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0. Introduction 

G. W. Mackey developed a general method for analyzing the dual of a locally compact 

group G (always second countable) in terms of the dual of a closed normal subgroup N 

and the cocycle duals of subgroups of G/1V, provided tha t  the action of G on the dual of N 

is sufficiently regular [9]. Ill this case regularity means tha t  every ergodic quasi-invariant 

measure under the action of G is concentrated on an orbit, which means tha t  the associated 

quasi-orbit is transitive. The theory of virtual groups was introduced by  Mackey for the 

purpose of dealing with the less regular case [11, 12]. Section 9 of this paper gives proofs 

tha t  the theorems of section 8 of [9] remain valid in the more general setting. I t  should be 

remarked tha t  this leaves work yet  to be done before a complete understanding of the 

general ease is achieved. For instance, one of the theorems establishes a one-one corre- 

spondence between part  of the dual of G and the co-dual of a certain virtual group for a 

certain eoeyele co, but  an example due to C. C. Moore shows tha t  the lat ter  can be empty  

[1]. This example is discussed in section 10 of this paper, and shows tha t  representations 

of virtual groups need not decompose into pr imary  representations. 

The organization of the paper is as follows. The first six sections deal with the machinery 

of inducing representations from one group action to another. More particularly, sections 

1 and 2 give preliminary material  on 1-Iilbert bundles and bundle representations of group- 

oids. In  section 3 this is used to define induced representations, and it  is proved tha t  the 

definition given is an extension of the definition for subgroups. One novelty here is the 

proof of Proposition 3.4, which uses no special choice of Radon-Nikodym derivatives. In  

section 4 a lemma needed in later sections is proved, concerning intertwining operators. 
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Then sections 5 and 6 deal with virtual group versions of inducing in stages and the sub- 

group theorem. Next,  section 7 shows that  cocycle representations of a groupoid can be 

connected with ordinary representations of another groupoid, just as for groups except 

more easily done. Section 8 deals with material related to section 7 of [9] as well as a lemma 

which allows us to deal only with invariant analytic sets even when ~r is not completely 

smooth. Then section 9 deals with the extensions of results of section 8 of [9], and section 

10 has examples and applications. 

We give here some notation and terminology which will be used throughout the paper: 

If  G is a groupoid [15, section I] then G (~ will denote the set of units of G and G (2~ = {(x, y} E 

G • G: xy is defined). The functions r, d: G ~ G  (~ are defined by r(x)=xx -1, d(x)=x-ix  [15, 

section 1]. If ~0 is a groupoid homomorphism, q~(2)= (~0 • (2). If :H and :K are Hilbert 

spaces, s ~ )  is the space of bounded linear operators from ~ to ~ .  The letter R will 

be used for commuting rings or sets of intertwining operators, such as R(L, M)--  

{T: T: G(~ s  ~(M)) with T(r(x))L(x)=M(x)T(d(x)) for all x). If  2 is a measure 

and / is Borel , / , (~)(E) =~(/-I(E)). Also [~] is the measure class of 2. The term measurable 

will be used for functions measurable relative to the completion of a given Borel measure. 

Measures are Borel and spaces are Bore1 spaces, i.e. with an assumed or given a-algehra of 

subsets. The material on analytic and standard Borel spaces in [1, 8] is assumed, as is every- 

thing in [9, 15]. l~ote: Use the definition of groupoid in [15] rather than the one in [16]. 

1. Operations on Hilbert bundles 

Let  S be an analytic Borel space and let :g be a function assigning to each sES a 

Hilbert space denoted either :H(s)or ~4~. Form S~e~ t=( ( s , x ) : s eS  and xe~/~}. (If ~H 

happens to be constant, taking the value ~K everywhere, then S ~ - ~ = S  • :~.) Let  z be 

the natural projection of S ~ - ~  onto S. Then a section of S~-~4 is a function from S to 

S~e ~/with ~o / equa l  to the identity on S. If  / is a function from S to (J {~/(s): s ES) such 

that  for each seS , / ( s )  E ~t(s), i . e . / eH ,~s  ~(s), then we can define a section/+ by/+(s) = 

(s,/(s)), i . e . / + = i  • Conversely if / is a section of S ~  ~,  a n d / -  is defined by (s,/-(s)) = 

/(s), then ]-eIIs~s ~4(s). There is also an obvious Hilbert space structure on each (s) x ~/(s) 

making (s, x ) ~ x  an isomorphism with :H(s), and then (/+(s): (s, x))=(/(s): x) holds identi- 

cally. Thus while sections of S~- ~H and elements of Hs~s :g(s) are not  really the same, they 

are tied so closely that  there should be no confusion if we treat  them as if they were the 

same. We shall thus refer to elements of H ~s  ~/(s) as sections of S~-~H unless there is a 

real need to be careful. After the definition of induced representation, Definition 3.5, we 

shall return to this point again, for clarification. A tti lbert bundle over S is such a function 
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:H on S together with an analytic Borel structure on S~e ~H satisfying these two conditions 

[13]: 

For  E ~ S ,  ~- I (E)  is Borel iff E is Borel. 

There is a sequence/1, ]2 . . . .  of sections such tha t  

(a) for each n, (s, x)~(/~(s): x)=]'~(s, x) is Borel, 

(b) for each m and n, s~(]m(s):/~(s)) is Borel, 

(e) ~ and the functions ]~ separate points. 

We m a y  also refer to S~+ :H as the bundle, with the Borel structure implicit. Notice tha t  

multiplying the sections ]~ by  non-vanishing scalar valued Bore] functions does no harm, 

so tha t  the functions s-+Hf=(s)[ [ can be taken as small as may  be convenient. We say two 

bundles over S with functions :/41, :H2 are equivalent if there is a Borel isomorphism ~ of 

S~:H1 onto S~-~H2 such tha t  for each sES, (s, x)-+~(s,x) is a uni tary isomorphism of 

{s} • ~l(s) onto {s} • ~H2(s). Here we don ' t  want  to go from one fiber to another, though 

later we will. The function taking sES to dim (~(s)) is Borel and S is partit ioned by  {S~, 

So, $1, $2 .. . .  } where S=={seS: dim (~(s)) =n}.  I f  ~ has dimension n for n =  ~ ,  0, 1, 2 . . . .  

we can define ?H'(s)=3C~ if seS= and give S ~ e ~ '  the Borel structure B' e l s e •  3s 

So • ~0 U $1 • 3~1 U ..., a disjoint union. This is easily shown to be a tI i lbert  bundle, and it is 

in fact isomorphic to the given bundle (~H.. B): since S~e ~ is analytic, countably many  

Borel functions which separate points determine the Bo'rel structure, so a function into 

S~- :H is Borel iff its compositions with ~ and the functions ]~ are Borel. Hence a section g 

is Betel iff s-~(/~(s): g(s)) is Borel for n = l ,  2 ... . .  Therefore a sum of two Borel sections is a 

Borel section and a multiple of a Borel section by  a scalar valued Borel function is a Borel 

section, The Gram-Schmidt  process applied to the sections ]I, ]~ . . . .  in a pointwise manner  

yields a sequence of sections gl, g~ .. . .  for which properties (a), (b) and (e) hold, and for 

each s the non-zero elements of {g=(s): n = 1, 2 . . . .  } form an orthonormal basis of ~/(s). 

Let  hx(S) be the first non-zero g=(s), h2(s) the second, etc. Then for seSn, hl(s ) . . . . .  hn(s) is 

an orthonormal basis of ~H(s), and (s, (c 1 ..... %))~(S, Clhl(s)+... +c~h~(s)) is an equi- 

valence of S~ • ~ with S~r  (~HIS~). I t  follows tha t  S~e :H is standard if S is standard. 

I f  X is another analytic space with ~o: X--->S a quotient map and s - ~  is a Borel func- 

t ion from S to finite measures on X such tha t  A~ is concentrated on ~o-l(s) for sES, then 

we can define ~H(s) =L~(2~) and make this into a Hilbert  bundle by  giving S~- ~H the smallest 

Borel structure for which ~r is Betel  along with all the functions (s, x)-~ (]: x)~ for bounded 

Borel ], where (/: x)s is the inner product in L~(2s) [15, p. 265]. 

There are m a n y  ways to build new bundles out of old ones. The condition required 
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on  the  projection is usually trivial to  verify. I f  S1% ~HI, $2 ~ ~H2 .. . .  are bundles and  the  

base sets $1, $2 ... .  are pairwise dispoint, then  Sx~e ~H1 U $2~- ~H~ U ... is a bundle under  the  

disjoint union Borel structure.  I f  S~- ~ is a t I i lber t  bundle and T is a Borel set in S, then  

~r-l(T) is a Hilbert  bundle over T under  the relative Borel structure.  I f  T is any  analyt ic  

space and g: T ~ S  is Borel we can pull ~ / b a c k  to a Hilbert  bundle over T by  using ~Hog: 

let {El, E 2 . . . .  } be a countable generating family of Boret sets in T which includes the  

inverse images of a generating family for S, let /1, /2 . . . .  be the appropriate  sections of 

S~-~H, and form the  sections hm.~=~E,~(/,~og) of T~-(:Hog). Take the smallest Borel struc- 

ture  on T-~(~Hog) for which the projection is Borel and (t, x)-> (hm.=(t): x) is always Borel. 

The direct  sum of Hilbert  bundles is defined as follows: suppose ~H(s) = ~Hl(s) | :H2(s) | ... 

for s E S  and let S~-:H have the smallest Borel s t ructure  for which (s, x)-+(s, x=) is always 

Borel, where x~ denotes the  component  of x in ~ ( s ) .  The necessary sections m a y  be got ten  

as follows: choose sections/~1,/~2 . . . .  for S-x- ~/~ so t h a t  for each s and k the sequence h k = 

(Ilk(s),/2k(s) . . . .  ) is in ~H(s) (by making  them small enough, say  [[/~k(s)ll < a/~ everywhere). 

Then hi, h 2 . . . .  will be wha t  we need. 

I f  S~-~H is a bundle and E is a Borel set in S, define (~vE~H)(s) to  be ~H(s) for s E E  and  

{0} otherwise. The Borel s t ructure is taken to  be t h a t  of ~-X(E) U (S\E).  This is a disjoint 

union of two previous constructions, and we ment ioned earlier t h a t  any  ~ / i s  isomorphic 

to  a direct sum of bundles q s ~  where : ~  is constant .  I f  E~= U ~<<~<o~ S~, n = l ,  2 .. . . .  we 

also have :H isomorphic to  |  Notice finally t h a t  if El, E x . . . .  are disjoint Bore1 sets 

with union E, then ~ H  =~ @ =~>z@E~:H). 

Now let S~- ~H1, S~e ~H2 be bundles and define ~/(s) = ~H~(s)| ~H2(s) for s eS.  I f  :K~, ~2 

are constant  and E~, E 2 are Borel, then for ~H~=~g~ ~ ,  : H z = ? ~  ~ ,  we have ~H= 

~vz~a~:E~| Thus in this case S~-~H has a good Borel structure.  I n  general we can 

reduce to  a direct sum of such tensor products  by  distr ibuting products  over sums, so we 

can give S ~  ~ / a  good Borel structure.  

Let  S ~ - ~  be a t t i lber t  bundle and let ~ be a a-finite Borel measure on S. We will 

denote by  Lz(X; :H) the  t t i lber t  space of sections ] of S~-~H such tha t  ~ ,  

with the  natura l  inner product .  These are the L~-seetions of ~H, and L~(2; :H) is wha t  is 

called the  direct integral. For  a constant  bundle the  nota t ion  is compatible. 

Now to  form direct images of Hilbert  bundles, suppose p:  S-+ T is Borel, where S and  

T are analytic,  and suppose t-+~t is a Bore1 function to  finite measures on S with ~t con- 

centrated on p-~(t). Then if S~e :H is a I-Iilbert bundle we can define :p,(~H)(t)=L2(2~; ~) 

for t e T. The nota t ion  p.(:H)(t) suppresses the  measures ~t bu t  should cause no confusion 

in our use of this construction. I f  :H is a constant  :K, p.(~H)(t)~=L~(2t)| :K, and we know 

this has a good Borel structure.  I n  general, let B be the  smallest Borel s t ructure on T ~+p.(~H) 
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for which the project ion is Borel and  (t, x)~%vI(t , x) = (x: / ) t  (the inner product  in L~(lt; :H)) 

is Boret whenever  / is a bounded  Borel section of S ~  ~H. Notice t h a t  the funct ion / is al- 

ways  in LP(At; ~)  because bounded functions are in L 2 for finite measures. To show t h a t  this 

renders T~p,(:H) a Hilbert  bundle, we begin with the  case tha t  ~/=9E(3. Then we have 

t he  bundle of Hilbert  spaces L~(cfEtt) over T. This is okay  because it is got ten  f rom a 

Borel family of measures. Now suppose ~H = | ~>.1 ~H~. Then p,(~lt)(t) ~- | =~1 p,(:H~)(t) for 

each t. The natura l  projection from T- ~ p , ( ~ )  to  T ~ p , ( ~ )  is Borel, since if/~ is a bounded 

section of S ~  ~ then  (0, 0 . . . . .  /~, 0 . . . .  ) is a bounded  section of S~- ~/, so t h a t  the  projec- 

t ion followed by  one of the  determining functions on T~ep,(3,t=) is a determining funct ion 

on T~ep,(~/) .  On the  other  hand,  if / is a bounded section of S->e:H, t h e n / = ( / 1 , / 2  . . . .  ) 

where for each n / ~  is a bounded section of S ~+ ~4~. Now for t 6 T, if x = (x 1, x z . . . .  ) 6T,(~/)(t). 

(/: x)t =Z=.>~ (f~: x~) t. I t  follows t h a t  B is the smallest a-algebra for which each projection 

T~ep , (~4)~  T->ep,(?Hn) is Borel. Hence if ~H = | ~.>~ ~@,fl, we see t h a t  T~p , (~H)  is a Hilbert  

bundle. Since isomorphisms preserve what  is needed, we see t h a t  T ~ p , ( W )  is always a 

Hi lber t  bundle. 

To conclude this section, we prove a fact  about  double applications of the  direct  

image process which will be useful in proving the theorem on inducing in stages. Since the  

fibers in a direct image bundle are direct integrals, the  result  can be seen as a slight addi- 

t ion  to  the theorem on refinements of direct integral  decomposit ions [6 Theorem 2.11]. 

THEOREM 1.1. Suppose S, T, U are analytic Borel spaces and 2: S-~T,  q: T-+U are 

Borel sur]ections, and set r=qop.  Let t~/~ t be a Borel /unction /rom T to the/inite measures 

on S such that [~t(S\p-l(t))=O /or t 6 T  and let u-->vu be a similar/unction/or U, T and q. 

For u6 U de/ine l~= ; #tdvu(t). Then u-~lu is Borel /rom U to the/inite measures on S and 

lu(S\r-l(u)) =0 /or u6 U. Let S~e ~ be a Hilbert bundle over S and/orm p,(74) using the 

measures/~t and then q.(p.(~4)) using the measures vu. Form r . (~ )  using the measures lu. 

Then U ~ r . ( ~ )  and U ~eq,(p,('~)) are equivalent. 

Proo/. The s ta tement  about  the  measures lu is proved in a s t ra ightforward manner,  

Recall  t ha t  if A is a countable algebra of sets generating the Borel a-algebra of subsets of 

S, then  the  smallest set of functions con ta in ing  {PA: A 6;4} which closed under  addit ion 

and  multiplication b y  numbers  a + bl where a and b are rat ional  is countable and is L 2- 

dense relative to  every  finite Borel measure on S. E v e r y  Hflbert  bundle over S is equivalent  

%0 a countable  direct  sum of bundles of the  form S~e (~%C), so this densi ty  p rope r ty  genera- 

lizes easily: I f  S ~e ~4 is a Hilbert  bundle there is one countable family  F of bounded  sec- 

t ions of S~- 74 which gives a dense set in LP(A'; ~4) for every finite Borel measure ~' on S. 
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L ~ I ~ A .  I / ~  is the ~ro]ection o/ U~er,(~4) onto U and ~(u, x)=(x:/)~/or (u, x)e 

U~er,( ~4) and ] a bounded section o] S~e ~4, then (~)  U {~z: ]e2")  determines the JBorel struc- 

ture on U ~er,(~4). 

Proo/o/Lemma. Let  (u 1, xl), (u 2, x~) be distinct. I f  u 1 :~u~, there is no difficulty, so 

suppose ul=u2=u but  xl=~x ~. Since ~f is linear in its second variable, we m a y  suppose 

x 2 = 0  and x 1 =x40 .  Now 2u is a finite measure on S, so 2" gives a total  set in r,(~)(u) and 

hence there is an ]E2" such tha t  ~f(u, x) ~:0. The result now follows from a general fact  

about  analytic Bore1 spaces. 

Now define a mapping V from sections of S~e ~ to sections of T ~ p , ( ~ )  as follows: 

for tET  and / a section let (V/)(t) be the class of / in Z~(/~; ~ )= /%(~) ( t )  if / is square 

integrable and let (V/)(t)=0 otherwise. I f  / is bounded then / is always square integrable, 

so V/has no artificial zeros. For  any  sect ion/ ,  S Ill/(s) II  d u(s) so i f /  

is square integrable relative to 2~ it  is also square integrable for almost all/~t and V / h a s  

a t  most  a null set of artificial zeros. Also, V defines an isometry Vu of r,(~)(u) into 

q,(p,(~4))(u). To prove tha t  V~ is unitary,  suppose g is orthogonal to its range. Let  2' be the  

set of bounded sections determined above, and let ] e 2". Then let ( : )o denote the inner prod- 

uct of sections of S~e ~ relative to Pt and notice tha t  the orthogonality condition is just 

I(/: g(t))~d%(t) --0 (this makes sense because g is a Borel section of T~ep,(~)). Choose h to be 

a Borel function on T with values in the unit  circle, such tha t  h(t)(]: g(t))t>~O for all t. I f  

h(s)=h(p(s))/(s) for seS,  then h is a bounded section of S ~ e ~  and ~(h: g(t))tdv~(t)=0. 

The integrand is non-negative, so (/1: g(t))~=O for almost all t and hence (]: g(t)),=O for 

almost all t. Since 2" is total  in each p,(~4)(t), we see tha t  g vanishes a.e. 

Now define r162 x)=(u, V~x) for (u, x)e U~r~ (~4). Then g is one-one and onto, i t  is 

uni tary on each fiber and its domain and range are analytic, so to prove a is a bundle iso- 

morphism we only need to prove ~ is a Borel function. First, define ~ on U~eq, (p , (~) )  

for bounded sections / of T/e~o,(~) and notice tha t  f o r / e 2 " ,  ~ p ~ o a = ~ i  and hence is a 

Borel function. Now if we choose 2" to be closed under multiplication by  characteristic 

functions of sets of the form T-I(A) for A in some countable generating family of Borel 

sets in T, as well as rational complex linear combinations, i t  is not  difficult to see tha t  the 

set { V / : / e F )  is dense in every L~(~'; r , ( ~ ) )  for finite measures # ' .  I n  tha t  case the projec-~ 

tion and the functions ~P~r determine the Borel structure on U~eq, (p , (~) ) ,  which is all we 

needed. 
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2. Representations and bundle representations 

Le t  G be an analyt ic  Borel  groupoid,  let a be a 2-cocycle on (7 and l e t L  be a a-representa-  

t ion of G on a Hi lbe r t  space ~X. Then (7 has  a 'bundle  q-representa t ion '  on G (~ • ~ ,  where 

G (0) is the  set  of uni ts  of (7, defined as follows: 

g. (d@, x) = (r(g), L~x). 

I f  glg~ is defined then  

d(glg2) = d(g~), r(glg~) = r(gl) 

and 

(gig2)" (d(g~)~ x) = (r(gl), Lo, a~x) = (r(gl) , a(g~, g2)LglLa,x) = gx(g~. (d(g2), a(gi, g2)x)). 

Conversely,  suppose we are given a 'bundle  cocyele representa t ion ' ,  i.e. for  each g E G, a 

mapp ing  of {d(g)} • ~ to  {r(g)} • ~ which gives a un i t a ry  opera tor  Lg on ~ and  (gigs) 

(d(g2) , x) =gl(gs(d(g2), "~x) for some 7. Then  ff L is a Borel function,  i.e. the  mapp ing  of 

G x ' (G (~ • ~ ) ~ G  (~ • ~ is Borel, L mus t  be a eoeycle representat ion.  I n  fact ,  L will be a 

q-representa t ion if we s ta r ted  with  a 'bundle  q-representa t ion '  of G. 

I f  G (~ ~ ~ is a bundle over  G (~ for  which the  spaces :H(u) all have  the  same dimen- 

sion, then  G (~ ~ :H is equivalent  to  G (~ • ~ for  some Hilber~ space ~ ,  and  we get a corre- 

spondence be tween bundle  q-representat ions  of G on G (~ ~6 :H and  a-representa t ions  of G 

on ~ .  I f  ~ is an  equivalence of G (~ ~ ~ l  wi th  G (~ ~- :H~ carrying one bundle  a- representa t ion  

to  another  and  ~l, ~2 are equivalences of G r176 ~ :H1 with  G r176 • ~1  and  G r176 ~ ~42 with  G r176 • 3(2 

respect ively,  then  a20~og~ 1 induces a s imilar i ty  between the  corresponding a-representa-  

t ions on ~1  and  ~2- Thus  we real ly  have  a one-one  correspondence between classes of 

'bundle  a-representat ions ' ,  and  classes of q-representat ions.  

Fo r  measurable  groupoids,  we often mus t  restr ict  to  an  inessential  contract ion to get 

a s tr ict  representat ion,  bu t  then  we s imply  consider bundle representa t ions  for  the  contrac- 

t ion. I f  ((7, Lu]) is an  ergodie groupoid,  and  G has  a bundle  representa t ion  (or bundle co- 

cycle representat ion)  on G (~ ~ :H, i t  follows t h a t  d im (:H(u)) is cons tant  on some sa tura ted  

Borel  conull set  of units.  Thus  for  the  ergodie case we can achieve the  s i tuat ion discussed 

above  b y  passing to  an  i.e. 

3. Inducing from one group action to another 

I t  is possible to  s t udy  groupoid  homomorph i sms  and their  'kernels '  and  characterize 

those  homomorph i sms  one would wan t  to  regard  as injections or inclusions, and  a pape r  

giving the  details is in tended for  publ icat ion elsewhere [17]. Here  we s imply  s t a r t  wi th  an 
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equivalent formulation of the notion of subobject and develop the notion of inducing from 

one subobject of a group to a larger one. This definition is the one suggested by Maekey in 

[14]. We show in this section that  the definition extends the definition for subgroups and 

is independent of the measures in the given measure class. 

A virtual subgroup of a group G is a virtual group given by an ergodic action of G on 

an analytic Borel measure space (S, lu) [12, 17]. Strictly speaking, we want to work with 

an equivalence class of G-spaces, where S~ and S~ are equivalent if they contain invariant 

conull analytic sets S~, S~ such that  S~ and S~ are strictly isomorphic as G-spaces, under an 

isomorphism which preserves measure classes. We shall make such changes in S only if they 

simplify matters. 

I f  S and T are G-spaces a n d / :  S-+T is a Borel function, then / is equivariant iff 

/ • i: S • G-+ T • G is a homomorphism. If  ~ and ~ are quasi-invariant measures on S and 

T respectively, and m is finite and equivalent to Haar  measure on G, we wilI say that  an 

equivariant Borel / :  S-* T represents S • G as a subobject of T • G or that  f • i is an im- 

bedding of S • G into T • G, provided tha t / , (~)  N/x. Given an imbedding, we may as well 

suppose f,(~) =lu, since only the measure class of # is really important. We also may suppose 

/(S) = T, by replacing T by/(S) .  This is acceptable since/(S) is analytic. 

We shall do inducing even for the non-ergodic case for two reasons: I t  goes exactly 

the same way, and in the end we see that  'inducing in stages' includes 'inducing a direct 

integral' as a special case. 

We need to use Proposition 2.6, page 72 of [1]. We give here a slightly different proof. 

Recall that  if 2 is a finite measure on a G-space and x e G then (Ax)(A) =2(Ax -1) for Borel 

sets A. 

LE~I~IA 3.1. Let S and T be analytic G spaces, let p: S ~  T be Borel, equivariant and 

onto. Let ~t be a quasi-invariant finite measure on S and define v =p,(/~). Then there is a de. 

composition # = S~tdv(t) relative to p such that/xtx N /~t~ ]or t in T and x in G. 

Proof. Let /~ = Sgtdv(t) be any decomposition and let K = {(t, x) q T • G: g tx  ~/~t~}. 

Then K is Borel, because (t, x)-+(~t, x)~/~tx and (t, x)-+tx-+/ut~ are Borel and ~ is deter- 

mined by a Borel set of pairs of measures (Lemma 1.1 of [16]). Also K is v • m-eonull in 

T • G by Proposition 2'5 on page 72 off1], where m is a finite measure in the class of Haar  

measure. Let T O be the set of t q T for which the t-section of K is m-conull in G. Then T o 

is Borel and conull, by  the Fubini Theorem. Now if tETo and yEG, then ~Qu~,~flt.(yx) for 

almost all x. For the same t and almost all y e G we have/~tY ~/xt~, so for almost all y fly, x) e 
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K for almost all x. Thus t E T o implies ty ~ To for almost all y ~ G. By the proof of Lemma 6.3 

of [15], the saturation T i of T o is a Borel set. 

Define lt t= ~l~t~x-idm(x) for t E T  i and 2t=O for tCTi; and let 2 =  ~tdr( t ) .  Now 

t e T o implies 2iN#t, so 2 ~ u .  Let  ~ =dl~/dA be a Radon-Nikodym derivative which is posi- 

t ive and finite everywhere and redefine/z~ =~Et for t E T. Then/~,NAt for t E T so it will 

suffice to show tha t  At x ~ At, for (t, x) e T • G. This is clear if t ~ T i. :Now let t e T o and y E G. 

The discussion above showed tha t  i~t~z-i..~#ty for almost all z, so 2t~ ~/~tY. Hence 2 t ~  

/~t(yx) ~Awx. Now ToG = T1 so this proves the result for t E T~. 

Remark: In  applications of this lemma it  will often be necessary to replace T by  Ti, 

for instance if we want all the measures #t to be probabili ty measures. I t  should be remarked 

tha t  if T is standard then T~ is also standard, so nothing essential ordinarily is lost b y  this 

change. 

LEMMA 3.2. Let (X, ~) and ( Y, /~) be analytic Borel spaces with/inite measures and let 

T: X-+ Y be a Borel isomorphism such that T.(2) N#.  Let P and Q be the canonical projection 

valued measures on L~(2) and LE(#) respectvely. Then there is a Borel ]unction ~ ]rom X to C 

such that the operator U taking g to 9go T is unitary ]rom LE(#) to LE(A). O] all such operators, 

there is only one with ~ >~ O, namely the one with ~2 = (dt~/d T . (~ ) ) o T. Let E be a countable algebra 

generating the Borel sets in Y. Then U is the only unitary operator ]rom L~(#) to L~(A) such that 

(a) for E in ~, Pr-I(E) = UQ~ U-i  

(b) /or E in E, (U1, ~0r-,(E)) ~>0. 

Proo/. I t  is well known, and easy to verify, tha t  if ~(x)=[dt~/dT.(2)](T(x))for  x E X  

then the formula defines a uni tary operator U from L~(/z) onto L2(~). The inverse is deter- 

mined in the same way by  T -i. Suppose Uig=~lgo T and U i is unitary. Then U i U - i  

is a multiplication operator on L~(~), namely U i U-i/=~i//q.  (We may  assume ~ never 

vanishes; then U -i] = (//Q)o T-i),  The only positive function whose multiplication operator 

is uni tary is the function identically 1, up to null sets. 

I t  is easy to see tha t  U satisfies conditions (a) and (b), so to complete the proof we 

suppose U i is uni tary  and satisfies those conditions. Let  ~i = Ui 1. Then for each E 6  ~, 

Ui~ E vanishes off T- i (E)  and so must  be a multiple/E of ~T-'(~)=~E ~ T. The same holds for 

Y \ E ,  and since U i is linear, we have ]E~0~o T + / r \ s ~ r \ E O  T =Qi. Then/E agrees with ~i a.e. 

on T-I(E),  so Uiq~E=~lq~soT. Since U i is linear and continuous, U i g = ~ i g o T  for g in 

L~(/z). Condition (b) implies tha t  ~i >~ 0 a.e. 

Let  S, T be analytic Borel G:spaces and suppose p: S-> T is an equivariant Borel surjec- 

tion. Let  t->#~ be a Borel function from T to the finite measures on S, such t h a t / ~  is con- 
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centrated on p-l(t) for each t E T. Suppose t h a t / ~ x  ~ut~ for t ~ T and x ~ G. Let  ~4(t) =L~(/~t) 

for t e T and form the Hilbert  bundle T~e ~ .  Then ~(t) and ~(tx) are isomorphic for t ~ T 

and x ~ G, so the Borel set where dim ~(t) takes a given value is invariant, and we may as 

well suppose that  all the ~4(t) are isomorphic, since we can deal with the various subsets 

one at  a time. Then we have an equivalence of T ~e ~4 with T • ~ .  Denote the corresponding 

unitary operators from ~(t) onto ~ by  V~. 

~or  t ~ T and E e Bor (S) define pt(E) on ~4(t) by (pt(E)/)(s) = q~E(S)/(S). The dependence 

on t occurs because equivalence of functions ] depends on the measure/zt. 

L E M ~ x  3.3. For each Borel set E E S ,  t-+Pt(E) is a Borel /unction in the wealc (or 

strong) operator sense. 

Proo/. The meaning of this statement is as follows: the space (3 {(t} • s t E T} is 

given the smallest Borel structure for which the projection onto T is Borel together with 

all the functions Y~t.g for bounded ], g, where yJs.g(t, A ) =  (A[/]t, [g]t)([]]~ is the equivalence 

class of [ in L~(/~t)). The equivalence of T~e ~ with T • ~ carries this space isomorphically 

to T • s  The strong operator version uses Ox(t, A ) = A ~ ] t  and the weak and strong 

Borel structures are the same, just as they are on s  Now Pt(E)[/t] =[~E/Jt, and since 

~ s / i s  also a bounded Borel function, the t ru th  of the Lemma is clear. 

Now if we define Qt(E) = VtPt(E) V[ 1 for each Borel set E g  S, we get a Borel function 

from T to s  We want to know that  (t, x)~Qt~(Ex) is also Borel. To show that ,  we 

look at  another bundle equivalent to T~e ~.  Project S • G onto T by  taking (s, x) to 

pl(s, x) =p(s). Let  2t=~ut • where e~ is the unit point mass at  e and define ~'(t) =Z2(2t). 

Then T~e ~ '  is clearly equivalent to T~-~4; in fact s~(s ,  e) induces the equivalence. De- 

fine ~(s, x) = (sx, x -1) for (s, x) e S  • G and notice tha t  ~ is a Borel automorphism of period 2. 

Let P~(E) be the projection in L~(2t) corresponding to a Borel set E ~ _ S x G ,  as above. 

Since ~z• o(S, x) =q~E(s) and ~(s• a)(s, x) =q~z~(s) for E a Borel set in S, we see that  P~(E • G) 

corresponds to Pt(E) and P~z(v(E • G)) corresponds to PtZ(Ex) under the equivalence of 

the two bundles. Now (t, x)-+tx is Borel, so we see that  (t, x)-~Pt~(Ex) is Borel, by applying 

the above lemma to P1. 

P ~ o r o s I T I 0 ~ 3.4. Let S and T be analytic Borel G-spaces/or a locally compact group G, 

and suppose p: S ~ T  is equivariant, Borel and onto. Let t'>fit be a Borel /unction /tom T 

to the/inite measures on S, such that/at is always concentrated on p-l(t), and suppose that 

i~tx,,,l~t , /or S e T  and xeG.  Let ~4(t)=L~ut) /or  S e T  and /orm the Hilber~ bundle T ~e ~ .  

De/ine W(t, x): ~4(tx)-+ ~(t) by (W(t, x)g)(s)= [(d/~t,/d(l~tx))(sx)j11~g(sx). Then W is a bundle 

representation o/ T • G on T ~e ~ .  
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Proo/. I t  is convenient to work both with Toe ~ and with T x :~, where all the ~(t)  

are isomorphic to :~, and we will in fact construct W as a representation on ~ .  Recall the 

unitary operators Vt which establish the equivalence. The only thing tha t  remains to be 

proved is tha t  W is a Borel function. Let  ~ be a countable algebra which generates the 

Borel sets in S. Then the intersections with p-l( t)  generate the Betel sets in p-l(t)  for t E T. 

For  each E E ~  let 'Ugs={(t ,x,U)ETxGx'l~(~): UQ~X(Ex)U-I=Qt(E) and (UVtxl, 

Vtgs) >~0). The functions involved in defining ~ s  are Borel on T x (7 x ~(:~),  so ~ is 

Borel. l~ow let ~ =  [1 {~Os: EE  E}. By  Lemma 3.2, we see tha t  ~ projects one-one onto 

T x G and tha t  for each (t, x) E T x G the corresponding uni tary operator is the W(t, x) de- 

fined in the s tatement  of the theorem. Thus ~ is the graph of W. Since T • G is analytic 

and ~ is Borel, W is Borel, as desired. 

Remark. Notice tha t  there is no need to choose Radon-Nikodym derivatives in a 

smooth way. Since the operator does not depend on the choice, the Borel character of the 

function can be made global ra ther  than  simply on a conull set, as would be the case if 

we were forced to prove the Borel character by  malting a smooth choice of derivatives as 

in [5, 8, 15]. 

The representation W is the simplest induced representation and i t  is an ingredient 

in the general inducing process. The same construction and formulas apply equally well to 

give a representation on the bundle of Hflbert  spaces Z2(/~t; ~ )  whenever ~ is a Hilbert  

space. This is simply a multiple of the W constructed above. 

Two more facts need to be mentioned before the actual definition of inducing in 

general. I f  S ~ ~ is a Hilbert  bundle and/z is a finite measure on S we can define L~176 ~(~) )  

to be the algebra of functions A on s such that:  for each s A(s) is in s  i f ] i s  a Borel 

section of S ~  7t so is s~A(s)/(s),  and s-~ IiA(s)]l is bounded. For  such an A we define 

A~[/] be the class of s~A(s)/(s) when [/]EZ~(/~; ~) ,  i.e. the direct integral operator; e.g. 

see [7]. I~ow consider the case of constant ~4, say S~+ ~-- -S  • ~ ,  and if AEL~176 ~(~ ) )  

define Aa'X)(s)=A(sx) for sEto-l(t). Let  ~4(t)--JL~(/~t; ~ )  for tET. l~or each (t, x) choose a 

Radon-l~ikodym derivative as used in Proposition 3.4 and let ~(s, t, x) = ((dl~/d(t~x))(sx))�89 

Then we calculate, for /~  ~(tz), A ~L~176 ~(~) ) ,  t ha t  for /~-a lmost  all s, 

(W(~, o~)A" W(t, ~)-V)(~) = ~(~; t, ~)(A" W(t, ~)-~1)(~) --q(s; t, x)A(~x)(Wff, ~)-V)(~) 

= q(8; t, z)  A(sgg)~(sx; ~x, x--1)/(8) = Ac~'~)(s)/(s) = (Aa'~)~/)(s) 

Continuing as in [9, 15] we let a be a strict 2-cocycle on T • G and define a(s, x; sx, y) = 

a(:p(s), x; :p(s)x, y) for s~S, x, yEG, so we tbinl~ of a as a cocycle on S • G as well as T • G. 

This corresponds to the  restriction of a in the case of subgroups, as S x ~ is regarded as a 
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subobject of T • G. Now if R is a strict a-representation of S • G, let R'(t, x) be the function 

on p-l( t)  whose value at  a point s is R(s, x). Then R'(t, x)EL~~ E(:K)) and we can form 

R'(t, x) ~, which will be a uni tary operator on L2(/~; :~ )=  ~(t). Now for sEp-1(t), and 

x, yeG, we have 8xep-l(tx) and B(sx, y) =B'(tx, y)(~'x)(8). Thus R'(t, xy) =(~(t, x; tx, y) • 
R'(t, x) R'(tx, y)a. x), where equality means actual equality as functions f romp- l ( t )  to ~ ( ~ ) .  

I f  R were not  strict, but became strict on the contraction to a set S 0, then the functions 

would agree a.e. on ~o-l(t) if So were conull for both/~t and #~. 

Definition 3.5. The bundle a-representation U of T •  induced by  R, denoted 

Ind  (T • G, S • G; R) is defined by  

U(t, x) = R'ff, x)-Wff,  x). 

The corresponding a-representation will be denoted by  ind (T  • G, S • G; R). 

Tha t  we actually have a a-representation follows from the calculations made above. 

We do not give an imprimit ivi ty theorem for this generality here. We only need tha t  

characterization for representations of groups. 

Suppose R is a strict a-representation of S • G on :K and let L be the corresponding 

bundle a-representation: Z(s, x)(sx, v)=(s, R(s, x)v). Then the formula for the induced 

bundle representation in terms of L and sections of S • :K is the same as the formula in 

terms of R and :K valued functions on S. Since we have systematically blurred the distinc- 

t ion between the two classes of functions, it seems good to take note of this equivalence. 

Wha t  it means is this: let ~ be a function on S • T • G whose square gives the relevant 

Radon-Nikodym derivatives as in Proposition 3.4. I f  we let ~4(t) be the Borel K-valued 

functions on S square integrable relative to #t and let ~+(t) be the Borel sections of S • :K 

square integrable relative to u~, then ~(t) is isomorphic to ~+(t) under f-~/+ where f+(s) = 
(s,/(s)) for s e S. Also, L(s, x) ]+ (sx) = (s, R(s, x)/(sx)), so (Ind (R) (t, x) [) + (s) = e (s; t, x)L(s, x)/+ (sx). 

To see tha t  ind (R) depends only on the measure classes and not the measure, first 

notice tha t  it was defined without using any measures on T, so it does not depend on any  

measure on T. Whenever a measure class on T is relevant we must  assume tha t  i t  is the 

image of the class on S, but otherwise it has no effect. We then ask what  happens if we 

pass to a function t - ~ t  from T to finite measures on S for which ~ for all t. Then using 

Lemma 3.2 as in the proof of Proposition 3.4 we see tha t  there is a Borel family V~ of uni- 

t a ry  operators f rom L2(#5 :K) onto L~(2t; ~ ) .  I n  this case, for each t we have Vt l=~J  
where ~ is a non-negative Borel function. By the uniqueness of such operators as proved 

in Lemma 3.2, the operators W(t, x): Z~(/z~; :K)-+L2(#t; :K) and W'(t, x): L~(~t~; :K)-~ 
L2(2t; ~ )  match  up under the V'~s. Also R'(t, x) ~ is defined by  the same formula in either 

ease, so the two versions of inducing give equivalent representations. 
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Let  us show tha t  this definition of inducing produces equivalent results in ease S and 

T are transitive G-spaces, in which case they correspond to subgroups of (7, say H and K,  

L e t  us be more precise. This definition gives a representation of T x G. I f  t o is the point of 

T stabilized by  K, then k-~(t 0, k)=~(k)  is a homomorphism of K into T • G which is one 

component of a similarity. I f  the induced respresentation as defined above is composed 

with % we should get a representation equivalent to the usual induced representation of K. 

We know tha t  representations of H and those of S • G correspond, so we can s tar t  

with a representation of H,  say/5. Let  ~: S • Q-*H be the homomorphism which is par t  of 

a similarity, of the form y)(8, x) =7(s)x~,(sx) - i  where ~: S ~ G  is a cross section, thinking of 

S as the right coset space for H. We induce using R =#LoW, where fl makes R a a-representa- 

t ion ~15, p. 314]. The usual definition for inducing from H to K involves K]H rather  than  

G/H. To help keep this straight, let 71 be a cross section of iT over X / H  and let Y2 be a 

cross section of G over G/K = T. Then we can define ~ by  ~(s) =~l(S~2(p(s))-i)~2(p(s)). This 

makes sense since K/H~_ G/H and ?i  is defined on tha t  subset, while s--*s?2(p(s)) - i  maps S 

into K/H. Also ~ is in fact  a section. 

Now all the t I i lbert  spaces in the bundle over T used to define the induced representa- 

tion U are equivalent to ~t0 =L~(K/H; J(), and we can let the induced representation act 

on ~q~0. Also translation by  ?2(t) - i  combined with a Radon-Nikodym derivative can be 

used as the uni tary equivalence of ~Ht onto ~t0 if t E T. We m a y  as well assume the induced 

representation is strict, and then for k e K  and ]E~t0 , (U(to, ~)f)(s)=p(s, k)#(s, k)L(y(s) 

lr162 ) for almost all s in p-i( to)=K/H.  For  sep-l(t0), ?~(p(s))=e so ?(s)=?l(S). 

Then the formula clearly agrees with the usual formula for inducing [15]. At points other 

than  t o , we simply get equivalent representations. Thus we get agreement with the previous 

definition when it applies. 

4. lntertwlning operators 

Suppose (S,/~) is an analytic G-space with finite quasi-invariant measure and let 

J(i, J(2 be Hilbert spaces. Set ~ = L 2 ( # ;  JC~)i=l, 2. Then for TEL~176 C(J~i, J(2))we can 

define T~: ~ i -~  ~H2 by  (T~f)(s)= T(s)f(8). If  P~ is the canonical projection valued measure 

on ~ ( i= l ,  2), then T-+T  ~ is a Banaeh space isomorphism of L~176 s  :/(2)) onto 

~(Pi, P2), by  direct integral theory. I t  is a ~--algebra isomorphism if J~l = J~2. The follow- 

ing lemma is a convenient variation on Theorem 10.8 of [15]. 

LEMYIA 4:1. Let (~ be a 2-cocycle on G and let Li, L 2 be a-representations o / S  • G on Y(1, 

J~2 respectively. Let U1---ind (G; Li) and U 2 =ind  (Q; L~). Then T--> T ~ is a Banach space 

isomorphism of ~(Li, L2) onto ~(Pi, P~) A ~(U1, Us), talcing equivalences to equivalences. 
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Proo/. I f  T 6 t~(L i, Ls), by definition we have T(s)Li(s, x)=L2(s, x)T(sx) for almost all 

(s, x). The set of pairs for which equality holds is closed under multiplication and hence 

contains an inessential contraction, say to the conull Borel set S 0. Let  .F o = (S • G)]S o = 

{(s, x): s and sxESo}. Then for any x in G, (s, x) is in F 0 whenever SESoN So x- i  which is 

almost all s. Let  ~: S • G-~(0, co) be Borel for fixed x and give the factor needed to make 

unitary operators out of translations. Then if x EG and /6  ://1 we have, for almost all s, 

( T" u~Cz) /)is) = TCs)( U~(x) /)(s) 

= e(s, x)T(s)LI(s  , x)/(sx)= e(s, x)L2(s, x)T(sx)/(sx) = (Us(x) T~/)(s). 

Conversely, if T ~ Ui(x ) = Us(x ) T ~ for all x in G, then for each x, T(s)Li(s, x) =L2(s, x) T(sx) 

for almost all s, so T 6 ~(L i, L2). Now T"  is uni tary iff T(s) is uni tary for almost all s, so 

all tha t  was claimed is true. 

5. Inducing in stages 

]tere we prove that  induced representations can be formed in several steps or in one, 

with equivalent results. This will be useful in section 10, and also has a corollary on in- 

ducing direct integrals. This generalizes Theorem 4.1 of [5]. 

THEOREI~ 5.1. Let S, T, U be analytic Borel G-spaces ]or a locally compact group G, 

with quasi invariant measures 1, ix, v respectively and suppose p: S-+ T and q: T--> U are equi. 

variant, Borel, and onto, with p,(t),.~ix and q,(ix),.~r. Then r = q o p  is equivariant /rein S 

onto U and r.(~)Nv. I / a  is a cocycle on U x G and R is a a-representation o / S  • G, then 

ind (U • S • R) = ind  (U•  G, T • ind (T  • S • R)). 

Proo]. We may as well suppose p . ( 1 ) = #  and q.i/x)=v. Let  1 =  ~l(p, t)dix(t) and ix = 

[ ix(q, u)dv(u) be decompositions of 1 relative to p and ix relative to q, respectively, such 

2(p, t ) x~ l (p ,  tx) for (t, x ) E T x G  and g(q, u)x~ix(q, ux) for (u, x ) E U x G .  Also suppose 

that  all the measures are probabilities (discard invariant null set if necessary). Then define 

l(r, u ) =  St(P, t)d(ix(q, u))(t) for uE U. This gives a decomposition of 2 relative to r. The 

quasi-invarianee of the t(p,  t)'s and the ix(q, u)'s combines to quarantee that  2(r, u ) x ~  

l(r, ux) always holds, by applying Lemma 1.2 of [16]. 

Let  M1 = I n d  ( U x G ,  S x G ;  R), let M = I n d  ( T x G ,  S•  R) and let M s = I n d  ( U x G ,  

T x G ;  M). Then Mi  acts in U ~ r . ( ~ )  and M S acts in U ~ q . ( p , ( ~ ) ) .  According to 

Theorem 1.1, these bundles are equivalent. The equivalence arises from the mapping V 

taking a bounded section / of S~- ~H=S x ~ to the bounded section V] of T - n p . ( ~ ) ,  where 

(V/)(t) is the class o f / i n  p, (~) ( t )=LS( l (p ,  t); ~X). 
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Now if ] is a bounded section of S ~  ~ ,  (Mi(u, x)])(s) is a positive multiple of 

R(s, x) ](sx), since it is R(s, x)(Wi(u, x)[)(4). Le t  ~t(s; u, x) be the positive multiplier. Like. 

wise for some ~(s; t, x) we have (M(t, x) ])(s) =~(s; t, x)R(s, x)](sx) and for some Q~(t; u, x) 

we have (M2(u, x)g)(t)=e~(t; u, x)M(t, x)g(tx). If  g=V]  for a bounded section ] of 

S ~  ~,  ((Ms(u, x) r])(t))(s) =e2(t; u, x)e(s; t, x) R(s, x)](sx), while ((VMi(u, x)])(t))(s)--ei(s; 

u, x)R(s, x)](sx). Since V-iM2(u, x )V  and Mi(u , x) are both uni tary from r,(~)(ux)  to 

r , (~) (u) ,  each obtained by  composing with translation by  x, and multiplying by  R(s, x) 

and then by  a positive function, the positive functions must  agree a.e. relative to ~(r, u). 

and hence Mi(u, x) = V-iMp(u, x) V. 

COROLLARY 5.2. Let (S, 2) and (T,/~) be analytic G-spaces with quasi-invariant ]inite 

measures and suppose p: S ~  T is Borel onto and equivariant with p . (2 )N# .  Let ~ be a 2- 

cocycle on T x G. Suppose U is an analytic apace and L is a Betel ]unction ]rom U x S x G 

to ~ ( ~ )  ]or some Hilbert space ~(, such that L(u; ., �9 ) is a a-representation o] S x G ]or each 

uE U. Let ~ be a ]inite measure on U and define (Li(s, x)])(u) =L(u, s, x)](u) ]or ]eL2(~; ~). 
Let M be defined on U x T x G by M(u; t, x ) = i n d  (T x G, S x G ; L ( u ; . ,  .)) and de]ine 

M i = i n d  ( T x G ,  S x G ;  Li). I] (M;(t, x)/)(u)=M(u; t, x)/(u) ]or ]eL2(~; 7t) where 

~(M(u; ., �9 )) ]or uE U, then M i and M~ are equivalent. 

Proo]. We let G act trivially on U. Then U x S and U x T are G-spaces. The projection of 

U x S onto S is equivariant, L is a representation of U x S x G, L i = ind  (S x G, U x S x G; L), 

and M i is the representation of T x G induced in stages U x S-~S and S-~ T. But  M~ is 

induced via U x S-~ U x T and then U x T-~ T. 

I t  should be mentioned tha t  the transi t ivi ty of inducing seems not to imply tha t  the 

representation of G induced by  the regular representation of a vir tual  subgroup is the 

regular representation. Of course there may  be a question about  what  the regular representa- 

tion of a virtual subgroup S x G should be. One natural  possibility is to take the bundle over 

S which is S x L~(G). This is the same as the bundle induced over S by  the decomposition 

of the measure on S x G relative to the 'range'  mapping, since r(s, x) = (4, e). Now S x G has 

a left action on S xL~(G), and tha t  bundle representation is a candidate for the regular 

representation. I f  S has only one element, i t  is the regular representation of G. However, 

if we induce this representation the result is a multiple of the regular representation, 

I |  acting on L2(S)| Now the measure on S x G can also be decomposed relative 

to the mapping (s, x)-~ (s, sx) of S x G onto E~_S x S, and a bundle representation of S x G 

can be given on a bundle over E. However if G acts freely then the corresponding representa- 

tion is trivial because the measures in the decomposition are point masses and the only 

translation-generated uni tary between such L ~ spaces is the trivial one taking 1 to 1. Thus 
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the induced representation is just the representation on L2(S) given by  the action of G 

on S. I f  S is the circle and Z acts on S by  an irrational rotation, the result is not the regular 

representation of Z. I t  is not  clear what  other spaces might be tried. Perhaps one should 

always deal with an infinite multiple of the regular representation. Then the first a t t empt  

behaves well. 

6. The subgroup theorem 

Although we will not be using the information in the rest of the paper, we want  to 

include a discussion of the subgroup theorem for vir tual  subgroups because it  is a useful 

par t  of the apparatus  for dealing with induced representations. I f  H and K are closed sub- 

groups of G, L is a representation of H,  and U = i n d  (G, H; L) [K,  the theorem gives a 

decomposition of U over the H: K double coset space, assuming tha t  the image of the Haar  

measure class is s tandard [5, Theorem 12.1]. The integrands are induced from subgroups of 

K conjugate to subgroups of H.  We shall see tha t  the assumption tha t  the image of bhe 

H a a r  measure class be standard is not necessary if virtual subgroups are allowed into the 

process [11, page 62], though it m a y  happen tha t  no decomposition of the representation 

occurs. On the other hand the theorem does not  always even have meaning in its usual 

form when applied to virtual subgroups, because it  can happen tha t  no subobjeet of H 

can be imbedded in K. We can think of several special cases: two subgroups not necessarily 

regularly related, inducing from a virtual subgroup and restricting to a subgroup, inducing 

from a subgroup and restricting to a vir tual  subgroup, and two virtual subgroups arising 

from ergodic actions with finite invariant  measures. The first two can be handled together, 

but  some remarks on the first case are in order to begin with. 

Let  S and T be the right coset spaces of H and K respectively. Then S • T is also a 

G-space and the function taking (Ha, Kb) to Hab-lK induces a Bore] isomorphism of the 

orbit space (S x T)/G onto the double coset space. Of course the double eoset space is 

natural ly taken to be the orbit space of S under the action of K, i.e. S/K. I f  t o E T is the 

ident i ty eoset of K,  S • {t0} meets each G-orbit in S x T, and the orbit (s, to) G intersects 

S • {t0} in ( s g ) x  {to}. This is another way to see tha t  (S • T)/G and S/K are the same. 

The space (S x T)/G is what  we must  consider in general, but  for purposes of inducing from 

an ordinary or virtual subgroup and restricting to a subgroup, the space S/K is very con- 

venient. Notice tha t  the following theorem generalizes Theorem 12.1 of [5] by  allowing 

subgroups which are not  regularly related, through the use of virtual subgroups of K. We 

let m be a finite measure in the class of Haar  measure on G. 

T~Eo l~w~  6.1. Let (S, 2) be an analytic G-space with ]inite quasi-invariant measure, 

and let L be a (~.representation o/ (S x G, [2 x m]) /or some 2-cocycle (~ on G. Set M 1 = 
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ind (G, S • G; L ). Suppose K is a closed subgroup of G and let M = M i l K .  Then there is an ana- 

lytic Borel space Z and a projection q o /S  onto Z such that q-l(z) is invariant under K /or  each z 

in Z and i/2. = ~ ~zdq.(2)(z) is the decomposition o/~ relative to q, then almost every 2z is ergodic 

under K. Furthermore, L I q-l(z) • K is a (~-representation o/(q-l(z) x K, [~z • m']) ]or almost 

every z (m',,~ Haar measure on K), which we denote by L z. Then M =  ~| ind (K, (q-l(z) •  

[2z • re'I); L~)dq,(2)(z). 

Proo/. The existence of Z and q can be gotten from Theorem 4.3 of [4]. I f  L is strict 

on (S • G) I So for some eonull Borel set, then So is eonull for almost every 2z, say for z in the 

conull Borel set Z0, and then L is a a-representation on (q-l(z) • K, [22 • m']) for z EZ 0. Let  

be the Hilbert space of L, and set M~ = ind  (K; L~). Then ~ ( M  ~) =L~(2~; ~0 and ~(M)  = 

L~(2; ~)--- Se L2(2~, ~)dq.(2)(z). Now M(t, k) and the M~(t, k) are all given b y  composing 

with translation by  k and multiplying by  a scalar to get unitari ty and then multiplying 

by  L( . ,  k). The positive multiplier needed for M will suffice for almost every M ~. Hence 

M = S ~ M~dq,(2)(z). 

Remarks. (a) This gives M as a direct integral of representations induced from virtual 

subgroups of K. Examples such as compact K show tha t  these need not be virtual sub- 

groups of (S • G, [~ • m]) if (S, 4) is a properly ergodic G-space. Thus par t  of the effect of 

the original theorem is lost, but it does not seem to be an essential part .  

(b) I f  S is a coset space and S /K  is analytic (or even standard for the quotient measure 

class) then almost every ~z is carried on an orbit: a cross-section of S over a conull s tandard 

set allows one to prove tha t  such is the case, by a s tandard argument.  In  tha t  case q-l(z) • K 

is similar to the stabilizer in K of any point of q-l(z). I f  the orbit is the orbit of Ha, one 

such subgroup will be K N a-i l ia.  This returns us to the same conclusion as in Theorem 12.1 

of [5]. 

For the remainder of this section we let (S, 2) and (T,/~) be analytic G-spaces with 

ergodic probability measures and let m be a finite element of the Haar  measure class on 

G. Let  =: S • G->G and w: T • G-->G be the projections, i.e. inclusion homomorphisms, 

thinking of (S•  [# • and (T • [# • as subobjects of G. Let  U = S  • T, ~= 

2 •  and let p: U ~ S ,  q: U-+T be the projections. Then ~ = p  • i and yJ--q • i are 'inclusion 

homomorphisms'  of (U • G, [v • m]) into (S • G, [2 • m]) and (T • G, [# • m]), though v need 

not be ergodic. Suppose ~ is a 2-cocycle on G and let L be a a-representation of S • G on 

the Hilbcrt  space ~ .  Let  M1 = ind  (G, S • G; L) and M = M I [  T • G = M i o w .  Then ~4(M) - 

~4(M1) =L2(2; :K). Our goal is to find a decomposition of S • T which generalizes the de- 

composition into orbits corresponding to double cosets, and which also gives rise to a de- 

composition of M. The most natural  decomposition of S • T is the one into ergodic parts. 
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First,  let L'=Loq~ and consider M '  = I n d  (T x G, U x G; L') ,  t h e  induced bundle a- 

representation. Now v = S ~ x etd/a(t) is a decomposit ion of v relative to  q, where et represents 

the uni t  point  mass at  t for t E T .  Also, (~ xe t )x=,~xxe tx  always and s-->(s, t) induces an 

isomorphism of L2()L • at; :~) onto L~(2; ~ ) .  I t  follows tha t  the non-bundle  version of M '  

can be taken to  be ind (T x G, U x G; L ' )  as act ing onL2(2; ~ ) .  I f  Q(s, x)=((d~/d,~x)(sx)) 1/~" 

then  for/eL~(~;  ~ ) ,  (M'(t, x) l)(s)=~(s, x)L'(s,  t, x) /(sx)=q(s, x)L(s, x) l(sx) for a lmost  all s. 

This is the same formula as for M,  so M '  ~- M.  Thus we have M a representat ion induced 

from the common subobject  U • (7 of S • G and T • G, which is close to the spirit of the  

original subgroup theorem. 

I t  is not  difficult to  show t h a t  if A and U \ A  are invar iant  Borel sets of positive 

measure then  M is a direct sum of representations induced from A x G and ( U \ A )  x G. 

The difficulty is in passing to the  continuous version of this. For  example, let S = Z  = 

G, T = t h e  uni t  circle and let G act  on T by  an i r ra t ionalrota t ion.  Then each orbit  in S • T 

meets {0} • T exact ly  once, so S • T has T as its orbit  space, and this is its ergodie de- 

composition. Now the fiber measures arc carried on orbits and hence are discrete. Thus  the  

projection of a fiber measure onto T is no t  equivalent  to the measure on T, and we cannot  

induce from (fiber) • G to T • G. This example illustrates the need for the  hypothesis  in 

the following theorem. 

T~EOREM 6.2. SUppOSe r: U-~Z, ~ =r.(v) ,  v = ~ vtd~(z) is the ergodlc decomposition o] 

v under the action o /G,  and suppose that q . (uz ) " t  t ]or E-almost all z. Then /o r  z in a conull 

Borel set ZoGZ,  L z =(Loq~) ]r-l(z) • G is a-representation. I / w e  set MZ=ind  ( T • G, r-~(z) • 

G; L ~) /or z EZo, then M = ~ M~d$(z). 

Remarks. This gives M as a direct integral of representations obtained by  inducing 

from virtual subgroups of T x G. These would be similar to virtual  subgroups of S if the 

measures P.(Vz) were no t  carried by  negligible sets in S (ones whose saturat ion is ~-null). 

However,  interchanging S and T in the example preceding the theorem shows this need 

not  be the case. Jus t  the same, this seems to be a reasonable generalization of the subgroup 

theorem, so we shall say the  subgroup theorem holds for S x G and T x G if the hypotheses 

of Theorem 6.2 are satisfied. Notice tha t  if/~ is not  ergodic it could never hold; even the 

discrete summand  result for an invar iant  set A _~ U would fail. Also, notice tha t  this proof 

works for any  decomposit ion of v into quasi invar iant  measures. 

Proo] o] theorem. F o r m  Z • T and let Pl, P2 be the coordinate projections onto Z and 

T respectively. Let  ~'= (r, q).(v). Then p i , (V ' )  = ~ and P2.(u') =re. Let  ~ = S vz, tdv'( z, t) be 

a decomposit ion of ~ relative to (r, q), and suppose r~.t x ~ rz. t~ for all z, t, x. Now (r, q).(r~) = 
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~ • q,(v~) ~ x #  for almost  all z, so (r, q),(v) ~ ~ • B y  replacing v by  an equivalent  mea- 

sure we m a y  arrange (r,q),(v)=~• Let  M ~ = I n d ( Z • 2 1 5  UxG;Loq~). Then 

(M~(z, t, x) /)(u)=~(u; z, t, x)L(p(u), x) /(ux) for / EL~(v~.t~; ~),  where ~ is a positive function. 

Thus  M~(z,. ,  �9 ) ~= I n d  (T • G, U • G; L ~) ==- M ~. Also, it is clear t ha t  ind (T • G, Z • T • G; 

M~) = ~e M~(z,. ,  �9 )d$(z) since the action of G on Z is trivial. By  the theorem on inducing 

in stages the proof is complete. 

COROLLARY 6.3. I /  T is transitive then the subgroup theorem holds/or (S, ,~) and (T, #). 

Proo]. The measures q,(Vz) are quasi- invariant  and T has only one class of quasi-in- 

var iant  measures so q,O'z)'~t z. 

COROLLARY 6.4. Suppose (S, ~) and (T, #) are analytic G-spaces with invariant ergodic 

probability measures. Then the subgroup theorem holds ]or (S • G, [2 • m]) and (T • G, [/~ • m]). 

Proo/. Return  to v =~  x/z, v = ~ v~d~(z) as before. Then for E Borel in Z, ~E q,(vz)d~(z) 

is a measure whose value at  a Borel set A E  T is v(r-l(E)N q-l(A)). This is an invariant  

measure of tota l  measure ~(E) and is ~/~ so it is ~(E)#. Thus  the funct ion z-~q,(v~)(A) 

has the  value/~(A) almost  everywhere on Z. Let t ing A va ry  over a countable generating 

algebra we see tha t  q,(Vz)=# for almost  all z. 

7. Connecting cocycle representations with ordinary ones 

The method  used to  reduce some questions about  cocycle representations of groups to  

questions about  ordinary representations [9, section 2] also is helpful in t reat ing cocycle 

representations of groupoids. Let  (G, [#]) be a measurable groupoid and let U be its set of 

units, wi th /2  the measure induced on U. Suppose a is a strict cocycle with values in the 

circle, T, and set G r = G  • T. Let  G r = {((X, 8), (y, t)): (x, y) E G (2) and (s, t)E T 2} and for a 

pair in G r define the  product  to be (xy, a(x, y)-lst). The cocycle condition enables the 

associative law to  hold, the  units in G ~ are the elements of U • {1}, (x, s ) - l =  @-1, a(x-1, x) 

s -1) and the set d-l(u, 1) of elements of G z with uni t  (u, 1) is d-l(u) • T. Let  v be H a a r  

measure on T and let # = ~ #ud/2(u) be a decomposition of # relative to  d. Then # • v = 

(#u • v)d/2(u) can be identified with the decomposit ion of # • v relative to  d, by  noticing 

t h a t  #u • v is concentrated on d-l(u, 1) =d- l (u )  • T. B y  working with rectangles it is no t  

hard  to  see tha t  for (x, t)EG ~, (fir(x)• v)" (x, t)= (#r(x)'X) • V. I f  G O is an inessential contrac- 

t ion (i.c.) of G such tha t  #r(~)'x~/zd(x) for xEGo, then G~o=Go • T is an  i.c. of G ~ such t h a t  

(#~(x) x v)" (x, t) ~#a(~) x v for (x, t) EG~. Hence # x v is r ight  quasi-invariant.  Suppose # 

is symmetric,  i.e./z({x-l: xEA}) is always #(A), which we m a y  do if [#] is symmetric.  Then 
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since u is both  symmetr ic  and invar iant  under  either r ight  or left t ranslat ions we can look 

a t  rectangles to see tha t  # x v is also symmetric.  Hence (G% [/~ • v]) is a measurable groupoid. 

Now G and G r induce the same equivalence relation on U, so if (G, [/~]) is ergodic so is 

(G% [# • v]). For  groupoids we do no t  require a locally compact  topology, so the construc- 

t ion  of G ~ is easier t h a n  for groups. 

The relationship of a-representations of G with some of the  ordinary representations 

of G ~ goes as for groups [9, section 2]. I f  R is a a-representat ion of G define R ~ on G r by  

R~ t) =tR(x). Then R ~ is an  ordinary  representat ion of G ~ on :~, R~ t) = t I  for units  u 

in G and  elements t E T and R-> R ~ is one-one  from the set of a-representations of G on 

onto the  set of ordinary representations S of G ~ on ~ such t h a t  S(u, t) = t I  for units  u in G 

and elements t E T. This map  preserves equivalence and mult ipl ici ty theory.  

To see t h a t  there always are a-representations, we imitate the a-regular representation 

for groups. For  each y in G choose a positive Borel funct ion Q~ such tha t  (Wl(y)/)(x)= 

Q~(x) /(xy) defines a un i ta ry  operator  f rom L2(#d(~)) to L2(/~r(~)). As in the proof of Proposi- 

t ion  3.4 we see t h a t  W 1 is a bundle representat ion of G on G (~ ~- ~4 where ~4(u) =L2(/~u) for 

ue G (~ Now define W2(y) by  (W2(y)/)(x)=a(x, y)-l(Wl(Y)/)(x ). This is still a Borel func- 

func t ion  and W~(yz) =a(y, z) We(y) W~(z) for all (y, z) in G (~), by  a s t raightforward calcula- 

t ion . /~ex t  choose a Hilbert  space ~ of the dimension of all the L2(#~)'s and un i ta ry  opera- 

tors V(u): L~(#u)-~ :~ so tha t  V is a Borel funct ion making our  bundle isomorphic to U x ~ .  

Define W(y) = V(r(y)) W2(y ) V(d(y)) -1. W is a a-representat ion W of G (see section 5 and 

Lemma 10.9 of [15]). 

The cases of interest to  us in this paper  concern groupoids (S x G, [~u • v]) where (S, ~u) 

is an ergodic analyt ic  G-space. I n  t ha t  case it m a y  be done more s imply as follows. Let  

~ = L 2 ( G )  with left H a a r  measure on G and define (W(s, x) /)(y) =a( (s, y)-l ,  (8, X))-I/(x-ly) 
for (s, x) ES • G and yeG.  Notice tha t  (s, y)-l(s, x) is defined, so the formula is meaningful.  

We have the left regular representat ion of G followed by  a multiplication operator  (de- 

pending on s), so it is a un i ta ry  operator.  Clearly, W is a Borel function, and again a straight- 

forward calculation shows W is a a-representation, using the cocycle proper ty  of a. 

8. Measures on ~/~ and the action o[ G 

Let  G be a (second countable) locally compact  group and let a be a 2-cocycle on G. 

I f  N is a normal  subgroup of G, we also refer to a-representations of N, when we actual ly  

mean  a[/V • N representations. Choosing one concrete Hilbert  space of each dimension 

~r we form the space /V c'" of concrete a-representations of N,  with its usual Borel 

s t ructure  [9, section 3]. We le t /V ~'" denote the subspace of irreducible a-representations, 
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and/Vr  r' ~ denotes the quot ient  space of N ~' ~(N c" ~ modulo un i ta ry  equivalence, with p 

the  canonical projection. 

For  L in N c'" and  x in G, define the a-representat ion L x by  LX(y) =fl(x, y)L(xyx-i), 
where fl(x, y) = a ( x  -i ,  x)a(xy, x-i)-ia(x, y)-i. This defines a Borel act ion of G on No.,  which 

preserves N t'" and also preserves equivalence, so there is an  induced Borel act ion on N r' ~ 

and on Na which we denote the same way [9; sections 4 and 7], and p is then  equivariant.  

I f  L=M].N" where M is a a-representat ion of G, then for each x in G the  operator  M~ is 

an  equivalence of L with L x. The equivalence class of L is then  invar iant  under  G as a point  

of N r'~ I n  the  same way, the act ion of N on N r'" and Nr  is trivial, so these are in fact  also 

G/N spaces. 

The method  for analyzing G~ in terms of Nr and the act ion of G on Nr as developed 

by  l~Iackey in [9] depended on I ~  being both  smooth  and of type  I. I t  is known tha t  these 

conditions are equivalent  [2, 3], and we still need t h a t  condition eventually.  Mackey 's  

results also depended on another  assumption, which his theory  of vir tual  groups was in- 

tended to remove. I t  comes about  as follows: I f  U is a p r imary  a-representat ion of G then 

U IN is a multiple of a representat ion of the form ~ Ld~u(L), and the measure ;u is quasi- 

iuvar iant  and ergodic for the  action of G on N~ [9, Theorem 7.6]. The results of section 8 

of Mackey 's  paper  deal with the case tha t  ;u is carried by  a single orbit  of the act ion of G 

(the transit ive quasi-orbit  case), and makes use of the closed subgroup consisting of the  

elements of G which fix a part icular  point  in t ha t  orbit. Our purpose is to  show how these 

results extend if nontransi t ive quasi-orbits are allowed. 

Because no extra effort is required and in fact  the  proof of Theorem 9.2 is simplified, 

we will no t  use the full s t rength of the type  I assumption at  first. Ins tead  we shall work 

with type  I measure classes as we now define them, not ing tha t  all measure classes on a 

smooth dual are type  I. 

De/inition 8.1. I f  a is a cocycle on a locally compact  group K, a measure /z  (or the  

measure class [~u]) on K ~ will be called type  I if it is s tandard  and S Ld#(L) is type  I.  

Recall tha t  [#] is s tandard  if there is a s tandard  set B = B[/z] whose complement  is of 

measure zero. I n  t h a t  case p Ip-i(B) has a measurable cross section ? by  the yon  Neumann  

selection lemma, and there is a conull Borel set B0___ B on which ? is Borel. Then ~B Ld#(L) 
is defined to  be the equivalence class of ~Bo ?(L)dlz(L), which depends only on [#]. I f  this 

is type  I it is automat ical ly  mult ipl ici ty free, and  the direct integral is its central decomposi- 

t ion [7, chapter  2]. 

Here is a general fact  which will help us: 
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LEMI~A 8.2. Let ~q be a Borel space and suppose a locally compact group (7 has a Borel 

action, a, on S (a: S • G-~S is Borel; we write sx /or a(s, x)). Let/~ be a/inite quasi-invariant 

Bore! measure on S and suppose there is a conull Borel subset So which is analytic as a Borel 

space. Then there is a conull invariant subset S~ which is analytic as a Borel space. 

Proo/. Fi r s t  of all, not ice  t h a t  the  set S o m a y  be assumed to be s t a n d a r d  since an  ana-  

ly t ic  space is me t r i ca l ly  s t anda rd .  Next ,  let  v be a p r o b a b i l i t y  measure  in the  class of H a a r  

measure  on G. Then  a-l(S~) is Borel  in S • G so the  measure  v(a-l(So)s) of t he  s-sect ion of 

a-l(S0) is a Borel  func t ion  of s. Thus  the  set, S~, of s in S o for which v(a-l(S0)~) = 1, is a Borel  

set.  F o r  e~eh x in G, t he  x-sect ion of a-l(So) is Sox -1 which is /~-conul l  since ~ is quasi-  

invar ian t .  Thus  a-~(So) is conull, and  hence S~ is conull. F o r  each s in S, as: x-~sx is a Borel  

m a p  of G in to  S a n d  S*~-(seSo: as~(So) is v-conull}. I f  y e G  t hen  a~(x)eS  o iff s y x e S  o iff 

a~(yx) eS~, so a[l(So)=y-la:l(S,) .  Hence  if seS*  and  syeSo, t hen  syeS~. I t  follows t h a t  

if we a p p l y  the  same procedure  to  S* we f ind  t h a t  (S~)* =S~. B y  replac ing So b y  S*, we 

m a y  suppose  S* = S 0. 

N o w  let  S 1 = a(S o • G). Since S~ is the  Borel  image  of a s t a n d a r d  space, i t  will be ana-  

ly t ic  if i t  is coun t ab ly  separa ted .  L e t  a be a Borel  i somorphism of So w i th  a Borel  subse t  in 

[0, 1] and  ex tend  c~ to  have  the  va lue  0 on SI\So. Then  a is Borel  f rom S 1 to  [0, 1]. Then  

as  in t h e  proof  of L e m m a  2 of []0] or L e m m a  3.2 of [15], we can define ~f: SI-~L~o~(G ) b y  

le t t ing  v2(s ) be t he  equivalence class of the  func t i en  whose va lue  a t  x is ~r y~ is Borel ,  

and  if s 14s2 in $1, t hen  ~(slx ) 4a(s2x) whenever  six and  s2x are  in S o which happens  for  

v-a lmost  all  x. Thus ~ is one -one  and  since L~oo(G) is s t anda rd ,  we see t h a t  S~ is c o u a t a b l y  

sepa ra ted ,  as  desired.  

COROLLARY 3.3. I[ a~ invariant measure class C on IV ~ is carried by a standard Borel 

subset (C is a standard measure class), then C is carried by an analytic invariant set in 
~ .  

Now let  us re formula te  two theorems  f rom [9] to  sui t  our purposes .  The  f i rs t  is Mackey ' s  

Theorem 7.4. 

THEO~]~M 8.4. Let N be a closed normal subgroup o] the locally compact group G and 

let a be a 2-cocycle on G. Let [/~] be a type I measure class in ~ .  Then S Ld/~(L) is an in. 

variant (~-representation o/ IV i// [~u] is invariant under the canonical action o / G  on Nr I /  

[~] is invariant, S Ld/~(L) is ergodic i// [/~] is ergodic. 

Proo/. Le t  B be a s t a n d a r d  set  in N~ which suppor t s  #.  Then  Bx suppor t s  t he  t rans-  

fo rmed  measure  /~.x, and  if ? is a cross-section over  B then  L-~?(Lz-I)x=?~(L) is a 

cross-sect ion over  Bx. Now for L eB ,  ?(L)~=?~(LX), so (SB ~'(L)dI~(L)) x is equ iva len t  to  
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~ ~x(L) d(l~x)(L ), i.e. ( ~ Ldl~(L)) ~ = ~ Ld(/~" x)(L). Hence [/~. x] = [/~]~ is also type I,  and so is 

[# + # .  x]. Except  for this obvious point, Mackey's proof also proves our formulation. 

THEOREM 8.5. (Theorem 7.6 of [9]) Let M be a a-representation o/the locally compact 

group G and let IV be a closed normal subgroup o/G. Suppose the restriction of M to IV, M J IV, 

is equivalent to ( SB ~(L)d#(L)) | I0, where I o is the identity on a Hilbert space :7C0,/~ is a type I 

measure carried on the standard set B, and y is a cross-section over B. Let P be the canonical 

projection valued measure on ~ ~(~(L)) |  7Kod#(L). Then P is a system o/imlarimitivity 

/or M based on N~ and is ergodic i / M  is primary. 

Proo]. We m a y  assume B E  X where X is analytic and invariant,  and regard P as based 

on X. Using the fact tha t  [#] is type I, Mackey's proof works. 

9. The a-representations associated with quasiorbits 

The purpose of this section is to extend the results of section 8 of [9] to nontransitive 

quasi-orbits. Throughout this section we fix a locally compact group G, a 2-cocycle a on 

G, a probabili ty measure v on G equivalent to t I aa r  measure and a closed normal subgroup 

N of G. I f  a representation M satisfies the hypotheses of Theorem 8.5 and ~u is ergodic, 

we say M is associated with the quasi-orbit [#]. Before getting into the theorems and their 

proofs, notice tha t  Theorem 7.6 of [9] shows tha t  if _ ~  is type I then every pr imary a- 

representation of G is associated with some quasi-orbit. Also when/V~is type I,  every meas- 

ure class on N~ is type I.  

THEOREM 9.1. (cf. Theorem 8.1 of [9]) Let [/~] be a type I quasi.orbit in Nr Then [#] 

is carried by an analytic invariant set Xc_ 1~ ~ over which there is a measurable cross-section 

and the ]unction taking M to ind (G; M) maps those a-representations M of (X • G, [~u • v]) 

/or which M(L, �9 ) J IV is almost always (equivalent to) a multiple o/~(L) to a-representations o/ 

G associated with the quasi-orbit [ju]. This mapping induces a bi]ection o/equivalence classes 

and preserves multiplicity, i.e. ~(M, M) ~ ~ (ind (G, M), ind (G, M)). 

Proo]. The existence of X is given by  Corollary 3.3. Let  us show tha t  the map is onto 

a t  the equivalence class level. 

Suppose U is a a-representation of G whose restriction to IV has the quasi-orbit [#]. 

I f  V= UJIV, this means V is equivalent to a multiple of ~| ~(L)d/~(L) [9, Theorem 7.6]. 

Now ~(L) and ~(L) x always have the same Hilbert  space, and the latter is tha t  of ~(LX). 

Thus L-~ ~/(~(L)) is a measurable function from ,~r to a discrete set, which is constant on 

G orbits, so it is constant on some G-invariant Borel set E_c X which is conull relative to 
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M. Thus, we may  as well suppose that  ://(7(L)) is constant on X. Then taking 3( = ~/(7(L)) 

and 3(0 to be a space whose dimension is the same as the multiplicity of ~| 7(L)d/t(L) 

in V, we may  replace U by  a unitarily equivalent representation so tha t  ://(U)= 

:1/(V) [ = L2(/t; 3() |  3(o] =L2(/t; 3( |  3(0). This can be done in such a way tha t  if x E~V and 

/E ~/(V),then for/ t -almost  all L E X, 

( V (x) /)(L ) = (y(L )(x) | Io) /(L ), 

where I o is the identity operator on 3(0. Then the canonical projection valued measure on 

L~( X,  #; 3( |  3(0), P, is a system of imprimit ivi ty for U. I t  follows from the imprimit ivi ty 

theorem for virtual subgroups tha t  there is a a-representation of H on 3( |  3(0, say M, 

such tha t  U = i n d  (G, M), i.e. such tha t  (U(x))f(L)=~(L, x)I/2M(L, x) /(L*) for /t-almost all 

L (section l). Now if xEN,  then LENr  implies Lx=L, so (V(x)/)(L) =~(L, x)I/~M(L, x)f(L). 

Since N acts trivially on _~% we may  assume that  ~(L, x )=1  for xEN.  Hence if x E N  we 

have for almost all L, M(L, x) =7(L)(x) | I o. Now M(L, �9 ) and ),(L)(" ) | I 0 are a-representa- 

tions of N, and hence determined by  their values on any countable dense set, so there is 

one conull Borel set B~_X such that  for (L, x )EB • N, M(L, x)=7(L)(x) |  o. This shows 

tha t  every U associated with the quasiorbit I/t] is induced by  a representation of the type 

indicated. 

Conversely, suppose M is a a-representation of H and m is a cardinal number  ~ N o 

such tha t  for almost all L, M(L, �9 ) I.N is equivalent to my(L). Taking 3(0 of dimension m, 

we m a y  suppose ://(M)= 3( |  3(0, with 3( as above. Then our assumption is tha t  for al- 

most  every L E X there is a unitary V on 3( |  3(0 such tha t  for all x E N, VM(L, x) V -I = 

y(L)(x) |  o. Let ~ /=  ~/(3(| 3(0) and notice tha t  for xEh  r, {(~V, L) e ~/•  X0: VM(L, x) V- l=  

7(L)(x) | 10} is a Borel set, if X o is conull and Borel and 7 [ X0 is Betel. I f  D is countable and 

dense in N, {(V, L) e ~/•  X0: x E D implies VM(L, x) V -1 =7(L)(x) | 10} = {(V, L) e ~/•  Xo: 
x E N  implies VM(L, x)V-l=7(L)(x) |  so the latter set is Borel. I t  projects onto a 

conull set in X 0, by  assumption, so there is a Borel function V on X such tha t  for almost 

all L we have V(L)M(L, x) V(L) -1 =~,(L)(x)| o for all xEN.  Now define M 1 by MI(L, x)= 

V(L)M(L, x) V(LX) -1 for (L, x) EX • G = H .  Then M 1 =~ M, so U 1 = ind  (G, M1) ~ ind (G, 

M) = U. Also MI(L, x) =7(L)(x) | I o if x EN, so if x EN and / EL2(E,/t; 3(| 3(0), (U~(x))f(L) = 

MI(L, x)/(L x) =MI(L , x)/(L) = (7(L)(x) | Thus U 1 is associated with the quasi- 

orbit [/t] and hence so is U. 

From Lemma 4.1 we know tha t  if M1, M 2 are a-representations of X • G, U~ = ind (G, M1), 

U s = ind  (G, M~), and PI,  P2 are the associated systems of imprimitivity,  then ~ ( M  1, Ms) 

is isomorphic to ~(P~, P2)N~(U~, U2). I f  TE~(U1, U~), then TE~(UII!V,  U~IN). 

Let T = W H  be the polar decompoisition of T: W is a partial isometry and H = ( T * T )  112. 
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Then H E  ~(U1, U1) and W is an equivalence of VI=  U Q' with [/2= U~ 2 whereQlprojeets  

onto 7~(T) • and Q2 projects onto ~(T).  I f  H E  ~(P1, P1) and WE ~(P1, P~) the proof is 

complete. We have H E ~ (U  1 ] iv, U 11 iv) and the range of P1 is contained in the center of 

this ring so H E ~(P1, P1)- We know tha t  V 1 ] iv, V 21 ~ are equivalent subrepresentations 

of type I representations based on /t. (In fact each "is" a multiple of ~ Ld#(L).) Now 

for Borel E~_X, (U~IIV) ~'~(E) is the largest subrepresentation of U~IIV disioint from 

~ _  ~ ?(L)dtt(L ) and P~(E) commutes with Qi so (U~ ] iv) e~P~(E) is the largest subrepresentation 

of V, Iiv disjoint from Sx e_ E ?(L)d#(L). I t  follows tha t  W carries QIP~(E) ~ to Q~P~(E) ~2. 

Since W is an isometry of Q1 :~1 onto Q2 :K2, and (1-Q2) W =  W(1-Q1) =0,  this implies 

tha t  W E R(P~, P2). 

THEOREM 9.2. (cf. Theorem 8.2 of [9]) Let tt and X be as in Theorem 9.1, let ? be a 

measurable section over X,  and set H = (X • G, [# • ~]). Then there is a cocycle 7: on H and a 

~-representation M o/ H such that /or re-almost all L we have M(L, . ) IIV=7(L ). ~ may be 

chosen o/ the/orm a/eoo F (~) where o~ is a cocycle on H/IV~ (X • (G/IV), [/~ • v']) and F is the 

quotient homomorphism o/ H onto H/IV. (Here /: G-~G/IV is the quotient homomorphism, 

v' = / . (v)  and F(L, x)=(L, /(x)) . )  I n  that case, the cohomology class o/ a~ is determined by a 

and [#]. 

Proo/. First suppose a = 1 and consider the question of existence. Following a line of 

reasoning pointed out privately by  L. W. Baggett  in the transitive ease, we write M(L, x) 

as a product of ),(L)(n(x)) (n(x) is the iv-component of x) and an operator determined by  

L and /(x), i.e. by  F(L, x). Explicitly, let c: G/IV-->G be a cross section and for xEG let 

n(x) =xc(/(x)) -1 so tha t  x=n(x)c(/(x)).  We find a unitary operator valued function A on 

H/IV such tha t  for (L, y) EH/IV and x EIV, A(L, y)?(LY)(u)A(L, y)-i  =?(L)C(y)(u), proceeding 

as follows (see the proof of Theorem 8.2 of [9]): 

Let ~ { ( L , y ,  V ) E X  • • ~: u e N  implies VT(/2)(u) V-~=7(L)~(~)(u)}, where 

= ~/(~) = ~(~/(?(L))). Let  p denote the projection of X • G/iV • ~ onto X • G/IV, and 

let B be a conull Borel set in X such tha t  ? ] B  is Borel. Let  (H/iv)o = {(L, y)~H/IV: L and 

L ~ ~ B}, which is an inessential contraction of H/IV. Then the two functions involved in 

defining ~ are Borel on p-~((H/iv)o ) for each u~iv.  As functions of u each is determined 

by  its values on a countable dense set in iv. Hence ~ fl p-i((H/N)0) is a Borel set. 

Now for L ~ X  and y~G/iv, the equivalence class of ?(L) ~(~) i s / 2  (a similar formula 

holds for y~G also). Hence ?(/2) and ?(L) c(~) are equivalent. Thus p ( ~ ) = H / N  and p ( ~  

p-~((H/iv)o)) = (H/iv)o. I f  S is a Borel set in ~ meeting each coset of the scalars exactly 

once then p maps the Borel set ~np-~(H/iv)o)~ (X • G/IV • S) one-one onto (tt/iv)o. 

Define A to be the inverse of the latter function on (H/N)o, and define A(L, y) = I if (L, y) r 
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(H/N)o. Then A is a Borel funct ion on H/N,  and for (L, y)E(H/N)o, and  uEIV, we have 

A(L, y)?,(I2)(u)A(L, y)-l=y(L)~(~)(u). 

Now set Ho=F-I((H/N)o),  define M on H 0 by  M(L, x)=7(L)(n(x))A(L,/(x)) ,  and  let 

M(L, x) = I  if (L, x) fHo. Then for (L, x )EH o and uEN,  using the fact  t ha t  L ~ = L  f(~) for 

L E ~', we have 

M(L, x)y(L~)(u) = y(L)(n(x))A(L, /(x))7(Lr(~))(u) 

= ~,(L)(n(x))y(L) ~ ~ A(L, / (x))  

= 7(L)(n(x))y(L)(co/(x ) uco/(x) -1) A(L, / (x))  

= ~,(L)~)(co/(x)uco/(x)-l)y(L)(n(x))A(L, fix)) 

= 7(L)~(u)y(L)(n(x))A(L,/(x)) = ~,(L)~(u)M(L, x). 

Now if (L, x) and (L x, y) EHo, M(L, x )M(L  ~, y) and M(L, xy) both  intertwine 7(L ~) and 

~,(L) ~u. Since these are irreducible, there is a scalar w(L, x; L::, y) of modulus I such tha t  

T(L, x; L ~, y)M(L,  x )M(L  ~, y) = M(L, xy). Thus M is a strict  w-representation of H 0. 

To see t h a t  w really depends only on L, / (x)  a n d / ( y ) ,  compute  as follows, with wl = 

w(L, x; L x, y), using the fact  t h a t  y(L) is a representation: 

wiT(L)(n(x))7(L)C"I(X)(n(y))A(L, / (x))A(L x,/(y)) 

=wlT(L)(n(x))A(L, /(x))~'(L~)(n(y))A(L x,/(Y)) 

=v~M(L, x )M(L  ~, y) = M(L, xy) 

= M(L, n(x)c o/(x) n(y) co/(x)-ico/(x) co/(y) co/(xy)-lco/(xy)) 

= y(L)(n(x))7(L) ~'I(z)(n(y))y(L)(co/(x) co/(y ) co/(xy)-l)A (L,/(xy)). 

Solving this equat ion for ~1 gives the desired result. 

Still considering the question of existence, let a be any  2-cocycle now. Then form G ~ 

and notice t h a t  N ~ is normal  in G ~. I f  L is in the set A rC. ~ of concrete a-representations of 

N and we define L~ s) = sL(x) for (x, s) E 2V • T = N r then L ~ is an ordinary  representa- 

t ion of N r If/~1, L2 eNc'a,  then  ~(L ~ L ~ = ~(L1, L~), so equivalence and multiplici ty are 

preserved. Now if (x, s), (y, t) E G r 

(x, s)(y, t)(x, s) -1 = (x, s)(y, t)(x -1, a(x, x- l)s  -1) 

= (xy, a(x,y)-lst)(x -1, a(x, x-1)s -1) = (xyx -1, a(x, y)-la(xy, x-1)-la(x, x -1) t), 

so L ~ s) =LX.0. I n  part icular  L ~ s) =LO.~x.1), which must  hold, because T is contained in 

the center of G r I n  other  words, G acts  on both N c' ~ and (N~) c and the action of G ~ on 
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(N~)c is via the homomorphism of G * onto G. Also, the map  L--~L ~ is equivariant.  The ac- 

t ion of G preserves irreducibility, so we also have an  equivariant  restriction of this map,  

N t ' ~ ( N * )  ~ and hence an  equivar iant  imbedding ~ ' r  a) " .  L e t / 1 :  G*~G~/N~ be the 

quotient  homomorphism,  and  El(L, (x, t))=(L, [l(x, t)). Also, let 71(L~ ~ for L E X ,  

so 71 is a cross-section over X ~ 

The assumption on [tt] carries over to the  image of the measure class on (N r ^ ,  so there 

is a cocycle, o l ,  on X ~ x Gr ~ and an (role F(12))-l-representation of X ~ • G ~, M 1, such tha t  

MI(L ~ . ) I N r  ~ for a lmost  all L ~ in X ~ Then for almost  all L E X  and  tET,  

MI(L ~ (e, t) ) = t I. Define M (L, x) for (L, x) E H by  M (L, x) = MI(L ~ (x, 1)). To see tha t  M is a 

a/coo F(2)-representation of H,  where o(L, / (x) ;  L x,/(y)) =o)l(L ~ 1); L ~ 1)), note  

first t ha t  M is a Borel funct ion because L->L o and x~(x ,  1) are. Next ,  we have M 1 and 

co 10 A ~(2) strict  on {(L, (x, s ) ) :L  and  L (~' s) are in B1}, where B 1 is a conull Betel  set in X ~ Le t  

B = { L E X :  L~ If  L, L z and  L ~ are in B, then 

M(L, xy) = MI(L ~ (xy, I ) ) - - M I ( L  ~ (x, 1)(y, a(x, y)) 

= a)l(L ~ [l(x, 1); L ~ (~(xY)))-IMI( L~ (x, 1)) MI(L ~ (y, a(x, y)) 

Now N ~'~ _ T, so/I(Y, t)=/I(Y, 1) for tET,  so this equals 

(~(x, y)o~(L, /(x); L ~, /(y))-IM(L, x)M(L ~ y), 

as desired. Furthermore,  if L, L ~ E B and u E/V, 

M(L, x)?(LX)(u) -= MI(L e, (x, 1))?l(L~ 1) 

= 71(L~ 1)MI(L ~ (x, 1) )=?(L)~(u)M(L,  x), 

and if uEN,  M(L, u)=MI(L ~ (u, 1))=?l(LO)(u, 1)=?(L)~ 1)=~,(L)(u). 

Now suppose ~ '  is a cocycle on H/N and  M '  is a a/w'o_P(2)-representation of H such 

tha t  M'(L, . ) /N=?(L) for LEC, where C is/ t-conull .  We want  to  show tha t  co' and co arc 

cohomologous. Using the  form of the cocycle for M '  and  the restriction proper ty  we see 

t h a t  M'(L, x)7(L~:)(u)M'(L, x)-t=?(L)X(u) for L, L~EC and uEN.  Hence there is a Borel 

funct ion ~: H-~  T such tha t  M'(L, x) = ~(L, x) M(L, x) for L, L ~ E B N C. Then L, L ~ E B N C 

and u E N  implies M'(L, ux) =a(L, ux)M(L, ux). Hence 

(~(u, x)w'(L, /(u); L,/(x))-I~,(L)(u)M'(L, x) 

= o~(L, ux)(~(u, x)o(L,/(u); L,/(x))-I~'(L)(u)M(L, x), 
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so o~(L, ux) = ~(L, x), and a "determines"  a Borel funct ion gl on H/1V. Now 

co(L,/(x); L ~, /(y)) = oY(L, /(x); L ~, /(y)) a(L, xy)a(L, x)-la(L x, y)-I 

so co =og'd~ 1 on an inessential contraction. 

T H ~ O R n ~  9.3. (Cf. Theorem 8.3 [9]) Let #, X ,  F, co, M be as in Theorem 9.2. The 

mapping S-> M |  F) takes w-representations o/ H / N  to a-representations R o/ H such 

that R(L, �9 ) I~V is a multiple o/~(L)/or ~-almost all L. I t  preserves equivalence and multipli- 

city, and is one-one onto at the equivalence class level. 

Proo]. I f  S is an co-representation of H / N  and R = M | (So F)  then R is a a-representa- 

t ion of H.  Take :~ = ~ (M)  ~0 = ~(S), so ~ ( R )  = : ~ |  ~0. The units of H / N  can be identi- 

fied with the  analyt ic  space X~/Vr  as can those of H,  and  the measure classes are bo th  

[/~]. I f  S 1 and $2 are c0-representation of H / N  and A E~(S1, $2), define A ' ( L ) = I |  

for  L E X .  Then  taking R I = M |  R2=M| we have 

A'(L) R~(L, x) = (I | x) |  , /(x) ) 

= (M(L, x)| ,/(x))(I| 

for (L, x) in some i.c. of H,  and  since L z =L f(~:), A'  E ~ ( R  1, R~) follows. Now if BE  ~(R1, R~), 

B(L) commutes  with ~(L)(u) @ I 0 for all u E N, for almost  all L. Since y(L) is irreducible, we 

can write B(L)=I |  by  absorbing a scalar into A(L). Thus B = A ' ,  i.e. A-+A' is an 

isomorphism of ~($1, S~) onto ~(R1, R2). 

I t  remains only to show tha t  the mapping  is onto at  the equivalence class level, so 

suppose R is a a-representat ion of H such t h a t  R(L, �9 )l.h r is a lmost  always equivalent  to 

a multiple of ~(L). Let  H 0 be an i.c. of H on which R is strict. Then for (L, x) EH 0 and 

uEN,  R(L, x)R(L x, u)R(L, x) -1 is a scalar multiple of R(L, xux-1). I t  follows tha t  the 

multiple for ~(L) is the  same as for 7(L*), and by  ergodicity t h a t  the  multiple is independent  

of L. Hence we m a y  choose a Hilbert  space ~0  whose dimension is t h a t  multiple. Then the 

yon  Ne um a nn  selection lemma gives the existence of a Borel funct ion V from X to un i t a ry  

operators f rom ~4(R) to : ~ |  such tha t  for almost  all L in X, 

V(L) R(L, �9 ) V(L)-I ] N = ~(Z)(-) @ I 0. 

I f  R 1 is defined by  RI(L , x)= V(L)R(L, x) V(/x) -1, then  RI(L, �9 )I'N =~(L)(" ) |  I 0 for almost  

all L. Thus by  passing to an  equivalent  representat ion we m a y  suppose R has tha t  property.  

Now M is a y-representation and R is a a-representation. Taking H o = H I Co to  be an  
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i.c. on which they  are bo th  strict, we compute  for (L, x)EH o and uEN, since then (L, xu) 

and (L, xux -1) EHo, t ha t  

R(L, xux -1) = a(x, u)a(xu, x-1)a(z, x-l)  R(1, x) R(L ~, u) R(L, x) -x 

and 

R(L, xux -1) = M(L, xux -1) | I o 

=v(L, x; L ~', u)~(L, xu; L ~, x-1)v(L, x; L ~, x-t)-IM(L, x)M(L x, u)M(L, x)-l| 

The expressions in a and T are the  same because of the form of 3, so we see tha t  

R(L, x)-IM(L, x) | I o is in the commut ing  ring of y(LZ)( �9 ) | I 0. Hence there is a unique 

un i ta ry  W(L, x) on ~0  such t h a t  R(L, x) =M(L, x) @ W(L, x). Clearly W is a Borel func- 

t ion on H 0 and we can extend it by  the constant  ident i ty  operator  off H 0. Now if (L, x) and 

(L ~, y)EH0, using the  fact  t h a t  R is a a-representat ion and  tha t  M is a v-representation, 

M(L, xy) | W(L, xy) = a(x, y)(M(L, x)M(L ~, y)| W(L, x)W(L ~, y)) 

= M(L, xy) | (a(x, y)~(L, x; L ~, y)-IW(L, x) W(L x, y)) 

Thus W is a a/T-representation, bu t  a/'r=cooF (2), and W(L, u)=I0 for u E h  r and LEXo, 

so it follows tha t  W is of the form SoF, for some co-representation S on H]IV. Hence R = 

M | (So F) ,  as desired. 

Remark. Theorem 8.3 of [9] establishes a one-one  correspondence of the same kind, 

but  in t ha t  case one knows tha t  there do exist p r imary  co-representations of H/N. In  the 

present case, there are co-representations, as we saw in section 2, bu t  there m a y  be no 

pr imary  co-representations, which is related to the breakdown of direct integral theory  for  

virtual groups. 

10. Applications and examples 

Consider a locally compact  group G with a closed normal  abelian subgroup ~V. Then 

/V m a y  be identified with the  character  group of N,  i.e. with a subset of the concrete dual, 

so the  cross-sections 7 used in section 4 can be replaced by  the  ident i ty  function. Thus  the 

function A on X • G/N in Theorem 9.2, which must  satisfy A(Z, x)y(ff)(u)=y(Z)C(~)(u) 

A(Z, x), can take  the value I everywhere. Then M(Z, x)=x(n(x)) for (X, x ) E X  • G, where 

n(x) =xco](x) -1 as in section 4. Since N is abelian we have gx=Zf(~)=Xc~ for xEG. 

Hence we compute  the cocycle for M as follows 
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(M(z, x)M(g ~, y))-IM(z, xy) 

= (z(n(x)) z~(n(y)))-xZ(n(xy)) 

= z((n(x) col(x) n(y) co](x)-l)-ln(xy)) = y,(co](x) col(y) co](xy)-l). 

Thus we have an explicit formula for a Y-representation of N • G, where ~ is lifted from 

.~ • (G/N), i.e. v(Z , x; X x, y) really depends only on Z and the cosets of x and y. We can 

define ~o(Z , x; Z z, y) =X(c(x)c(y)c(xy)-l)-I for ZEN, x, yEG/N. Let F be the quotient homo- 

morphism of N •  onto ~• as in section 4. Then 1/T=cooF (2). The formula 

(S(Z , x)~)(y)=z(c(x)c(y)c(xy)-l)~v(x-ly) defines an co-representation S of N•  on 

L2(G/N) (using left Haar measure). Both M and S are Borel functions and are algebraically 

eocycle representations, so if [/~] is any quasiorbit in N they give strict cocycle represen- 

tations of the corresponding virtual groups. 

Let [/~] be a quasi-orbit and let ~:/V • G-~(0, ~ )  be the Radon-Nikodym derivative 

needed to form the induced representation U = i n d  (G, M| acting on ~ ( U ) =  

L~(N, #;L2(G/N)) (Section 1). Since N acts trivially on ~ ,  we may assume ~(Z, x)=l  

for xeN.  Then for xEN, ~VE ~4(U), XE/V and yEG/N, we have 

((U(x)YO(Z))(Y) = ~(Z, x)I~2M(z, x)S(Z,/(x))Of(zz)(/(x)-lY)) = Z(x)~(Z)(Y) - 

Thus U]N  is a multiple of S zd~(z). At this point, one might hope that  the central de- 

composition of U would yield primary representations of G whose restriction to /V are 

multiples of ~ •d#(x). The following example due to Calvin Moore shows that  this need 

not happen [1, Chapter I I ,  Section 4]. 

Let Z act on R 2 by means of the powers of the matrix 

and form G =R2(~)Z. Since a is unimodular, a preserves Z 2 as a subgroup of R 2 and hence 

it may be taken as a normal subgroup N of G. The action of Z induced on the torns T 2= Ze 

is ergodic for t taar  measure (and the action of G factors through Z), but the action on R 2 

has a Borel cross-section of the orbits. No~r if V is a primary representation of G, VIR2 

decomposes as a multiple of the direct sum of all the characters in an orbit. Further restric- 

tion to N = Z 2 simply gives the same multiple of the direct sum of the characters obtained 

by restricting those characters of R 2 to Z ~. This is again a multiple of the sum of the charac- 

ters in an orbit, while Haar measure gives measure zero to that  set, so V I N is not a multiple 

of S zd~(z) if ~u is Haar measure on T 2. 
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The other example in section 4 of chapter 2 of [1] also gives negative results because of 

an intermediate normal subgroup which forces primary representations of G to be as- 

sociated only with transitive quasi-orbits even though non-transitive quasiorbits are present. 

T ~ E O ~ M  10.1. 1/ G is a semidirect product o / a n  abelian normal subgroup N and a 

subgroup K, then every quasi-orbit in 5? is associated with at least one primary representation 

ol a. 

Proo/. Let [#] be a quasi-orbit and define M(Z, x)= z(n(x)) as before. If  we let c be the 

natural isomorphism of G/N with K, then c(xy) =c(x)c(y) for x and y in G/N, so the coeyelc 

(o is trivial. Thus M is an ordinary representation, and is irreducible because it is one- 

dimensional. Hence U = ind (G, M) is irreducible and it is associated with [#]. 

Remark. The formula for U is 

( U ( x ) ~ ) ( z )  = z(n(x))e(Z, l(x))l%(Zr 

so R(U[N, U IN) is clearly the multiplication operators and ergodicity of the action of K 

makes the functions constant. 

In  many cases there are irreducible representations of 57 • K of all dimensions obtain- 

able by mapping 5? • K to various groups by homomorphisms ~ with dense range. If  (S,/t) 

is an ergodic G space and H is locally compact, we say ~: S • G ~ H  has dense range if the 

action of G on S • H defined by (s, x) z = (sz, xqg(s, z)) is ergodic. If  ~ is any homomorphism 

and L is any representation of H, then Lo~ is a representation of S • G. If  A E ~(L, L) 

then A ' ( s )=A  defines a function from S to B(~/(L)) and clearly A'E~(Loq),  LoqJ). Now 

suppose TE~(Loq~,Loq~) and define a function g(s, x )=L(x)T(s)L(x)  -1 on S •  From 

Locf(y) T(sy) ~ T(s)Locf(y) it follows that  g is constant on orbits in S • H. Since g is clearly 

Borel and the operators form a standard space, we see that  g is essentially constant if 

has dense range. Let C 1 be conull and suppose g(s, �9 ) is constant a.c. on H for s E C 1. Since 

g(s, �9 ) is weakly continuous, it is constant if constant a.e. Now choose y~ such that  g(., Yl) 

is constant on some conull set C2 in S. Then g is constant on C • H, where C = C 1 (1 C~. 

Thus T is constant a.e. and on C the value is in }~(L, L), so T = A '  for some A. Now if we 

assume L is irreducible, so is Lo~. 

Since many virtual groups of the form 5? x K have homomorphisms with dense range 

into any (separable) compact group H [18], we can get many irreducible representations S 

of 5? • K and form ind (O,)/r| (So F)) to get more representations associated with the given 

quasi-orbit. 
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W o r k  is under  way,  b u t  much  remains  to  be done to  ga in  a thorough  unde r s t and ing  of 

w h a t  goes wrong in the  o ther  cases, n a m e l y  wha t  the  i n t e rmed ia t e  no rma l  subgroup  and  

t h e  non- t r iv ia l  coeyele rea l ly  involve.  

Remark  added in  proo]. ~ o r  t h e  decoml~osition of an  ac t ion in to  ergodic pa r t s ,  see 

also the  p a p e r  b y  Dang-Ngoc  Nghiem,  Decompos i t ion  e t  classif icat ion des sys temes  dy-  

namiqnes ,  Bull.  See. Math .  F rance ,  103 (1975), 149-175. 
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