SUBALGEBRAS OF L^{∞} CONTAINING $\boldsymbol{H}^{\boldsymbol{\infty}}$

BY
DONALD E. MARSHALL
University of California, Los Angeles, CA., USA

1. Introduction

Let H^{∞} be the algebra of bounded analytic functions on $D=\{z:|z|<1\}$ and let L^{∞} be the Banach algebra of bounded measurable functions on $T=\{z:|z|=1\}$ with the uniform norm. Then H^{∞} can be regarded as a uniformly closed subalgebra of L^{∞} by identifying each $f \in H^{\infty}$ with its boundary function.

If A is a closed subalgebra of L^{∞}, let $M[A]$ denote its maximal-ideal space. K. Hoffman [13] has shown that each $\varphi \in \mathscr{M}\left[H^{\infty}\right]$ has a unique norm-preserving extension to a bounded linear functional on L^{∞}. For example, if $z \in D$ then evaluation at z is an element of $\mathscr{M}\left[H^{\infty}\right]$ and its extension is given simply by the Poisson kernel. Now if A is a closed subalgebra of L^{∞} containing H^{∞}, then the usual Gelfand topology on $7 M[A]$ agrees with the weak-* topology that $\mathscr{M}[A]$ inherits as a compact subset of the dual space of L^{∞}. Consequently, each $f \in L^{\infty}$ is continuous on $m\left[H^{\infty}\right]$ and harmonic on D. Moreover, if A and B are closed algebras such that $H^{\infty} \subset A \subset B \subset L^{\infty}$, then $M\left[H^{\infty}\right] \supset M[A] \supset M[B] \supset$ $M\left[L^{\infty}\right]$. Our main result is the following theorem:

Theorem 1. Let A be a closed subalgebra of L^{∞} containing H^{∞}. Let A_{I} be the closed subalgebra of A generated by H^{∞} and $\left\{f^{-1} \in A: f \in H^{\infty}\right\}$. Then $M\left[A_{I}\right]=M[A]$.

When combined with a recent result of S. Y. Chang [7], Theorem 1 proves a conjecture of R. Douglas [9]. To state Douglas' conjecture, we let Q be a subset of L^{∞} and write [H^{∞}, Q] for the uniformly closed subalgebra of L^{∞} generated by H^{∞} and Q. An algebra of the form $\left[H^{\infty}, Q\right]$, where $Q \subset\left\{u:|u|=1\right.$ a.e. on T and $\left.\bar{u} \in H^{\infty}\right\}$ is called a Douglas algebra. Since each positive function in $\left(L^{\infty}\right)^{-1}$ is the modulus of a function in $\left(H^{\infty}\right)^{-1}$, we see that A_{I} is a Douglas algebra whenever $H^{\infty} \subset A \subset L^{\infty}$ and we see that if A is a Douglas algebra, then $A=A_{I}$. Douglas' conjecture was that every uniformly closed subalgebra A of L^{∞} containing H^{∞} is a Douglas algebra, or, equivalently, that every such algebra A satisfies $A=A_{I}$. Now S. Y. Chang has proved that if A is a closed algebra lying between H^{∞} and
L^{∞}, and if B is a Douglas algebra with $\mathbb{M}[B]=\boldsymbol{M}[A]$, then $A=B$. In light of this result, Theorem 1 has the following consequence.

Theorem 2. Every closed algebra A, such that $H^{\infty} \subset A \subset L^{\infty}$, is generated by H^{∞} and $\left\{\bar{u} \in A: u\right.$ is an inner function in $\left.H^{\infty}\right\}$.

Douglas' conjecture arose from the study of operator algebras generated by Toeplitz operators. It has been discussed by several authors: S. Axler [1], [2], S. Y. Chang [6], A. M. Davie, T. W. Gamelin, and J. Garnett [8], R. Douglas [9], R. Douglas and W. Rudin [10], D. Sarason [15], [16], [17], T. Weight [18]. I would like to thank J. Garnett for invaluable discussions.

2. Interpolating Blaschke products

We call a sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ in D an interpolating sequence if for every bounded sequence $\left\{w_{n}\right\}_{n=1}^{\infty}$, there is an f in H^{∞} such that $f\left(z_{n}\right)=w_{n}$ for all n. Every interpolating sequence must satisfy $\Sigma\left(1-\left|z_{n}\right|\right)<\infty$, and so is the zero sequence of a Blaschke product. We call a Blaschke product whose zeros form an interpolating sequence, an interpolating Blaschke product.

A finite measure μ on the upper half-plane, H^{+}, is called a Carleson measure if there is a constant C for which $\mu(S) \leqslant C \delta$, whenever S is a square of the form $S=\left\{x+i y\right.$: $x_{0} \leqslant$ $\left.x \leqslant x_{0}+\delta, 0<y \leqslant \delta\right\}$. The analogous definition is made for D, where squares are replaced by sectors of the form $S=\left\{r e^{i \theta}: 1-\delta \leqslant r<1\right.$ and $\left.\theta_{0} \leqslant \theta \leqslant \theta_{0}+\delta\right\}$. Any rectifiable curve Γ in H^{+}or D induces a measure on H^{+}or D, respectively, by defining the measure of a Borel set S to be the length of $\Gamma \cap S$. The hyperbolic distance between two points is defined by

$$
\varrho(z, w)= \begin{cases}\left|\frac{z-w}{z-\bar{w}}\right| & \text { on } H^{+} \\ \left|\frac{z-w}{1-\bar{w} z}\right| & \text { on } D .\end{cases}
$$

Interpolating sequences can be characterized in the following way [12]. On H^{+}, a sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$ is an interpolating sequence if and only if there exists an $\varepsilon>0$ such that $\varrho\left(z_{n}, z_{m}\right) \geqslant \varepsilon$ for $n \neq m$ and the measure $\Sigma\left(\operatorname{Im} z_{n}\right) \delta_{z_{n}}$ is a Carleson measure. Here $\delta_{z_{n}}$ denotes the point mass at z_{n}. On D, we replace the measure with $\Sigma\left(1-\left|z_{n}\right|\right) \delta_{z_{n}}$.

3. Proof of Theorem 1

We claim that it suffices to prove the theorem for algebras of the form $A_{u}=\left[H^{\infty}, u, \bar{u}\right]$ where u is a unimodular function in L^{∞}. To see this, note that any algebra A containing
H^{∞} is generated by its invertible elements. Now, if $f \in A^{-1}$, there exists $g \in\left(H^{\infty}\right)^{-1}$ such that $|f|=|g|$ a.e. Then $u=f g^{-1}$ and $\bar{u}=g f^{-1}$ are unimodular, and we see that A is generated by H^{∞} and $G=\{u \in A: u$ is unimodular and $\bar{u} \in A\}$. It is easy to see that $M\left[A_{u}\right]=$ $\left\{\varphi \in \mathscr{M}\left[H^{\infty}\right]:|\varphi(u)|=1\right\}$ and $M[A]=\left\{\varphi \in \mathcal{M}\left[H^{\infty}\right]:|\varphi(u)|=1\right.$ for all u in $\left.G\right\}$. Now $\left(A_{u}\right)_{I} \subset$ $A_{I} \subset A$ for all u in G, so that $M[A] \subset \mathscr{m}\left[A_{I}\right] \subset \cap_{u \in G} M\left[\left(A_{u}\right)_{I}\right]$. If $m\left[\left(A_{u}\right)_{I}\right]=M\left[A_{u}\right]$ for all u in G, we have $M[A] \subset \mathcal{M}\left[A_{I}\right] \subset \bigcap_{u \in G} M\left[A_{u}\right]=M[A]$. Thus $M[A]=M\left[A_{I}\right]$. This proves the claim.

For the remainder of this discussion, let u be a fixed, nonconstant, unimodular function in L^{∞} and let $A_{u}=\left[H^{\infty}, u, \bar{u}\right]$. For each $\alpha, 0<\alpha<1$, we wish to find an interpolating Blaschke product B_{α}, such that

There exists $\beta<1$ such that if $B_{\alpha}(z)=0$, then $|u(z)| \leqslant \beta$.

$$
\begin{equation*}
\text { If }|u(z)|<\alpha, \quad \text { then }\left|B_{\alpha}(z)\right| \leqslant \frac{1}{10} \tag{3.1}
\end{equation*}
$$

Assuming we can do this for the moment, we prove our theorem as follows. Let $B=$ $\left[H^{\infty},\left\{\bar{B}_{\alpha}\right\} \quad 0<\alpha<1\right\}$. Suppose $\varphi \in \mathcal{M}\left[A_{u}\right]$, and suppose $\varphi\left(B_{\alpha}\right)=0$ for some α. K. Hoffman [13, p. 206] has shown that since B_{α} is interpolating, φ is in the closure of the zeros $\left\{z_{n}\right\}$ of B_{α}. By (3.1) above, $\left|u\left(z_{n}\right)\right| \leqslant \beta<1$, so that $|\varphi(u)| \leqslant \beta<\mathrm{I}$, contradicting the assumption that $\varphi \in \mathscr{M}\left[A_{u}\right]$. So $\varphi\left(B_{\alpha}\right) \neq 0$ for each $\varphi \in \mathbb{M}\left[A_{u}\right]$ and each B_{α}. Thus each B_{α} is invertible in A_{u}. We see now, that $B \subset\left(A_{u}\right)_{I}$, so that $M[B] \supset \mathscr{M}\left[\left(A_{u}\right)_{I}\right] \supset \mathscr{M}\left[A_{u}\right]$. For the opposite inclusions, note that $\mathcal{M}[B]=\left\{\varphi \in \mathbb{M}\left[H^{\infty}\right]:\left|\varphi\left(B_{\alpha}\right)\right|=1\right.$ for each $\left.\alpha\right\}$. Suppose $\varphi \in \mathbb{M}[B]$ and $|\varphi(u)|<\alpha<1$. By the corona theorem [4], there exists a net $\left\{z_{\gamma}\right\}$ in D, such that z_{γ} converges to φ. There exists a γ_{0}, such that if $\gamma>\gamma_{0}$, then $\left|u\left(z_{\gamma}\right)\right|<\alpha$. By (3.2) above, $\left|B_{\alpha}\left(z_{\gamma}\right)\right| \leqslant$ $1 / 10$ for $\gamma>\gamma_{0}$, and we see that $\left|\varphi\left(B_{\alpha}\right)\right| \leqslant 1 / 10$. This contradiction implies that $|\varphi(u)|=1$, so that $\varphi \in \mathscr{M}\left[A_{u}\right]$. We have now shown that $M[B]=M\left[\left(A_{u}\right)_{I}\right]=M\left[A_{u}\right]$.

It remains to find B_{α}, given u and α. We will surround the places where $|u|<\alpha$ by contours Γ which induce a Carleson measure. This construction comes from the proof of the corona theorem [4], by L. Carleson. We will then uniformly distribute, in the ϱ-metric, a sequence $\left\{z_{n}\right\}$ on the contours. Our interpolating Blaschke product will have $\left\{z_{n}\right\}$ as its zeros. Our method is very similar to S. Ziskind's [19], except that we work with a bounded harmonic function with unimodular boundary values and we give several technical simplifications.

4. Preliminaries to the construction

The construction is best explained in the upper half-plane H^{+}. So suppose u is a bounded harmonic function on H^{+}with unimodular boundary values, and fix $\alpha, 0<\alpha<1$.

Lemma 1. There exists an $\alpha^{\prime}<1$, such that if $\inf _{R}|u(z)|<\alpha$ for some rectangle of the form $R=\left\{x+i y: x_{0} \leqslant x \leqslant x_{0}+\delta, \delta / 2 \leqslant y \leqslant \delta\right\}$, then $\sup _{n}|u(z)|<\alpha^{\prime}$.

Proof. By a translation and a dilation, we can assume $x_{0}=0$ and $\delta=1$. The result now follows by a normal families argument.

Let S be a square of the form $\left\{x+i y: x_{0} \leqslant x \leqslant x_{0}+\delta, 0<y \leqslant \delta\right\}$. Find $\beta<1$ such that $(1-\beta) /\left(1-\alpha^{\prime}\right)<10^{-4}$. For a set $U \subset \mathbf{R}$, let $|U|$ denote its measure.

Lemma 2. Suppose $x_{0} \leqslant \operatorname{Re} a \leqslant x_{0}+\delta$ and $\delta / 2 \leqslant \operatorname{Im} a \leqslant \delta$ and $|u(a)|>\beta$. Let $E=$ $\left\{x+i y \in S:|u(x+i y)|<\alpha^{\prime}\right\}$. Let E^{*} be the vertical projection of E on $\{x+i y: y=0\}$. Then $\left|E^{*}\right| \leqslant \delta / 2$.

This lemma is essentially proved in [12] and in [4].
Proof. By a translation and a dilation, again, we can assume $x_{0}=0$ and $\delta=\pi / 2$. Let S be the strip $\{x+i y: 0<y<\pi\}$ and let $\varphi(z)=e^{z}$. Now φ maps S one-to-one and conformally onto the upper half-plane H^{+}. First we assume E is bounded by a finite number of Jordan curves. Let ω and ω_{1} be the harmonic measures for E relative to $S \backslash E$ and $\varphi(E)$ relative to $H^{+} \backslash \varphi(E)$, respectively. Let ω^{*} and ω_{1}^{*} be the harmonic measures for E^{*} relative to S and $\varphi(E)^{*}$ relative to H^{+}, respectively. Here $\varphi(E)^{*}$ is the circular (clockwise) projection of $\varphi(E)$ on $\{\operatorname{Im} z=0\}$. Hall's lemma [11, p. 208] and an elementary estimate show that

$$
\omega(a)=\omega_{1}(\varphi(a)) \geqslant 2 / 3 \omega_{1}^{*}(\varphi(\bar{a}+\pi i)) \geqslant 2 \times 10^{-4}\left|E^{*}\right| .
$$

Notice that on the boundary of $S \backslash E,|u(z)| \leqslant 1-\omega(z)+\alpha^{\prime} \omega(z)$. By the maximum principle, the inequality persists on $S \backslash E$. So $\beta<1-\omega(a)+\alpha^{\prime} \omega(a)$ and we conclude that $\left|E^{*}\right|<\pi / 4$.

Now for an arbitrary E, we can cover the compact set $\left\{z \in E:|u(z)| \leqslant \alpha^{\prime}-1 / n\right.$, $\operatorname{Im} z \geqslant 1 / n\}$ by a finite number of balls contained in E. Let E_{n} be the complement of the unbounded component of the union of these balls. Apply the above reasoning to each E_{n} and E_{n}^{*}.

5. The construction of Γ

Let $S^{(0)}=\{x+i y: 0 \leqslant x \leqslant 1,0<y \leqslant 1\}$. Partition the bottom half of $S^{(0)}$ into two squares with sides of length $1 / 2$. Partition the bottom half of each of these squares into two more squares with sides of length $1 / 4$. Continue the process indefinitely. We wish to describe two procedures which we will apply to a subcollection of the squares in $S^{(0)}$. For S a square in $S^{(0)}$, let T_{S} be the top half of S.

Case 1. $\sup _{T_{s}}|u|>\beta$.

If \tilde{S} is a square contained in S and $|u(z)|<\alpha$ for some z in $T_{\tilde{S}}$, shade \tilde{S} unless it is already shaded. Note that by Lemma 1, $\sup _{\tau} \tilde{s}|u|<\alpha^{\prime}<\beta$ and by Lemma 2,

$$
\begin{equation*}
\sum_{\tilde{S} \text { shaded }}\left|\tilde{S}^{*}\right| \leqslant \frac{1}{2}\left|S^{*}\right| . \tag{5.1}
\end{equation*}
$$

Case 2. $\sup _{T_{s}}|u| \leqslant \beta$.
If \tilde{S} is a square contained in S and $\sup _{\tau \tilde{S}}|u|>\beta$, shade \tilde{S} unless it is already shaded. Let $R_{S}=S \backslash \bigcup_{\tilde{s} \text { shaded }} \tilde{S}$ and note that

$$
\begin{equation*}
\left|\partial R_{S}\right| \leqslant 6\left|S^{*}\right| . \tag{5.2}
\end{equation*}
$$

Proceed as follows. Apply the appropriate case to $S^{(0)}$, obtaining shaded squares $S_{1}^{(1)}, S_{2}^{(1)}, S_{3}^{(1)}, \ldots$ On each $S_{j}^{(1)}$, apply the appropriate case, obtaining doubly shaded squares $S_{1}^{(2)}, S_{2}^{(2)}, S_{3}^{(2)}, \ldots$. Repeat this process indefinitely. Observe that we alternate cases in passing from one shaded square to a shaded descendant. Define Γ as the union of the boundaries of the R_{S} obtained from applications of Case 2. To see that Γ induces a Carleson measure, it suffices to check $|\Gamma \cap S| \leqslant C\left|S^{*}\right|$ where S is a square in the grid on $S^{(0)}$. By (5.1) and (5.2), we see that

$$
|\Gamma \cap S| \leqslant \sum_{n=0}^{\infty} 6 \times 2^{-n}\left|S^{*}\right|=12\left|S^{*}\right|
$$

Note that any point in $S^{(0)}$ for which $|u(z)|<\alpha$ will be in some R_{S}. Also, $\mid \partial R_{S} \cap$ $\{\operatorname{Im} z=0\} \mid=0$. This follows since u has unimodular vertical limits a.e. and anyepoint in $\partial R_{S} \cap\{\operatorname{Im} z=0\}$ is a point where $\lim _{y \rightarrow 0} \sup |u(x+i y)| \leqslant \beta<1$.

6. The construction of B_{α}

In this section, we will first consider the behavior of a Blaschke product whose zeros are located on $\Gamma \subset S^{(0)}$. Choose $\varepsilon<1 / 10$ and place points a_{n} on Γ so that each z in Γ satisfies $\varrho\left(z, a_{n}\right)<2 \varepsilon$ for some n and so that $\varrho\left(a_{n}, a_{m}\right) \geqslant \varepsilon$ if $n \neq m$. It is shown in [19] that $\left\{a_{n}\right\}$ is an interpolating sequence. Let B be the Blaschke product whose zero sequence is $\left\{a_{n}\right\}$. We wish to verify (3.1) and (3.2) on $S^{(0)}$. By construction (3.1) holds. If $z \in S^{(0)}$ and $|u(z)|<\alpha$, then z is in some R_{S}. But $|B|<\varepsilon$ on $\partial R_{S} \backslash\{\operatorname{Im} z=0\}$ and $\partial R_{S} \cap\{\operatorname{Im} z=0\}$ has harmonic measure zero as a subset of ∂R_{S}, since it has length zero. We conclude that $|B| \leqslant \varepsilon<1 / 10$ on R_{S} by Theorem 1.63 of [14], and (3.2) holds.

We now wish to construct B_{α}. Let u be a unimodular function in $L^{\infty}(T)$. For $k=$ $0,1, \ldots, 7$, let

$$
\psi_{k}(z)=\frac{e^{i \pi / 4}+1}{e^{i \pi / 4}-1}\left(\frac{z-e^{i k \pi / 4}}{z+e^{i k \pi / 4}}\right)
$$

and let $\left\{a_{n, k}\right\}$ be the zeros obtained by applying the procedure described above to the function $u \circ \psi_{k}^{-1}$. We can find a subset $\left\{z_{m}\right\}$ of $U_{k, n} \psi_{k}^{-1}\left(a_{n, k}\right)$ such that $\varrho\left(z_{m}, z_{l}\right) \geqslant \varepsilon$, for $m \neq l$, and such that for each m, there is an l for which $\varrho\left(z_{m}, z_{l}\right)<3 \varepsilon$. Let B_{α} be the Blaschke product whose zero sequence is $\left\{z_{m}\right\}$. Then B_{α} is an interpolating Blaschke product, and we have that (3.1) and (3.2) hold in $|z| \geqslant 1 / 2$. If $\left|u\left(z_{0}\right)\right|<\alpha$ for some z_{0} with $\left|z_{0}\right|<1 / 2$, increase the zero sequence of B_{α} with a finite number of distinct zeros in a neighborhood of z_{0}, so that $\left|B_{\alpha}(z)\right| \leqslant 1 / 10$ for all $|z|<1 / 2$. This proves the theorem.

7. Further results

In view of S. Y. Chang's result, we have shown that every subalgebra of L^{∞} containing H^{∞} is generated by H^{∞} and $\{\bar{B} \in A: B$ is an interpolating Blaschke product $\}$. Which algebras are of the form $\left[H^{\infty}, \bar{B}\right]$, where B is an interpolating Blaschke product? If f is a simple function, it is possible to see that $\left[H^{\infty}, f\right]=\left[H^{\infty}, \bar{B}\right]$ for some interpolating Blaschke product B. If A is generated by H^{∞} and a countable collection of L^{∞} functions, then $A=\left[H^{\infty}, U \bar{V}\right]$, where U and V are inner functions and $\vec{U} V \in A$. Such an algebra is contained in some algebra of the form $\left[H^{\infty}, \bar{B}\right]$, but it is not clear whether $A=\left[H^{\infty}, \bar{B}\right]$ or not.

References

[I]. Axler, S., Algebras generated by H^{∞} and characteristic functions, Preprint.
[2]. - Some properties of $\mathbf{H}^{\infty}+L_{E}$, Preprint.
[3]. Carleson, L., An interpolation problem for bounded analytic functions. Amer. J. Math., 80 (1958), 921-930.
[4]. -. Interpolations by bounded analytic functions and the corona problem. Ann. Math., 76 (1962), 547-559.
[5]. -_ The corona theorem, Proceedings of $15 t h$ Scandinavian Congress, Oslo, 1968. Lecture Notes in Mathematics. 118, Springer-Verlag.
[6]. Chang, S. Y., On the structure and characterization of some Douglas subalgebras. To appear in Amer. J. Math.
[7]. - A characterization of Douglas subalgebras. Acta Math., 137 (1976), 81-89.
[8]. Davie, A. M., Gamelin, T. W. \& Garnett, J., Distance estimates and pointwise bounded density. Trans. Amer. Math. Soc., 175 (1973), 37-68.
[9]. Douglas, R., On the spectrum of Toeplitz and Wiener-Hopf operators. Proc. Conf. Abstract Spaces and Approximation (Oberwolfach, 1968), Birkhäuser, Basel, 1969, 53-66. MR 41 \#4274.
[10]. Douglas, R. \& Rudin, W., Approximation by inner functions. Pacific J. Math., 31 (1969), 313-320. MR 41 \#4275.
[11]. Duren, P., Theory of H^{p} Spaces, Academic Press, New York and London, 1970.
[12]. Garnett, J., Interpolating sequences for bounded harmonic functions. Ind. Univ. Math. J., 21 (1971), 187-192.
[13]. Hoffman, K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
[14]. Ohtsuka, M., Dirichlet Problem, Extremal Length, and Prime Ends. Van Nostrand, New York, 1970.

7-762909 Acta mathematica 137. Imprimé le 22 Septembre 1976
[15]. Sarason, D., Algebras of functions on the unit circle. Bull. Amer. Math. Soc., 79 (1973), 286-299.
[16]. - Approximation of piecewise continuous functions by quotients of bounded analytic functions. Canad. J. Math., 24 (1972), 642-657.
[17]. -- Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 207 (1975), 391405.
[18]. Weight, T., Some subalgebras of $L^{\infty}(T)$ determined by their maximal ideal spaces. Bull. Amer. Math. Soc., 81 (1975), 192-194.
[19]. Ziskind, S., Interpolating sequences and the Shilov boundary of $H^{\infty}(\Delta)$. To appear in J. Functional Anal.

Received August 29, 1975

