}(u)\right\rangle-\eta \cdot\left\langle\xi, \phi^{-1}(u)\right\rangle-\left\langle[\xi, \eta], \phi^{-1}(u)\right\rangle-\operatorname{Ad} \phi^{-1}(\xi \cdot\langle\eta, u\rangle-\eta \cdot\langle\xi, u\rangle-\langle[\xi, \eta], u\rangle) \\
& =\xi \cdot\left(\operatorname{Ad} \phi^{-1}\langle\eta, u\rangle\right)-\eta \cdot\left(\operatorname{Ad} \phi^{-1}\langle\xi, u\rangle\right)-\operatorname{Ad} \phi^{-1}(\xi \cdot\langle\eta, u\rangle)+\operatorname{Ad} \phi^{-1}(\eta \cdot\langle\xi, u\rangle),
\end{aligned}
$$

since $\operatorname{Ad} \phi^{-1}\langle[\xi, \eta], u\rangle=\left\langle[\xi, \eta], \phi^{-1}(u)\right\rangle$ and the two terms of this form cancel. By (4.13), with ϕ replaced by ϕ^{-1} and with ζ replaced by $\langle\eta, u\rangle,\langle\xi, u\rangle$, we obtain

$$
\begin{aligned}
\left\langle\xi \wedge \eta, d_{X / Y} \phi^{-1}(u)-\phi^{-1}\left(d_{X / Y} u\right)\right\rangle & =\operatorname{Ad} \phi^{-1}\left(\left[\left\langle\xi, \mathcal{D}_{X / Y} \phi^{-1}\right\rangle,\langle\eta, u\rangle\right]-\left[\left\langle\eta, \mathcal{D}_{X / Y} \phi^{-1}\right\rangle,\langle\xi, u\rangle\right]\right) \\
& =\operatorname{Ad} \phi^{-1}\left(\left\langle\xi \wedge \eta,\left[\mathcal{D}_{X / Y} \phi^{-1}, u\right]\right\rangle\right)
\end{aligned}
$$

and this is (4.14).
We now prove (4.11). In fact, for $u \in \mathcal{V}^{*} \otimes_{x} \mathfrak{G}, \phi \in \mathcal{G}_{x}$, we have, using (4.5),

$$
\begin{aligned}
\mathcal{D}_{1, X / Y} u^{\phi} & =\mathcal{D}_{1, X / Y}\left(\phi^{-1}(u)+\mathcal{D}_{X / Y} \phi\right) \\
& =d_{X / Y} \phi^{-1}(u)+\frac{1}{2}\left[\phi^{-1}(u), \phi^{-1}(u)\right]+\left[\mathcal{D}_{X / Y} \phi, \phi^{-1}(u)\right] \\
& =\phi^{-1}\left(d_{X / Y} u+\frac{1}{2}[u, u]\right)+\phi^{-1}\left(\left[\phi\left(\mathcal{D}_{X / Y} \phi\right), u\right]+\left[\mathcal{D}_{X / Y} \phi^{-1}, u\right]\right)
\end{aligned}
$$

by (4.14). Since $\phi\left(\mathcal{D}_{X / Y} \phi\right)=-\mathcal{D}_{X / Y} \phi^{-1}$ by (4.8), we obtain (4.11).
Proposition 4.1. The complex (4.6) is exact. Moreover, suppose that there is given a section v of $V^{*} \otimes_{X} \mathfrak{g}$ over a neighborhood U of a point $x_{0} \in X$ satisfying $D_{1, X / Y} v=0$, a local section $s: Y \rightarrow X$ mapping $\varrho(U)$ into U such that $s\left(\varrho\left(x_{0}\right)\right)=x_{0}$, and a local section $\phi_{0}: Y \rightarrow G$ defined on $\varrho(U)$. Then there are a neighborhood $U^{\prime} \subset U$ of x_{0} and a unique section $\phi: U^{\prime} \rightarrow \mathcal{G}_{X}$ satisfying $\mathcal{D}_{X / X} \phi=v$ and $\phi(s(y))=\phi_{0}(y)$, for all $y \in \varrho\left(U^{\prime}\right)$. If $v\left(x_{0}\right)=0$ and $\phi_{0}=I$, then $j_{1}(\phi)\left(x_{0}\right)=$ $j_{1}(I \circ \varrho)\left(x_{0}\right)$.

Proof. Consider the fibered manifold $G_{X}=X \times_{Y} G$ over Y; let $\mathrm{pr}_{1}: G_{X} \rightarrow X, \mathrm{pr}_{2}: G_{X} \rightarrow G$ be the projections onto the first and second factors respectively, which are morphisms of fibered manifolds over Y. Let v be a local section of $V^{*} \otimes_{X} \mathfrak{g}$ over X; set

$$
\begin{aligned}
& \tilde{\omega}=\operatorname{pr}_{2}^{*} \omega: T\left(G_{X} / Y\right) \rightarrow \mathrm{g} \\
& \tilde{v}=\operatorname{pr}_{1}^{*} v: T\left(G_{X} / Y\right) \rightarrow \mathrm{g} .
\end{aligned}
$$

Let ϕ be a local section of G_{X} over X; if $\tilde{\phi}: X \rightarrow X \times_{Y} G$ is the graph of ϕ, which sends $x \in X$ into ($x, \phi(x)$), then $\operatorname{pr}_{1} \circ \tilde{\phi}=\mathrm{id}, \operatorname{pr}_{2} \circ \tilde{\phi}=\phi$, and hence

$$
\begin{equation*}
v-\phi^{*} \omega=\tilde{\phi}^{*}\left(\operatorname{pr}_{1}^{*} v-\operatorname{pr}_{2}^{*} \omega\right)=\tilde{\phi}^{*}(\tilde{v}-\tilde{\omega}) . \tag{4.15}
\end{equation*}
$$

Therefore $\phi^{*} \omega=v$ if and only if $\tilde{\phi}^{*}(\tilde{v}-\tilde{\omega})=0$ where

$$
\begin{equation*}
\tilde{v}-\tilde{\omega}: T\left(G_{X} / Y\right) \rightarrow \mathfrak{g} . \tag{4.16}
\end{equation*}
$$

Let K be the kernel of $\mathrm{pr}_{1 *}: T\left(G_{X} / Y\right) \rightarrow T(X / Y)$.
10-762907 Acta mathematica 136. Imprimé le 13 Avril 1976

Lemma 4.1. Let v be a section of $V^{*} \otimes_{x} g$ over X. Then $\operatorname{ker}(\tilde{v}-\tilde{\omega})$ is a distribution on G_{X} such that

$$
\begin{equation*}
K \oplus \operatorname{ker}(\tilde{v}-\tilde{\omega})=T\left(G_{X} / Y\right) ; \tag{4.17}
\end{equation*}
$$

if $\mathcal{D}_{1, X / Y} v=0$, it is integrable.
Proof. If y is the image in Y of $g \in G$, then $\omega: T_{g}(G / Y) \rightarrow \mathfrak{g}_{y}$ is an isomorphism, so $\tilde{v}-\tilde{\omega}: T_{z}\left(G_{X}\right) \rightarrow \mathfrak{g}_{y}$ is surjective and $\tilde{\omega}: K_{z} \rightarrow \mathfrak{g}_{y}$ is an isomorphism, for all $z \in G_{x}$ whose projection in Y is y. Since $\tilde{v}_{1 K}=0$, it follows that $\operatorname{ker}(\tilde{v}-\tilde{\omega})$ is a sub-bundle of $T\left(G_{X} / Y\right)$ of rank equal to $\operatorname{dim} X-\operatorname{dim} Y$ and $K \cap \operatorname{ker}(\tilde{v}-\tilde{\omega})=0$. By a dimension argument, we see that (4.17) holds. Next, we have

$$
d_{G_{X / Y}} \tilde{\omega}+\frac{1}{2}[\tilde{\omega}, \tilde{\omega}]=0
$$

and, if $\mathcal{D}_{1, x / Y} v=0$, we have also

$$
d_{G_{X} / Y} \tilde{v}+\frac{1}{2}[\tilde{v}, \tilde{v}]=0
$$

where the brackets are given by (4.1) with X replaced by G_{X}. Hence

$$
d_{G_{X^{\prime}} / P}(\tilde{v}-\tilde{\omega})=\frac{1}{2}([\tilde{\omega}, \tilde{\omega}]-[\tilde{v}, \tilde{v}])=-\frac{1}{2}[\tilde{v}-\tilde{\omega}, \tilde{v}+\tilde{\omega}] .
$$

Let ξ, η be sections of $\operatorname{ker}(\tilde{v}-\tilde{\omega})$ over G_{x}. Then

$$
\begin{aligned}
\langle[\xi, \eta], \tilde{v}-\tilde{\omega}\rangle & =\xi \cdot\langle\eta, \tilde{v}-\tilde{\omega}\rangle-\eta \cdot\langle\xi, \tilde{v}-\tilde{\omega}\rangle-\left\langle\xi \wedge \eta, d_{G_{X} / \mathbf{Y}}(\tilde{v}-\tilde{\omega})\right\rangle \\
= & -\left\langle\xi \wedge \eta, d_{G_{X} / Y}(\tilde{v}-\tilde{\omega})\right\rangle=\frac{1}{2}([(\tilde{v}-\tilde{\omega})(\xi),(\tilde{v}+\tilde{\omega})(\eta)]-[(\tilde{v}-\tilde{\omega})(\eta),(\tilde{v}+\tilde{\omega})(\xi)])=0 .
\end{aligned}
$$

Hence $[\xi, \eta]$ is a section of $\operatorname{ker}(\tilde{v}-\tilde{\omega})$, i.e., $\operatorname{ker}(\tilde{v}-\tilde{\omega})$ is an integrable distribution.
Let us return to the proof of Proposition 4.1, and let v, s, ϕ_{0} be as described in the proposition. Since ker $(\tilde{v}-\tilde{\omega})$ is an integrable distribution, Frobenius' theorem asserts that, through each point of $U \times{ }_{Y} G$ lying over $y € \varrho(U) \subset Y$, there passes a leaf of the corresponding foliation lying in $U_{y} \times G_{y}$. Because of (4.17), if U is replaced by a possibly smaller neighborhood U^{\prime} which, for simplicity, we again denote by U, then there exists a morphism of fibered manifolds $\tilde{\phi}: X \rightarrow G_{X}$ over Y defined on U, which is a section of the fibered manifold $\mathrm{pr}_{1}: G_{X} \rightarrow X$ and therefore the graph of a map $\phi: U \rightarrow G$, such that $\tilde{\phi}\left(U_{y}\right)$ is the leaf of the foliation containing the point $\left(s(y), \phi_{0}(y)\right)$, for all $y \in_{\varrho}(U)$. Then $\tilde{\phi}^{*}(\tilde{v}-\tilde{\omega})=0$ and hence, by (4.15), $\phi^{*} \omega=v$. If $\phi_{0}=I$, then $\phi\left(x_{0}\right)=I\left(\varrho\left(x_{0}\right)\right)$ and the equality $j_{1}(\phi)\left(x_{0}\right)=$ $j_{1}(I \circ \varrho)\left(x_{0}\right)$ is equivalent to

$$
\begin{equation*}
\phi_{*} \xi=(I \circ \varrho)_{*} \xi, \quad \text { for all } \xi \in T_{x_{*}} . \tag{4.18}
\end{equation*}
$$

We write $T_{x_{0}}=V_{x_{0}} \oplus H_{x_{0}}$, where $H_{x_{0}}=\mathcal{s}_{*} T_{Y, \varrho\left(x_{0}\right)}$. Suppose that $v\left(x_{0}\right)=0$. If $\xi \in V_{x_{0}}$, then $\phi_{*} \xi=0$ by (4.4), and $(I \circ \varrho)_{*} \xi=I_{*} \varrho_{*} \xi=0$. If $\xi \in H_{x_{0}}$, then $\xi=s_{*} \zeta$, with $\zeta=\varrho_{*} \xi \in T_{Y, \varrho\left(x_{0}\right)}$, and

$$
\phi_{*} \xi=\phi_{*} s_{*} \zeta=I_{*} \zeta=I_{*} \varrho_{*} \xi=(I \circ \varrho)_{*} \xi .
$$

Thus (4.18) holds under our assumptions on ϕ_{0} and $v\left(x_{0}\right)$ and we obtain the desired equality.

5. Cartan fundamental forms

As in §2, we regard $E=X \times X$ as a bundle over X via the projection pr_{1}. We begin by recalling the definition of the fundamental form on $J_{k_{1+1}}(E)$ given in [11], namely the mapping

$$
\sigma: T\left(J_{k+1}(E)\right) \rightarrow V\left(J_{k}(E)\right),
$$

which is a morphism of vector bundles over $\pi_{k}: J_{k+1}(E) \rightarrow J_{k}(E)$. If $F \in J_{k+1}(E)$, $\xi \in T_{F}\left(J_{k+1}(E)\right)$, the form σ is defined by the formula

$$
\begin{equation*}
\langle\xi, \sigma\rangle=\pi_{k *} \xi-F_{*} \pi_{*} \xi, \tag{5.1}
\end{equation*}
$$

where $F_{*}: T_{x} \rightarrow T_{\pi_{k} F}\left(J_{k}(E)\right)$ and $\langle\xi, \sigma\rangle \in V_{\pi_{k} F}\left(J_{k}(E)\right)$. If u^{7} is a section of $J_{k+1}(E)$ over X, then $u^{*} \sigma$ is the $V\left(J_{k}(E)\right)$-valued 1 -form on X defined by

$$
\left\langle\xi, u^{*} \sigma\right\rangle=\left\langle u_{*} \xi, \sigma\right\rangle, \quad \text { for } \xi \in T .
$$

Then, according to Propositions 1.1 and 1.2 of [11], a section u of $J_{k+1}(E)$ over $U \subset X$ satisfies $u^{*} \sigma=0$ if and only if it is equal to $j_{k+1}(s)$, where $s=\pi_{0} u$.

The Cartan fundamental form on Q_{k+1} with values in $J_{k}(T)$ is the mapping

$$
\omega: T\left(Q_{k+1}\right) \rightarrow J_{k}(T)
$$

which is a morphism of vector bundles over $\pi: Q_{k+1} \rightarrow X$ defined by

$$
\begin{equation*}
\langle\xi, \omega\rangle=v\left(\lambda_{1} F\right)^{-1}\langle\xi, \sigma\rangle \tag{5.2}
\end{equation*}
$$

for $F \in Q_{k+1}, \xi \in T_{F}\left(Q_{k+1}\right)$. In fact, $\langle\xi, \omega\rangle$ belongs to $J_{k}(T)_{a}$ if $\xi \in T_{F}\left(Q_{k+1}\right)$, where $a=\pi F$. If $F=j_{k+1}(f)(a)$, where f is a local diffeomorphism of X defined on a neighborhood of a, the mapping

$$
\left(\lambda_{1} F\right)^{-1} \cdot F_{*}: T_{a} \rightarrow T_{I_{k}(\alpha)}\left(Q_{k}\right)
$$

sends η into $j_{k}(f)^{-1} \cdot j_{k}(f)_{*} \eta=I_{k *} \eta$. Therefore, by (5.1) and (5.2),

$$
\begin{equation*}
\langle\xi, \omega\rangle=\nu\left(\left(\lambda_{1} F\right)^{-1} \pi_{k *} \xi-I_{k *} \pi_{*} \xi\right) \tag{5.3}
\end{equation*}
$$

The restriction

$$
\omega_{V}: V\left(Q_{k+1}\right) \rightarrow J_{k}(T)
$$

of ω to $V\left(Q_{k+1}\right)$ is given by

$$
\begin{equation*}
\left\langle\xi, \omega_{v}\right\rangle=v\left(\lambda_{1} F\right)^{-1} \pi_{k *} \xi \tag{5.4}
\end{equation*}
$$

for $F \in Q_{k+1}, \xi \in V_{F}\left(Q_{k+1}\right)$. The further restriction of ω or of ω_{V} to the fiber $Q_{k+1}(a)$, the "bundle of frames of order $k+1$ with source $a \prime$, is the fundamental form of Cartan on the principal bundle $Q_{k+1}(a)$ with values in $J_{k}(T)_{a}$ (see [14]).

If F is a section of Q_{k+1} over X, then $F^{*} \omega$ is the $J_{k}(T)$-valued 1-form on X defined by

$$
\left\langle\xi, F^{*} \omega\right\rangle=\left\langle F_{*} \xi, \omega\right\rangle, \quad \text { for } \xi \in T,
$$

which we shall also consider as a section of $T^{*} \otimes J_{k}(T)$ over X.
Proposition 5.1. The fundamental form ω on Q_{k+1} has the following properties:
(i) If $\tilde{\xi} \in \tilde{J}_{k+1}(T)_{b}, G \in Q_{k+1}$, with target $G=b$,

$$
\begin{equation*}
\langle\xi G, \omega\rangle=G^{-1}\left(\pi_{k} \nu \tilde{\xi}\right) . \tag{5.5}
\end{equation*}
$$

(ii) If F is a section of Q_{k+1} over $U \subset X$, then $F^{*} \omega=0$ if and only if $F=j_{k+1}(f)$, where $f: U \rightarrow X$ is an immersion. If F is a section of \tilde{Q}_{k+1}, then

$$
\begin{equation*}
\mathcal{D} F=F^{*} \omega \tag{5.6}
\end{equation*}
$$

(iii) If F is a section of \tilde{Q}_{k+1} over $U \subset X$, then

$$
\begin{equation*}
\langle F \cdot \xi \cdot G, \omega\rangle-\langle\tilde{\xi} \cdot G, \omega\rangle=G^{-1}\left(\left(\pi_{0} \tilde{\xi}\right) \pi D F\right), \tag{5.7}
\end{equation*}
$$

for $\tilde{\xi} \in \tilde{J}_{k+1}(T)_{b}, G \in Q_{k+1}$ with target $G=b \in U$; furthermore

$$
\begin{equation*}
\langle F \xi, \omega\rangle=\langle\xi, \omega\rangle, \tag{5.8}
\end{equation*}
$$

for all $\xi \in T_{G}\left(Q_{k+1}\right), G \in Q_{k+1}$ with targets lying in U, if and only if $F=j_{k+1}(f)$, where $f: U \rightarrow X$ is an immersion.

Remark. Let $a \in X$ and Ω be the restriction of ω or of ω_{V} to $Q_{k+1}(a)$. Some of the assertions of Proposition 5.1 are related to properties of Ω given in [14]. Namely, the equivariance of Ω corresponds to (5.5). Furthermore, if h is a diffeomorphism of $Q_{k+1}(a)$, then the operator $h \mapsto h^{*} \Omega-\Omega$ is connected to \mathcal{D} by formula (5.7) and the conditions of [14] for the vanishing of $h^{*} \Omega-\Omega$ are analogous to the second part of (iii).

Proof of Proposition 5.1. (i) We have $\tilde{\xi} G \in V_{G}\left(Q_{k+1}\right)$ and

$$
\langle\xi G, \omega\rangle=v\left(\lambda_{1} G\right)^{-1} \pi_{k *}(\tilde{\xi} G)=v\left(\lambda_{1} G\right)^{-1} \cdot \pi_{k} \xi \cdot \pi_{k} G=G^{-1}\left(\nu \pi_{k} \xi\right),
$$

according to (2.6).
(ii) We have $F^{*} \omega=0$ if and only if $F^{*} \sigma=0$. From the properties of σ, it follows that the latter condition is equivalent to $F=j_{k+1}(f)$, where $f: U \rightarrow X$ is an immersion, because $\pi_{1} \circ F$ is a section of Q_{1}. If F is a section of \tilde{Q}_{k+1} over U and $a \in U$, then $\lambda_{1} F(a)^{-1} \cdot j_{1}\left(\pi_{k} F\right)(a) \in$ $Q_{(1, k)}^{0}$, and we have by (5.3), for $\xi \in T_{a}$,

$$
\begin{aligned}
\nu^{-1}\left\langle F_{*} \xi, \omega\right\rangle & =\left(\left(\lambda_{1} F(a)\right)^{-1} \pi_{k *} F_{*}-I_{k *}\right) \xi \\
& =\left(\lambda_{1} F(a)^{-1} \cdot j_{1}\left(\pi_{k} F\right)(a)_{*}-j_{1}\left(I_{k}\right)(a)_{*}\right) \xi \\
& =\left(\left(\lambda_{1} F(a)^{-1} \cdot j_{1}\left(\pi_{k} F\right)(a)\right)_{*}-j_{1}\left(I_{k}\right)(a)_{*}\right) \xi \\
& =\xi \pi \partial\left(\lambda_{1} F(a)^{-1} \cdot j_{1}\left(\pi_{k} F\right)(a)\right)=\nu^{-1}\left(\xi \pi \bar{D} F^{\prime}\right)
\end{aligned}
$$

according to (2.27).
(iii) By (i), (5.3) and (2.6), we have

$$
\begin{aligned}
\langle F \cdot \tilde{\xi} \cdot G, \omega\rangle-\langle\tilde{\xi} \cdot G, \omega\rangle & =v\left(\lambda_{1}(F(b) \cdot G)^{-1} \pi_{k_{k}}(F \cdot \tilde{\xi} \cdot G)-G^{-1}\left(v \pi_{k} \tilde{\xi}\right)\right) \\
& =\nu\left(\lambda_{1} G^{-1} \cdot \lambda_{1} F(b)^{-1} \cdot \pi_{k} F \cdot \pi_{k} \tilde{\xi} \cdot \pi_{k} G-G^{-1}\left(\nu \pi_{k} \tilde{\xi}\right)\right) \\
& =G^{-1}\left(\nu\left(\lambda_{1} F(b)^{-1} \cdot \pi_{k} F \cdot \pi_{k} \tilde{\xi}-\pi_{k} \xi\right)\right)=G^{-1}\left(\left(\pi_{0} \tilde{\xi}\right) \pi D F\right)
\end{aligned}
$$

according to (2.28). If (5.8) holds for all $\xi \in V_{G}\left(Q_{k+1}\right)$, then by (5.7),

$$
G^{-1}(\eta \bar{\wedge} \mathcal{D} F)=0, \quad \text { for all } \eta \in T_{b}, b=\operatorname{target} G
$$

and $(\mathcal{D} F)(b)=0$; hence if (5.8) holds for all $\xi \in V_{G}\left(Q_{k+1}\right), G \in Q_{k+1}$ whose targets lie in U, then $D F=0$ and $F=j_{k+1}(f)$, where f is a section of $\operatorname{Aut}(X)$ over U. Conversely, if $f: U \rightarrow X$ is an immersion, $\xi \in T_{G}\left(Q_{k+1}\right)$ and $G \in Q_{k+1}$ with target lying in U, then by (5.3)

$$
\begin{aligned}
\left\langle j_{k+1}(f) \xi, \omega\right\rangle & =v\left(\lambda_{1}\left(j_{k+1}(f)(b) \cdot G\right)^{-1} j_{k}(f) \pi_{k *} \xi-I_{k *} \pi_{*} j_{k+1}(f) \cdot \xi\right) \\
& =v\left(\left(\lambda_{1} G\right)^{-1} \lambda_{1}\left(j_{k+1}(f)(b)\right)^{-1} j_{k}(f) \pi_{k *}-I_{k *} \pi_{*}\right) \xi \\
& =v\left(\left(\lambda_{1} G\right)^{-1} j_{k}(f)^{-1} j_{k}(f) \pi_{k *}-I_{k *} \pi_{*}\right) \xi=\langle\xi, \omega\rangle .
\end{aligned}
$$

If $\boldsymbol{\xi}$ is a vertical vector field on Q_{k+1} which is the infinitesimal generator of a one-parameter family of diffeomorphisms Φ_{t} of Q_{k+1} defined on an open set $W \subset Q_{k+1}$ and satisfying $\pi \circ \Phi_{t}=\pi, \Phi_{0}=i d$, we define the Lie derivative $\mathcal{L}(\xi) \omega$ of ω along ξ, which is a section of $T^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)$ over W, by the formula

$$
\langle\zeta, \mathcal{L}(\xi) \omega\rangle=\left.\frac{d}{d t}\left\langle\Phi_{t *} \zeta, \omega\right\rangle\right|_{t=0}
$$

for $\zeta \in T_{G}\left(Q_{k+1}\right), G \in W$. We set

$$
\xi \cdot u=\left\langle\xi, d_{Q_{k+1} / x} u\right\rangle
$$

for $u \in J_{k}(\mathcal{J})_{Q_{k+1}}$. Then, if ζ is a vector field on Q_{k+1}, the usual type of formula holds, namely

$$
\begin{equation*}
\langle\zeta, \mathcal{L}(\xi) \omega\rangle=\xi \cdot\langle\zeta, \omega\rangle-\langle[\xi, \zeta], \omega\rangle . \tag{5.9}
\end{equation*}
$$

Now let $\bar{\xi}$ be a vector field on an open set $U \subset X$ and write $\bar{\xi}_{k+1}=\tau_{k+1}\left(\tilde{j}_{k+1}(\bar{\xi})\right)$, that is

$$
\bar{\xi}_{k+1}(G)=\tilde{j}_{k+1}(\bar{\xi})(b) G \in V_{G}\left(Q_{k+1}\right)
$$

for $G \in Q_{k+1}$ with target $G=b \in U$. From Proposition 5.1, (i), we see that

$$
\begin{equation*}
\left\langle\bar{\xi}_{k+1}(G), \omega\right\rangle=G^{-1}\left(j_{k}(\bar{\xi})(b)\right) \tag{5.10}
\end{equation*}
$$

If $\bar{\xi}$ is the infinitesimal generator of a one-parameter family of diffeomorphisms f_{t} of X defined on $U^{\prime} \subset U$, with $f_{0}=\mathrm{id}$, then by Proposition 5.1, (iii),

$$
\left\langle\zeta, \Gamma\left(\xi_{k+1}\right) \omega\right\rangle=\left.\frac{d}{d t}\left\langle j_{k+1}\left(f_{t}\right) \cdot \zeta, \omega\right\rangle\right|_{t=0}=\left.\frac{d}{d t}\langle\zeta, \omega\rangle\right|_{t=0}=0,
$$

for $\zeta \in T_{G}\left(Q_{k+1}\right)$, with target $G \in U^{\prime}$; hence

$$
\begin{equation*}
\mathcal{L}\left(\bar{\xi}_{k+1}\right) \omega=0 \tag{5.11}
\end{equation*}
$$

Next, we define brackets

$$
\begin{aligned}
& \left(T^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)\right) \otimes\left(T^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)\right) \rightarrow \wedge^{2} T^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k-1}(T), \\
& \left(V^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)\right) \otimes\left(V^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)\right) \rightarrow \wedge^{2} V^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k-1}(T),
\end{aligned}
$$

by the formula

$$
[\alpha \otimes \xi, \beta \otimes \eta]=(\alpha \wedge \beta) \otimes[\xi, \eta]
$$

for $\alpha, \beta \in T^{*}\left(Q_{k+1}\right)$ or $V^{*}\left(Q_{k+1}\right), \xi, \eta \in J_{k}(T)$. Regarding ω as a section of $T^{*}\left(Q_{k+1}\right) \otimes_{Q_{Q_{+1}}} J_{k}(T)$ and ω_{V} as a section of $V^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)$ over Q_{k+1}, we thus obtain sections [ω, ω] of $\wedge^{2} T^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k-1}(T)$ and $\left[\omega_{V}, \omega_{V}\right]$ of $\wedge^{2} V^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k-1}(T)$ over Q_{k+1} satisfying

$$
[\omega, \omega]_{\mid \wedge^{2} V\left(Q_{k+1}\right)}=\left[\omega_{V}, \omega_{V}\right] .
$$

Taking $X=Q_{\hbar+1}, Y=X, F=T$ and $\varrho=\pi: Q_{k+1} \rightarrow X$ in $\S 3$, we obtain a section $D \omega$ of $\wedge^{2} T^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k-1}(T)$ satisfying

$$
\begin{equation*}
(D \omega)_{\left(\Lambda^{2} V\left(Q_{k+1}\right)\right.}=\pi_{k-1} \cdot d_{Q_{k+1} / X} \omega_{V} \tag{5.12}
\end{equation*}
$$

by the commutativity of diagram (3.16).
Profosition 5.2. The fundamental form ω on Q_{k+1} regarded as a section of $T^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)$ over Q_{k+1} satisfies the Cartan structure equation

$$
\begin{equation*}
D \omega-\frac{1}{2}[\omega, \omega]=0 . \tag{5.13}
\end{equation*}
$$

The form ω_{V} regarded as a section of $V^{*}\left(Q_{k+1}\right) \otimes_{Q_{k+1}} J_{k}(T)$ over Q_{k+1} satisfies the Cartan structure equation

$$
\begin{equation*}
\pi_{k-1} \cdot d_{Q_{k+1} / X} \omega_{V}-\frac{1}{2}\left[\omega_{V}, \omega_{V}\right]=0 \tag{5.14}
\end{equation*}
$$

Remark. Formula (5.14) is given in [14].
Proof of Proposition 5.2. We show first that $D \omega-\frac{1}{2}[\omega, \omega]$ vanishes on $\wedge^{2} V\left(Q_{k+1}\right)$; the proof is similar to that of the formula (5.14) given in [14]. Let $\bar{\xi}, \bar{\eta}$ be vector fields on an open set $U \subset X$, and let $\bar{\xi}_{k+1}=\tau_{k+1}\left(\tilde{j_{k+1}}(\bar{\xi})\right), \bar{\eta}_{k+1}=\tau_{k+1}\left(\tilde{j_{k+1}}(\bar{\eta})\right)$. Then

$$
\left.\left[\bar{\xi}_{k+1}, \tilde{\eta}_{k+1}\right]=\tau_{k+1}\left(\tilde{j_{k+1}}(\bar{\xi}), \tilde{j}_{k+1}(\tilde{\eta})\right]\right)=\tau_{k+1}\left(\tilde{j}_{k+1}([\bar{\xi}, \tilde{\eta}])\right)=[\bar{\xi}, \tilde{\eta}]_{k+1}
$$

We have by (5.12), (5.9) and (5.11),

$$
\begin{aligned}
\left\langle\bar{\xi}_{k+1}\right. & \left.\wedge \bar{\eta}_{k+1}, D \omega\right\rangle=\left\langle\bar{\xi}_{k+1} \wedge \bar{\eta}_{k+1}, \pi_{k-1} \cdot d_{Q_{k+1} / X} \omega_{V}\right\rangle \\
\quad & =\pi_{k-1}\left(\bar{\xi}_{k+1} \cdot\left\langle\bar{\eta}_{k+1}, \omega\right\rangle-\bar{\eta}_{k+1} \cdot\left\langle\bar{\xi}_{k+1}, \omega\right\rangle-\left\langle\left[\bar{\xi}_{k+1}, \bar{\eta}_{k+1}\right], \omega\right\rangle\right) \\
\quad= & \pi_{k-1}\left(\left\langle\left[\bar{\xi}_{k+1}, \bar{\eta}_{k+1}\right], \omega\right\rangle-\left\langle\left[\bar{\eta}_{k+1}, \bar{\xi}_{k+1}\right], \omega\right\rangle-\left\langle\left[\bar{\xi}_{k+1}, \bar{\eta}_{k+1}\right], \omega\right\rangle\right)=\pi_{k-1}\left\langle\left[\bar{\xi}_{k+1}, \bar{\eta}_{k+1}\right], \omega\right\rangle .
\end{aligned}
$$

It follows from (5.10) and (5.15) that, for $G \in Q_{k+1}$ with target $G=b \in U$,

$$
\begin{aligned}
\left\langle\bar{\xi}_{k+1}\right. & \left.\wedge \tilde{\eta}_{k+1}, \frac{1}{2}[\omega, \omega]\right\rangle(G)=\left\langle\bar{\xi}_{k+1} \wedge \bar{\eta}_{k+1}, \frac{1}{2}\left[\omega_{V}, \omega_{V}\right]\right\rangle(G) \\
& =\left[\left\langle\xi_{k+1}, \omega\right\rangle,\left\langle\bar{\eta}_{k+1}, \omega\right\rangle\right]=\left[G^{-1}\left(j_{k}(\bar{\xi})(b)\right), G^{-1}\left(j_{k}(\bar{\eta})(b)\right)\right]=\pi_{k} G^{-1}\left(\left[j_{k}(\bar{\xi})(b), j_{k}(\bar{\eta})(b)\right]\right) \\
& =\pi_{k} G^{-1}\left(j_{k-1}([\bar{\xi}, \bar{\eta}])(b)\right\rangle=\pi_{k-1}\left(G^{-1}\left(j_{k}([\bar{\xi}, \tilde{\eta}])(b)\right)\right)=\pi_{k-1}\left\langle\left[\bar{\xi}^{\prime}, \tilde{\eta}\right]_{k+1}, \omega\right\rangle(G) \\
& =\pi_{k-1}\left\langle\left[\left[\bar{\xi}_{k+1}, \bar{\eta}_{k+1}\right], \omega\right\rangle(G)\right.
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\langle\xi_{k+1} \wedge \bar{\eta}_{k+1}, D \omega-\frac{1}{2}[\omega, \omega]\right\rangle=0 \tag{5.16}
\end{equation*}
$$

Since $V\left(Q_{k+1}\right)$ is generated by vector fields of the form ξ_{k+1}, this proves that $D \omega-\frac{1}{2}[\omega, \omega]$ vanishes on $\wedge^{2} V\left(Q_{k+1}\right)$.

Next, let τ be a section of $\pi_{k+1}: Q_{k+2} \rightarrow Q_{k+1}$ defined on an open subset W of Q_{k+1} and let $\bar{\zeta}$ be a vector field on πW; we define a vector field ζ on W by the formula

$$
\zeta(G)=\tau(G)_{*} \xi(\pi G), \quad G \in W
$$

Then $\pi_{*} \zeta(G)=\bar{\zeta}(\pi G)$ and, by (5.1),

$$
\langle\zeta, \sigma\rangle(G)=\pi_{k *} \tau(G)_{*} \zeta(\pi G)-G_{*} \pi_{*} \zeta=G_{*} \zeta(\pi G)-G_{*} \pi_{*} \zeta=0
$$

so

$$
\begin{equation*}
\langle\zeta, \omega\rangle=0 . \tag{5.17}
\end{equation*}
$$

Assume that the mapping "target": $Q_{k+1} \rightarrow X$ sends W into U. Then by (5.9), (5.17) and (5.11),

$$
\begin{equation*}
\left\langle\left[\bar{\xi}_{k+1}, \zeta\right], \omega\right\rangle=-\left\langle\zeta, \mathcal{L}\left(\tilde{\xi}_{k+1}\right) \omega\right\rangle=0 . \tag{5.18}
\end{equation*}
$$

We have by (3.14)

$$
\begin{equation*}
\left\langle\bar{\xi}_{k+1} \wedge \zeta, D \omega\right\rangle=\bar{\xi}_{k+1} \bar{\wedge} D\langle\zeta, \omega\rangle-\zeta \bar{\wedge} D\left\langle\xi_{k+1}, \omega\right\rangle-\pi_{k-1}\left\langle\left[\xi_{k+1}, \zeta\right], \omega\right\rangle \tag{5.19}
\end{equation*}
$$

where the first and last terms on the right-hand side vanish in view of (5.17) and (5.18) respectively. Now let $G \in W$ and let g be a local diffeomorphism of X defined on a neighborhood of $a \in X$ such that $\tau(G)=j_{k+2}(g)(a)$; by (3.8) we have

$$
\begin{gathered}
\zeta(G) \pi D\left\langle\bar{\xi}_{k+1}, \omega\right\rangle=\left\langle\zeta(G)-j_{k+1}(g)_{*} \pi_{*} \zeta(G), \pi_{k-1} \cdot d_{Q_{k+1} \mid x}\left\langle\bar{\xi}_{k+1}, \omega\right\rangle\right\rangle \\
+\left\langle\pi_{*} \zeta(G), D\left(\left\langle\bar{\xi}_{k+1}, \omega\right\rangle \circ j_{k+1}(g)\right)\right\rangle
\end{gathered}
$$

The first term on the right-hand side of this equation vanishes since

$$
\zeta(G)=\tau(G)_{*} \bar{\zeta}(\pi G)=j_{k+1}(g)_{*} \pi_{*} \zeta(G)
$$

We now examine the second term; we have by (5.10)

$$
\left(\left\langle\bar{\xi}_{k+1}, \omega\right\rangle \circ j_{k+1}(g)\right)(x)=j_{k+1}(g)(x)^{-1} \cdot\left(j_{k}(\xi)(g(x))\right)=j_{k}\left(\bar{\xi}^{\prime}\right)(x),
$$

where $\bar{\xi}^{\prime}$ is the vector field on X given by

Hence
and it follows that
therefore, by (5.19),

$$
\bar{\xi}^{\prime}(x)=g_{*} \xi\left(g^{-1}(x)\right) .
$$

$$
D\left(\left\langle\bar{\xi}_{k+1}, \omega\right\rangle \circ j_{k+1}(g)\right)=D j_{k}\left(\xi^{\prime}\right)=0
$$

By (5.17),
and so

$$
\left\langle\tilde{\xi}_{k+1} \wedge \zeta, \frac{1}{2}[\omega, \omega]\right\rangle=\left[\left\langle\xi_{k+1}, \omega\right\rangle,\langle\zeta, \omega\rangle\right]=0
$$

$$
\begin{equation*}
\left\langle\bar{\xi}_{k+1} \wedge \zeta, D \omega-\frac{1}{2}[\omega, \omega]\right\rangle=0 . \tag{5.20}
\end{equation*}
$$

Finally, let $\bar{\zeta}^{\prime}$ be another vector field on πW and ζ^{\prime} the vector field on W given by

$$
\zeta^{\prime}(G)=\tau(G)_{*} \bar{\zeta}^{\prime}(\pi G), \quad G \in W .
$$

Let $G \in W$ and assume that $\tau(G)=j_{k+2}(g)(a)$; then

$$
\begin{aligned}
\left\langle\zeta \wedge \zeta^{\prime}, D \omega\right\rangle(G) & =\left\langle j_{k+1}(g)_{*} \bar{\zeta}(a) \wedge j_{k+1}(g)_{*} \bar{\zeta}^{\prime}(a), D \omega\right\rangle \\
& =\left\langle j_{k+1}(g)_{*}\left(\bar{\zeta} \wedge \bar{\zeta}^{\prime}\right), D \omega\right\rangle(G)=\left\langle\bar{\zeta} \wedge \bar{\zeta}^{\prime}, j_{k+1}(g)^{*} D \omega\right\rangle(a) \\
& =\left\langle\bar{\zeta} \wedge \bar{\zeta}^{\prime}, D\left(j_{k+1}(g)^{*} \omega\right)\right\rangle(a)=0
\end{aligned}
$$

by (3.18) and Proposition 5.1, (ii). By (5.17)

$$
\left\langle\zeta \wedge \zeta^{\prime}, \frac{1}{2}[\omega, \omega]\right\rangle=\left[\omega(\zeta), \omega\left(\zeta^{\prime}\right)\right]=0
$$

and so

$$
\begin{equation*}
\left\langle\zeta \wedge \zeta^{\prime}, D \omega-\frac{1}{2}[\omega, \omega]\right\rangle=0 . \tag{5.21}
\end{equation*}
$$

Since $T\left(Q_{k+1}\right)$ is generated by vector fields of the type ξ_{k+1} and ζ, we deduce (5.13) from (5.16), (5.20) and (5.21). Formula (5.14) is a consequence of (5.12).

From (5.13) we derive the identity

$$
\mathcal{D}_{1} D F=D D \mathcal{D} F-\frac{1}{2}[D F, D F]=0, \quad \text { for } F \in \tilde{Q}_{k+1}
$$

(see §2). Indeed, if F is a section of \tilde{Q}_{k+1}, then by Proposition 5.1, (ii), and (3.18)

$$
\begin{aligned}
D \mathcal{D} F-\frac{1}{2}[\mathcal{D} F, \mathcal{D} F]=D F^{*} \omega-\frac{1}{2}\left[F^{*} \omega, F^{*} \omega\right] & =F^{*} D \omega-\frac{1}{2} F^{*}[\omega, \omega] \\
& =F^{*}\left(D \omega-\frac{1}{2}[\omega, \omega]\right)=0
\end{aligned}
$$

The form ω_{V} on Q_{k+1} is the natural generalization of the Maurer-Cartan form on a Lie group. In fact, let

$$
Q_{k+1}^{0}=\left\{F \in Q_{k+1} \mid \pi_{0} F=I_{0}(a), a=\pi F\right\} .
$$

The fiber $Q_{k+1}^{0}(a)$ of Q_{k+1}^{0} over $a \in X$ is equal to $Q_{k+1}(a, a)$. Thus Q_{k+1}^{0} is a bundle of Lie groups over X and $J_{k+1}^{0}(T)_{a}$ is identified with the Lie algebra $V_{r_{k+1}(a)}\left(Q_{k+1}^{0}\right)$ when we identify $\tilde{J}_{k+1}(T)_{a}$ with $V_{I_{k+1}(a)}\left(Q_{k+1}\right)$. The bracket

$$
\begin{equation*}
J_{k+1}^{0}(T) \otimes J_{k+1}^{0}(T) \rightarrow J_{k+1}^{0}(T) \tag{5.22}
\end{equation*}
$$

which is obtained from the bracket on $\tilde{J}_{k+1}(\mathcal{J})$, gives a structure of Lie algebra on the vector bundle $J_{k+1}^{0}(T)$ over X. If $\xi \in J_{k+1}^{0}(T)_{a}$, the vector field $\tau_{k+1}(\xi)$ on $Q_{k+1}^{0}(a)$, whose value at $F \in Q_{k+1}^{0}(a)$ is $\xi \cdot F$, is a right-invariant vector field on this Lie group. Since the mapping τ_{k+1} from $\Gamma\left(X, \tilde{J}_{k+1}(T)\right)$ to the Lie algebra of vector fields on Q_{k+1} is a morphism of Lie algebras, we can identify the Lie algebra $J_{k+1}^{0}(T)_{a}$ with the Lie algebra of right-invariant vector fields on $Q_{k+1}^{0}(a)$. Therefore the natural identification

$$
\begin{equation*}
J_{k+1}^{0}(T)_{a} \rightarrow V_{I_{k+1}(a)}\left(Q_{k+1}^{0}\right) \tag{5.23}
\end{equation*}
$$

is an anti-isomorphism of Lie algebras. Using this identification, we regard the MaurerCartan form of Q_{k+1}^{0} of $\S 4$ as a mapping

$$
\omega^{0}: V\left(Q_{k+1}^{0}\right) \rightarrow J_{k+1}^{0}(T) ;
$$

equation (4.2) becomes

$$
\begin{equation*}
d_{Q_{k+1}^{0} / \bar{y}} \omega^{0}-\frac{1}{2}\left[\omega^{0}, \omega^{0}\right]=0 \tag{5.24}
\end{equation*}
$$

where the bracket is given by (4.1) with $X=Q_{k+1}^{0}, Y=X$ and $\mathfrak{g}=J_{k+1}^{0}(T)$ considered as a Lie algebra with the bracket (5.22). The restriction of ω_{V} to Q_{k+1}^{0} is equal to the composition of the Maurer-Cartan form ω^{0} of Q_{k+1}^{0} and the projection π_{k} of $J_{k+1}^{0}(T)$ onto $J_{k}^{0}(T)$.

6. Jets of projectable vector fields and transformations

Consider the mapping $\varrho: T \rightarrow \varrho^{-1} T_{Y}$, whose kernel is V; taking $E=T, F=T_{Y}, \varphi=\varrho$ in (3.1), we obtain a projection

$$
\varrho: J_{k}(T ; \varrho) \rightarrow J_{k}\left(T_{Y} ; Y\right)
$$

We note that, for $k \geqslant 1$, the sheaf of solutions of $J_{k}(T ; \varrho)$ is \mathcal{J}_{ϱ}, the sheaf of sections of T which are ϱ-projectable, and that $\pi_{0}: J_{k}(T ; \varrho) \rightarrow J_{0}(T)$ is surjective. We have the exact sequences

$$
\begin{align*}
& 0 \longrightarrow J_{k}(V) \longrightarrow J_{k}(T ; \varrho) \xrightarrow{\varrho} \varrho^{-1} J_{k}\left(T_{Y} ; Y\right) \longrightarrow 0 \tag{6.1}\\
& 0 \longrightarrow J_{k}(\vartheta) \longrightarrow J_{k}(\mathcal{T} ; \varrho)_{\varrho} \xrightarrow{\varrho} \varrho^{-1} J_{k}\left(J_{Y} ; Y\right) \longrightarrow 0 \tag{6.2}
\end{align*}
$$

We set

$$
\tilde{J}_{k}(T ; \varrho)=\nu^{-1} J_{k}(T ; \varrho), \tilde{J}_{k}(V)=\nu^{-1} J_{k}(V)
$$

and thus obtain a projection

$$
\varrho: \tilde{J}_{k}(T ; \varrho) \rightarrow \tilde{J}_{k}\left(T_{Y} ; Y\right)
$$

We have (see [10])

$$
\begin{equation*}
\left[\tilde{J}_{k+1}(\mathcal{T} ; \varrho), J_{k}(\vartheta)\right] \subset J_{k}(\vartheta) \tag{6.3}
\end{equation*}
$$

and conversely if $\tilde{\xi} \in \tilde{J}_{k+1}(\mathcal{J})$ satisfies $\left[\xi, J_{k}(\mathcal{\vartheta})\right] \subset J_{k}(\mathcal{\vartheta})$, then $\tilde{\xi} \in \tilde{J}_{k+1}(\mathcal{J} ; \varrho)$.
Lemma 6.1. Let $R_{k} \subset J_{k}(T)$ be a farmally integrable differential equation, with $k \geqslant 1$. Assume that $R_{1}=\pi_{1} R_{k}$ is a vector bundle and $R_{k} \subset\left(R_{1}\right)_{+(k-1)}$. Let $B_{k} \subset J_{k}(T), B_{k+1} \subset J_{k+1}(T)$ be differential equations with $B_{k+1} \subset\left(B_{k}\right)_{+1}$. If $\pi_{0}: B_{k+1} \rightarrow J_{0}(V)$ is surjective, $\pi_{0}\left(B_{k}\right) \subset J_{0}(V)$ and $\left[R_{k+1}, B_{k+1}\right] \subset J_{k}(V)$, then $R_{k} \subset J_{k}(T ; \varrho)$.

Remark. If $R_{1}=\pi_{1} R_{k}$ is a vector bundle and R_{k} is integrable, then $R_{k} \subset\left(R_{1}\right)_{+(k-1)}$.
Proof of Lemma 6.1. Let $\xi \in \mathcal{R}_{k+1}, \eta \in \mathcal{B}_{k+1}$; then if $\tilde{\xi}=\nu^{-1} \xi$, by (1.15),

$$
\mathcal{L}(\tilde{\xi}) \boldsymbol{\pi}_{k} \eta=[\xi, \eta]+\left(\pi_{0} \tilde{\xi}\right) \pi D \eta \in J_{k}(\vartheta)+\dot{B}_{k} .
$$

Hence since R_{1} is a vector bundle and $\pi_{0}\left(\boldsymbol{B}_{k}\right) \subset J_{0}(\mathcal{\vartheta})$, we have

$$
\mathcal{L}\left(\pi_{1} \tilde{\xi}\right) \pi_{0} \eta \in J_{0}(\mathcal{V})
$$

and $\left[\tilde{R}_{1}, J_{0}(\vartheta)\right] \subset J_{0}(\vartheta)$, where $\tilde{R}_{1}=\nu^{-1} R_{1}$, which implies that $R_{1} \subset J_{1}(T ; \varrho)$. As $R_{k} \subset\left(R_{1}\right)_{+(k-1)}$, we have $R_{k} \subset\left(J_{1}(T ; \varrho)\right)_{+(k-1)}$ or $R_{k} \subset J_{k}(T ; \varrho)$.

The following bracket relations hold:

$$
\begin{align*}
& {\left[J_{k}(T ; \varrho), J_{k}(T ; \varrho)\right] \subset J_{k-1}(T ; \varrho)} \\
& {\left[\tilde{J}_{k}(\mathcal{T} ; \varrho), \tilde{J}_{k}(\mathcal{T} ; \varrho)\right] \subset \tilde{J}_{k}(\mathcal{J} ; \varrho)} \tag{6.4}\\
& {\left[\tilde{J}_{k+1}(\mathcal{J} ; \varrho), J_{k}(\mathcal{T} ; \varrho)\right] \subset J_{k}(\mathcal{J} ; \varrho)}
\end{align*}
$$

If $\xi, \eta \in J_{k}(T ; \varrho)$, then

$$
\begin{equation*}
\varrho[\xi, \eta]=[\varrho \xi, \varrho \eta], \tag{6.5}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\left[J_{k}(T ; \varrho), J_{k}(V)\right] \subset J_{k-1}(V) \tag{6.6}
\end{equation*}
$$

If $\tilde{\xi}, \tilde{\eta} \in \tilde{J}_{k}(\mathcal{J} ; \varrho)_{\varrho}$, then $[\tilde{\xi}, \tilde{\eta}] \in \tilde{J}_{k}(\mathcal{J} ; \varrho)_{\varrho}$ and

$$
\begin{equation*}
\varrho[\tilde{\xi}, \tilde{\eta}]=[\varrho \tilde{\xi}, \varrho \tilde{\eta}] . \tag{6.7}
\end{equation*}
$$

Moreover, if $\eta^{\prime}=\gamma \pi_{k-1} \tilde{\eta}$, then $\left[\tilde{\xi}, \eta^{\prime}\right] \in J_{k-1}(\mathcal{J} ; \varrho)_{e}$ and

$$
\begin{equation*}
\varrho\left\lceil\tilde{\xi}, \eta^{\prime}\right]=\left[\varrho \tilde{\xi}, \varrho \eta^{\prime}\right] . \tag{6.8}
\end{equation*}
$$

Let $u \in F_{i_{1}}^{i_{1}+f_{1}}\left(J_{k}(T) ; \varrho\right), v \in F_{i_{2}}^{i_{2}+\xi_{2}}\left(J_{k}(T) ; \varrho\right)$; then it can be verified, by use of (6.6), that

$$
[u, v] \in F_{i_{1}+i_{2}}^{i_{1}+i_{2}+j_{1}+j_{2}}\left(J_{k-1}(T) ; \varrho\right)
$$

In particular, we have for $u \in F_{i}^{i}\left(J_{k}(T) ; \varrho\right), v \in F_{j}^{j}\left(J_{k}(T) ; \varrho\right)$,

$$
\begin{equation*}
[u, v] \in F_{i+j}^{i+j}\left(J_{k-1}(T) ; \varrho\right) \quad \text { and } \quad \varrho[u, v]=[\varrho u, \varrho v], \tag{6.9}
\end{equation*}
$$

where ϱ is the mapping

$$
\varrho: F_{p}^{p}\left(J_{m}(T) ; \varrho\right) \rightarrow \wedge^{p} T_{Y}^{*} \otimes J_{m}\left(T_{Y} ; Y\right)
$$

with $p=i$ or j and $m=k$, or $p=i+j$ and $m=k-1$, and where the brackets are given by (1.19). From (6.9) it follows that if $u \in\left(\wedge^{i} \mathfrak{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{e}, v \in\left(\wedge^{j} \mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$, then $[u, v] \in\left(\wedge^{i+j} \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{J} ; \varrho)\right)_{\varrho}$ and

$$
\begin{equation*}
\varrho[u, v]=[\varrho u, \varrho v] . \tag{6.10}
\end{equation*}
$$

We have the bracket

$$
\begin{equation*}
\left(\wedge^{i} V^{*} \otimes_{X} J_{k}\left(T_{Y} ; Y\right)\right) \otimes\left(\wedge^{j} V^{*} \otimes_{X} J_{k}\left(T_{Y} ; Y\right)\right) \rightarrow \wedge^{i+j} V^{*} \otimes_{X} J_{k-1}\left(T_{Y} ; Y\right) \tag{6.11}
\end{equation*}
$$

defined by the formula

$$
[\alpha \otimes \xi, \beta \otimes \eta]=(\alpha \wedge \beta) \otimes[\xi, \eta]
$$

for $\alpha \in \wedge^{i} V^{*}, \beta \in \wedge^{j} V^{*}, \xi, \eta \in J_{k}\left(T_{Y} ; Y\right)$. If $u \in \wedge^{i} T^{*} \otimes J_{k}(T ; \varrho), v \in \wedge^{j} T^{*} \otimes J_{k}(T ; \varrho)$, then by (6.5)

$$
\begin{equation*}
\varrho[u, v]=[\varrho u, \varrho v], \tag{6.12}
\end{equation*}
$$

where ϱ is the mapping

$$
\varrho: \wedge T^{*} \otimes J_{m}(T ; \varrho) \rightarrow \wedge V^{*} \otimes_{X} J_{m}\left(T_{Y} ; Y\right)
$$

with $m=k$ or $k-1$.
Writing $J_{0}\left(T_{Y}\right)=J_{0}\left(T_{Y} ; Y\right)$ and

$$
\left(\wedge^{i} J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}=\left(\nu^{*-1} \otimes \nu^{-1}\right)\left(\wedge^{i} \mathcal{J}^{*} \otimes J_{k}(\mathcal{T} ; \varrho)\right)_{\varrho}
$$

we have the mapping

$$
\varrho:\left(\wedge^{i} J_{0}(\mathscr{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J} ; \varrho)\right)_{\varrho} \rightarrow \wedge^{i} J_{0}\left(\mathcal{J}_{Y}\right)^{*} \otimes \tilde{J}_{k}\left(\mathcal{J}_{Y} ; Y\right)
$$

If $u \in\left(\wedge^{i} J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}, v \in\left(\wedge^{j} J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$, then $[u, v] \in\left(\wedge^{i+j} J_{0}(\mathcal{J})^{*} \otimes \tilde{J}_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$ and

$$
\begin{equation*}
\varrho[u, v]=[\varrho u, \varrho v] . \tag{6.13}
\end{equation*}
$$

Let $Q_{k}(\varrho)$ be the bundle of invertible jets of order k of ϱ-projectable mappings $X \rightarrow X$ (i.e., which induce mappings $Y \rightarrow Y$). The automorphisms of X which are solutions of $Q_{k}(\varrho), k \geqslant 1$, regarded as a differential equation in $J_{k}(E)$, where $E=X \times X$ is viewed as a bundle over X via pr_{1}, are the ϱ-projectable automorphisms of X. Let

$$
\begin{equation*}
\varrho: Q_{k}(\varrho) \rightarrow Q_{k}(Y) \tag{6.14}
\end{equation*}
$$

be the natural projection of $Q_{k}(\varrho)$ onto the bundle $Q_{k}(Y)$ of invertible jets of order k of mappings $Y \rightarrow Y$; it is a homomorphism of groupoids over $\varrho: X \rightarrow Y$. The sub-bundle $Q_{k}(V)$ of $Q_{k k}(\varrho)$ of jets, whose image by ϱ in $Q_{k}(Y)$ is equal to the jet of order k of the identity mapping $Y \rightarrow Y$, is a sub-groupoid of $Q_{k}(\varrho)$.

Let $\tilde{Q}_{k}(\varrho)$ be the sub-sheaf of $Q_{k}(\varrho)$ of invertible elements and let $\tilde{Q}_{k}(\varrho)_{\varrho}$ be its subsheaf of ϱ-projectable sections. The mapping $\varrho: Q_{k}(\varrho)_{e} \rightarrow Q_{k}(Y)$ gives by restriction a mapping

$$
\varrho: \tilde{Q}_{k}(\varrho)_{\varrho} \rightarrow \tilde{Q}_{k}(Y)
$$

We denote by $Q_{(l, k)}(\varrho)$ the bundle of l-jets of sections of $\tilde{Q}_{k}(\varrho)_{\ell} ;$ it is a sub-groupoid of $Q_{(l, k)}$. Let $Q_{(l, k)}(Y)$ be the bundle of l-jets of sections of $\tilde{Q}_{k}(Y)$. The mapping ϱ : $J_{l}\left(Q_{k}(\varrho) ; \varrho\right) \rightarrow J_{l}\left(Q_{k}(Y) ; Y\right)$ induces a mapping

$$
\varrho: Q_{(l, k)}(\varrho) \rightarrow Q_{(l, k)}(Y) ;
$$

it is a homomorphism of groupoids since (6.14) is, and the diagram

commutes. The inclusion $\lambda_{l}: Q_{k+l}(\varrho) \rightarrow Q_{(l, k)}(\varrho)$ induced by $\lambda_{l}: Q_{k+l} \rightarrow Q_{(l, k)}$ is a homomorphism of groupoids and the diagram

is commutative.
For $a \in X$, it is easily seen that $\tilde{J}_{k}(T ; \varrho)_{a}$ is identified with $V_{I_{k}(a)}\left(Q_{k}(\varrho)\right)$ when we identify $\tilde{J}_{k}(T)_{a}$ with $V_{I_{k}(a)}\left(Q_{k}\right)$ and that the diagram

is commutative, where $I_{Y, k}(y)$ is the k-jet of the identity of Y at $y \in Y$. Since $Q_{k}(\varrho)$ is a groupoid it follows that, for $F \in Q_{k}(\varrho)$ with target $F=b$ and $\xi \in \tilde{J}_{k}(T ; \varrho)_{b}$, we have $\xi F \in V_{F}\left(Q_{k}(\varrho)\right)$; furthermore, if G is a section of $\tilde{Q}_{k}(\varrho)$ over a neighborhood of $b \in X$, for $\xi \in T_{F}\left(Q_{k}(\varrho)\right)$ the mapping $\xi \mapsto G \xi$ induces isomorphisms

$$
\begin{aligned}
& T_{F}\left(Q_{k}(\varrho)\right) \rightarrow T_{G(b) \cdot F}\left(Q_{k}(\varrho)\right), \\
& V_{F}\left(Q_{k}(\varrho)\right) \rightarrow V_{G(b) \cdot F}\left(Q_{k}(\varrho)\right)
\end{aligned}
$$

In particular, taking $F=I_{k}(b)$, we obtain the isomorphism

$$
\tilde{J}_{k}(T ; \varrho)_{b} \rightarrow V_{G(b)}\left(Q_{k}(\varrho)\right),
$$

which depends only on $H=j_{1}(G)(b)$ and sends ξ into $H \cdot \xi=G \cdot \xi$; hence we have a corresponding mapping

$$
\begin{gather*}
Q_{(1, k)}(\varrho) \times_{x} \tilde{J}_{k}(T ; \varrho) \rightarrow V\left(Q_{k}(\varrho)\right) \\
(H, \xi) \mapsto H \xi \tag{6.17}
\end{gather*}
$$

From these considerations and (2.5), we conclude that the mapping (2.2) induced by G restricts to give a mapping

$$
G: \tilde{J}_{k}(T ; \varrho)_{b} \rightarrow \tilde{J}_{k}(T ; \varrho)_{c}
$$

where $c=$ target $G(b)$, which in turn determines a mapping

$$
\begin{gather*}
Q_{(1, k)}(\varrho) \times{ }_{x} \tilde{J}_{k}(T ; \varrho) \rightarrow \tilde{J}_{k}(T ; \varrho) \\
(H, \xi) \mapsto H(\xi) \tag{6.18}
\end{gather*}
$$

From (2.4) we deduce next that if $F \in Q_{k}(\varrho), a=$ source $F, b=$ target F, then the mapping (2.1) restricts to give a mapping

$$
F: J_{k-1}(T ; \varrho)_{a} \rightarrow J_{k-1}(T ; \varrho)_{b}
$$

Since the mapping (6.14) is a homomorphism of groupoids we see, by the commutativity of (6.16), that the diagram

is commutative, where $\phi=\varrho F \in Q_{k}(Y)$, with target $\phi=\varrho(b)$, and F, ϕ operate on the right. Since (6.14) is a homomorphism of groupoids, if G is a ϱ-projectable section of $\tilde{Q}_{k}(\varrho)$ over a neighborhood of b and $\psi=\varrho G$ is the corresponding image section of $\tilde{Q}_{k}(Y)$ over a neighborhood of $\varrho(b)$, the diagram

is commutative, where G, ψ operate on the left. From the commutativity of (6.20) and (6.16), it follows that the diagram

is also commutative, where G, ψ operate on the right, as is the corresponding diagram

whose top horizontal arrow is (6.17). From the commutativity of (6.19) and (6.22), it follows by (2.5) that the diagram

$$
\begin{equation*}
Q_{(1, k)}(\varrho) \times{ }_{X} \tilde{J}_{k}(T ; \varrho) \longrightarrow \tilde{J}_{k}(T ; \varrho) \tag{6.23}
\end{equation*}
$$

whose horizontal arrows are induced by the mapping (2.2), is commutative. From (6.23), we deduce that $\tilde{Q}_{k}(\varrho)_{\varrho}$ operates on $\tilde{J}_{k}(\mathcal{J} ; \varrho)_{e}$ and $\tilde{J}_{k}(\vartheta)$, and that the diagram

is commutative. From the commutativity of (6.15) and (6.23), we see by (2.4) that the diagram

is commutative, where the horizontal arrows are induced by the mapping (2.1).
Let

$$
Q_{k+1}^{k}(\varrho)=\left\{F \in Q_{k+1}(\varrho) \mid \pi_{k} F=I_{k}(a), \text { if } a=\text { source } F\right\}
$$

and

$$
g_{k}(T ; \varrho)=\left\{u \in S^{k} J_{0}(T)^{*} \otimes J_{0}(T) \mid \xi \pi \delta u \in S^{k-1} J_{0}(T)^{*} \otimes J_{0}(V) \quad \text { for all } \xi \in J_{0}(V)\right\}
$$

One verifies easily that

$$
\partial: Q_{k+1}^{k}(\varrho) \rightarrow g_{k+1}(T ; \varrho)
$$

is an isomorphism for $k \geqslant 1$.

Proposition 6.1. Let $a, b \in X$ and $F \in Q_{k+1}(a, b)$.
(i) F belongs to $Q_{k+1}(\varrho)$ if and only if $F\left(J_{k}(V)_{a}\right)=J_{k}(V)_{b}$.
(ii) F belongs to $Q_{k+1}(V)$ if and only if $\varrho(a)=\varrho(b)$ and $\varrho F=\varrho$ as mappings

$$
J_{k}(T ; \varrho)_{a} \rightarrow J_{k}\left(T_{Y} ; Y\right)_{\varrho(\alpha)}
$$

Proof. (i) If $F \in Q_{k+1}(\varrho)$, then the commutativity of (6.25) implies that $F\left(J_{k}(V)_{a}\right)=$ $J_{k}(V)_{b}$. Conversely, we prove that this last assertion implies that F belongs to $Q_{k+1}(\varrho)$ by induction on k. First, let $k=0$ and $F=j_{1}(f)(a)$, where f is a local diffeomorphism of X defined on a neighborhood of a; then $F \in Q_{1}(\varrho)$ if and only if $(\varrho \circ f)_{*} \tilde{\xi}=0$ for all $\xi \in V_{a}$. By (2.4), this last statement is equivalent to $\varrho F(\xi)=0$ or $F(\xi) \in J_{0}(V)_{b}$ for all $\xi \in J_{0}(V)_{a}$. Now assume that $k \geqslant 1$ and that our assertion is valid for $k-1$. Then $\pi_{k} F \in Q_{k}(\varrho)$ by our induction hypothesis. There exists $F_{1} \in Q_{k+1}(\varrho)$ such that $\pi_{k} F_{1}=\pi_{k} F$. Then $G=F_{1}^{-1} \cdot F \in Q_{k+1}^{k}(a)$ and by (2.19)

$$
\left(\pi_{0} \xi\right) \pi \delta \partial G=G(\xi)-\xi \in J_{k}(V)_{a}
$$

for all $\xi \in J_{k}(V)_{a}$. Hence $\partial G \in g_{k+1}(T ; \varrho)$ and $G \in Q_{k+1}^{k}(\varrho)$. Therefore $F=F_{1} \cdot G \in Q_{k+1}(\varrho)$.
(ii) If $F \in Q_{k+1}(V)$, then $\varrho F=I_{Y, k+1}(\varrho(a))$ and so $\varrho(a)=\varrho(b)$ and we have the equality of the mappings ϱF and ϱ by the commutativity of (6.25). Conversely if $\varrho(a)=\varrho(b)$ and $\varrho F=\varrho$ as mappings $J_{k}(T ; \varrho)_{a} \rightarrow J_{k}\left(T_{Y} ; Y\right)_{\varrho(a)}$, then $F \in Q_{k+1}(\varrho)$ according to (i). Hence if $\phi=\varrho F \in Q_{k+1}(Y)$, then by the commutativity of (6.25), ϕ acts on $J_{k}\left(T_{Y} ; Y\right)_{\varrho(a)}$ as the identity map. By Proposition 2.3, (ii), $\phi=I_{Y, k+1}(\varrho(a))$ and $F \in Q_{k+1}(V)$.

We now give criteria in order that an element $H \in Q_{(1, k)}$ belong to $Q_{(1, k)}(\varrho)$, and we examine the structure of $Q_{(1, k)}(\varrho)$. However, before doing so, we require the following definitions. For $a, b \in X$, let

$$
\begin{equation*}
\varrho: T_{a}^{*} \otimes \tilde{J}_{k}(T ; \varrho)_{b} \rightarrow V_{a}^{*} \otimes \tilde{J}_{k}\left(T_{Y} ; Y\right)_{e(b)} \tag{6.26}
\end{equation*}
$$

be the mapping sending $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T ; \varrho)_{b}$ into the element ϱu defined by

$$
(\varrho u)(\xi)=\varrho(u(\xi)), \quad \text { for } \xi \in V_{a} .
$$

Denote by $F_{1}\left(T_{a}^{*} \otimes \tilde{J}_{k}(T ; \varrho)_{b}\right)$ the kernel of (6.26) and let

$$
\begin{equation*}
\varrho: F_{1}\left(T_{a}^{*} \otimes \tilde{J}_{k}(T ; \varrho)_{b}\right) \rightarrow T_{Y, \varrho(a)}^{*} \otimes \tilde{J}_{k}\left(T_{Y} ; Y\right)_{\varrho(b)} \tag{6.27}
\end{equation*}
$$

be the mapping defined by setting

$$
(\varrho u)(\bar{\eta})=\varrho(u(\eta))
$$

for $\eta \in T_{a}, \bar{\eta}=\varrho(\eta) \in T_{Y . \varrho(a)}$. From (6.26), we obtain a similar mapping

$$
\varrho: T_{a}^{*} \otimes J_{k}(T ; \varrho)_{b} \rightarrow V_{a}^{*} \otimes J_{k}\left(T_{Y} ; Y_{\varrho(b)}\right.
$$

generalizing the map defined earlier in the case $a=b$.
Proposition 6.2. Let $H \in Q_{(1, k)}$ with $\pi_{0} H=F \in Q_{k}$, source $F=a$, target $F=b$.
(i) $H \in J_{1}\left(Q_{k}(\varrho)\right)$ if and only if $F \in Q_{k}(\varrho)$ and $H\left(\tilde{J}_{k}(T ; \varrho)_{a}\right)=\tilde{J}_{k}(T ; \varrho)_{b}$.
(ii) H belongs to $Q_{(1, k)}(\varrho)$ if and only if $F \in Q_{k}(\varrho)$ and

$$
H\left(\tilde{J}_{k}(T ; \varrho)_{a}\right)=\tilde{J}_{k}(T ; \varrho)_{b}, \quad H\left(\tilde{J}_{k}(V)_{a}\right)=\tilde{J}_{k}(V)_{b}
$$

(iii) If $H \in Q_{(1, k)}(\varrho)$ and $J_{1}\left(\pi_{0}\right) H=j_{1}(f)(a)$, where f is a local diffeomorphism of X defined on a neighborhood of a, and $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$, then $H+u F$ belongs to $Q_{(1, k)}(\varrho)$ if and only it:
(a) $f+\pi_{0} u: T_{a} \rightarrow T_{b}$ is invertible;
(b) $u \in F_{1}\left(T_{a}^{*} \otimes \tilde{J}_{k}(T ; \varrho)_{b}\right)$.

If $H+u F \in Q_{(1, k)}(\varrho)$, then

$$
\begin{equation*}
\varrho(H+u F)=\varrho H+(\varrho u) \cdot \varrho F \tag{6.28}
\end{equation*}
$$

as elements of $Q_{(1, k)}(Y)$, where $\varrho u \in T_{Y, e(a)}^{*} \otimes \tilde{J}_{h}\left(T_{Y} ; Y\right)_{\mathbb{Q}(o)}$ is defined by (6.27).
Proof. (i) If $H \in J_{1}\left(Q_{k}(\varrho)\right)$, then we write $H=j_{1}(G)(a)$ for some section G of $\tilde{Q}_{k}(\varrho)$ over a neighborhood of a, and for $\xi \in \tilde{J}_{k}(T ; \varrho)_{a}$ we know that $H(\xi)=G(\xi)$ belongs to $\tilde{J}_{k}(T ; \varrho)_{b}$. Conversely if $F \in Q_{k}(\varrho)$, let G_{0} be a section of $\tilde{Q}_{k}(\varrho)$ over a neighborhood of a such that $G_{0}(a)=F$. Then there exists $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T)_{b}$ such that $H=j_{1}\left(G_{0}\right)(a)+u F$. Assume now that $H\left(\tilde{J}_{k}(T ; \varrho)_{a}\right)=\tilde{J}_{k}(T ; \varrho)_{b}$. If $\xi \in \tilde{J}_{k}(T ; \varrho)_{a}$, then by (2.15)

$$
\left(\pi_{0} \xi\right) \bar{\wedge} u=H(\xi)-j_{1}\left(G_{0}\right)(a)(\xi) \in \tilde{J}_{k}(T ; \varrho)_{b}
$$

Since $\pi_{0}: \tilde{J}_{k}(T ; \varrho) \rightarrow T$ is surjective, we deduce that $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T ; \varrho)_{b}$ and $u F \in T_{a}^{*} \otimes$ $V_{F}\left(Q_{k}(\varrho)\right)$. As $J_{1}\left(Q_{k}(\varrho)\right)$ is an affine sub-bundle of $J_{1}\left(Q_{k}\right)_{\left.\mid Q_{k(\varrho)}\right)}$, it follows that $j_{1}\left(G_{0}\right)(\alpha)+u \vec{F}$ belongs to $J_{1}\left(Q_{k}(\varrho)\right)$ or that $H \in J_{1}\left(Q_{k}(\varrho)\right)$.
(ii) If $H=j_{1}(G)(a)$, where G is a section of $\tilde{Q}_{k}(\varrho)$ over a neighborhood of a, then $H \in Q_{(1, k)}(\varrho)$ if and only if $(\varrho \circ G)_{*} \xi_{0}=0$ for all $\xi_{0} \in V_{a}$. Let G_{0} be a section of $\tilde{Q}_{k}(\varrho)_{e}$ over a neighborhood of a such that $G_{0}(a)=F$. Since $J_{1}\left(Q_{k}(\varrho)\right)$ is an affine bundle over $Q_{k}(\varrho)$, there exists $u \in T_{a}^{*} \otimes \tilde{J}_{k}(T ; \varrho)_{b}$ such that $H=j_{1}\left(G_{0}\right)(a)+u F$, where $u F \in V_{F}\left(Q_{k}(\varrho)\right)$, and

$$
G_{*}\left(\pi_{0} \xi\right)-G_{0 *}\left(\pi_{0} \xi\right)=\left(\pi_{0} \xi\right) \pi u F=\left(\left(\pi_{0} \xi\right) \pi u\right) F=\left(G(\xi)-G_{0}(\xi)\right) F
$$

for $\xi \in \tilde{J}_{k}(T)_{a}$, by (2.15). Therefore, for $\xi \in \tilde{J}_{k}(V)_{a}$, by the commutativity of (6.19),

$$
(\varrho \circ G)_{*}\left(\pi_{0} \xi\right)=\varrho_{*} G_{0 *}\left(\pi_{0} \xi\right)+\varrho_{*}\left(\left(G(\xi)-G_{0}(\xi)\right) F\right)=\left(\varrho \circ G_{0}\right)_{*}\left(\pi_{0} \xi\right)+\varrho\left(G(\xi)-G_{0}(\xi)\right) \circ \varrho F
$$

Since G_{0} is a section of $\tilde{Q}_{k}(\varrho)_{\varrho}$, the first term on the right-hand side vanishes, while $\varrho G_{0}(\xi)=0$ by the commutativity of (6.24). Hence, we obtain

$$
(\varrho \circ G)_{*}\left(\pi_{0} \xi\right)=\varrho(G(\xi)\rangle \cdot \varrho F
$$

Therefore $(\varrho \circ G)_{*} \xi_{0}=0$ for all $\xi_{0} \in V_{a}$ if and only if $\varrho(G(\xi))=0$ for all $\xi \in \tilde{J}_{k}(V)_{a}$, i.e., $H\left(\tilde{J}_{k}(V)_{a}\right)=$ $\tilde{J}_{k}(V)_{b}$. We conclude that $H \in Q_{(1, k)}(\varrho)$ if and only if $H\left(\tilde{J}_{k}(V)_{a}\right)=\tilde{J}_{k}(V)_{b}$; from (i), we now deduce (ii).
(iii) The first part of (iii) follows directly from Proposition 2.2, (i), (2.15) and (ii), since $\pi_{0}: \tilde{J}_{k}(T ; \varrho) \rightarrow T$ is surjective. If $H+u F \in Q_{(1, k)}(\varrho)$, by the commutativity of (6.23) and (2.15)

$$
\begin{aligned}
(\varrho(H+u F))(\eta) & =\varrho((H+u F)(\xi))=\varrho\left(H(\xi)+\left(\pi_{0} \xi\right) \pi u\right) \\
& =(\varrho H)(\eta)+\left(\pi_{0} \eta\right) \pi \varrho u=(\varrho H+\varrho u \cdot \varrho F)(\eta)
\end{aligned}
$$

for all $\eta \in \tilde{J}_{k}\left(T_{Y} ; Y\right)_{\varrho(a)}$ and $\xi \in \tilde{J}_{k}(T ; \varrho)_{a}$ with $\varrho(\xi)=\eta$. Hence by Proposition 2.2, (iii), we deduce (6.28).

From the map (6.17) and (5.2), we see that the restriction to $Q_{k+1}(\varrho)$ of the Cartan fundamental form ω on $Q_{k+1}(\varrho)$ is a map

$$
\omega: T\left(Q_{k+1}(\varrho)\right) \rightarrow J_{k}(T ; \varrho) ;
$$

from Proposition 5.1, (ii), it follows that if $F \in \tilde{Q}_{k+1}(\varrho)$, then $\mathcal{D F} \in \mathcal{T}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)$. Furthermore, if ω_{Y} is the Cartan fundamental form on $Q_{k+1}(Y)$, the diagram

commutes. Indeed, if $\xi \in T_{F}\left(Q_{k+1}(\varrho)\right), F \in Q_{k+1}(\varrho)$,

$$
\begin{aligned}
\varrho\langle\xi, \omega\rangle & =v \varrho\left(\lambda_{1} F\right)^{-1} \cdot\left(\pi_{k *} \xi-F_{*} \pi_{*} \xi\right)=v\left(\lambda_{1}(\varrho F)\right)^{-1} \cdot \varrho_{*}\left(\pi_{k *} \xi-F_{*} \pi_{*} \xi\right) \\
& =v\left(\lambda_{1}(\varrho F)\right)^{-1} \cdot\left(\pi_{k *} \varrho_{*} \xi-(\varrho F)_{*} \pi_{*} \xi\right)=\left\langle\varrho_{*} \xi, \omega_{Y}\right\rangle
\end{aligned}
$$

by the commutativity of (6.22) and (6.15).
Definition 6.1. Let $\tilde{Q}_{k}(Y)_{X}$ be the sub-sheaf of $Q_{k}(Y)_{X}$ whose sections are local mappings $\phi: X \rightarrow Q_{k}(Y)$ such that sourceo $\phi=0$ and such that the composition $\dot{f}=$ targeto ϕ : $X \rightarrow Y$ is a submersion.

If $Q_{k}^{0}(Y)$ is the sub-bundle of $Q_{k}(Y)$ composed of the elements F such that $\pi_{0} F=$ $I_{Y, 0}(y)$, with $y=$ source \tilde{F}, then $Q_{k}^{0}(Y)_{X}$ is the sub-sheaf of $\tilde{Q}_{k}(Y)_{X}$ whose sections ϕ satisfy targeto $\phi=\varrho$.

The injection $Q_{k}(Y) \rightarrow Q_{k}(Y)_{X}$ sending ϕ into $\phi 0 \varrho$ induces an injection

$$
\begin{equation*}
\tilde{Q}_{k}(Y) \rightarrow \tilde{Q}_{k}(Y)_{x} . \tag{6.30}
\end{equation*}
$$

Indeed, if ϕ is a local section of $\tilde{Q}_{k}(Y)$ over Y, then targeto $\phi \rho \varrho$ is a submersion. We have the mapping

$$
\begin{equation*}
\varrho: \tilde{Q_{k}}(\varrho) \rightarrow \tilde{Q_{k}}(Y)_{x} \tag{6.31}
\end{equation*}
$$

sending F into ϱF, where $\varrho F=\varrho \circ F$, since target $\varrho \varrho F=\varrho \circ \pi_{0} F$ is a submersion.
Next, let $\phi \in \tilde{Q}_{k}(Y)_{x}$ and let f be a germ of a diffeomorphism $X \rightarrow X$ satisfying $\varrho \circ f=$ targeto ϕ; such an f exists by the implicit-function theorem. We define $\dot{\phi}_{j}^{-1} \in \tilde{Q}_{k}(Y)_{X}$ by the formula

$$
\begin{equation*}
\phi_{f}^{-1}(x)=\phi\left(f^{-1}(x)\right)^{-1}, \quad x \in X . \tag{6.32}
\end{equation*}
$$

We have

$$
\text { target } \circ \phi_{f}^{-1}=\varrho \circ f^{-1},
$$

$$
\phi(x) \cdot \phi_{f}^{-1}(f(x))=I_{Y, k}(\varrho(f(x))), \quad \phi_{f}^{-1}(f(x)) \cdot \phi(x)=I_{Y, k}(\varrho(x))
$$

for $x \in X$. Finally, if $F \in \tilde{Q}_{k}(\varrho)$, then $\varrho F^{-1}=\phi_{f}^{-1}$, where $f=\pi_{0} F$ and $\phi=\varrho F$.
We now define

$$
\begin{equation*}
\tilde{D}_{X / Y}: \tilde{Q}_{k+1}(Y)_{X} \rightarrow \vartheta^{*} \otimes J_{k}\left(\mathcal{J}_{Y} ; Y\right)_{X} \tag{6.33}
\end{equation*}
$$

sending ϕ into

$$
\mathcal{D}_{X / Y} \phi=\left(\phi^{*} \omega_{Y}\right)_{\mid V}
$$

If ϕ is a section of $\tilde{Q}_{k+1}(Y)_{X}$ over $U \subset X$, then $\phi_{*} \xi \in T_{\phi(a)}\left(Q_{k+1}(Y) / Y\right)$, for $\xi \in V_{a}, a \in U$ and

$$
\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle=\left\langle\phi_{*} \xi, \omega_{Y}\right\rangle .
$$

By (5.3), we have the formula

$$
\begin{equation*}
\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle=\nu\left(\lambda_{1} \phi(a)\right)^{-1} \cdot\left(\pi_{k} \phi\right)_{*} \xi, \tag{6.34}
\end{equation*}
$$

for $\xi \in V_{a}, a \in U$, where $\left(\pi_{k} \phi\right)_{*} \xi \in T_{\pi_{k} \phi(a)}\left(Q_{k}(Y) / Y\right)$ and

$$
\lambda_{1} \phi(a): \tilde{J}_{k}\left(T_{Y} ; Y\right)_{\varrho(a)} \rightarrow T_{\pi_{k} \phi(a)}\left(Q_{k}(Y) / Y\right)
$$

is the left-action of $Q_{(1, k)}(Y)(\varrho(a))$ on $\tilde{J}_{k}\left(T_{Y} ; Y\right)_{e(a)}$; therefore

$$
\nu\left(\lambda_{1} \phi(a)\right)^{-1} \cdot\left(\tau_{k} \phi\right)_{*} \xi \in J_{k}\left(T_{Y} ; Y\right)_{\varrho(a)} .
$$

We also have the mapping

$$
\begin{equation*}
\mathcal{D}_{X / Y}: Q_{k}^{0}(Y)_{X} \rightarrow \vartheta^{*} \otimes J_{k}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X} \tag{6.35}
\end{equation*}
$$

defined in $\S 4$ in terms of the Maurer-Cartan form of the bundle of Lie groups $Q_{k}^{0}(Y)$ over Y, identifying $J_{k}^{0}\left(T_{Y} ; Y\right)$ with the Lie algebra of $Q_{k}^{0}(Y)$ by the maps (5.23) (with X replaced by Y and $k+1$ by k). The restriction of (6.33) to $Q_{k+1}^{0}(Y)_{X}$ is equal to the composition of (6.35) (with $k+1$ replacing k) and the projection id $\otimes \pi_{k}$ of $\mathfrak{Q}^{*} \otimes J_{k+1}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X}$ onto $\mathfrak{Q}^{*} \otimes$ $J_{k}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X}$.

Lemma 6.2. For $\phi \in \tilde{Q}_{k+1}(Y)_{X}$, we have $\mathcal{D}_{X / X} \phi=0$ if and only if $\boldsymbol{\pi}_{k} \phi \in \tilde{Q}_{k}(Y)$.
Proof. If ϕ is a section of $\tilde{Q}_{k+1}(Y)_{X}$ over $U \subset X$, then by $(6.34), \mathcal{D}_{X / Y} \phi=0$ if and only if $\left(\pi_{k} \phi\right)_{*} \xi=0$ for all $\xi \in V_{a}, a \in U$.

We define

$$
\mathcal{D}_{1, X / Y}: \vartheta^{*} \otimes J_{k}\left(\mathcal{J}_{Y} ; Y\right)_{X} \rightarrow \wedge^{2} \vartheta^{*} \otimes J_{k-1}\left(\mathcal{J}_{Y} ; Y\right)_{X}
$$

by the formula

$$
\begin{equation*}
\mathcal{D}_{1, \mathrm{X} / \mathrm{Y}} v=\pi_{k-1} \cdot d_{X / \mathrm{Y}} v-\frac{1}{2}[v, v], \quad v \in \mathcal{V}^{*} \otimes J_{k}\left(\mathcal{J}_{Y} ; Y\right)_{X} \tag{6.36}
\end{equation*}
$$

where the bracket is given by (6.11); from the definition of $\mathcal{D}_{X / Y}$ and the Cartan structure
equation (5.14), we obtain

$$
\mathcal{D}_{1, X / Y} \cdot \mathcal{D}_{X / Y} \phi=0, \quad \text { for } \phi \in \tilde{Q}_{k+1}(Y)_{X}
$$

Since (5.23) is an anti-isomorphism of Lie algebras, the restriction of $\mathcal{D}_{1, X / Y}$ to $\mathscr{V}^{*} \otimes$ $J_{k}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X}$ is equal to the composition of the operator

$$
\tilde{D}_{1, X / Y}: \vartheta^{*} \otimes J_{k}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X} \rightarrow \wedge^{2} \vartheta^{*} \otimes J_{k}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X}
$$

of $\S 4$, if we identify $J_{k}^{0}\left(T_{Y} ; Y\right)$ with the Lie algebra of Q_{k}^{0} by (5.23), and the projection

$$
\mathrm{id} \otimes \pi_{k-1}: \wedge^{2} \vartheta^{*} \otimes J_{k}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X} \rightarrow \wedge^{2} \vartheta^{*} \otimes J_{k-1}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X}
$$

Let $\tilde{Q}_{k+1}(Y)_{X}^{k}$ be the sub-sheaf of $\tilde{Q}_{k+1}(Y)_{X}$ composed of the elements ϕ satisfying $\pi_{k} \phi \in \tilde{Q}_{k}(Y)$. Then we have the complex

$$
\begin{equation*}
\tilde{Q}_{k+1}(Y)_{X}^{k} \longrightarrow \tilde{Q}_{k+1}(Y)_{X} \xrightarrow{\mathcal{D}_{X / Y}} \vartheta^{*} \otimes J_{k}\left(\mathcal{J}_{Y} ; Y\right)_{X} \xrightarrow{\mathcal{D}_{1 . X / Y}} \wedge^{2} \vartheta^{*} \otimes J_{k-1}\left(\mathcal{J}_{Y} ; Y\right)_{X} \tag{6.37}
\end{equation*}
$$

which, by Lemma 6.2 , is exact at $\tilde{Q}_{k+1}(Y)_{X}$. We also have the following complex, which is obtained from (4.6) by replacing G by $Q_{k}^{0}(Y)$ and the Lie algebra \mathfrak{g} by $J_{k}^{0}\left(T_{Y} ; Y\right)$,

$$
\begin{equation*}
Q_{k}^{0}(Y) \longrightarrow Q_{k}^{0}(Y)_{X} \xrightarrow{\mathcal{D}_{X / Y}} \vartheta^{*} \otimes J_{k}^{0}\left(\mathcal{J}_{Y} ; Y\right)_{X} \xrightarrow{D_{1, X / Y}} \wedge^{2} \vartheta^{*} \otimes J_{k}^{0}\left(\mathcal{T}_{Y} ; Y\right)_{X} \tag{6.38}
\end{equation*}
$$

and which is exact by Proposition 4.1.
Proposition 6.3. The diagram
commutes.
Proof. If F is a section of $\tilde{Q}_{k+1}(\varrho)$ over a neighborhood of $a \in X$, then for $\xi \in V_{a}$,

$$
\langle\xi, \varrho(\mathcal{D} F)\rangle=\varrho\langle\xi, \mathcal{D} F\rangle=\varrho\left\langle\xi, F^{*} \omega\right\rangle=\varrho\left\langle F_{*} \xi, \omega\right\rangle=\left\langle\phi_{*} \xi, \omega_{Y}\right\rangle=\left\langle\xi, \mathcal{D}_{X / Y} \phi\right\rangle
$$

by (5.6) and the commutativity of (6.29). The commutativity of the right-hand square of (6.39) follows from the commutativity of (3.2) and from (6.12).

Lemma 6.3. Let ϕ be a section of $\tilde{Q}_{k+1}(Y)_{X}$ over $U \subset X$; then

$$
\left(\phi \circ \mathcal{D}_{X / Y} \phi\right)(a) \in V_{a}^{*} \otimes J_{k}\left(T_{Y} ; Y\right)_{\text {target } \phi(a)}
$$

for $a \in U$, and $\phi \circ \mathcal{D}_{X / Y} \phi$ depends only on $\pi_{k} \phi$.

Proof. According to (2.6), we have for $a \in U, \eta \in J_{k}\left(T_{Y} ; Y\right)_{\operatorname{target} \phi(a)}$

$$
\phi(a)\left(\nu\left(\lambda_{1} \phi(a)^{-1} \cdot \eta \cdot \pi_{k} \phi(a)\right)=\nu \eta .\right.
$$

Taking in this formula $\eta=\left(\pi_{k} \phi\right)_{*} \xi \cdot \pi_{k} \phi(a)^{-1}$, where $\xi \in V_{a}$, we obtain

$$
\left\langle\xi,\left(\phi \circ \mathcal{D}_{X / Y} \phi\right)(a)\right\rangle=\phi(a) \cdot v\left(\lambda_{1} \phi(a)\right)^{-1} \cdot\left(\tau_{k} \phi\right)_{*} \xi=\nu\left(\left(\pi_{k} \phi\right)_{*} \xi \cdot \pi_{k} \phi(a)^{-1}\right) .
$$

If $F \in \tilde{Q}_{k+1}(\varrho), \phi=\varrho F \in \tilde{Q}_{k+1}(Y)_{X}, f=\pi_{0} F$ and $u \in \mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)$, then

$$
\begin{equation*}
\varrho\left(u^{F}\right)=\phi_{f}^{-1} \bigcirc \varrho(u \circ f)+\mathcal{D}_{X / Y} \phi . \tag{6.40}
\end{equation*}
$$

This formula follows immediately from Proposition 6.3.

Lemma 6.4. Let $F \in \tilde{Q}_{k+1}(\varrho), \phi=\varrho F$ and let $u \in \mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)$. Then $\phi \circ \varrho\left(u^{F}\right)$ depends only on $\pi_{k} F$.

This lemma is an immediate consequence of (6.40), (6.32) and Lemma 6.3.
Let f be a germ of a diffeomorphism of X. Then f is ϱ-projectable, that is, is the germ of a ϱ-projectable diffeomorphism, if and only if f preserves V.

Lemma 6.5. Let $F \in \tilde{Q}_{k+1}(\varrho), \phi=\varrho F, f=\pi_{0} F$ and let $u \in \mathcal{T}^{*} \otimes J_{k}(\mathcal{T} ; \varrho)$. If f is ϱ-projectable, then $\varrho(u)=0$ if and only if $\varrho\left(u^{F}\right)=\mathcal{D}_{X / Y} \phi$.

Proof. By (6.40), we have since f preserves V

$$
\begin{equation*}
\varrho\left(u^{F}\right)=\phi_{f}^{-1} \varrho \varrho(u) \circ f+\mathcal{D}_{X / Y} \phi \tag{6.41}
\end{equation*}
$$

Now $\varrho(u)=0$ if and only if $\phi_{f}^{-1} \circ \varrho(u) \circ f=0$, which is equivalent therefore to $\varrho\left(u^{F}\right)=\mathcal{D}_{X / Y} \phi$,
If $u \in\left(T^{*} \otimes J_{k}(T)\right)^{\wedge} \cap F_{1}^{1}\left(J_{k}(T) ; \varrho\right)$, it is easily seen that $\varrho u \in\left(T_{Y}^{*} \otimes J_{k}\left(T_{Y} ; Y\right)\right)^{\wedge}$. Set

$$
\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{T} ; \varrho)\right)_{\varrho}^{\wedge}=\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho} \cap\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J})\right)^{\wedge}
$$

Therefore if $u \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}^{\wedge}$, then ϱu belongs to $\left(\mathcal{J}_{Y}^{*} \otimes J_{k}\left(\mathcal{J}_{Y} ; Y\right)\right)^{\wedge}$.
Proposition 6.4. (i) Let $F \in \tilde{Q}_{k+1}(\varrho)$; then $F \in \tilde{Q}_{k+1}(\varrho)_{e}$ if and only if

$$
\mathcal{D F} \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}
$$

(ii) Let $u_{1}, u_{2} \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)_{\varrho}^{\wedge}\right.$ and $F \in \tilde{Q}_{k+1}(\varrho)$. If $u_{2}=u_{1}^{F}$, then $F \in \tilde{Q}_{k+1}(\varrho)_{\varrho}$.
(iii) We have

$$
\begin{equation*}
\mathcal{D}_{1}:\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho} \rightarrow\left(\wedge^{2} \mathcal{J}^{*} \otimes J_{k-1}(\mathcal{T} ; \varrho)\right)_{\varrho} \tag{6.42}
\end{equation*}
$$

and the diagram

commutes.
(iv) If $u \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}, F \in \tilde{Q}_{k+1}(\varrho)_{\varrho}$, then $u^{F} \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{e}$ and

$$
\varrho\left(u^{F}\right)=(\varrho u)^{\varrho F} .
$$

Proof. We first prove that, if $F \in \tilde{Q}_{k+1}(\varrho)_{e}$, then $\mathcal{D} F \in\left(\mathcal{J}^{*} \otimes \mathcal{J}_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$. Take $F_{1} \in \tilde{Q}_{k+2}(\varrho)$ with $\pi_{k+1} F_{1}=F$. Then, since $\varrho F \in \tilde{Q}_{k+1}(Y)$, by Proposition 6.3 and Lemma 6.2

$$
\varrho\left(\mathcal{D} F_{1}\right)=\mathcal{D}_{X / Y}\left(\varrho F_{1}\right)=0
$$

so $\mathcal{D} F_{1} \in F_{1}^{1}\left(J_{k+1}(\mathcal{J}) ; \varrho\right)$. We have

$$
0=\mathcal{D}_{1}\left(\mathcal{D} F_{1}\right)=D\left(\mathcal{D} F_{1}\right)-\frac{1}{2}\left[\mathcal{D} F_{1}, \mathcal{D} F_{1}\right]
$$

where $\left[\mathcal{D} F_{1}, \mathcal{D} F_{1}\right] \in F_{2}^{2}\left(J_{k}(\mathcal{J}) ; \varrho\right)$ by (6.9); hence $D\left(\mathcal{D} F_{1}\right) \in F_{2}^{2}\left(J_{k}(\mathcal{J}) ; \varrho\right)$. From Proposition 4, (i) of [6], it follows that $\dot{D} F \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$.

We next prove (ii). Let F be a section of $\tilde{Q}_{k+1}(\varrho)$ over an open set $U \subset X$ and $f=\pi_{0} F$; let u_{1}, u_{2} be sections of $\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}^{\wedge}$ over $f(U)$ and U respectively. If $u_{2}=u_{1}^{F}$, then

$$
u_{2}=D F+F^{-1}\left(u_{1}\right)=F^{-1}(v)-v+F^{-1}\left(u_{1}\right)
$$

by (2.25). Hence, since $\varrho\left(\pi_{0} u_{2}\right)=0$ and $\varrho\left(\pi_{0} \nu\right)=0$ as sections of $V^{*} \otimes_{X} J_{0}\left(T_{Y}\right)$, we have

$$
0=\varrho\left(\pi_{0}\left(F^{-1}(v)-v+F^{-1}\left(u_{1}\right)\right)=\varrho\left(\left(\pi_{1} F\right)^{-1} \circ\left(v+\pi_{0} u_{1}\right) \circ f\right)=\left(\pi_{1} \varrho F\right)^{-1} \varrho\left(\left(v+\pi_{0} u_{1}\right) \circ f\right)\right.
$$

by the commutativity of (6.25). Therefore the composition

$$
V_{\mathfrak{a}} \xrightarrow{t} T_{f(a)} \xrightarrow{\nu+\pi_{0} u_{1}} J_{0}(T)_{)_{(a)}} \xrightarrow{\varrho} J_{0}\left(T_{Y}\right)_{e(f(a))}
$$

is zero for all $a \in U$. The mapping $\nu+\pi_{0} u_{1}: T_{f(\alpha) \rightarrow} \rightarrow J_{0}(T)_{f(a)}$ is invertible by hypothesis and maps $V_{f(a)}$ into $J_{0}(V)_{f(a)}$, since $\varrho\left(\pi_{0} u_{1}\right)=0$, and so we conclude that $f\left(V_{a}\right)=V_{f(a)}$, that is, f preserves V. Now let us consider the corresponding germs of our sections; if $F \in \tilde{Q}_{k+1}(\varrho)$, $u_{1}, u_{2} \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}^{\wedge}$ satisfy $u_{2}=u_{1}^{F}$, then we have shown that $f=\pi_{0} F$ is ϱ-projectable. By Lemma 6.5, it follows that $\mathcal{D}_{X / Y}(\varrho F)=0$. From Lemma 6.2, we deduce that $\pi_{k} F \in \tilde{Q}_{k}(\varrho)_{\varrho}$. By Lemma 2.1, we have

$$
\lambda_{1} F=\left(j_{1}\left(\pi_{k} F\right)+\left(v^{-1} \circ u_{1} \circ f\right) \pi_{k} F\right) \cdot\left(j_{1}\left(I_{k}\right)+v^{-1} \circ u_{2}\right)^{-1}
$$

To show that $F \in \tilde{Q}_{k+1}(\varrho)_{e}$, it suffices by this formula and the commutativity of (6.15) to
show that the two elements $j_{1}\left(\pi_{k} F\right)+\left(\nu^{-1} \circ u_{1} \circ f\right) \pi_{k} F$ and $j_{1}\left(I_{k}\right)+\nu^{-1} \circ u_{2}$ of $Q_{(1, k)}$ belong to $Q_{(1, k)}(\varrho)_{\varrho}$. First, they belong to $Q_{(1, k)}(\varrho)$ according to the criterion of Proposition 6.2, (iii), since $\varrho\left(u_{1}\right)=0, f$ preserves V and $\varrho\left(u_{2}\right)=0$. From (6.28) we conclude that the former belongs to $Q_{(1, k)}(\varrho)_{\varrho}$ since $\pi_{k} F \in \tilde{Q}_{k}(\varrho)_{e}$ and $u_{1} \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$, and the latter belongs to $Q_{(1, k)}(\varrho)_{\varrho}$ since $u_{2} \in\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$. Hence $F \in \tilde{Q}_{k+1}(\varrho)_{\varrho}$.

If $F \in \tilde{Q}_{k+1}(\varrho)$ and if $\mathcal{D} F=0^{F}$ belongs to $\left(\mathcal{J}^{*} \otimes J_{k}(\mathcal{J} ; \varrho)\right)_{\varrho}$, (ii) implies that F belongs to $\tilde{Q}_{k+1}(\varrho)_{\varrho}$, completing the proof of (i).

We now verify (iii). First, (6.42) and the commutativity of the right-hand square of (6.43) are consequences of Proposition 4, (ii) of [6] and (6.10). As for the left-hand square of (6.43), let F be a ϱ-projectable section of $\tilde{Q}_{k+1}(\varrho)$ over an open set $U \subset X$ and $\phi=\varrho F$ be the corresponding image section of $\tilde{Q}_{k+1}(Y)$ over $\varrho U \subset Y$. Then for $\xi \in T_{a}, a \in U$, by (5.6) and the commutativity of (6.29)

$$
\begin{aligned}
\langle\varrho \xi, \varrho(D F)\rangle & =\varrho\langle\xi, \mathcal{D} F\rangle=\varrho\left\langle\xi, F^{*} \omega\right\rangle=\varrho\left\langle F_{*} \xi, \omega\right\rangle=\left\langle\varrho_{*} F_{*} \xi, \omega_{Y}\right\rangle \\
& =\left\langle(\varrho \circ F)_{*} \xi, \omega_{Y}\right\rangle=\left\langle(\phi \circ \varrho)_{*} \xi, \omega_{Y}\right\rangle=\left\langle\phi_{*}(\varrho \xi), \omega_{Y}\right\rangle=\langle\varrho \xi, \mathcal{D} \phi\rangle
\end{aligned}
$$

i.e., $\varrho(\mathcal{D} F)=\mathscr{D} \phi$.
(iv) is an immediate consequence of (i) and (iii).

References

[1]. Bourbaki, N., Éléments de mathématique, Topologie générale, chapitre 2, Structures uniformes, 3^{e} édition. Hermann, Paris, 1961.
[2]. Buttin, C. \& Molino, P., Théorème général d'équivalence pour les pseudogroupes de Lie plats transitifs. J. Differential Geometry, 9 (1972), 347-354.
[3]. Goldschmidt, H., Existence theorems for analytic linear partial differential equations. Ann. of Math., 86 (1967), 246-270.
[4]. -_ Integrability criteria for systems of non-linear partial differential equations. J. Differential Geometry, 1 (1967), 269-307.
[5]. - Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan. Ann. scient. Éc. Norm. Sup., (4) 1 (1968), 417-444.
[6]. _- Prolongements d'équations différentielles linéaires. III. La suite exacte de cohomologie de Spencer. Ann. scient. Éc. Norm. Sup., (4) 7 (1974), 5-27.
[7]. - On the Spencer cohomology of a Lie equation. Proc. Symposia in Pure Mathematics, vol. XXIII, Amer. Math. Soc., Providence, Rhode Island, 1973, 379-385.
[8]. - Sur la structure des équations de Lie: I. Le troisième théorème fondamental. J. Differential Geometry, 6 (1972), 357-373.
[9]. - Sur la structure des équations de Lie: II. Équations formellement transitives. J. Differential Geometry, 7 (1972), 67-95.
[10]. - Sur la structure des équations de Lie: III. La cohomologie de Spencer. J. Differential Geometry, 11 (1976) (to appear).
[11]. Goldschmidt, H. \& Sternberg, S., The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier, Grenoble, 23 (1973), 203-267.
[12]. Guillemin, V. W., A Jordan-Hölder decomposition for a certain class of infinite dimensional Lie algebras. J. Differential Geometry, 2 (1968), 313-345.
[13]. Guillemin, V. W. \& Sternberg, S., An algebraic model of transitive differential geometry. Bull. Amer. Math. Soc., 70 (1964), 16-47.
[14]. - Deformation theory of pseudogroup structures. Memoirs Amer. Math. Soc., 64 (1966), 1-80.
[15]. - The Lewy counterexample and the local equivalence problem for G-structures. J. Differential Geometry, 1 (1967), 127-131.
[16]. Helgason, S., Differential geometry and symmetric spaces. Academic Press, New York and London, 1962.
[17]. Kodaira, K. \& Spencer, D. C., Multifoliate structures. Ann. of Math., 74 (1961), 52-100.
[18]. Kumpera, A, \& Spencer, D., Lie equations. Volume I: general theory. Annals of Math. Studies No. 73, Princeton University Press and University of Tokyo Press, 1972.
[19]. Malgrange, B., Équations de Lie. I, II. J. Differential Geometry, 6 (1972), 503-522; 7 (1972), 117-141.
[20]. Pollack, A. S., The integrability problem for pseudogroup structures. J. Differential Geometry, 9 (1974), 355-390.
[21]. Spencer, D. C., Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc., 75 (1969), 179-239.
[22]. - Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I, II, Ann. of Math., 76 (1962), 306-445.

Received April 29, 1975

[^0]: (1) Despite the misgivings of the second author, we employ a terminology adopted in preceding papers.

