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CHAPTER II. I~ON-LINEAR COHOMOLOGY 

7. Lie equations and their non-linear cohomology 

Let Rkcdk(T) be a differential equation; set Rk_l=dk_l(T), Rk_2=dk_2(T), -~k+z= 

v-lRk+~cJk+~(T), RO+z=Rk+zf~J~ ~k+~=v-l~+zcJk+z(~7), and set J~(Rk)= 

V-lJl(Rk)cJ(z.k)(T). For l>~--l, let gk+zcSk+lJo(T)*| ) be the kernel of ~+~-1: 

Rk+1--->R~+z_l or of :%+~-1:~k+/-->~k+/-1" 

De/inition 7.1. A differential equation Rk~ J~(T) is a Lie equation if [Rk, ~k] ~ Rk. 

I t  follows from (1.15) and (1.16) that  

[~k+l, ~k] ~ ~k and [R~+I, Rk+l]~ Rk. (7.1) 

On the other hand, we have, for all 1 >~ 0, 

(of. Proposition 4.3 of [19]). In  particular, if Rk+ l is a vector bundle, then Rk+z is a Lie 

equation and 
~+~ =~(l(J~(R~)) (7.3) 

where 2z: Jk+~(T)-+~(1, k)(T). We remark that  the sheaf Sol (Rk) of solutions of R~ is stable 

under the Lie bracket of vector fields. We say that  R k is/ormally transitive if n0: Rk~Jo(T) 
is surjective. The differential equations Jk(T; ~) and J~(V) considered in w 6 are Lie equa- 

tions, and Jk(T; ~) is formally transitive. 

A differentiable sub-groupoid Pk of Qk is a Lie equation (finite form) if it is a fibered 

submanifold of ~: Qk-'X. For xeX, I~(x)~P~ and V~,~:)(P~) determines a subspace /~.~ 

of ,]~(T)x. The vector sub-bundle R~,~Ju(T) such that  R~.~=v(/~.~) is a Lie equation 

(infinitesimal form); we say that  P~ is a finite form of R~. :For example, the sub-groupoids 

Q~(~) and Q~(V) of Qz are finite forms of J~(T; ~) and J~(V) respectively. We h a v e / ~ .  F =  

12-  762908 Acta mathematica 136. Imprim6 Iv 8 Juin 1976 



172 H U B E R T  G O L D S C H M I D T  AND DONALD SPENCER 

VF(Px) for F EPx, and R x is formally transitive if and only if the restriction to Px of the 

projection ~0: Qk "-->X • X is a submersion. We denote by  ~x the sheaf of sections of Px and 

by  ~x = ~x fl Qx the sheaf of invertible sections of P~; we set 

~k ,  a = {.F e ~)k.a I -t~(~) = Ik(a) } 

for aEX. 
For each Lie equation RkcJk(T), we can construct a corresponding finite form Pk in 

the manner  described in [19]. In  fact, the sub-bundle ( ~ F I F  eQk} of V(Qk) is integrable 

since % (see w 2) is a morphism of Lie algebras from F(X, Jx(T)) to the algebra of vector 

fields on Qk; therefore it defines a foliation on Qx which is transverse to Ik. The set of leaves 

passing through I x forms a germ of submanifold of Qk in the neighborhood of Ix and we 

can choose a representative Px of this germ which is a differentiable sub-groupoid of Qx 

and hence a finite form of R k. Since any  finite form P~ of R x is a representative of this 

germ, the group ~ .  a depends only on R k and not on the choice of the corresponding finite 

form Pk of Rk. 

Let  RkcJk(T) be a Lie equation and Pk a finite form of R k. Then the sub-bundle 

{g~(Rk). F [ F E  Qr of V(Qr is integrable and defines a foliation on Qr which is 

transverse to jl(Ix)=2z(Ik+l). The set of leaves passing through jl(Ik) forms a germ of sub- 

manifold of QCz.k~ along ?'l(Ik); the set Jz(Pk) =Jz(Px) N Q~l.k~ of jets of order l of sections 

of ~k is a representative of this germ. Suppose tha t  Rk+l, t h e / - t h  prolongation of Rk, is a 

vector bundle and hence a Lie equation, and let Pk+z be a finite form of Rk+ I. In  view of 

(7.3) and the commutat iv i ty  of (2.8), we conclude that  Pk+l = (2z)-lJz(Pk) in a neighborhood 

of Ik+ I. Thus P~+, coincides with the /-th prolongation (P~)+, = (2,)-l(j,(p~) f~ 2,(Qg+~)) of 

Pg in a neighborhood of I~+,; therefore ~ P ~ + ~  P~ in a neighborhood of I~ and ~ + ,  ~ ~ .  

Let  Rm Jz(T) ,  where m ~>k, be a Lie equation such tha t  ~rx(R~)=R~, and l e tP~  Q~ 

be a finite form of Rm. Then by the implicit-function theorem we have z~(P~) =Pg in a 

neighborhood of l~. Thus ze~: ~ .  ~-~ ~ .  ~ is surjective for all a e X. Assume tha t  R~+~ is a 

vector bundle and tha t  ~g: R,~+~-->Rx is surjective; then there exists a finite form P~ of R~ 

such tha t  ~ :  (Pg)+~--+Pz is surjective (see [19], Proposition 6.1). I f  moreover 9~ is 2-acyelic, 

the finite form P~, regarded as a differential equation in J~(E) where E = X  • X is viewed 

as a bundle over X via pr~, is formally integrable by Theorem 8.1 of [4] and Lemma 6.15 

of [19] ([19], Theorem 6.!6 ). I f  R~ is assumed to be formally integrable, we deduce from 

these remarks the existence of a finite form Pxr of Rg which is formally integrable; 

for such a finite form Px, the structure of affine bundle of (P~)+~+I~ over (PJ+t gives, by 
g3k+l __~.~k+/+l /- / ~ \ * , ~  T / ~ h  restriction of O: ~+~+~ . ~0t ~ w - o t ~ ,  an isomorphism of bundles of Lie groups 

tqk+l ~: ~+~+i fl (P~)+(~+~ gg+,+l (7.4) 
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(see [19], w 6). We remark that Q~(~), Q~(V), with k>~ 1, are formally integrable and their 

l-th prolongations are Q~§ Q~+,(V) respectively. 

We summarize and amplify some of the above considerations as a proposition. 

PROPOSITION 7.1. Let Rk = J~( T ) be a Lie equation and assume that,/or all l >~O, Rk+z 

is a vector bundle and that P~+z=Qk+z is a finite/orm o] Rk+l. Then: 

(i) P~+z is equal to the 1.th prolongation (P~)+l o/ Pk in a neighborhood o] Ik+z, and 

nk+lPk+z+mc Pk+z in a neighborhood o/ Ik+l, /or all l, m >~ O. 

(ii) For m>~k and a e X ,  the groups ~'~.a depend only on Rk, and the mapping 

~em: Qm+~Qm induces a mapping 7~,~: ~'~+~.a~ ~',a.a /or l>~O. 

r C (iii) Let Rm J,~( T) be a Lie equation with m >~ k and ga( R'~) = R~, and let P'~ be a finite 

]orm o/ R'm. Then ~k(P~)=Pk in a neighborhood o / I  k and ~ :  is sur~ective /or all 

a e X .  Moreover, i/ F e  ~a.a with F(a)= It(a), a e X ,  and GeJ~(P'~) with J~(z~)G=~l(F)(a ) 

and ~oG = I,n(a), then there exists F'  e ~'~. a satis/ying ~ F' = F and ~(F')  (a) = G. 

(iv) I /  R~ is /ormally integrable, then it possesses a /ormaUy inteqrable /inite /orm Pz 

and the mappings z~+~: ~'~+~+~. ~-~ ~'~+~. a are 8ur~ective, where  Pk+l =(Pk)+l, [or all l>~O and 

a~X .  

(v) Let R~ = R~ be a Lie equation and P~ a finite/orm o /R~ .  Then P~ = Pa in a neigh- 

borhood o/ Ix. 

Let R a t  Jk(T) be a Lie equation and Pk~ Qk a finite form of Rk. Since P~ is a groupoid, 

if FE~k.a,  aEX,  by (2.5) the mapping (2.2) restricts to give a mapping 

F : / ~ . a - ~  R~.b (7.5) 

where b =target  F(a). If Fe(P~)+I, by (2.4) the mapping (2.1) restricts to give a mapping 

F: R~,~-~ Rk, b (7.6) 

where a =source F, b =target  F. 

We have the following proposition: 

PROPOSITION 7.2. Let Rk~Jk (T)  be a Lie equation and Pk=Qk a finite /orm o/ R k. 

Let F E (~k+l; then the/ollowing two assertions are equivalent: 

(i) ~ F  e if* | R~; 

(ii) b F e Jo(ff)* | ~ k. 

I /  zi k 2' e ~k, then (i) and (ii) are equivalent to: 

(iii) F e (~)k)+l = ~;l(Jl(P~) • ~1((~k+1)). 
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This proposition is a consequence of Lemma 2.2, (i) and (iii), and Proposition 6.9 of 

[19]. 

Let  R k ~  Jz (T)  be a Lie equation; assume that ,  for all l >/0, Rz+~ is a vector bundle and 

let P~+, be a finite form of R~+p For l~>0 and a e X ,  we define the group 

H~ = {l e (Aut (X) ) a I s e ~)'~ +,. a} ; 

we note tha t  i t  does not  depend on the choice of P~+~ and therefore depends only on R~. Let  

(T*| ^ = (T*| N (T*| ^, 

( J0(T)* |  ^ = ( Yo( T)* @ l~u +,) n ( Jo( T)* | J~,+ ,( T)  ) ̂  , 

and 

ZI(Rk+I)  --- {'~ ~ (~"* | ~k+l)  A I '~1 'y" = 0},  

= e (Jo{9")* | I = o }  

By Proposition 7. l, (i) and Proposition 7.2, we obtain, for 1/> 0 and a ~ X, the following two 

non-linear Spencer complexes 

H~ ?~+'+~' 0k+*+~.~ ~ ' (Jo(~7)*| 

:01 , (A ~ if .  | Rk+z-:)o, 

~'" (A2 J0(~') * | ~+,-:)a. 
According to (7.5), (7.6) and (2.43) the group ~lc+/+l, a operates on the right on Z:(Rk+l)a 

and Zl(Rk+z) ~ in the manner  of (2.31) and (2.40). Set 

Hl(Pk)k+~,a = Zl( Rk+i)a[#'~ +, + l. a, 

H:(Pk)z+,.a = Z:( R~:+,)a/#'k +z + L a; 

these non-linear Spencer cohomologies of P~ are the sets of orbits under the right opera- 

tions of ~+~+:.~. We shall say tha t  the orbit [u] of uEZ:(Rk+~),~ (resp. ZI(Rk+3~ ) is the 

cohomology class of u in HI(P~)k+,.,~ (resp. J~l(Pk)k+,.a). Then u, v EZ:(Rk+3,~ (resp. Zl(Rk+3a ) 

are eohomologous if and only if there exists ~'e~'k+,+l, a such tha t  u F =v, and u is eohomo- 

logous to zero if and only if u = D_F (resp. u = ~ F )  for some F e ~+l+1.  a. We denote by  0 

the orbit of OeZ:(Rk+t),~ (resp. Z1(Rk+z)a) in Hl(Pk)k+l.a (resp. H:(Pk)k+l.a), and so these 

cohomologies are sets with distinguished elements 0. Since the groups ~)~+~+1. a depend only 

on Rk, these cohomologies depend only on R k and not on the choice of the finite forms 

Pk+v Finally we remark tha t  the vanishing of the eohomology Hl(pk)z+z.~ or/tl(Pz)~+z, a 

is equivalent to the exactness of the first of the above complexes at  (~7"| ~k+,)~ or of the 
j �9 ~ A second at (0(~7) | ~k+l)a, respectively. 

All the cohomologies we shall consider are sets with distinguished elements 0. By a 
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mapping of cohomology, we shall mean a mapping between two cohomologies sending 0 

into 0 and, by an isomorphism of cohomology, we shall mean a bijcctive mapping between 

two cohomologies sending 0 into 0. However, in the latter part  of this section (namely, in 

Propositions 7.9, 7.10, 7.11 and Corollary 7.1) and in w 10 (namely, in Theorems 10.3 and 

10.4) mappings connecting cohomologies occur which are only bijeetive and do not neces- 

sarily send 0 into 0. 

Using Proposition 7.1, (ii), we see that,  for l, m ~> 0, a E X, the mappings ~k+z: Rk+l+m -~ 

Rk+z induce mappings of cohomology 

zk+t: Hl(Pz)k+l+m.~ -+ Hl(Pk)k+l.a, 

and we define the non-linear Spencer cohomology of Pk to be the projective limits 

HI(Pk)~ = lim Hl(Pk)~ +l. a ,  

/~1 (Pk) a = lim Hl(Pk)~+l. 

for a E X. These cohomologies are also sets with distinguished elements 0, and they depend 

only on R k and not  on the choice of the finite forms. 

According to Lemma 2.2, (i) and (iv), the mapping (2.44) restricts to give, for l~>0, 

bijections 

(T* | Rk+t) ̂  -+ (Jo( T)* | ^, (7.7) 

Zl(Rk+l) ~ZI(Rk+L). (7.8) 

According to Lemma 2.2, (ii), (7.8) induces for a E X an isomorphism of cohomology 

HI(P~)k+,  ~ ~ //l(Pk)~+z. ~ .  

Thus: 

PROPOSITION 7.3. Let R k c J k ( T )  be a Lie equation; assume that,/or all l>~0, Rk+z is 

a vector bundle and let Pk+z be a / in i t e /o rm o/ R~+ I. Then the mapping (2.44) induces iso, 

morphisms o/cohomology,/or all 1 >~ 0 and a e X ,  

Hl(P~)~+t.a ~ Hl(p~)k+z.a, 

HI(I~)o  ~ HI(P~)~. 

According to Proposition 7.3, we may identify HI(Pk)~ and HI(P~)~ and define the 

non-linear Spencer cohomology of Rk to be 

/71(Rk)a = H~(Pk)a = Hl(Pk)a 

for a E X. We set 
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a~X 

Definition 7.2. We say that  the second fundamental theorem holds for Re if//*(Re) =0.  

If R e ~  R~ is a Lie equation all of whose prolongations R ~ ' ~+t are vector bundles and 

P~+~ is a finite form of R~+~ for l>~0, the inclusions R~+z~ R~+t and Proposition 7.1, (v) 

induce mappings of eohomology 

HI(p~) ~+t. ~--> HI(p~)~+~. ~, 

for all 1 ~> 0, and hence mappings of cohomology 

1 ~ .__> B (Re) a I:]~(R~)~ 
for a ~ X .  

LEMMA 7.1. Let Re ~ J ~ ( T )  be a Lie equation; assume that Re+, is a vector bundle and 

that ~ :  Re+,-+ R e is sur]ective. Let Pe+l be a / in i t e /orm o/Re+~ and u ~ (7*|  ~ ) ~ ,  a ~ X .  Then 

there exists F e ~'~+1. ~ satis]ying u~ (a) = 0 or ~ F -~ = u at a. 

Proo~. Let  ve(T*|  with z~kv=u(a ). Since J,(Pk+,) is an aff inesub-bundleof  

Jl(Qk+l) I vk+~ over Pk+z, there exists a e ~k+,,, such that  G(a)= lk+x(a) and 

],(G) (a) = jl(I~+z) (a) + (id| v. 

By Proposition 2.2, (i), ],(G) (a) belongs to Q(,.k+,l and hence G E ~)~+1. a. By {2.27) we have 

(id | ~-1) l)G(a) = ~[?'l(~kG) (a)] = ]1(~k G) (a) - j,( Ik) (a) = (id| ~-*)~kv, 

~nd so 7DG(a) = u(a). Taking F -1= G, we obtain the assertion of the lemm&. 

Now assume that  R ~  J , ( T )  is form&lly integrable, that  P~ is a formMly integrable 

finite form of R e (which exists by Proposition 7.1, (iv)) and that  P~+t is the l-th prolonga- 

tion (P,)+, of P~. Denote by Sol (P~) the sub-sheaf of Aut (X) composed of the ] satisfying 

],(])e~)~; it is the sheaf of solutions of the non-linenr differential equation P ~ J ~ ( E ) ,  

where E = X • X. By Proposition 7.2 we h~ve, for l >/0, the following two non-linear Spen- 

cer complexes: 
�9 ~ 

S o l  (Pk) ] k + / + l  ~ ) k + / + l  * (if* Q Rk+l)A 

Sol (Pk) ik+,+, ~ + , + ,  • , (Jo(ff)*| ^ 

which are finite forms of the linear Spencer complexes 

D1 , A~ff,| 

~1 ) A2 Jo(3")* | ~k+,-1, 

]k+z+l ~ D D 
0 , S o l  (Rk) " , , k + , + l  ' i f*  |  �9 A 2 i f*  | Rk+t-1, 

" ~ / 5  / 5  
0 , Sol (R~) ~k+z+l Rk+~+l ' J0(Y)* |  �9 A2J0(~) * |  
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The vanishing of the cohomology Hl(Pk)k+~. a, for M1 a EX, implies the exactness of the above 

non-linear complexes. 

PROrOSITION 7.4. Suppose that Rz c Jz ( T ) is a/ormally integrable Lie equation and 

that g~, is 2-acyclic where k0>~su p (k, 2). Then/or all m >~k o the mappings 

~ :  Z~( Rm+I) -+ Zi( R,,), (7.9) 

~ :  Z~(~m+l) -~ Z~(R~) (7.10) 

are sur~ective. 

Proo/. Since the mapping (2.44) is compatible with the projections 7~m: J,n+l(T)-~J,,(T), 

~r,~: J,~+I(T)-->Jm(T), and since the mappings (7.8) are bijections, it suffices to show that  

(7.10) is surjective. Let  ue2~(R,,), with m>~k0, and choose ulEJ0{ff)*| i such tha t  

~ u  i =u.  Then ~ i  u e A~Jo(ff)*| and 

$ ~ i u i  = - D ( D u  i -�89 u]) = [/)u, z~_iu] = �89 ~ _ l u ] ,  ~ _ l u ]  = 0 

by the Jacobi identity. Since gm is assumed to be 2-acyclic, there is an element vEJo(ff)*| 

g~+i satisfying (~v = ~ lu l .  Then 

~ ( u ~  + v) =/~u~ - t v  - �89 u] = ~1 u~ - t v  = 0; 

hence u i + v belongs to ZI(R~+i) and satisfies 3rm(u i + v)=u ,  tha t  is (7.10) is surjeetive. 

Remark. I t  can be shown directly that  the mapping (7.9) is surjective without using 

the isomorphisms (7.8) and, if this is carried out, one is led automatically to consider a 

twisted d-operator, namely 

d,: hST*|174 l, for m >~ k, 

where 

~,w = [v, w] = [v l, w], weAJT*@gr,, 

and v is a section of T*QJo(T  ) such that v: T-~Jo(T ) is invertible, and v i is any section of 

T*| such that  g0Vl=V. I t  is easy to see that  ~v coincides with 5 when v=u.  The 

cohomology of the complex (1.8) is not changed, up to an isomorphism, by replacing 

with 5.. 

We deduce immediately from Proposition 7.4: 

PROrOSXTION 7.5. Suppose that Rk ~ Jz( T ) is a formally integrable Lie equation and 

Pk ~ Qk is a /ormally integrable [inite /orm o/ R~, and that gko is 2.acyclic with k0~>su p (k, 2). 

Then/or  all m >~ko, a e X ,  the mappings o/cohomology 
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ztm: II~(P~,)m+~.a ~ H x ( P g ) m , a ,  (7.11) 

(7.12) 

Then F~. G ~ ~+~.,~ and 

Since Pk is integrable, there exists /ESoI(P~) a such that  jm+~(/)(a)=G(a); then F =  

F~. G. jm+~(/-1) belongs to ~ + 2 .  a and 

u v = ( u  F~ "~)J'~+ ~(:-'> = 0 j''+~:-') = O, 

showing tha t  u is cohomologous to zero in/tl(P~)~+i, a. 

We suppose henceforth that  ]c 1> I and continue to suppose that  R ~ J a ( T )  is a form- 

ally integrable Lie equation and that  P~ is a formally integrable finite form of R~. Let 

C1+~, r ~+~ be the images of Jo(T)*|247 (J0(T)*| ^ respectively in B~+~. Then 

C~+~ = (J0(T)* | _~+~)/$(g~+~+~) 

and C~+~ is a vector bundle since gz+~+~ is, and r =C~+~ ~)/~+~. We set 

By Proposition 7.2 we obtain, for 1 ~> 0, the non-linear Spencer complex, 

PROPOSITION 7.6. Let Rk=J~(T) be a /ormally integrable Lie equation, and assume 

that Rk possesses a ]ormally inteffrable and in~egrable ]inite [orm P ~ Q ~ .  I / t h e  image o/ 

aeHl(Pz),~+l.~ (resp. ~eRl(Pk)m.l,a), with m~/k, aeX,  in ttl(Pk)m.a (resp. I~l(P~),,,a) 
vanishes, then ~ =0. 

Proof. According to Proposition 7.3, it suffices to prove the assertion for a eHl(Pk)m+l, a. 

Let Pk+z be the / - th  prolongation of Pk. Let u EZI(R,~+I)a and assume that  the cohomology 

class of ~mu in Hl(Pk)m. a vanishes. Then there exists F1E~n+l.a such that  (gmu)Y'=0, 

and we choose F~ E ~)~+~. ~ with ~m+l F2 = FI- Then u F" E Jo(~)* | and 

~u ~ = - D u  F~ = - �89 ~ [ u  ~'-, u ~ ]  = 0,  

since ztm(u F~) =(~rnu) F` =0. Since gm+~ is 1-acyclic, there exists v Egm+~. such that  (~v = u  F~. 

Since Pk is formally integrable, the mapping (7.4) (with k + l = m + l )  is an isomorphism 

�9 ~+1 A Om+~ and, by (2.38), and G =8-1v belongs to ~,,+2 

O ~  - -  - ~ v  = - u ~ ' .  
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which is a sub-complex of (2.48) (with k replaced by k+l)  and which is a finite form of the 

complex 

" D b 
Sol  k+z , ,8 +z 

where C~k+l=~k+z. According to (7.5), Proposition 7.1, (iv), Proposition 7.2 and (2.43}, 

for a E X  the group ~'k+1, a operates on the right on Zl(Rk+l) a in the manner of (2.49). Set 

this non-linear Spencer eohomology of Pk is the set of orbits under the right operations of 

~ +  z. a and depends only on Rk and not on the choice of the finite form Pk. For an alterna- 

tive description of this cohomology of Pk, we refer the reader to [19], w 8. We denote by 

0 e/tl(Pk)k+l.~ the orbit of 0 6 Z~(R~§ z):, and we remark that  the vanishing of the cohomo- 

logy /t1(Pk)k+l,: for all a e X  implies the exactness of the above non-linear complex. For  

l, m ~> 0, a 6X, the mappings gk+~: Rk+z+,~->Rk+~ induce mappings of cohomology 

xk+,: fil(Pk)~+~+~.,->/tl(Pk)k+,.= 

and, for a 6X, we define the cohomology 

HI(Pk) a = lira/tl(Pk) k+ ~. 
<----- 

w h i c h  is a set with distinguished element 0. 

Let  us show that  the projection Jo(T)* |  induces a mapping 

ZI(R~) ->Z~(R~) (7.13) 

for m>~k. Let  u6Z~(Rm) and 4 be its image in C,~,. By the exactness of (2.32}, there exists 

2' s (~,n+l such that  ~ F  = u. Choose F 1 E {~+~ with 7~+~ Fz = F; then u z = ~ F  i 6Zi(J~+~(T)) 

and ~mu i =u.  Now Z~i~ is the class of ~ l u  1 in B,~,, and hence vanishes. We obtain there- 

fore mappings of cohomology for m >~ k, a 6 X, 

Hi(p~)~, a -~/li(P~)m. ~, (7.14) 

H~(P~)a --" I:Ii(P~)a �9 (7.15) 

The commutative diagram 

J o ( T ) *  |  - -  

C~+l 

7g m 
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induces for m i> k a commutat ive  diagram 

ZI(R~+I) ,-, - ~l(R~+l) 

Z~(R~) _ , Z~(R~) 

and therefore also a commutat ive  diagram 

Hl(Pk)m+l. a ~/-~liP~),~ + 1. a 

7 ~ ~  7~m 

Hl(Pk)m,a - ~ -ftl(Pk)m.a 

of cohomology, for aEX.  

(7.16) 

(7.17) 

PROPOSITION 7.7. Let R~=Jk(T ) be a formally integrable Lie equation, with k ~  l, 

and Pk = Qaa/ormally integrable finite [orm of Rk. Then: 

(i) For m>~k, aEX,  the mappinqs (7.13) and (7.I4) are sur~ective and (7.15) is an iso- 

morphism of cohomology, 

(ii) I] gko is 2-acyelie, with k0~>su p (k, 2), then all the mappings of diagram (7.17) are 

surjective for m >~ ko, a ~ X.  

(iii) I f  P~ is integrable, then/or m >~ k, a E X: 

(a) i/ the image o/~Ettl(Pk)rn.a vanishes in [ti(p~),,.a, then ~ = 0 ;  

(b) if the image o/zcE12II(pk)m+i, a vanishes in Hi(pk) . . . .  then ~ =0; 

(e) i] the image of ~E[-Ii(Pk)m+i.a vanishes in/tl(pk)m.~, then ~=0. 

(iv) I1 Pk is integrable, then/or m >~ k, a E X,  the following assertions are equivalent: 

(a) Hl(P~)m.a = O; 

(b) HI(p~),~.a = O; 

(c) /tl(Pk)m. ~ = O. 

Proof. (i) We first prove t h a t  (7.13) is surjective for m>~k. Let  ~EZi(R,,)  be the image 
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of ue(J0(ff)*| ^. Choose u~eJ0(ff)*| with ~, ,ul=u.  Then ~)1~ is the image in 

B~ of ~1 u le  A ~J0(~)* | ~m. Therefore ~1 u~ e A ~J0(~)* | gm and 

0 = ~_~3~u~  = ~ u ;  

so g is the image of uEZI(R,n). Thus the mappings (7.14) are also surjective for m>~]c. 

That (7.15) is an isomorphism of cohomology follows from the commutativity of (7.17). 

(ii) is a direct consequence of (i) and Proposition 7.5. 

(iii) We first verify (a). Let u EZI(Rm)a, with m >1 ]C, a EX; assume that  the cohomology 

class of the image g of u in ZI(R,~)a vanishes. Then there exists FE ~))n. a such that  g~=0. 

Choose F 1 E ~ n + l ,  a with zmF1 = F ;  thus u p' belongs to ($(gm+l) and we can write u p' =~v, 

with v Egm+ 1. Since Pk is formally integrable, the mapping (7.4) is an isomorphism (with 

k + l = m )  and G=~-~v belongs to Q~+~ N ~ + ~  and, by (2.38), 

~ G  = - ~tv = - u F ' .  

Then F 1. G E Pm+l,a and 

u~,'a=uFl+ ~G=O. 

Since Pk is integrable, there exists /ESol (Pk)a such that  jm+l(/)(a)=G(a); then F =  

F 1 �9 G'jm+l(/-1) belongs to ~)'~ + 1. a and u F = 0, showing that  u is cohomologous to 0 in/71(Pk)~.~. 

By the commutativity of diagram (7.17), we deduce that  (b) follows from (i)and Proposi- 

tion 7.6, while (a) and (b) together imply (c). 

(iv) The equivalence of the three assertions follows from (i), (iii), (a)and Proposition 

7.3. 

According to Proposition 7.7, (i), we may identify/~l(Rk) ~ and/~l(Pk)a, for a eX. 

PI~OPOSITIOlq 7.8. Let R~ c Jk( T ) be a ]ormally integrable Lie equation and Pk c Q~ a 

formally integrable /inite /orm oJ Rk. Suppose that gz~ is 2-acyclie, with ko>~k. For a E X ,  

the/ollowing assertions are equivalent: 

(i) ~I(R~)~ = 0; 

(ii) /or all m~>sup (]co, 2), Hl(Pk),,.a =0;  

(iii) /or all m~>sup (]co, 2), Hl(P~)m.a --0; 

(iv) /or all m >~ sup (/co, 2), ~l(Pk)m. ~ = 0. 

I/moreover Pk is inteffrable, these assertions are equivalent to each o/ the /ollowing: 

(v) /or some m >~sup (k 0, 2), Hl(Pk)m.a = 0; 

(vi) /or some m>~sup (k0, 2), Hl(Pk),n.a =0;  

(vii) /or some m>~sup (/c 0, 2), I:lt(Pk)m.a =0.  
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I[ Pk is integrable, then each o/the above assertions is implied by the equivalent conditions: 

(viii) /or some m>~k, Hx(Pk)m.a =0;  

(ix) /or some m>~k, Hl(Pk)m.a=O; 

(x) /or somem>Jk, ~ l ( P k ) m . a  = O. 

Proo/. The equivalence of (i)-(iv) follows from Proposition 7.5, Proposition 7.7, (ii) 

and [1], w 3, 5Io. 5, Corollary 1. When Pe is integrable, we deduce from Proposition 7.6 and 

Proposition 7.7, (iii), (c) or (iv) that  (v)-(vii) are equivalent to (i)-(iv) and that  (viii)-(x) 

imply (i)-(iv). 

The following three propositions are closely related to results in w 5 and w 6 of [9]; 

in particular, the following proposition and its proof are related to Theorem 6.2 of [9], 

PROPOSITION 7.9. Let Rk, R ~ c J k( T ) be/ormally integrable Lie equations and let Pk, 

p~  c Qk be [ormaUy integrable finite/orms o / R  k, R'~ respectively. Let m >~ k and F be a sec- 

tion o/ (~m+x over an open set U c X such that / =zroF is a local di//eomorphism o / X  and 

F(Rm Iv) = ~ (7.18) Rmlf(U), 

F(-~m+ l l v) = Rm+ l tr(V)" (7.19) 

Let aE U and b=/(a). 

(i) I[ R k and R~ are/ormally transitive or i/ F =?',,+t(/), then the germ o / F  in (~,,,+1.,:, 

induces a commutative diagram 

Hl(Pk)ra. a " Hl(p~)m.b 

l 1 
-~(P~)m. a '-H~(P~)m.~ (7.20) 

whose horizontal arrows are bijective. Moreover i / F  =~m+l(/), then / induces an isomorphism 

o/cohomology 

/:/l(Rk) a ,/:P(R~) 0. 

(ii) I /ei ther the first or the second horizontal arrow in diagram (7.20) is an isomorphism 

o/cohomology, or a/ortiori i/ HI(P~)m. b =0, there exists a local di//eomorphism g o/ X defined 

on a neighborhood U 1 of a such that im+l(g) (a) -- F(a) and 

~k+l(g) (Rkltrl) = R~I ~(v,),: 
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Proo/. (i) Using (2.25) we infer from (7.18) and (7.19) tha t  the restriction of ~ F  -x 

to ~~ Rm is a section of ~ * |  R~ and hence, if R~m is formally transitive, that 05  '-I is a sec- 

tion of T*| over /(U). From (7.18), if ue(ff*| we see that ~(u) belongs to 

(ff*| Therefore, under one or the other of our hypotheses of (i), u y'~ belongs to 

(~*| Thus by Lemma 2.2, (i) and (ii), 4F-' belongs to (Jo(~Y)*| By Lemma 

2.2, (ii) and (iv), we therefore have a commutative diagram 

Zl(Rm)a ) Zl(R~m)a 

1 1 
Z~(R~l~ ,2~(R~)~ 

Z ~(Rm)~ , Zt(R~m)~ 

(7.21) 

and the diagram 

H~(P~I~.~ , ~ ( P ~ ) , . ~  , 

whose vertical arrows are given by  (7.8) and (7.13) and whose horizontal arrows are bijec- 

t i re  and send u C:ZI(R,n)a (resp. 21(Rm)D into u F-1EZI(R~)~ (resp. 2~(R~)b) and ~ EZI(Rm)~ 

into ~ ~-1E Zl(R~m)b. We denote by  Ad F: Qm+l I v• u-+Qm+l If(u)• the mapping sending 

G, with source G = x E U ,  target  G = y E U ,  into F ( y ) . G . F ( x )  -1. According to Lemma 6.1 

of [9], we have by (7.19) 

Ad F(P,~+ Ir v• ~) = P~+l l~ (v)• 

in a neighborhood of Im+l i r(~), and thus Ad F induces a bijective mapping Ad F: ~m+l. a -~ 

~)~+l,~(a). From (2.42), we have 

(~")~-~ = (u~-~)~ ~.~ 

for u E (~'* | ~ ) a  or u ~_ (Jo(ff)* | a ~: U and G E ~n+a. a, and 

for ?~ ~ Clm. a and G1 E ~'~. ~, where Ad Zm F" G1 = ~m(Ad F" G) if G 1 = ~m G. Diagram (7.21) in, 

duces the commutat ive diagram (7.20) whose horizontal arrows are bijective. I f  F =  

j,n+l(/), these arrows are isomorphisms of cohomology; furthermore for all p/> k, we have 
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whose horizontal arrows are the isomorphisms of cohomology induced by ]~+l+i(/) and 

Jp+i(/) respectively, is commutat ive for all p >t k, l >~ 0. Thus we obtain an isomorphism of 

cohomology Hi(p~)~--> HI(p~)o. 

(ii) I f  either the first or the second horizontal arrow in diagram (7.20) is an isomor- 

phism of cohomology, there exists a section G of ~ + i  over a neighborhood of b such tha t  

DG = D F  - i  and G(a) = I,n+~(a). Since D(G" F) = F-~(DG) + D F  = F - i ( ~ G -  D F  -i) = 0, by  

(2.23) we can write G. F =]m+i(g) where g is a local diffeomorphism of X defined on a neigh- 

borhood U i of a; it is clear tha t  g has the required properties. 

Let  R k c J k ( T  ) be a formally transitive Lie equation. An Rk-connection is a mapping 

of vector bundles o~: Jo(T)-->R~ satisfying 7e0oco =id;  we set c5=v-tooJov: T-->/~ k. The 

curvature ~ of co is the section of A2T*| ~ over X defined by  

~(~Av) = [~(~), ~(n)] --~[~, n] 

for ~, ~E~.  An R~-connection (o determines covariant derivatives V in Jk_i(T) and J~ 

by setting 

V~n =s for ~E~r, ~]EJk_~(ff), 

V ~  = [c5(~), ~], for ~Eff, ~eJ~(ff). 

I f  the curvature of (o vanishes, then so do the curvatures of the covariant derivatives V 

(see [9], Proposition 3.3). We say that  a sub-bundle F of Je_i(T) (resp. J~ is stable by 

V if V(:~)c ff*| 

The following proposition generalizes one aspect of Proposition 5.5 of [9]. 

PROPOSITION 7.10. Let Rk, R~ cJ~(T)  be/ormally transitive and/ormally integrable 

Lie equations. Let Pk, P~ c Qk be/ormally integrable /inite /orms o/ Rk, R~ respectively. Let 

a, b E X and let r EQoo(a , b) satis/y r ) = R~. b. Given a local di//eomorphism /: X---> X de- 

fined on a neighborhood U el a with/(a) = b, lot all m >~ 1~ there exists a section F,n+i el (~m+i 

over a neighborhood Urn+ 1C U el a such that F~+l(a ) =sr~+ 1r go Fm+i = /and  

F~+I(R~I u,~+ l) = R~ Ir(U,~+ ~), (7.22) 

Fm+l(/~+il  u.,+d = R~ +l Ir~m+~). (7.23) 

Furthermore we have a bijective mapping 

pi(R~h ~ P~(R~)~. 

Proo/. For m/> k, consider Pro(a), P~(b) as bundles over the connected components of 

a and b respectively via the projection " target" .  For all m >~ k, we can find sections sm of 

Pro(a) over a simply connected neighborhood U ~  U of a and s~ of P,~,(b) over U~=/(Um) 



ON T ~  Z ~ O ~ - L I - ~  COnOMOLOGY OF LI~ ~QUATIO~S. II  185 

such tha t  sin(a)=Ira(a), s~(b)=Ira(b), Um+l c Urn, and ZmS,~+l =s~ on Um+x and '~ 3"gmSm+l ~8rn 

on U~+I. Define OSm: T-+Rm on Um by  ~Sm(~)=S~.(~)'S(X) -1 for ~eT~, zeUm, and e5 ~'m. 

T-+R~ on U~m by  05~m(~) =S~m.(~) �9 S~'(y) -1 for ~ e Ty, y E U~. I t  is clear t ha t  o9 m = ro~5~ov -1 is 

an Rm-connection on U m and tha t  (Drn=?Zo(,OrnO~r ~r -1 is an R~m-connection on U~m whose cur- 

vatures  vanish. Let  Fro(x)=s~(/(x))"Z~mf'Sm(X) -1, for xe  Urn; then Fm is a section of (~m 

over U m with ZeoFm= / and zmFm+l=F m on Urn+l, and Fm(a)=~mr B y  (2.5), for ~ET u, 

yeUL 
F~(eS~(f-~(~))) = Fm" Sm.(]--l(~)) " S(/-a(Y)) -a" Fm(/-~(Y)) - '  

c5 ~ = 8~ , (~ )  "7g m e "  7~ m r  = rn(~) 

and thus  Fm(COm) = co~ ~m. Then the sub-bundles Fm+I(R,~I u,,+~), R~lu~+a' of Jm(T) lvm+ and 

R~+~lu~+ a of J~+a(T) lv,+~ are stable by  the covariant  derivatives in- 

duced by  C0~m+~ in Jm(T) and J~ respectively. Moreover,  Fm+~(R~.a)= z~+l  r  
0 _ ~0 

-- Rrn+l,b. R~, ~ and Fm+~(R~ a) = ~m+l  r  Since U~m+a is s imply connected,  f rom 

Proposi t ion 3.2 of [9] we deduce (7.22) and 

- -  Rm+~ r (7.24) Fm+i(RO+q[r,,,+~)__ r IV,,+~. 

Since Fm+~(~Sm+a(Tla,,+~) ) =eS~+~(TIv~+~) , clearly (7.23)fol lows f rom (7.24). According 

to Proposi t ion 7.9, (i), for  m >~ k the germ of Fm+l in Qm+a,, induces a bijective mapping  

-Fro+l: Hx(Pk)m,a  .--->. Hl(pff)m. ~ 

S i n c e  y'gm+l_l,~m+l+l =-~m+l o n  Um+l+l, t h e  diagram 

H l ( p ~ ) m + t , a  F r o + z + 1 ,  H~(P~)m~,.~ 

Hl(plc)m.a  1 # " H (P~)m,b 

is commuta t ive  for m ~>/c, 1 ~> 0. Therefore we obtain a bijective mapping  HI(pk )~HI (P~) .  

P R 0 P 0 S I T I 0 N 7.11.  Assume that X is connected. Let Rk c Jk(T) be a formally transitive 

and/ormaUy integrable Lie equation. Then/or all a, b E X, we have a bijective mapping 

/=/1( R~ ) a -~/~l(Rk) b. 

Proof. By  Proposit ion 5.4 of [9], for all a, bEX, there exists fEQ~(a, b) such tha t  

r ) = R~. ~ and so the conclusion follows from Proposit ion 7.10. 

The following proposit ion is an immediate  consequence of Proposit ion 11.2 of [10] 

and Proposit ion 7.9, (i). 
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PROPOSITION 7.12. Let Rk, R ~ J k ( T )  be two lormally transitive and tormally in. 

tegrable Lie equations and ] a local di//eomorphism ol X de]ined on a connected neighborhood 

U o /x  E X such that 

i k + l ( / )  * (R~I ~) = Rklf( U)" 

I f  Nk,, 1 ~  c J~,( T) are/ormaUy integrable Lie equations, with Iq >~lc, such that 

and i/ 

i~,+~(f) (x)(Nk,,~) -- - -  s  

then 

- -  ~u If(U) 

and l delines an isomorphism ol cohomology 

/or all a E U. 

COROLLARY 7.1. Let Rk, R~ ~ Jk(T) be/ormally transitive and/ormally integrable Lie 

equations and let Nk, ~ Rk~, *,~T~k, C *~,~ be/ormally integrable Lie equations, with E 1 ~ ~, such 

that 

[~,+~,  ~ , ]  ~ ~ , ,  ~ 

Let a, b e X  and let CeQ~(a, b) satis/y r  = R s  b and r =N~. b. Then we have a 

bijective mapping 

/t~(R~)~ ~/~l(R~)b. (7.25) 

I~ this mapping is an isomorphism o] cohomology, or a ]ortiori i~ /~x(R~)b=0 , we have an 

isomorphism o/cohomology 

l ~ l ( N k , ) a  ~ ~:~1 ( ~ , ) O .  (7.26) 

Proo/. Let Pk and P~ be formally integrable finite forms of R~ and R~ respectively and 

let m > k  r By Proposition 7.10, we have a section F of (~m+l over a neighborhood U of a, 

with ~ 0 F = / ,  satisfying (7.18) and (7.19) and F(a)=~+1r and a bijective mapping (7.25) 

such that  the diagram 

[/i(Rk)~ "[/i(R~)b 

Hl(pk)m ~ 1 , H (Pk)m.~ 
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is commutative,  where the lower horizontal arrow is induced by  F according to Proposi- 

tion 7.9, (i). I f  the upper horizontal arrow of this diagram is an isomorphism of cohomo- 

logy, then so is the lower horizontal arrow. Therefore, by  Proposition 7.9, (ii) and Propo- 

sition 7.12, we deduce the existence of a local diffeomorphism g of X defined on a neigh- 

borhood U 1 of a such tha t  ]~+l(g) (a) =~m+1r and 

Rksg(u,), 

The isomorphism (7.26) of cohomology is given by Propositon 7.I2. 

Remark. Even the assertion tha t  (7.26) is bijective requires an additional hypothesis 

because N~ and N ~  are in general intransitive Lie equations (cf. Proposition 7.9, (i)). 

Assume that  X is endowed with the structure of an analytic manifold compatible 

with its structure of differentiable manifold. The following theorem is an immediate con- 

sequence of Corollary 6.1 of [9] and of Theorem 10.1 of [10]. 

THEOREM 7.1. Let RkcJ~(T)  be a /ormally transitive and formally integrable 

Lie equation and Nk lc  Rkl a /ormally integrable Lie equation, with kl >~k, satis]ying 

[~ki+1, TlXl] ~ ~al- Let aCX.  There exist on a neighborhood o/a an analytic/ormally transitive 

and/ormally integrable Lie equation R~ ~ Jk( T) and a/ormally integrable Lie equation N ~, ~ R ~  

satis/ying [ ~+1, ~1]  ~ ~]~1 and r eQoo(a , a) such that r  * r =N~.  

The hypotheses of Corollary 7.1 are satisfied by the equations Rk, R~, Nk,, N~, of 

Theorem 7.1. Therefore Theorem 7.1 implies tha t  the computation of the Spencer cohomo- 

logy of formally transitive and formally integrable Lie equations is always reducible to the 

case of analytic Lie equations. I f  the second fundamental  theorem holds for R *k, there 

exists a local diffeomorphism / of X, defined on a neighborhood U of a E X, such that  

j~+ ~(/) (R ~ ~ )  = R~tr(~) (7.27) 

and 

The same conclusions hold under the weaker assumption tha t  (7.25) is an isomorphism of 

cohomology. 

8. Vanishing of tile non-linear cohomology ot a multifoliate Lie equation 

Let W be an integrable sub-bundle of T and suppose that  V (/W is a vector bundle. 

Let  W e be the sheaf of ~-projectable sections of W and Jk(W; Q) the set of k-jets of sec- 

tions of ~ .  Then J~(W; ~) is a vector bundle and 

13 - 762908 Acts mathematics 136. I m p r i m 5  le 8 Ju in  1976 
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Jk(W; e) = Jk(W) f'l Jk( T; e). 

Since W is integrable, we have 

(8.1) 

V ~~ = ( id-~0)(V);  

then 
V ~0 fl W = ( id -40) (V N W) 

and 
V~o+W = V + W .  

Since V is integrable, the sub-bundle V ~~ is integrable by  (6.3) and Lemma 1.3; therefore 

so is V ~~ fl W. By  Frobenius'  theorem, replacing X by  a neighborhood of a and Y by  a 

neighborhood of b =~(a), if necessary, there exist manifolds Z, S, surjective submersions 

~: X ~ Z, ~: Y ~ S, a: Z-~ S, Q' : X ~ Y, ~' : Y ~ S such tha t  Q'(a) =Q(a) =b and the diagrams 

is injective. We set % =~ou and 

t 

X q , Y  X , Y  

Z , S  Z , S  

[2~(Y8), 2~(W)]~ 2~(~), (8.2) 

where J~(W)=v-lJz(W).  Since J I (T;  e) is a formally integrable Lie equation whose k-th 

prolongation is Jk+l(T; ~), it follows from (8.1) and (8.2) tha t  JI(W; Q) is also a formally 

integrable Lie equation whose k-th prolongation is Jk+l(W; Q) (see [6], p. 20). The kernel 

gk( W; ~)~ S~Jo(T) * |  o(W) of zk-l: Jk( W; ~)-+J~_I(W; Q) is therefore 1-acyclic for k ~> 1. 

Let QI(W; ~) be a formally integrable finite form of JI(W; ~) whose Icoth prolongation 

we denote by  Qk+I(W; ~). 

THEORE~ 8.1. For all m>~l, aEX,  we have 

/t1(Ql(W; e) )m,a = O. 

Proo/. Set Jk(W; e)=u- iJk(W;  ~). Let  u be a section of (Jo(T)*| e)) ̂  over a 

neighborhood of a point aEX,  which we shall suppose is equal to X without any  loss of 

generality; assume tha t  ~1 u = 0. Now uo = (~o u) o v is a section of T*| W and, since i d -  u0: 

T ~  T is invertible, 

i d - ~ o : W - ~ W ,  id -~o :  V + W - > V + W  

are isomorphisms and 

id -~0 :  V-~ V +  W 
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commute, and such tha t  W, V + W, V u~ are the bundles of vectors tangent  to the fibers 

of the submersions ~: X ~ Z ,  goT: X ~ S ,  ~': X-> Y respectively. Set 

r x~g = {(y, z) e r • = a(z)}, 

( Y • Z)'  = {(y, z) E Y x Z[).'(y) = ~(z)}. 

Then V fl W and V u~ fi W are the bundles of vectors tangent  to the fibers of the sub- 

mersions (Q, T): X-> Y • Z and (~', ~): X-~ (Y • Z)'  respectively. By  the implicit-function 

theorem, there exists a local diffeomorphism g: Y-~Y defined on a neighborhood of b 

such tha t  g(b)=b and the diagram 

r_A~e r 

S .id , 

commutes. Then (g, id): Y •  •  is a local diffeomorphism defined on a neigh- 

borhood of (b, ~(a)) and, by  the implicit-function theorem, there exists a local diffeo- 

morph ism/ :  X ~ X  defined on a neighborhood of a such tha t  ](a) =a and the diagram 

f -1  

X ~X 

l(e,~) l(e',~) 

Y X s Z  (g, id) , ( y x s Z ) ,  

of local mappings commutes. Therefore the diagram 

X y .  
Y 

g 

t-1 

f 
S 

~X 

Y 
Y 

Z 

id 

id ~ Z  / -  
~ S  
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of local mappings is commutative. Thus we have a diffeomorphism/: X ~ X  defined on a 

neighborhood U of a which is T-projectable onto the identity Z->Z and satisfies/(a) = a  

and 

/-~(Vl r(u)) = V~'~, (8.3) 

/ - I (W~ j(:7)) = Wj  :1. (8.4) 

For k~>l, let Qk(W)~Qk be the finite form of Jk(W) consisting of all k-jets of local 

diffeomorphisms X ~ X  which are T-projectable onto the identity mapping Z~Z;  it is 

easily seen that  Qk(W) 0 Qk(Q) is a formally integrable and integrable finite form of Jk(W; ~) 

whose/- th prolongation is Qk+l(W) ~ Q~+~(~). We shall henceforth assume that  

Q~( W; e) = Q~( W) ~ Q~(e) 

for k ~> 1, and set 

Q~(w; e) = ~ ( w )  n Q~(e). 

By Lemma 2.3, (ii), 

F = j:(/)-/o~o 

is a section of C~: over U; fi'om Lemma 2.3, (iii), we deduce that  ~ F = u  o on U. Clearly 

j:(/) is a section of O:(W) over U. By (8.4), (/o~0)(x) belongs to T * |  WI:~), for al l  x :  U; 

thus by Proposit ion 6.1, (ii) and (2.20), F is also a section of Q:(W) over U. By  Lemma 2.3, 

(i), (8.3) is equivalent to the fact that  F~ belongs to Jo(V)1(x) for all ~EJo(V):~, xG U; from 

Proposition 6.1, (i), we deduce that  F is a section of (~:(ff) and hence of (~I(W; ~) over U 

satisfying ~ F  = u and (~0 F) (a) =a.  

Finally, we also denote by F and u the germs of the sections F and u in Q:(W; #)a 

and (J0(ff)*(~J1(~L~; ~))~ respectively. The following argument then resembles tha t  used to 

prove Proposition 7.6. Choose F 1 E (~2(W; ~)~ such that  z :  Y 1 = Y. Then 7~0(u FV 1)= 0; hence 

u PV1 E (Jo(ff)* (D g:(W; 9))a and (see w 1) 

~U F~-I = --  ]0a~ F 7 1  = - -  �89 F~-I , U F~-I] = O. 

Since g:(W; ~) is 1-acyclic, there exists vEga(W; ~) such that  $v=u F;-1. Since Q:(W; q) is 

formally integrable the mapping (7.4), namely 

is an isomorphism of Lie groups over X and thus G=a-lv belongs to Q~ N O2(W; ~). By 

(2.38) 

~ G  = - ~v = - u ~7~, 

and F: -1- G E Q~(W; e)~ with :~o(F{-: �9 G) (a) = a and 
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uF; -1. a = uV; "1 + ~ G  = O. 

Since QI(W; Q) is integrable, there exists h 6 Sol (QI(W; ~))a such tha t  ]2(h)(a)= F;l(a) �9 G(a); 

therefore Fa = F~ 1. G. ]~(h -~) belongs to Q~(W; Q)a and 

u ;~ = ( u  F~-~" ~)~'(~-~) = 0 ~'(~-~) = O, 

showing tha t  u is cohomologous to zero in/t~(Q~(W; ~))~.a. Therefore/t~(Q~(W; ~))~.~=0, 

and the desired result holds by Proposition 7.8. 

9. Non-linear cohomology sequences for projectable Lie equations 

In  this section we prove our main theorems concerning non-linear cohomology se- 

quences. Before taking these theorems up, however, we accumulate various facts about  

@-projectable Lie equations which are needed in the proofs, and we begin with the fol- 

lowing lemma which is an easy consequence of the implicit-function theorem. 

LEMMA 9.1. Let ~: E ~  X be a/ibered mani/old over X and F a/ibered mani/old over 

Y. Let 9~: E ~ F  be a morphism o//ibered mani/olds over Q such that the rank o/ 

~,: V e ( E )  -~ T~(e>(~/Y) 

is independent o / e 6 E .  Then, i/ eo 6 E , there exist an open neighborhood U o~ xo=x(e0) in X ,  

an open/ibered submani/old E'  o / E l  u containing ea, a fibered submani/old F'  o / F  Iq(u) such 

that q~(E')= F'  and q~: E" ~ F'  is an epimorphism o~/ibered mani/olds over ~: U-~@(U). 1/s"  

is a section o/ F '  over a neighborhood o/ yo=~(xo) and i / u 6 J l ( E ;  q)) satis/ies xeou=e o and 

~u =]l(S')(Yo), there exists a section s o / E '  over a neighborhood o] x o such that ]l(S)(x0)=u and 

9~os =s'oQ. 
Let R k c  J~(T; ~) be a Lie equation, and assume tha t  there exists a differential equa- 

tion R"kcJk(T~; Y) such that  ~(Rk.a)=R'~,q(a) for all aEX.  Then Q: (Rk)q.~->R~.q(~) is sur- 

jective for all a E X  and, by  (6.7), R"k is a Lie equation. 

Let  P,,cQ~(Q), P~ c Qk(Y ) be finite forms of R k and R'~ respectively, and consider the 

mapping Q: Pk-~Qk(Y). I f  a E X  then, by  Lemma 9.1, there exist an open neighborhood U 

of a, an open fibered submanifold E of Pk I v containing It(a), a fibered submanifold E" of 

Qk(Y) I q(v) such tha t  ~(E) = E". For p 6 E, the image of 

e*: V~(P~)-+ T~(,) (Q(Y) /Y)  

is equal to -~'k.q(x)" @(P), where x =  source p, and so 

_ 1 ~  ~ Tq(v) (E"/Q(U)) - z.q(x)" ~(p). 
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Since E" and P'~ are integral submanifolds of the same distribution, we obtain the equality 

E" P" = g on a neighborhood of Ir,~(Q(a))- 

From these remarks and Lemma 9.1, we deduce: 

LEMMA 9.2. Let a E X  and b=~(a). The following assertions hold: 

(i) I f  F E Ok, a, F(a) = Ik(a), then QF E O"k. x ~ Qk( Y)x with eF(a) = Iy,k(b). 

(ii) I f  r E ~ ,  x. a, with r = Iy, k(b), and i/there is an element G eJl(Pk) with Jl(e) G = 

?'1(r (a), zoG = Ik(a), then there exists F E ~ . ~  satisfying eF =r and ]I(F) (a) = G. 

(iii) I /  CeO"~.a, with r and if there is an element GEJ~(P~; Q)with eG= 

?'~(r (b), z~G = I~(a), then there exists F E ~ .  ~. ~ satisfying QF ~ r and ~(F)(a)= G. 

Definition 9.1. A differential equation RkcJk(T;  ~) is Q-projectable if, for each l ~>0, 

Rk+ z is a vector bundle and if there exists a differential equation R'~+zc Jk+l(Ty; Y) such 

that o~ (Rk+z.a)= R'~+l.e(a) for all aEX.  

If Y = X  and r X--->X is a diffeomorphism, then Jk(T; ~)=J~(T) and Q: Jk(T)~---> 

Jk(T)e(~), for a E X, is the isomorphism ]k+l(Q)(a) and every differential equation Rkc Jk(T) 

all of whose prolongations are vector bundles is Q-projectable. 

We shall consider a formally integrable Lie equation R~cJk(T;  ~) satisfying the fol- 

lowing conditions: 

(I) Rk is C-projectable; 

(II) z0/~k= W and V N W are sub-bundles of T and Rk~Jk (W ). 

Let R"k+i~Jk+z(Tr; Y) be the Lie equation such that  Q(Rk+z,~)=R'~+z,e(a) for all a e X .  

Since Rk+z = Rk+l n Jk+~(V) is the kernel of the epimorphism Q: Rk+I-~Q-1R'~+ l, it is a vector 

bundle. The third condition assumed satisfied is: 

(III) for all l, m >~0, the projections z~+z: Rk+l+m-->/~k+l are of constant rank. 

For the most part, we assume only conditions (I) and (II) as, for example, in Theorem 

9.1 and Proposition 9.1; condition (III) is used only at the end of this section. 

If  X and the fibers of Q are connected and if R k is formally transitive, or more gener- 

ally if there exists a formally transitive and formally integrable Lie equation Nk+l C 

Jk+l(T; Q) such that  

then condition (I) above holds by Theorem 11.1 of [10] and (II), (III) hold by Lemma 

10.3, (ii) and Proposition 10.3, (i) of [10]. 

Let  RkcJk(T;  ~) be a formally integrable Lie equation satisfying conditions (I) and 

(II). Let  Pk~Qk(Q) be a formally integrable finite form of Rk and let Pk+l~Qk+z(Q) be the 
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l-th prolongation of P~; for m >t-/c, let P ' ~  Qm(Y) be a finite form of R'~. Since R~ satisfies 

(I) and (II), W and V N W are integrable sub-bundles of T; moreover the image Wr of ~'~ 

in T r is an integrable sub-bundle of T r  such tha t  o w n =  Wr,e(a) for all a~X.  Since ~z~: 

R ~  Wy ~s surjeetive for m >~ k, its kernel ~ ~s a vector bundle. ~nerezore ~ = r m  N Q~(Y) 

is a sub-bundle of Lie groups of QO(y) whose Lie algebra we identify with R "~ under the 

mappings (5.23). Thus (4.6) gives us a sub-complex of (6.38), namely 

Otto DXIy  $ "0 Ol .X /y  .R.. O, 
m.x " ~  |  *A~'~*| ,n)x. (9.1) 

(9"*| = (9"* | N 9"* | 

Z~( Rm) = ZX( Rm) f~ (ff* | Rm)e 
and let 

~'~.~,~ = { F e  "~m,~.al F(a) = Ira(a)) 

for a E X. According to Proposition 6.4, (iv), the group ~m+l. e. a operates on Z~(Rm)~ and so 

we define the cohomology 

1 1 ~ *  He(Pk) ~, ~ = Z ~ ( R r n ) a / ~ ) m + l , o ,  a, 

for m >~ k, a E X, to be the set of orbits under the right operations of the group ~m+l,q. a on 

Z~(Rm) a. We denote by 0 the orbit of OEZ~(R,n)a. This eohomology is therefore a set with 

distinguished element 0 and clearly does not depend on the choice of the finite form P~. 

We have the mapping of cohomology 

H 1 p -~ H 1 P 

which sends the orbit of H~(Pk),n.~ passing through u EZ~(Rm)ainto the orbit {u v ] F E ~'~+1, ~}. 

Let  k0>~su p (k, 2) be an integer such tha t  gk~ is 2-aeyclic. 

T~]~O~EM 9.1. Assume that Rk~J~(T; Q) is a tormally integrable Lie equation satis. 

lying the conditions (I) and (II). Then,/or all m >~lr a E X,  the mapping 

H~(Pk),n.a -~ H~(P~)m. ~ (9.2) 

is an isomorphism o/cohomology. Moreover, i / u  eZ~(R~)~, then there exists F E ~'~+1. ~ such 

that uF(a)=0 and uF EZ~(R~)~. 

Proo/. I f  u~, u~ egl(R~)~ and if there is an F G ~n+~. ~ with u (  = u~, then by  Proposition 

6.4, (ii), F e ~'~+1.~. a and so (9.2) is injective. 

Let  u EZ~(Rm)~; then since g~ is 2-acyclie, there exists, by  Proposition 7.4, u 1 EZI(R,n+3)a 

with ~,nU 1 =U. By Lemma 7.1, there exists F~E ~,§  ~ such tha t  uRn(a) =0. We set u~ =u (L  

For m >~ k, let 
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Let  Q~(W; ~) be a finite form of the Lie equation dz(W; e). Since R 1 ~ JI(W; ~) there exists, 

by  Theorem 8.1, FzE(22(W; O)'a satisfying (~1u2)~=0. Since (7~lU~) (a) =0  , it follows that  

(~DF~)(a)=(~lu2)F~(a)=O; hence by (2.27) we have ]l(glF~)(a)=]l(I1)(a). Therefore, if 

[=zoFi, we have ]l(])(a)=j1(Io)(a). Let Qo(W)cX •  be a finite form of the Lie equa- 

tion Jo(W)cJo(T); since ~0: J~(W; Q)--->Jo(W) is surjective, ] belongs to (~0(W)~ by Pro- 

position 7.1, (iii). Because ~0: Rm+4~Jo(W) is surjective there exists, by Proposition 7.1, 

(iii), FaE ~ + a .  ~ such that  ~0F8 = / a n d  ~1(F3)(a) =~1(I,,+~)(a). Since (~0Fs)(a) =u2(a ) =0, 

we see that  u~'(a) =0. As ~00((Telu~) F~) =0  and z0Ez =ZoFs, we have by Lemma 6.4 

~0~(@) =o. 
rt0 Therefore w = q(u~') belongs to (~ | and w(a)= 0; by Proposition 6.3, we have 

~1.  ~1~ w = ~m+ 2 " d ~:ly w - �89 w] = O. 

Set w l -  ,n+~ ~ ~tn.,,,+~]X; then wl(a)=O and 

~ .  xl~" w l  = d x1~,Wl - � 8 9  wl]  = O, 

where ~L  x~r is the operator of the complex (9.1) with m + 2 replacing m. By Proposition 
" ~0 4.1 applied to this complex, there exists r ~ ~)~+e. x. ~ satisfying Ox~rr = w~ and ]~(r (a) = 

]~(Ir.m+~o~)(a). By Lemma 9.2, (ii) (with G=~(Im+~)(a)), there exists Fa~)m+~.a satis- 

fying ]~(F,) (a) =]~(I~+~) (a) and eF, =5; clearly F, e ~§ ~. 
Set w~ =~,~+~w~ and write 

U s = ( ~ , ~ + l ( U 2 ) )  ; 

since (~F~)(a)=0, we have us(a ) =0 and 

where Ox/r is the operator (~+~( Y)x~*@J,n+~(~7~; Y)x. Since ~oFa is e-projectable onto 

the germ of the identity Y-~ Y, it follows from Lemma 6.5 that  ~(u~)=0 or equivalently 

u s e F~(J~+~(ff); ~). We have 

~ us = D u s - � 8 9  u~] = O, 

where [u s, u s ] e F ~ ( J , ~ ( f f ) ; q )  by (6.9). Hence DuseF~(Jm(ff);~). Set ua=g,,ua; by Pro- 

position 4, (i) of [6], we see that  ua~(ff*| ~))q. Finally, we note that  ua=u ~ and 

u,(a)=O, where F=x~,~+~F~':r~+~Fs'g,n+~F;l~)',n+~.a. Hence u~eZ~(R,~)~ belongs to the 

same eohomology class in H~(P~),n,a as u, showing that  (9.2) is surjeetive and completing 

the proof of the theorem. 

We now recall some facts which may be found in the papers [6], [10]. For ~>~0, we 

have /~,+~=(/~)+,; since g~: R'~+I~R';, is surjeetive for m>~k and ~ + ~ ( R ' ~ ) + ~ ,  there 
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exists by the Cartan-Kuranishi prolongation theorem an integer k 1 ~>sup (k, 1) such that  
( /~)+~ =/~" ,, kl+z for all l~>0 and R~ is a formally integrable Lie equation in Jk,(Ty; Y). 

For m ~> k and a E X, we define the group 

�9 tt ~t/ . 0 --,,, }m(t ) e ~.~(a) and there exists Ge(Q(1, ~)(e) N Jl(Pm))a~ 
H (Fk,) m. ~ = /" E (Aut Y)q(~) such that  7~ o G = I,n(a) and eG = Jl(?m(t")) (q(a)) J '  

or equivalently, by Lemma 9.2, (iii), 

{ " t 
0 ,, Jm([ )eO~.o(~)and there exists Fe~'m.o,~ 

H (Pk,)~.~= / "e (Aut  Y)~(a)lsuch that  eF=j~( / " )  

We note that  this group is independent of the choice of the finite forms P~ and P'~ and 

depends therefore only on the Lie equations R~ and R~. Since PmcQm(e),  the elements of 

Ho(P~),n,~ are e-projectable; hence by Lemma 9.2, (i), we have the homomorphism of 

groups 

e: H~ ~"" H~ . . . .  

For m>~k, let -Pro be a finite form of 12~. I t  is easily seen that  T',,,=Pm N Q,,(V) in a 

neighborhood of In  and hence that  

for a E X .  

We now define the operation of the group H~ on Hl(Pk)m.a. Let  u EZI(Rm)a 

and / "  fi H ~ If F fi ~'m +L Q. ~ satisfies e F = ia+l(f"), then by  Proposition 6.4, (iii) 

e O F  = O e ~  = O~rn+l(ff  t) = 0 ,  

and so OFE~I*| By (7.6) and the commutativity of (6.25), Pm,l preserves Rm and so 

F-l(u)  belongs to if*| ~ .  Therefore uVEZl(_Rm) a. If  [u] is the cohomology class in HI(Pk)~.~ 

of the cocycle u, we define [u] f~ to be the cohomology class [u ~] of u p in Hl(P~)m,a. 

We now verify that  [u] r" is well-defined, i.e., tha t  it does not depend on the choice of F 

or of u. To show that  [u] r" is independent of the choice of F, let F1 fi ~_~+Lq. a with eF~ = 

]~§ Then G' = F - 1 . F I  belongs to ~m+Lq.a fl (~,n+l(V)a, tha t  is to 0"~+~.~. Since F~= 

F .  G', we have uV'= (u ~) G', and it follows that  u F` belongs to the same eohomology class 

as u r in H~(P~)~.a. To show that  [u ~] does not depend on the choice of u, we replace u by  

u ~, another point on the same orbit, where G e ~ + ~ .  a. Then G' = F - ~ ' G ' F  belongs to 

~ + ~ .  a and (ua)F= (u~)~ therefore (u~) ~ is cohomologous to u ~ in H~(P~)~.~. Finally, let 

[~ ~.HQ(P'~k,)m+l.a and a EHl(-Pk)m.a; then 

(~") f ;  = ~[*o~[, a,r.~ = ~, (9.3)  

and hence we have an action of the group H0(p'~,)~+i.a on H~(P~)~.a . In  fact, let ~ ~ ~ + L q . a  

with eF~ =]~+x(f~); then 
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([u]')d = [uF]r; = [(u~)~,] = [u ~" F,] = [u]r,~o~;. 

We define 
~ :  o ~' 1 - -  H (Pk,)m+l,~-+- H (Pk)m,~ 

to be the mapping sending the element " o " �9 / ~H (P~,)~+~,~ into a*/=[0]~"=0 ~". 

By  Proposition 6.4, (iii) and Lemma 9.2, (i), for m~>k and a~X ,  we have the corn- 

mutative diagram 

O , ( i f ,  - ~ D ,  Q~m)a- " ) (A2 if* (~m-1)a 

I 

O ~(ff} R,,n)~a) ~ _ ~ 1  (A2~.~@R,m_l)e(a) 

where 

gives us therefore a commutative diagram 

(9.4) 

H~(P~),n.o 

for m>~k, aEX.  For m>~kl, aEX,  the mappings ~ of diagram (9.4) induce, according to 

Proposition 6.4, (iv), a mapping of eohomology 

e: H~(Pk)m. ~ ~ HI(P"k,),n.Q(~) 

sending the eohomology class of uEZ~(Rm)a in 1 He(P~),,.~ into the eohomology class of 

~uEZI(R'~)e(a) in HI(F~)m,q(~). If  m~>sup (k0, kl) , combining this map with the isomor- 

phism (9.2) of Theorem 9.1, we obtain a mapping oi cohomology 

q: H~(Pk)m.,~ ~ Hl(P"k,),~,e(a) 

for aEX.  One verifies easily tha t  for m>~sup (/co, kl) , l~>l and a e X ,  the diagram of co- 

homology 

Hl(~k),,+,,a Hl(pk),~+l.a_ ~ 1 " , , H (P~,)m+z.~c~) 

H'(Pk)m " H*(Pk),, ~ 0 * " ,~ . , H  (Pk,)m.~(a) 

Rk_l=Jk_l(V), Rk_l=Jk_l(T;Q) and R"~_a=J~_I(Tr; Y). The inclusion _Rk~R~ 
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is commuta t ive ;  therefore we obta in  a mapp ing  of cohomology 

for all a E X. 

I f  A, B, C are sets with dist inguished elements  0, we say t h a t  the  sequence 

A-  ~ * B -  fl "C 

is exact  (or exact  a t  B) if f i - l (0 )=  a(A) (and, of course, a (0 )=0 ,  f l (0)=0).  

PROPOSITION 9.1. Assume that RkcJk(T;  9) is a formally integrable Lie equation 

satisfying the conditions (I) and (II)  and f f ~ , c J ~ , ( T r ;  Y) possesses a finite form which is 

formally integrable and integrable. Then for m >~ sup (]Co, kl) , a E X,  the eohomology sequence 

O - -  ~ 0 ~ 0 " ~ I - -  ~ 1 9 I " H (Pk)m+l.~ H (Pk),~+I.~---~H (Pk,)~+I,~--~H (P~)m,a H ( P k ) m , a ~ H  (Pk,)~.~(~) 

(9.5) 

is exact. Moreover, if /~, /'~EH~ have the same image in HI(Pg) . . . .  i.e., ~ / ~ =  

~f~, then f~=f"of~  where, /or some /EH~ f"=gf; if %, ~EHI(_Pk)m,~ have the 
�9 p' ~ K I O [ ~ "  same image in Hl(Pk),n.a then, for some j ~ ~k,p~+l.a, we have o~{"=~ 2. 

Proof. The sequence is clearly exact  a t  H~ I f / eH~ f"=gf,  t hen  

0 r" = [~?m+l(f)] = 0, and  so ~*.  9 = 0. Le t  f~,/~ 0 ,, " E H  (P~,)m+l.~, and  suppose t h a t  0 r [ = 0  f:. 

Then,  if F , ,  F~ e ~)~+~.e, ~ wi th  9F~ = ?~+~(f,), 9F~ ~ ? ~+~(f~), there  exists G ~ ~);~+L a such 

t h a t  DF~ = (DF~)~= D ( F  1 �9 G). Hence  F~. G=~+~(f) .  F~ for  some ]eH~ t ak ing  

the  project ions  of bo th  sides of this equat ion  b y  9, we ob ta in  

i , ,+ ~( t ; )  = i ,n+ ~ ( / " )  " i , '+  ~ ( l~) --- im+  , ( f '  o l~) ,  

where d = / "  and  hence f~ =l"ol'~. ~n par t icular ,  i f /~  is the identiCy Y ~  Y, in which ease 

Off = 0, we obta in  f~ = f ' =  9f. This proves  exactness  a t  H~ o. 

Next ,  if f" eH~ and F ~  ~)~n+~.~, a with 9F=~'~+~(f"), then  the  image of 0 r ' i n  

H~(P~),~. a is the  cohomology class of ~ F  = 0 ~, and  so therefore vanishes.  Le t  u~, u~ ~Zl(_Rm)a 

and  suppose t h a t  the  cohomology classes of u~ and  u~ in H~(P~)~,~ are equal, i.e., t h a t  there 

exists F e ~;~+~. ~ such t h a t  

u F = F-~(u~) + ~ F  = u~. (9.6) 

B y  Proposi t ion 6.4, (ii), we see t h a t  F ~ ~n+~. q, a. B y  (7.6) and  the  c o m m n t a t i v i t y  of (6.25), 

P~+~ p r e s e r v e s / ~  and  so F - ~ ( u 0 e f f * |  Hence  (9.6) implies, by  Proposi t ion 6.4, (iv), 

t h a t  O = 9 ( D F ) = ~ F "  , where F'=gFe~n+~.q(a ). Therefore  F"=}~+~(f') for  some 

f '  eH~ and  we have,  by  (9.6), [u~]~=[u~] i n  Hl(pk)m.a . I f  n l = 0  , then  [u~] = 0  r*. 

Thus  the  sequence (9.5) is exact  a t  H~(P~)~.a. 
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l~inally we prove exactness at Hl(Pa)m,a. Let aEHi(pk)~.~ with ~ = 0 .  By Proposi- 

tion 7.5 and Theorem 9.1, there exists u EZ~(Rm+i)a such that  u(a)=0 and zm[u] = ~, if 

[u] is the cohomology class of u in Hl(p~)m+~.~. Then ~[u] is equal to the cohomology class 

of ~uEZI(R'm+I)q(a). Since ztmQ[u]=Q~rm[U]=Qo~=O, our hypothesis concerning R'~, and 

Proposition 7.6 imply that  0[u] =0. Therefore if b =Q(a), there exists F" E ~"m+2. b satisfying 

(QU)~=0. Since (~u)(b)=0, we have (~F")(b)=(Qu)F~(b)=O; hence by (2.27), we have 

]i(Zm+iF")(b)=]l(Ir.m+,)(b). By Lemma 9.2, (iii) (with G=]i(I,n+i)(a)), there exists 

F E P m + l . e  ' a satisfying jl(F) (a) -----jl(Im+l) (a) and 0F =:Tgm+ 1 F it. By Proposition 6.4, (iv), we 

have e((7~mU)F)=(~mU)"~+IF"=O, and (z,nu)~EZI(R~)~. Thus a=[~mU]=[(~,,u) *~] belongs 

to the image of Hi(Pk)m.~. 
Up to this point we have used only the hypothesis that  the formally integrable Lie 

equation Rk~ Jk(T; ~) satisfies conditions (I) and (II); now, however, we require condition 

(III) since we shall construct from the -Rk+t, in the manner of the papers [5] and [6], a form- 

ally integrable Lie equation R',,,: Jmo(V) whose non-linear cohomology will replace that  

of -~x in a sequence which is a modification of (9.5). 

Let us then assume tha~ the formally integrable Lie equation R~ satisfies condition 

(III) as well as (I) and (II). For l>~0 and m>~k, let R~) be the sub-bundle ~mRm+z of Jz(V). 

According to Theorem 1 of [6] (see also [5] and [10]), there exist integers m 0 >~sup (k0, ki), 

10/> 0 such that  R~~ =/~~ ) is a fbrmally integrable Lie equation in Jmo(V), whose r-th pro- 

longation is equal to 

U m o + ~  - -  * '~mo+r - -  *~mo+r  

for all l ~> 10, and g~o is 2-acyelic. 

For m>~mo, let P~, be a finite form of R~. For m >~m o, aEX, the inclusions Rmo~Rm,, 

Rm~ Rm0 give us a commutative diagram of cohomology 

1 r 

For all m ~>m 0 and l >~l 0, we have projections ~: R~+,-+R~, which induce, by Proposition 

7.1, (iii), surjective mappings ~: ]D;~+,. a-+ ~)~. ~ and therefore mappings of cohomology 

H (P .~ ) . ,  ~, (9.8) 
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for a ~ X ,  such t h a t  the  d iagram of eohomology 
1 H (Pmo),n+~.~ " H~(P~),n+~. ~" H~(p~),~+~.,~ 

7~ m (9.9) 

1 t (Pmo)m.o ) HI(Pk),~.o "- HI(P,)~.~ 
r 1 t commutes .  Since the  mapp ing  ~m: Hl(Pm,)m+l,a -->H (Pmo)m.a is surjective b y  Proposi t ion 

mappings  H (P~0)m,a-~ 7.5, i t  follows t h a t  the  mapp ing  (9.8) is also surjective. Moreover,  the  - 1 ' 

Hl(Pk)~..a induce an i somorphism of cohomology HI(P~,)a-~ HI(Pk)~, for  a E X ,  
0 " 1 t For  m >~ too, l >/10, we now define the  operat ion of the  group H (Pk,)~+l+l.~ on H (P~0)m.o 

in such a way  t h a t  
(zm al) r" = 7~m(a~") (9.10) 

1 t for ohEHl(.Pk)m+z.a, /"eH~ where ~m is the  mapp ing  (9.8). Le t  a E H  (Pmo),n.a 

and /" E H~ if ~1 E Hl(Pk)m+,a satisfies ~m al  = ~, we define at" to be the  image 

gm(~l r') of a~" under  the  mapp ing  (9.8). We now ver i fy  t h a t  a I* does not  depend on the  

choice of ~1. Le t  ~EHl(pk)m+z.a  sat isfy ~ m ~ 2 = a  and let u 1, u~EZI(Rm+z)~ be elements  

whose cohomology classes in Hl(Fk)m+~.a are equal  to al, a2 respectively.  Then  zmul and  

zmu2 are cohomologous in HI(P:~~ and so there  exists G E ~ + 1 .  ~ such t h a t  (~mul) a =7~mu~. 

Then G=Zm+~G~ with G~e ~n+~+l. a. Le t  F~e  ~'~+~+a.~. ~ with qF~=im+z+~(/"); then  G1 = 

F{~.G1 . F  1 belongs to ~'~+~+~,~ and  G =7~m+lG 1 belongs to  ~m+a.a. Since G . . F = F . G '  

where F =zm+~F1, we have  

~m(u~ ) (~mu~) ~ =  ( ~ u ~ )  ~'~ = (~mu~) ~" ~ ' =  (~m(ufg) ~ 

1 t a ftt ,, o p,, and so ~zm(af")=~m(O~"). Finally,  (9.3) holds for a 6 H  (Pmo)m. and  / x 6 H  ( ~,)m+~+x,~. 

We define 
~ :  o ,' 

to he the  mapp ing  sending " 0 ,, / ~H  (P~)m+*+a.~ into ~ / " = 0  ~". 

For  m >~ m 0, l >~ 10, a E X, consider the  cohomology sequence 

o " ~ 1 ' ~) 1 , ' . H (P~)~+~+~, ~ , H (Pm,)m. ~ , H~(P~)m. ~ , g  (P~,),~.~(~), (9.11) 

since (9.5) is a complex, d iagrams (9.7) and  (9.9) are commuta t ive  and  (9.10) holds, i t  

follows t h a t  (9.11) is a complex. 

TH]~ORE~ 9.2. Assume that R~ is a /ormally integrable Lie equation satis/yinr the 

conditions (I), (II)  and ( I I I ) .  Then: 
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(i) I f  R~ possesses a finite/orm which is formally integrable and integrable, the sequence 

(9.11) is exact at Hl(p'a.)m.a /or all m>~mo, l>~lo, a e X .  

(ii) I/R"k, possesses a finite/orm which is formally integrable and integrable, the sequence 

(9.11) is exact at Hl(Pk)m,a for all m>~mo, a 6 X .  

Proof. (i) Le t  a6Hi(p',n,),n.a and assume t h a t  the  image of a in Hl(P~)m,a vanishes.  

Choose ~i ~Hl(Pk)m+La such t h a t  ~z~ ~l = a. Then  by  the  c o m m u t a t i v i t y  of (9.9), our  hypo-  

thesis concerning R~ and Proposi t ion 7.6, the  image of a 1 in H~(Pk),n+~,~ vanishes.  There-  

fore by  Proposi t ion 9.1, there  exists f"6H~ such t h a t  g ~ = 0  ~'. B y  (9.10), we 

have  0~=~r~(0 ~) ~ / " ,  proving the  exactness  of the  complex (9.11) a t  H (P~o)~.a- 

(ii) Le t  ~ 6Hl(P~)m. = with  @~ = 0. B y  Propos i t ion  7.5 there  exists ~l 6HI(p~),,,+~.= such 

t h a t  ~ = ~. Since = ~  =@~--= 0, we have  @~x = 0 by  our hypothesis  concerning R"~, and 

Proposi t ion 7.6. B y  Proposi t ion 9.1, there exists fll 6 H 1 (P~) z+ ~. a whose image in H l(Pz) z+ ~. a 
1 is equal to ~. Then  the image of = ~ f l l 6 H  (Pm,)~.= in HI(p~)z.a is equal  to ~. Thus  the  

complex  (9.11) is exact  a t  TD(P~)m.=. 

Le t  m 1 ~> m 0 be an integer such t h a t  9'~ is 2-acyelic. 

T H E O B ~  9.3. Assume that R k is a/ormaUy integrable Lie equation satisfying the con- 

ditions (I), ( II)  and ( I I I )  and suppose that R'~o=O. Then: 

(i) The mapping 

e: Hl(Pk)m.~ --> HI(P'k,)~.~(~) 

is sur~ective for all m >~ ml, a 6 X .  

(ii) I /  al, ~6Hl(Pk)m+l+l .~ ,  where m>~mo, l>~lo, aEX,  have the same image in 

Hi(P"k) m. z+l, e(~), then ~z,~ ~1 =7e,n ~2 as elements o/Hl(Pk)m.~. 

(iii) The mapping 

~: Hi(pk)a --~ Hl(p'k,)q~a) 

is an isomorphism o/cohomology/or all a E X.  

Proof. (i) Le t  o:EHl(P'~1)m, b where b =~(a);  b y  Proposi t ion 7.5 and L e m m a  7.1, there  

exists u 6ZI(R'~,~+/0+l)b wi th  u(b) = 0 and 7em[u ] -- ~. Choose v s ([/* | Rm+to+l)O.a with  v(a) = 0 

and Ov = u .  Then  v6(~*| " a and Q ~ l v  = D l u  = 0  b y  Proposi t ion 6.4, {iii). I t  fol- 

lows t h a t  Dlvf i  s174 and  hence ~rmDlv6 A~ff*| Therefore,  writ ing v' =Zm v, 

we have  O1 v' =~rm_lDlV =O since R~ =0 ,  and  v' 6Zl(Rk)m.~ satisfies e[v'] = [7e~u] = ~. 

(ii) By  Theorem 9.1, choose representa t ives  ul, u 2 fiZ~(Rk)m+l+l, a of ~ ,  ~2 respect ively 

wi th  ul(a)=u~(a)=0. Our hypothesis  implies t h a t  there  exists F"f i  ~';~+z+e. ~, where b =@(a), 

such t h a t  (Oul) F" =0u2. Since (Oul) (b) = (Ou~) (b) = 0 ,  we have  (DF" )  (5) =0 ,  which implies 
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by (2.27) that  } l ( 7 / ; m + l + l F " )  (b) =jl(Ir.z+i+l) (b). Hence by  Lemma 9.2, (iii), there exists 

F E ~ +  z+~. Q. ~ satisfying jl(F) (a) = J~(I~+~+l) (a) and ~F =~+Z§ F". By Proposition 6.4, (iv), 

we have ~((~+lul) F) =Q(~m+zU2) and it follows that  (Jr~+lul) F-ze,~+zu 2 belongs to ff*| 

Since R"  = 0, we obtain the equality (~u ~)~§  1F =~mu2, i.e., ZmU~ and ~mU~ represent the 

same class in Hl(Pk),n.a. 
(iii) The injectivity of ~: HI(pk)a-+HI(P"kI)Q(~) follows immediately from (ii). To prove 

that  ~ is surjeetive, it suffices by the Mittag-Leffler theorem (see [1], w 3, No. 5, Corollary 

2) to show that  if ( ~ ) ~ H  (P]kl)~(a), with ~ a 6 ~  Vr'~3m,r m>~kx, then, for all m>~mx and 

all r>~m+lo+l and all ~H~(P~)m+~o+~,a such that  ~(~)=~'~+lo+l, there exists a'~H~(P~)~ 
such that  ~m~'=~rz~, ~s To verify that  this condition is satisfied, by (i) choose 

P I t~ ! ~t ~H (P~)~., with ~(~')=7~. Then ~+~o+~ and ~ have the same image ~+~0+~ in 

H~(P'~,)m+~o+L q(a)" Hence by (ii), z~ ~' = n z  ~. 

10. Non-linear eohomology oi transitive Lie algebras 

Consider the real line R endowed with the discrete topology and linearly compact 

topological vector spaces over R, i.e., those which are topological duals of real vector spaces 

endowed with the discrete topology. A transitive Lie algebra L is a topological Lie algebra 

over R whose underlying topological vector space is linearly compact and which possesses 

a neighborhood of 0 containing no ideals other than 0. A monomorphism (resp. epimor- 

phism) of transitive Lie algebras is a continuous monomorphism (resp. epimorphism) of 

Lie algebras and an isomorphism of transitive Lie algebras is an isomorphism of Lie al- 

gebras which is also an isomorphism of the underlying topological vector spaces. 

A transitive Lie algebra L possesses an open subalgebra L ~ containing no ideals of 

L other than 0, which we call fundamental. We define subalgebras D~ L ~ o f l ) b y  induction 

on k by setting: 

D~176 ~ D~L~176176 for k>~l; 

then D~/) o is a fundamental subalgebra of L and {D~L~ is a fundamental system of 

neighborhoods of 0 and f3~=0 D~L ~ =0. 

If aEX, let J~(T)a denote the subalgebra of Jo~(T)a which is the kernel of the projec- 

tion ~rz: J~(T)~--+J~(T)~. Then J~(T)~ is a transitive Lie algebra whose subalgebras J~(T)~ 
are fundamental and D~(r)J~ =Jk(T)a. If  r CQ~(a, a), then r Joo(T)a~J~(T)~ is an 

isomorphism of transitive Lie algebras such that  r176 ) =J~ A closed subalgebra 

/) of J~(T)a such that  ~oL=Jo(T)~ is a transitive Lie algebra whose subalgebras Lk= 

/) f3 Jk(T)~ are fundamental, and is said to be a transitive subalgebra of J~(T)a; in fact 

/)k= D~L o. By Theorem I I I  of [13], if L is a transitive Lie algebra an d / )o = / )  is a funda- 
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mental subalgebra and if the dimension of L/L ~ is equal to the dimension of X, then, for 

a~X ,  there exists a monomorphism of transitive Lie algebras i:L--->J~o(T)~ such that  

i(L) ~ J~176 and i(L) is a transitive subalgebra of J~o(T)~; then i induces an iso- 

morphism L/L~ Thus every transitive Lie algebr~ is isomorphic to ~ transitive 

subalgebra of Joo(T)~ for some manifold X and a~X.  

Let R~ ~ J~(T) be a formally transitive and formally integrable Lie equation; ~or a ~ X, 

the subalgebra R~,~ of Jo~(T)~ is a transitive subalgebra of J~o(T)a. If ~V~,~ R~, is a form- 

ally integrable Lie equation, with ]~>]C, such that  [~,+~, ~ , ] ~  ~ ,  then, for a e X ,  by 

Lemma 10.3, (iii) of [10], 57o~.: is a closed ideal of R~.~. We shall always consider such Lie 

algebras R~.~ and No~.a endowed with the topologies induced by Joo(T)~. 

Delinition 10.1. We say that  a formally integrable and @-projectable Lie equation 

Rk~Jk(T;  5) is a prolongation of the formally integrable Lie equation R~cJk , (Ty ;  Y ) i f  

@(Rm.~) = Rm. e(a) for all a E X and m ~> sup (]C, ]Ca) and if @: Roo.a~R~o. ~(~) is an isomorphism 

for all a E X. 

If a formally integrable and @-projectable Lie equation Rk~ Jk(T; @) is a prolongation 

of a formally integrable Lie equation R"~,~Jk,(T~; Y) and satisfies conditions (II) and 

(III) of w 9, then the equation R~,, constructed from the equations P~k+z=Rk+z O Jk+z(V) 

vanishes and the hypotheses of Theorem 9.3 hold for Rk; hence for all aEX,  we have an 
~i 1 # isomorphism of cohomology @: H (Rk)~-~/~ (Rk,)e(~. 

Taking Y-~X and @ to be the identity map of X, we see that  the l-th prolongation 

Rk+ 2 of a formally integrable Lie equation R ~  J~(T) is a prolongation in the above sense. 

THEOREM 10.1. Let L, L" be transitive Lie algebras and r L ~ L "  an epimorphism o/ 

transitive Lie algebras. Let I c  L, I " ~  L" be closed ideals o I L and L" such that r  I". Let 

I '  be the closed ideal of L which is the kernel o/ r I-~ I". There exist connected analytic mani- 

/olds X,  Y, points xEX,  yE Y, an analytic submersion @: X--*- Y with @(x)=y, /ormally in- 

tegrable and/ormally transitive analytic Lie equations Rk c Jk( T; @), R"k,~ Jk,( Ty; Y), with 

kl >~]c , ]ormally integrable analytic Lie equations 1 V ~  Rk, N'k~ R~, N"k~ R"k, and isomor- 

phisms o/ transitive Lie algebras ~p: L-~ R oo. x, ~P": L" ~ R'~. ~ such that 

IRk+l, ~k] ~ ~k, [~k,+l, ~k,] C ~k,, (10.1) 

and Rk, 1V~ are @-projectable and 

1or all l >~ O, a ~ X,  and the diagram 

(10.2) 
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is commutative and 

L F , Ro~,~ 

L" ~o" ,, 

(10.3) 

~ ( I )  = Noo. z,  "~(I')  = N~o. x, "~"(I") = N"oo. y. ( 1 0 . 4 )  

Furthermore, it V is the bundle of vectors tangent to the ]ibers o/~: X ~ Y, there exists an in- 

teger 1 o >~ 0 such that 

IV~ = Hm(zVm+l ~ Jm+~( V) ) (10.5) 

/or all m>~k, l>~l o. I /  r I ~ I "  is an isomorphism, then N ~ = 0  and Nk is a prolongation of 

Proof. Let L "~ be a fundamental  subalgebra of L". By Corollary 6.1 of [9], there exist 

a formally transitive and formally integrable analytic Lie equation R"k,~Jk,(Tr; Y) on 

an analytic simply connected manifold Y, a point y E Y and an isomorphism of transitive 
ff  H / t  H 't 0 Lie algebras ~Pl: L ~ R~. y such tha t  V~I(L "~ = R'~. ~. Let L ~ be a fundamental  subalgebra 

of L such tha t  r176  "~ By Theorem 12.2 of [10], there exist an analytic simply con- 

nected manifold X, an analytic submersion ~: X-~ Y, a point x ~ X  with ~(x) =y,  a formally 

transitive and formally integrable analytic Lie equation Rk~Jk(T;  ~) and isomorphisms 

.... . .  -~R" such tha t  ~0(L ~ = R ~ ~ and ~o"(L "~ = of transitive Lie algebras ~: L-~ R~. x, ~ �9 z~ ~. y 
~0 R~. y and such tha t  diagram (10.3) commutes and (10.2) holds. I~eplacing R~ by  one of 

its prolongations Rk+z and R'~, by  one of its prolongations R" k~+~ if necessary, we may  as- 

sume tha t  kl>~k and according to Theorem 10.1 of [10], there exist formally integrable 

analytic Lie equations ~Vk~ Rk, Nk Rk, Nk~ ~ Rk, such tha t  (10.1) and (10.4) hold. From 

Theorem 11:2 of [10], we deduce the remaining properties of hrz, hr~ and hr'~,. 

Let  Z be a differentiable manifold whose tangent bundle we denote by  T z. Let R~ 

J~(Tr; Y), R"q*~ Jq(Tz; Z) be two formally transitive and formally integrable Lie equations. 

Let  N~, ~ R'~, N'~, ~ ~ R '~  be two formally integrable Lie equations, with Pl ~>P, ql ~> q, such 

tha t  

Let  y E Y, z EZ. Assume tha t  Y and Z are endowed with Structures of analytic mani- 

folds compatible with their structures of differentiable manifolds. 

THEOREM 10.2. Suppose that R~ and R"q ~ are analytic Lie equations. I /  the pairs o/ 

topological Lie algebras ( R'~. y, N'~. u) and ( R'~ ~. ~, N'~ ~. ~) are isomorphic, we have a commuta- 

tive diagram o] cohomology 

1 4 -  762908 Acta mathematica 136. Impr i rn5  1r 8 J u i n  1975 
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(10.6) 

/~l(R;)y )/~I(R;+)= 

whose horizontal arrows are isomorphisms o/cohomology. 

Proo/. By Theorem 12.4, (i) of [10], our hypotheses imply the existence of a differenti- 

able manifold X, submersions Q: X-+ Y, ~ :  X-+Z, a point x e X  satisfying ~(x) =y, Q+(x) =z, 

a formally transitive and formally integrable Lie equation Rk~ Jk(T; Q) n Jk(T; ~+) and a 

formally integrable Lie equation Nk~ Rk such that  

[~+~, ~ ] ~  ~ 
H # 

and such that  R k is a prolongation of Rp and of R'; + and Nk a prolongation of N~, and 

_N';~. Replacing X, if necessary, by a neighborhood of x, according to the remarks at the 

beginning of w 9 we may suppose that  R k and Nk satisfy conditions (I), (II) and (III) of 

w 9 with respect to both submersions ~ and ~+. The equations R k and 2V k therefore satisfy 

the hypotheses of Theorem 9.3 with respect to both submersions ~ and ~+. So Theorem 9.3 

yields a commutative diagram 

1 - 0 t71 (N;,)~ , /~I(N~) z 

/:/1(!;).,. O /~1(2,~)= 
whose vertical arrows are induced by inclusions of Lie equations and whose horizontal 

arrows are isomorphisms of eohomology, from which we deduce diagram (10.6). 

The following result i s a  consequence of Theorem 7.1, Corollary 7.1 and Theorem 10.2: 

THEOREM 10.3. I /  the transitive Lie algebras Roo. ~ and R~o. z are isomorphic as topo- 

logical Lie algebras, we have a bi~ective mapping 

/t1(R~)y =+ t~l(Rq~)z. (10.7) 

I / the  pairs o/topological Lie algebras ( R'~. y, N~. ~) and ( R'~+.z, N ~ z )  are isomorphic, and i/ 

the mapping (10.7) is an isomorphism o/ cohomology (or a /ortiori i~ AI(R~)~=0), then we 

have an isomorphism o/cohomology 

1 rr 1 r t~  /+ (2V;,)~-+/r/(~V~, )~. 

According to [10], the linear Spencer eohomology H*(Rk)x = | j>~o H~(Rk)x of a formally 
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integrable Lie equation R2~Jk(T ) at x e X  is a graded Lie algebra whose bracket on 

H~ is the Lie bracket of germs of vector fields. 

Henceforth, we shall identify two graded Lie algebras of linear cohomology which 

are isomorphic, and two non-linear cohomologies if there is an isomorphism of cohomo- 

logy between them. 

Let L be a transitive Lie algebra and I be a closed ideal of L. According to Corollary 

6.1 of [9] and Theorem 10.1 of [10] (see also Theorem 10.1), there exist a formally transitive 

and formally integrable analytic Lie equation R ~ J k ( T )  on an analytic manifold X, a 

point xEX, a formally integrable Lie equation N~,c R~, with k~>~k, such that  

and (R~,~, N~.x) and (L, 1) are isomorphic as pairs of topological Lie algebras. We set 

H*(L) = H*(Rk),, H*(L, I) = H*(N~,)z, 

/~I(L) = A'(R~)~, NI(L, I) =/~l(Nk,), , 

and call H*(L) and ~I(L) respectively the linear and non-linear Spencer cohomology of 

L, and H*(L, I) and A~I(L~ I) respectively the linear and non-linear Spencer eohomology 

of the closed ideal 1 of L. We have H*(L, L)=H*(L) and nl(L,  L)=/ / I (L) .  These linear 

cohomologies are graded Lie algebras and these non-linear cohomologies are Sets with 

distinguished elements 0. The linear cohomology was introduced in [10] and was shown to 

be well-defined; we now extend certain properties of the linear eohomology to the non- 

linear cohomology. 

THWORE~ 10.4. (i) The non-linear Spencer cohomology I~I(L, I) o /a  closed ideal ] o/ 

a transitive Lie algebra L is weU-de/ined and depends only on the isomorphism class o/(L, 1) 

as a pair o/topological Lie algebras. 

(ii) Let z eZ  and let R~ ~JQ(Tz; Z) be a ]ormally transitive and ]ormaUy integrable Lie 

equation and N~ c R~, be a/ormaUy integrable Lie equation, with ql ~q, such that 

[~,+i, ~ ]  ~ ~ ,  

and ~ h  that the pairs o/ topologieal Lie algebras (L, !) and (R~. z, _N~.,) are ~omorphic. 

Then we have a bi~ective mar19ing 

P~(L)-~ P~(R~)~. 

I] this mapping is an isomorphism o/cohomology, or a/ortiori i/ ~I(L)=0, then 

~(L, i) = ~(~v~,)~. 

]j~/~I(L) = 0, then 



206 H U B E R T  G O L D S C H M I D T  A N D  D O N A L D  S P E N C E R  

H*(L) = H*(R~)z, H*(L, I ) - -  H*(Nq,):, ~ �9 

moreover, i / Z  is connected, the equation~ R~, N~, are integrable. 

(iii) Let r L + L "  be an epimorphism o/ transitive Lie algebras and I ~ L ,  F ~ L "  be 

closed ideals o / L  and L" such that r =1". Let 1' be the closed ideal o]L  which is the kernel 

o~ r 1 ~  I". 1]/~I(L, 1 ' )=0  and i~(L", 1")=0, then t~(L ,  1)=0. 

(iv) I!  r I-~1" is an isomorphism, we have an isomorphism o] cohomology 

pl(L, z)+ P~(L", F). 

Proo/. (i) follows directly from Theorem 10.2. The statements of (ii) concerning non- 

linear cohomology follow from Theorem 10.3. As for the remainder of (ii), if /~I(L)=0, 

then by Theorem 7.1 and the results of the end of w 7, there exist on a neighborhood of z 

an analytic formally transitive and formally integrable Lie equation b RqcJq(Tz ,  Z), an 

analytic formally integrable Lie equation Nbq, c R~I and a local diffeomorphism / of Z 

defined on a neighborhood U of z EZ such that/(z)  =z and 

~b b b 

Since Rbq, Nbq, are integrable differential equations, so a r e  Rq~v, Nq~,[~r. Thus if Z is con- 

neeted, it follows by Proposition 5.4 of [9] that  Rq + and Nq+, are integrable. By Proposition 

11.2 of [10], / induces isomorphisms 

]:H*(R~)~H*tR"~ . , ~ + , b 

implying the remaining assertions of (ii). 

(iii)-(iv) We apply Theorem 10.1 to r L-~L" and to the ideals I ,  I '  of L and I" of 

L", and consider the various objects and relations connecting them whose existence is as- 

serted by that  theorem. We may assume that  k >~ 2 and that  the kernels of 7~k-x: N~->Jk-l(T), 
i zl t ~k-l: Nk-~Jk-l(T)  and gk,-l: N~,+J~_~(Tr; Y) are 2-acyclic. Let Pk~Q~(q), P~cQk(V ) 

and P~, ~ Qk,(Y) be formally integrabie analytic finite forms of N~c J~(T; e), N~ c J~(V) 

and N"k~Jk~(Tr; Y) respectively. Since P'~ is integrable and N~ satisfies conditions (I), 

(II) and (III) of w 9 (see the remarks at  the beginning of w 9) and N~ satisfies (10.5) for all 

m~>k, l >~10, Theorem 9.2, (ii) gives the exact sequence of cohomology 

HI(P'~),,. ~ "+ H 1 (P~) m .  x --> H1 (P:kx)m, Q<x> (10.8) 

for all m>Jk r If  ~X(L, I ' ) = 0  and /:/I(L", I " )=0 ,  then by ( i )we have HI(P~):=0 and 
][ t Ha(F~I)q(z) =0. According to Proposition 7.8, it follows that  H (P~)m,:=0 for all m >~1~ and 

1 t~ H (P~,)~.q<~>=0 for all m>~/c~. The exactness of (1018) now implies that  Hx(P~)m,~:=O for 

all m >~/c~, and hence that  Ba(P~):=0. By (i) and the properties of N~ we.have/z/a(L, J ) =  
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IrP(N~)x=O, proving (iii). If  r I--+I" is an isomorphism, by Theorem 10.1 we know that  

N'k=O; we may therefore apply Theorem 9.3, (iii) to Nk and deduce that  Q: Hl(Pk)x-~ 

Hl(/r~,)e(~) is an isomorphism of cohomology, giving us the desired isomorphism by (i) 

and concluding the proof of the theorem. 

COROLLARY 10.1. Let r L-->L" be an epimorphisra o/transitive Lie algebras and let J 

be the kernel o/r I / /~I(L,  J ) = 0  and/:/X(L") =0, then t~I(L)=0. 

TH~,OREM 10.5. Let L be a transitive Lie algebra, L ~ a/undamental subalgebra o /L .  

Let M be a closed subalgebra o I L such that L = M  +L o. Then M is a transitive Lie algebra. 

I / J  is a closed ideal o / M  contained in a closed ideal I of L, then we have a mapping o/co- 

homology 

FP(M, J)-+ ~11(L, I). (10.9) 

I /  I is a closed ideal o/ L contained in M, we have an isomorphism o/cohomology 

i~ (M,  I ) ~  Hi(L, I). 

Proo]. By Theorem 13.2 of [10], there exist formally transitive and formally integrable 

analytic Lie equations R~, Rk in Jk(T) on an analytic manifold X and formally integrable 

analytic Lie equations N ~ c  R~, N~c R k and a point x E X  such that  
! 2V~ 2Vk, 

~ t  t ~ t [R~+~, ~ ]  ?~, [~k+~, ~k] c ~t~ 

_~r r 
and (M, J) and ( ~. ,, N~. x) (resp. (L, 1) and (Roo.,, N~. x)) are isomorphic as pairs of topo- 

logical Lie algebras; moreover, if I = J ,  then N~=2V k. The mapping (10.9) is determined 

by the map 

given by the inclusion N ~ c  Nk. 

11. Abelian Lie equations and their cohomology 

Definition 11.1. A formally integrable Lie equation RkcJk (T)  is said to be abelian 

if [Rk+l, Rk+l] = 0. 

From Lemma 1.4, we deduce that  if R k c J k ( T  ) is an abelian Lie equation, then, for 

all 1 >~ 0, 

[Rk+l+. Rk+l+l] = 0, 

and if ~, ~ are solutions of Rk, then [~, ~/] =0. 
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We now construct examples o f  abelian Lie equations. Theorem 11.1 implies ghat 

under mild assumptions integrable abelian Lie equations are locally of ' the  t y p e  of these 

examples, 

Let  Z be a manifold, v: X ~ Z ,  (r: Z ~  Y be surjective submersions such t h a t  the din- 

gram 

X 

(7 
Z ) Y  

is commutative.  Let  A be an affine bundle over Y whose associated vector bundle we de- 

note by  F. Assume that  T: X ~ Z  is equal to the induced affine bundle a-lA over Z, whose 

associated vector bundle is a-iF.  I f  W is the integrable sub-bundl e of T of vectors tangent 

to the fibers of T, we have a canonical morphism of vector bundles 2: W-+ F over ~ such 

tha t  the corresponding mapping 

]~: W-~9-1F ~11.1) 

is an isomorphism of vector bundles over X. A section / of F over Y determines a diffeo- 

morphism y/: X ~ X  sending x into x§ and a vector field/~r on X given by  

d 
~r(x) = ~ (x + t/(e(x)))I~0, xe~ ,  

which is a section of ~ .  I f / , , / ~  are sections of F over Y, then 

yf Oy./- = yf Oyfl = Y/ l+ /~ ,  (11.2) 

[#/1, #f:] = 0. (11.3) 

We obtain the injective mapping 

~: o~-lJk(F; Y) ~Q~(W) 

sending (x, ],(/)(y)) into ?~(Yr)(x), where x e X  and y =e(x). The mapping 

,~: J~(W; ]~) ~ J~(F; Y) 

given by  (3.1) is a morphism of vector bundles over 9 sending ]k(#f)(x) into ?k(/)(Y) such 

tha t  the corresponding mapping 

;~: Jk(W; ;0 -~-~J~(F; Y) 

is an isomorphism of vector bundles over X. From (11.3), we deduce that  

[J~(W; ~.), J~,(W; ).)] = 0 (11,4) 
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and that JI(W; 2) is a formally integrable Lie equation. The image Qk(W; 2) of y is a sub- 

bundle of Qk(W) and a finite form of Jk(W; 2). Let 

~: Qk(W; 2) -~ Jk( W; 2), 

~: Qk(W; 4)--> e - i J k ( F ;  Y) 

be the bijective mappings sending ]k(~)r) (x) into ]~(/ur) (x) and (x, ]k(/) (Y)) respectively. Then 

fl =2o:r and a(Ik)=0 and fl(Ik)=0. 

We shall identify J0(F; Y) with F. Let :~x be the sub-sheaf of fix of sections v of 7x  

satisfying the following condition: the section 2 +dx/zV of W*| is invertible, where 2 is 

the isomorphism (11.1). I f v  ~ ~x, one verifies easily that  v ~ :~x if and only if fl-l(v) belongs 

to (~0. Moreover, if u~T*| 2), then ue(T*| 2)) ̂  if and only if the element 

2 +2(n0 u) of W*| is invertible, where 2(n0 u) is defined by 

Z(nou) (~) = 2noU(~), 

We set ~ ( W ;  Z)=&~ n O A W ;  ~). 

PROa'OSITIO~ 11.1. (i) The diagram 

for ~ E W. 

is commutative. 

(~k+l(W; 2) = D ~ if, | 2) ~1 , A2 if, |  1(2/9; 2) 

Jk+1(2~9;2) D , f f , |  ) D , A~ i)'*| 1(~; 2) 

(if) I] r i 4), then r belongs to {~a+,(W;2) i/ and only i/ D~(r belongs to 

(if* | Jk('/~; 2)) ̂ . 

Proo/. (i) The commutativity of the left-hand square of (11.5) follows from formula 

(5.3) of [19] and the definition of D given in [19], w 1. As for the eommutativity of the right- 

hand square of (11.5), it is a consequence of (11.4). 

(if) Let r E Q~+I(W; 4); then by the commutativity of (3.2) 

2(n0 D~(r = n0" 4(D~(r = n0" dx/z2(~(r = n0- dx/zfl(r = d~,zfl(no r 

Thus D~(r e(9"* | Jk(W; 2))^ if and only if fl(n0r ) e :~x, or equivalently if r e {)k+l(W; 2). 

Let R'~c Jk(F; Y) be a formally integrable differential equation. Let R~+z~ Jk§ 2) 

be the inverse image of e'-~R"~+~ under the isomorphism 2: Jk+z(W; 2)-~e-~J~+~(F; Y). Ac- 

cording to Proposition 5, (if) of [6], Rk+~ = (Rk)+l, for 1 >~0, and R k is formally integrable. 

Theorem 3 of [6] gives an isomorphism 
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HJ(Rk),, J -"" -~ H (Rk)q(a) 

for  all j>~0 and  a E X .  B y  (11.4), we have  

[Rk+z, Rk+z] = 0, for  all l >~ 0; 

therefore b y  Proposi t ion 4.4 of [19], Ru is an  abelian Lie equation.  Le t  P~+z=~-l(R~+z); 

b y  (11.2), Pk+t is a groupoid. I f  a E X  and / is a section of F over  a neighborhood of b =Q(a) 

such tha t  ?k+l(/)(b)6 R'~+ z, then  the  e lement  of/~z+l, a 

~?k+l(rt:) (a) It-0 

belongs to V1~+z(a)(Pk+z), since ~k+l(ytr)(a)EPk+l. Thus-~k+l.aCVi~+~(a)(Pk+l); as the  di- 

mension of these vec tor  spaces are equal, we see t h a t  Pk+z is a finite form of Rk+l. 

PROPOSITION 11.2. Let a E X  and b =~(a).  I/Hl(R"k)b =0, or equivalently i/ Hl(Rk)a :0,  

and i /R"k is integrable, then Iril(Rk)~=O. 

Proof. Le t  ml>~b be an  integer such t h a t  Hl(Rk)m,a=O for all m>~m r Le t  m>~m 1 and 

uE(~r* |  sat isfy O l U : D u : O ;  b y  our hypothesis ,  u = D v  for some vE~m+l,  a. Then  

lv(a) E R~'~+I. ~ and we can write lv(a) =~m+l(/) (b), for some solution / of R'~ over  a neighbor- 

hood of b. We  see t h a t  ~ =f i r  is a ~-projeetable section of W over  a neighborhood of a 

which is a solution of Ru and satisfies ?'m+i(~)(a)=v(a). I f  we also denote  b y  ~ the  germ of 

in ~/qa, clearly v 1 =v-?m+l(~)  belongs to ~m+l.a and  satisfies vl(a ) = 0  and  Dv 1 ~ u .  We set 

q~ = a - i ( V l ) .  Then  r = Im+l(a) and ~ belongs to {~m+l(W; ~) according to Proposi t ion 11.1, 

(ii); fu r the rmore  ~ r  = u ,  b y  Proposi t ion 11.1, (i). Since Pk+z =o~-~(R~+~) is a finite form of 

R~+~, for l>~0, we see t h a t  r  a satisfies ~ = u ,  showing t h a t  Hl(P~)m.a=O. 

L ~ A  11.1. Let W, V be integrable sub-bundles of T, with W ~  V, and let ~ ,  ..., ~r, 

~ . . . . .  ~ be vector ]ields such that { ~  . . . .  , ~ }  is a / r a m e / o r  W and { ~  . . . . .  ~ ,  W . . . .  , ~ }  is a 

/rame /or V and 

[~, ~] = o ,  [~,, ~] = o ,  

/or i, ~=1 . . . . .  r, l =  l . . . . .  s. For all x E X ,  there exist coordinates x ~ . . . . .  x ~, z ~ . . . . .  z s, yl  .. . . .  ym 

on a neighborhood U o / x  euch that $~=~/3x ~, i =  l,  ..., r, and (~/~x ~ . . . . .  3/3x ~, 3/~z ~ . . . . .  ~/~z s} 

is a / t a m e / o r  V over U. 

Proof. We proceed b y  induct ion on s. For  s = 0  or 1, the  l emma  is a s t anda rd  conse- 

quence of Frobenius '  theorem.  Assume now t h a t  s > 1 and  t h a t  the  l emma  holds for s -  1. 

Since ~l . . . .  , ~,, ~h are commut ing  vec tor  fields, the  l emma  with  s = 0  gives us a funct ion 

g defined on a neighborhood of x such t h a t  ~ l"g=  1 and ~ : g = O ,  for  i = 1 . . . . .  r. We  set, for  

1 = 2 ,  ...,  s ,  
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t t then  {~ ,..., ~r, ~1, ~2 ... . .  ~s} is a f rame for V over a neighborhood of x. For  l = 2 ,  ..., s 

and i = l  . . . . .  r, we have ~'z-g--0 and 

[~, ~'z] = [~,, v,] - (~,'g) [~, ~] - (~,'~" g)~ = (7,'~,'g)~ = 0. 

Since [W'l, ~]'g=O, for l, p =2, ..., 8, we have 

q = 2  *=I 

similarly [~h, ~'~] "g =0 ,  which implies the relation 

= c,o 7o' + e e,. <116) 
q ~ 2  i ~ l  

By our induct ion hypothesis  applied to  W and  the  integrable sub-bundle V' of T gene- 

ra ted  by  the vector  fields ~1, ..., ~ ,  ~ .. . .  , ~/'~ over a neighborhood of x, there are vector  

fields ~/~ .. . . .  W~ and functions 1~ .. . . .  f ,  g~, ..., g~ on a neighborhood of x such t h a t  {~; .. . . .  ~ ,  
tt 

~ ... . .  ~'~} is a f rame for V' and 

[~, ~ ']  -- 0, [~', ~ ]  = 0, ~,. ]~ = ~{, ~ .  g~ = 0,  M~"/~ - 0, ~/~'. g~ = ~ ,  

for i, i = l ,  ..., r, l, p = 2  . . . . .  s, on a neighborhood of x. Then  by  (11.6), 

[vh, v]~'] = ~ a, qz/q+" ~b~ ,  (11.7) 
q = 2  i = l  

for l=2  . . . . .  a. We set 

71 : ~1 -- (71. gZ) ~l -- (71 ~ /~) ~i" 
l - 2  i = 1  

For  i = l  . . . . .  r, we have 

l = 2  l = 2  

Since ~ . / ~  = 0 and  ~ .  gZ = 0, we have 

[~, w:']. I'= o, In:, nT]. g~--- o, (ll.S) 

for i =I ..... r, l, p =2 ..... s; on the other hand by (II.7), 

q ~ 2  t = l  

From (11.8), we deduce tha t  ~ ? = 0  and b~--0 and  so [~1, ~7~'] =0 .  Therefore, we obtain  a 
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f rame ( ~  .. . . .  ~r, 77~ ... . .  ~]~} of commut ing  vector fields for V over a neighborhood of x; 

the lemma with s = 0  gives us coordinates x ~ . . . . .  x ~, z ~, ..., z ~, y~ . . . . .  ym on a neighborhood 

U o f x  such tha t  ~=~/~x ~, ~?~ =~/Oz ~, for i = 1  . . . .  , r, l = l  . . . . .  s. 

T H E O n E ~  11.1: Let Rk~Jk(T) ,  with k~>l, be an integrable and formally integrable 

abelian Lie equation such that zo [~k is a sub-bundle W of T. Assume that there exists an in- 

tegrable and formally integrable Lie equation N k ~ J k ( T  ) such that Rk +Nk is a sub-bundle 

o/Jk(T)  and z~o(/~k+57k) is a sub-bundle V of T and 

[N~§  R~+~] = 0. (11.9) 

Then,/or all x ~ X,  with X replaced i/necessary by a neighborhood o/x ,  there exist manifolds 

Y, Z, surjective submersions Q: X ~  Y, ~: X ~ Z ,  a: Z---> Y, an affine bundle A over Y whose 

associated vector bundle we denote by F, a di//eomorphism q~: X--~a-XA o / X  onto an open 

subset o/ the induced a/fine bundle (~'~A over Z, whose associated vector bundle is a-~F; 

and an integrable and/ormally integrable differential e~uation R"~ ~ J~( F; Y) such that: 

(i) the diagrams 

qJ 
X X >(~-IA 

Z ~ Y  

are commutative; 

(ii) W, V are the bundles o/vectors tangent to the fibers o/~: X-+Z, ~: X ~ Y respectively; 

(iii) identi]ying X with an open subset of a-lA via % i/4: W---> F is the canonical mor- 

phism over ~ given by the structure ol af/ine bundle of a- lA over Z, we have Rk+lc Jk+~( W; ),), 

/or all l>~0; 

(iv) if ).: J~+z(W; ~)-~Jk+z(F; Y) is the morphism given by (3.1), then 

, k + l , ~ ( a ) ~  

/or all l>~O and a EX; 

(v) i /a  e X and b =e(a) and if Hl( R"k)b =0 ,  or equivalently i/Hl(Rk)a =0, then Ml( Rk)a =0. 

Proof. Since R k is ~ Lie equation, W is an  integr~ble sub-bundle of T. I f  a E X  and  

uE R~.~, since R~ is integrable, we can write u=/'k(~)(a), for some solution ~ of R~ over a 

neighborhood of a; as ~ is a section of W, we see t ha tueJk (W)and  R~cJk (W ). Since R~is 

integrable, there exist sections ~1 . . . . .  $~ of W which are solutions of Rk over a neighborhood 

of x such tha~ {~i, - . ,  '~r} ' is  ~ f~ame ~or: W over  tha~ neighborhood.: :As 
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.N~+ i -~ Rk+ 1 c ( N  k ~- Rk)~_l, ( l  1.10) 

i t  follows f rom Propos i t ion  4.4 of [19] a n d  (11.9) t h a t  N k +  R~ is a Lie equat ion.  Thus  V 

is an  in tegrab le  sub-bund le  of T conta in ing W. Since ~V k is in tegrable ,  there  exis t  sect ions 

~1 . . . . .  ~ of V which  are  solut ions of N k over  a ne ighborhood  of x such t h a t  {~1 . . . . .  ~r, 

~1 . . . . .  ~ }  is a f rame for V over  th is  ne ighborhood.  Since R k is abe l ian  and  (11.9) holds,  

we deduce  f rom L e m m a  1.4 t h a t  

[~,  ~j] = 0, [~,  ~ ]  = 0, 

for 1 E  i, ~ ~< r, 1 E1 ~< s. B y  L e m m a  1 i .1,  the re  exis t  a ne ighborhood  U of x and  coordinates  

x ~, ..., xL z ~, ..., z ~, y~ . . . .  , ym on U such t h a t  the  ma pp ing  

~: U ~ R r  • •  m 

given b y  these  coordinates  is a d i f feomorphism of U onto an  open subset  Ux • Uz • U 3 of 

R ~ x R ~ •  m, where  U l t R a ,  U ~ R  ~, U a ~ l t  m are  connected  open subsets,  and  ~ = ~ / ~ x  ~, 

for i =  1 . . . . .  r, a n d  {~/~x 1, ..., ~/~x ~, ~/~z ~ . . . .  i~/~z ~} is a f rame for V over  U. Replac ing  X 

b y  U, se t t ing  Y = U a, Z = U~ • U a and  le t t ing  A be the  t r iv ia l  vec to r  bundle  F of r a n k  r 

Over Y, and  a: Z-> Y be the  p ro jec t ion  onto  the  second factor ,  ~: X--> Y be the  composi t ion  

of ~ a n d  the  p ro jec t ion  of U1 • Ue • U a on to  the  las t  fac tor  and  ~: X - > Z  the  composi t ion  

of ~ and  the  n a t u r a l  p ro jec t ion  of U~ • U2 • U3 onto  Z,  we thus  ob ta in  the  mapp ings  

sa t i s fy ing (i) a n d  (if). Dur ing  the  r ema inde r  of the  proof,  w e  shall  iden t i fy  X wi th  i ts  

image  b y  ~: X--->(~-~A; t hen  ~: X--~Z is a f ibered  submani fo ld  of the  affine bundle  a -~A-~Z.  

As a - i F  is the  associa ted  vec tor  bundle  of (~-IA, we have  a canonical  morph i sm of vec to r  

bundles  ~: W ~ F  over  ~; if a E X  and  [EFq(~), t hen  

2(d(a + t/)/dt I ~-o) = / 

and  the  corresponding m a p p i n g  ~: W - + ~ - I F  is a n  i somorphism of vec to r  bundles.  Deno t -  

ing b y  s 1 . . . .  , er the  sections of the  canonical  f rame of F over  Y, w e  see f rom the  construc-  

t ion  of ~ and  ~ t h a t  

~(~(a))  =e~(~(a)), i = 1, ..., r, a E X .  (11.11) 

Now let  ~ be a so lu t ion  of R k over  an  open set  U ' c  X; t hen  we m a y  wr i te  ~ = ~ = 1  c j ~j 

and  b y  L e m m a  1.4 and  (11.9), 

]-1 ]=1 

for i = 1 . . . . .  r, 1 = 1 . . . . .  s. Therefore  ~t" cJ= 0, ~]l" cJ =0 ;  since {~1 . . . .  , ~r, ~1 . . . . .  ~s}  is a f rame 

t o r  V over  X ,  we have  dx~rCJ=0 for ] = 1 ,  :.., r. A n y  po in t  aoEU'  possesses a ne ighborhood  
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U " ~  U'  such t h a t  the  fibers of ~: U"-+~U" are connected.  Thus  there  exist funct ions b ~ 

on ~U" such t h a t  c~=b~o~ on U", for  #=1  . . . .  , r, a n d  

= ~ (b~oq) ~ (11.12/ 
t=1 

on U"; b y  (11.11), we have  

A}(a) = ~ bJ(~(a))es(~(a)) 
t=1 

for  all a E U ~'. Therefore  ~ is a X-projectable section of W over  U #. As R~ is integrable,  we 

have  Rk+,c  J~+l(W; ~) for all 1 >i0. 

Le t  us show that ,  for a, b E X,  we have  

).(Rk+z.a) = )~(Rk+~.~) (11.13) 

whenever  ~(a) =~(b). Le t  aoEX and  1/>0; since Rk is integrable,  we choose sections ~ ..... ~ 

of W over  a neighborhood of a 0 which are solutions of Re and  which can be wri t ten  in the  

fo rm (11.12) such t h a t  {s . . . .  , s  is a f rame  for Rk+z over  this neighborhood.  

For  t =  (t 1 . . . . .  g+s) filU+S, with It[ = I t1[+ . . .  + I t  ~+'] <e ,  let r be the  local d i f feomorphism 

of X defined on a neighborhood Uo of a o sending (x, z, y) in to  (xX+P .... , x~+V, z l + V  +1 . . . . .  

z~+t  r+', y). We  m a y  assume t h a t  the  vector  fields ~ are  defined on U o and  Ct(U0) for  

It[ Then  eV0, . . . .  ,P,  Itl 

Ct*(~',) (a) = ~',(r 

Thus  

ik+l+l(r (a). s = s162 

because of our condit ion on ~ . . . .  , ~'~, we therefore have  

Fur thermore ,  the  d iagram 

~'k+l+l(r (a)(Rk+l,a)  = R k  +l,r 

Rk+l ~'~:§ ( a )  . a Rk+l.r 

l 
Jk+~(F; Y)o(~)  ,J~+~(F; Y)o(a) 

is commuta t ive .  Hence  ~(Rk+z,a) =2(R~+~.r for a e  U0, Itl <e .  Since {r It I <e} is a 

ne ighborhood of a o in the  fiber of ~ passing th rough  a o and  the  fibers of Q: X - ~  Y are con- 

nected,  we obta in  (11.13). Therefore  there  exists a differential  equat ion  R"k+tcJk+t(F; Y) 

whose fiber a t  Q(a) is equal  to  X(Rk+l.a). F r o m  Proposi t ion 5, (i) of [6], we deduce t h a t  
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R'~ +l is the  l - th  p ro longa t ion  of R'~ and  t h a t  R"~ is fo rmal ly  in tegrable .  Since Rkis in tegrable ,  

so is R"k, prov ing  (iv). Therefore,  R k is the  res t r ic t ion  to  an  open set of (~-IA of the  equa t ion  

on a - I A  ob ta ined  f rom R"k and  so Propos i t ion  11.2 implies  (v). 

Le t  X = G be a Lie  group a n d  le t  E be a vec to r  bundle  over  X.  Assume t h a t  E is a 

G-bundle,  t h a t  is possesses the  s t ruc tu re  of a G-space such t h a t  g: E-->E is a morph i sm of 

vec to r  bundles  over  the  l e f t - t r ans la t ion  g: X - ~ X ,  for  g E X .  Then  E has  a n a t u r a l  t r iv ia-  

l iza t ion E ~ X • Ez., where x 0 is t he  i d e n t i t y  e lement  of G. W e  have  a morph i sm of vec tor  

bundles  

g: J~(E) ~ J~(E) 

over  g: X - ~ X  defined b y  

g. s  (x) = s  8-g-l)  (g. x), 

where  s is a sect ion of E over  X and  x ~ X ;  t hus  Jk(E)  is a G-bundle.  

W e  s a y  t h a t  a d i f ferent ia l  equa t ion  R~ c Jk(E)  is G- invar i an t  if Rk is a G- invar ian t  sub* 

bundle  of Jk(E);  for  such an  equat ion,  there  exis t  a G-vector  bundle  F over  X and  a G- 

morph i sm of vec tor  bundles  ~: J k ( E ) ~  F such t h a t  ke r  ~ = Rk. 

I f  G = R  n, we say  t h a t  a G- invar ian t  d i f ferent ia l  equa t ion  R k c  Jk(E)  is a di f ferent ia l  

equa t ion  wi th  cons tan t  coefficients. F o r  such an  equa t ion  Rk, t he  theorem of Ehrenpre is -  

Malgrange implies  t h a t  HJ(Rk)=0,  for j >0 .  

L E ~ M A  11.2. Let G be a Lie group, E a vector bundle over an open set X c G and Rk ~ Jk( E) 

a differential equation. Assume that there are an open set U ~  X ,  a neighborhood H c  G o / the  

identity element o] G and a mapping 

~ : H •  E 

sending (g, e) into y~g(e) such that Y~o: El v ~ E  is a morphism o/vector bundles over the left- 

translation g: U-+ X /or all g E H  and 

as mappings E a---> Eg,.g~.a, /or all gl, g2 E H, a E U with gl" ge e H and g~. a E U. I/Y)o: Jk(E)  I v 

Jk(E)  is the morphism o/vector bundles over v2o sending jk(s) (a) into jk(yJg.s.g -1) (g.a), where 

s is a section o / E  over a neighborhood o / a  E U and g e H and i/  

y~g(Rk i u) = R k lo v (:11:14=) 

/o r all g EH, then/or  each point x E U there are a neighborhood U':~ U o / x ,  a G-vector bundle 
t t E'  over G, a G-invariant differential equation Rk  ~ Jk( E ; G) and a morphism o/vector bundles 

Z: El v "-~ E'I u. such tha t  Jk()~) (Rki v.)= R'k I v.. : I /  R k i s / o r m a l l y  integrable, so is R'k and Z in- 

duces isomorphisms 
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Z: HJ(Rk)I u "-~ HJ(R'k) lu ' (11.15) 

Proo/. Le t  F be the  quo t ien t  J~(E)/Rk and  ~: J~(E)-~F the  n a t u r a l  project ion.  F o r  

~7 e l l ,  i t  follows f rom (11 .14 ) tha t  ~pg: Jk(E) lv-+J~(E) induces  a morph i sm of vec tor  bundles  

y~: F I u-->_F over  the  le f t - t rans la t ion  g: U-->X such t h a t  the  d i ag ram 

Jk(E) lu q~ ' F l y  

Jk(E)  - ~o , F  

commutes .  Thus  for gEG and  a sect ion s of E over  U, we have  

QO~k(~/) r 8" g~l)  = ~)g. (~k(8))  �9 g--1 (11.16) 

on gU. L e t  x be a f ixed  po in t  of U. Le t  e ~ ..., e ~ be a basis  for  Ex a n d / 0 ,  .... ] o a  basis  for 

F~; consider  the  f rames  {e 1 . . . .  , er} for E and  {/~ . . . . .  /q} for F over  H . x ,  where t he  sections 

e~ of E and  ]j of F are  def ined b y  

e,(g'x)=yJg(e~ 5(g'x)=yJg(]?), 

for 1 <~i<r, 1 ~<j~<q. Then  for g, h e l l  with  g .heH,  h .xE U, we have  

W,e~(h.x) = e t (g .h , x ) ,  

hence for 1 <~i<~r, 1 <~]~q, we see t h a t  

~pgei(a) -= et(g" a), 

~ / j ( h .  x) = b(g" h.  x); 

~Js (a )  = lj(g" a), 

for  all  a belonging to  a ne ighborhood  U 1C U of x and  all  g belonging to  a ne ighborhood  

H 1 c H  of the  i d e n t i t y  e lement  of G, wi th  H 1. U 1 c H . x .  Therefore,  if s is a sect ion of E 

over  U 1 and  t is a sect ion of • over  U 1 and  

i q 
s =  8 ~e~, t = ~ t  j/s, 

~1  J~l 

t hen  for g E H 1 we have  

(~pg .s .  g-l) (a) = ~ s'(g -1. a)e,(a), (~fg. t. g-l) (a) = ~ tJ(g -1. a)/t(a ), 
t=l t=1 

(11.i7) 

for  a EgU 1. L e t  (P~}~E~ be a basis  for  the  space of l e f t - inva r i an t  d i f ferent ia l  opera to rs  of 

o rder  ~< k on G. There  exis t  funct ions  c7" J on H - x  such t h a t  
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Dis = ~ c~'Jp~s ~, j = l  . . . . .  q, 
g E A  

i - l ,  . , . . r  

for all sections s = ~ 1 siei of E over H . x .  F r o m  (11.16) and (11.17), since the  differential 

operators p~ are lef t - invariant ,  we deduce t h a t  for g EH 1 

c~'J(g -~ a) = c~'J(a) 

for all aCgU1, ~EA,  1 <~i<~r, 1 ~<]~<q; hence 

cT'J(gx) = c?' J(x) 

for all g E H 1 and so the functions c~' J are constant  on the neighborhood U'  = H  1. x of x. 

Let  E ' ,  F '  be the  trivial G-vector bundles G • t t  ~, G • R q respectively, t ha t  is, for g E G, 

the morphisms g: E ' ~ E ' ,  g: F ' - ~ F '  send (h, u) into (g.h, u), where heG,  u e t e  or u e R  ~. 

Let  Z: El v ' ~ E [ ~  �9 be the isomorphism of vector  bundles sending ~[=1 btei(a)into (a, b 1 ..... b'), 

with a e U ' ,  and let ~ ' :  J~(E'; G)--->F' be the morphism of vector  bundles sending jk(s), 

where s = ( s  1 ..... s ~) is a section of E '  over G, into the section ((q~'jk(s)) 1 . . . . .  (cf'jk(s)) a) of 

F'  over G, where 

(~'s j =  Z c~'J(x)p~s ', j = l  . . . .  ,q. 
~ e A  

i = l  . . . . .  r 

t t t 
Clearly the  kernel R k= d k ( E ; G )  is a G-invariant  sub-bundle and d~(z)(R~ Iv,) = R klv,- 

Since 

Jk+z(Z) (Rk+~ IV') = R~+~ Iv" (11.18) 

for all 1 >~ 0, if Rk is formally integrable, then so is R'klv,; as R~ is G-invariant, it is there- 

fore formally integrable over G. F rom Lemma 1.1 and (11.18), it follows tha t  Z induces the 

isomorphisms {11.15). 

THEOR~.M 11.2. Assume that the hypotheses o/ Theorem 11.1 hold. Suppose that 

Rk+ x + 2Vk+ I is a vector bundle and that there exists an integrable and formally integrable Lie 

equation Sk = Jk( T) such that 7el S ~ is a vector bundle and 

(11.19) 

and 

[Sk+l, Sk§ = 0, [Sk+l, Rk+l] c Rk, 

[Sk+l, Nk+l] c Jk(V), 

V +:~0~'~ = T. 

(11.20) 

(11.21) 

Then, /or x E X ,  we may assume that the manifold Y given by Theorem 11.1 is equal to an 

open subset o / t t  m, that there is an Itm-vector bundle F '  on R m, a formally integrable differential 
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equation R ' ~ J z ( F ' ;  R m) with constant coefficients and an isomorphism o/vector bundles 
t # ! 

Z: F--> FIr  such that Ja(g) (R ~) = R ~ ~ r. Furthermore Hr = 0 for ~ > 0 and i~X(R~)~ = 0/or 

all a ~ X .  

Proof. We fix x E X  and then consider the objects described in the course of the proof 

of Theorem I1.1. By (11.21), since S~ is integrable we choose vector fields ~1, ..., ~ which 

are solutions of Sz over a neighborhood of x such tha t  {~1 .. . .  , ~r, ~1, "", ~s, ~1, "", ~m} is a 

frame for T over this neighborhood. By (11.19) and Lemma 1.4, we have 

[~ ,  ~p] = 0, (11.22) 

for 1 ~< ~, fl ~< m. Since Jh Sk is a vector bundle, S~ is integrable and 

[S~+1, Rk+l + Nk+l] c Rk + Jk(V) = Jk(V), 

and since ~o(Rk+l+Nk+l)=Jo(V) and (11.10) holds, we deduce from Lemma 6.1 tha t  

Sk~J~(T; O). Therefore replacing X and Y by  neighborhoods of x and 0(x) respectively, 

we may  assume tha t  ~1 ....  , tm are 0-projectable vector fields on X and, by  Frobenius'  

theorem, tha t  there are coordinates y,1, ---, y,m on Y such tha t  

~(a) = ~ (o(a)) O, 

for all a e X ,  a = l  ..... m. We shall consider Y as an open subset of R m by  means of these 

coordinates. Let  S~ = S~ be the formally integrable Lie equation generated by  the sections 

s ..... s of &.  Then 

S~ f) J~(V) = 0; (11.23) 

this implies tha t  S~ + Rk is a vector bundle. As 

by Proposition 4.4 of [19] and (11.19), it follows tha t  S~ + Rk is a Lie equation, which by  

(11.23) satisfies 

(S~ + Rk) n Jk(V) = R~, (11.24) 

since RkcJk(V) .  Then by  Proposition 7.1, (v), there are neighborhoods U ' ~ X  of x and 

H =  R ~ of 0 such tha t  for t = (t 1 ..... W) EH the local diffeomorphism of X 

Yh = (exp t1~1) o... o (exp tm~m) (11.25) 

is defined on U' and is a solution of a finite form of S~ and of a finite form of S~ + Rk and 

satisfies ~t=~tO, where v~t is the translation of I t  ~ by  t sending beoU' into t+bE Y. 

Therefore 

i~+i(~t) (a) (1r ~)~ (S~; + R~)~,(o) 
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for all aE U',  tEH.  As ]~+l(~0t) is a section of Q~+I(~), we have  

jk+l (~/)/) (a) ( Rk. a) C J~( V)Tp,(a) 

and by  (11.24), 

]k+l(~)t) (a) (Rk.a) = Rk.~,(a) (11.26) 

for all aE U', tEH. We m a y  assume t h a t  the  fibers of ~: U'-+@U' are connected b y  replac- 

ing U'  b y  a smaller  neighborhood of x if necessary.  F rom (11.26), we deduce t h a t  ~t . ($ , )  

is a solution of R~ over  ~t(U') for all i = 1, ..., r, t EH. Therefore there  are funct ions g~ on 

H • e U' such t h a t  
r 

y+~.(},(a)) = : g~(t, e(a)) }~(~0t(a)) (11.27) 
t=1  

for all aE U',  t E H ,  i = 1 . . . . .  r. Fo r  tEH, let ~0~: Flqv,--+-Fl~tr be the  morph i sm of vec tor  

bundles  over  ~t defined b y  

~0~(~,(b)) = ~ g{(t, b) ej(t + b), 
i=1 

for bEaU'. B y  (11.27), for aE U', tEH, the  d iagram 

Wa ~l)t* , W~pt(a ) 

Fo(a) ' Ft+~(a) 

is commuta t ive ;  f rom (11.22) and  (11.25) we now deduce the  equal i ty  

~o ~ ~ (11.29) 

of mappings  Fb ~ Ft~ +t,+ 0, where b E ~ U' ,  $ E H satisfy t 1 § t~ E H and t~ § b E ~ U'. For  t E H,  

let 

~ :  J~(F; Y) lqV,-~ Jk(F; Y) 

be the  morph i sm of vector  bundles over  v~ sending ~(s) (b) into j'~(y~ .s.v~_~) (t +b) ,  where s 

is a section of F over  a neighborhood of b E~U'. The c o m m u t a t i v i t y  of (11.28) implies tha t ,  

for aE U', tEH, the  d iagram 

J~(~;  g)o(~) . . . .  J~(F; Yh§ 

1 5 -  762908 Act~ mathematic~ 135. Imprim~ le 8 Juin 1976 
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commutes; from (11.13) and (11.26), it follows that  

~ ( R ~  ~.) = R~ ~,(~.~ (11.30) 

for all t ~H. Replacing X and Y by neighborhoods of x and ~(x) respectively if necessary, 

because of (11.29) and (11.30), Lemma 11.2 gives us the vector bundle F '  on R ~, the dif- 

ferential equation R ' ~  J~(F'; R ~) and the isomorphism Z: F-+ FI~ satisfying the desired 

conditions. Since R~ is a differential equation with constant coefficients, by the theorem 

of Ehrenpreis-Malgrange we have H~(R'~) = 0 for ?" > 0 and hence, by Lemma 11.2, H~(K'~) = 0 

for ]>0 .  From Theorem 11.1, we deduce that  H~(R~)=O for j > 0  and/t1(R~)~=0 for all 

a~X.  

LEMMA 11.3. Assume that X is connected and let x eX .  Let Rk~Jk(T) be a/ormally 

transitive and /ormaUy integrable Lie equation. Let Nk, 1V'k ~ J~( T) be /ormally integrable 

di//erential equations such that 

Then N~ + N'k and Nk+ 1 +/~k+l are vector bundles. Moreover i/[N~+l.z, N~+I. x] = 0, then 

[NZ+l, N~+I] = 0. (11.31) 

Proo/. Let co be an Rk+2-conneetion defined on an open subset of X. Clearly, the sub- 

bundles N~+I, N~+I of Jk+l(T) are stable by the eovariant derivative in J~+I(T) deter- 

mined by eo and the sub-bundles Nk, hr~ of Jk(T) are stable by the covariant derivative in 

Jk(T) determined by g~+lw. Jacobi's identity 

[~, [~1, ~]]  = [[~, Vii, W] + IV1, [~, W]], 

for ~ e ~z+~, W e ~k+~, ~2 e ~+~,  implies that  the bracket Nk+l| compatible 

in the sense of w 3 of [9] with the covariant derivatives determined by eo in/Vk+I| 

and by ~+1(~ in Jk(T). Propositions 5.1, 3.3 and 3.2 of [9] imply that  Nk+I§ and 

/V k §  are vector bundles and that  the set of points a e X such that  [N~+I.~,/V~+I. ~] =0  

is both open and closed. Since X is connected, if this set is non-empty, (11.31) holds. 

THEOREM 11.3. Let L be a transitive Lie algebra and I a closed abelian ideal o/L.  I /  

Hi(L, I)=0,  then ITP(L, I )=0.  

Proo/. By Corollary 6.1 of [9] and Theorem 10.1 of [10], there exist a formally transitive 

and formally integrable analytic Lie equation R ~ c  Jk(T) on a connected analytic mani- 

fold X, a point xEX, a formally integrable Lie equation Rkc R~ such that  [~+1,  R~]c ~k 
R e and ( oo. x, Roo.x) and (L, I) are isomorphic as pairs of topological Lie algebras. Then by 

Lemmas 1.5 and 11.3, R~ is an abelian Lie equation and, by Lemma 10.3, (ii) of [10], 
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g0 Rk is a vector bundle. Therefore the hypotheses of Theorem 11.1 hold for Rk (with 

2Vk=0); thus by Theorem 11.1, (v), if HI(Rk)z =0, then/t l(Rk) ~ =0. 

LEM~A 11.4. Let L be a transitive Lie algebra. Let L ~ be a [undamental subalgebra o / L  

and let A be an abelian 8ubalgebra o / L  and B a subspace o[L  satisfying 

L = L ~  +B,  

[A, B] =0.  

Then L ~ N A =0 and A is a closed finite.dimensional subalgebra. I[ B =0, then 

L =LO| 

Proo/. For k>0,  set Lk=D~L~ then [L~ k for all k>~0 and f ' l~o  Lk=0. If  

~EL k f3 A, with k~>0, then 

[L, ~] --- [L ~ + A + B, ~] -- [L ~ ~] c L k, 

and so ~ ELk+~; therefore ~ =0. Since the codimension of L ~ in L is finite, A must be finite- 

dimensional. 

THEOREM 11.4. Let L be a transitive Lie algebra, L ~ a [undamental subalgebra o/ L and 

A,  B closed subalgebras o t L. Assume that A is abelian and that 

L = L ~  [A, B] =0 .  

Let I be a closed ideal o t L satis]ying [ B, 1] =0. Then there exist ]ormally transitive and/otto- 

ally integrable analytic Lie equations Rk, R'k ~ Jk( T), ]ormaUy integrablc analytic Lie equations 

S~, B~ c R'k, N~ c R k on a connected analytic mani/old X ,  a point x E X,  isomorphisms o/tran- 

sitive Lie algebras 

such that, ]or all 1 >1-0, 

~p: L ~ Roo.z, v2' : A + B ~ R' oo, x~ 

YJ(L ~ = R ~ x, (11.32) 

y~(I) = Noo.x, (11.33) 

y/(A) =S~o.~, y/(B) = Boo.z, (11.34) 

R~c  Rk, (11.35) 

[~+~+i, ~k+z] c ~k+t, [Rk+l, Nk+i] c N~, (11.36) 

[ ~ k + / + l ,  Bk+l] ~ Bk+l, (11.37) [ k+l+l,  Sk+l] c: Sk.4-D "t  
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and 

[~k+l '  ~k+l] = 0, [~k+l '  Bk+l] = 0, (11.38) 

[Bk+l, hrk+l] = 0, (11.39) 

g0(S~+Bk) =J0(T) ,  Roo = R~ (11.40) 

Furthermore, ~oNk, 7elSk, Nk + Bk, Nk+l + Bk+l and go(Nk + Bk) are vector bundles and, i / I  

is an abelian ideal, N~ is an abelian Lie equation. 

Proo[. We begin by following the first part  of the proof of Theorem 13.2 of [10]. We 

see that  A + B is a transitive Lie algebra and that  L '~ = L  ~ fl (A + B) is a fundamental sub- 

algebra of A + B. Clearly A and B are closed ideals of A + B. Let  us consider the filtrations 

induced by L ~ and L '~ on L, I and A + B, A, B respectively in the sense of w 10 of [10] 

and the corresponding graded Lie algebras. By Lemma 10.1 of [10], there exists an integer 

]r ~> 1 such that  

H m' J(gr L) = H m" l(gr I) = 0, 

H m" J(gr (A + B)) = H"'l(gr A) = H m" l(gr B) = 0, 

for all m >~ b and j = 1, 2. Let  X be an analytic manifold whose dimension is equal to the 

dimension of L/L ~ and let xEX.  By Theorem I I I  of [13], there exists a monomorphism 

i: L-+Joo(T)x of transitive Lie algebras such that  i(L ~ =i(L) fl J~ and i(L) is a transi- 

tive subalgebra of Joo(T)x; then i ( A+ B)  is also a transitive subalgebra of J~o(T)x and 

i(L '~ = i(A + B) n jo ( T)x. We apply Corollary 6.1 of [9] to the subalgebras i(L) and i(A + B) 

of Joo(T)~ and replace X by a simply connected neighborhood of x if necessary to obtain 

the existence of formally transitive and formally integrable analytic Lie equations 

Rk~Jk(T) ,  R ' k~Jk (T)and  r r x) such that  R%~ Rk and~k+~r162 =Ik+2(x) 

and 

r  = R~.x ,  r  i (A + B) = R'~, z. 

Then 

~k+l" i(L) = Ru+l.x, gk+l"i(A + B) = R'k+l. x. 

Set ~p=r and y / = r  Then (11.32) holds. Since A, B are closed ideals of A + B ,  by 

Theorem 10.1 of [10], there exist formally integrable analytic Lie equations N k c  Rk, 

S~, Bkc  R~ satisfying (11.33), (11.34), (11.36) and (11.37). Then Sk+B~=R'k and so (11.40) 

holds. From Lemma 11.3 and the relations [A, A] =0  and [A, B] =0,  we deduce (11.38); 

moreover (11.39) holds since 

[Bk+l.,,Nk+l.,] =~ki[B, I] = 0  
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~t  
and [~+2 ,  ~ k + l ] ~ k + l  by  (11.36). Lemma 11.3 and (11.37) tell us tha t  N~§ and 

Nk+x+Bk+l are vector bundles. Lemma 10.3, (ii) of [10] says tha t  g0N1, gxS~ and 

go(N~+Ba) are vector bundles. I f  I is abelian, by  Lemma 11.3 it follows tha t  N~ is an 

abelian Lie equation. 

From Theorems 11.4, 11.1 and 11.2, we obtain: 

THEOREM 11.5. Let L be a transitive Lie algebra and I a closed abelian ideal o/L. I] 

there exist a /undamental subalgebra L ~ o/L,  closed subalgebras A, B o / L  such that A is 

abelian and 

L = L ~ 2 4 7  [ A , B ] = 0 ,  [ B , I ] = 0 ,  

then H~(L, I )=0/or  ?'>0 and IY11(L, I) =0. 

12. Prolongations of Lie equations 

Let Rkl Jkl( r, Y) be a formally transitive and formally integrable Lie equation 

and let k >~ k 1. Assume tha t  Y is connected and let P'~ c Qk(Y) be a finite form of R'~. Let  

yoEY and consider X=P'~(yo) as a bundle over Y by  means of the target  projection 

~: X-~ Y; it is a principal bundle with structure group G=o-l(y0). We may  assume tha t  X 

is connected. The Lie algebra g of G is identified with Vx0, where x 0 = Ir.k(Y0); the natural  
~t/0 identification (5.23) gives us an anti-isomorphism of Lie algebras ~k.y ~ g. 

A section r of P'~ over an open set U of Y induces a mapping T(r X, u-->X sending a 
~w into r if r is a section of ~)k, this mapping is an immersion. I f  aEX I u, gEG, then 

(T(r = ~(r (12.1) 

The mapping T induces for all a ~X an isomorphism 

Ta:/~'~.q(~)-* T~; 

if ~ is a section of ~ over Y, then the vector field T(~) on X defined by  

v(~) (a) = ~(~(q(a))), aeX,  

is G-invariant and in fact every G-invariant vector field on X is of this form. The map 

induces a monomorphism of Lie algebras 
~H 

Ta: ~k,q(a)  --> ~'q. a. (12.2) 
Denote by  

T --> ~" ~0: Z~k 

the morphism of vector bundles over Q sending ~ ETa, with a E X, into the unique element 

~] of ~"k,q(a) satisfying ~ (~)=~ .  The induced mapping ~: T~- IR"k  is an isomorphism of 

vector bundles; the morphism (3.1) of vector bundles 
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~0: Jz (T; ~) ~ J~ (2~; Y) (12.3) 

over ~ therefore induces an isomorphism 

~: Jz( T; cf) --> e-lJ~(/~'~; Y) 

of vector bundles over X. The diagram 

T 

is commutative; hence ~'~0c ~'0 and J~ (T; ~) c '/z (T; 0). Moreover [~'~0, Je] = ~'~ and for all 

aEX the image of (12.2) belongs to ~'~o.a, and 

~0: ff~ ~--,~';,~(o) 

is an isomorphism of Lie algebras. Therefore 

[J1 (T; ~), Jr(T; ~)] = Jl_~(T; el). 

Since R"k is a Lie equation, the bracket (1.33) gives by restriction a bracket 

j~(/~v~; y)  • Y)-~Jt-~(~;  Y) (12.4) 

j ./~" and hence also a structure of Lie algebra on ~o( k; Y)~ for all b E Y. From the above re- 

marks, we see that  

~[~, V] = [ ~ ,  ~ ] ,  (12.5) 

for all ~, ~/E Jr(T; el), where the right-hand side is defined in terms of the bracket (12.4). 

Thus for a EX, the mappings (12.3) determine an isomorphism of Lie algebras 

q~: Joo(T; ef)a '+ J~( /~ ;  Y)q(~). 

For a EX, the mapping G--~X sending g into a.g induces a canonical isomorphism 

and a monomorphism of Lie algebras 

which satisfies by (12.1) 

t~: g-+ V,. 

t: g ---,- F(X, V) 

[v(~), t(~)] = 0 (12.6) 

for all ~EF(Y, A~'~), ~6g. Let C x c J l ( V  ) be the formally integrable differential equation 
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generated by the sections (]l(t(~))}n~g of JI(V). Since t is a monomorphism, C 1 is a Lie 

equation; clearly, g0: Cl~Jo(V) and gl: Co~-"C1 are isomorphisms and Sol (C1) a _~ t(g) for 

all aEX. From (12.6), it follows that  

[Jl+l(T; 9), Cl+l] = 0 (12.7) 

for all 1 ~> 0. 

Let  N ~ c  R'~ be a formally integrable Lie equation and let W be the sub-bundle of 

T whose fiber at a E X is equal to Za(N'~. q(~)). Then 9 induces a morphism of vector bundles 

9: W -~ ~'~ 
tt -tt 

over ~ such that  9: W-~-l~Tk and ~a: Hk.q(a)-+~/~9,.~ are isomorphisms, with aEX. Thus 

~9r is a Lie subalgebra of ffr and we see that  W is an integrable sub-bundle of T. 

Moreover, (12.3) restricts to give us a morphism of vector bundles 

9: Jz(W; 9) ~ Jt(~"k; Y) (12.8) 

over Q whose corresponding mapping 

9: J~(W; 9) -~ e-1Jz(57'~; Y) 

is an isomorphism. 

For l~>0, let 57'z~Jz(~"k; Y) be the image under the map ~l: Jk+z(Tr; Y)-~ 

J~(Jk(Tr; Y); Y) of the l-th prolongation 57'~+z of N'~. By Lemma 1.2, 57'z+1 = (57~)+1 and so 

57'1 is formally integrable. According to the eommutativity of (1.37), we have 

[N;+~, N/+I] c N;, (12.9) 

for all l~>l, with respect to the bracket (1.33) or (12.4); moreover, the mappings 

~z: N~+z-~Jl(~'~; Y) induce, for all b e Y, a monomorphism of Lie algebras N~. ~ -->Jo~(I~"~; Y)b 
whose image is the Lie subalgebra N' " ~" ~o. ~ of J ~ ( / ~ ;  Y)~ or of Joo(Rk; Y)~. Let57~J~(W;9) 
be the inverse image of 57'~ under the mappings (12.3) or (12.8), so that  57~cJ~(W; ~) and 

9 ( 5 7 1 . a )  = N'l.~(a), for l >~ 0, 

and 

~(hr~.a) = hr~.q(a), for 1/> k, 

for all a~X.  By Proposition 5, (i) of [6], 571 is formally integrable and ~V,+I = (571)+~, for 

all l>~l. Since ge: 57'~+1-~57~ is surjeetive, so is the mapping zr0: 57x-->Jo(W). From (12.9) 

and (12.5), we deduce that  

[NIT1, 571-bl] ~ 571 

for all l >/1 and hence from Proposition 4.4 of [19] that  57, is a Lie equation. Furthermore 

for all a e X ,  
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are isomorphisms of Lie algebras and  

0 , N O , N,~,  a ~k~176 " ~ , a  .Nk.Q(a) > 0 

is an  exact  sequence, where N~ a is the kernel of ~z0: N+.a'->Jo(W)a. 
# 

I n  particular,  if we apply  these constructions to R ;  instead of N~, we see tha t  the in- 

verse image R 1 of R~ =~1(R;+1) under  (12.3) is a formally transit ive and formallyintegrable  

Lie equation, t h a t  N i t  R1, t ha t  

of: R,~.a'-" R'~.q(,~), ( 12 .10 )  

Q: Roo.a -" R~.q<a) (12.11) 

are isomorphisms of Lie algebras, and tha t  R ~ a is the kernel of Qorrk: R+.a+R;.q(a ) for 

" L "~ - R  "~ D ~ L "~ is the kernel �9 " " all aEX.  If  a E X  and L"=Roo,~(a), - ~,Q(a),then L- of:~k.L "->'Rk, e(a) 
~ 0  ~ k  Tg 0 and  so Q: ~oo, ~-+ z ) z - ~  is an  isomorphism. Moreover 

R t A C t = 0 ,  (12 .12 )  

for all l~>l. Indeed,  let a E X  and uE(R t fl Ct)a; then there is an  element ~ of ~ such tha t  

u=]t(t(~l))(a ). Let  S I ~ C  1 be the formally integrable differential equation generated by  

the section ]1(01)) of C 1. F rom (12.7) and Lemma 1.5, we deduce t h a t  

[R~+~, .~,]c S,. 

Since R t ~ J l ( T )  is a formally transit ive Lie equation, we therefore see from (7.1) and 

L e m m a  11.3 t h a t  R t fl St is a vector  bundle. As St is the line bundle generated by  ]z(t(~l)) 

and  (R t (3 St)~=St.a, we conclude t h a t  R~ f)Sl=St  over X and tha t  jr(t0?)) is a section o f  

Rt over X. Hence t(~) is a solution of R 1 over X and so ?'~(t(~)) (a) belongs to  (Roo f3 Coo)~. 

Because t(~/) is a section of V, we have 

e~oo(t(V)) (a) = 0; 

since (12.11) is an  isomorphism, we see tha t  jo~(t(~))(a)=0 and therefore tha t  ~ =0 .  Hence 

u = 0  and (12.12) holds. 

F rom (12.12), it follows tha t  N t + C t ~ J z ( T )  is a differential equation for all 1>~1. 

Clearly, we have 

Nt+~ + C~+~ c (Nt + Cz)+x (12.13) 

for all l~>l. For  l~>l, let ht~StJo(T)*| denote the kernel of~rz_l: NV-->JI_I(T). B y  

(12.12), hz+l is equal to  the kernel of the surjective map  ~z-l: Nz+l+Ct+v+Nt+Ct, for all 
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1 >~ 1. Since hz is 1-acyclic, for l >~ 2 the kernel of the surjective map ~l: (Nt + CI)+V--"Nz + Cz 

is also equal to hl+l. From (12.13), we conclude that  

Nl+i + Cl+l = (Nz + C,)+l 

for all l >~ 2. Using (12.7) and Proposition 4.4 of [19], we see that  N~ = N  2 + C 2 is a formally 

integrable Lie equation such that  

N~+2 = Nz+2 + Cz+2, for 1/> 0, 

N~ = Noo + Coo, 

where 

Noo N Coo = 0. 

L e t / ~ ,  S'~ c R';~ be formally integrable Lie equations and let B1, S 1C R 1 be the form- 

ally integrable Lie equations which are respectively the inverse images of B~ =21(B~+a) 

and of S~ = ~I(S'~ + ,) under the map (12.3). If B ~+2 = B l+2 + C I+2 for 1 >/0, the following rela- 

tions arc equivalent: 

[2%+,, BL,]  c s'L 

[Nu+~+l,B'~+z+l]cSk+z, for 

[N;+I, B;+I] : S;, for 

[Nz+l, Bl+,] = S~, for 

[NI+I, Bz+,] St, for 

Indeed, (12.14) and (12.15) are equivalent by Lemma 

(12.14) 

all l>~0, (12.15) 

all l~> 1, (12.16) 

all l~> 1, (12.17) 

all l~> 1. (12.18) 

1.4 and the equivalence of (12.15) 

and (12.16) follows from the commutativity of (1.36); by (12.5), we see that  (12.16) and 

(12.17) are equivalent. Finally, (12.7) implies that  (12.18) is a consequence of (12.17). 

Therefore, according to Lemma 1.5, we have 

tf t, 
[Rk+l, T/k] c ~/~ (12.19) 

if and only if 

[~l+1, ~ l ] :  ~/,, for all l ~> 1. (12.20) 

If either (12.19) or (12.20) holds, then by (12.7) 

[Rz+l, ~ / + 1 ]  = N1,  for all 1 >/1, 

Let  us summarize some of the above results in 

and hence by Lemma 1.5 

[ ~ + 1 ,  ~/~Z]C ~/l,  f o r  all l ~>1. 
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T H E O R E ~  12.1. Assume that Y is connected. Let R'~.lcJk,(Tr; Y) be a/ormally tran- 

sitive and ]ormally integrable Lie equation and let k ~ k r Then there exist a connected di/- 

/erentiable ~nani]old X,  a sur]ective submersion ~: X---> Y, a ]ormally integrable Lie equation 

C1cJI(V),  and /or each /ormally integrable Lie equation N"kcR"# a ]ormally integrable 

~-pro]ectable Lie equation N1c  JI( T; ~) such that: 

(i) zeo~ 1 is an integrable sub-bundle W o / T  and N l c J I ( W ;  e); 

(ii) N 1 is a prolongation o] N~ and the sequence 

�9 0 pt 
0 N o o .  a ) 'Noo ,  a ~k~ ~ Nk, Q(a)" ~0 

is exact, where o Noo.~ is the kernel o/no: Noo.,~Jo(T)a, /or sEX;  

(fii) the Lie equation RI ~ JI( T; ~) corresponding to R~ is [ormally transitive and A r c  R1; 

i] a e X and L"= R~.o(~), L ' ~  R'~,Q(a), then 

e: (Roo. ~, R ~ ~)-+ (L", D~, L "~ 

is an isomorphism o] pairs o] topological Lie algebras; 

(iv) go: Cl~Jo( V) is bi]ective and/or l>~O 

[Rl+l, Cz+l] = 0, Rl+l A Cl+l = 0, 

[R~o, Coo] = 0, Roo (/C~o = 0; 

(v) N~ = N2 + C., is a/ormally integrable Lie equation and R~ = R~ +C z is a/ormally 

transitive and [ormally integrable Lie equation in J2( T; e) with 

Rs = Roo + Coo; 

(vi) if B'~, S'~ c R'~ are/ormally integrable Lie equations satis/ying 

N" " ~" k+l, Bk+l] C xz k, 

then the corresponding Lie equations Ba, Sl ~ Ri  satis/y 

[Nz+l, B~+I] ~ Sl, 

/or all 1 >~ 1, where B~ = B 2 § C~; 

(vii) / /  [~'~+~, ~'~] ~ ~'~, then [~+~, ~ ]  c ~ /or all 1 >~ 1. 

The following result  is an immedia te  consequence of Theorem 6.1 of [12]: 

THEOREM 12.2. Let L be a transitive Lie algebra and I a closed ideal o /L.  Then there 

is a nested sequence 

I = I o ~  I 1 ~  I s ~  ... D Ik  ~- 0 (12.21) 
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o/closed ideals o ]L  such that, ]or each j, where 0 ~ j ~ k -  1, either I j / I j§  is abelian or there 

are no closed ideals o] .L properly contained between I j and lj+1. 

We say that  a sequence (12.21) satisfying the conditions described in Theorem 12.2 

is a Jordan-HSlder sequence for (L, I) and tha t  it is of length k. We define l(L, I) to be 

the minimum of the lengths of Jordan-H51der sequences for (L, I). 

Let  L be a transitive Lie algebra and L ~ a fundamental subalgebra of L. Following 

[10], we say that  a closed ideal I of L is defined by a foliation in (L, L ~ if the only ideal 

I '  of L satisfying 

I c I '  c l + L  o 

is I itself. If L k denotes the fundamental subalgebra D ~ L  ~ of L, then, according to Proposi- 

tion 10.1 of [10], for any closed ideal I of L there is an integer m~>0 such that  I is defined 

by a foliation in (L, Lm). 

THEOREM 12.3. Let L be a transitive Lie algebra, L ~ a/undamental  subalgebra o] L 

and A,  B closed subalgebras o /L .  Assume that A is abelian and that 

L = L ~ 2 4 7  

[A, B] =0 .  

Let I ,  J be closed ideals o/L;  suppose that [B, I] ~-0. Then there exist a transitive Lie algebra 

L ~, a/undamental subalgebra L eo o / L  ~, closed subalgebras A ~, B e o / L  ~, a closed ideal J e  o/ 

L ~ and, i / L "  = L e / J  ~, monomorphisms i: L ~ L  ~, j: L / J -~L  ~ of transitive Lie algebras such 

that: 

(i) i(L) is a closed ideal o / L  e and 

L ~ = i(L) + L  e~ 

L e = L eo § A ~ § B e, 

and such that the diagram 

i(J) = i(L) • J~, 

[A ~,A e ] = 0 ,  [A ~ , B  e ] - -0 ,  

[B e, i(I)] = 0 

i L ~L e 

/J  J ~L" 

whose vertical arrows are the natural projections, is commutative; 

(12.22) 

(12.23) 

(12.24) 

(12.25) 

(12.26) 

(I2.27) 
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(ii) J~ is de]ined by a/oliation in (L ~, L~~ the image L "~ o/ L ~~ in L" is a ]undamental 

subalgebra o/ L", the images A", B ~' o / A  ~, B ~ in L" are closed subalgebras o /L"  and ](L/J) 

is a closed ideal o / L  jJ, and 

L" = j(L/J) + L  '~ (12.28) 

L" = L "o +A" + B", (12.29) 

[A", A"] = O, [A", B"] = 0, (12.30) 

[B", 1(1/J)] = 0; (12.31) 

(iii) i / 1 '  is a closed ideal o/ L, then i(I') is a closed ideal o]L  ~ and 

l(L ~, i(I')) = I(L, 1'), (12.32) 

and we have an isomorphism o/graded Lie algebras 

H*(L, I')-+ H*(L ~, i(I')), 

and an isomorphism of cohomology 

/ ~ I ( L ,  1 ' )  --->/~I(L~, i(I')); 

(iv) i/ I '  is a closed ideal o/ L containing J, then ](I'/J) is a closed ideal o/ L ~ and 

l(L", j(I ' /g)) = l(L/g, I ' /g), (12.33) 

and we have an isomorphism o/ graded Lie algebras 

H*(L/J, I'/J)--> H*(L", j(I'/g)) 

and an isomorphism o] cohomology 

_Fil(L/J, I'/J)---> IrII(L ", ](I'/g)). 

Proo/. Let Y be a simply connected analytic manifold, y E Y and let R'~lc Jk,(Tr; Y) be a 

formally transitive and formally integrable analytic Lie equation, N~I, M'~. S~,, B~, c R'~, 

formally integrable analytic Lie equations and ~0: L-+R~, y an isomorphism of transitive 

Lie algebras such that  

l/0 tt H ~tt ~ / t  /f ~pt H tt 

[Sk1-I 1, S k , + l ]  = 0,  [Ski+l, Bk,+l] = 0, [ B k l + l ,  N k , + l ]  = 0 

and 
~' /~"0 Roo = ~o~ + Soo + B~. (12.34) 

All these objects other than M~, satisfying these conditions are given to us by Theorem 

11.4, while the existence of M~ follows from Theorem 10.1 of [10]. Let/c~>]c 1 be an integer 

such that  J is defined by a foliation in (L, L~), where L k = D~ L~ the kernel ofT~k: R~. ~--> R'~. 
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is equal to ~(Lk). We now apply Theorem 12.1 to R'~ ,cJk , (Tr ;  Y )  and obtain a connected 

differentiable manifold X, a surjective submersion ~: X-+ Y, formally integrable Lie equa- 

tions 

R~r J~(T; ~), C~= J0(V), 

N i c  R l, M i c  R i, 

S i ~ R  1, B l ~ R i ,  

R~" = R~ + C2, B~" = B2 + C~, 

such tha t  Ri, R~ are formally transitive, no: Ci-*Jo(V) is an isomorphism, 

R~ = Rr + Coo, (12.35) 

[ Roo, Coo] = O, (12.36) 

[~+1, ~1] C ~/~l, [~+1, ~ ]  c ~ l ,  (12.37) 

[S~, S~] = 0, [Sz, B~] = 0, (12.38) 

[B~+~, Nz+~] = 0, (12.39) 

for all l/> 1, and 

for all 1 >~ k and a E X and 

q(Sl,a) = S~.qca), ~(Bt.,,) = JB'~.q(a), (12.40) 

~p-io~: (Roo.x, R~.x) -~ (L, L k) (12.41) 

is an isomorphism of pairs of topological Lie algebras and 

q: Noo.x~-X~.y, 

are isomorphisms of Lie algebras for all x E~-i(y). Fix x E X with ~(z)= y; set 

L ~ = R  r L ~ ~  ~~ A ~ = S ~  x, B ~=Boo,x, oo.x, -- oo, x ,  . 

and let i: L ~ L  ~ be the composition 

L ~ ' R  ~ ~-~--~R , R  "~ OO, y OO,~ O0. X ~ 

Thus i(L) is a closed ideal of L ~ by  (12.36) and 

i (L  z) = L •~ N i(L),  

i ( I )  = Noo.x, i (J)  = Moo.x. 

Since R i is formally transitive, we have (12.22). From (12.34) and (12.40), it follows tha t  

~oSi +no Bi +~oCi = Jo(T)  
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and hence that  (12.23) holds. F r o m  (12.38) and (12.39), we deduce (12.25) and (12.26) 

respectively. If W denotes the integrable sub-bundle :~03~1 of T, then, since M l c J l ( W  ), 
we have 

Moo..~ ~ Roo.~ N J~( W)x. 

By Proposition 5.4 of [9], R~=zqR~ is a Lie equation and R~+lC(R~)+z. Now (12.37) 

implies that  

[~1, go(~)]  c Jo(~) ,  

and hence by Lemma 10.5 of [10] that  

[ l+1, J t ( ~ ) ] c J z ( ~ ) ,  for all/>~0, 

and that  Roo.x n J~(W)x and 

J~ = L # n Js 

are closed ideals of R~. ~ and L ~ respectively. Clearly 

Since J is defined by a foliation in (L, L k) and (12.41) is an isomorphism, M+, :  is defined 

by a lobation in (R~o.x, R~ and so 

Moo. ~ = R~o.~ ~ J~(  W)~, 

and (12.24) holds. Thus ] is a monomorphism of transitive Lie algebras and diagram (12.27) 

commutes, completing the proof of (i). Since 

Jo(W)~ = = 0 M ~ .  ~ ~ ~ o J  ~ c J0(W)~, 

we have =0 J~ =J0(W)x and, by Proposition 10.3, (iii) of [10], the closed ideal J~ of L ~ is 

defined by a foliation in (L ~, L~~ By Proposition 10.2 of [10], L "~ is a fundamental sub- 

algebra of L" and the relations (12.28)-(12.31) follow from (12.22), (12.23), (12.25) and 

(12.26), and so (if) holds. Since i(L) is a closed subalgebra of L ~ and (12.36) holds, if I '  

is a closed ideal of L, then i(I') is a closed ideal of L ~ and the image of i(I') in L" is there- 

fore a closed ideal of L". Conversely, a c|0sed ideal of L ~ contained in i(L) is necessarily 

a dosed ideal of i(L) and its image in L"~ which is a closed ideal of L" contained in ](L/J), 
is also a closed ideal of ](L/J). The equalities (12.32) and (12.33) follow directly from the 

last remarks.As (12.22) and (12.28) hold, the isomorphisms of (iii) and (iv) are given to us 

by Theorem 13.2 of [10] and Theorem 10.5, completing ~he proof of the theorem. 
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13 .  T h e  i n t e g r a b i l i t y  p r o b l e m  

We now summarize some implications of the preceding sections of this paper relating 

to the integrability problem (vanishing of the non-linear cohomology), and we begin by 

listing the following three conjectures: 

CO~JECTVRE I. Let L be a transitive Lie algebra and I a non-abelian minimal closed 

ideal o/ L. Then Hi(L, I) =0/or  j > 0  and 1~1(L, I) =0. 

CONJECTURE II. Let L be a transitive Lie algebra and I a closed ideal o/ L. Let 

I ~- Io~ I1~ . . .~ Ik = 0 

be a Jordan-HSlder sequence /or (L, I). I /  /or each j /or which Ij/I~+ 1 is abelian, where 

0~<j<k--1,  we have 

HI(L/Ij+I, Ij/Ij+l) = O, 

then 

HI(L, I) = O and / t l ( L , I ) = 0 .  

CONJECTURW III .  Let L be a transitive Lie algebra and I a closed ideal o/ L. I / there 

exist a /undamental subalgebra L ~ o /L ,  closed subalgebras A, B o / L  such that A is abelian 

and 

L = L ~ 2 4 7  

[ A , B ] = 0 ,  [B, 1 ] = 0 ,  

then H~(L, I ) = 0 / o r  j > 0  and/ t l (L ,  I )=0 .  

We have: 

THEOREM 13.1. Conjecture I implies Conjecture II.  

T~EOREM 13.2. Conjecture I implies Conjecture III .  

Moreover, we shall sketch a method, based on the work of Guillemin [12], for proving 

Conjecture I. Before doing this or proving Theorems 13.1 and 13.2, we list some conse- 

quences of Conjecture III .  

(a) Let L be a transitive Lie algebra. I/ there exist a/undamental subalgebra L ~ o / L  and 

an abelian subalgebra A o/ L such that 

L = L~174 

then Hi(L)=0, /~I(L)=0 and Hi(L, I ) - 0 ,  /~I(L, I)=0/or: every closed ideal I o/ L and all 

j > 0 .  
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(b) Assume that X is connected. Let R~cJk (T  ) be a /ormaUy transitive and /ormally 

integrable Lie equation and _Nk c R~ a formally integrable Lie equation such that 

[~+. ~]~ ~. 

Let xEX; if there is a fundamental subalgebra L ~ o/ R~o.x and an abelian subalgebra A of 

Roo.~ such that 

Ro~.~ = L~174 A, 

then Rk, IYk are integrable differential equations and 

HJ(Nk) = O, H'(R~) = O, fll(N~)~ = O, i~*(Rk)~ = O, 

/or ~ > 0 and all a E X.  I f  Nco. ~ is abelian, then N k is an abelian Lie equation and the structure 

o/N~ is given by Theorem 11.1. 

Assertion (a) is obtained from Conjecture I I I  by setting B-=0. The assertions of (b) 

concerning cohomology follow from (a) and Theorem 10.4, (ii). By Lemma 10.3, (ii) of 

[10], 7t0/V k is a vector bundle; therefore, if Nk is abelian, the hypotheses of Theorem 11.1 

hold for N k. 

From (a), we infer in particular that  the integrability problem is solved for all Lie 

pseudogroups acting on R ~ which contain the translations, a for t ior i  for all flat pseudo- 

groups. Even if one were interested in proving only this result, one would be forced, by 

the necessity of performing prolongations, to introduce the subalgebra B, as is seen from 

w 12. In  fact, as has been noted in the Introduction, under prolongation the subalgebra B, 

even if it is assumed initially to be zero, reappears and contains a subalgebra correspond- 

ing to transformations along the fibers of a principal bundle. Moreover, under prolongation 

the transitive Lie algebra L corresponds to a closed ideal of a transitive Lie algebra and 

hence, in studying the eohomology of transitive Lie algebras, one is forced to consider the 

cohomology of closed ideals of transitive Lie algebras. 

Proof of Theorem 13.1. Considering the natural epimorphisms Cj: L/Ij+I~L]I j and the 

exact sequences of ideals of L/I~+ 1 and L/Ij  

o -*Ij/1~1---~]/I~+1 r ~/I~ 

for 0~<j~<k-1, by repeated applications of Theorem 13.1, 

HI(L,I)=O if HI(L/Ij+~, Ij/Ij+l)=O for 0 ~ < j ~ k - 1 ,  and of 

/=/~(L, I )=0  if I~I(L/Ij+I, lj/lj+~)=O for 0 ~ < ] < k - 1 .  Since Ij/Ij+~ is either anon-abelian 

minimal closed ideal or an abelian closed ideal of L/Ij+l, we have HI(L/Ij+I, Ij/Ij+l) =0 and 

I~I(L/Ij+I, Ij/Ij+~)=0 according to Conjecture I or our hypothesis and Theorem 11.3. 

�9 ) 0 ,  

(iii) of [10], we see that  

Theorem 10.4, (iii) tha t  
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Proof o/ Theorem 13.2. We prove I I I  by induction on l(L, I). If  l(L, 1)=0, then I=O 

and the result is trivially true. Let  k>~l; assume that  Conjecture I I I  holds for all closed 

ideals I of transitive Lie algebras L satisfying the conditions of Conjecture I I I  with 

l(L, 1)<  k. Suppose that  I is a closed ideal of a transitive Lie algebra 15 with l(L, 1)= b 

satisfying the conditions of Conjecture III .  Consider a Jordan-HSlder sequence {12.21) 

for (L, 1) of length k. Set J=Ik-1; then Hi(L, J)=0 for j > 0  and/~I(L, J ) = 0  by  Theorem 

11.5 or Conjecture I according to whether J is an abelian ideal or a non-abelian minimal 

closed ideal of L. Clearly we have l(L/J, I /J)= b - 1 .  Considering the exact sequence of 

ideals of L and L]J 

O ~ J ~ I ~ I / J - - > O ,  

by Theorem 13.1, (iii) of [10], we see that  Hi(L, I )=0 if and only if HJ(L[J, l[J)=0 for 

j>0 ,  and by Theorem 10.4, (iii) that/r/I(L, 1 ) = 0  if fP(L/J, 1/J)~0.  We now consider the 

objects obtained by  applying Theorem 12.3 to L, L ~ A, B, I, J; by Theorem 12.3, (iv), we 

have isomorphisms 

Hi(L/J, l /J)-~ HJ(L ", i(I/J)), 

FII(L/J, I/J) -,. AI(L ", i(I/J)) 
for j >/0 and 

l(L", i(I/J)) =l(L/J, I/J) = k - 1. 

By Theorem 12.3, (ii), the transitive Lie algebra L" and its closed ideal j(I/J) satisfy the 

conditions of Conjecture III ,  so tha t  

HJ(L ", i(I/g)) = O, ~I(L", i(I/J)) = O, 

for ~ > 0, by our induction hypothesis. Therefore 

Hi(L/J, I/J) = O, i~I(L/J, I/J) = 0 

which implies tha t  the conjecture holds for the closed ideal I of L. 

Outline o/ a proo/ o/ Conjecture I. We begin by recalling briefly required algebraic 

facts, most of which are contained in Guillemin's paper [12]. The main result to be used 

is Guillemin's structure theorem; it essentially reduces the structure of non-abelian mini- 

mal closed ideals of (real) transitive Lie algebras to the determination of  simple, non- 

abelian transitive Lie algebras (over the real numbers) and all of these are known. 

Let  E, F be linearly compact topological vector spaces over R, whose topological duals 

we denote by E*, F*. We define E@ F to be the linearly compact topological vector space 

which is the topological dual of the algebraic tensor product E*| F* endowed with the 

discrete topology. We then have a natural mapping 

E Q F  ~ E ~  F. 

16 - 762908 Acta mathematica 136. Imprim6 le 8 ffuin 1976 
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Let L be a transitive Lie algebra and I a non-abelian minimal closed ideal of L. Then, 

according to Proposition 7.1 of [12], I possesses a unique maximal closed ideal J of I .  

Thus R = I / J  is a simple transitive Lie algebra, i.e., it possesses no non-trivial ideals (see 

[12], Proposition 4.3). 

We have decomposed our outline into six statements which we now list. Each of these 

statements requires a proof; after each statement, we indicate briefly a basis on which a 

proof of it depends. 

(1) The Lie algebra Der (R) of continuous derivations of R is a transitive Lie algebra 

and R can be identified with a closed ideal of finite codimension of Der (R). Moreover, 

Der (R) possesses a fundamental subalgebra Der ~ (R) such that  R~ N Der ~ (R) is a 

fundamental subalgebra of R and 

Der (R) = R + Der ~ (R). 

We remark that, in the case of a finite-dimensional, simple Lie algebra R, we have 

Der (R) = R. 

A proof of (1) depends on the classification of infinite, simple transitive Lie algebras. 

(2) The commutator ring K R of R (i.e., the algebra of linear mappings R ~ R  which 

commute with all the mappings ad ~: R ~ R  with ~eR) is equal to R or C. Furthermore, 

Der (R) is a KR-algebra and R is a K~-subalgebra of Der (R). 

By Proposition 4.4 of [12], K R is a field which is a finite algebraic extension of R; 

hence KR is contained in the complex numbers C. A proof that  KR is equal to R or • depends 

on the classification of infinite, simple transitive Lie algebras. For simplicity, we shall 

henceforth assume that  K R = R. 

Before stating (3), we recall some results which are known (and therefore require no 

proofs). Let N be the normalizer of J in L. By Proposition 6.2 of [12], IV is open in L and 

is therefore of finite codimension in L. Let U = (L/.N)* and let F be the ring of formal power 

series on the vector space U. If  F ~ is the unique maximal ideal of F, the powers F ~ of F0 

are the elements of a fundamental system of neighborhoods of 0 for the Krull topology 

on F. The ring :F endowed with this topology is a linearly compact, topological vector space. 

Let Der (F) be the Lie algebra of continuous derivations of 2' and let Der ~ (F) be 

the subalgebra of Der (F) consisting of all elements u of Der (F) satisfying u(F~ ~. 

Then {Der ~ (F)) is a fundamental system of neighborhoods of 0 for a topology on Der (F) 

and, endowed with this topology, Der (F) is a transitive Lie algebra and Der ~ (F) is a 

fundamental subalgebra of Der (iv). Let Y be a differentiable manifold whose dimension 

is equal to that  of U and let y6  Y; then (Der (F), Der ~ (F)) and (J~(Tr; Y)~, J~  Y)~) 

are isomorphic pairs of topological Lie algebras. 



ON T H E  N O N - L I N E A R  C O H O M O L O G Y  O F  L I E  E Q U A T I O N S .  l I  237 

Since R and Der (R) are Lie algebras and F is an associative algebra, the tensor pro- 

ducts R|  F and Der (R)| F are Lie algebras. There are unique structures of topological 

Lie algebras on R (~ 2' and Der (R) (~ F such that  the mappings 

R| R ~ F, Der (R)| F ~ Der (R)~ F 

are homomorphisms of Lie algebras. 

(3) The Lie algebra Der (R ~ 2') of continuous derivations of R (~ ~ is a transitive Lie 

algebra; Der (F) can be identified with a closed subalgebra of Der (R ~/~) and I)er (R) ~ F 

with a closed ideal of Der (R(~ F). Moreover 

Der (R ~ F) = (Der (R)~  ~)@ Der (F) (13.1) 
and 

Der ~ (R (~ F) = (Der ~ (R) ~ F + Der (R) ~5 F ~ | Der ~ (F) (13.2) 

is a fundamental subalgebra of Der (R~) F). Furthermore, R @ F can be identified with a 

closed ideal of Der (R ~)F). 

The decomposition (13.1) is analogous to Proposition 5.3 of [12] for the Lie algebra 

of all derivations of R (~ F; an argument similar to the proof of this proposition given in 

[12] is necessary. 

(4) Let L" be a closed subalgebra of Der (R ~)F) and M be the image of L" under 

the projection of Der (R~F) onto Der (F) given by (13.1). If R ~ F c L "  and M is a 

transitive:Lie algebra and if 

Der (F) = M + D e r  ~ (F), 

then L" is a transitive Lie algebra and 

Der (R ~ F) = L :t + Der ~ ( R ~  F). (13.3) 

A proof of (4) depends on (1) and (3). 

(5) There is a continuous hbmomorphism of Lie algebras 

r L ~  Der (R ~/~) 

such that  r = R~) F and (structure theorem) 

r ~-~RG F (13.4) 

is an isomorphism and such that  the compositio n of r and the projection Of Der (R ~ F) 

onto Der (F) given by (13.1) is a mapping ~: L->Der (F) which takes/V into Der ~ (F), 

and the mapping 

L/N ~ Der (F)/Der ~ (E) (13.5) 

induced by 2 is an isomorphism. 

A proof of (5) depends on arguments similar to those given in w 7 of [12]. 
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(6) We have 

HJ(Der(R~F) ,R~ '_F)=O for j > 0  and J ~ I ( D e r ( R ~ _ F ) , R ~ _ F ) = 0 .  (13.6) 

Since the simple, infinite transitive Lie algebras are classified, by an explicit construc- 

tion of formally integrable analytic Lie equations Rk, N k c J k ( T  ) on an analytic manifold 

X such tha t  N ~ c  Rk and Rk is formally transitive, [~k+l, ~k] C ~k, and such tha t  the pairs 

of topological Lie algebras (Roo.z, Noo.x) and (Der ( R ~  F), R ~ F) are isomorphic for all 

x EX, a proof of (13.6) follows from Frobenius'  or Darboux's  theorem with parameters.  

Finally, in order to deduce Conjecture I in the case K R ~ R ,  we see from (13.5) tha t  

L ~ ~r  satisfies the conditions of (4) and hence is a transitive Lie algebra satisfying 

(13.3). Therefore, by Theorem 13.2 of [10] and Theorem 10.5, we obtain isomorphisms 

H*(L", R (~ F) -~ H*(Der ( R (~ F), R ~ F), 

/~I(L", R ~ F ) - ~  /~l(Der ( R ~ F ) ,  R ~ F ) .  

From (13.4), Corollary 13.1, (ii) of [10], and Theorem 10.4, (iv), we obtain isomorphisms 

H*(L, I )  -~ H*(L ~, R ~ F), 

AI(L, I )  -~/71(L ", R ~ F). 

From (13.6) and the above isomorphisms, we obtain Conjecture I when KR=R. As for 

the case K~ = C, the proof of the s ta tement  corresponding to (6) requires the Newlander- 

Nirenberg theorem. 
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