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1. Introduction 

Schr6der's fourth problem is the last of four enumeration problems associated with 

various kinds of bracketing of a sum (product) with a fixed number of terms, considered 

in [12] and published in 1870. In  contrast with the earlier (1838) work of E. Catalan, in 

which the bracketing was restricted to two neighboring terms, SchrSder allowed bracketing 

of any number of terms and in the fourth problem included the effects of term reordering, 

in a way which will be clearer in the detailed description in the next  section. 

The identi ty of this problem with the enumeration of fully labeled (essentially series) 

series-parallel arrangements has been noticed in [4], a joint paper with L. Carhtz. However 

the mapping of the braeketings to series-parallel arrangements was not pursued. 

More recently, Louis Comtet, [7], has given a mapping of Schroder's bracketings to trees, 

described as arborescences bifurcante. I t  is somewhat surprising that  these trees, without 

labels, also appear in A. Cayley's landmark paper [5], of 1857, devoted mainly to the 

enumeration of unlabeled rooted trees. They appear as a kind of simplification of the main 

result and are described mainly by the phrase "every branching is at  least a bifurcation". 

The fact that  the enumeration is by number of endpoints, rather than total number of 

points, as in the main result, is not  emphasized. In  the terminology of Frank Harary and 

Geert Prins [8, p. 150], these trees are homeomorphically irreducible planted trees, that  is, 

without points of degree two; I prefer the shorter term series-reduced. 

The object of this paper, in the first place, is to give the mapping of series-parallel 

arrangements to both the bracketings of SchrSder's fourth problem (which Comtet [7] calls 

schrSderiens, for brevity) and to the Cayley-Comtet trees. The mapping is so simple as to 

arouse the hope that  it may remove the stigma from which series-parallel arrangements 

seem to have suffered in mathematical circles because of their origin in electric circuit 
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theory. Of course, the natural presumption in the electrical setting that  element position 

either in series or parallel is irrelevant, which fits perfectly for SchrSder's fourth problem, 

is disposable for more general uses; indeed its abandonment is required for representation 

of Catalan bracketing. 

Next, series-reduced planted trees are enumerated by number of endpoints other than 

the root, both without labels and with a fixed number of labels on endpoints. The enumera- 

tion is of course by George P61ya's fundamental theorem in enumeration; the fixed number 

of labels provides a bridge between the unlabeled and fully labeled cases as in [10; p. 

129 ff]. However at tention is restricted here to the two extreme cases. The procedure 

supplies two new enumerators, sn(y ) and S~(y); these are enumerators of trees with n end- 

points by number of interior points for the unlabeled and fully labeled cases. I t  turns 

out that  

SAy)=  ~: b ( ~ -  l + k , k ) y  ~ (1) 
k ~ l  

with b(n, k) an associated Stirling number of the second kind, in the notation of [10, p. 77]; 

the sum S~(1) ~S= is, effectively and apart from notation, Comtet's formula for SchrSder's 

numbers [7, eq. 6]. 

By  way of contrast, a formula is found for series-reduced planted trees, with n labeled 

points by number of endpoints (root ignored), namely 

P,~(y) = ~ (n)kb(n- 1, k)y ~-k, m = [ ( n -  1)/2] (2) 
0 

with (n)k = n(n - 1) ... (n - k + 1), the falling factorial. 

This is followed by a formal (non-combinatorial) derivation of a polynomial 

T,~(y) = ~ 2'~-k a,~y ~ = 2'~ Q,(y/2), (3) 

which, like S,~(y) has coefficients whose sums are the SchrSder numbers. In (3), the coeffi- 

cients ank are those appearing in [1], [2], and [3], and Q~(y) = Z  anky ~, is defined by QI(Y) =Y 

and the recurrence 
2 t Q~(y) = (2n - 1)yQ~_l(y ) + (y - y  )Q~_~(y) 

with the prime denoting a derivative. 

The remaining sections are a small selection of the possible tree enumerations. In  

section 5, series-reduced rooted trees, derived from their planted correspondents by  removal 

of the planting stem and rerooting, are enumerated by number of lines at  the root for both 

limiting cases. In  section 6, the same trees are enumerated by height, again for both limiting 

c a s e s .  
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2. Mappings of Schr~ider bracketings 

I t  is convenient to focus on bracketings in fixed order. Ignoring the terminal bracket, 

they are a; ab; abe, a(bc); abcd, ab(cd), a(bcd), a(b(cd)), (ab)(cd) for n--1,2,3,4 respectively. 

As is clear, the terms are in alphabetical order, the order of the bracketing is from right to 

left, and any number of terms may be bracketed. The numbers of such bracketings are 

1,1,2,5 for n=l(1)4,  which are the numbers of essentially series (or essentially parallel) 

series-parallel arrangements of like (unlabeled) elements appearing in [10, Table 6 (m =0), 

p. 142]. 

I t  may be helpful to remind the reader that  a series-parallel arrangement is essentially 

series when it is a concatenation of parts each of which is either a single element, or a 

parallel grouping of essentially series arrangements. Each essentially series arrangement 

has a unique essentially parallel mate or dual, obtained by interchanging the words series 

and parallel in its verbal description. 

The mapping of braeketings to essentially series arrangements and to series-reduced 

rooted trees seems sufficiently clear for n =4, as follows: 

:Brac]~eting sJocd ab(cd) a(bcd) a(b(cd)) (ab)(ed) 

]~ss. series 

In  the essentially series representation, the vertical lines are only for the convenience of 

representing all elements as horizontal lines; alternatively, they may be regarded as signa- 

tures of parallel connection. I t  is evident in the display that  a bracket enclosing k like terms 

is a parallel arrangement of k lines. However the representative of (b(cd)) is the essentially 

parallel mate of b(cd). 

The rules for constructing the trees are as follows: all unbracketed terms are single 

lines from the root; a bracket of k terms is a single line from the root to a point with k 

branches; a bracket (b(ed)) is the planted tree corresponding to the rooted tree for b(ed), 

and similarly for any other double (or multiple) bracket. 

I t  should be noted that  the number of terms bracketed is the same as the number of 

elements in the essentially series arrangement, and the number of endpoints in the series 
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reduced rooted trees. Of course the series-reduced rooted trees are the corresponding planted 

trees with stem removed and root relocated. 

I t  should also be noticed that  series-parallel arrangements may be mapped to expres- 

sions with two operators, say addition and multiplication. I t  is immediate that  these 

expressions divide into two equal classes, essentially additive and essentially multiplieative. 

The first few essentially additive expressions are: a §  a §  a§  a + b § 2 4 7  

a + b + e d ,  a+bed ,  a § 2 4 7  (a§ 

3. Enumeration of series-reduced planted trees by nnmhcr ot endpoints 

As noticed in the introduction, these trees have already been examined by Frank 

Harary and Geert Prins in [8]. With P,n.n the number of such trees with m like (unlabeled) 

points, n of which are endpoints, and p(x, y) the corresponding generating function: 

p(x,  y ) =  ~xmy'lom.n, one of their results may be written 

(1 +x):p(x, y ) + x - x y  = x exp [p(x, y ) +  ... +:p(x ~, y~)/n+ ...]. (4) 

The enumerant of interest for current purposes is the number of such trees with n 

endpoints and i interior points, denoted by s~,~. Since s~.~ =p~+~.~, it follows that  

s(xy, y) = p(y,  x) (5) 

where s(x, y) = E  xny*Sn.,, and equations (4) and (5) imply 

(1 +y)s(x,  y) + y  - x  = y exp [s(x, y) + ... +s(x n, yn)/n + ...]. (6) 

Equation (6) is extended to the case of labeled endpoints by means of the generating 

function 
Z 1 

s(x, y, z) - x" x,~. t _  s - ~  u ] !  n.~.j  

with s,.~.~ the number of trees with n endpoints, ~" of which are labeled with distinct labels, 

and i interior points; ] is a fixed number (which may be null) and of course ] = n  for n~<~'. 

By the version of Polya's theorem given in [10, p. 131] it  follows that  

(1 + y)s(x, y, z ) + y - x - x z  -~ y exp Is(x, y, z )+ ... + s(x ~, y~)/n + ...]. (7) 

Though no use is made of it here, it  is worth noting that  (6) and (7) imply 

[(1 +y)s(x,  y, z) + y - x - x z ]  exp s(x, y) = [(1 +y)s(x,  y) + y - x ]  exp s(x, y, z). 

With all points labeled, ]=n ,  the generating function (s(x, y, z) becomes 

--~-. y 8n.~.~ = S(y, w), w =  xz. 
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Considering the new variable w = x z  as independent of x and taking the limit of (7) for 

x-~0, it is fotmd that  
(1 +y)S(y ,  w) + y - w  = y exp S(y, w) (8) 

with S(y, w ) = Z  Sn(y)wn/n!, the exponential generating function of Sn(y), and Sn(y) the 

enumerator of series-reduced planted trees with n labeled endpoints by  number of (un- 

labeled) interior points. 

For y = l ,  s(x, 1)--s(x), S(1, x ) - S ( x ) ,  (6) and (8) become 

2s(x) + 1 - x  = exp [s(x) + ... +s(x~)/n + ...], (9) 

2S(x) + 1 - x  = exp S(x), 

which apart  from notation are, respectively, equations (77a) and (85) of [10, pp. 141,142]. 

Note that  (85) is transcribed by  Ao(z ) +z=22(z) .  

Note also that  the first of (9) is Cayley's result [5], mentioned in the introduction; 

Cayley's B(x) corresponds to s(x). 

Thus, the present enumeration agrees with the series-parallel enumeration so far as the 

latter goes�9 However the inclusion of interior points refines the enumeration through the 

enumerators sn(y) and Sn(y) of trees with n endpoints, unlabeled and fully labeled, by  

number of interior points. 

To determine s~(y), note first tha t  s(x, y) =xsi(y ) + x~s~(y) + .. . .  Hence 

1 ~  oo n Xn 
8* ~ - -  * - s( x'~, Y') = 5 ~ (Y) n - 5 Cn(s*(Y) . . . . .  sn (y)) 

1 n 

with * si (y) =si(y) =y,  s*(y) =2s2(y ) +sl(y~), 

s*(y) = ~ dsa(ye), de= n 
d / n  

with the sum over all divisors of n (including 1 and n), and with C~(t i . . . . .  t~) the cycle indi- 

cator of the symmetric group. For  the generating ftmction of O~ see [10, p. 68]�9 

With these results, equation (6) may be rewritten as 

�9 $ X n n" (1 + y) s(x, y) + y - x = Y 5  C~(s*(y) . . . .  s~(y)) / , 
o 

or equating coefficients of x n, with ~m the Kronecker delta 

(1 +y)sn(y ) - t - Y ~ o - ~ l  = YCn(s~(Y) . . . . .  s*(y))/n!. (10) 

Thus So(y ) =0, si(y) =s*(y) = 1, 

2(1 -t-y)s~(y) = yO2(s *(y ), s*(y) ) = y(2s2(y ) § sl(y ~) § s~(y) ) 

2s~(y) = 2y. 
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Writing sn(y ) =• 8(n, ]c)y ~, the coefficients s(n; k) for n=2(1)10, ]~=1(1)~-1 are as 

k ~ n  2 3 4 5 6 7 8 9 10 

follows 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 1 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 

2 5 10 16 24 33 44 

3 12 29 57 99 157 

6 28 84 192 382 

11 66 231 615 

23 157 634 

46 373 

98 

The sums sn(1) appear in [13; seq. 558]; the range is 2(1)20. I t  is interesting to notice (I 

omit the proof) that  s(n, n - l )  is the number of completely bifurcative rooted trees with 

n endpoints associated with the Wedderburn-Etherington bracketing (cf. [6; I, 68]). 

Comtet's table for these numbers, n = 1 (1)26 is sequence 298 of [13]. 

An alternative to (10) may  be obtained as follows. First (6) is equivalent to 

(1 +y)  s(x,y)  + y - x = e x p  ~s*(y)  x ' /n  
1 

with s*(y) as above. The derivative of this with respect to x is 

(1 + y) sx(x, y) - 1 = Z xn-1 s*(y) [(1 + y) s(x, y) -5 y - x], 

which corresponds to 

8* n(1 + y) s~(y) - ~1 -- (1 + y) ~, s~(y) s~-J(y) + ys*(y) -- ~_~(y). (11) 
1 

All numbers appearing in the table above have been checked by this relation. 

For the enumerators Sn(y), things are a little simpler. Since 

( x ~' x" ) x" 
exp  ylz--}-ys~.-}-...+yn--~. -5... =o~:Yn(Yl . . . . .  Yn)~.~ 

is the equation of definition for Bell multivariable polynomials, it follows from (8) tha t  

(1 + y) Sn(y) + Y~no - r = Y Yn(SI(Y) . . . . .  S~(y) ). (12) 

Thus S0(y ) = 0, Sl(y  ) = 1, S,(y) = y, Sa(y ) = y -5 3y *, and it may  be guessed that  

n--1 
,9,(y)---- ~ b ( n -  l -s k, k ) y  k, n = l , 2  . . . .  (13) 

0 
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with  b(n, Ir the associated Stirling number of the second kind, defined in [10, p. 77]. This 

is proved as follows. Differentiating (8), with partial derivatives indicated by  suffixes, it 

is found that  

yS~(y, w)D(y,  w) = S(y, w ) - w ,  

S~(y, w)D(y,  w) = 1, 

wi th  D(y, w ) = l + w - ( 1  +y)S(y ,  w). The first of these is equivalent to 

y(1 +y)Sy(y,  w)D(y,  w) = 1 - w - D ( y ,  w). 

Hence 

(1 - xy )Sw(y ,  w) - y ( 1  +y)S~(y, w) = 1, 

or, with a prime denoting a derivative, 

S~+l(y ) - nyS,~(y) - y(1 + y) S'~ (y) = ~0. (14) 

Writing S,~(y) = Z  a(n, k)y  ~ it  follows from (14) that  

a(n + 1, k) =/ca(n,/c) + (n - 1 + k) a(n, k - 1), 

which is the recurrence [10, p. 78] 

b(n + l ,  It) = kb(n, k) + n b ( n - 1 ,  / c -  l ) 

with n replaced by  n - 1  +/c, so that  a(n, k) = b ( n + k - 1 ,  It). 

I t  should also be noticed (I owe this remark to Neil Sloane) tha t  

S,~(y) = Z,~(y . . . . .  y) 

with Zn(z 1 . . . .  , Zn) the mnltivariable polynomial for derivatives of inverse functions, in the 

notation of [11, p. 180]; (the substantiation of this statement by  table 5.2 [11, p. 181J 

needs the following corrections: the coefficient of z4z~ is 378, not 278, a term 2100zsz~ is 

missing, and 15400z~zl should be 15 400z~zl). 

I do not take space to derive the curious identi ty 

(1 +x)Zn(xS~(y) . . . . .  xSn+l(y)) = xS,~+l(y(1 +x)),  

which for x = 1 becomes 

2Z,~(S~(y) . . . . .  S,~+l(y)) = S~+1(2y ). 

In  contrast with this result for fully labeled endpoints, consider the case of all points 
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labeled. 

points, j of which are labeled, and n endpoints. Then 

(1 +x+xz)p(x ,  y, z) +x(1 -y ) (1  +z) = x(1 +z) exp [p(x, y, z) + ... 

+p(x ~, y=)/n + ...]. 

Omitting details, this leads to 

(1 +w)P(y,  w) + w - w y  = w exp P(y, w) 

As above, ~(x, y, z ) = Z  pm,.,jxmynz~/j!, with pm,~,j the number of trees with m 

(15) 

(16) 

with P(y, w) = Z  P.(y)w=/n! and P,~(y) the enumerator of series-reduced planted trees with 

n labeled points by  number of endpoints (other than the root). I do not take space to prove 

that  
N 

P.(y) = ~ (n)~ b ( n -  1, k)y~-~, 2Y = [ ( n -  1/2)], (17) 
0 

with (n)k = n ( n - 1 ) . . .  ( n - k  + 1), the falling factorial. The first few of these polynomials 

are 

n 1 2 3 4 5 6 7 

P~(y) y 0 3y ~ 4y a 60y a + 5y 4 360y 4 + 6y 5 3 150y 4 + 1 050y 4 + 7y 6 

Note that  P=(y) =0 (mod n); it  may  also be shown that  

Pn+r(1) = nP~(1) +n(n - 1)Pn_l(1), 

with p an odd prime. 

(mod 1o) 

4. Polynomials T.(x) 

These are polynomials arising from the following formula given, apart  from notation, 

by  SehrSder in [12] 

Sn+l=~.~q(n+r,r) (--1)s 2n 1 2=_r_ 3 (18) 
0 0 

with S(n, k) the Stirling number of the second kind. The sum on the right is a convolution, 

which suggests the two generating functions 

S*(x) = ~ S(n + r, r) x" 
0 

(:) Cn(x)__~xr~(_l)S 23 1 2r_8. 
0 0 
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The evaluation O~(x) = (1 -z)2n+i(1 - 2 x )  -1 follows from interchange of the order of summa- 

tion, and it  is shown in [1, p. 280] tha t  

S*~(x) = (I -x)-2"-IQ,,(x) (19) 

wi th  Qo(x)= I,  Qi(x)=x,  and, with a prime denoting a derivative, 

2 t . . . .  Q,(x) = ( 2 n - 1 ) x Q , ~ _ l ( x ) + ( x - x ) Q , - l x ) ,  n = 1, 2, 

The coefficients of Qn(x) are denoted by  ank in [1], and and = (~no, ank = kan-i.~ + (2n - k) an-l.~:-i. 

I t  is worth noting here tha t  Qn(x) is the enumerator  of trapezoidal words with n elements 

by  number  of distinct elements. Trapezoidal words are such tha t  the i th element takes the 

values 1, 2 . . . .  , 2 1 - 1 ;  for n = 3, the words, classified by  number  of distinct elements, are 

111; 112, 113, 114, 115, 121,122, 131, 133; 123, 124, 125, 132, 134, 135. Thus the enumera- 

tor  is Qa(x) = x + 8x ~ + 6x a. 

Since the product  S*(x)C,~(x) is Q~(x)(1-2x) -i ,  it is apparent  tha t  

n 

S~+l = 7. a.~ 2 ~- ~ 
1 

n 

T,~(x) = ~ a,~k 2 ~- k ~ = 2 n Q,,(x/2), 

and if To(x ) =1,  

n = 1, 2 . . . .  
1 

then Tn(l ) =Sn+ i. 

The following short table of coefficients Tn~ is included for concreteness 

1 

2 

3 

4 

5 

1 2 3 4 5 

2 4 8 16 

2 16 88 416 

6 116 1 312 

24 888 

120 

(20) 

Note tha t  by  (20) and the recurrence for Qn(x) 

T.(z) 2 ' = (2n--1)xTn_i(x) + (2x - x  ) Tn- i (x )  

and, if T~(x)=xt~(x), 

2t=(l+x) =P,+l(x) ,  n = 1, 2, ... 

with P~(x) the polynomial associated with fully labeled series-parallel networks, appearing 

in [10. p. 143]. 
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5. Series-reduced rooted trees by lines at the root  

As mentioned before, the rooted trees in question are obtained from the corresponding 

planted trees by removing the planting stem and rerooting. Their enumerator for trees 

with n like endpoints by number of lines at  the root is denoted/n(Y); the corresponding 

enumerator for n labeled endpoints is Ln(y ). 

The first few values of ln(y) may be found by inspection of the trees; thus l~.(y)=y~, 

/8(Y) =Y~ +ya, 14(y ) =3yZ +ya +y4. By  definition of series-reduced trees, it is apparent tha t  

there are at  least two and at  most n lines at the root of a tree with n endpoints. Moreover, 

each line at the root is the stem of a planted tree with ] endpoints, for which there are sj 

choices (sj=sj(1)), but if there are k lines each with ] endpoints, the number of choices is 

( s j + 2 - 1 ) ,  the number of combinations with repetition of sj things,/c at a time. Thus 

From the identi ty 

it  follows, writing ,~I(Y)--sly=Y, ;tn(Y)=SnY+/n(Y), n = 2 ,  3 ..... and ,~(x, y ) = N  1 xn;tn(y), 

tha t  
1 + 2(x, y) = exp ~ s(x ~) yk//c -- exp ~ an(y) xn/n (21) 

1 1 

with an(y) =X~ln dsay e, de =n. 

Equation (21) implies the two results 

~n(Y) = Sn(al(y), ..., an(y)), (22) 

n2n(Y) = an(y) + ~ aj(y)~n-j (y), 
j = l  

with Sn(t 1 ..... tn) the cycle index of the symmetric group. 

With In(x)=Z ln~x ~, the coefficients for n=5(1)9 are: 

~ Tb 

5 

6 

7 

8 

9 

2 3 4 5 6 7 8 9 

7 3 1 1 

20 8 3 1 1 

55 22 8 3 1 

162 63 23 8 3 

477 188 65 23 8 

1 

1 1 

3 1 
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I t  is clear t h a t  ln~ = ln,,_l = 1, I n.._2 = s3 + 1 = 3, n = 4, 5 . . . .  ; for any  k >/2, In.,-k is monotone  

increasing for n = k + 2 ( 1 ) 2 k  and/~+j .~+j=l~.~ ,  ]=1,  2 .. . . .  Thus  the  table above m a y  be 

t runca ted  by  the  following table for l . . . .  k 

k \ n - k - 2  

2 

3 

4 

5 

6 

0 1 2 3 4 5 

7 8 

20 22 23 

55 63 65 

162 188 196 

477 564 590 

66 

195 199 

598 600 601 

Turn  now to the enumerator  Ln(y ) (fully labeled endpoints).  The ident i ty  corresponding to  

(21) is 
1 +L(x,  y) = exp ( y S ( x ) ) - y S ( x )  (23) 

S(x) =F, Snxn/n!. Thus LD(y ) =0. I t  follows easily f rom (23) with L(x,  y ) = Z  L,~(y)x'~/n!, 

t h a t  
L~(y) § ~ Y~(yS 1 . . . . .  ySn), n = 1, 2 . . . .  , (24) 

in+l(y)~y~o(~)k.~j+lin_j(y)2ffy2~(~)~.~j+lSn_j, n : 0 ,  X . . . . .  

I n  the first of (24), ]z n is a Bell polynomial;  in the second the last t e rm is y~.L(n-t-1, 2) or  

as will appear  below, y2(Sn+l + nSn)/2. From either of equat ions (24), it m a y  be found tha t :  

.L2(y ) = y2, 1,3 (y) = 3y2 + y3, .L4(y ) = 19y 2 + 6y 2 + y3. 

Following Comtet  [6; I ,  p. 144], write 

n 

Y~(yS1 . . . . .  ySn) = Z Y~ Bn.~(S1, $2 . . . .  ), 1 
so tha t  

L(n,  k) = B~.~(S 1, S~ . . . .  ), Ic =2(1 )n .  

Then  first, by  a known formula [10, lo. 48] 

and by  diHerentiation of the  second of equations (9), 

(1 +x)S'(~) -- 1 + 2S(~)s'(x) (25) 

(the prime denotes a derivative); hence 

Sn+l + nSn=~no + 2 ~. (~.) SjSn+l_,=~,~o + 2L(n  + 1,2). 
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Thus L(1,2) =0 and 

2L(n+l,2) =Sn+l+nS.,  ~=1,  2 . . . . .  

l~ultiplying (25) through by Sk(x) to get 

(1 + ~) ~k(~) ~,(~) = S~(z) + 2Z~+:(z) S'(z), 

and noting that DSk(x) --kS~-X(x)S'(x), D =d]dx, it follows that 

(: +~) 1)S~+:(z)/(~ + x) = S"(~) +2s~+~(~)/(~ +2). (26) 

Using the identity [II, p. 180] 

and its immediate consequence 

DS~'(x) =1~! ~, .5(n+ 1,1~)xn/n!, lc=2(1)n 

in (26) leads to the recurrence 

L (n+ l ,  k+l)+nL(n,  ~+1) EL(g, k) +2(k+I)Z(n+l , /~+2) ,  (27) 

which holds for k~I(1)n  if L(n, l) is taken as S~. !%re that the case ]c =1 then gives 

4L(n+l ,  3) = L ( n + l ,  2)+nL(Ic, 2 ) -S~  

or, since 2L(n+ 1, 2) ---~tn+:+nSn, 

8L(n + 1, 3) = S.+ 1 + 2(n - 1 ) 2.  + n(n - 1) Sn_:. 

Similarly it is found that 

48Z(n+ 1, 3) ~ S,~+:+3(n-2)S,~+(3n2~9n+4)S,~_l+n(n-1)]n-2)Sn_2. 

Working from the upper end, it is apparent that L(g + 1, n +1)-~L(n, n)=Z(2, 2)= 1. 
Then 

L(n + l, n) ~ L(n, n - 1 )  + 2nL(n + l, n + l ) -L(n,  n) = L(n, n - 1 )  + n -~ (n ~ 1) 

the last step by the boundary condition L(3, 2) =3. 

Omitting details, two further results are 

n + l  n + 2  
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in which the numerical coefficients are instances of the familiar numbers b ( k + j ,  j). Thus 

it may be guessed tha t  
k 

\ i + ~ / b(~ + i,i), (28) 

which is readily verified by (27) and the reeurrenee for b(n, k) quoted above. Note that  the 

sum starts with zero only to include Z(n, n)=b(O, O)--1; for k>O, b(k, O)=0. Of course, 

(28) is equivalent to 

~ - '~ (n+j -1 )o  \ k - 1  L(n, k) = ~ b ( n - k + i , j ) ,  (2Sa) 

and 

" - ~ (  + J -  1) b ( n _ b + j , j ) "  L , (y)=  yk ~ n 
k=2 j~0 k - 1  

Additional values of L(n,  k) are as follows 

n ~ k  2 3 4 5 6 7 8 
I 

5 I 170 55 10 1 

6 [ 1 966 645 125 15 1 

7 27 860 9 226 1 855 245 21 1 

8 467 244 155 764 32 081 4 480 434 28 

6. Series-reduced rooted trees by height 

The height of any tree, issueing from the root, is the number of lines in the longest 

path from the root to an endpoint. With several lines at  the root, the height of the tree 

is the maximum of the heights of the several trees. If  the enumerators by height are de- 

noted hn(y) and Hn(y) (for the unlabeled, and labeled cases, resp.), the following table may 

be found by inspection: 

n 2 3 4 5 

h,~(y) y y + y~ y + 3y~ + y a y + 5y2 + 5ya + y 4 

H,~(y) y y + 3 y  ~ y + 1 3 y ~ §  a y+50y2  +125ya +60y  ~ 

Of course h~(I)=s~, H~(1)=S~. 

These results may be verified by classifying the trees by their specification, that  is, 

by the partition i v', 2 v', .... n vn of n, with p~ the number of planted trees with i endpoints 

issueing from the root; note that  Pl  + P2 + ... + Pn >1 2, Pl  § 2P2 § ... + npn =n.  For n =2, 3, 4 

the specifications are IS; 21, 18; 31, 22; 212; 14. Writing h(1 vl ... n v-, y) for the height enumera- 

tor of (unlabeled) trees with specification 1 v' ... n v~ it is clear that  

h ( l V ' , y ) = y ,  h ( lV '2V ' , y )=y  2, T , = l , 2  . . . .  
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l~ote that  in the second all 1o 1 (with one endpoint) have height one, all i~ trees have height 

2, that  is, height enumerator y~=yh~(y). Similarly the height enumerator of a (]01anted) 

tree with ] endpoints, issueing from the root, is yhj(y) and h( l"2~? ", y) =yhs(y). Thus 

ha(y) = h(13, y) +h(22, y) + h(211, y) +h(1 111, y) 

= yh3(y ) +2y2 + y = y + 3y2 + y3, 

hs(y ) = h(14, y)+h(23, y)+h(l~3, y)+h(12 ~, y)+h(132, y)+h(15, y) 

= yha(y ) + 2yha(y ) + 2y2 + y = y + 5y~ + 5y3 + ya. 

l~orn=6 , the te rmh(3  ,y)requiresspecialconsideration, sinceh(3 ,1) _Sa+P3-1  = =p3+l. 
\ P3 

But  it  is easy to see that  

h( 3~*, Y) = Y2 + Psy3, r3 = 1, 2 . . . .  , 

since there is only one way of choosing 1Oa trees of height 2. I t  is a little harder to show 

that  

and 

y a + k ] _ l ] y ~ ,  ~ = 1 , 2  . . . . .  

Since h(6, y) = yhs(y ) = y~ + 9y 3 + 15y 4 + 7y 5 + yS, the numbers in the binomial coefficients 

appearing in h(67, y) are recognized as 9, 9 + 15, 9 + 15 +7.  Since a similar remark applies 

to its predecessors, it  is easy to guess the structure of h(n j, y), n = 1, 2 ..... which I have 

not  taken the time to prove. 

The dominance relation implicit in height enumeration is accommodated by an opera- 

tor o, such that  
yS' oyS'.., oyJ~ = y~ 

with J = m a x  (]1 ..... ?'~). Thus a tree of specification 43 is evaluated by  

yha(y ) oyha(y ) = (y2 + 3ya + ya) o (y2 + y3) = y~ + 7ya + 2ya. 

The coefficients h(n, k) of h,(y) for n--6(1)10 are: 
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2 3 4 5 6 7 8 

15 

6 

7 

8 

9 

10 

1 9 15 7 1 

1 13 37 29 9 1 

1 20 84 97 47 11 

1 28 175 286 193 69 

1 40 354 788 690 333 

1 

13 1 

95 15 

I t  is apparent that  h(n, n - l ) = 1 ,  h(n, 

fled that  

h ( n , n - 3 )  = 2 ( n - 1 ) ( n - 5 ) + 5 ,  n = 5 ,  6 ..... 

The sequences h(n, j), j = 2 ,  3, 41 5 do not appear in [13]. 

For the labeled ease, the formula similar to the first of (24) is 

H~(y) = y r~( Hl (y ) ..... H~(y) ) -yLr~(y) 

with the products in the expansion of Yn evaluated by the operator o; ex gratia 

Hl(y ) o H~(y) = H~(y) o H~(y) = H~(y), 

Ha(y) ella(y) = (y + 3y ~) o (y + 3y~) = y + 15y 2. 

n- -2)  = 2 n - 5 ,  n = 2 ,  3 .... , and it may  be veri- 

The coefficients H(n, Ic) for n=6(1)9 are 

1 201 1 080 1 110 360 

7 i 875 9 352 11 170 10 290 2 520 

1 4 138 84 917 229 936 218 400 102 480 

1 21 145 820 521 3 370 941 4 372 704 2 948 400 

7 8 

I t  is evident that  H(n, n -  1)=n!/2, and that  

20 160 

1 103 760 181 440 

Re|erences  

[I]. C ~ z ,  L., ~ e  coefficients in an asymptotic e x p ~ i o n .  Proc. Amer. -~ath. Soc., 16 
(1965), 248-252. 

[2]. The coefficients in an asymptotic expansion and certain related ntunbers. Duk6 
.Math. J., 35 (1968), 83-90. 

H(n, n - 2 )  = n i l ( n - l ,  n - 3 ) + n H ( n - 1 ,  n - 2 ) ,  n ---5, 6 .... , 

Also It(n, 1) =1, and H(n, 2) =B,~-2 ,  n = 2 ,  3 .... , with B,~= Y~(1 ..... 1), a Bell number. 



16 j .  RIORI)AI~ 

[3]. - -  Note on the numbers of Jordan  and Ward ,  Duke Math. J., 38 (1971), 783-790. 
[4]. C~a~uTz L. & I~IORDAN, J., The number  of labeled two-terminal  series-parallel networks.  

Duke Math. J., 23 (1956), 435-446. 
[5]. CAYLEY, A., On the theory of the  analyt ic  forms called trees. Phil. Mag. 13 (1857), 172- 

176; Collected Papers No. 203, Vol. 3, 242-246. 
[6]. CO~TET, L., Analyse Combinatoire, Tomes I ,  I I .  Presses Unlversitairos de France,  Paris,  

1970. 
[7]. - -  Sur le quatrieme probleme et  les nombres de SchrSder. C. R. A c ~ .  Sci. PaNs, 

Her A-B,  271 (1970), 913-916. 
[8]. ~ Y  F.  & PRI~S, G., The number  of homeomorphical ly irreducible trees and other  

species. Acta Math., 101 (1959), 141-164. 
[9]. K~iSD~L, W.,  ~ b e r  Zerfiillungen, Monatsh. Math., 55 (1951), 20-27. 

[10]. RIORD~,  J. ,  An Introduotion to Combinatorial Analysis. John Wiley and Sons, New York, 
1958. 

[11]. - -  Combinatorial Identities. John Wiley and Sons, New York, 1968. 
[12]. SC~RSDv, R, E., Vier eombinatorische probleme. Z. Math. Physik, 15 (1870), 361-376. 
[13]. S L o ~ ,  N. g. A., A Handbook o] Integer Sequences, Academic Press, N.Y., 1973. 

l~ecelved October 6, 1975 


