A CHARACTERIZATION OF DOUGLAS SUBALGEBRAS

BY

SUN-YUNG A. CHANG

University of California at Los Angeles. L.A. Ca. 90024. USA (1)

1. Introduction

Let L^{∞} be the complex Banach algebra of bounded Lebesgue measurable functions on the unit circle ∂D in the complex plane. The norm in L^{∞} is the essential supremum over ∂D . Via radial limits, the algebra H^{∞} of bounded analytic functions on the unit disc Dforms a closed subalgebra of L^{∞} . This paper studies the closed subalgebras B of L^{∞} properly containing H^{∞} . For such an algebra B we let B_I denote the closed algebra generated by H^{∞} and the complex conjugates of those inner functions which are invertible in the algebra B. (An inner function is an H^{∞} function unimodular on ∂D). It is clear that $B_I \subset B$. R. G. Douglas [4] has conjectured that $B = B_I$ for all B, and consequently algebras of the form B_I are called Douglas algebras.

A discussion of the Douglas problem and a survey of related work can be found in [11]. In particular, it is noted in [11] that the maximal ideal space $\mathcal{M}(B)$ of B can be identified with a closed subset of $\mathcal{M}(H^{\infty})$, and when B is a Douglas algebra, $\mathcal{M}(B)$ completely determines B. This means that if the Douglas question has an affirmative answer then distinct algebras B has distinct maximal ideal spaces. That the latter assertion is true when one of the algebras is a Douglas algebra is the main result of this paper. We prove that if B and B_1 are closed subalgebras of L^{∞} containing H^{∞} , if $\mathcal{M}(B) = \mathcal{M}(B_1)$ and if B is a Douglas algebra, then $B = B_1$. Using this theorem, D. E. Marshall [9] has answered the Douglas question affirmatively.

Using functions of bounded mean oscillation, D. Sarason [13] had proved the theorem above in the special case when B is generated by H^{∞} and the space of continuous functions on ∂D . By similar means, S. Axler [1], T. Weight [15] and the author [3] had verified the theorem for some other specific Douglas algebras.

Section 2 contains some preliminary definitions and lemmas. The more technical aspects of the proof are in section 3 and the main theorem is proved in section 4. Some

⁽¹⁾ Research supported in part by National Science Foundation.

⁶⁻⁷⁶²⁹⁰⁹ Acta mathematica 137. Imprimé le 22 Septembre 1976

readers may perfer reading section 4 before sections 2 and 3. In section 5 we describe the largest C^* -algebra contained in a Douglas algebra.

The proof of our main result follows a pattern from Sarason's paper [12]. The proof of Theorem 6 below uses techniques from C. Fefferman and E. M. Stein [6]. I would like to express my warm thanks to Professor D. Sarason for giving invaluable aid, and to Professors R. G. Douglas and A. Shields for very helpful discussions. I am also grateful to Professor J. Garnett for re-organizing the paper, improving the English and giving a simplified proof of Lemma 2 below.

2. Preliminaries

For an integrable function f(t) on ∂D , denote the harmonic extension of f to D by

$$f(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta - t) f(t) dt$$

where $P(r, t) = (1 - r^2)/(1 - 2r \cos t + r^2)$ is the Poisson kernel. Let $\nabla f(re^{i\theta}) = (\partial f/\partial x(re^{i\theta}), \partial f/\partial y(re^{i\theta}))$, and $|\nabla f(re^{i\theta})|^2 = |\partial f/\partial x(re^{i\theta})|^2 + |\partial f/\partial y(re^{i\theta})|^2$. Our first lemma is a Littlewood-Paley identity.

LEMMA 1. If f, $g \in L^2$ and at least one of f(0) and g(0) vanishes, then

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}f(e^{it})g(e^{it})\,dt = \frac{1}{\pi}\int_{D}\nabla f(re^{i\theta})\cdot\nabla g(re^{i\theta})\,r\log\frac{1}{r}\,dr\,d\theta.$$

This lemma follows from the Parseval identity after expressing the gradients in polar coordinates. The corresponding result for the upper half plane is in [14, p. 83].

The second lemma can be proved using methods in [6] but it also follows from an invariant formulation of Lemma 1. For $z_0 = r_0 e^{i\theta_0} \in D$, let $(S(\theta_0, r_0) = \{re^{i\theta}: |\theta - \theta_0| \leq 4(1 - r_0), r_0 \leq r < 1\}$.

LEMMA 2. Let
$$\varepsilon > 0$$
, $|z_0| = r_0 \ge 1/2$. If $f \in L^{\infty}$, $||f||_{\infty} \le 1$ and $|f(z_0)| > 1 - \varepsilon$, then

$$\iint_{S(\theta_0, r_0)} (1-r) |\nabla f|^2 r \, dr \, d\theta \le C_1 \varepsilon (1-r_0)$$

where C_1 is independent of ε and r_0 .

Proof. Let $w = (z - z_0)/(1 - \bar{z}_0 z) = se^{i\varphi}$. On s = 1, $z_0 = r_0 e^{i\theta_0}$, $d\varphi = P(r_0, \theta - \theta_0)d\theta$. Let $f(z) = F(w) = (2\pi)^{-1} \int_{-\pi}^{\pi} P(s, t - \varphi) F(t) dt$. Then

$$\begin{split} (2\pi)^{-1} &\int \left| F(e^{i\varphi}) - F(0) \right|^2 d\varphi = (2\pi)^{-1} \int P(r_0, \theta - \theta_0) \left| f(e^{i\theta}) - f(z_0) \right|^2 d\theta \\ &= (2\pi)^{-1} \int P(r_0, \theta - \theta_0) \left| f(e^{i\theta}) \right|^2 d\theta - \left| f(z_0) \right|^2 < 2\varepsilon. \end{split}$$

Hence by Lemma 1,

$$\frac{1}{\pi}\int_D |\nabla F(w)|^2 \log \frac{1}{|w|} s \, ds \, d\varphi < 2\varepsilon.$$

Now $1 - |w|^2 = (1 - |z_0|^2)(1 - |z|^2)/|1 - \bar{z}_0 z|^2$ and when $z \in S(\theta_0, r_0)$, $|1 - \bar{z}_0 z| \leq c_1(1 - |z_0|)$ for some constant c_1 , for all z. Thus for $re^{i\theta} \in S(\theta_0, r_0)$ we have

$$\frac{1-r}{1-r_0} \leqslant c_2(1-|w|^2) \leqslant c_3 \log \frac{1}{|w|} \quad \text{for some constants } c_2, c_3.$$

Because $|\nabla F(w)|^2 s \, ds \, d\varphi = |\nabla f(z)|^2 r \, dr \, d\theta$, we have

$$\iint_{S(\theta_0, r_0)} (1-r) |\nabla f(z)|^2 r \, dr \, d\theta < c_3(1-r_0) \iint_D |\nabla F(w)|^2 \log \frac{1}{|w|} s \, ds \, d\varphi \leq C_1(1-r_0) \, \varepsilon.$$

We thus complete the proof.

If I is an arc on ∂D with center e^{it} and length $|I| = 2\delta$, we let

$$R(I) = \{ re^{i\theta} \colon |\theta - t| \leq \delta, \ 1 - \delta \leq r < 1 \}.$$

A finite positive measure μ on D is called a Carleson measure if there exists a constant c such that $\mu(R(I)) < c|I|$ for all subarcs I of ∂D .

LEMMA 3. (Carleson [2]). Let μ be a Carleson measure on D such that $\mu(R(I)) \le c |I|$ for all subarcs I of ∂D . Then for $1 \le p \le \infty$

$$\int_D |f(z)|^p d\mu(z) < CA_p ||f||_p^p$$

for all $f \in L^p(\partial D)$, where the constant A_p depends only on p.

Following an argument in [14, p. 236] one can easily prove Lemma 3 using maximal functions.

For an arc $I \subset \partial D$, let $f_I = |I|^{-1} \int_I f(t) dt$ be the average of a function f over I. For $f \in L^1(\partial D)$, define

$$||f||_* = \sup_{|I| \leq 2\pi} \frac{1}{|I|} \int_{I} |f - f_I| dt.$$

We say f has bounded mean oscillation, $f \in BMO$, if $||f||_* < \infty$. Functions in BMO can be related to Carleson measures by the following

LEMMA 4. (Fefferman and Stein). For $f \in L^1(\partial D)$, the following conditions are equivalent:

(i) $f \in BMO$

(ii) If $d\mu = (1-r) |\nabla f(re^{i\theta})|^2 r dr d\theta$, then μ is a Carleson measure.

Furthermore if

$$c = \sup_{|I| \leq 2\pi} \frac{\mu(R(I))}{|I|},$$

then there is a constant A_1 such that

$$\frac{c}{A_1} < \|f\|_*^2 \le A_1 c.$$

Lemma 4 is proved in [6] for the case of upper half spaces. The proof there can easily be adapted to the present case using Lemmas 1 and 3.

3. A distance estimate

Throughout this section we fix an non-constant inner function $b(z) \in H^{\infty}$ and we set, for $0 < \delta < 1$,

$$G_{\delta} = \{ z \in D \colon |b(z)| \ge 1 - \delta \}.$$

For convenience we assume $G_{\delta} \subset \{1/2 \leq |z| < 1\}$.

LEMMA 5. Let $0 < \varepsilon$, $\delta < 1$. If $f \in L^{\infty}$, $||f||_{\infty} \leq 1$ and $|f(z)| \geq 1 - \varepsilon$ on G_{δ} , then the measure μ defined by

$$d\mu = \chi_{G\delta}(z) (1-r) \left| \nabla f(z) \right|^2 r \, dr \, d\theta$$

satisfies

$$\sup_{I}\frac{\mu(R(I))}{|I|} \leqslant C_1 \varepsilon,$$

where C_1 is the constant in Lemma 2.

Proof. Let I be some arc on ∂D . By Lemma 2 it suffices to find points $r_j e^{i\theta_j}$ in G_{δ} such that $G_{\delta} \cap R(I) \subset \bigcup_j S(\theta_j, r_j)$ and such that $\Sigma(1-r_j) \leq |I|$.

For n=0, 1, 2, ... and $1 \le k \le 2^n$, let $\{I_{n,k}\}$ be the partition of I into closed arcs of length $|I_{n,k}| = 2^{-n} |I|$. Let $T(I_{n,k}) = \{z \in R(I_{n,k}); |1-|z| \ge 2^{-n-2} |I|\}$ be the top half of $R(I_{n,k})$. We select a subfamily \mathcal{I} of $\{I_{n,k}\}$ by the rule $I_j \in \mathcal{I}$ if I_j is a maximal arc among those $I_{n,k}$ for which $T(I_{n,k}) \cap G_{\delta} \neq \emptyset$. Then $G_{\delta} \cap R(I) \subset \bigcup_{\mathcal{I}} R(I_j)$ and the arcs in \mathcal{I} have pairwise disjoint interiors.

For $I_j \in \mathcal{J}$ choose $r_j e^{i\theta} j \in T(I_j) \cap G_{\delta}$ with smallest modulus r_j . Then $G_{\delta} \cap R(I_j) \subset S(\theta_j, r_j)$ and $1 - r_j \leq |I_j|$. Hence $G_{\delta} \cap R(I) \subset \bigcup_j S(\theta_j, r_j)$ and $\Sigma(1 - r_j) \leq \Sigma |I_j| \leq |I|$.

Now consider a function f with the following property:

84

(P₁) $f \in L^{\infty}$ and there exist ε and δ , $0 < \varepsilon$, $\delta < 1$, such that the measure μ_{δ} defined by $d\mu_{\delta} = \chi_{G_{\delta}}(z)(1-r) |\nabla f|^2 r dr d\theta$ satisfies $\sup_{I} \mu_{\delta}(R(I))/|I| \leq \varepsilon$.

For example, a function satisfying the hypothesis of Lemma 5 has property (P_1) .

THEOREM 6. There is a constant C such that if f has property (P_1) then

$$\limsup_{n\to\infty} d(fb^n, H^\infty) \leq C \varepsilon^{1/2}.$$

Proof. Since L^{∞}/H^{∞} is the dual of $H_0^1 = \{g \in H^1; g(0) = 0\}$ we have

$$d(fb^{n}, H^{\infty}) = \sup\left\{ \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) b^{n}(e^{i\theta}) g(e^{i\theta}) d\theta \right| : g \in H_{0}^{1}, ||g||_{1} \leq 1 \right\}.$$
(1)

By a density argument we can assume $g \in H^{\infty}$. Moreover, if u is the Blaschke factor of g and k=g/u, then g=k+k(u-1) where neither k nor k(u-1) has zeros in D. Thus in estimating $d(fb^n, H^{\infty})$ using (1), we can assume $g \in H^{\infty}$ and $g=h^2$, $h \in H^{\infty}$, $||h||_2 \leq 1$. Finally, replacing f by af+c with $|a| \leq 1$ does not harm property (P₁), so that we can assume $||f||_{\infty} \leq 1$ and f(0)=0.

With these assumptions we have by Lemma 1,

$$\frac{1}{2\pi} \int f(e^{i\theta}) b^n(e^{i\theta}) g(e^{i\theta}) d\theta = \frac{1}{\pi} \iint_D \nabla f \cdot \nabla(b^n g) r \log \frac{1}{r} dr d\theta.$$
(2)

Since b^n and g are analytic functions, we have $(b^n g)(z) = b^n(z)g(z)$ so that $\nabla(b^n g) = b^n \nabla g + g \nabla b^n$ on D.

We now estimate as follows:

$$\begin{split} \left| \frac{1}{\pi} \iint_{D} \nabla f \cdot (b^{n} \nabla g) r \log \frac{1}{r} dr d\theta \right| \\ &\leq \frac{1}{\pi} \iint_{D} |b^{n}| |\nabla f| |\nabla g| r \log \frac{1}{r} dr d\theta \\ &= \frac{\sqrt{2}}{\pi} \iint_{D} |b^{n}| |\nabla f| 2 |h| |h'| r \log \frac{1}{r} dr d\theta \\ &\leq \sqrt{2} \left(\frac{1}{\pi} \iint_{D} |b^{2n}| |\nabla f|^{2} |h|^{2} r \log \frac{1}{r} dr d\theta \right)^{1/2} \left(\frac{4}{\pi} \iint_{D} |h'|^{2} r \log \frac{1}{r} dr d\theta \right)^{1/2}. \end{split}$$

By Lemma 1 the second factor is

$$\left(\frac{4}{\pi}\int_{-\pi}^{\pi}|h-h(0)|^{2}d\theta\right)^{1/2} \leq (8||g||_{1})^{1/2}.$$
(3)

To estimate the first factor write

$$\frac{1}{\pi} \iint_{D} |b^{2n}| |\nabla f|^2 |h|^2 r \log \frac{1}{r} dr d\theta = \int_{G_{\delta}} + \int_{D \setminus G_{\delta}} = S_1 + S_2.$$

Since $G_{\delta} \subset \{|z| \ge 1/2\}$ we have $\log 1/r \le c(1-r)$ on G_{δ} . Using (\mathbf{P}_1) and Lemma 3 we then have

$$S_1 \leq cA_2 \varepsilon \|h\|_2^2 \leq cA_2 \varepsilon \|g\|_1.$$
(4)

Also

$$S_2 \leq (1-\delta)^{2n} \frac{1}{\pi} \iint_D |\nabla f|^2 |h|^2 r \log \frac{1}{r} dr d\theta.$$

Since $||f||_* \leq 2||f||_{\infty} \leq 2$, Lemmas 3 and 4 give

$$S_2 \le (1 - \delta)^{2n} 8A_1 A_2 \|g\|_1.$$
(5)

Combining (3), (4) and (5) gives

$$\frac{1}{\pi} \iint_{\mathcal{D}} \nabla f \cdot b^n \nabla gr \log \frac{1}{r} dr d\theta \bigg| \leq C(\varepsilon^{1/2} + (1-\delta)^n) \|g\|_1 \tag{6}$$

for a universal constant C.

We now estimate

$$\frac{1}{\pi} \cdot \iint \nabla f \cdot g \nabla b^n r \log \frac{1}{r} dr d\theta = \int_{G_{\delta}} + \int_{D \setminus G_{\delta}} = S_3 + S_4.$$

Write

$$|S_{3}| \leq \left(\frac{1}{\pi} \iint_{G_{\delta}} |\nabla f|^{2} |h|^{2} r \log \frac{1}{r} dr d\theta\right)^{1/2} \left(\frac{1}{\pi} \iint_{G_{\delta}} |\nabla b^{n}|^{2} |h|^{2} r \log \frac{1}{r} dr d\theta\right)^{1/2}.$$

Since $||b^n||_* \leq 2$, these two factors can be bounded as were S_1 and S_2 so that

$$|S_3| \leq 4 \frac{A_1}{\pi} \varepsilon^{1/2} A_2 ||g||_1.$$
(7)

For S_4 we again use the Schwartz inequality to get

$$|S_4| \leq \left(\iint_{D \setminus G_{\delta}} |\nabla f|^2 |h|^2 r \log \frac{1}{r} dr d\theta \right)^{1/2} \left(\iint_{D \setminus G_{\delta}} |\nabla b^n|^2 |h|^2 r \log \frac{1}{r} dr d\theta \right)^{1/2}.$$

As with the estimate for S_2 , the first factor is dominated by $(8A_1A_2||g||_1)^{1/2}$, and since $|\nabla b^n| \leq n(1-\delta)^{n-1} |\nabla b|$ on $D \setminus G_\delta$, the second factor does not exceed $n(1-\delta)^{n-1}(8A_1A_2||g||_1)^{1/2}$. Combining our bound for S_4 with (7) gives

$$\left|\frac{1}{\pi} \iint_{D} \nabla f \cdot g \nabla b^{n} r \log \frac{1}{r} dr d\theta \right| \leq C_{3} (\varepsilon^{1/2} + n(1-\delta)^{n-1}) \|g\|_{1}$$

for a universal constant C_3 .

With (6) and (2) this inequality implies

$$\left|\frac{1}{2\pi}\int f(e^{i\theta})b^n(e^{i\theta})g(e^{i\theta})d\theta\right| \leq C(\varepsilon^{1/2}+n(1-\delta)^{n-1})\|g\|_1$$

86

whenever $g \in H^{\infty}$ has no zeros. By (1) and our remarks about g immediately following (1) we have

$$d(fb^n, H^{\infty}) \leq 3C(\varepsilon^{1/2} + n(1-\delta)^{n-1}),$$

and this proves the theorem.

4. A characterization of Douglas algebras

Before proving the main theorem we must make some observations about maximal ideal spaces. Further details are in [11]. Because H^{∞} is a logmodular subalgebra of L^{∞} [8], each $\varphi \in \mathcal{M}(H^{\infty})$ has a unique representing measure m_{φ} supported on $\mathcal{M}(L^{\infty})$. For any $f \in L^{\infty}$ we can define $\hat{f}(\varphi) = \int f dm_{\varphi}$ and by the uniqueness of m_{φ} , \hat{f} is continuous on $\mathcal{M}(H^{\infty})$. Of course, if for all $g \in H^{\infty}$, $\varphi(g) = g(z)$ with $z \in D$, then $\hat{f}(\varphi) = f(z)$ for $f \in L^{\infty}$. If $H^{\infty} \subset B \subset L^{\infty}$, then $\mathcal{M}(B) = \{\varphi \in \mathcal{M}(H^{\infty}): \hat{f}(\varphi) \hat{g}(\varphi) = (fg)^{\wedge}(\varphi) \text{ for all } f, g \in B\}$. If $f \in (L^{\infty})^{-1}$ (i.e. f is an invertible element of L^{∞}) and if |f| = 1 a.e., then we denote $f^{-1} = \hat{f}$. If B is a Douglas algebra, then $\mathcal{M}(B) = \{\varphi \in |\varphi(b)| = 1$ whenever b is inner and $\hat{b} \in B\}$ (c.f. [11], [4]).

THEOREM 7. If B and B_1 are closed subalgebras of L^{∞} containing H^{∞} , if $\mathfrak{M}(B) = \mathfrak{M}(B_1)$ and if B is a Douglas algebra, then $B = B_1$.

Proof. That $B \subset B_1$ is not difficult. It reduces to showing that $\bar{b} \in B_1$, whenever b is an inner function invertible in B. But since $\mathcal{M}(B) = \mathcal{M}(B_1)$, b has no zeros on $\mathcal{M}(B_1)$ and as $b \in H^{\infty} \subset B_1$, b is invertible in B_1 . Hence $\bar{b} = b^{-1}$ is in B_1 .

To prove $B_1 \subset B$ suppose B is generated by H^{∞} and a family $\{\bar{b}_{\lambda}\}$ of conjugates of inner functions. For any finite set F of the index set $\{\lambda\}$, let $b_F = \prod_F b_{\lambda}$, and let B_F be the algebra generated by H^{∞} and \bar{b}_F . Clearly $\bar{b}_{\lambda} \in B_F$ if $\lambda \in F$. Write $G_{\delta}(b_F) = \{z \in D: |b_F(z)| \ge 1-\delta\}, 0 < \delta < 1$.

Let $g \in B_1$. Adding a constant, we can assume $g \in B_1^{-1}$. Let $h \in (H^{\infty})^{-1}$ satisfy |h| = |g|a.e. and let $f = gh^{-1} \in B_1$. Then $f \in B_1^{-1}$ and |f| = 1 a.e. It suffices to prove $f \in B_1$.

Since B is a Douglas algebra, $\mathcal{M}(B) = \bigcap \{\mathcal{M}(B_F): F \subset \{b_\lambda\}, F \text{ finite}\}$. Since $|\hat{f}| = 1$ on $\mathcal{M}(B_1) = \mathcal{M}(B)$, compactness implies that for any $\varepsilon > 0$ there is a finite set $F \subset \{b_\lambda\}$ such that $|\hat{f}| > 1 - \varepsilon/2$ on $\mathcal{M}(B_F)$. This means $|f(z)| > 1 - \varepsilon$ on some region $G_{\delta}(b_F), \delta > 0$. Indeed, if there were $z_n \in G_{1/n}(b_F)$ with $|f(z_n)| \leq 1 - \varepsilon$, then any cluster point φ of $\{z_n\}$ in $\mathcal{M}(H^{\infty})$ would satisfy $|\varphi(b_F)| = 1$ so that $\varphi \in \mathcal{M}(B_F)$. But since \hat{f} is continuous on $\mathcal{M}(H^{\infty})$. We would have a contradiction. Decreasing δ , we can assume $G_{\delta}(b_F) \subset \{|z| > 1/2\}$. From Lemma 5 and Theorem 6 we now have

$$d(f, B) \leq d(f, B_F) < d(f, \overline{b_F^n} H^{\infty}) = d(f b_F^n, H^{\infty}) < C \varepsilon^{1/2}$$

for suitably large n. Because B is closed this means $f \in B$.

SUN-YUNG A. CHANG

5. A description of the largest C*-algebra contained in a subalgebra

Suppose B is a closed subalgebra of L^{∞} properly containing H^{∞} . The largest C^* -algebra contained in B is the algebra $B \cap \overline{B}$ where \overline{B} denotes the space of complex conjugates of functions in B. The proof of Theorem 7 yields a description of the functions in $B \cap \overline{B}$ when B is a Douglas algebra. In view of the paper [9] this description of $B \cap \overline{B}$ is valid whenever $H^{\infty} \subset B \subset L^{\infty}$.

THEOREM 8. Suppose B is a Douglas algebra. Let $f \in L^{\infty}$. Then $f \in B \cap \overline{B}$ if and only if f satisfies

(P₂) for every $\varepsilon > 0$ there is an inner function $b \in B^{-1}$ and there is δ , $0 < \delta < 1$ such that the measure $d\mu = \chi_{G_{\delta}(b)}(z)(1-r) |\nabla f|^2 r dr d\theta$ satisfies $\mu(R(I)) \leq \varepsilon |I|$ for all subarcs I of ∂D .

Proof. Suppose f satisfies (P₂). Then for any $\varepsilon > 0$ there is $b \in B^{-1}$ so that by Theorem 6, $d(f, \bar{b}^n H^{\infty}) < C\varepsilon^{1/2}$ when n is large. Hence $f \in B$. Since \bar{f} also satisfies (P₂), $f \in B \cap \bar{B}$.

On the other hand, if $f \in B \cap \overline{B}$ and |f| = 1, then the proof of Theorem 7 shows that f has (P_2) . Being a C^* algebra, $B \cap \overline{B}$ is the closed linear span of the unimodular functions in $B \cap \overline{B}$. And by Lemma 4 and the inequality $||g||_* \leq 2||g||_{\infty}$, the space of functions in L^{∞} having (P_2) is uniformly closed. Hence each $f \in B \cap \overline{B}$ has (P_2) .

In the special case b=z, the closed algebra generated by H^{∞} and \bar{z} is actually the space $H^{\infty}+C$ ([7], [11]). Theorem 8 then gives the description from [12] of $(H^{\infty}+C) \cap \overline{(H^{\infty}+C)}$ as $VMO \cap L^{\infty}$.

References

- [1]. AXLER, S., On some properties of $H^{\infty} + L_E^{\infty}$. Preprint.
- [2]. CARLESON, L., Interpolations by bounded analytic functions and the corona problem. Ann. of Math., 76 (1962), 547-559.
- [3]. CHANG, S. Y., On the structure and characterization of some Douglas subalgebras. To appear in Amer. J. Math.
- [4]. DOUGLAS, R. G., On the Spectrum of Toeplitz and Wiener-Hopf Operators. Proc. Conference on Abstract Spaces and Approximation, (Oberwolfach, 1968), I.S.N.M., 10 (birkhauser Verlag, Basel, 1969), 53-66.
- [5]. Banach Algebra Techniques in Operator Theory, Academic Press, New York 1972.
- [6]. FEFFERMAN, C. & STEIN, E. M., H^p spaces of several variables. Acta Math., 129 (1972), 137-193.
- [7]. HELSON, H. & SARASON, D., Past and Future. Math. Scand., 21 (1962), 5-16.
- [8]. HOFFMAN, K., Banach space of analytic functions. Prentice Hall, Englewood Cliffs, N.J., 1962.
- [9]. MARSHALL, D., Subalgebras of L^{∞} containing H^{∞} . Acta Math., 137 (1976), 91-98.
- [10]. SARASON, D., An addendum to 'Past and Future'. Math. Scand., 30 (1972), 62-64.
- [11]. Algebras of functions on the unit circle. Bull. Amer. Math. Soc., 79 (1973), 286-299.
- [12]. Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 207 (1975), 391-405.

- [13]. STEIN, E. M. & WEISS, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math. Series, 1971.
- [14]. STEIN, E. M., Singular Integrals and differentiability Properties of Functions. Princeton Math. Series 1970.
- [15]. WEIGHT, T., Some Subalgebras of $L^{\infty}(T)$ determined by their maximal ideal spaces. Bull. Amer. Math. Soc., 81 (1975), 192-194.

Received August 29, 1975