SUBALGEBRAS OF L^{∞} CONTAINING H^{∞}

BY

DONALD E. MARSHALL

University of California, Los Angeles, CA., USA

1. Introduction

Let H^{∞} be the algebra of bounded analytic functions on $D = \{z: |z| < 1\}$ and let L^{∞} be the Banach algebra of bounded measurable functions on $T = \{z: |z| = 1\}$ with the uniform norm. Then H^{∞} can be regarded as a uniformly closed subalgebra of L^{∞} by identifying each $f \in H^{\infty}$ with its boundary function.

If A is a closed subalgebra of L^{∞} , let $\mathcal{M}[A]$ denote its maximal-ideal space. K. Hoffman [13] has shown that each $\varphi \in \mathcal{M}[H^{\infty}]$ has a unique norm-preserving extension to a bounded linear functional on L^{∞} . For example, if $z \in D$ then evaluation at z is an element of $\mathcal{M}[H^{\infty}]$ and its extension is given simply by the Poisson kernel. Now if A is a closed subalgebra of L^{∞} containing H^{∞} , then the usual Gelfand topology on $\mathcal{M}[A]$ agrees with the weak-* topology that $\mathcal{M}[A]$ inherits as a compact subset of the dual space of L^{∞} . Consequently, each $f \in L^{\infty}$ is continuous on $\mathcal{M}[H^{\infty}]$ and harmonic on D. Moreover, if A and B are closed algebras such that $H^{\infty} \subset A \subset B \subset L^{\infty}$, then $\mathcal{M}[H^{\infty}] \supset \mathcal{M}[A] \supset \mathcal{M}[B] \supset$ $\mathcal{M}[L^{\infty}]$. Our main result is the following theorem:

THEOREM 1. Let A be a closed subalgebra of L^{∞} containing H^{∞} . Let A_I be the closed subalgebra of A generated by H^{∞} and $\{f^{-1} \in A: f \in H^{\infty}\}$. Then $\mathfrak{M}[A_I] = \mathfrak{M}[A]$.

When combined with a recent result of S. Y. Chang [7], Theorem 1 proves a conjecture of R. Douglas [9]. To state Douglas' conjecture, we let Q be a subset of L^{∞} and write $[H^{\infty}, Q]$ for the uniformly closed subalgebra of L^{∞} generated by H^{∞} and Q. An algebra of the form $[H^{\infty}, Q]$, where $Q \subset \{u: |u| = 1 \text{ a.e. on } T \text{ and } \bar{u} \in H^{\infty}\}$ is called a *Douglas algebra*. Since each positive function in $(L^{\infty})^{-1}$ is the modulus of a function in $(H^{\infty})^{-1}$, we see that A_I is a Douglas algebra whenever $H^{\infty} \subset A \subset L^{\infty}$ and we see that if A is a Douglas algebra, then $A = A_I$. Douglas' conjecture was that every uniformly closed subalgebra A of L^{∞} containing H^{∞} is a Douglas algebra, or, equivalently, that every such algebra A satisfies $A = A_I$. Now S. Y. Chang has proved that if A is a closed algebra lying between H^{∞} and L^{∞} , and if B is a Douglas algebra with $\mathcal{M}[B] = \mathcal{M}[A]$, then A = B. In light of this result, Theorem 1 has the following consequence.

THEOREM 2. Every closed algebra A, such that $H^{\infty} \subset A \subset L^{\infty}$, is generated by H^{∞} and $\{\bar{u} \in A : u \text{ is an inner function in } H^{\infty}\}$.

Douglas' conjecture arose from the study of operator algebras generated by Toeplitz operators. It has been discussed by several authors: S. Axler [1], [2], S. Y. Chang [6], A. M. Davie, T. W. Gamelin, and J. Garnett [8], R. Douglas [9], R. Douglas and W. Rudin [10], D. Sarason [15], [16], [17], T. Weight [18]. I would like to thank J. Garnett for invaluable discussions.

2. Interpolating Blaschke products

We call a sequence $\{z_n\}_{n=1}^{\infty}$ in D an *interpolating sequence* if for every bounded sequence $\{w_n\}_{n=1}^{\infty}$, there is an f in H^{∞} such that $f(z_n) = w_n$ for all n. Every interpolating sequence must satisfy $\Sigma(1-|z_n|) < \infty$, and so is the zero sequence of a Blaschke product. We call a Blaschke product whose zeros form an interpolating sequence, an *interpolating Blaschke product*.

A finite measure μ on the upper half-plane, H^+ , is called a *Carleson measure* if there is a constant C for which $\mu(S) \leq C\delta$, whenever S is a square of the form $S = \{x + iy: x_0 \leq x \leq x_0 + \delta, 0 < y \leq \delta\}$. The analogous definition is made for D, where squares are replaced by sectors of the form $S = \{re^{i\theta}: 1 - \delta \leq r < 1 \text{ and } \theta_0 \leq \theta \leq \theta_0 + \delta\}$. Any rectifiable curve Γ in H^+ or D induces a measure on H^+ or D, respectively, by defining the measure of a Borel set S to be the length of $\Gamma \cap S$. The hyperbolic distance between two points is defined by

$$arrho(z,w) = egin{cases} \left| egin{arrhy}{c = w \ z = ar w}
ight| & ext{on } H^+ \ \left| egin{arrhy}{c = w \ 1 - ar w z}
ight| & ext{on } D. \end{cases}
ight.$$

Interpolating sequences can be characterized in the following way [12]. On H^+ , a sequence $\{z_n\}_{n=1}^{\infty}$ is an interpolating sequence if and only if there exists an $\varepsilon > 0$ such that $\varrho(z_n, z_m) \ge \varepsilon$ for $n \neq m$ and the measure $\Sigma(\operatorname{Im} z_n)\delta_{z_n}$ is a Carleson measure. Here δ_{z_n} denotes the point mass at z_n . On D, we replace the measure with $\Sigma(1 - |z_n|)\delta_{z_n}$.

3. Proof of Theorem 1

We claim that it suffices to prove the theorem for algebras of the form $A_u = [H^{\infty}, u, \bar{u}]$ where u is a unimodular function in L^{∞} . To see this, note that any algebra A containing H^{∞} is generated by its invertible elements. Now, if $f \in A^{-1}$, there exists $g \in (H^{\infty})^{-1}$ such that |f| = |g| a.e. Then $u = fg^{-1}$ and $\bar{u} = gf^{-1}$ are unimodular, and we see that A is generated by H^{∞} and $G = \{u \in A : u \text{ is unimodular and } \bar{u} \in A\}$. It is easy to see that $\mathcal{M}[A_u] = \{\varphi \in \mathcal{M}[H^{\infty}] : |\varphi(u)| = 1\}$ and $\mathcal{M}[A] = \{\varphi \in \mathcal{M}[H^{\infty}] : |\varphi(u)| = 1\}$ for all u in G. Now $(A_u)_I \subset A_I \subset A$ for all u in G, so that $\mathcal{M}[A] \subset \mathcal{M}[A_I] \subset \bigcap_{u \in G} \mathcal{M}[(A_u)_I]$. If $\mathcal{M}[(A_u)_I] = \mathcal{M}[A_u]$ for all u in G, we have $\mathcal{M}[A] \subset \mathcal{M}[A_I] \subset \bigcap_{u \in G} \mathcal{M}[A_u] = \mathcal{M}[A]$. Thus $\mathcal{M}[A] = \mathcal{M}[A_I]$. This proves the claim.

For the remainder of this discussion, let u be a fixed, nonconstant, unimodular function in L^{∞} and let $A_u = [H^{\infty}, u, \bar{u}]$. For each α , $0 < \alpha < 1$, we wish to find an interpolating Blaschke product B_{α} , such that

There exists
$$\beta < 1$$
 such that if $B_{\alpha}(z) = 0$, then $|u(z)| \leq \beta$. (3.1)

If
$$|u(z)| < \alpha$$
, then $|B_{\alpha}(z)| \leq \frac{1}{10}$. (3.2)

Assuming we can do this for the moment, we prove our theorem as follows. Let $B = [H^{\infty}, \{\overline{B}_{\alpha}\} \ 0 < \alpha < 1\}$. Suppose $\varphi \in \mathcal{M}[A_u]$, and suppose $\varphi(B_{\alpha}) = 0$ for some α . K. Hoffman [13, p. 206] has shown that since B_{α} is interpolating, φ is in the closure of the zeros $\{z_n\}$ of B_{α} . By (3.1) above, $|u(z_n)| \leq \beta < 1$, so that $|\varphi(u)| \leq \beta < 1$, contradicting the assumption that $\varphi \in \mathcal{M}[A_u]$. So $\varphi(B_{\alpha}) \neq 0$ for each $\varphi \in \mathcal{M}[A_u]$ and each B_{α} . Thus each B_{α} is invertible in A_u . We see now, that $B \subset (A_u)_I$, so that $\mathcal{M}[B] \supset \mathcal{M}[(A_u)_I] \supset \mathcal{M}[A_u]$. For the opposite inclusions, note that $\mathcal{M}[B] = \{\varphi \in \mathcal{M}[H^{\infty}]: |\varphi(B_{\alpha})| = 1$ for each $\alpha\}$. Suppose $\varphi \in \mathcal{M}[B]$ and $|\varphi(u)| < \alpha < 1$. By the corona theorem [4], there exists a net $\{z_{\gamma}\}$ in D, such that z_{γ} converges to φ . There exists a γ_0 , such that if $\gamma > \gamma_0$, then $|u(z_{\gamma})| < \alpha$. By (3.2) above, $|B_{\alpha}(z_{\gamma})| \leq 1/10$ for $\gamma > \gamma_0$, and we see that $|\varphi(B_{\alpha})| \leq 1/10$. This contradiction implies that $|\varphi(u)| = 1$, so that $\varphi \in \mathcal{M}[A_u]$. We have now shown that $\mathcal{M}[B] = \mathcal{M}[(A_u)_I] = \mathcal{M}[A_u]$.

It remains to find B_{α} , given u and α . We will surround the places where $|u| < \alpha$ by contours Γ which induce a Carleson measure. This construction comes from the proof of the corona theorem [4], by L. Carleson. We will then uniformly distribute, in the ϱ -metric, a sequence $\{z_n\}$ on the contours. Our interpolating Blaschke product will have $\{z_n\}$ as its zeros. Our method is very similar to S. Ziskind's [19], except that we work with a bounded harmonic function with unimodular boundary values and we give several technical simplifications.

4. Preliminaries to the construction

The construction is best explained in the upper half-plane H^+ . So suppose u is a bounded harmonic function on H^+ with unimodular boundary values, and fix α , $0 < \alpha < 1$.

DONALD E. MARSHALL

LEMMA 1. There exists an $\alpha' < 1$, such that if $\inf_{\mathbb{R}} |u(z)| < \alpha$ for some rectangle of the form $\mathbb{R} = \{x + iy: x_0 \le x \le x_0 + \delta, \delta/2 \le y \le \delta\}$, then $\sup_{\mathbb{R}} |u(z)| < \alpha'$.

Proof. By a translation and a dilation, we can assume $x_0 = 0$ and $\delta = 1$. The result now follows by a normal families argument.

Let S be a square of the form $\{x+iy: x_0 \leq x \leq x_0+\delta, 0 \leq y \leq \delta\}$. Find $\beta \leq 1$ such that $(1-\beta)/(1-\alpha') \leq 10^{-4}$. For a set $U \subseteq \mathbb{R}$, let |U| denote its measure.

LEMMA 2. Suppose $x_0 \leq \operatorname{Re} a \leq x_0 + \delta$ and $\delta/2 \leq \operatorname{Im} a \leq \delta$ and $|u(a)| > \beta$. Let $E = \{x + iy \in S: |u(x + iy)| < \alpha'\}$. Let E^* be the vertical projection of E on $\{x + iy: y = 0\}$. Then $|E^*| \leq \delta/2$.

This lemma is essentially proved in [12] and in [4].

Proof. By a translation and a dilation, again, we can assume $x_0=0$ and $\delta=\pi/2$. Let S be the strip $\{x+iy: 0 \le y \le \pi\}$ and let $\varphi(z)=e^z$. Now φ maps S one-to-one and conformally onto the upper half-plane H^+ . First we assume E is bounded by a finite number of Jordan curves. Let ω and ω_1 be the harmonic measures for E relative to $S \setminus E$ and $\varphi(E)$ relative to $H^+ \setminus \varphi(E)$, respectively. Let ω^* and ω_1^* be the harmonic measures for E^* relative to S and $\varphi(E)^*$ relative to H^+ , respectively. Here $\varphi(E)^*$ is the *circular* (clockwise) projection of $\varphi(E)$ on $\{\text{Im } z=0\}$. Hall's lemma [11, p. 208] and an elementary estimate show that

$$\omega(a) = \omega_1(\varphi(a)) \ge 2/3\omega_1^*(\varphi(\bar{a} + \pi i)) \ge 2 \times 10^{-4} |E^*|$$

Notice that on the boundary of S E, $|u(z)| \leq 1 - \omega(z) + \alpha' \omega(z)$. By the maximum principle, the inequality persists on S E. So $\beta < 1 - \omega(a) + \alpha' \omega(a)$ and we conclude that $|E^*| < \pi/4$.

Now for an arbitrary E, we can cover the compact set $\{z \in E : |u(z)| \le \alpha' - 1/n, \text{Im } z \ge 1/n\}$ by a finite number of balls contained in E. Let E_n be the complement of the unbounded component of the union of these balls. Apply the above reasoning to each E_n and E_n^* .

5. The construction of Γ

Let $S^{(0)} = \{x + iy: 0 \le x \le 1, 0 < y \le 1\}$. Partition the bottom half of $S^{(0)}$ into two squares with sides of length 1/2. Partition the bottom half of each of these squares into two more squares with sides of length 1/4. Continue the process indefinitely. We wish to describe two procedures which we will apply to a subcollection of the squares in $S^{(0)}$. For S a square in $S^{(0)}$, let T_S be the top half of S.

Case 1. $\sup_{T_s} |u| > \beta$.

94

If \tilde{S} is a square contained in S and $|u(z)| < \alpha$ for some z in $T_{\tilde{S}}$, shade \tilde{S} unless it is already shaded. Note that by Lemma 1, $\sup_{T_{\tilde{S}}} |u| < \alpha' < \beta$ and by Lemma 2,

$$\sum_{\tilde{S} \text{ shaded}} \left| \tilde{S}^* \right| \leq \frac{1}{2} \left| S^* \right|. \tag{5.1}$$

Case 2. $\sup_{T_s} |u| \leq \beta$.

If \tilde{S} is a square contained in S and $\sup_{T\tilde{S}} |u| > \beta$, shade \tilde{S} unless it is already shaded. Let $R_S = S \setminus \bigcup_{\tilde{S} \text{ shaded}} \tilde{S}$ and note that

$$\left|\partial R_{s}\right| \leq 6 \left|S^{*}\right|. \tag{5.2}$$

Proceed as follows. Apply the appropriate case to $S^{(0)}$, obtaining shaded squares $S_1^{(1)}, S_2^{(1)}, S_3^{(1)}, \ldots$ On each $S_j^{(1)}$, apply the appropriate case, obtaining doubly shaded squares $S_1^{(2)}, S_2^{(2)}, S_3^{(2)}, \ldots$ Repeat this process indefinitely. Observe that we alternate cases in passing from one shaded square to a shaded descendant. Define Γ as the union of the boundaries of the R_s obtained from applications of Case 2. To see that Γ induces a Carleson measure, it suffices to check $|\Gamma \cap S| \leq C |S^*|$ where S is a square in the grid on $S^{(0)}$. By (5.1) and (5.2), we see that

$$|\Gamma \cap S| \leq \sum_{n=0}^{\infty} 6 \times 2^{-n} |S^*| = 12 |S^*|.$$

DONALD E. MARSHALL

Note that any point in $S^{(0)}$ for which $|u(z)| < \alpha$ will be in some R_s . Also, $|\partial R_s \cap \{\operatorname{Im} z = 0\}| = 0$. This follows since u has unimodular vertical limits a.e. and $\operatorname{any}_{\overline{z}}^{\overline{z}}$ point in $\partial R_s \cap \{\operatorname{Im} z = 0\}$ is a point where $\lim_{y\to 0} \sup |u(x+iy)| \leq \beta < 1$.

6. The construction of B_{α}

In this section, we will first consider the behavior of a Blaschke product whose zeros are located on $\Gamma \subseteq S^{(0)}$. Choose $\varepsilon < 1/10$ and place points a_n on Γ so that each z in Γ satisfies $\varrho(z, a_n) < 2\varepsilon$ for some n and so that $\varrho(a_n, a_m) \ge \varepsilon$ if $n \pm m$. It is shown in [19] that $\{a_n\}$ is an interpolating sequence. Let B be the Blaschke product whose zero sequence is $\{a_n\}$. We wish to verify (3.1) and (3.2) on $S^{(0)}$. By construction (3.1) holds. If $z \in S^{(0)}$ and $|u(z)| < \alpha$, then z is in some R_s . But $|B| < \varepsilon$ on $\partial R_s \setminus \{\operatorname{Im} z = 0\}$ and $\partial R_s \cap \{\operatorname{Im} z = 0\}$ has harmonic measure zero as a subset of ∂R_s , since it has length zero. We conclude that $|B| \le \varepsilon < 1/10$ on R_s by Theorem 1.63 of [14], and (3.2) holds.

We now wish to construct B_{α} . Let u be a unimodular function in $L^{\infty}(T)$. For k = 0, 1, ..., 7, let

$$\psi_k(z) = rac{e^{i\pi/4} + 1}{e^{i\pi/4} - 1} \left(rac{z - e^{ik\pi/4}}{z + e^{ik\pi/4}} \right)$$

and let $\{a_{n,k}\}$ be the zeros obtained by applying the procedure described above to the function $u \circ \psi_k^{-1}$. We can find a subset $\{z_m\}$ of $\bigcup_{k,n} \psi_k^{-1}(a_{n,k})$ such that $\varrho(z_m, z_l) \ge \varepsilon$, for $m \pm l$, and such that for each m, there is an l for which $\varrho(z_m, z_l) < 3\varepsilon$. Let B_{α} be the Blaschke product whose zero sequence is $\{z_m\}$. Then B_{α} is an interpolating Blaschke product, and we have that (3.1) and (3.2) hold in $|z| \ge 1/2$. If $|u(z_0)| < \alpha$ for some z_0 with $|z_0| < 1/2$, increase the zero sequence of B_{α} with a finite number of distinct zeros in a neighborhood of z_0 , so that $|B_{\alpha}(z)| \le 1/10$ for all |z| < 1/2. This proves the theorem.

7. Further results

In view of S. Y. Chang's result, we have shown that every subalgebra of L^{∞} containing H^{∞} is generated by H^{∞} and $\{\overline{B} \in A: B \text{ is an interpolating Blaschke product}\}$. Which algebras are of the form $[H^{\infty}, \overline{B}]$, where B is an interpolating Blaschke product? If f is a simple function, it is possible to see that $[H^{\infty}, f] = [H^{\infty}, \overline{B}]$ for some interpolating Blaschke product B. If A is generated by H^{∞} and a countable collection of L^{∞} functions, then $A = [H^{\infty}, U\overline{V}]$, where U and V are inner functions and $\overline{U}V \in A$. Such an algebra is contained in some algebra of the form $[H^{\infty}, \overline{B}]$, but it is not clear whether $A = [H^{\infty}, \overline{B}]$ or not.

References

- [1]. AXLER, S., Algebras generated by H^{∞} and characteristic functions, Preprint.
- [2]. Some properties of $\mathbf{H}^{\infty} + L_{E}$, Preprint.
- [3]. CARLESON, L., An interpolation problem for bounded analytic functions. Amer. J. Math., 80 (1958), 921–930.
- [4]. Interpolations by bounded analytic functions and the corona problem. Ann. Math., 76 (1962), 547–559.
- [5]. The corona theorem, Proceedings of 15th Scandinavian Congress, Oslo, 1968. Lecture Notes in Mathematics. 118, Springer-Verlag.
- [6]. CHANG, S. Y., On the structure and characterization of some Douglas subalgebras. To appear in Amer. J. Math.
- [7]. A characterization of Douglas subalgebras. Acta Math., 137 (1976), 81-89.
- [8]. DAVIE, A. M., GAMELIN, T. W. & GARNETT, J., Distance estimates and pointwise bounded density. Trans. Amer. Math. Soc., 175 (1973), 37-68.
- [9]. DOUGLAS, R., On the spectrum of Toeplitz and Wiener-Hopf operators. Proc. Conf. Abstract Spaces and Approximation (Oberwolfach, 1968), Birkhäuser, Basel, 1969, 53-66. MR 41 #4274.
- [10]. DOUGLAS, R. & RUDIN, W., Approximation by inner functions. Pacific J. Math., 31 (1969), 313-320. MR 41 #4275.
- [11]. DUREN, P., Theory of H^p Spaces, Academic Press, New York and London, 1970.
- [12]. GARNETT, J., Interpolating sequences for bounded harmonic functions. Ind. Univ. Math. J., 21 (1971), 187–192.
- [13]. HOFFMAN, K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- [14]. OHTSUKA, M., Dirichlet Problem, Extremal Length, and Prime Ends. Van Nostrand, New York, 1970.

7-762909 Acta mathematica 137. Imprimé le 22 Septembre 1976

DONALD E. MARSHALL

- [15]. SARASON, D., Algebras of functions on the unit circle. Bull. Amer. Math. Soc., 79 (1973), 286-299.
- [16]. Approximation of piecewise continuous functions by quotients of bounded analytic functions. Canad. J. Math., 24 (1972), 642-657.
- [17]. Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 207 (1975), 391–405.
- [18]. WEIGHT, T., Some subalgebras of $L^{\infty}(T)$ determined by their maximal ideal spaces. Bull. Amer. Math. Soc., 81 (1975), 192–194.
- [19]. ZISKIND, S., Interpolating sequences and the Shilov boundary of $H^{\infty}(\Delta)$. To appear in J. Functional Anal.

Received August 29, 1975