A CHARACTERIZATION OF DOUGLAS SUBALGEBRAS

BY

SUN-YUNG A. CHANG
University of California at Los Angeles. L.A. Ca. 90024. USA (1)

1. Introduction

Let L^{∞} be the complex Banach algebra of bounded Lebesgue measurable functions on the unit circle ∂D in the complex plane. The norm in L^{∞} is the essential supremum over ∂D. Via radial limits, the algebra H^{∞} of bounded analytic functions on the unit dise D forms a closed subalgebra of L^{∞}. This paper studies the closed subalgebras B of L^{∞} properly containing H^{∞}. For such an algebra B we let B_{I} denote the closed algebra generated by H^{∞} and the complex conjugates of those inner functions which are invertible in the algebra B. (An inner function is an H^{∞} function unimodular on ∂D). It is clear that $B_{I} \subset B$. R. G. Douglas [4] has conjectured that $B=B_{I}$ for all B, and consequently algebras of the form B_{I} are called Douglas algebras.

A discussion of the Douglas problem and a survey of related work can be found in [11]. In particular, it is noted in [11] that the maximal ideal space $\mathscr{M}(B)$ of B can be identified with a closed subset of $\mathscr{M}\left(H^{\infty}\right)$, and when B is a Douglas algebra, $\mathscr{M}(B)$ completely determines B. This means that if the Douglas question has an affirmative answer then distinct algebras B has distinct maximal ideal spaces. That the latter assertion is true when one of the algebras is a Douglas algebra is the main result of this paper. We prove that if B and B_{1} are closed subalgebras of L^{∞} containing H^{∞}, if $M(B)=M\left(B_{1}\right)$ and if B is a Douglas algebra, then $B=B_{1}$. Using this theorem, D. E. Marshall [9] has answered the Douglas question affirmatively.

Using functions of bounded mean oscillation, D. Sarason [13] had proved the theorem above in the special case when B is generated by H^{∞} and the space of continuous functions on ∂D. By similar means, S. Axler [1], T. Weight [15] and the author [3] had verified the theorem for some other specific Douglas algebras.

Section 2 contains some preliminary definitions and lemmas. The more technical aspects of the proof are in section 3 and the main theorem is proved in section 4 . Some

[^0]readers may perfer reading section 4 before sections 2 and 3 . In section 5 we describe the largest C^{*}-algebra contained in a Douglas algebra.

The proof of our main result follows a pattern from Sarason's paper [12]. The proof of Theorem 6 below uses techniques from C. Fefferman and E. M. Stein [6]. I would like to express my warm thanks to Professor D. Sarason for giving invaluable aid, and to Professors R. G. Douglas and A. Shields for very helpful discussions. I am also grateful to Professor J. Garnett for re-organizing the paper, improving the English and giving a simplified proof of Lemma 2 below.

2. Preliminaries

For an integrable function $f(t)$ on ∂D, denote the harmonic extension of f to D by

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(r, \theta-t) f(t) d t
$$

where $P(r, t)=\left(1-r^{2}\right) /\left(1-2 r \cos t+r^{2}\right)$ is the Poisson kernel. Let $\nabla f\left(r e^{i \theta}\right)=\left(\partial f / \partial x\left(r e^{i \theta}\right)\right.$, $\left.\partial f / \partial y\left(r e^{i \theta}\right)\right)$, and $\left|\nabla f\left(r e^{i \theta}\right)\right|^{2}=\left|\partial f / \partial x\left(r e^{i \theta}\right)\right|^{2}+\left|\partial f / \partial y\left(r e^{i \theta}\right)\right|^{2}$. Our first lemma is a LittlewoodPaley identity.

Lemma 1. If $f, g \in L^{2}$ and at least one of $f(0)$ and $g(0)$ vanishes, then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i t}\right) g\left(e^{i t}\right) d t=\frac{1}{\pi} \int_{D} \nabla f\left(r e^{i \theta}\right) \cdot \nabla g\left(r e^{i \theta}\right) r \log \frac{1}{r} d r d \theta .
$$

This lemma follows from the Parseval identity after expressing the gradients in polar coordinates. The corresponding result for the upper half plane is in [14, p. 83].

The second lemma can be proved using methods in [6] but it also follows from an invariant formulation of Lemma 1. For $z_{0}=r_{0} e^{i \theta_{0}} \in D$, let $\left(S\left(\theta_{0}, r_{0}\right)=\left\{r e^{i \theta_{\theta}}:\left|\theta-\theta_{0}\right| \leqslant 4\left(1-r_{0}\right)\right.\right.$, $\left.r_{0} \leqslant r<1\right\}$.

Lemma 2. Let $\varepsilon>0,\left|z_{0}\right|=r_{0} \geqslant 1 / 2$. If $f \in L^{\infty},\|f\|_{\infty} \leqslant 1$ and $\left|f\left(z_{0}\right)\right|>1-\varepsilon$, then

$$
\iint_{S\left(\theta_{0}, r_{0}\right)}(1-r)|\nabla f|^{2} r d r d \theta \leqslant C_{1} \varepsilon\left(1-r_{0}\right)
$$

where C_{1} is independent of ε and r_{0}.
Proof. Let $w=\left(z-z_{0}\right) /\left(1-\bar{z}_{0} z\right)=s e^{i \varphi}$. On $s=1, z_{0}=r_{0} e^{i \theta_{0}}, d \varphi=P\left(r_{0}, \theta-\theta_{0}\right) d \theta$. Let $f(z)=F(w)=(2 \pi)^{-1} \int_{-\pi}^{\pi} P(s, t-\varphi) F(t) d t$. Then

$$
\begin{aligned}
(2 \pi)^{-1} \int\left|F\left(e^{i \varphi}\right)-F(0)\right|^{2} d \varphi & =(2 \pi)^{-1} \int P\left(r_{0}, \theta-\theta_{0}\right)\left|f\left(e^{i \theta}\right)-f\left(z_{0}\right)\right|^{2} d \theta \\
& =(2 \pi)^{-1} \int P\left(r_{0}, \theta-\theta_{0}\right)\left|f\left(e^{i \theta}\right)\right|^{2} d \theta-\left|f\left(z_{0}\right)\right|^{2}<2 \varepsilon .
\end{aligned}
$$

Hence by Lemma 1,

$$
\frac{1}{\pi} \int_{D}|\nabla F(w)|^{2} \log \frac{1}{|w|} s d s d \varphi<2 \varepsilon
$$

Now $1-|w|^{2}=\left(1-\left|z_{0}\right|^{2}\right)\left(1-|z|^{2}\right) /\left|1-\bar{z}_{0} z\right|^{2}$ and when $z \in S\left(\theta_{0}, r_{0}\right),\left|1-\bar{z}_{0} z\right| \leqslant c_{1}\left(1-\left|z_{0}\right|\right)$ for some constant c_{1}, for all z. Thus for $r e^{i \theta} \in S\left(\theta_{0}, r_{0}\right)$ we have

$$
\frac{1-r}{1-r_{0}} \leqslant c_{2}\left(1-|w|^{2}\right) \leqslant c_{3} \log \frac{1}{|w|} \quad \text { for some constants } c_{2}, c_{3} .
$$

Because $|\nabla F(w)|^{2} s d s d p=|\nabla f(z)|^{2} r d r d \theta$, we have

$$
\iint_{S\left(\theta_{0}, r_{0}\right)}(1-r)|\nabla f(z)|^{2} r d r d \theta<c_{3}\left(1-r_{0}\right) \iint_{D}|\nabla F(w)|^{2} \log \frac{1}{|w|} s d s d \varphi \leqslant C_{1}\left(1-r_{0}\right) \varepsilon
$$

We thus complete the proof.
If I is an arc on ∂D with center $e^{i t}$ and length $|I|=2 \delta$, we let

$$
R(I)=\left\{r e^{i \theta}:|\theta-t| \leqslant \delta, 1-\delta \leqslant r<1\right\} .
$$

A finite positive measure μ on D is called a Carleson measure if there exists a constant c such that $\mu(R(I))<c|I|$ for all subarcs I of ∂D.

Lemma 3. (Carleson [2]). Let μ be a Carleson measure on D such that $\mu(R(I))<c|I|$ for all subarcs I of ∂D. Then for $1<p<\infty$

$$
\int_{D}|f(z)|^{p} d \mu(z)<C A_{p}\|f\|_{p}^{p}
$$

for all $f \in L^{p}(\partial D)$, where the constant A_{p} depends only on p.
Following an argument in [14, p. 236] one can easily prove Lemma 3 using maximal functions.

For an arc $I \subset \partial D$, let $f_{I}=|I|^{-1} \int_{I} f(t) d t$ be the average of a function f over I. For $f \in L^{\mathbf{1}}(\partial D)$, define

$$
\|f\|_{*}=\sup _{\mid I I \leqslant 2 \pi} \frac{1}{|I|} \int_{I}\left|f-f_{I}\right| d t
$$

We say f has bounded mean oscillation, $f \in B M O$, if $\|f\|_{*}<\infty$. Functions in $B M O$ can be related to Carleson measures by the following

Lemma 4. (Fefferman and Stein). For $f \in L^{1}(\partial D)$, the following conditions are equivalent:
(i) $f \in B M O$
(ii) If $d \mu=(1-r)\left|\nabla f\left(r e^{i \theta}\right)\right|^{2} r d r d \theta$, then μ is a Carleson measure.

Furthermore if

$$
c=\sup _{\mid I \leqslant 2 \pi} \frac{\mu(R(I))}{|I|}
$$

then there is a constant A_{1} such that

$$
\frac{c}{A_{1}}<\|f\|_{*}^{2} \leqslant A_{1} c
$$

Lemma 4 is proved in [6] for the case of upper half spaces. The proof there can easily be adapted to the present case using Lemmas 1 and 3.

3. A distance estimate

Throughout this section we fix an non-constant inner function $b(z) \in H^{\infty}$ and we set, for $0<\delta<1$,

$$
G_{\delta}=\{z \in D:|b(z)| \geqslant 1-\delta\} .
$$

For convenience we assume $G_{\delta} \subset\{1 / 2 \leqslant|z|<1\}$.

Lemma 5. Let $0<\varepsilon, \delta<1$. If $f \in L^{\infty},\|f\|_{\infty} \leqslant 1$ and $|f(z)| \geqslant 1-\varepsilon$ on G_{δ}, then the measure μ defined by

$$
d \mu=\chi_{G_{\delta}}(z)(1-r)|\nabla f(z)|^{2} r d r d \theta
$$

satisfies

$$
\sup _{I} \frac{\mu(R(I))}{|I|} \leqslant C_{1} \varepsilon
$$

where C_{1} is the constant in Lemma 2.

Proof. Let I be some arc on ∂D. By Lemma 2 it suffices to find points $r_{j} e^{i \theta_{j}}$ in G_{δ} such that $G_{\delta} \cap R(I) \subset \bigcup_{j} S\left(\theta_{j}, r_{j}\right)$ and such that $\Sigma\left(1-r_{j}\right) \leqslant|I|$.

For $n=0,1,2, \ldots$ and $1 \leqslant k \leqslant 2^{n}$, let $\left\{I_{n, k}\right\}$ be the partition of I into closed ares of length $\left|I_{n, k}\right|=2^{-n}|I|$. Let $T\left(I_{n, k}\right)=\left\{z \in R\left(I_{n . k}\right) ; 1-|z| \geqslant 2^{-n-2}|I|\right\}$ be the top half of $R\left(I_{n, k}\right)$. We select a subfamily \mathcal{J} of $\left\{I_{n, k}\right\}$ by the rule $I_{j} \in \mathcal{J}$ if I_{j} is a maximal arc among those $I_{n, k}$ for which $T\left(I_{n, k}\right) \cap G_{\delta} \neq \varnothing$. Then $G_{\delta} \cap R(I) \subset U_{y} R\left(I_{j}\right)$ and the arcs in J have pairwise disjoint interiors.

For $I_{j} \in \mathcal{J}$ choose $r_{j} e^{i} \theta_{j} \in T\left(I_{j}\right) \cap G_{\delta}$ with smallest modulus r_{j}. Then $G_{\delta} \cap R\left(I_{j}\right) \subset S\left(\theta_{j}, r_{j}\right)$ and $1-r_{j} \leqslant\left|I_{j}\right|$. Hence $G_{\delta} \cap R(I) \subset U_{j} S\left(\theta_{j}, r_{j}\right)$ and $\Sigma\left(1-r_{j}\right) \leqslant \Sigma\left|I_{j}\right| \leqslant|I|$.

Now consider a function f with the following property:
($\left.\mathrm{P}_{1}\right) \quad f \in L^{\infty}$ and there exist ε and $\delta, 0<\varepsilon, \delta<1$, such that the measure μ_{δ} defined by $d \mu_{\delta}=\chi \mathcal{G}_{\delta}(z)(1-r)|\nabla f|^{2} r d r d \theta$ satisfies $\sup _{I} \mu_{\delta}(R(I)) /|I| \leqslant \varepsilon$.

For example, a function satisfying the hypothesis of Lemma 5 has property (P_{1}).
Theorem 6. There is a constant C such that if f has property $\left(\mathrm{P}_{1}\right)$ then

$$
\limsup _{n \rightarrow \infty} d\left(f b^{n}, H^{\infty}\right) \leqslant C \varepsilon^{1 / 2}
$$

Proof. Since L^{∞} / H^{∞} is the dual of $H_{0}^{1}=\left\{g \in H^{1} ; g(0)=0\right\}$ we have

$$
\begin{equation*}
d\left(f b^{n}, H^{\infty}\right)=\sup \left\{\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(e^{i \theta}\right) b^{n}\left(e^{i \theta}\right) g\left(e^{i \theta}\right) d \theta\right|: g \in H_{0}^{1},\|g\|_{1} \leqslant 1\right\} . \tag{1}
\end{equation*}
$$

By a density argument we can assume $g \in H^{\infty}$. Moreover, if u is the Blaschke factor of g and $k=g / u$, then $g=k+k(u-1)$ where neither k nor $k(u-1)$ has zeros in D. Thus in estimating $d\left(f b^{n}, H^{\infty}\right)$ using (1), we can assume $g \in H^{\infty}$ and $g=h^{2}, h \in H^{\infty},\|h\|_{2} \leqslant 1$. Finally, replacing f by $a f+c$ with $|a| \leqslant 1$ does not harm property (P_{1}), so that we can assume $\|f\|_{\infty} \leqslant 1$ and $f(0)=0$.

With these assumptions we have by Lemma 1,

$$
\begin{equation*}
\frac{1}{2 \pi} \int f\left(e^{i \theta}\right) b^{n}\left(e^{i \theta}\right) g\left(e^{i \theta}\right) d \theta=\frac{1}{\pi} \iint_{D} \nabla f \cdot \nabla\left(b^{n} g\right) r \log \frac{\mathbf{1}}{r} d r d \theta \tag{2}
\end{equation*}
$$

Since b^{n} and g are analytic functions, we have $\left(b^{n} g\right)(z)=b^{n}(z) g(z)$ so that $\nabla\left(b^{n} g\right)=b^{n} \nabla g+$ $g \nabla b^{n}$ on D.

We now estimate as follows:

$$
\begin{aligned}
\left\lvert\, \frac{1}{\pi} \iint_{D} \nabla f\right. & \left.\cdot\left(b^{n} \nabla g\right) r \log \frac{1}{r} d r d \theta \right\rvert\, \\
& \leqslant \frac{1}{\pi} \iint_{D}\left|b^{n}\right||\nabla f||\nabla g| r \log \frac{1}{r} d r d \theta \\
& =\frac{\sqrt{2}}{\pi} \iint_{D}\left|b^{n}\right||\nabla f| 2|h|\left|h^{\prime}\right| r \log \frac{1}{r} d r d \theta \\
& \leqslant \sqrt{2}\left(\frac{1}{\pi} \iint_{D}\left|b^{2 n}\right||\nabla f|^{2}|h|^{2} r \log \frac{1}{r} d r d \theta\right)^{1 / 2}\left(\frac{4}{\pi} \iint_{D}\left|h^{\prime}\right|^{2} r \log \frac{1}{r} d r d \theta\right)^{1 / 2} .
\end{aligned}
$$

By Lemma 1 the second factor is

$$
\begin{equation*}
\left(\frac{4}{\pi} \int_{-\pi}^{\pi}|h-h(0)|^{2} d \theta\right)^{1 / 2} \leqslant\left(8\|g\|_{1}\right)^{1 / 2} . \tag{3}
\end{equation*}
$$

To estimate the first factor write

$$
\frac{1}{\pi} \iint_{D}\left|b^{2 n}\right||\nabla f|^{2}|h|^{2} r \log \frac{1}{r} d r d \theta=\int_{G_{\delta}}+\int_{D \backslash G_{\delta}}=S_{1}+S_{2} .
$$

Since $G_{\delta} \subset\{|z| \geqslant 1 / 2\}$ we have $\log 1 / r \leqslant c(1-r)$ on G_{δ}. Using $\left(\mathbf{P}_{1}\right)$ and Lemma 3 we then have

$$
\begin{equation*}
S_{1} \leqslant c A_{2} \varepsilon\|h\|_{2}^{2} \leqslant c A_{2} \varepsilon\|g\|_{1} . \tag{4}
\end{equation*}
$$

Also

$$
S_{2} \leqslant(1-\delta)^{2 n} \frac{1}{\pi} \iint_{D}|\nabla f|^{2}|h|^{2} r \log \frac{1}{r} d r d \theta .
$$

Since $\|f\|_{*} \leqslant 2\|f\|_{\infty} \leqslant 2$, Lemmas 3 and 4 give

$$
\begin{equation*}
S_{2} \leqslant(1-\delta)^{2 n} 8 A_{1} A_{2}\|g\|_{1} \tag{5}
\end{equation*}
$$

Combining (3), (4) and (5) gives

$$
\begin{equation*}
\left.\frac{1}{\pi} \iint_{D} \nabla f \cdot b^{n} \nabla g r \log \frac{1}{r} d r d \theta \right\rvert\, \leqslant C\left(\varepsilon^{1 / 2}+(1-\delta)^{n}\right)\|g\|_{1} \tag{6}
\end{equation*}
$$

for a universal constant C.
We now estimate

$$
\frac{1}{\pi} \cdot \iint \nabla f \cdot g \nabla b^{n} r \log \frac{1}{r} d r d \theta=\int_{G_{\delta}}+\int_{D \backslash G_{\delta}}=S_{3}+S_{4} .
$$

Write

$$
\left|S_{3}\right| \leqslant\left(\frac{1}{\pi} \iint_{G_{\delta}}|\nabla f|^{2}|\hbar|^{2} r \log \frac{1}{r} d r d \theta\right)^{1 / 2}\left(\frac{1}{\pi} \iint_{G_{\delta}}\left|\nabla b^{n}\right|^{2}|\hbar|^{2} r \log \frac{1}{r} d r d \theta\right)^{1 / 2}
$$

Since $\left\|b^{n}\right\|_{*} \leqslant 2$, these two factors can be bounded as were S_{1} and S_{2} so that

$$
\begin{equation*}
\left|S_{3}\right| \leqslant 4 \frac{A_{1}}{\pi} \varepsilon^{1 / 2} A_{2}\|g\|_{1} \tag{7}
\end{equation*}
$$

For S_{4} we again use the Schwartz inequality to get

$$
\left|S_{4}\right| \leqslant\left(\iint_{D \backslash \epsilon_{\delta}}|\nabla f|^{2}|h|^{2} r \log \frac{1}{r} d r d \theta\right)^{1 / 2}\left(\iint_{D \backslash \sigma_{\delta}}\left|\nabla b^{n}\right|^{2}|h|^{2} r \log \frac{1}{r} d r d \theta\right)^{1 / 2}
$$

As with the estimate for S_{2}, the first factor is dominated by $\left(8 A_{1} A_{2}\|g\|_{1}\right)^{1 / 2}$, and since $\left|\nabla b^{n}\right| \leqslant n(1-\delta)^{n-1}|\nabla b|$ on $D \backslash G_{\delta}$, the second factor does not exceed $n(1-\delta)^{n-1}\left(8 A_{1} A_{2}\|g\|_{1}\right)^{1 / 2}$. Combining our bound for S_{4} with (7) gives

$$
\left|\frac{1}{\pi} \iint_{D} \nabla f \cdot g \nabla b^{n} r \log \frac{1}{r} d r d \theta\right| \leqslant C_{3}\left(\varepsilon^{1 / 2}+n(1-\delta)^{n-1}\right)\|g\|_{1} .
$$

for a universal constant C_{3}.
With (6) and (2) this inequality implies

$$
\left|\frac{1}{2 \pi} \int f\left(e^{i \theta}\right) b^{n}\left(e^{i \theta}\right) g\left(e^{i \theta}\right) d \theta\right| \leqslant C\left(\varepsilon^{3 / 2}+n(1-\delta)^{n-1}\right)\|g\|_{1}
$$

whenever $g \in H^{\infty}$ has no zeros. By (1) and our remarks about g immediately following (1) we have

$$
d\left(f b^{n}, H^{\infty}\right) \leqslant 3 C\left(\varepsilon^{1 / 2}+n(1-\delta)^{n-1}\right)
$$

and this proves the theorem.

4. A characterization of Douglas algebras

Before proving the main theorem we must make some observations about maximal ideal spaces. Further details are in [11]. Because H^{∞} is a logmodular subalgebra of L^{∞} [8], each $\varphi \in \mathscr{M}\left(H^{\infty}\right)$ has a unique representing measure m_{φ} supported on $M\left(L^{\infty}\right)$. For any $f \in L^{\infty}$ we can define $\hat{f}(\varphi)=\int f d m_{\varphi}$ and by the uniqueness of m_{φ}, f is continuous on $\boldsymbol{M}\left(H^{\infty}\right)$. Of course, if for all $g \in H^{\infty}, \varphi(g)=g(z)$ with $z \in D$, then $\hat{f}(\varphi)=f(z)$ for $f \in L^{\infty}$. If $H^{\infty} \subset B \subset L^{\infty}$, then $\boldsymbol{M}(B)=\left\{\varphi \in \mathbb{M}\left(H^{\infty}\right): \hat{f}(\varphi) \hat{g}(\varphi)=(f g)^{\wedge}(\varphi)\right.$ for all $\left.f, g \in B\right\}$. If $f \in\left(L^{\infty}\right)^{-1}$ (i.e. f is an invertible element of L^{∞}) and if $|f|=1$ a.e., then we denote $f^{-1}=f$. If B is a Douglas algebra, then $m(B)=\{\varphi:|\varphi(b)|=1$ whenever b is inner and $\bar{b} \in B\}$ (c.f. [11], [4]).

Theorem 7. If B and B_{1} are closed subalgebras of L^{∞} containing H^{∞}, if $m(B)=$ $m\left(B_{1}\right)$ and if B is a Douglas algebra, then $B=B_{1}$.

Proof. That $B \subset B_{1}$ is not difficult. It reduces to showing that $\bar{b} \in B_{1}$, whenever b is an inner function invertible in B. But since $\boldsymbol{m}(B)=m\left(B_{1}\right), b$ has no zeros on $M\left(B_{1}\right)$ and as $b \in H^{\infty} \subset B_{1}, b$ is invertible in B_{1}. Hence $\vec{b}=b^{-1}$ is in B_{1}.

To prove $B_{1} \subset B$ suppose B is generated by H^{∞} and a family $\left\{\bar{b}_{\lambda}\right\}$ of conjugates of inner functions. For any finite set F of the index set $\{\lambda\}$, let $b_{F}=\Pi_{F} b_{\lambda}$, and let B_{F} be the algebra generated by H^{∞} and \bar{b}_{F}. Clearly $\bar{b}_{\lambda} \in B_{F}$ if $\lambda \in F$. Write $G_{\delta}\left(b_{F}\right)=\left\{z \in D:\left|b_{F}(z)\right| \geqslant\right.$ $1-\delta\}, 0<\delta<1$.

Let $g \in B_{1}$. Adding a constant, we can assume $g \in B_{1}^{-1}$. Let $h \in\left(H^{\infty}\right)^{-1}$ satisfy $|h|=|g|$ a.e. and let $f=g h^{-1} \in B_{1}$. Then $f \in B_{1}^{-1}$ and $|f|=1$ a.e. It suffices to prove $f \in B_{1}$.

Since B is a Douglas algebra, $m(B)=\bigcap\left\{m\left(B_{F}\right): F \subset\left\{\bar{b}_{\lambda}\right\}, F\right.$ finite $\}$. Since $|\hat{f}|=1$ on $m\left(B_{1}\right)=M(B)$, compactness implies that for any $\varepsilon>0$ there is a finite set $F \subset\left\{b_{\lambda}\right\}$ such that $|\hat{f}|>1-\varepsilon / 2$ on $m\left(B_{F}\right)$. This means $|f(z)|>1-\varepsilon$ on some region $G_{\delta}\left(b_{F}\right), \delta>0$. Indeed, if there were $z_{n} \in G_{1 / n}\left(b_{F}\right)$ with $\left|f\left(z_{n}\right)\right| \leqslant 1-\varepsilon$, then any cluster point φ of $\left\{z_{n}\right\}$ in $\mathscr{M}\left(H^{\infty}\right)$ would satisfy $\left|\varphi\left(b_{F}\right)\right|=1$ so that $\varphi \in \mathscr{M}\left(B_{F}\right)$. But since \hat{f} is continuous on $\mathscr{M}\left(H^{\infty}\right)$. We would have a contradiction. Decreasing δ, we can assume $G_{\delta}\left(b_{F}\right) \subset\{|z|>1 / 2\}$. From Lemma 5 and Theorem 6 we now have

$$
d(f, B) \leqslant d\left(f, B_{F}\right)<d\left(f, \overline{b_{F}^{n}} H^{\infty}\right)=d\left(f b_{F}^{n}, H^{\infty}\right)<C \varepsilon^{1 / 2}
$$

for suitably large n. Because B is closed this means $f \in B$.

5. A description of the largest \mathbf{C}^{*}-algebra contained in a subalgebra

Suppose B is a closed subalgebra of L^{∞} properly containing H^{∞}. The largest C^{*}-algebra contained in B is the algebra $B \cap \bar{B}$ where \bar{B} denotes the space of complex conjugates of functions in B. The proof of Theorem 7 yields a description of the functions in $B \cap \bar{B}$ when B is a Douglas algebra. In view of the paper [9] this description of $B \cap \bar{B}$ is valid whenever $H^{\infty} \subset B \subset L^{\infty}$.

Theorem 8. Suppose B is a Douglas algebra. Let $f \in L^{\infty}$. Then $f \in B \cap \bar{B}$ if and only if f satisfies
$\left(\mathbf{P}_{2}\right)$ for every $\varepsilon>0$ there is an inner function $b \in B^{-1}$ and there is $\delta, 0<\delta<1$ such that the measure $d \mu=\chi_{G \delta(b)}(z)(1-r)|\nabla f|^{2} r d r d \theta$ satisfies $\mu(R(I)) \leqslant \varepsilon|I|$ for all subarcs I of ∂D.

Proof. Suppose f satisfies $\left(\mathrm{P}_{2}\right)$. Then for any $\varepsilon>0$ there is $b \in B^{-1}$ so that by Theorem $6, d\left(f, \bar{b}^{n} H^{\infty}\right)<C \varepsilon^{1 / 2}$ when n is large. Hence $f \in B$. Since \bar{f} also satisfies $\left(\mathrm{P}_{2}\right), f \in B \cap \bar{B}$.

On the other hand, if $f \in B \cap \bar{B}$ and $|f|=1$, then the proof of Theorem 7 shows that f has (P_{2}). Being a C^{*} algebra, $B \cap \bar{B}$ is the closed linear span of the unimodular functions in $B \cap \bar{B}$. And by Lemma 4 and the inequality $\|g\|_{*} \leqslant 2\|g\|_{\infty}$, the space of functions in L^{∞} having $\left(\mathrm{P}_{2}\right)$ is uniformly closed. Hence each $f \in B \cap \bar{B}$ has $\left(\mathrm{P}_{2}\right)$.

In the special case $b=z$, the closed algebra generated by $H^{\circ 0}$ and \bar{z} is actually the space $H^{\infty}+C$ ([7], [11]). Theorem 8 then gives the description from [12] of $\left(H^{\infty}+C\right) \cap \overline{\left(H^{\infty}+C\right)}$ as $V M O \cap L^{\infty}$.

References

[1]. Axier, S., On some properties of $H^{\infty}+L_{E}^{\infty}$. Preprint.
[2]. Carleson, L., Interpolations by bounded analytic functions and the corona problem. Ann. of Math., 76 (1962), 547-559.
[3]. Chang, S. Y., On the structure and characterization of some Douglas subalgebras. To appear in Amer. J. Math.
[4]. Douglas, R. G., On the Spectrum of Toeplitz and Wiener-Hopf Operators. Proc. Conference on Abstract Spaces and Approximation, (Oberwolfach, 1968), I.S.N.M., 10 (birkhauser Verlag, Basel, 1969), 53-66.
[5]. -_ Banach Algebra Techniques in Operator Theory, Academic Press, New York 1972.
[6]. Fefferman, C. \& Stein, E. M., H^{p} spaces of several variables. Acta Math., 129 (1972), 137-193.
[7]. Helson, H. \& Sarason, D., Past and Future. Math. Scand., 21 (1962), 5-16.
[8]. Hoffman, K., Banach space of analytic functions. Prentice Hall, Englewood Cliffs, N.J., 1962.
[9]. Marshall, D., Subalgebras of L^{∞} containing H^{∞}. Acta Math., 137 (1976), 91-98.
[10]. Sarason, D., An addendum to 'Past and Future'. Math. Scand., 30 (1972), 62-64.
[11]. -- Algebras of functions on the unit circle. Bull. Amer. Math. Soc., 79 (1973), 286-299.
[12]. -- Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 207 (1975), 391-405.
[13]. Stein, E. M. \& Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math. Series, 1971.
[14]. Stein, E. M., Singular Integrals and differentiability Properties of Functions. Princeton Math. Series 1970.
[15]. WeIght, T., Some Subalgebras of $L^{\infty}(T)$ determined by their maximal ideal spaces. Bull. Amer. Math. Soc., 81 (1975), 192-194.

Received August 29, 1975

[^0]: ${ }^{(1)}$ Research supported in part by National Science Foundation
 6-762909 Acta mathematica 137. Imprimé le 22 Septembre 1976

