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1. Introduction. 

The s t u d y  of ho lomorphic  sections of t he  Teichmfil ler  curves ~n: V(p, n ) ~ T ( p ,  n) 

was in i t i a t ed  b y  J o h n  H u b b a r d  [8] for the  case n = 0. The  exis tence of such sect ions would 

be  i m p o r t a n t  because  each such sect ion would  al low us to  choose a po in t  on eve ry  Rie- 

m a n n  surface of genus p in  a w a y  t h a t  depends  ho lomorph ica l ly  on the  modul i .  Unfor .  

t una t e ly ,  H u b b a r d  showed in [8] t h a t  n 0 has  no holomorphie  sect ions if p >~ 3. 

I n  our  pape r  [5] we s tud ied  the  holomorphic  sections of Zn for n ~> 1, b u t  we were un- 

ab le  to  ob ta in  comple t  e results .  Now we are  able  to  descr ibe  all  the  holomorphie  sect ions 

of ~= for  eve ry  genus p>~2. W e  also s t u d y  sect ions of 7~0: V(p, 0)-~ T(p ,  0) over  subspaces  

of T(p,  0) t h a t  cor respond to  R i e m a n n  surfaces wi th  au tomorph i sms .  W e  s t a t e  our  theo-  

rems in w 2, and  p rove  t h e m  in w167 5, 7, and  8. Since our  proofs  require  some unfami l ia r  facts  

f rom Teichmfil ler  theory ,  we develop the  facts  we need in  w167 3 a n d  4. Much  ma te r i a l  in 

these  sections, especia l ly  in w 3, is expos i to ry  in na ture .  B o t h  of our  ma in  theorems  have  

general izat ions,  which we give in w167 10 and  11 wi th  indica t ions  of t h e i r  proofs.  W e  have  

chosen to  focus our  a t t en t i on  in  t he  b o d y  of t he  pape r  on the  mos t  i m p o r t a n t  cases. 

The  remain ing  two  sect ions of the  pape r  dea l  wi th  pro jec t ions  of no rm one in  cer ta in  

Banach  spaces. I n  w 6 we prove  two genera l  p ropos i t ions  a b o u t  the  exis tence of such pro-  

ject ions.  I n  w 9 we es tabl ish  t he  non-exis tence  of such pro jec t ions  in  cer ta in  spaces of 

quadra t i c  differentials .  Most  cases of Theorem 9.1 w e r e  p roved  a l r e a dy  in [5] and  [8], 

and  we prove  the  remain ing  cases b y  the  me thods  ind ica t ed  in  [5]. 

(1) Research partly supported by N.S,F. grants GP-28251 (first author) and GP-19572 (second author). 
While this research was completed, the first author was a John Simon Guggenheim Memorial Fellow 
visiting Stanford University. 
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2. Statement ot results. 

2.1. Recall that  the Riemann surface X has type (p, n) if and only if there exist a 

closed Riemann surface X of genus p and n distinct points x 1 .... , x n on X, called the 

"punctures of X",  such that  X =X\{Xl,  ..., xn). Suppose 

2 p - 2 + n  >0 .  (2.1) 

Then the Teichmiiller space T(p, n) is a complex analytic manifold, of dimension 3p - 3  + n, 

whose points represent the Riemann surfaces of type (p, n). The TeichmiiUer curve V(p, n) 

is a complex manifold of dimension 3 p - 2  + n  with a holomorphic projection 

~rn: V(p, n) ~ T(p, n) (2.2) 

onto T(p, n) such that  for every ~ in T(p, n), ~1@) is the closed surface X" of genus p 

determined by the surface of type (p, n) represented by ~. We shall describe these spaces 

in more detail in w 3. 

2.2. The map ~n in (2.2) has local holomorphic sections. The problem of describing 

the (global) holomorphic sections was first raised by John Hubbard. He showed in [8] 

that  ~0: V(p, 0)-+ T(p, 0) has no holomorphic sections if p >~ 3 and six if p = 2. 

If  n>~ 1, then every fiber ~1(~) in V(p, n) contains n distinguished points, the punc- 

tures, and ~n has n canonical holomorphie sections sj: T(p, n)--+ V(p, n), 1 <~] <~n, such that 

sj@) is a puncture for every ~ in T(p, n). We describe them more fully in w 3.5. In  our ear- 

lier paper [5] we found all holomorphic sections s: T(p, n)--+ V(p, n) which are disjoint 

from the canonical ones; there are none if 2p +n~>5. (Recall that  two sections are called 

disjoint if their images are disjoint sets.) Our first theorem is a substantial improvement on 

our earlier results, since we describe all holomorphie sections of (2.2), provided that  p >~ 2. 

THEORE~r. The Teichmiiller curve ~rn: V(p, n)--+T(p,n) has exactly n holomorphie 

sections i / p  >~ 3 and exactly 2n + 6 holomorphic sections i / p  = 2. 

The n sections for p ~> 3 are the canonical sections. For p = 2 there are six Weierstrass 

sections, discovered by Hubbard [8] for n = 0 .  For n>~l we shall describe them in w 4.7. 

In addition to the Weierstrass sections there are the canonical sections sl, ..., s~. The re- 

maining sections have the form Jos  1 ..... Josh, where J:  V(2, n)-+V(2, n) is the holo- 

morphic involution whose restriction to each fiber is the hyperelleptic involution (recall 

that  each fiber is a hyperelliptic Riemann surface). We refer to w 8.3 for a fuller descrip- 

tion of J and to w167 5 and 7 for the proof of the theorem. 

2.3. Our second theorem is about closed Riemann surfaces with automorphisms. Let 

X be a closed Riemann surface of genus p ~>2, and let H be a non-trivial (finite) group of 
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conformal automorphisms of X. The group H acts in a natural  way on the Teichmiiller 

space T(p, 0) as a group of biholomorphic maps (see w 8). The fixed point set T(p, O) H rep- 

resents Riemann surfaces of genus p which admit  H as a group of automorphisms. Indeed, 

H acts also as a group of fiber-preserving biholomorphic mappings of V(p, 0), and the fiber 

over each point of T(p, O) H is mapped onto itself by  H (see w 8). 

The action of H on V(p, 0) allows us to distinguish certain points, the fixed points 

of non-trivial elements of H. In  general these points account for all holomorphic sections 

of ten: V(p, 0)-+ T(T, 0) over T(p, O) ~. 

T KEOREM. Let s: T(p, O)H~ V(p, O) be a holomorphic section o/7eo: V(p, 0)~ T(p, 0). 

Let p' be the genus o/the closed sur/ace X/H, and n' the number o/points in X/H over which 

the projection/rom X to X/H is branched. I/  

2 p ' + n '  > 4, 

then s(T) is/ixed by some non-trivial h in H/or every v in T(p, O) H. 

We shall prove the theorem in w 8. As a special case of the theorem, take X to be 

hypereUiptie and H to be the group of order two generated by  the hypcrelliptic involution. 

Then T(p, 0) ~ is a branch of the hyperelliptic locus, and the theorem tells us tha t  the only 

holomorphie sections over T(p, 0) ~ are Weierstrass sections. When p = 2, the hyperellip- 

tic locus is the entire Teichmiiller space T(2, 0) and we recover Hubbard ' s  theorem [8] 

about  the sections of z0: V(2, 0 ) ~  T(2, 0). 

3. The  Teiehmii l ler  curves  V(p, n). 

3.1. In  this section we shall review the definitions and some well known properties of 

the spaces T(p, n) and V(p, n). More details can be found in [2] or [5]. 

Let F be a Fuchsian group operating on the upper half plane U, hence also on the 

lower half plane L. We require F to have a compact fundamental  domain, so tha t  the 

quotient space U/F is compact. As usual we denote by L~176 the space of Beltrami di/- 

/erentials for F. Recall that  L~~ consists of all # in L~176 C) satisfying 

(~oT)f,'/r'=~, all ~ r .  (3.1) 

The open unit ball M(F) of L~(F) is the set of Beltrami coe//icients for P. 

3.2. For each # in M(F) there is a unique quasiconformal map w~ of the plane onto 

itself which fixes zero and one, is conformal in L, and satisfies the Beltrami equation 

w~ =~uw~ in U. 
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We say that/~ and v in M(F) are equivalent (and write/x ~ v) if and only if w~ =w ~ on 

the real axis. The TeichmiiUer space T(F) is the set of equivalence classes in M(F). We 

denote by  ~ the projection of M(F) onto T(F), so that  ~P(Ft) is the equivalence class of/x 

for each # in M(F). 

T H E O2 ~ ~ (Bers [2]). T(F) is a complex mani]old and the map r M(F)-+ T(F) is holo- 

~norphic with local holomorphic sections. 

Denote by Z0(F ) the group of all quasiconformal maps w of U onto itself such that  

wo~,=~ow, all 7EF.  (3.2). 

I t  is not hard to verify t h a t / ~ ~ v  in M(F) if and only if w" =w~ow for some w in Z0(F). 

3.3. Let  Ur be the set of z in U which are not fixed by any elliptic dement  of F. We 

define the type of F to be the type of the Riemann surface Ur/F. There is a group of type 

(p, n) if and only if (p, n) satisfies (2.1). A theorem of Bers and Greenberg (see w 2.1 of 

[5]) says that  T(F) and T(F')  are biholomorphieally equivalent if F and F' have the same 

type. The Teichmfiller space T(p, n) is defined to be T(F) for some group of type (p, n). 

3.4. The domain w~(U) depends only on the equivalence class (I)(/~) of/~ in M(F), so 

we form the Bers fiber space 

F(F) = {(~(#), z) E T(F) • (3;/x EM(F) and z ewe(U)). 

F(F) is a complex manifold on which the group F acts discontinuously as a group of bi- 

holomorphic mappings (see Bers [3]) by 

7((I)(kt ), z) = ((I)(#), 7r (3.3) 

where # E M(F), z E wg(U), y E F, and 
)'~ow~ = w~o 7. (3.4) 

(Notice that  7g depends only on qb(/x) because if # ~  v then w ~ =wgow for some w in •0(F).) 

The quotient space V(F)=F(F) /F  has a canonical complex structure, and the map 

(qb(#), z) ~-> qb(#) induces a holomorphic projection of V(F) onto T(F). The inverse image of 

~P(#) under that  projection is the closed Riemann surface wg(U)/wzF(wg) -1. The Teich. 

miiller curve V(p, n) is defined to be the space V(F) for some group F of type (p, n) with 

the above projection ~rn: V(p, n)-->T(p, n). For p~>2 we shall verify in w that  V(F) 

depends only on the type of F, as it should. 

3.5. The canonical sections s j: T(p, n)-+ V(p, n) of ~,, 1 ~< ] ~n ,  arise as follows. Let  z 0 

in U be fixed by the elliptic transformation 7 in F. Then w~(zo) is the fixed point of 7g 

in wg(U). The map OP(#) ~-> ((b(#), wZ(zo) ) from T(F) to F(F) is well-defined and holomorphic, 

inducing a section s s. 
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3.6. The considerations of w 3.5 help to prove the following. 

P R o P o s i t i o n .  V(F), with its canonical complex structure, is a complex manilold. 

Proo/: Since V(F) is the quotient of the complex manifold F(F) by  the discontinuous 

group F of biholomorphic selfmaps, it is a normal complex space. We need to show tha t  

i t  is a manifold. I f  y in F is hyperbolic, we see from (3.3) tha t  ~ has no fixed points in F(F). 

I f  y in F is elliptic, the fixed point locus of y in F(F) is 

(((P(#), w~(z0));/~ EM(F)}, 

where z 0 is the fixed point of y in U. Tha t  locus is a closed complex submanifold of F(F),  

of codimension one. I t  follows tha t  V(F) is a manifold (see [6, Satz l]). 

4. The map from V(p, n) to V(p, 0). 

4.1. There is a well-known holomorphie map  /~: T(p, n)-~T(p,  0), for p ~ 2 ,  which 

arises by "forgetting the punctures." We are going to construct tha t  map and an analog- 

ous map g~: V(p, n)---> V(p, 0). These maps will lead us in w 4.6 to a useful alternate descrip- 

tion of the spaces V(T, n) for p >~ 2 and n ~> 1. 

To begin, we choose a closed Riemann surface X of genus p ~> 2 and Fuchsian groups 

17' and F, of types (p, n) and (p, 0) respectively, so tha t  U/F'= U/F=X.  Let z ' :  U ~ X  

and ~: U--->X be the projection maps associated with the groups F '  and F. Since F has 

type (p, 0), ~ is an unbranched covering map, and there is a holomorphic map h: U-~ U 

such tha t  

~ '  = 7~oh. (4.1) 

Hence there is a homomorphism 0: F ' -~F  satisfying 

ho~ /=0( r )oh  for all yEF ' .  (4.2) 

LE•MA. h: U--> U and 0: F ' -~F  are sur]ective. 

Proo/. Set D =h(U) = U. I t  is easy to verify tha t  U is the disjoint union of the open 

sets D and {~,(z); z e D  and yeF \0 (F ' )} .  Since U is connected, D =  U and 0(F') = I  ~. 

4.2. For ~u in M(F' )  define h.(#) by  

h.(#)oh = /~h'/~'. (4.3) 

I t  is easy to verify tha t  h.(#) is a well-defined member  of M(F) and tha t  h.:  M(F ' ) ->M(F)  

is bijeetive. Moreover, 
h, ~ = w%ho(w/~) -x, a = h,(~), (4.4) 

is a holomorphic map  of w/~(U) onto w~ We need to s tudy the dependence of h~ on/~. 
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LEM~A. For any/ixed/~o in M(F')  and ~ in w~~ h~(~) depends holomorphieally on 

I~ in a neighborhood o/#o. 

Proo]. Choose an open disk D c C  centered at  $ and an open ball B ~ M ( F ' )  centered 

a t /% so tha t  D ~ w~(U) if/~ E B. That  is possible because of the continuous dependence of 

w~ on/~ (see [1]). Formula (4.4) and the results of [1] show further tha t  the functions h~, 

# E B, are a normal family in D, and tha t  h ~ tends to h~ uniformly on compact sets in D 

if v tends to/~ in B. 

Now fix # in B and ~ in M(F').  To prove the lemma we must  show tha t  h"+t~(~) is a 

holomorphic function of the complex variable t at  t = 0. Set 

w t = w  ~+~, w * = w  ~, a = h , ( # + t ~ ) ,  h t = h  ~+t~, z=w~l(~). 

By Theorem 10 of [1] (with ,b =~w/~t), 

w,(~) = Wo(Z) + t~(z) + o(t) = ~ + t~(z)  + o(t), 

w~(h(z)) = w~(h(z)) + t~b*(h(z)) +o(t). 

Therefore, by  (4.4), 

h~(wt(z)) = w*(h(z))  = ho(wo(z)) + t~*(h(z))  + o(t) 

= ho(~) +t~,*(h(z))  + o(t). 

But  the ht are a normal family in D, so 

h~(w~(z)) = h~($ + t~(z)  + o(t)) = h~(~) + t~(z )  h',(~) + o(t), 

and 

t -1 (hi(S) - ho(~)) = ~* (h(z)) - ~(z) hi(~) + o(1 ). 

As t ~ 0 ,  the right hand side converges to 

~*(h(~)) - ~(~)h~(~). 

That  proves the 1emma. 

4.3. Next  we shall verify tha t  h ,  carries equivalence classes into equivalence classes 

and tha t  h~ depends only on the equivalence class of/z. 

LEMMA. Let w: U ~  U be a homeomorphism that commutes with F'. There is a unique 

homeomorphism w,: U ~  U that commutes with F and satis/ies w ,  oh =how. 

Proo]. Define /: X - + X  so tha t  ~ ' ow  : / o z ' ,  and define g: U-~ U so tha t  ~og : /oz~ .  

Then / and g are homeomorphisms, and 

x~og-lohow =/-loT~ohow =/--10:rC'OW : ~ '  = ~oh. 
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Notice the use of (4.1). Since ~oh =~og- lohow,  there exists ~ in F such that  ~oh = g-lohow.  

Put  w, =go~. Then w,: U-~ U is a homcomorphism, and w ,  oh=how.  Further, for all y 

in F', (4.2) gives 

O(~)oh = ho~ = w , l  o howo~, = w ; l  o h o ~ o w  = w ,  l oO($)o how = w,~ oO(~)ow, o h. 

Since h and 0 are surjective, w,  commutes with F. This completes the proof because w,  

is clearly unique. 

COROLLARY. I / /~, , ,~ in M(F'),  then h/~=h ~ and h , (#) ,~h, (v)  in M(F). 

Proo/. /u,~v means wv=w/~ow for some w in Z0(F' ). The lemma gives us a homeo- 

morphism w,: U-->U that  commutes with F and satisfies w , o h = h o w .  We observe that  

w ,  is quasiconformal in U, so w,  EZ0(F ). 

Now in U we have 

h / ~ o w  v = h / ~ o w # o w  : w a  o h o w  ~ w a  o w ,  o h  

where a=h, (#) .  Differentiating both sides and comparing with (4.3) we find that  h,(v) 

is the Beltrami coefficient of wOow,, so h,(l~),,,h,(v ) in M(F). Put  ~=h,(v) .  In  wv(U)= 

w~(U) we have 

h" : wqoho (wv) -1 : wa ow,  ohow-io  (w#) -1 = waoho(w/~) -1 = h~ ~. 

The proof is complete. 

4.4. The following result is an easy consequence of the previous ]emmas. 

LEMMA. Define/: T(F')-+T(F) and G: F ( F ' ) o F ( F )  by 

/ (o(~))  = r  

a(r  ~) = (/(r h~(~)). 

Then / and G are weU-de/ined sur]ective holomorphic maps. 

(4.5) 

(4.6) 

Proo/. The corollary to Lemma 4.3 says that  / and G are well-defined. / is surjective 

because h,  is surjective and holomorphic because/o~P=~Poh,  is. G is surjective because 

h~ maps h~(U) onto h"(U), a = h,(/~), by (4.4) and Lemma 4,1. Finally, h~(~) is a holomorphic 

function of ~ for fixed/~ and a holomorphic function of/~ for fixed ~ by  Lemma 4.2. I t  fol- 

lows that  G is holomorphic. The lemma is proved. 
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4.5. Now we are ready for the main result of this section. 

T H W O R ~ .  Let/,: T(p, n)---> T(p, O) be the "/orget/ul map" de/ined by (4.5). There is a 

holomorphic map g~: V(p, n)~ V(p, O) such that the diagram 

V(p,n)  g~ , V(p, O) 

l ~ ~0 (4.7) 

/~ 
T(p, n) , T(p, O) 

commutes and gn maps each/iber ~l( t ) ,  t E T(p, n), one-to-one onto the/iber Y~l(/n(t)). 

Pros/. Represent T(p, n) by T(D') and T(p, 0) by  T(F), as in w167 4.1 to 4.4. The forget- 

ful map /n  becomes the map / of Lemma 4.4. I t  is easy to verify using (3.4), (4.2), and (4.4), 

tha t  the map G: F(F')--~F(D) of Lemma 4.4 induces a well-defined holomorphic map 

g(=gn) of V(F ' )=  F(F ' ) /F '  onto V(F)=F(F) /F .  g makes the diagram (4.7) commute. 

I t  remains to prove that  g maps each fiber one-to-one onto its image fiber. Let # E M(F' )  

and let a=h,(~u)EM(F).  We need to show tha t  h~: w~(U)~w"(U) induces a bijective map 

between the closed Riemann surfaces 

X~ = w~'( U)/w~F' (w~) -1 
and 

X~ = w~ -1. 

But (w~) - i  induces a homeomorphism of X ,  onto X = U/F', h induces the identity map of 

X = U/F' onto X = U/F, and w" induces a homeomorphism of U/D onto X~. The compo- 

site of these maps is the homemorphism induced by  h~. The theorem is proved. 

4.6. Our next  result is an almost immediate corollary to Theorem 4.5. 

THEOREM. zr n • V(p, n)---> T(p, n) • V(p, O) maps V(p, n) one-to-one onto the closed 

submani/old 
w = fit, x);/~(t) = ~0(x)} 

o/T(p,  n) • V(p, 0). 

Pros/. Theorem 4.5 implies tha t  zn • gn maps V(p, n) one-to-one onto W. W is a closed 

submanifold of T(p, n) • V(p, 0) because the derivative of z0: V(p, 0)-~ T(p, 0) has maxi- 

mal  rank at  every point of V(p, 0). 

COROLLARY 1. ~r~ • (Vp, n)~ W is biholomorphic. 

Pros/. A bijective holomorphic map between complex manifolds is biholomorphic 

(see [7, p. 109]). 
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COROLLARY 2. The holomorphic sections s: T(p, n)~ V(p, n) o/ r are in bi]ective 

correspondance with tJae holomorphic maps h: T(p, n)---> Y(p, O) such that zrooh=/~. 

Proo/. Given s, put  h=gnos. Given h, notice tha t  te->(t, h(t))=qp(t)is a holomorphie 

map of T(p, n) into W. Put  s = (~rn x gn)-lo~. 

Remark. I f  F 1 and F2 have type (p, 0), then the fiber spaces V(F1) and V(F2) are 

biholomorphically equivalent in a fiber-preserving way (see [3]). Therefore the fiber space 

V(p, 0) is well defined. Theorem 4.6 and Corollary 1 show tha t  the spaces V(p, n), n >~ 1, 

are also well defined, as we promised in w 3.4. 

4.7. Let  s: T(2, 0)-+ V(2, 0) be one of the six Weierstrass sections of Hubbard  [8] (see 

w 4.5 of [53). Then h=so]n: T(2, n)-+ V(2, 0) is holomorphic, and 7~0oh =]~, so h determines 

a holomorphic section of ~n: V(2, n)-~T(2, n). The sections obtained in this way are the 

Weierstrass sections of ;r~. 

4.8. An unsolved problem, Let B be any complex manifold, p ~> 2, a n d / :  B-+ T(p, O) a 

holomorphic mapping. As in w 4.6, form the complex manifold 

w = {(t,  z)e  B • V(p, 0 ) ; / ( t )  = 

Define z: W-+B by ~(t, x)=t. Then ~ is holomorphic, and for each t in B, g-l(t) is the 

closed Riemann sm'face represented by/ ( t ) .  As in w 4.6 the holomorphic sections of ~ are 

in bijective correspondence with the holomorphic maps h: B-~ V(p, 0) such tha t  z0oh =/ .  

This leads us to the following general problem: 

Given/: B-+ T(p, O) determine all holomorphic maps h: B ~  V(p, O) such that ~ooh =/. 

In  w167 5 and 11 we solve this problem when B -- T(p, n), or T(p, n) H for certain groups 

H, and / is the forgetful map/~ .  The general problem is open. I f  B is the unit disk A we 

conjecture that  for every / there is at  least one holomorphic h with ~0oh =/ .  By  a theorem 

of Grothendieck (see A. Grothendieck, Techniques de construction en ggom6trie analyti- 

que, S6minaire H. Cartan 1960/61), every holomorphic family 7~: W-+A of closed Riemann 

surfaces of genus p>~2 over A is obtained from a holomorphic map /: A~T(p ,  0). Thus, 

our conjecture asserts tha t  every such family has a holomorphic section. 

5. The linear version of Theorem 2.2. 

5.1. I f  X is a Riemann surface of finite type,  we denote by  Q(X) the linear space of 

holomorphic quadratic differentials ~ on X with 

ff ll 
3x 
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The differentials ~ in Q(X) are meromorphie on the compactification X" of X, with at worst 

simple poles at  the punctures. Q(X) is a finite dimensional Banach space, with norm (5.1). 

Let  T belong to the Teiehmiiller space T(p, n), and let X be the Riemann surface of 

type (p, n) represented by  r. Then the cotangent space to T(p, n) at z is canonically iso- 

morphic to Q(X) (see w 1.2 of [5]). By duality, the norms (5.1) induce norms on the tangent 

vectors of T(p, n) and a Finsler metric on T(p, n). A theorem of Royden [11] tells us that  

the induced metric on T(p, n) is the "hyperbolic metric" of Kobayashi [9]. Royden states 

his theorem only for the spaces T(p, 0), but his proof, in w 5 of [11], works equally well for 

n>~l. 

5.2. Let  F be a Fuchsian group of type (p, 0), so that  T(F) is T(p, 0) and V(F) is 

V(p, 0). As we saw in w 3, the universal covering space of F(P) is the Bets fiber space F(F). 

The isomorphism theorem of Bers [3] establishes a biholomorphic map of F(F) onto the 

Teiehmfiller space T(p, 1). Under tha t  map the projection ((I)(#), z) ~-~ (I)(#) of F(P) to T(F) 

is identified with the forgetful map/1:  T(p, 1 ) ~ T ( p , O ) o f  w Using the universal cover- 

ing of F(p, 0) by  T(p, 1), we obtain the following. 

P~OPOSlTION. Let ~0: V(p, O)-> T(p, O) be the Teichmi~ller curve ol genus p>~ 2. Let 

x o ~ V(p, O) and ~ = g0(x0) E T(p, 0). Let X = ?~ol(r). Then the cotangent space to V(p, O) at x o 

is Q(X\{xo}), the cotangent space to T(p, O) at ~: is Q(X), and the map o/cotangent spaces 

induced by go is the inclusion map o/ Q(X) in Q(X\(xo} ). Further, the Finsler metric on 

V(p, O) induced by the norm 

Iivll= jl l /or all q~EQ(X\{xo} ) 

and is the hyperbolic metric on V(p, 0). 

The final statement of the proposition is true because the covering of V(p, 0) by 

T(p, 1) is a local isometry in the hyperbolic metrics (see [9, p. 48]). The map of cotangent 

spaces induced by the forgetful map from T(p, 1) to T(p,O)is  discussed in w of [5]. 

The above proposition is the basis of Hubbard's  discussion of the sections of go: V(p, 0)-~ 

T(p, 0) in [8], and it  will play a basic role in our proof of Theorem 2.2. 

Remark. In the final paragraph of w 4.2 of [5] we gave an incorrect sketch of the proof 

of Bers' isomorphism theorem. The correct reading of tha t  paragraph, in the notation of 

w 1.5 of [5], is as follows. Define 

~F:M(F')-*F(P) by ~F(y) = ((I)(v), w~(a)), 

where ~,=h*#, aEU, and t (a)=x o. Then ~I/ is holomorphic, and it projects to a biholo- 

morphic map from T(F') to F(P). 
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5.3. Let  s: T(p,n)-->V(p,n) be a holomorphic section of yen: V(p,n)--->T(p,n). By 

Corollary 2 of Theorem 4.6, there is a holomorphic map h=gnOS: T(p, n)~ V(p, 0) such 

that  Z~ooh =]~ is the forgetful map  from T(p, n) to T(p, 0). 

Choose t in T(p, n), and let xo=h(t ) and T=z~0(Xo)=/n(t). Let  X=ye~l(z) and let X ' =  

X\{xo}. In  addition, let X"= X\{yl,  ..., Yn} be the surface of type (p, n) represented by  t. 

The cotangent spaces to T(p, n), V(p, 0), and T(p, 0) at  t, x0, and z are Q(X"), Q(X'), and 

Q(X) respectively. By  w 1.5 of [5], the map from Q(X) to Q(X") induced by  the forgetful 

map is the inclusion map. Similarly, by Proposition 5.2, the map ye0 induces the inclusion 

map of Q(X) in Q(X'). Let  L: Q(X')--->Q(X") be the map  of cotangent spaces induced by  h: 

T(p, n)---> V(p, 0). Since yeooh=/n, we have 

* t  L~v = L(ye~(Xo)~) =/n(  )~v = ~v 

for all ~ in Q(X). (Here ye~(x0): Q(X)~Q(X') and * �9 " /~(t). Q(X)~Q(X ) are the (inclusion) 

maps of cotangent spaces induced by  n0 and/~.)  Further,  since the holomorphic map h 

does not increase hyperbolic distances (see [9, p. 45]), L must  satisfy 

[[/~ll < [l~[I for all cfeQ(X'). 

5.4. Our stratefy is to determine the holomorphic sections s: T(p, n)-+ V(p, n) by 

studying the linear maps L obtained from s in w 5.3. The maps L can be rather  completely 

described. 

T~EOREM. Let X be a closed Riemann sur/aee of genus p>~2, X'=X\(xo},  and X"-= 

X\{Yl ..... Yn}, where xoeX, yl ..... yn eX,  and the points Ys are distinct. Let L: Q(X')~Q(X") 
be a linear map such that 

Lq~ =q~ /or all q)EQ(X) (5.2) 

IlL ll < II ll /or all (5.3) 

I/p~>3, then Xo=y k ]or some k, and Lq~=q) /or all qJ in Q(X'). I / p = 2 ,  let i: X ~ X  be the 

hyperelliptic involution o /X .  Then either Xo=y k ]or some ]c, ](Xo)=Yk /or some k, or x o is a 

Weierstrass point o /X .  

We shall prove this theorem, which is the linear version of Theorem 2.2, in w 7. 

5.5. In  this section we shall prove Theorem 2.2, given Theorem 5.4. Let  s: T(p, n) 

V(p, n) be a holomorphic section of yen, and let t E T(p, n). First suppose p ~>3. Theorem 

5.4 tells us tha t  xo=h(t ) =gn(s(t)) is one of the points Yk, 1 ~<k~<n. :But yk=gn(sk(t)), where 

s~ is a canonical section of ~n. Since gn is one-to-one on each fiber, we have s(t) =sk(t ). Let 

B~={teT(p,n);s(t)=sk(t)}, l <Ir<<.n. 
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Then T(p, n) is the  finite union of the sets Bk. Therefore, some B k has interior, and the 

ident i ty  theorem for holomorphie maps  implies t ha t  s =s~ in all of T(p, n). That  proves 

the theorem for p ~> 3. 

I f  p =2 ,  let s 1 .. . . .  s2n+6 be the  holomorphic sections given in w 2.2. Theorem 5.4 again 

tells us t ha t  for each tET(p,  n), s(t)=sk(t) for some k, 1 ~<k~<2n+6. Reasoning as above, 

we conclude tha t  s is one of the given sections s k. The proof is complete. 

6. Project ions  of n o r m  one.  

6.1. We have seen in w 5 tha t  the proof of Theorem 2.2 reduces to s tudying certain 

linear maps  of norm one. I n  this section we shall prove two general propositions about  pro- 

jection operators of norm one. Bo th  of them will be needed later. 

6.2. Let  V be any  real Banach space whose norm is a differentiable funct ion on 

V\{0}, and set 

A(v, w) = lira Hv + twll - Huff for all v E V\{0}, wE V. (6.1) 
t-~0 t 

Then w~+A(v, w) is a bounded linear functional  on V for any  fixed nonzero v. There is a 

close relation between these linear functionals and the projections of norm one onto closed 

subspaces of V. 

PROrOSITIO~r Let W be a non-trivial closed subspace of V, and let W' be the closed 

subspace 
W' = (ve V; A(w, v) = O /or all we  W\{0}}. (6.2) 

There is a projection P o/ norm one/rom V onto W i/ and only i/ W' is a complementary 

subspace to W. Further, i/ P exists it is unique and its kernel is W'. 

Proo/. l~irst suppose a projection P of norm one exists. For  any  v in V and w 4 0  in 

W consider the funct ion 

](t) = Hw + tvll - I[P(w + tv) ll = [[w + tv[[ - ]]w + tpv H . 

/(t) >~O =/(0)  for all real t, so 

0 =/'(0) = A(w, v) - A ( w ,  Pv). (6.3) 

I f  Pv#O, we take  w=Pv in (6.3) and find, using (6.1), t ha t  

A(w, v) = A(w, w) = Ilwl1.0. 
Hence v(~W' if Pv#O. If Pv=O, then yEW'  because A(w, v ) = 0  for all w=~0 in W, by  

(6.3). Therefore W' is the kernel of P .  I t  follows immediate ly  tha t  P is unique and tha t  W' 

is a complementary  subspaee to W. 
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Conversely, suppose W' is a complement to W. Let  P: V ~  W be the unique projec- 

tion with image W and kernel W'. We claim P has norm one. That  is, 

Ilwll <llw+vl[, all w e W ,  y e W '  (6.4) 

I f  w=O there is nothing to prove. I f  w4=O, set ](t)=llw+tvll for t in R. Then ] is a convex 

function of t, and 
1'(o) = A ( w ,  v) = 0 

by hypothesis, so/(t)  ~>/(0) for all t. Setting t = 1 we obtain (6.4). The proof is complete. 

COROLLARY. I[ V has [inite dimension, a projection of norm one ]rom V onto W exists 

i /and  only i] 
dim W + dim W ' - d i m  V. 

Proo]. W 0 W' ={0~, since A(w, w)= ]]wll =~0 for all w~:0 in W. 

Remark,. Suppose V is a complex Banach space and the closed subspace W is a com- 

plex subspace. Then the projection P of norm one from V onto W, if it exists, is complex 

linear. That  can be verified easily by noticing tha t  W', the kernel of P,  is a complex sub- 

space. Alternatively, notice tha t  P'v = - iP( iv )  defines a projection of norm one from V 

onto W. Since P is unique, P =P'. 

6.3. The next  proposition will be used in the proof of Theorem 5.4. 

PROPOSITION. Let L: V-+ V be a linear map o/ norm one. I /  V has/inite dimension 

and the (closed) subspace 
W={veV;L =v} 

is non-trivial, there is a projection P o/norm one ]rom V onto W. 

Proo/. Choose any  w ~=0 in W and v in V. Since 

/ ( t )  = Ilw + t v l l  - II w +t ivl l  
has a minimum at  t=0 ,  we have 

0 =/'(0) = A(w, v) - A ( w ,  Lv) = A(w, v - L v ) .  

Hence v - L v  E W' for all v in V, so 

dim W' ~> dim image ( I - L ) .  

But  the kernel of I - L  is W, so 

dim V ~> dim W + d i m  W' ~> dim ker ( I - L )  + d i m  image ( I - Z )  = dim V. 

By the corollary to Proposition 6.2, P exists. 

Remark. I t  is not hard to show directly tha t  

1 
P = l i m - -  ( I + L + . . . + L n ) .  

~ - ~ n +  1 
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7. Proof of Theorem 5.4. 

7.1. L e t  ~ and  ~o be L 1 funct ions  on the  uni t  d isk  A, holomorphic  and  nonzero for 

z4=0, a n d  bounded  excep t  poss ib ly  in a small  ne ighborhood  of z = 0 .  Le t  ~ and  tt be the  

orders  of ~0 and  yJ a t  zero, and  note  t h a t  v, tt ~> - 1. Define for real  t 

/(,)= j 
The  following lemma,  f rom [5], is a s t r a igh t fo rward  genera l iza t ion  of L e m m a  1 of R o y d e n  

[11]. 

LEMMA. /(t) is a di//erentiable /unction o / t  near t=O, and 

/'(0) = f f ~ Re [y~(z) ~(z)/]q~(z)f] dxdy. 

Further, the ~eeond derivative f'(O) exists i/~, <~ 2re + 1 . 1 / ~  > 2# § 1, there is a positive num- 

ber c such that 
/(t) = / ( 0 )  + t / ' (0 )  +cs(t) +o(e(t)), (7.1) 

where 
~t21og(1/Itl) i/ ~ = 2 # + 2 ,  ~(t)=[itll+(2+.~/(~_.) i/ ~>2~+2.  

The l emma implies  t h a t  the  norm (5.1) on Q(X) is d i f ferent iable  on Q(X)\{0} for a n y  Rie- 

m a n n  surface X of f ini te  type ,  so the  resul ts  of w 6 are  appl icable  to  the  spaces Q(X). 

7.2. Now we tu rn  to  t he  proof  of Theorem 5.4. Recal l  t h a t  X is a closed R i e m a n n  

surface of genus p ~ 2 ,  i ' = / \ ( x 0 } ,  and  X " =  X \ { y  1 . . . . .  y~}, where Yl . . . . .  y~ are  d i s t inc t  

po in ts  on X.  W e  are  given a l inear  m a p  L:  Q(X')~Q(X") of no rm one such t h a t  L T =~f if 

~eQ(X). 

7.3. Suppose  p ~> 3. Le t  yJ EQ(X'), and  le t  Yk be a pole of Lye. W e  shall  prove  t h a t  y~ = 

x 0. Choose ~ in Q(X) with  a zero of order  m ~ 3p - 4 > p  a t  Yk, and  not ice  t h a t  all  o ther  zeros 

of ~ have  order  -~<p < m .  P u t  

/l(t) =]]v+ty~]] and  12(t) =]]L(v+ty~)[ ] =]]V+t/4v]].  

Then  L e m m a  7.1 gives 

/2(t) = / 2 ( 0 )  + t/~(0) § C 2 [t] 1+1/(m+1) 2[_ o(] t [  1 +l/(m+l)), (7.2) 

wi th  c 2 > 0. Similar ly ,  if y~ 4 x  0 we ob ta in  

/~(t) =/~(0) + t/i(0) + O(It[ 1+ ~) (7.3) 

wi th  s = m i n  {2]m, 1 / ( p + l ) } .  Bu t  /l(t)>~/2(t) for all  t, and  /1(0)=/~(0). Hence  / ; (0)=/~(0)  

and  i t  follows f rom (7.2) and  (7.3) t h a t  s ~ l / ( m + l ) .  T h a t  is impossible  because m > p ,  

so Yk = x0 as we claimed. 
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We have proved tha t  L maps  Q(X') into itself. Since Q(X) has codimension one in 

Q(X'), the snbspace of Q(X') on which L~  = ~  is either Q(X') or Q(X). I f  L is not  the iden- 

t i ty  on Q(X'), then Proposit ion 6.3 gives us a projection P of norm one from Q(X') onto 

Q(X). But  X has genus p>~3, so no such projection exists, by  Lemma 2 of Hubba rd  [8] 

(see [5, Lemma 4.9] for another  proof). Therefore L~  = ~  for all ~ in Q(X'), and Q(X')c 
Q(X"). 

7.4. Now suppose X has genus two. Suppose x 0 is no t  a Weierstrass point  of X, since 

otherwise there is nothing to prove. Again Lemma 2 of H u b b a r d  [8] says there is no pro- 

jection P :  Q(X')--->Q(X) lof norm one (see w 9.5 of this paper  for another  proof). I t  follows 

tha t  there is a ~v in Q(X') such tha t  L~o has a pole at  some point  Yk. I f  y~ is a Weierstrass 

point, choose ~ in Q(X) with a zero of order four at  Yk and no other  zeros. Pu t  fl(t)= 
[[~ +twl I and/2(t)  = [[~v +tLwl I. Lemma 7.1 gives 

/ l (t)  = /1(0) ~-t/l(O) ~- o(It I ~'2), 
/2(t) =/2(0) +t/~(o) + c~ I tl o~ +o( I t[ 0,5) 

with c 2 >0 .  Again/1(0) =/2(0),/l(t)  >~f~(t) for all t, and/~(0) =/~(0), so we arrive at  a contra- 

diction. We conclude tha t  Yk is no t  a Weierstrass point  of X. 

Let  j: X-+X be the hyperelliptic involution. Choose ~v in Q(X) with double zeros at  

y~ and J(Yk) and no other zeros. I f  x 0 is neither Yk nor  ](Yk), then defining/l( t)  and/~(t)  as 

above we have 

/l(t) =/1(0) ~- tffl(0) -~- O(t 2 log (l /It  I )), (7.4) 

/~(t) =/2(0) + t/'~(o) + c2 I tl 4~ +o(Itl 4~) (7.5) 

with c~ > 0. Tha t  is again impossible, so x 0 is either Yk or ?(Yk). The proof is complete. 

8. Proof of Theorem 2.3.  

8.1. Let  X be a closed Riemann surface of genus p ~> 2, and H a non-trivial group of 

conformal automorphisms of X. Choose a holomorphic covering map  ~r: U-->X. Let  F be 

the group of cover transformations,  and let F '  be the group of lifts to  U of the maps in H.  

Tha t  is, 

P '  = {g: U-~  U; zrog = hozr for some hEH}.  

Then F and F '  are Fuchsian groups, P is a normal  subgroup of F' ,  and P ' / P  = H .  

Let  Y be the closed Riemann surface U/F' =X/H, and let Y' be Y minus the  points 

over which the projection from X to Y is branched. Then (recall the definitions in w 3.3) 

y '  = U r , / F ' ,  
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so Y'  and r '  have the same type (p', n'). We assume 

2 p ' + n '  > 4. 

Since 7~: U - ~ X  is a covering map, the group 1 ~ has type (p, 0). 

(s.1) 

8.2. We define a right action of the group F '  on the space M(F) of Beltrami coeffi- 

cients for F by  

/~.g--(#og)~' /g ' ,  all /~EM(F), gEr ' .  (8.2) 

F '  carries equivalence classes to equivalence classes, and the subgroup F acts trivially on 

M(F). Therefore (8.2) induces a right action of H on the Teiehmiiller space T(F) by  

O( t t ) .~(g)=O(#-g) ,  all # e M ( F ) ,  g e F ' .  (8.3) 

Here a: F'-->H is the natural  quotient homomorphism. 

8.3. The action (8.3) of H on T(F) is an easy special case of the action on T(F) of the 

Teichmfiller modular group (see w 3.1 of [5]). Bets has lifted the action of the modular 

group to the fiber space V(F) in [3]. Here we shall describe how to lift the action of H. 

Our formulas differ slightly from those of Bers [3] because we are making H act from the 

right. First we convert the left action (3.3) of F on F(F) to a right action by  the usual 

device: 
( O ( ~ ) ,  Z)"~] = ~--1(O(/.~), Z) = ((I)(#),  (~/~)--I(z)). 

Next  we extend tha t  action to a right action of F '  on F(F) by  

(O(~u), z).g = (~P(#.g), (g/t)-l(z) ). (8.4) 

Here #EM(F) ,  zEw/t(U), gEF' ,  and 

g / t o w  ~ ~ ~ W/tOg. 

The action (8.4) of F '  on F(F) induces an action of the quotient group H = F ' / F  on the 

quotient space V(F)= F(F)/F.  H acts as a group of biholomorphic maps (see [3]). Compar- 

ing (8.3) and (8.4) we see tha t  h in H maps the fiber over ~ onto the fiber over ~.h for each 

T in T(F). I f  ~ in T(F) is fixed by  the group H, then H acts as a group of conformal auto- 

morphisms of the fiber over ~. In  particular, H acts on the fiber X ~ U/F over O(0) by  

x. h = h-l(x) for x in X and h in H, as it should. 

Remark. Suppose F has type (2, 0). Then X = U/F is hyperelliptie, and the hyperel- 

liptic involution generates a group H, of order two, of conformal automorphisms of X. 

Since all surfaces of genus two are hyperelliptie, H acts trivially on the Teichmiiller space 

T(2, 0). I t s  generator J acts as above on the fiber space V(2, 0). J is a fiber preserving 
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holomorphie involution of V(2, 0). Let J operate on T(2, n) x V(2; 0) by 

(t, x ) .  J .= (t, x .  J ) .  

Then J maps the submanifold W, of Theorem 4.6, onto itself, so it defines a holomorphic 

involution of V(2, n). That is the involution referred to in the final paragraph of w 2.2. 

8.4. Since F is a subgroup of F', M(F') is a subspace of M(F) and T(F ' )~  T(F). For- 

mula (8.2) shows that  F' acts trivially on M(F'), so H fixes every point of T(F'). 

PROPOSITIO~ (Kravetz [10]). The set o/ points in T(F) le/t /ixed by every member o/ 

H is precisely T(F'). 

The proposition is a simple consequence of TeichmiiUer's theorem about extremal 

quasiconformal maps. 

8.5. For any Fuchsian group G we denote by Q(G) the space of holomorphic quadratic 

differentials for G. Thus, Q(G) consists of all holomorphic functions q0 on U satisfying 

cf(g(z))g'(z)2=cf(z), all gEG, z~U. 

The cotangent spaces to T(F) and T(F') at qb(0) are Q(F) and Q(F') respectively. We want 

to find the map 0: Q(F)-+Q(F') between cotangent spaces induced by the inclusion map 

i: T(F')-+ T(F). According to w 1.2 of [5], 0 is determined by 

(0~, t t ) r ,=(? , t t ) r ,  all qEQ(F), #EL~(F').  (8.5) 
Here 

and (0~,/~)r' has similar meaning. 

Choose a fundamental polygon D c  U for F' and a complete Set of inequivalent coset 

representatives (71, ..., 7N) for F in F'. Then (8.5) gives 

(0~, #)r, = 

for all ~0 in Q(F) and # in L~(F'). 

t 2 Oq~(z)= ~ q~(yj(z))yj(z ) , aI1 ~EQ(F). 
j = l  

5--752909 Acta mathernatica 137. I m p r i m 5  1~ 22 Septembrc  1976 

dxdy 

; ff qD(~J(z))lu(TJ(z))lY~(z)12dxdy 
1=1 D 

N 

Therefore 0: Q(F)--,Q(F') is the relative Poincarg series 
N 

(8.6) 
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8.6. I t  is desirable to interpret the map  (8.6) on the Riemann surfaces X = U/I" and 

Y = U/F' =X/H. L e t / :  X-> Y be the quotien t map, and let Y', as in w 8.1, be Y with the 

branch set deleted. Then Q(F) is just the lift of Q(X) to U, and Q(F') is the lift of Q(Y'). 

The inclusion map  of Q(F') in Q(F) corresponds to the map 

~+/*r 

from Q(Y') into Q(X), and the map 0: Q(X)~Q(Y') of (8.6) is given by  

/*0~v = Eh~,h*~, all ~ EQ(X). (8.7) 

Suppose ~0 =/*~0 for some v? in Q(Y'). Then h*q~=cf for all h in H, so we have 

O]*v 2 = N~f, all ~e in Q(Y'), (8.8) 

where N is the order of the group H. Since N is the degree of the m a p / ,  we also have 

]l/*y~H =NHvH, all V in Q(Y'). (8.9) 

8.7. Now we are ready to begin the proof of Theorem 2.3. Let  the group H operate on 

T(p, 0) as in w 2.3, and let s: T(p, o)H-+ V(p, 0) be a holomorphic section of ~0: V(p, 0)~ 

T(p, 0). Choose any ~ in T(p, O) H, and let X be the Riemann surface ze5l(~). Let  x0= 

s(v)EX. We must  show tha t  x 0 is fixed by  a non-trivial member  of H. 

Choose a group F of type (p, 0) so tha t  X = U/F, and form the group F '  of type (p', n') 

as in w 8.1. We represent T(p, 0), V(p, 0), and T(p, O) H by T(F), V(F), and T(F')  = T(p', n'), 

as in w167 8.1 to 8.5. Let  i: T(p', n')-->T(p, 0) be the inclusion map. The cotangent spaces to 

T(p', n'), V(p, 0), and T(p, 0) at  % s(T), and i(~) are Q(Y'), Q(X'), and Q(X) respectively. 

(Of course X'=X\{xo}.  ) Let L: Q(X')~Q(Y') be the map of cotangent vectors induced 

by  s. Then IlL, It < ll [I for aU ~ in Q(X'), by Royden [11] and Kobayashi  [9]. Further,  

since 7coos =i ,  and Zo induces the inclusion of Q(X) in Q(X'), we have Lq)=Oq~ for all ~ in 

Q(X), where 0 is defined by  (8.7). Hence Theorem 2.3 is an immediate corollary of the fol- 

lowing. 

T~EOUEM. Let X, H, Y, and Y' be a8 above. Let %EX and X" =X\(xo}. Suppose the 

linear map L: Q(X') -+Q( y') satis/ies 

lin~l] <]l~[I, all ~ in Q(X') (8.10) 
and 

LqJ=0% all ~ in Q(X), (8.11) 

where O: Q(X)~Q(Y') is de/ined by (8.7). Then :c o is/ixed by a non-trivial element o] H, 

provided that the type (p', n') o/ Y' satisfies (8.1). 
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8.8. I t  remains to prove Theorem 8.7. We shall assume tha t  x o is not fixed by any 

non-trivial element of H, and we shall reach a contradiction. Let  Yo =/(xo)E Y. Our as- 

sumption on x o means tha t  Y0 belongs to Y'. Set Y" = Y'\(Yo}. 
For any ~ in Q(X'), define 0~0 by  (8.7). Then OqJ EQ(Y"), and 

1 

(Recall t ha t /V  is the order of H.) 

Choose ~0 in Q(X') with a pole at  x o. Then LqJoEQ(Y' ) and ]*LcpoEQ(X ). Hence ~1= 

q% -N-1/*Lcfo is in the kernel of L, by  (8.8) and (8.11). Further, ~1 has a pole at  x o. I t  fol- 

lows, by (8.7), tha t  ~Pl=0T1 has a pole at Y0; in particular, ~01 is different from zero. 

Choose any  ~p ~=0 in Q(Y') and put  gl(t)= IIN-i/*~p +t~lll. Lemma 7.1 guarantees tha t  

g~(0) exists. From (8.10), (8.11), (8.8) and (8.9) we obtain 

gl(t) I> IIL(N-:/*W +t~l)ll = IIO(~-l/*~)l[ = II~ll = ~ 1 ( o )  

for all t, so g~(O)=0. 

n e x t  put g~(t)= 119 +t~dl.  Theu gi(0) exists, and 

as(t) = IIo(N-1/*~ +t~,)l]  < g~(t) 

for all t. But g~(0) = 11911 =al(0), so a~(0) =gi(o) =0.  
We have just proved, in the notation of w 6.2, tha t  y~l belongs to the complementary 

subspace Q( Y') '  of Q(Y') in Q(Y"). Since ~Pl has a pole at  Y0, Y~l and Q(Y') together span all 

of Q(Y"). Hence, by  the Corollary to Proposition 6.2, there is a projection P of norm one 

from Q(Y") onto Q(Y'). But ,  by  Theorem 9.1 (a), no such projection P exists when the 

type (p', n') of Y' satisfies (8.1). We have reached the desired contradiction, and Theorem 

8.7 is proved. 

Remark. See w l l .1  for a generalization of Theorem 8.7. 

8.9. We outline here a short alternate proof of Theorem 2.3, valid when Y = X / H  has 

genus at  least three. In  w 8.3 we saw tha t  H acts on the fiber space V(p, 0)=  V(F). In  

~o-l(T(p,  O) H) =~o~I(T(F ' ) )  we have 

$ e ~ i ( T ( F ' ) ) / H  = F(F')/F' = V(p', n'). 

Let I :  ~ l ( T ( p ,  0)~)-~ V(p ', n') be the holomorphic quotient mapping, and i: T(p',n')--> 
T(p, 0) n the inclusion map. I f  8: T(p, o)H~ V(p, 0) is a holomorphic section of ~0 over 

T(p, O) H, then Iosoi: T(p', n')~V(p', n') is a holomorphic section of ~ , :  V(p', n')--> 
T(p', n'). I f  ~o' ~>3, then Iosoi must  be a canonical section, by  Theorem 2.2. Theorem 2.3 

follows at  once. 
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9. Proje,,tio~ i~ Q(Y"). 

9.1. We shall prove the  following theorem, most  eases of which were proved in [5] 

and [8]. 

TH~Og~.M. Let Y be a closed Riemann sur/ace o/ genus p, Y'  = Y\{Yl  .... , y,~} a sur/ace 

of type (p, n), and Y"= Y'\{yo} a sur/ace o/type (p, n + l ) .  

(a) I[ 2 p + n > 4 ,  there is no pro~ection P o] norm one ]rom Q( Y") onto Q( Y'). 

(b) I[ (p, n)=(2, 0) or (1, 2) there is no projection P o/norm one/tom Q(Y") onto Q(Y') 

unless Yo is a Weierstrass point o] Y'. 

We shall define ~he Weierstrass points of Y' in w167 9.5 and 9.6, when we prove (b). 

9.2, Lemma 4.9 of [5] proves the above theorem if the type  (p, n) of Y' satisfies 

3 p + n > 6 .  To complete the proof of (a) we mus t  consider types  (p, n ) = ( 1 ,  3), (0, 6), and 

(0,5). 
Let  Y'  have type  (1, 3), and  suppose a projection P :  Q(Y")--->Q(Y') of norm one exists. 

Choose y) =~0 in the kernel of P .  The torus Y is the quotient  of the complex plane C by  a 

lattice subgroup L, so Y is an abelian group. T h e  equat ion 

3y = Yl +Y2 § (9.1) 

has nine solutions on Y, and ~ has at  most  four zeros in Y". Therefore (9.1) has a solution 

y in Y" such tha t  ~2 is no t  zero at  y. B y  Abel 's  theorem there is ~ in Q(Y ' )w i th  a triple 

zero a t  y, simple poles a t  Yl, Y~., and  Y3, and no other  zeros or poles in Y. 

Choose ~P140 in Q(Y) and  notice tha t  ~1 has no zeros or poles. Finally, choose a com- 

plex number  ~ so tha t  ~2 =~Pl + ~Y~ is zero at  y. 

Set ]l(t) = [[~ +ty~l[ [ = ]]P(~ +t~f~)]] and ]2(t) = ]]~ +ty~21 ] . Using Lemma 7.1 we find 

/~(t) = 11(0)  + tl~(O) + ~ It[ ~/~ + o(It[~/3), 

/~(t) = h(o)  +t/'~(o) + o(t~ log (l/l t I)), 

' 0  ' 0  with c 1 >0 .  But /1(0)  =/~(0), and [l(t)~/~(t) for all t, so [1( ) = / 2 ( ) .  This leads to  a contra- 

diction and we conclude tha t  the projection P cannot  exist. 

9.3. Now suppose Y' has type  (0, 6). I f  P exists, choose V 4=0 in its kernel. V has at  

least four poles on the Riemann sphere Y, so it has a simple pole at  some Yk, 1 < k < 6. 

Choose ~0 in Q(Y') with a simple zero at  Yk, simple poles at  the other  punctures of Y', and  

no other  zeros or poles. Nex t  choose ~fl in Q(Y') with a simple pole at  y~, and choose a 

complex number  a so tha t  y;z =V1 + ~ is regular at  y~. Define /l(t) and/2( t )  as in w 9.2. 
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Again 11(0)=/~(0),/l(t) ~< [~(t) for all t, and  ['1(0):~1~(0). Bu t  L e m m a  7.1 gives 

11(0 = 11(o) + tI'l(o) + cl I t I ~1= + o(I t I =% 
h(t) =/~(o) + t/~(o) + o(t~ log (Wltl)). 

Again we have  a contradiction,  so P cannot  exist. 

9.4. Now let Y' have  t ype  (0, 5). I n  this case a rguments  based on L e m m a  7.1 fail, 

and  we use the  method,  based o n  ideas of Hubba rd ,  t h a t  we sketched in w 4.10 of [5]. 

Assume t h a t  P:  Q(Y")~Q(Y') exists, and  choose ~p=~0 in its kernel. Then  ~pCQ(Y'), so ~p 

has a pole a t  Y0, the  ex t ra  punc ture  of Y". Choose ~1 in Q(Y') with a simple zero a t  Y0, 

and  ~2 in Q(Y') with no zeros in Y. 

B y  formula  (4.10.1) of [5], we have  

/(t) = f r  F[(q31 + t~z2)llqJ1 + toP2 I] = 0 (9.2) 

for all real t. Of course it follows t h a t  riO) exists and  equals zero. We shall obta in  a contra-  

diction b y  showing t h a t  ]'(0) does not  exist. 

The  funct ion q~l/~z serves as a local coordinate on Y a t  Y0. We choose a closed neigh- 

borhood D of Y0 in Y' such t h a t  q~l/qJ~ maps  D homeomorphica l ly  onto the  closed disk 

{zec; I~1 <r}. Write  / ( t )=/ l( t )+f~(t} where 11 is the  integral  over  D and I~ is the  integral  

over  Y\D.  Since ~/~01 is bounded  in Y\D,  /~(0) exists. I n  fact  differentiat ion under  the 

integral  sign is easily justified b y  the  domina ted  convergence theorem,  with the  help of 

the  inequal i ty  

Iz+ z t iz+wl //I <21w/~t, all ~, weC with z , 0 ,  w ,  - z .  (9.3) 

I n  te rms  of the  local coordinate z =?l/qJ~ on D, we can write ~0 as ~fl(z)dz 2, of 2 as O(z)dz2, 
and ~01 as zO(z)dz ~, where O(z) is holomorphie  and  nonzero in {z; Izi <r} ,  and  ~p(z) is mero- 

morphic  with a simple pole a t  z = O. The integral  over  D becomes 

/l(t) = f f~z,~ ~(z)[(~ + t)llz + t[] [~(~)ll@)l]a*@. (9.4) 

The domina ted  convergence theorem and inequal i ty  (9.3) imply  t h a t  

g(t)= f f,~l<r~(z)[(~ + t)/l~ + tll]dxdy 

is differentiable a t  t = 0  if le(~)/~l is integrable in {~; 1~1 <r}. ~euce, the differentiabil i ty 

a t  t = 0  of (9.4) is not  al tered if we replace O(z) b y  0(0) and  ~p(z) by  its principal  pa r t  a t  z =0 .  

Define h(t) by  

h(t)= I j  z-l[(~,+t)ll2+ti]dxdy all It l<r. (9.5) 
J J I  zl<<. r 
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Then {'(0) exists if and only if h'(O) does. The following lemma gives the desired contra- 

diction. 

L ~ M A .  De/ine h(t) by (9.5). Then h'(O) does not exist. 

Proo/. Let w(z)=~alz+t[a/(z+t)2z. Then h(t) is the integral of w~ over {z; [z[ ~<r}. By 

Stokes' theorem 
1 

h(t) = - ~ ] t ]  + ~ )~zl=~ [Iz + t)~/(z + t)%] dz. 

The line integral is a smooth function of t in the interval - r  < t  <r .  Hence h'(O) does not 

exist. The proof of the lemma, and of Theorem 9.1 (a), is complete. 

9.5. I t  remains to prove Theorem 9.1 (b). First we consider type (2, 0). I t  is con- 

venient  to change our notation. Let  X be a closed Riemann surfaces of genus two, and 

X '  =X\{x0}. Let  j: X ~ X  be the hypereUiptic involution, and H the group of order two 

generated by ]. The Weierstrass points of X are the six fixed points of j. Let  X ~ be X 

minus the six Weierstrass points. Set Y ' =  X"/H. Then Y' has type (0, 6). 

Suppose P: Q(X')~Q(X) is a projection of norm one. Define 0: Q(X)--->Q(Y') by (8.7) 

and L: Q(X')~Q(Y') by Lq~ =OPq~. Then L satisfies (8.10) and (8.11), so Theorem 8.7 says 

tha t  x 0 is a fixed point of ], as required. We may  use Theorem 8.7 here because only Theo- 

rem 9.1 (a) was used in its proof. 

9.6. Now let X have type (1, 2). Represent _~ as C modulo a lattice subgroup/),  gen- 

erated by  1 and ~ with I m  z > 0. Without  loss of generality we take 0 to be one puncture 

of X and a(~L the other. The map z~-->-z+a on C induces an involution j on X. Let  X" 

be X minus the four fixed points of ?', and let H be the group of order two generated by  j. 

The quotient surface Y ' =  X"/H has type (0, 5). By analogy with the (2, 0) situation we 

call j the hy~erelliptic involution of X and its four fixed points the Weierstrass Toints of X. 

I t  is clear that  j is the unique involution of X with four fixed points. 

Let  P: Q(X')~Q(X) be a projection of norm one. Again define 0: Q(X)~Q(Y') by 

(8.7) and L: Q(X')--->Q(Y') by Lq~=OPcf. Our proof of Theorem 8.7 remains valid in this 

situation, and we conclude once more tha t  x 0 is fixed by  ~. The proof of Theorem 9.1 is 

complete. 

10. Generalization of Theorem 2.2. 

10.1 In  this section we shall indicate the proof of a generalized version of Theorem 

2,2, stated in w 10.3. First we extend Theorem 5.4 to surfaces of finite type. A Riemann 

surface and its type (p, n) are called exceptional if 2p §  <~4. 
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TE~.OREM. In  Theorem 5.4, replace the assumption that X is a closed surface o/genus 

p >~ 2 by the assumption that X is of finite type (p, n) satisfying (2.1). 

(a) I f  X is non-exceptional, then x o =Yk for some k, and Lq~ =q~ all q~ in Q(X'). 

(b) I / X  is o/type (2, 0) or (1, 2), then either xo=y ~ /or some lr j(xo)=Yk /or some ]6 or 

x o is a Weierstrass point (where j is the hyperelliptic involution on X). 

Proof. Assume 2 p + n > 4 .  Let  ~pEQ(X')\Q(X), and let Yk be a pole of /40 with ykEX. 

We must  prove yk=xo. Choose a ~eQ(X) with a zero of order m>~3p-4+n>O aty~, and 

notice tha t  all other zeros of ~ have order <~p<m. Define functions fi a n d / a  as in w 7.3. 

The function f2 is given by  (7.2); and if Yk =~x0, then 

f l ( t )  = 11(0) -k t /~(0)  q- 0([tl  1+~ log (l/It I)) 
with s = m i n  {2fro, 1 / (p+ l ) ,  1}. (The log term is needed only when s = l .  I t  is harmless 

in general.) As before, fi(t)>~f2(t), and we conclude s < l / ( m + l ) .  This contradiction est- 

ablishes the claim tha t  Yk = x0. 

The rest of the arguments proceed as in w 7.3 using Theorem 9.1 instead of Lemma 2 

of Hubbard  [8]. 

10.2. Now assume tha t  X is of type (1, 2) and x 0 is not  a Weierstrass point of X. 

Theorem 9.1 says there is no projection P: Q(X')~Q(X) of norm one. I t  follows tha t  there 

is a ~0EQ(X') such tha t  L~0 has a pole at some point Yk. I f  Yk is a Weierstrass point, choose 

q~EQ(X) with a double zero at  Yk (and no other zeros and poles in X). Define ]i and fa as 

in w 7.4, and conclude tha t  ]l and fa satisfy (7.4) and (7.5) respectively. 

As in w 7.4, we arrive at  a contradiction; so tha t  Yk is not ~ Weierstrass point of X. 

Now we choose ~EQ(S) with simple zeros at  Yk and i(Yk). I f  Xo=ky ~ and Xo~=i(yk), 

then with the same definitions of fi and ]a we h a v e / i  satisfying (7.4) and / a  satisfying 

/a(t) =/a(0)  + t/i(0) + ca It[ 3/~ + o([t [ 3/~) 

with c a > 0. This is again impossible, completing the proof. 

10.3. The previous theorem has, of course, applications to the problem of cross sec- 

tions of z~n: V(p, n)-~T(p, n), for p 4 2 .  Using the methods of w 3-7 we can establish the 

following result. 

T~EOREM. (a) The Teichm411er curve ~n: V(2, n ) ~  T(2, n), n >~ l,  has precisely n - 1  

holomorphie sections disjoint from s i. 

(b) The Teichmi~ller curve z~n: V(1, n)-~T(1, n), n>~3, has precisely n - 3  holomorphic 

sections disjoint from si, sa, s a. 
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(b') The Teichmiiller curve: 7~n: V(1, n ) ~  T(1, n), n>~2, has precisely 2 ( n - 2 ) §  holo- 

morphic sections disjoint/rom sl, s 2. 

(c) The Teichmiiller curve ~ :  V(O, n)--->T(O, n), n~>5, has precisely n - 5  holomorphic 

sections disjoint/tom sl, s2, sa, s4, %. 

Outline o/Proo/. Let us define the spaces 

V(p, n)k = V(p, n)\  [J sj(T(p, n)) for 0 ~< k ~< n. 
]=1  

Thus, V(p, n)o = V(p, n) and V(p, n)~ = V(p, n)' in the notation of [5]. We are interested 

in finding all holomorphic sections of 

z~n: V(p, n)~-+ T(p, n). 

We, of course, have the n - k  canonical sections sk+ 1, ..., s=. 

]0.4, Let  F be a Fuchsian group of type (p, n). We assume tha t  F has precisely k 

conjugaey classes of parabolic elements and ( n - k )  conjugaey classes of elliptic elements. 

The constructions of w 3 apply to this situation and we obtain the space V(F). We show 

in the next section tha t  V(F) is V(p, n)k. 

10.5. Choose a compact Riemann surface X of genus p ~> 0. Choose n distinct points 

on X: x 1 ... .  , x n. Assume (2.1) holds. Choose Fuchsian groups F and F '  of type (p, n) such 

tha t  U / F = X  and U / F ' = X ' = X \ { x  1 ..... xk} , k<~n. Let ~: U-+X and ~':  V-->X' be the 

projection maps associated with the groups F and F' .  Furthermore, we assume tha t  ~-l(x~) 

has the same ramification number  as ~'-l(xj)  for j = k + l  ..... n. Because of this last as- 

sumption, there is a holomorphic mapping h: U--> U such that  

2~ I ~ 2 ~ o h .  

As in w 4.1, there is a homomorphism 0: F ' ~ F  satisfying (4.2). 

LEMMA. h(U) = z - I ( X ' )  (and is thus dense and open in U) and 0 is sur]ective. 

Proceeding as in w 4.2-4.4, we obtain holomorphic mappings 

/: T(F ' ) -~  T(F) and G: F(F ' )  -~ F(F). 

/ is the Bers-Greenberg [4] isomorphism, and the mapping G induces a holomorphic in- 

jective mapping g of V(F') = F(F ' ) /F '  into V(F) = F(F)/F. I t  is easy to check tha t  the image 

of g is precisely V(F)\[3~-I sj(T(F)), where sj is the section determined by  the puncture 

xj. Therefore V(F') is indeed V(p, n)k. 
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10,6. The straightforward generalization of Theorem 4.5 is the following result. 

T ~ O R E M .  :Let (p, n) satis/y (2.1). Choose k so that 0 < k < n  and 2 p + k > 2 .  There 

exist a "/orget/ul map" / :  T(p, n)-+ T(p, k) and a holomorphic mapping g: V(p, n)k-+ F(p, k)' 

such that the diagram 

V(p,n)k g , V(p, k)' 

T(p, n) �9 T(p, k) 

commutes and g maps each/iber 7~1(t), t E T(p, n), one-to-one onto the/iber ~l(/(t)). 

10.7. As in w 4.6 we find tha t  holomorphic sections s: T(p, n ) ~ V ( p ,  n)k of gn cor- 

respond to holomorphic maps h: T(p, n)-~ V(p, k)' such tha t  ~ o h  =/. The isomorphism 

theorem of Bers [3] implies tha t  the holomorphic universal covering space of V(p, k)' is 

T(p, lc § 1), so the arguments of w 5 can be repeated to obtain Theorem 10.3 from Theorem 

10.1. The extra sections in Theorem 10.3 (b') are obtained from the Weierstrass points 

and hyperelliptic involution for type (1, 2), just as in genus two. 

11. Generalization of Theorem 2.3. 

11.1. We begin with a theorem tha t  includes both Theorem 8.7 and Theorem 10.1 

as special eases. Let  X be a Riemann surface of type (p, n) satisfying (2.1), and let H be 

a (necessarily finite) group of eonformal automorphisms of X. (H is a group of automor- 

phisms of X which permute the punctures of X.) As in w 8, set Y = X / H ,  l e t / :  X-~ Y be 

the quotient map, and let Y' be Y with the branch set deleted. Recall tha t  the inverse 

image of the branch set is the set of points in X fixed by  non-trivial elements of H. Define 

O: Q(X)~Q(  Y') by  (8.7). 

THEORWM. Let X,  H, Y, and Y'  be as above. Let xoEX and X ' = X \ { x o ) .  Let Y" =  

Y ' \ (Y l  . . . . .  Ym}. Suppose the linear map L: Q(X' )~Q( Y") satis/ies 

]IL II II l[, all in Q(X') 
and 

Lq) = Oq~, all ~o in Q(X). 

(a) / /  Y' is not exceptional, then/(xo) ~ Y". 

(b) I /  Y' has type (2, 0) or (1, 2), then/(xo) is a Weierstrass point o/ Y', /(xo) ~ Y", or 

](/(Xo) ) ~ Y", where ]: Y'---> Y' is the hyperelliptic involution. 

To obtain Theorem 10.1 let H be the trivial group. To obtain Theorem 8.7 let X be 

a closed surface and {Yl ... . .  Ym} the empty  set. 
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11.2. Since 0 maps Q(X) onto Q(Y'), and Q(X) has eodimension one in Q(X'), the 

image of/5 must  either equal Q(Y') or contain Q(Y') as a subspaee of codimension one. In  

the first case, Theorem 11.1 is proved by  repeating the argument  of w 8.8 verbatim, except 

tha t  if Y' has type  (2, 0) or (1, 2) Theorem 9.1 (b) is used in place of Theorem 9.1 (a). 

The second case is more difficult. We shall outline the proof briefly, under the assumption 

tha t  the surface Y' (of type (p', n')) is not exceptional. 

Choose a y~oEQ(X') such tha t  I~oeQ(Y' ). Let y~E Y' be a pole o f / ~ 0 .  T h e n / ~  has 

a pole at  Yk for every v/EQ(X')\Q(X). We shall prove tha t  ](Xo)=yk($Y" ). As usual our 

method is to assume ](Xo) #Yk and look for a contradiction. 

Choose a ~EQ(:Y') such tha t  q~ has a zero of order m' >~3p'-4-~n" >p' >~0 at Yk. (All 

the other zeros of ~ have order <~p'.) Note tha t  ]*~vEQ(X) and tha t  ]*~ has a zero of order 

m'  a t  the ffV distinct points (N =order  H) in [-l(y~). Write z 1 =Yk, z2 =](x0), and let z3, z4, ... 

be the (finitely many) remaining points in ]7 which are either punctures of Y" or zeros or 

poles of ~. Let  R s be the order of ~ at  zj. Then the order rj of ]*~0 at  each point in ]-l(zj) is 

rj = vj(Rr - 2 ,  

where ~j is the order of the subgroup of H fixing the point. Note tha t  the points ]-l(zj) ac- 
count for all the zeros and poles of ]*q. 

By the Riemann-Roch theorem, there is a y~ EQ(X') such tha t  

(a) v 2 has a pole at x0, and 

(b) the order of ~v at each point in f-l(zj), ] #  1,2, is >~ �89 ( r j - 1 ) .  

By (a), /W has a pole at  Yk. Now set [2(t)=Hq~+tI~l I and ]l(t)=lIN-x]*q~+t~vll, so tha t  

]2(t)=llL(N-~]*q~+ty~)H <~]l(t), and ]2(0)=]~(0). As usual, Lemma 7.1 leads to the desired 

contradiction. 

11.3. Next  we extend the considerations of w167 8.1-8.4 to surfaces with punctures. Let  

X be a closed Riemann surface of genus p ~> 2, and let F be a (finitely generated) Fuehsian 

group of type (p, n) such tha t  U/F =X. As usual we denote by  Ur the complement in U 

of the set of elliptic fixed points of F. Then 

x "  = ~ r / r  

is a surface of type (p, n). We require all elliptic transformations in F to have the same 

order, say two. Let  H be a non-trivial group of conformal automorphisms of X". Since 

every h EH can be extended to an automorphism of X tha t  permutes the punctures, it can 

be lifted to U, and we m a y  form the group F '  as in w 8.1. Let  

r = X / H  = v / r '  
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and le t / :  X-> Y be the quotient map. We let Y' be Y minus the branch set o f / ,  and we 

s e t  

Y" = Y' n l(X") = Vr,/F'. 

We denote the type of Y" and F'  by (p', n"). As in w167 8.2-8.4, the group H acts on T ( F ) =  

T(p, n) and V(F) = V(p, n), and the fixed point set of H in T(F) is T(F') = T(p', n"). 

11.4. Let /n: T(T, n ) ~T ( ~ ,  0) be the forgetful map of w 4, and i: T(p',n")--->T(p,n) H 

the (surjective) inclusion map. The following result extends the results of w 4.6. 

PROFOSITION. For p>~2, the holomorphic sections s: T(p, n) n ~  V(p, n) o/ zn are'in 

bijective correspondence with the holomorphic maps h: T(p' ,  n")~ V(p, O) such that z0 o h =  

/~oi. 

The proposition follows immediately from Theorem 4.6, since we can identify 

:~  1 ( T(p, n) ~) with the complex manifoldl 

{(t, x)E T(p', n") x V(p, 0);/=(i(t)) = ~0(x)}. 

I t  is important to notice that  the group H acts on T(p, 0) as well as T(p, n) since 

H is a group of automorphisms of the closed surface X as well as the punctured surface 

X". The image of T(p, n) H under/~ is precisely T(p, O) H. As in w 8, T(p, O) H can be identified 

with T(p', n'), where (p', n') is the type of the punctured surface Y' defined in w 11.3. The 

connections among all these spaces are displayed in the following commutative diagram: 

:~Z(T(p, n) ~) g'~ .~ ~ l ( T ( p ,  O) H) 

l :rn ~o (11.1) 

, i /~, io  
T(p', n') --------* T(p, n)" , T(p, 0 ) ' ,  T(p', n') 

11.5. We shall now describe some holomorphic sections s: T(p, n) ~ V(p, n) of z~. 

We shall assume that  the type (p', n') of Y' satisfies 

3 p ' - 3 + n '  >~ 2. 

Notice that  3 p ' - 3  § is the complex dimension of the fixed point set T(p, 0) H. 

As in w 11.3, represent T(p, n) and T(p, n) H by T(F) and T(F')  respectively. Each 

elliptic transformation in F' determines a holomorphic section s, as in w 3.5. We call these 

the fixed point sections. If  n > 0  the restrictions of the canonical sections sj: T(p, n)---> 

V(p, n) to T(p, n) H are among the fixed point sections. 

If Y' has type (2, 0) or (1, 2) there are additional sections. We describe these in w167 11.6 

and 11.7. 
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I1.6. Suppose first that Y" (and F') have type (2, 0). Then there is a Fuehsian group 

F"DF', of type (0, 6), such that T(p, n)n~T(F')=T(F") The elliptic transformations in 
F" determine holomorphic sections as above. We call the new ones (those not already 

determined by  elliptic elements of F')  Weierstrass sections. More generally, let Y' have 

type (2, 0). Since Y' plays the same role for the closed surface X tha t  Y" plays for X", 

we obtain Weierstrass sections s: T(p, o)H~ V(p, 0). For every such sections, the map 

h =so/=oi: T(p', n")-+ V(p, 0) determines a Weierstrass section of ~ :  x ~ I ( T ( p ,  n)H) -+ 

T(p, n) H, by Proposition 11.4. Our two methods of construction agree if Y" (and therefore 

Y') has type (2, 0). There is precisely one Weierstrass section for each point x 0 6 X such that  

/(Xo) is a Weierstrass point of Y'. 

Finally, if Y' has type (2, 0), then in many  instances (for example, with commuta- 

tive groups H), the hyperelliptic involution of Y' lifts to X. As in w 8.3 we obtain, in this 

case, a holomorphic involution J of V(p, 0) tha t  maps each fiber over T(p, O) H onto itself. 

The map (t, x)-+(t, J(x)) of T(p', n") • V(p, 0) onto itself defines a holomorphic involution 

J of ~ l ( T ( p ,  n)H). I f  S: T(p, n)n-+ V(p, n) is a holomorphie section of ~rn, then so is Jos. 

I f  s is a Weierstrass section, then Jos=s,  but if s is a fixed point section, Jos is a new 

section. 

C. H. Sah (oral communication to one of the authors) has constructed a wide class 

of examples where the hyperelliptic involution of Y" (of type (2, 0)) does not lift to X. 

In  these cases the extra sections of the preceding paragraph must  be constructed in a 

slightly different manner. Lemma 4.4 showed that  over each Teichmfiller space T(F) we 

have a two fiber spaces: V(F) and F(F). The manifold F(F) depends not only on the type 

of F but on the signature of F. For our purposes (unless otherwise indicated) this depend- 

ence on signature may  be ignored, and we denote by F(p, n), a Bers fiber space over T(p, n). 

corresponding to a group F of type (~o, n). In  addition to the commutat ive diagram (4.7), 

we also have the commutat ive diagram 

G~ 
F(p, n) , F(p, 0) 

! 

Q~ / ~o 
(11.2) 

In T(p, n) , T(p, O) 

here Qn, Qo are t h e  canonical projections and G~ is holomorphie and surjective but  not 

injeetive on the fibers if n > 0 .  Since @ol(T(p, O) H) is a holomorphic universal cover of 

zol(T(p, o)H), it follows easily from (11.1) and (11.2) tha t  

W = {(t, x) 6 T(p, n) H • e~i(T(p, 0)H); /n(t) = e0(X)} 
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is a holomorphic universal cover of ~r~l(T(p, n)H). The hyperelliptic involution of Y' 

certainly lifts to an involution J of Qffl(T(p, 0) ~) that  acts in a fiber preserving way. Thus 

J also acts in the usual manner on W: (t, x)-~(t, J(x)). Every  section s: T(p, n)Z~ V(p, n) 

of ~rn lifts to a mapping from T(p, n) H into W. This  mapping may be composed with J and 

projected to a section "Jos" of ~rn. If s is a Weierstrass section, "Jos"@) projects to a 

Weierstrass point o n  ~:nl('l~) modulo H. Further,  it could happen that  for some fixed point 

sections s, " J o s "  is again a fixed point section. The sections Jos and "Jos" will be de- 

scribed henceforth as the section s composed with J.  

11.7. Suppose now that  Y" has type (1, 2). The Fuchsian group 1" (also of type (1, 2)) 

need not be contained in any Fuchsian group of type (0, 5). Such a normal extensionncver 

exists if F'  has signature (1, 2; #, v) with # # v  (see Singerman [13]). 

This signature for F' can occur even when F has type (p, 0), since every finitely ge- 

nerated Fuchsian group of the first kind contains a torsion free normal subgroup of finite 

index (see Selberg [12] or Zieschang-Vogt-Coldewey [14]). 

Thus even the construction of the Weierstrass sections of w 11.6 does not work in this 

case. To get around this difficulty, we represent T(p, n) z'~ T(F') = T(1, 2) by T(F') for a 

group F' of signature (1, 2; ~ ,  ~) .  This is possible by the Bers-Greenberg isomorphism 

theorem [4]. Now there will be a group F" ~ 1 ~' of type (0, 5). We must recall a construction 

of the group F'. Let  h: U~Ur,,  be a holomorphic universal covering map. As in w 

there then exists a surjective homomorphism 0: F ' -+F'  satisfying (4.2) for all 7fiF' .  Let  

=0-1(F). Then F is a normal subgroup of F'. Further,  U/F ~- Ur./F. From this it follows 

tha t  F(F')  is a holomorphic universal covering space of ~r~I(T(p, n) H) minus the images of 

the fixed point sections (those constructed in w 11.5). (This construction is analogous to 

those in w167 10.4 and 10.5.) Since F" acts in a fiber preserving, way on F(F'), the elliptic 

elements of 1~" not in F' produce Weierstrass sections as in w 11.6. If Y' has type (1, 2), 

then the Weicrstrass sections of ~r0: ~r~l(T(p, 0)H) -~ T(p, 0) ~ induce Weierstrass sections of 

Jr~: ~r-~l( T(p, n) ~) ~ T(p, n) H by Proposition 11.4. 

The considerations of the above paragraph have also shown that  the hyperelliptic 

involution of Y' (of type (1, 2)) lifts to an involution J of a universal covering space of 

~rffl(T(p, O) H) minus the images of the fixed point sections, and to the corresponding space 

over T(p, n) H. This allows us to construct the section J composed with s for every section 

s: T(p, n) H-~ P(p, n), except for those fix6d point sections whose images were deleted. 

(Using Proposition 11.4 we can describe these exceptional sections as the ones which are 

determined by holomorphic maps h =sol~oi: T(p', n")~ P(p, 0), where s: T(p, 0)H-~ V(p, 0) 

is a fixed point section.) 
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11.8. Let  us return briefly to the commutat ive diagram (11.1). The mapping / of X 

onto Y induces a surjective holomorphic mapping / :  ~~l(T(p, n)~)~ V(p', n") such tha t  

V(p', n"), / 7cnl(T(p, n) ~) 

T(p' ,  n") , T(p, n) u 

commutes. I t  is important  to notice tha t  we have constructed a section s: T(p, n) H--+ V(p, n) 

of z~0: V(p, n)-+ T(p, n) with s@0 ) = x 0 for all % e T(p, n) H and x o E V(p, n) whenever 

(i) the type (p', n') is non-exceptional, and/(xo) is a puncture on ztn~(i-l@0)), 

o r  

(ii) the type (p', n') is exceptional and/(xo) is a Weierstrass point on ~r~(i-l@0)), or 

/(xo) is a puncture on this surface, or j(/(xo) ) has this property,  where ~" is 

hyperclliptic involution on this surface. 

11.9. Now we are ready to generalize Theorem 2.3. 

THEOREm. Let s: T(p, n ) ~ V ( p ,  n) be a holomorphic section o I zn: V(p, n)~T(p,  n), 

p>~2. I/2t)' +n' >4,  then s is one o] the/ixed point sections. I! (p', n') =(2, 0) or (1, 2), then 

s is a /ixed point section, a Weierstrass section, or one o/these sections composed with J. 

We outline the proof for the case 2p'+n'>4. By the methods of w 5.5, it suffices to 

show tha t  s agrees with a fixed point section at  each point in T(p, n) H. 

Let g,: V(p, n)~V(p,  0) be the map of Theorem 4.5, and let h=gnosoi: T(p', n")~ 

V(p, 0). Then h satisfies the condition 7eooh=fnoi of Proposition 11.4. Let  tET(p', n"). 

Set xo=h(t)EV(p , 0) and ~=~ro(Xo)=/,~(i(t))eT(p, O) H. Let X=~t~l(~) be the surface re- 

presented by  T, and put  Z '  = Z \ { % } .  Finally, let Z"  = X \ { x  1, ..., xn} be the surface repre- 

sented by i(t). The group H is a group of automorphisms of X and X", so we form the sur- 

faces Y, Y', and Y" as in w 11.3. Y" is the surface represented by  t. The section s agrees 

with a fixed point section at  i(t) if and only if the projection ](Xo) of x 0 to Y = X / H  is a 

puncture of Y". 

The cotangent spaces to T(p', n"), V(p, 0), and T(p, 0) at  t, x0, and ~ are Q(Y"),Q(X'), 

and Q(X) respectively. The map on cotangent spaces induced b y / ~ a i  is 0: Q(X)oQ(Y"). 

The map no induces the inclusion map from Q(X) to Q(X'). Let L: Q(X')-~Q(Y") be the 

map on cotangent spaces induced by h. Then L satisfies the conditions of Theorem 11.1, 

so/(Xo) is a puncture of Y", as required. 

The exceptional cases are handled similarly. 
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