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1. Introduction 

In  [21] Siebenmann considers the problem of putting a boundary on an open smooth 

manifold. A necessary condition is that  the manifold have a finite number of ends, that  the 

system of fundamental groups of connected open neighborhoods of each end be "essenti- 

ally constant" and that  there exist arbitrarily small open neighborhoods of ~ homo- 

topically dominated by finite complexes. When the manifold has dimension greater than 

five and has a single such end, there is an obstruction a(cr to the manifold having a bound- 

ary; it lies in K0~rl(cr the projective class group of the fundamental group at co. When 

the manifold does admit a connected boundary, and is therefore the interior of a compact 

smooth manifold, such compactifications are conveniently classified relative to a fixed one 

by certain torsions ~ in Wh ~ ( ~ ) ,  the Whitehead group of n l (~) .  In  other words, a is the 

obstruction to putting a boundary on the manifold and z then classifies the different ways 

in which this can be done. One can deal with manifolds having a finite number of ends by 

treating each one in the above manner. 

In  this paper we carry out a similar program for the problem of putting boundaries 

on non-compact Q-manifolds, where a Q-manifold M is a separable metric manifold mo- 

deled on the ttilbert cube Q (the countable-ilffinite product of closed intervals). 2 The first 

problem is to decide upon a suitable definition of a boundary for a Q-manifold; for example 

B n • Q is a perfectly good Q-manifold and (~B n) • Q has every right to be called its bound- 

ary, but unfortunately there exist homeomorphisms of B ~ x Q onto itself taking (~B ~) • Q 

into its complement. To see this just, write Q as [0, 1] • Q and note that  there exists a 

homeomorphism of B n • [0, 1] onto itself taking (~B n) • [0, 1] into its complement. In  the 

(1) An A.P. Sloan Fellow and supported in part by NSF Grant GP-28374. 
(3) It is, for example, conjectured that Q-manifolds are precisely those A•R's that locally are com- 

pact c~-dimensional and homogeneous. 
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absence of any  intrinsic notion of a boundary we adopt  the following rather  general de- 

finition. A compact metric space Z is a boundary for M is there exists a compact Q-mani- 

fold 2V ~ M such tha t  2 V - M  = Z  and such tha t  Z is contained in some closed collared sub- 

set of AT. Such a eompactum Z is also known as a Z-set in N and is equally-well character- 

ized by  the existence, for every e > 0, of an e-map of AT into hr--Z.  (The notion of a Z-set is 

an important  tool iu the s tudy of Q-manifolds.) The above definition of boundary makes 

sense in finite-dimensional manifolds; Z will simply be a compact subset of the usual 

intrinsic boundary ~V of h r. Thus our problem is more ambitious than  the finite-dimen- 

sional one solved in [21]; indeed it  strongly suggests tha t  the thesis [21] admits a generaliza- 

t ion along the lines of this article, cf. [24]. 

I t  is easy to find examples of Q-manifolds which do not admit  boundaries, for any  

which does must  have finite homotopy type; indeed using the notation above we have 

M = N - Z _ ~ N = ( f i n i t e  complex)•  by  [7]. An example with finite type  is given by  

Whitehead's  example of a contractible open subset W of R 3 which is not homeomorphic 

to Rs; the contractible Q-manifold W • Q does not admit  a boundary. 

We find tha t  if a Q-manifold M satisfies certain minimal necessary homotopy theoretic 

conditions (finite type and tameness at  oo), there exists a unified obstretion/5(M) to M 

having a boundary; it lies in an algebraically-defined abelian group See(M), which is none 

other than  the quotient of the group $(M) of all infinite simple homotopy types on M by  

the image of the Whitehead group Wh ~I(M). This group depends only on the inverse 

system { Z l ( M - A )  ]A = M compact),  where the homomorphisms are inclusion-induced. 

Secondly we determine tha t  the different boundaries tha t  can be put  on M constitute a 

whole shape class and we classify the different ways of putt ing boundaries on M by  ele- 

ments of the group Wh ~1 E(M) = !ira (Wh Zl(M - A) A c M compact).  

Here is an at t ract ive way to describe the obstruction fl(M)eSo~(M) to finding a 

boundary. I f  M is of finite type and tame at  co (el. w 2), one readily forms a homotopy 

commutat ive ladder 

M'. -"  U~ ~ V ~ . ~ . . .  

\ / \ / \  
Z o  . -  X l  ~- X ~  . -  . . . 

where {U~) is a basis of neighborhoods of co in M and each X~ is a finite complex. Letting 

Map (0) denote the infinite mapping cylinder of the inverse sequence 

~: x o * - x l ~ x ~ -  ... (el. w 2), 

the homotopy commuta t iv i ty  mentioned assures tha t  one can form a proper map  
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/: Map (a) --> M. With some further care / can be chosen to be a proper equivalence(I); tMs is car- 

ried out explicitly in Appendix I I .  Then fl(M) is none other than  the class of f in $~(M). 

The invariant  fi(M)E $~o(M) is an absolute torsion invariant  just as are the l~eide- 

meister torsions of lens spaces; and it enjoys the corresponding natural i ty  properties. We 

will leave the reader to seek (if he wishes) a more algebraic definition of fl(M) in the spirit 

of [12]. 

The reader will find in this article two essentially independent proofs tha t  a Q-mani- 

fold M of finite type  and tame at  ~o admits  a boundary precisely if fl(M)=0 E $~(M). 
The one suggested by  the above definition requires above all a proof tha t  fl(M) as described 

above is well-defined. This amounts to proving tha t  a proper equivalence of two infinite 

mapping cylinders Map (a)-~Map (~') has its torsion zero in $o0. (This proof is marred only 

by  the tedium of the "further  care" required in the construction of t: Map (a)-+M.) To 

pick out this proof the reader should read w 8 and Appendix 2. 

The second proof is somewhat longer, but  a t  the same t ime richer since we define and 

interpret geometrically, two partial  obstructions ~oo(M) and ~ ( M )  analogous to obstruc- 

tions ~oo and vo~ of infinite simple homotopy theory [22]. Since the theory was only sketched 

in [22] this article is intended to offer instruction in the theory tha t  has become the basis 

of the classification of non-compact Q-manifolds [23]. For this proof the reader should read 

straight through, avoiding only w 8. 

In  w 2 we give more detailed statements of our results. The remaining sections are de- 

voted to proofs. Here is a list of contents. 
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proper homotopy equivalence? (Cf. Appendix 2.) 
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2. Statements of results 

One of the most  useful tools in this paper  is the notion of the in/inite mapping cylinder 

of an inverse sequence of spaces. I f  ~ = {Xi,/~)~-~ 1 is an inverse sequence of compact metric 

spaces, X 1 ~ X 2 A X 3 4-- .... then we use Map (a) to denote the locally compact space formed 

by sewing together the usual mapping cylinders M(/i) along their naturally-identified ends. 

With these identifications we have Map (a) = M(/1) U M(/2) U .... which is natural ly com- 

pactified by adding on the inverse limit lira a of a. I t  is obvious tha t  l i m a  is a Z-set 
+ - - - -  < 

in Map (a) U li._m_m a. I t  follows from [28] tha t  if each X l is a compact polyhedron, then 

Map (a) x Q is a Q-manifold. Here is a sharper statement.  

T~EOI~EM 1: CYLINDER COMPLETION (see w 4). I / s  is an inverse sequence o/compact 

Q-mani/old /actors, then (Map (a) U lim a) x Q is a compact Q-mani/old homeomorphic to X 1 • Q 

and there/ore limm a • Q is a boundary/or Map (a) • Q. 

By a Q-mani/old/actor we mean a space which yields a Q-manifold upon multiplica- 

tion by  Q. The class of Q-manifold factors includes at  least all locally-finite CW complexes 

[28], (and may  perhaps include all locally compact ANR's).(1) We therefore obtain a large 

class of Q-manifolds which admit  boundaries by  considering Map (a) • Q, for a any  inverse 

sequence of compact Q-manifold factors. The next  result shows tha t  this characterizes all 

such Q-manifolds. 

THEOREM 2: GEOMETIr C~IARACTElCIZATION (see w 4). A Q-mani/old admits a bound- 

ary i/ and only i/ it is homeomorphie to Map (a) • Q, /or  some inverse sequence a o/com- 

pact polyhedra. 

The basic necessary condition for a Q-manifold M to admit  a boundary is tha t  M be 

tame at  0% where tame at oo means tha t  for each compaetum A c M  there exists a larger 

compactum B c M such tha t  the inclusion M -  B c-->M-A factors up to homotopy through 

some finite complex. Note tha t  Whitehead's  example cited in w 1 fails to be tame at  0% I t  

(1) Added 1976: This has been proved by 1%. D. Edwards [11], [9]. 
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follows from the Geometric characterization above that  this condition is necessary for M 

to admit  a boundary, and it is easy to see tha t  it is an invariant of proper homotopy type. 

(Recall tha t  a proper map or proper homotopy is one for which pre-images of compacts  

are compact.) I f  M is a Q-manifold which is t ame at  ~ ,  we will first define two obstruc- 

tions to M having a boundary. Later  on we will combine them into a single obstruction. 

For any Q-manifold M we say tha t  a Q-manifold M ' ~  M is clean provided tha t  M '  is 

closed and the topological frontier OM' of M '  in M is a Q-manifold which is collared in 

M '  and in the closure of M - M ' .  I t  follows from the triangulation of Q-manifolds [7] tha t  

every Q-manifold has arbitrarily large compact and clean submanifolds. Observe also tha t  

triangulability implies tha t  if M ' c  M is compact and clean and M admits a boundary, 

then M - M '  must  have finite type. Our first obstruction is the obstruction to all such 

M - M '  having finite type; using Wall 's finiteness obstruction this turns out to be just an 

element ~oo(M) of 

~2o~ ~ E(M) = !ira {K0z~(M-A)[  A ~ M compact}. 

Here ~207e 1 is the projective class group functor and the homomorphisms are inclusion- 

induced. ~70~ 1E(M) clearly depends only on the inverse system {yll(M - A )  [A ~ M com- 

pact}. 

T~EOREM 3: CLiSS G~OVP O~STRUCTIO~ (see w 5). I t M is a Q-mani/old which is 

tame at c~, the obstruction ( ~ ( M ) e / ~ 0 ~ E ( M ) ,  an invariant o/ (in/inite) simple homotopy 

type, is zero i /and  only i t there exist arbitrarily large clean compact M'  in M such that the in- 

clusion ~(M')r  (M') is a homotopy equivalence.(1) 

I t  is somewhat suprising tha t  if ~ ( M ) =  0, then there is yet  a further obstruction to 

M having a boundary. This is identified in our next theorem. 

THEOI~EM 4: RESIDUAL OBSTlCUCTI051 (see w 6). I / M  is a Q-mani/old which is tame 

at co and/or  which aoo(M)=0, then there is an obstruction voo(M ) c W h ~ I E ' ( M  ) which van- 

ishes i] and only it M admits a boundary. I t  is an invariant ot simple homotopy type. 

The abelian group Wh z l E ' ( M )  is the first derived limit of the inverse system 

{Wh Z l ( M - A ) [ A  c i compact}, 

where Wh z l  is the Whitehead group functor. (The article [18] is a good reference for the 

derived limit construction, but in w 6 we clearly state the definition.) To show the neces- 

sity of the obstruction ~ we give in w 7 a a  example (based on [2]) of a Q-manifold which 

is t ame at  ~ and for which a ~ ( M ) =  0, yet  M does not admit  a boundary. 

(1) The symbols (] and Int indicate frontier and interior respectively (in M). 
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The obstruction ~ ( M )  occurs as follows. Using the Class group obstruction theorem 

choose a sequence M 1 c  M~c ... of compact clean submanifolds of M such that  M~ lies in 

the topological interior of M~+I and ~(M~)~->M - In t  (M~) is a homotopy equivalence. I f ~  

denotes the Whitehead torson of the inclusion 

~(M~) ~-~M~+ 1 - In t  (M~) 

i = l ,  2, ..., experts will recognize that  the sequence (T1, T2 .. . .  ) determines an element of 

Wh ~ IE ' (M ). I t  is v~(M), and we will show in w 6 that  Too(M)=O if and only if the M~ 

can be rechosen so that  the z, are all 0, i.e. if and only if M admits a boundary. 

Essential in our definition of the total boundary obstruction is the following result, 

which is of independent interest. 

THEOREM 5: HOMOTOPY BOUNDARY CRITERION (see w 5). A Q.mani/old M is proper 

homotopy equivalent to one which admits a boundary if M has finite type and is tame at c~. 

We give two proofs of this result. The first one relies upon Theorem 3 plus the rea- 

lization of elements of the class group at infinity ~:0gl E(M) by proper homotopy equiv- 

alences, as explained in [22]; since the argument was only sketched there we given a full 

discussion in Appendix 1. The second proof relies upon Appendix 2 to show that  we can 

choose a proper homotopy equivalence Map (~)-~ M, for some g (cf. w 1). 

By the Hauptvermutung and Triangulation results for Q-manifolds [8], [23], the in- 

finite simple type theory [22] extends canonically from locally compact polyhedra to Q- 

manifolds. I f / :  N -~M is a proper equivalence of Q-manifolds the infinite torsion T(/) in 

S(M), the group of simple types on M, vanishes if and only if f is proper homotopic to a 

homeomorphism. Also one easily shows that  the image fl(f) of v(f) in $(M)/Image 

Wh zl(M) is zero if and only if f is proper homotopic to a map that  is a homeomorphism 

near infinity. (All this is explained in w 2.) 

T ~ W O R ~  6: TOTAL O~STRUC~ON {see w 8 and Appendix 2). I1 M is a Q-manifold which 

has finite type and is tame at oo, then there is an element fl(M) E $oo(M)= $(M)/Wh z~I(M ) 

which vanishes if and only if M admits a boundary. I t  can be defined unambigously as the 

residue of the infinite torsion T(f) E S(M), where f: N--> M is a proper homotopy equivalence 

and N admits a boundary. 

The surprising feature of this result is isolated in the following statement tha t  we take 

time to prove both geometrically and using naturali ty properties of the obstructions aoD 

and Too above. 

THEOREI~I 7: PERIFHERAL HOMEOMORHI~ISM I%L.~ADOX (see w 8). I f  f: M--->N i8 a 

(merely/) proper homotopy equivalence o/Q-manifolds which admit boundaries, then / is proper 
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homotopic to a homeomorphism near oo. I / M  and N are contractible, then / is proper homo. 

topic to a homeomorphism. 

I t  is worth noting that  the obstruction fl(M)E See(M) can still be defined if we drop 

the requirement tha t  M have finite type and only assume it to be tame at oo. For such an 

M there is a compact polyhedron which homotopieally dominates M (see w 5, Lemma 5.1) 

and the mapping cone of such a dominating map yields, upon multiplication by Q, a Q, 

manifold N which is simply connected (and hence has finite type) and which agrees with 

M off some eompactum. Then N has finite type and is tame at ~ ,  and we can define 

fl(M) =fl(N), which is well-defined. 

We also remark that  for every Q-manifold M there is an exact sequence 

0 -~ Wh zqE' (M) ~ too(M) ~ I{ozclE(M) -~ I{o~(M),  

which comes from amalgamating the two exact sequences of [22]. If M has finite type and 

is tame at  c~, we will observe (see w 8, Proposition 8.1) tha t  

(1) aoo(M) is the image of fl(M) in goz~lE(M ) and 

(2) if ~oo(M)=0, then fl(M) is the image of Too(M)EWh ~IE'(M).  

Here are some applications of the above results. 

T ~ O R ~ M  8: I>RiTICXL ]3OU~D~_RY THEOREm (see w 9). I /  M is a I-ended Q-manifold 

which is tame at oo such that z~ 1 is essentially constant at oo, with ~1(~) /ree or free abelian, 

then See(M)=0 and there/ore M admits a boundary. 

COROLLiRu I /  M is a Q-mani/old which is LC 1 at oo and /or  which the homology 

H . (M)  is/initely generated, then M admits a boundary. 

Concerning the classification of possible boundaries we prove the following result. 

I ts proof relies on the main result of [6], which classifies shapes of compact E-sets in Q in 

terms of the homeomorphism types of their complements (see [24] for an alternate proof 

in the spirit of this article). 

T H E O R ] ~  9: BOIYNI)~a~u CLASSIFICATION (see w 10). I / Z  is a boundary/or M, then a 

compact metric space Z' is also a boundary for M if and only if Z' is shape equivalent to Z 

(in the sense o/[4]). 

If  N is a compactification of M, then we say that  another compactification N '  of M 

is equivalent to N if for every eompactum A c M there exists a homeomorphism of N onto 

N' fixing A pointwise. The following result classifies these equivalence classes of eom- 

pactifications of M. 
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TH]~O~]~M 10: CO~reAC~IFICATmN CLASSIFICATmN (see w 11). I f  M admits a compact- 

i]ication, then the equivalence classes o/compacti/ications o] M are in 1 - 1  correspondence 

with the elements o /Wh  zl  E(M). 

Ifere Wh g~E(M)is the inverse limit li" m {Wh z ~ ( M - A ) I A c  M compact}. 

3. Simple homotopy and Q-mauiiold preliminaries 

The purpose of this section is to recall some basic facts from simple homotopy theory 

and Q-manifold theory. Our basic references for simple homotopy theory are [10] and [22], 

and our basic references for Q-manifold theory are [7], [8], [9] and [23]. 

A proper homotopy equivalence (p.h.e.) /: X-~ Y of (locally compact) polyhedra is a 

simple homotopy equivalence (s.h.e.) provided that  there exists a polyhedron Z and proper, 

contractible PL surjections ~: Z ~ X ,  fl: Z-~ Y such t h a t / ~  is proper homotopic to ft. (A 

contractible map is one for which all inverse images of points are contractible in themselves.) 

For a given polyhdron X we let $(X) be the set of all equivalence classes [Y, X] of 

pairs (Y, X) where X is a subpolyhedron of Y and Xc-> Y is a p.h.e. We define ( Y', X) E 

[Y, X] provided that  there exists a s.h.e. /: Y-+ Y' fixing X pointwise. Addition in  S(X) 

is defined by 

[Y, X ]  +[Z,  X ]  = [Y  U~Z, X],  

where Y Ux Z is the polyhedron formed by sewing Y and Z together along X. Then with 

this operation S(X) becomes an abelian group. I t  is the group of all simple types on X. 

For X compact it is canonically isomorphic to Wh zl(X). 

I f / :  X I ~ X  2 is a proper map of polyhedra and g: XI -~X  ~ is any PL map which is 

proper homotopic t o / ,  then we get an induced homomorphism/, :  $(X1)~ $(X2) by set- 

ring 

/,([Y, ~;]) = [Y Uz 2~(g), X~], 

Where M(g)is  the polyhedral mapping cylinder of g and X1, X2 are naturally identified 

subpolyhedra of M(g). The torsion of a p.h.e./:  X-> Y is the element v(/) =/,([M(g), X]) E 

$(Y), where g: X-+ :Y is any PL map which is proper homotopic t o / .  

The algebraically-defined Whitehead group Wh ~I(X) is naturally isomorphic to the 

direct limit 

lira {$(X1)]Xlc X is a compact subpolyhedron}, 

where the homomorphisms are inclusion-induced. This gives a homomorphism Wh zl(X)-~ 

$(X) and we define $~(X)= $(X)/Image (Wh zl(X)). This homomorphism is natural in 

the sense that  i f / :  X-+ Y is a proper map, then the following diagram Commutes: 
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s (x )  1" , s ( r )  

F t 
Wh~rl(X) ~ Wh:rrl(Y ) 

(Here Wh ~rl(X)-~Wh ~rl(Y) is induced by f.) Thus $~ is functorial for such/ .  

If  l: X-~ Y is a p.h.e., then we use fl(]) for the image of r(f) in See(Y) and we call it 

the torsion of f near ~o. We say that  ] is a s.h.e, near oo if fi(h =0. The naturali ty diagram 

above implies that  the formulas for the torsion of a composition [22, p. 481] [10, p. 72] 

and the Sum theorem [22, p. 482] [10, p. 76] translate into corresponding formulas for ft. 

We now recall some facts from Q-manifold theory. All spaces here and in the sequel 

will be locally compact, separable and metric. (Closed) E-sets in Q-manifolds are important  

because of the following approximation, unknotting and collaring results. If f: X-~21/is a 

proper map of a space X into a Q-manifold M, then ] can be arbitrarily closely approxi- 

mated by Z-embeddings g: X ~ M ,  i.e. g(X) is a E-set in M. For Z-embeddings f, g: X ~ M  

which are proper homotopie, there exists an ambient isotopy ht: M-~M such that  h 0 = id  

and hl] =g. If M is a E-set in the Q-manifold N, then M is collared in N, i.e. there exists 

an open embedding g: M • [0, 1)->N such that  ](m, 0)=m,  for all mEM. 

If  f: X-~ Y is a map between compact polyhedra, then M(/)• Q is a Q-manifold. In  

fact r • ida: M(l) • Q-~ Y • Q can be arbitrarily closely approximated by homeomorphisms, 

where r: M(])-~ Y is the collapse of M(] ) to its base Y obtained by  retracting along the rays 

of M(/). (We call r • i d a  near homeomorphism.) I t  is also true that  X • is a Q-manifold, 

for any polyhedron X. The "Hauptvermutung"  for Q-manifolds asserts tha t  a p.h.e. ]: 

X--->Y of polyhedra is a s.h.e, iff ] • X • Y•  is proper homotopic to a homeo- 

morphism. 

All Q-manifolds can be ~riangulaSed (i.e. are homeomorphie to X • Q, for some poly- 

hedron X). In fact we have the following relative version. If  M is a Q-manifold which is a 

E-set in a Q-manifold N and ~: M ~ X  • is a triangulation of M, then there exists a 

triangulation fl: N-~ Y • Q such tha t  X is a subpolyhedron of Y and ~ extends ~. 

If  ]: M-+N is a p.h.e, of Q-manifolds, then we can define a torsion ~(])E S(N) which 

vanishes if and only if f is proper homotopic to a homeomorphism. This is done by choos- 

ing triangulations M ~ X  • Q, N ~ Y • Q and a p.h.e. ]0: X-~ Y which makes the following 

diagram proper homotopy commute: 

M ~ _ X •  Pr~ X 

'l ['~ 
N " ~ Y x Q  p r o j  y 
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Then put  ~(/) =T(/0), where we recall from w 2 that  by definition S(M)= $(X) and S(N) = 

$(Y). I t  easily follows from the "Hauptvermutung"  that  S(M) and S(N) are well defined 

up to canonical isomorphism independent of the triangulations chosen, and that  v( / )=0 

if and only if / is proper homotopic to a homeomorphism. 

In analogy with the definition of ~(/) above we could also define fl(/) =fl(/o) G Soo(Y) = 

S~(N). We assert that  f l( /)-O iff / is proper homotopic to a homeomorphism near oo. 

[To verify this first suppose that  fl(/) =0.  This means t h a t / 0  factorizes, X r ~, Y, 

where X ' - X  consists of finitely many cells and X'--> Y is a simple proper equivalence. As 

both ~ • (id [ Q) and ~p • (id [ Q) are proper homotopic to homeomorphisms near oo, the same is 

true of their composition/0 • (id]Q) and so o f / .  Conversely, supposing / proper homotopic 

t o / ' ,  a homeomorphism near oo, we can artificially choose the triangulations M ~ X  x Q 

and N ~ Y • Q (by using the relative triangulation theorem) so that  X = Y near ~ and 

/ '  
X• , N " ~ y x Q  

is the identity map near 0% Then clearly ~(/0)=0.] 

4. Infinite mapping cylinders 

In this section we will prove the Cylinder completion and Geometric characterization 

theorems of w 2 concerning infinite mapping cylinders. First we will introduce some addi- 

tional notation which will clarify the paragraph preceding the statement of the Cylinder 

completion theorem. 

Let  a be the inverse sequence {X~,/~)~~ and for each i ~> 1 let M(/i) denote the mapping 

cylinder of /i: Xi+v+X~ �9 We regard M(/~) as the disjoint union X~+ 1 • [0, 1)IJ X~ along 

with an appropriate topology. The source of M(/~) is X~+ 1 =X~+ 1 x {0) and the target of 

M(/~) is X~. For each i ~> 1 let M~(o) denote the compact space formed by  sewing together 

the mapping cylinders M(/1) . . . .  , M(/~) along their naturally identified sources and targets. 

Then we have Mi+l(O ) =Mi(o ) U M(/~+I) and Map (a) = U~=IMi(o). There is also a natural 

map g~: M~+l(o)~M~(o ) which is the identi ty on M~(o) and on M(/~+I) it is just the col- 

lapse to the base X~. The compactification of Map (0) by  lim o that  was mentioned in 
< 

w 2 is just the inverse limit X ,  =lira {M,(o), g~)%1. Clearly we may write X ,  =Map (0) U ti,_mm o 

and we note tha t  lim o is a E-set in X~. 
,r 

Proo/o/the Cylinder completion theorem. The Cylinder completion theorem asserts tha t  

if o = {Xi,/~)~~ is an inverse sequence of compact Q-manifold factors, then X~ • Q is a Q- 

manifold which is homeomorphic to X 1 • Q. Consider the sequence {Mi(a), g~)~=l, which is 

an inverse sequence of compact Q-manifold factors. Since each gt: Mt+l(o)-~Mi(~ is just 
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the collapse of a mapping cylinder to its base, it follows that  each gi • M m ( a  ) • 

M,(a) • is a near homeomorphism. I t  is shown in [5] (see Lemma 4.1 below) that  

if {Yi, hi}~~ is an inverse sequence of compact metric spaces and the h,'s are near 

homeomorphisms, then lim { Yi, h~}~~ is homeomorphic to Yr  Applying this result to 

{M~(a) • Q, g~ • id)~~ we get our desired result. �9 

In  the following result we sketch a proof of the main result of [5] which was used 

above. 

L t2 LEMMA 4.1. I /  XV-zs-- X2 �9 -... is an inverse sequence o/compact metric spaces, then 

we can choose neighborhoods ~ o/[t in C(X,+I, X~) such that i /g ,E ~,,  then 

r:_m (x, , t ,}  = (x,,g,}. 

(C(Xi+I, Xt) is the space of continuous functions from X~+ 1 to Xi.) 

Sketch o/proo[. For any choice of the ~ ,  and gi E ~ we have inverse sequences 

so:X,, h X s ,  /~ . . .  

(TI: X l  ' gl X2 ( /2 Xa ( /a 

as:X1, gx Xo, h Xs" /3 

,~176 

X 4 , 

Let  At denote the inverse limit of a~ and define ~0~: A~-~A~+I by 

~f(Xl,  X2 . . . .  ) = (glg2 "'" gi+l(Xi+2), g2 "'" gal(xt+~), gal(X~+2), Xt+2, Xt+3 .... )" 

Then ~0~ is a homeomorphism and, if ~ i  is chosen sufficiently close t o / i ,  the sequence of 

embeddings 

i=1  

oo 

~1 ~o: Ao-~ 1"I X~, 
i = 1  

is Cauchy in the complete space of embeddings of A o into ]-I~~ Therefore 9 =  

]imn_oo~on~on_l ... ~o2~01: A o-> 1-I~~ 1 X, gives a homeomorphism of <lim {X,,/,} onto lim {Xi, gi}. �9 

Proo] o/the Geometric characterization theorem. The Geometric characterization theorem 

asserts that  a Q-manifold admits a boundary iff it is homeomorphic to Map (a) • Q, for 
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some inverse sequence a of compact  polyhedra.  The "if"  par t  follows f rom the Cylinder 

completion theorem. For  the other  par t  let M be a Q-manifold which admits  a bounda ry  

Z and let N = M U Z be a compactif icat ion of M. Since Z is a E-set we m a y  replace h r by  

2V • [0, 1] and  assume tha t  Z = I V  • {0}. To see this we first recall t h a t  N is homeomorphie  

to  I • [0, 1] and  then  use E-set uaknot t ing .  Wi th  this nota t ion  we mus t  prove tha t  

2V • [0, 1] - Z  is homeomorphie  to some Map (a) • Q. 

Since N can be t r iangulated we can write Z=. N ~=IM~, where 

h r • {O}D M I ~  M 2 ~  ... 

is a basis of compact  and clean neighborhoods of Z in N • {0}. B y  "poking-in"  along the 

~ N  [0, 1J-direction we can enlarge the  M, ' s  to  obtain  Z = N ,=1 ~, where 

N • [0, 1 ] ~ N I ~ N 2 ~  ... 

is a basis of compact  and clean neighborhoods of Z in _h r • [0, 1] such tha t  each N~ is a col- 

| a t  on 6(Ni), the frontier of N,.  

0 [0,1] 1 

I n  the picture above the shaded region represents N,. I t s  intersection with _h r • {0} is 

just  M~. 

Choose compact  polyhech.a X0, X1, ... and  homeomorphisms 

h0: X 0 •  _h r • [0, 1] - I n t  (N1) , 

hi: X1 • Q -~ ~(hrl), 

h2: X 2 • Q -~ 8(N~), 

We will construct  maps  /,:X,+I-->X ~ such tha t  if a---{X,,/,}T=o, then  M a p ( a ) •  

_~ x [0, 1] - Z .  

Define/0:  X I ~ X o  and/~:  X~+I~Xi, i>~ 1, so t h a t  the  following rectangles h o m o t o p y  

commute :  

X1 x Q . hi , 6(N1) X~+I • Q hi§ ~(N~+I) 

10 • id [ ~ /, • id ~ 

X o x Q h~ ~N • [0,1] - Int(N,)  X, x O ht , ~(N,) 
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Here (~(N~+I)-~6(N~) is a composition 

where the last arrow is a homotopy inverse of inclusion. 

Consider the infinite mapping cylinder Map(a) and write Map(a )=AoUA10 

where in the picture of Map (a) below we have indicated Ao, A 1 and A~. 

xo x l  x~ x~ 

Using our notation for mapping cylinders we have 

A o = (X 1 • [�89 1)) O X o, 

A~ = (X~ • [�89 1)) O (X~ • [0, �89 

Now X 0 • Q ~ A  o • Q is homotopie to a homeomorphism, thus using h o we get a ho- 

meomorphism go: Ao • Q ~ N  • [0, l ] - I n t  (N1) which, by  E-set unknotting, can be ad- 

justed so that  go]X1 •189215 is given by hi, i.e. go(x, �89 q)=hl(x, q) for all xEXI.  This 

uses the commutativity of the first rectangle above. Using the second rectangle we can 

similarly construct homeomorphisms 

gt: A~ •  (N~+I), i ~> 1, 

such that  g~(x, �89 q) =h~+l(x, q), for all x~Xi+l, and g~(x, �89 q)=h~(x, q), for all xGX~. Then 

the g/s clearly piece together to give a homeomorphism of Map (a) • Q onto N • [0, 1] - Z .  �9 

The following consequence of the above proof will be useful in the sequel. 

~ M  C OR O LLARY 4.2. I /  M is a Q-mani/old which is written as M = [3 ~1 ~, where the 

M~'s are compact and clean, M~clnt(M~+l),  and each 8(M~)~--~M~+I-Int(M~) is a s.h.e., 

then M admits a boundary. 

5. The class group obstruction 

In  this section we prove the Class group obstruction and Homotopy boundary cri- 

terion theorems. In a further result (Naturality) we relate aoo as defined here to a homo- 

morphism aoo: $(M)-+KozclE(M) defined in [22]. We will first need the following result. 

1 2 -  762901 Acta mathematica 137. Imprim5 le 20 $anvicr 1977 
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DOMINATION LEMMA 5.1. I / X  i8 a polyhedron which is tame at c~, then X is domi- 

nated by a compact polyhedron. 

Proo/. Since X is tame at co we can write X = X  1 U X~, where X 1 and X 2 are sub- 

polyhedra such that  X 1 is compact and X2c-->X factors up to homotopy through some 

compact polyhedron ]7. Then we have a homotopy commutative diagram 

X~ ~ , X  

Y 

Let Ft: X 2 ~ X  be a homotopy such that Fo=fla and FI~ X2~-~X. Using the homotopy 

extension theorem we can find a homotopy Gt: XI-> X such that  Gt= Ft on X 1 N X 2 and 

GI: Xlc-~X. Define Ht: X ~ X  by setting H~=F~ on X 2 and Ht=Gt on Xp Then we have 

a homotopy commutative diagram 

X ~ >X 

Z, 

where Z is any compact subpolyhedron of X containing Ho(X ). This means that  Z do- 

minates X. �9 

The following corollary makes the notion of tameness much more concrete. 

COROLLARY. 1/ M is a Q-mani/old which is tame at ~ and M ' ~  M is compact and 

clean, then M - M '  is finitely dominated. 

Proo/. By the triangulation of Q-manifolds we have M - M '  proper homotopy equi- 

valent to some polyhedron, which must be tame at ~ .  �9 

Proo/o/the Class group obstruction theorem. Let M be a Q-manifold which is tame at 

~ .  We want to define an element (~ (M)EKo~IE(M ) which vanishes iff M - M '  has finite 

~ M  type, for each compact and clean M'  ~ M. Write M = LJ ~ffil 1, where the M / s  are compact 

and clean and M~cInt(M~+l), The above Corollary implies that  each M - M ~  is finitely 

dominated. Thus there is an element (~(M-M~)EKo~I(M-M~) (the Wall obstruction 

[27]) which vanishes iff M - M ~  has finite type. This makes good sense even if the M - M / s  

are not connected [21]. If  j >i, then the fact that  M j - M ~  has finite type implies that  the 

inclusion-induced homomorphism of /~0 z l ( M - M j )  to Ko~I(M-M~) sends (~ (M-Mj) to  

~ ( i - i t ) .  Thus we have an element ( ~ ( / -  i~))~~ ofli_m ( h : . g ~ ( i -  M~))~_I =/~0:7~1 E(M) 

which we call aoo(M). Clearly a~ (M)~0  iff M - M '  has finite type, for each compact and 

clean M' ~ M. 
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To see that  ao~(M) is an invariant of infinite simple homotopy type l e t / :  M ~ Z  r be 

an infinite simple homotopy equivalence to another Q-manifold /Y. Then / induces an 

isomorphism/,:/~07~IE(M) ~Koz~l E(N) and we need to check that / ,a~o(M) =aoo(N). We 

can replace / by any map in its proper homotopy class, so we may assume that  / is a homeo- 

morphism. If M =  U~=~M i and aoo(M) is represented by {a(M-M,)}~=I above, then h r=  

UT=I](Ni) and a~o(/Y) may be represented by {a(/(M)-](M,)}~I. But ] ,  clearly sends 

{a(M-M,)}  to {a(/(M)-/(M~)} because the Wall obstruction is an invariant of homo- 

topy  type. �9 

We now state and prove the Naturality theorem. Recall from [22] that  for each poly- 

hedron X there exists a homomorphism aoo: S(X)-+[fo~t E(X). Since Q-manifolds can be 

triangulated this naturally defines a homomorphism aoo: S(M)->KoTqE(M), for each Q- 

manifold M. 

THEOREM 5.2. NATURALITY. I/  /: M-oN is a p.h.e, o/ Q-mani/olds which are tame 

at c~, then 

(~( ~) = ~ ( t )  + l , ~ (  i ) ,  

where/.: K07e~ E(M)-+[~o~I E(N) is induced by/. 

Proo/. Writing M = X  • Q and N = Y • Q it will suffice to consider a p.h.e./:  X-+ Y, 

of polyhedra which are tame at oo such that  / is the inclusion/: X r Y, where a~ (X)=  

aoo(M) and a~(Y) =a~o(IV) could be defined in analogy with a~(M) and a~(/V). 

Write ]z= U~-i Y~, where the Y~'s are compact subpolyhedra such that  (~(Y~) is PL  

bicollared and y ~ c  In t  (yi+l). Then a~(X~+ Y) is defined to be the element of K0~TEIE(Y) 
which is represented by 

{~( r -  y,, (Y-  Y,) n x)}T~I, 

where a ( Y -  Yi, ( Y -  Y~) (~ X)E,~o~zl(Y- Y~) is the relative finiteness obstruction of [27]. 

Note that  Y -  Y~ and ( Y -  Yi)(] X are finitely dominated. Using [27, p. 138] we have 

a ( Y -  Y~, ( Y -  y , )  n x )  + (}~),a(( Y -  y~) n x )  = a (Y  - Y~), 

where (]5). is inclusion-induced. This gives 

a~( Y) = a~(l) + /,a~(x) 

as we wanted. �9 

We now turn to the proof of the Homotopy boundary criterion theorem. The follow- 

ing result, which is crucial for its proof, will also be needed for the Residual obstruction 

theorem of w 6. 
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SPLITTING PROPOSITION 5.3. ]f M i8 a Q-manifold which is tame at oo and/orwhich 

a~(M)=O, then we can write M =  U~~ such that the M / s  are compact and clean, M~c 

Znt (Mi+l), and each inclusion (5(M~)r is a homotopy equivalence. 

Proof. Choose any  compact and clean M ' c  M. I t  will suffice to construct a compact 

and clean M " D M '  such tha t  ~(M")~--~M-Int(M ") is a homotopy equivalence. Since 

aoo(M) = 0 it follows tha t  M - I n t  (M') has finite type. Thus there is a compact  polyhedron 

X and a homotopy equivalence f: X xQ-~M-InL(M' ) .  Let g: X x Q - > M - I n t ( M ' )  be a 

E-embedding which is homotopie t o / .  Using ~-set unknott ing we can find a homeomor- 

phism h of M - I n t ( M ' )  onto itself such tha t  h(~(M'))~g(X xQ). Then h-lg: X x Q - + M -  

Int(M')  is a Z-embedding which is a homotopy equivalence and whose image contains 

5(M'). Let  N=h-~g(X • which is a Q-manifold. Since N is a E-set in M - I n t ( M ' )  we 

can find a collaring 0: N • [0, 1 ) - ~ M - I n t  (M') of N. Then 

M" = M' U O(N • [0, �89 

fulfills our requirements. �9 

C OR OL LAR u I / M  is as above, then M is p.h.e, to Map (a) • Q,/or some inverse sequence 

a o/compact polyhedra. 

Proof. This is similar to the proof of the Geometric characterization theorem of w 4. 

I f  we knew tha t  each inclusion (~(M~):-->M~+l-Int(Mt) were a s.h.e., then by  the Corol- 

lary of the Geometric characterization theorem we would have a homeomorphism M 

Map(a) • As each inclusion O(M~)c-~M~+I-Int(M~) is only known to be a homotopy 

equivalence, the same argument gives a p.h.e, of M with Map (a) x Q. �9 

First proof o/the Homotopy boundary criterion theorem. We are given a Q-manifold M 

which has finite type and is t ame at  co and we want  to prove tha t  M is p.h.e, to a Q-mani- 

fold which admits a boundary. 

Note tha t  a~(M) is an element of K0gl E(M) which is sent to 0 by  the homomorphism 

Ko~IE(M)~KogI (M ) induced by  inclusions. In  Appendix 1 we prove tha t  there exists a 

Q-manifold N and a p.h.e . / :  N - ~ M  such tha t  aoo(/) =aoo(M). By  Natara l i ty  we have 

aAM) = a~(/) + 1, a~(,v), 

and therefore a~(N) =0.  Then apply  the above Corollary. �9 

Second proof o/the Homotopy boundary criterion theorem. I t  follows from Appendix 2 

tha t  if M has finite type and is tame at  ~ ,  then M is proper homotopy equivalent to 

Map (a), for some inverse sequence a of compact polyhedra. Then apply the Geometric 

characterization theorem. �9 
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6. The residual obstruction 

Proposition 5.3 above tells us precisely when a Q-manLfotd M can be filtered as M = 

(J ~~ where the M / s  are compact and clean, M t c  In t  (M~+I) , and each J(M~)c-~M~+I- 

In t  (M~) is a homotopy  equivalence. Supposing this done, in this section we define an ob- 

struction to improving such a filtration so tha t  in addition each (5(M~)=~Mt+l-Int(M~) 

is a s.h.e. By  the Corollary of the Geometric characterization theorem we know this means 

tha t  M admits a boundary. This ~ l l  complete our proof of the Residual obstruction theo- 

rem. In  a further result (Naturality) we relate our residual obstruction to a similar ob- 

struction of [22]. 

First it will be convenient to recall the definition of Wh ~1E'(X) for X any locally 

compact  ANR. Write X =  [J~=IC$, where the C/s  are compact and C~cInt(C~+l), let 

G~ = W h  gl(X - Ct) and consider the sequence 

G I ~ G 2 "  P2 Ga" Pa ..., 

G where the p / s  are inclusion-induced. Define the shift operator A from FL=I ~ to itself by 

A(vl, v2, ...) = (~1 -P1(~2), ~2 -P2(Va), ...), and let 
O0 

li__~ 1 { W h  7~1(X - G,)} = 1-I a J I m a g e ( h ) .  
t-1 

If (~1, ~ . . . .  )el-I~ we use (T1, ~2 . . . .  } for its image in lim I { W h ~ I ( X - C ~ )  }. I f  

X~[J~IC'~ is a similarly-defined filtration of X, then lim 1 {Wh g l (X-C~)}  and 

lim~ {Wh gl(X-C'~)} are canonically isomorphic. To see this first note tha t  there exists a 

filtration X ~- (J ~~ D~ such tha t  {C~}~I and {D,}~~ have subsequences in common and such 
�9 t O0 tha t  {D~}~~ and {C;}~~ have subsequences in common. I t  therefore suffices to regard {C~}~=1 

as a subsequence, {C~(~,},~176 of {C~}~1. Then an isomorphism of lira ~ {Wh~I(X - C~)} onto 

lira 1 {Wh g~(X-C'~)} is defined by  sending (~1, ~ . . . .  } to 

<~i(1)  ~-~ ' i (1)§ "~- " "  ~-~i(2)--1 ,  ~t(2)  ~-~t(2)-[-1 ~- "'" ~-~i (3)- -1 ,  " " } ,  

where we have avoided writing down compositions of p / s .  Thus we can unambiguously 

define 
W h  761 ~'(X) = limE 1 { W h  791(~ - ~t)} ,  

which is an invariant  of proper homotopy type. 

Proo/o/the Residual obstruction theorem. Let M be a Q-manifold which is tame at  co 

and for which ao~(M)= 0. We want  to define an element ~o~(M)eWh ~rg 1E'(M) which van- 

ishes iff M admits  a boundary. We divide the proof into convenient steps. 

(i) Definition o/~oo(M). Using Proposition 5.3 write M~- (J~~ where the M / s  are 

compact and clean, M~:Int(M~+l) , and each ](i): (~(M~)c-~M~+I-Int(M~) is a homotopy 



188 T. A. CHAPMAN AND L. C. S I E B E N M A N N  

equivalence. Then each 5(M~)~-~M~+I-Int(M~) determines a torsion in Wh :~I(M~+I- 

Int(M~) a n d  we let v~ denote its image in W h : ~ l ( M - I n t ( M ~ )  ). We define woo(M) to be 

the element of Wh ~IE' (M)  represented by  the element 

(T1, T2 . . . .  } E li _ml{Wh ~ I ( M -  In t  (/~))}. �9 

(ii) vo~(M) is well-de/ined. I f  {Mi}~=l is replaced by  a subsequence then the formula 

for the torsion of a composition implies tha t  (~1, T~, ...) is replaced by  

<T~(1) ~-Ti(1)+l  ~- ... -~-Ti(2)_1, Tl(2 ) -~Ti(2)+1 -Jr ... ~-Ti(3)_1, , . . ) ,  

where we have suppressed inclusion-induced homomorphisms. But  this sequence repre- 

sents the same element of W h z l E ' ( M  ). �9 

(iii) I] M admits a boundary, then ~ ( M )  = O. I f  M admits a boundary, then the Geo- 

metric charaeterisation theorem implies that  M ~ M a p ( ~ )  • and therefore we can write 

M =  (JT=IM~ such tha t  ~(Mi)~M~+l- In t (M~)  is a s.h.e. Thus v~(M)=0.  �9 

(iv) I /Too(M)=0, then M admits a boundary. If  Too(M)=0, then there is an element 

(#1, #5, .--) e ~T=I Wh g l (M - In t  (M~)) such tha t  A(#I, #2 ... .  ) = (Vl, v~ ....  ). We will use this 

to construct a new filtration M =  (JT=~M'~ such tha t  each d(M'~)c-+M'~+l-Int(M'~) is a 

s.h.e. Recall tha t  the Corollary of the Geometric characterization theorem will then imply 

tha t  M admits a boundary. Before giving this modification of the M / s  we will need a 

lemma. 

LEMlVIA 6.1. I / M  is a compact Q-mani/old and # EWh :h(M), then there is a decompo- 

sition M • [0, 1] = M  1 U M s such that 

(1) the M /s are compact Q-mani/olds and M 1 N Ms is a bicollared Q-mani/old, 

(2) i • ( 0 } c I n t ( i l )  and M • {1}cInt (M2)  , (in~eriors taken in M • [0, 1]), 

(3) M • {0}r is a homotopy equivalence and # =T(M • {0}~->M1), 

(4) 5M2)~+M~ is a homotopy equivalence and T((~(M~)c-§ -t~. 

(All Whitehead groups in sight are identified naturally to Wh ~I(M).) 

Pro@ L e t / :  M - ~ N  1 be a homotopy equivalence, where ~V 1 is a compact Q-manifold 

and T(/)~ T(M)~-~M(/)) is/~, and similarly let g: N 2 - N  1 be a homotopy equivalence where 

T(g) = -/~. Then sew two copies of M(/) to two copies of M(g) to get X =M(/) U N,M(g) U ~ 

M(g) U N,M(/) as pictured. 

X =  

M 
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Note tha t  T(M~X)=0,  so multiplying everything by  Q we get a homeomorphism h of 

X x Q onto M x [0, 1] which takes each M x Q onto one of M x {0} or M x {1}. Then put  

MI=h((M(/) U.v~M(g)) x Q), M2=h((M(g) UN, M(])) x F ) .  �9 

Now let us return to the proof of step (iv) above. Using the fact tha t  3(M~)~+M - 

Int(M~) is a homotopy equivalence we can choose ~u't EWh gl(3(M3) such that/~'~ is sent 

to f~ by  the inclusion-induced isomorphism. Let  3(M~) x [0, 1]~M~-Mi_x be a collar on 

~(M~)-~(M~) x {0} and use Lemma 6.1 to decompose (~(M~)x [0, 1] as M~ U M~ so that ,  

if ] denotes inclusion, ?'.(/~',) +z((~M,x{1} '-~M~) and z(M~ fi M~r = -?'.(/~',), Here is a 

picture of M~ - In t  (Mi-1). 

#4 

~(M~-I) 

(M~- Mi), I f  we define M'i=elosure  then it is clear tha t  ~(M'~)~-~M'~+I-Int(M'~) is 

a homotopy equivalence. But  using the relationship A(#I, #2 .. . .  ) =  (T1, ~2 . . . .  ) and the for- 

mula for the torsion of a composition we now have (~(M'~)c-~M't+I-Int(M'~) a s.h.e. �9 

This completes the proof of step (iv). Finally we remark tha t  ~oo is an invariant  of in- 

finite simple homotopy type by  the Naturality theorem below. �9 

We now state and prove the Naturality theorem. Recall from [22] tha t  if X is a poly- 

hedron and a~: S(X)-> I~o~1~ E(X) is as mentioned in w 5, then there is a homomorphism 

~ :  Ker (aoo) -~WhglE ' (X ). In  view of our remarks in w 3 this is equally true if X is a 

Q-manifold. 

TI~EOREM 6.2. NA~VRALITY. I/  /: M->IV is a p.h.e, o/ Q.mani/olds which are tame at 

and i/aoo(M)=aoo(N) =0, then 7:oo(/) is defined and 

~ ( N )  = zoo(l) + l ,  ~oo(M). 

Proo] o/ Theorem 6.2. Using the Naturality theorem for aoo we have aoo(/)=0; which 

shows tha t  ~ ( / )  is defined. 

We are at  l iberty to replace ]: M - ~ N  by  a p.h.e. /: X-~ Y of polyhedra (see w 3), a 

minor convenience letting us apply [22] more directly. We can assume / is an inclusion 

Xr Y. Recall from [22] tha t  an inclusion X~-~ Y is called " b u m p y "  if Y -  X is a disjoint 

union U~~ of compact subpolyhedra B~ of Y such that ,  for each i, the inclusion B~ N 

X~-~Bi is a homotopy equivalence. I t  is shown in [22] tha t  aoo(/)=0 implies that ,  after ex- 

pansion of Y, the inclusion ]: X ~  Y is a composition Xc-~Zr - Y of two bumpy  inclusions; 
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and we note that  qr of everything in view is still zero. If  we can verify the additivity equa- 

tion for each of these two inclusions, then by adding up we deduce it for ]: X ~- Y. Hence 

we may assume with no loss of generality t h a t / :  Xr Y is bumpy as described above. 

Since ao~(X)=0, by expansion of X(1) we can arrange that  X has a filtration X I =  

X~=.. .  by subpolyhedra with X~=IntX~+~, so that  6 X ~ ( X - I n t X ~ )  is a homotopy 

equivalence. 

Now /: X ' - ~ Y = X U  {{3~~ is still bumpy; what is more, by amalgamating the 

bumps B~ and refining the filtration of X we can arrange that  

B j = I n t X ~  for ] < i  and 

B j = X - X ~  for i > i .  

Then we get the following picture of Y. 

d(X1) ~ ~(X3) 

Let ]7, be the space Iormed from X ' - X  x [-l, ]] by sewing the odd bumps onto 
X • {1} and the even bumps onto X • { -1} .  Then we get the following picture of Y'. 

0 
%(xl) ~(x,) (x3) (~(x,) ~(xs) 

I 

I t  will suffice to prove that  

v~(Y') = voo(X~ Y') + ( X ~  Y') ,z~(X),  

where X is identified with X • {0} in Y'. 

For our computation of ~oo(X) we use the filtration X2~X4=X~= .... For our com- 

putation of zoo(Y') we use the filtration Y~ ~ Y~= y ~ c  ..., where 

Y; = (X, x [ -  1, 0]) U (X,+ 1 x [0, 1]) U (B 1 0 B 2 U ... U B,). 

(1) By abstractly amalgamating with Y along the old X this gives a simultaneous expansion of Y. 
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I t  is easy to see that  6(Y'~)r Y ' - - l i l t  Y'i is a homotopy equivalence. In  the picture above 

we have X=~X • {0} represented by the dotted line and the heavy solid lines mark 6(Y~) 

and 6(Y~). 

Let  b~ be the torsion of B, f~ X+c-~B~; let T, be the torsion of 6X~c-~X-Int  X~. 

Using the basic composition and sum theorems for torsion it is easy to see that  the torsion 

~'~ of the inclusion 6(Y'~)~--> Y'~+2-Int Y'i is a sum 

~'~ = (v~ + v~+l) + (b~+l + b~+2) 

where we as usual suppress canonical inclusion induced maps to Wh ~rl( Y ' - I n t  Y'~)= G~. 

Then in Wh ~xE' (Y  ') =h,__m I {GI+-Ga+-G5~-...} we get 

<T1, T3 . . . .  > = <T 1 "4- T2, T 3 "~- T 4 . . . .  > § (b2 + b3, b4 + b5 .. . .  > 

= ( X ~  Y ' ) . ~ ( X )  + ~ ( X ~  Y'), 

where the equality <b2+b3, b4+bs; ...>=~o(Xc-~Y ') follows from the definition given in 

[22]. �9 

7. Real izat ion  of the  obstruct ions  

The naturahty theorems for the obstructions a~o, Too and fl show that  when the Q- 

manifold M varies in a fixed proper homotopy type, say running through all of S(Mo) , 

the obstructions a~(M), To~(M) and ~(M) assume all conceivable values in their respective 

groups 

Kernel (/~0 ~1E(Mo) ~ Ko ~rl(M0)}, Wh ~1 E'(M0), S~(Mo). 

(Of course ~o is not defined until ~ = 0 . )  

Since the system (~rl(M 0 - A ) [ A  compact) is in our case filtered by finitely presented 

groups (by tameness of M0) the stand&rd examples, say as given in [22], might suggest 

tha t  Wh z l  B'(M0) is always zero in our case. 

This is not so, and we propose to give a counterexample in this section. To motivate 

the algebra we first recall how to pass from the nontrivial group to nontrivial geometric 

examples. 

Geometric examples. Let G be the group Z • 2 1 5  6 and let ~: G-+G be given by 

~(a, b, c)=(2a, b, c). In  Proposition 7.1 below we will prove that  the first derived limit of 

the induced inverse sequence of Whitehead groups, 

Wh(C)-  ~ ~* Wh(G) ,  ~* ..., 

is non-zero. 
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For each i >~ 1 let X~ be a compact connected polyhedron such tha t  z l (X~)~ G and let 

/~: X~+I-~ X~ induce the map g above on the fundamental  groups. Then the first derived 

limit 

li~m 1 {Wh 7~1(X,) , (/,). } = limm 1 {Wh ( G ) ~  Wh (G) ~- a* ... } 

E is non-zero so we m a y  choose an element (Vl, w2 . . . .  ) l-L=1 Wh zl(X~) such tha t  

(Wl, w2 . . . .  ) T0 .  Consider the non-compact space X pictured below. 

I t  is the union of compact polyhedra A1, A~ .. . .  and the mapping cylinders M(/~) (where 

X~, X '  ... ' 2, are copies of X1, X 2 . . . .  ) and 

(1) there is a homeomorphism of X~ onto X'~ which is homotopic to the identi ty of Xi, 

with the homotopy taking place in A ~, 

(2) X ~ *  A ~ is a homotopy equivalence and w(X~r ~) equals the image of vs. The A / s  are 

constructed just like the W/s  in step (iv) of the proof of the Compacti]ication classi]ica- 

tion theorem in w 11 below. 

Clearly X is tame at  co and a~(X) =0.  Since T(X~'-->A~ D M(/i)) equals the image of wt 

we have w~(X) T0.  Then M = X • Q is our example. �9 

I t  remains to verify 

PROPOSITION 7.1. Let G = Z  •  •  s and let a: G ~ G  be given by ~(a, b, e)=(2a, b, c). 

Then the [irst derived limit o/ 

Wh(G) ,  a * - - W h ( G ) ,  ~*. ... 

is non-zero. 

Proo]. Here are the main steps in the proof. For convenience we write G = Z  • 

where H = Z  • Zs. 

(i) We first recall that  Wh (G) contains K0(H) as a direct summand. 

(if) Next  we show tha t  ~,: Wh (G)-~Wh (G) is a direct sum of the homomorphism 

/~:/~0(H)-~/~o(H) (multiplication by  2) with some other homomorphism. 

(iii) Finally we observe tha t  K0(H) contains an infinite cyclic summand J .  
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Before these three steps let us show how they imply that  our required first derived 

limit is non-zero. Steps (i) and (iii) give us 

W h  (G) = J ~)g, 

for some K, and step (ii) implies tha t  ~,: Wh (G)-~Wh (G) is given by ~,=#2|  where 

/~: J-->J is multiplication by 2. I t  is easy to see that  a non-trivial element of the above first 

derived limit is given by  
(1 |  - 1 |  1 |  . . . .  ), 

where 1 is a generator of J .  (Note that  (1 | 0, 1 O 0 .. . .  ) will not work.). In fact such a lim 1 

is always uncountable [15]. 

Proo/o/ (i). The Fundamental  theorem of algebraic K-Theory [3], [1, p. 663], (cf [25, 

p. 15]) asserts that  
Wh (G) ~ ]~0(H) |  

where the injection and projection to/~0(H), 

P ~ 
Wh (G) .~-Ko(H ), 

J 

are defined as follows. (We will need descriptions of p and ~" for step (ii)). 

(a) Given [P] EKo(H ) we can naturally write 

Z[G](~P = P[t, t -t] . . . .  ~) t-Ip ~)P ~ tP Q .... 

where the tensor product is taken over Z[H] and t is a generator of Z in G. A shift automor. 

phism of P[t, t -1] is given by multiplication by t and it represents j[P] EWh (G). 

(b) Let  [~] EWh (G) be represented by a Z[G]-linear automorphism ~: Z[GJm-~Z[G] m. 

Naturally writing Z[G] "~ =Z[H] m [t, t -1] we let B =Z[H] m [t] c Z[G] m. Without changing the 

class [~] we can arrange it so that  ~ ( B ) c  B and B/cf(B) is a f.g. projective Z[H] module. 

Then 

p[~] = [B/cf(B)] E/~0(H ). 

Proo/ o/(ii). We will first show that  ~,  I j/~0(H): ]I~o(H ) ~j/~o(H) is/~2. If [P]E/~0(H), 

then ~[P] is represented by the shift automorphism on Pit, t -t] and o~,~[P] comes from sub- 

stituting t 2 for t, then extending canonically to retrieve an automorphism of P[t, t-t]. What 

we retrieve is the 2-fold shift automorphism x-+t2x which certainly represents 2j[P]. 

I t  remains only to show tha t  ~,  maps the "remainder" R to itself. Since R = Kernel (p) 

it suffices afor t ior i  to prove that  
p~,[~] = 2p[~] ,  

for all [~] EWh (G). If [~] is given by a Z[G]-linear automorphism ~: Z[G]m-:~Z[G] m, then 

~,[~] is represented by the automorphism a~ T obtained by substituting t ~ for t and then 
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extending canonically to a Z[GJ-linear automorphism of Z[G] m. (Again we use Z[G]m= 

Z[H]m[t, t-l].) As a Z[H]-linear automorphism, our ~ V is thus a sum of 2 copies of 

q~' : ... �9 t-2Z[H]" QZ[HJm | t2Z[H]'n @... +-', 

namely V' and tv' .  Hence B / ~  q~(B) is isomorphic to a sum of 2 copies of B2/q/(B2), where 

B 2 is B with t 2 substi tuted for t. But  clearly Bs/q~'(B2) is Z[H]-isomorphic to B/q~(B). Thus 

p~,[~0] =2p[~] as required. 

Proof el (iii). For this we refer to [2, w 8.10], where it is shown tha t  if H =  T • F, 

where T is torsion abelian with order divisible by  two distinct primes and F is free of rank 

>~ l,  then Ko(H)/Torsion is free of rank >~ 1 (This rank comes from K _ I ( T ) =  K_I(Z[T]) via 

periodicity.) Certainly T = Z  6 and F =Z fulfill these requirements. �9 

8. The total obstruction 

For M a Q-manifold which has finite type and is tame at  ~ ,  we will show how to de- 

fine an obstruction fl(M)E See(M) to M having a boundary and thereby prove the Total 

obstruction theorem. In  a further result (Naturality) we relate our obstruction to fl as 

defined in w 3 for infinite simple homotopy theory. As mentioned in w 2 the essential in- 

gredient of our construction is the Peripheral homeomorphism paradox which we prove 

first. We will give two proofs of this result. The first is a short argument  based upon the 

exact sequences of [22]; the second is longer but  is completely geometric in nature. 

First proo/o/the Peripheral homeomorphism paradox. We have a p.h.e. ]: M - ~  be- 

tween Q-manifolds which admit  boundaries and we want  to prove tha t  / is proper homo- 

topic to a homeomorphism near oo. I f  fl(/) is the torsion of ] in $~(/V), then by  (w 3) all we 

have to do is prove tha t  fl(/)E See(N) vanishes. There exists an exact sequence from [22] 

as we will explain again below: 

0 -~ Wh ~r~ 1 E ' ( N )  "-> See(N)  -->/~0:7~1 E(N) 

Since M and N admit  boundaries we have c%(M)=croo(N)='voo(M)=voo(N)=O. By Na- 

tural i ty  this gives ~oo(/)= 0 and roe(I) = 0, hence ~(/) = 0 and therefore ] is proper homotopie 

to a homeomorphism near 0% �9 

I f  W h ~ I ( N  ) =0,  which happens for example when M and N are contractible, then 

~(/) = 0  and therefore ] is proper homotopic to a homeomorphism. �9 

The second proof requires repeated use of the 

TRANSVERSALITu LEMMA. Let 1Y be a Q-mani/old and let .N1c N be a clean compact 

submani/old. Suppose M c N is a ~.-set that is a Q-mani/old. Then there exists a homeomor- 
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phism h: N-+ N arbitrarily close to i d ]N  such that h ( M ) = M '  is a Q-mani/old that cuts O(N1) 

transversally in the sense that ~(Ni) has a bicollaring in N restricting to a bicollaring o / M '  f3 

O(N1) in M',  while M'  N O(NI) is itsel/ a Q-mani/old. 

This follows easily from a PL  transversali ty lemma using triangulations and E-set 

properties. We leave the proof as an exercise. 

Second proof o/the Peripheral homeomorphism paradox. We are given a p.h.e. [: M-+ N 

of Q-manifolds which admit  boundaries and without loss of generahty we may  assume tha t  

M is a Z-set in N and / is the inclusion map. Since M and N admit  boundaries we can clearly 

write M = U]~ and N =  U~~ such tha t  

(1) the M~'s and N / s  are compact and clean, 

(2) M~c  In t  (M~+i) and N~c  In t  (Ni+l), 

(3) the inclusions O(M~)c-*Ml+i-Int(M~) and O(N~)~-->N~+i-Int(Ni) are s.h.e.'s. (Here 

O(M~) and In t  (M~) are computed relative to M.) 

Wha t  is more, applying the Transversali ty lemma above we can assure tha t  

(4) M crosses (~(N~) transversally. 

At this point, after refining and reindexing we have M ~  N~c  M and the simple trick 

of subtracting from N i the (interior of) a suitable collar on M - I n t  M~ will even assure 

tha t  

(5) M~ = N~ f] M, 

The inclusion Mc-+N factors into the composition 

M~+M U N i ~ N ,  

where the first inclusion is clearly a homeomorphism near oo. So all we have to do is prove 

tha t  M U N~c-~N is proper homotopic to a homeomorphism. This will also take care of the 

ease in which M and N are contractible, for it then follows tha t  M i, N1 are Hilbert  cubes 

and therefore M ' ~ M  U N 1 is proper homotopie to a homeomorphism. 

We now propose to "inflate" N i U M inductively to fill up all of N. 

I ~ "N2 ' [ 

O(M3) 
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Observe first tha t  for any  k >/2 the inclusion 

j: ~iVl u (M~-Int Mi)~( iV~-Int  ivy) 

is a simple homotopy equivalence (s.h.e.) because ~Ml~+(Mk-Int  M1) and 6NI~+(Nk- 

In t  N1) are s.h.e.'s. Using the Hauptvermutung  of [7] together with E-set unknott ing we 

deduce a homeomorphism 
O: N 1 U Mk-~ Nk 

fixing ($Mk and also all of N 1 except a small collar C of (~2V 1. 

Assertion: I] k is su//iciently large, 0 can be corrected so that O-lONk c Mk-- Int  M 1. 

Proo/: Using the fact tha t  M is a strong proper deformation retract  of N together 

with homotopy extension properties it is not difficult to construct , /or  k large, a deforma- 

tion retraction 
y: ON 1 U (M k - I n t  M 1 ) + - ( N k - I n t  N1) 

such tha t  7 (ONk)cMk- In t  M r Now O-1]~Nk is homotopie to y]5Nk, as a map into 

C U (Mk-- In t  M1); indeed 0 -1 and ~ both give a homotopy inverse to ] U (idlC). Thus E- 

se t  principles applied to this homotopy of O-l[(~Mk let us correct 0 as desired. �9 

Extend the corrected 0 by  the identi ty to a homeomorphism 

hl:N1UM'-->NklUM (k = kl) 

Repeat  the construction of h I with Nk, in place of /V 1 to produce a homeomorphism h2: 

Nkl U M - ~ N ~  U M and iterate to produce a sequence hi, he, ha . . . .  of homeomorphisms hi: 

Nk~_l U M-~Nk~ U M such tha t  h~ is supported on a small neighborhood of 8N~_I U ( M ~ -  

In t  Mk, ~) disjoint from h~_l(Nk~_2) , which (see our assertion) lies in Int(N~,_~). The limit 

h(x) = lim h~ h~_l ... hi(x) 
i --> cD 

is a homeomorphism h: ~1 (j M - ~ N  since every point x in N 1 U M has a neighborhood U~ 

such tha t  the sequence of restrictions to U~ of the maps hi, h2hl, hah2hl, ... moves at most 

twice to reach h IU ~. �9 

Proo] o/ the Total obstruction theorem. Let M be a Q-manifold which has finite type 

and is tame at  oo. Using the Homotopy boundary criterion theorem there exists a Q- 

manifold N which has a boundary and a p.h.e . / :  N-+M.  We define fl(M) =fl(/) E S~o(M). 

By w 3 we'see that  the vanishing of fl(M) is a sufficient condition for M to admit  a 

boundary. To show tha t  it is also necessary assume tha t  M also admits a boundary. Then 

the Peripheral homeomorphism paradox implies tha t  f i (M)=fl( / )=0.  I t  is clear tha t  fl(M) 

is an invariant of infinite simple homotopy type. �9 
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T~EOR~M 8.I: ~ATURALITY. I/  /: M - ~ N  is a p.h.e, o/Q-mani]olds which have finite 

type and are tame at ~ ,  then 

fi(N) = fl(/) + /,fl( M). 

Proo]. Let P be a Q-manifold which admits a boundary and let g: P ~ M  be a p.h.e. 

Then fl(M) =/~(g) and/~(~) =fl(/g). The formula for the torsion of a composition gives 

~( N)  = ~(/g) = fl(/) + / , f l (g)  

=fl(/)+/,fl(i). �9 

Finally we establish a result which connects fl(M), a~(M) and ~oo(M). The exact se- 

quences of [22] give 

S(M) ~~ , Koz l  E(M ) "Kozel(M), 

WhzqE(M)  ,Whz~l(N)- -  ,Ker(o'~) T~ ,0, 

for any Q-manifold M, where aoo is as described in w 5 of this paper and Too is as described 

in w 6. If  we mod out Wh ~I(M) we get an induced exact sequence 

0 ~ W h ~ l E '  (M) ~So~(M) ~~176 , Ko~tE(M) > Ko,~I(M). 

PROPOSITION 8.2. I /  M is a Q-mani/old which has/inite type and is tame at ~ ,  then 

a~(fl(M)) = ~ ( i ) .  I / ( ~ ( M ) = 0 ,  then z~(f l( / ) )=T~(M).  

Proo/. Choose a p.h.e. /: N-+M, where N admits a boundary, and use Naturality to 

get 
aoo(i) = a~(/) + / , a~(N) .  

But a~ (N)=0  (since/V admits a boundary), hence a~(M)~a~([)=aoo(fl(M)). If aoo(M)=0, 

then again using Naturality we get Too(M)=T~(/)=T~(fl(M)). �9 

9. A practical boundary theorem 

In  this section we prove the Practical boundary theorem and its Corollary. A non- 

compact Q-manifold M is said to be 1-ended provided that  for each compactum A ~ M, 

M -  A has exactly one unbounded component. This permits us to find a basis U 1 ~ U2 ~.. .  

of connected open neighborhoods of oo. We say that  ~1 is essentially constant at oo if {Ui) 

can be chosen so that  the sequence 

~1(U1) ._~1 

induces isomorphisms 

Image (~0l) (. 

z~,(U~), (p~ .. .  

Image  ( ~ ) ,  .... 
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where W1, ~2 .. . .  are inclusion-induced. Then ~1(c~ ( Image (~1)} is well-defined up to 

isomorphism. 

Proo[ o/the Practical boundary theorem. We are given a 1-ended Q-manifold M which 

is t ame at  co such tha t  z l  is essentially constant at ~ ,  with z l ( ~ )  free or free abelian. We 

need to show tha t  S~(M)=0. I t  follows from [22] tha t  See(M)~/{0zl(~) and for ~1(c~) 

free or free abclian we have k 0 z l ( ~ )  = 0  by  [3]. �9 

A non-compact Q-manifold J is said to be LC 1 at  co provided tha t  M is 1-ended and 

for every compactum A ~ M there exists a larger compactum B c  M such tha t  every loop 

in M -  B is null-homotopic in M - A .  

Proo/of the Corollary. We are given a Q-manifold M which is LC 1 at  co and for which 

H,(M) is f.g. I t  is easy to see tha t  Zl is essentially constant at  ~ ,  with Zl(oo) =0.  Using 

the above result it suffices to prove tha t  M is tame at  co. 

I t  follows from the techniques of [22] tha t  we can write M =  (J~~ where the Ms's 

are compact and clean, M~cInt (Ms+l) ,  and 0(M~), M - I n t ( M ~ )  are 1-connected. I t  will 

suffice to prove tha t  each M - I n t  (M~) has finite type. I t  follows from the homology exact 

sequence of the pair (M, Ms) tha t  H,(M, Ms) is f.g. Using excision we get H , ( M - I n t  (Ms), 

0(Ms)) f.g. and using the homology sequence of ( M - I n t ( M s ) ,  0(Ms)) it follows tha t  

H,(M-Int(M~)) is f.g. Thus M - I n t ( M ~ )  has finite type [26, p. 420]. �9 

1O. Classification of boundaries 

The purpose of this section is to prove the Boundary classi/ication theorem. For its 

proof we have to use the Z-set classification result of [6]. 

Proo/o] the Boundary classi/ication theorem. For the first half of this result let Z and 

Z' be boundaries for M. We want  to prove tha t  Z and Z' have the same shape. Let  N - -  

M U Z and N '  = M  U Z',  and replace N by  N x [0, 1] so tha t  Z c  N x {0}. There is a homeo- 

morphism h: (N x [0, 1 ] ) - Z - + N " - Z ' .  Let  N • {1} be regarded as a E-set in Q and put  

Q1 = Q 0 (N x [0, 1]) (sewn along N • {1}), 

Q2 = Q tJ N '  (sewn along h(N • {1}). 

Then Q1 is clearly a copy of Q and Q~ is a copy of Q because it  is a compact contractible Q- 

manifold. Also Z and Z' are E-sets in Q1 and Q~, respectively. Since Q1 - Z  ~=Q~ -Z '  we have 

Shape (Z) = Shape (Z') by  the E-set classification result of [6] of. [9], [24]. 

For the other half let Z be a boundary for M and let Z' be shape equivalent to Z. We 
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want  to prove tha t  Z '  is also a boundary for M. Let  N • [0, 1] = M  U Z be a compactifica- 

tion of M, where Z ~ N • {0}, and form 

Q1 =QU (~  • [0, ~]) 

as above. Then let Z ' ~  Q1 be embedded as a E-set and use [6] to get a homeomorphism h 

of Q ~ - Z  onto Qx-Z'.  Clearly 

h((2v • [0, ~] ) -~)  0 z '  

gives us a compactification of M with Z'  as the boundary. �9 

11. Classification of compactifications 

In  this section we classify the different ways in which a Q-manifold can be compactified. 

Let  N = M  U Z be a fixed compactification of the Q-manifold M and let N '  = M  U Z '  be any  

other one. We will define an element T(N, N ' ) E W h  zelE(M ) which vanishes iff N '  is equi- 

valent to N (as defined in w 2). This defines a 1 - 1  correspondence between W h z l E ( M  ) 

and the different compactifications of M. 

Proo/ o/ the Compacti/ication classification theorem. We have divided the proof into 

four steps. 

- Z =  U ~ l M t ,  where the M / s  are compact and (i) Construction o/z(N, N'). Write N 

clean, M t c I n t ( M i + l ) ,  and (~(M~)~-~N-Int(M~) is a s.h.e. Let  N ' - Z ' =  [.J.~=lM't be a 

similar filtration and arrange it so tha t  

M 1 c In t  (M~) ~ M~ ~ In t  (M2) c M s c In t  (M~) ~ M~ c . . .  

Then ~(M~)~-~M'~-Int(M~) is a homotopy equivalence and we use xt for the image of 

�9 (~(M~)~-->M'~-Int (M~)) in Wh ~ I ( M - I n t  (Mi)). I t  is not  hard to see tha t  the inclusion- 

induced homomorphism of Wh ~ I ( M - I n t  (M~+I)) to Wh z t l ( M - I n t  (M~)) takes x~+ 1 to x i. 

Then (%, x~ ....  ) defines an element of Wh 7e 1E(M) which we denote T(N, N') .  
! O0 (ii) T(N, N') is well-defined. I t  is only necessary to show tha t  if {M,}~~ and {M~}~ 

are replaced by subsequences {Mk~}T=I and {M~}T=I, then we get the same definition of 

~(N, N').  Let  x~ denote the image of v(~(Ma)c-~M~,-Int(Mk,)) in Wh ~rl(M--Int(Mk,)). 

All we need to do is show tha t  @1, x2 .. . .  ) and (x~,, x~ .. . . .  ) give the same element of 

Wh 7t 1E(M), and for this it suffices to note tha t  the image of x~, in Wh ~I(M - I n t  (M~)) is x t. 

(iii) N' is equivalent to N i]/v(N, 2Y') =0.  First  assume tha t  ~(N, AT')=0. Let  {M~}, 

{M'~} be chosen to define T(N, N')  and let A c M  be compact. Then for some i we have 

A~In t (M~) .  Since ~(M~)~N-Int(Mi)  is a s.h.e, we have a homeomorphism of N onto 

M~ fixing A. We also have a homeomorphism of N' onto M'~ fi• A. Then since ~(M~)~+ 

1 3 -  752901 Acta mathematica 137. Imprim6 1r 20 Janvier 1977 



200 T. A. CHAPMANN AND L. C. SIEBENM_AI~N 

M'~-Int (Mt)  is a s.h.e. (which follows from v(N, N ' )=0 )  we have a homeomorphism of 

M~ onto M'~ which is fixed on A. 

On the other hand assume that  N'  is equivalent to N and let {Mi}, {M;} be chosen 

to define ~(N, N'). Then there is a homeomorphism h: N-~N' which is fixed on M 1 (point- 

wise). This implies that  6(M1)~-~N ' - I n t (M1 )  is a s.h.e, and as ~(M~)~+N'-Int(M1) is a 

s.h.e, it  follows that  6(M1)~+M'I-Int(M1) is a s.h.e. In like manner we can prove that  

~(M~)~M~-Int  (Mt) is a s.h.e., for each i. Thus T(N, N') =0. 

Now we define 0 to be the function from the equivalence classes of compactifications 

of M to W h g l E ( M  ) defined by the rule N'-~T(N, N'). The following step will finish our 

proof. 

(iv) 0 is a 1 - 1  correspondence. If N '  and N" are other compaetffications of M, then it 

is easy to see that  
~(N, N") = ~(N, N') +~(N', N"). 

This therefore implies that  0 is well-defined and 1 - 1 .  All we have left to do is prove that  

0 is onto. Choose M =  UT=IM, as in step (i) and choose {x,}fi~___{Wh~l(M-Int(M,))} = 

Wh gl E(M). We must construct a compaetifieation N '  of N such that  z(N, N ' ) =  {x,}. 

Since ~(Mi )~M-In t (Mt )  is a homotopy equivalence we can find an element y~e 

Wh~l(0(Mi)) which is sent to x~ by  the inclusion-induced homomorphism. Let  0(Mt) • [0, 1] c 

I n t ( M i + l ) - I n t ( M i )  be a closed collar on ~(M,)~0(M,) x {0}. I t  is possible to find a clean 

W,=~(Mt) x [0, 1) containing (~(M,) in its interior such that  

(1) ~(M~)~ W, is a homotopy equivalence and v(~(M~)~ Wt) equals the image of Yi, 

(2) there exists a homeomorphism of 0(M,) onto ~(Wt) which is homotopie to the 

identi ty on ~(Mt) with the homotopy taking place in W,. 

To see tiffs consider the following picture of a Q-manifold 

X = ((~(Mi) x [0, 1]) U R 1 U R 2 

obtained from ~(M~) x [0, 1] by adding on compact Q-manifolds R 1 and R 2 such that  

(a) R~ rl (~(M~) x [0, 1 ] ) ~ R  k is a homotopy equivalence for k = 1, 2, 

(b) z(6(M,) x {0)%((~(M,) x (0, �89 U s = image of y,, 

(c) T(~(M~) x {1}%(~(Mt) x [�89 1] U R~)) = image  of - y , .  

0(M,) x {0} ~(M,) x {1/2) ~(M,) x {1} 
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Then O(Mt) x {O}~+X is a s.h.e, and we can construct a homeomorphism of X onto 

~(M~) x [0, 1] so tha t  our required Wt is the image of (~(M~) x [0, �89 tJ R i. 

Using (1) and (2) above it is easy to construct a homeomorphism h of M - I n t ( M i )  

onto M - I n t  (M i tJ W1) such tha t  h(O(M~))=(~(W~), for each i. Let  N '  be the compaetifica- 

tion of M obtained by  sewing M 1 to h ( M - I n t ( M i )  ) by h. I t  is then clear tha t  z(N, N ' ) =  

{x,). []  

Appendix 1. The realization theorem for a~ 

The purpose of this section is to give a proof of the Realization Theorem of [22], since 

only the barest outline of a proof was given there. Recall the proof of the Naturality 

Theorem 5.1 of this paper, where (*oo(X~ Y) ef{ozi  E( Y) was defined for a p.h.e. Xr Y 

of polyhedra. 

~EALI ZATION THEOREM. Let X be a connected polyhedron and choose xEI~o~zI E(X  ) 

which is sent to 0 by the inclusion.induced homomorphism Koazi E(X)-+ KoTq(X ). Then there 

exists a polyhedron Y containing X as a subpolyhedron such that X ~ Y is a p.h.e, and 

(~(X'-+ Y) equals ( X ~  Y).(x), the image o I x in KOaZl E( Y). Furthermore Y - X  can consist 

o/cells of dimension n and n § l only, the n.cells trivially attached (n>~2). 

~Teedless to say, this result can be reformulated for locally finite CW complexes or 

for Q-manifolds. 

Proo/o/the Realization theorem. We will construct Y so tha t  Xc+ Y is a p.h.e, near co 

and aoo(X~ Y)= (X~+ Y).(x). Recall from [22, p. 491] tha t  this was the only missing par t  

of the proof. For this we will not have to suppose that x goes to 0 in f{o~zi(X). 

We will assume for the moment  tha t  X has only one end. Thus we can ~Tite 

X =  X i  <--'X2<--' .... 

a basis of connected open neighborhoods of co in X. Note tha t  xEK0~riE(X) gives a rule 

assigning to each X~ an element x~ ~K0gl(X~) such tha t  xi+ 1 goes to x~ under the inclusion- 

induced homeomorphism. Let  x~ be represented by  [P~], where P~ is a f.g. projective module 

over Ai =Z[Tq(X~)]. Since X~+l~-->x ~ we have P~ stably isomorphic to 

P't+l = A~ | &+l Pt+l, 

where A~ m a y  be regarded as a f.g. projective Ai+l-module because of the inclusion-in- 

duced homeomorphism gt(Xt+i)~ozi(X~). Therefore we can inductively choose fig. projec- 

t ive Armodules  Q~, Fi, qt, where F l and Gi are free, and Ai-isomorphisms 
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eft: P~| -~ Ft,  

We will now add 2- and  3-cells to X to  obtain our required Y. First  wedge a collec- 

t ion B t of 2-spheres onto Xt, one for each basis element of Ft.  Do this for all i and  set 

Zl = Xt U Bt U B~+I U .... 

Using ~, to indicate universal covers we see tha t  H,(Z t ,  X~) (regarded as a At-module ) 

is isolated in dimension 2 and  

H2(Z t, X,)  =~/~tQF~+I @Ft.+g Q .. . .  

(Primes indicate a module converted by  tensoring with At to become a f.g. projective A~- 

module.) Using the isomorphisms ~t we have 

H~(Zt, X 3  ~ ' ' - - = p ~ @ Q t @ p t + 1 @ Q t + 1 0 . . .  

Using the isomorphism ~0~' we get a homomorphism 

tF i: Ot ~ H~(2t, 2 3  = z~2(Z,, X , )  

mapping  isomorphically onto Qt| where the last equali ty here follows from the 

Hurewicz isomorphism theorem. Since we have a retract ion rt: Zt-* Xt it follows from the 

h o m o t o p y  sequence of (Zt, Xt) t ha t  

g2(Zt, Xt) = Kernel  ((rt),) c ~2(Z,), 

where (r~),: z~2(Zt)--->~2(Xt). Thus for each basis element of Gt we have a h o m o t o p y  class 

S2~Z , .  For  each base element we now a t tach  a 3-cell and call these 3-cells 

Et  = e~.l U ... U %n. 

Make these additions for each i and set 

Yt = Zi 0 Et  U Et+ 1 U .... i >~ 1. 

Then pu t  X = Y1 to complete our construction. 

I t  is clear t ha t  H,(Yt, )~t) is a f.g. At-module isolated in dimension 2 and 

H2(Yt, X 3  ~ P i  

Thus to conclude tha t  aoo(X ~ Y)  = (X  ~ Y) , (x )  all we need to  do is prove tha t  X ~ Y is 

a p.h.e, near oo. 

As indicated in [22] a convenient  way  to do this is to  verify the  two conditions of [22] 

called (~1)o0 and (H,)oo, which together  imply  t h a t  X ~+ Y is a p.h.e, near oo. I t  is essential 
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here tha t  dim( Y -  X ) <  co. The condition (~rl) , is satisfied since :zk(X,)-~zk(Y,) is an iso- 

morphism fo r / c= 0  and 1. (If we had added 1- and 2-cells this might not be so.) 

The condition (H , )~  is tha t  for each i there exists a j > i  so tha t  

H.(Z,~)<--H.( (Yj  O X~) ~, ~1) (t) 

is zero. We will show tha t  this is the case for j~> i+ l .  The cellular complex for H.(Yi, )~) 

is 

C,I Z, X,): 0-~ Q, | P'~+I | q',+~ | . . .-~ P~ | Q, | P;+~ | q'~+i G . . . -~0,  

the differential being inclusion. Now C(( Yj 0 X~) ~, )~) is the subcomplex similarly described 

with j in place of i (but primes everywhere). Hence the homology map (t) is the zero map: 

0 
Pi ~ P~. This completes the proof for the case in which X has only one end. 

The generalization for many  ends runs as follows. We choose a basis Xt<-JX2~-'... of 

open neighborhoods of ~ ,  each component of which is unbounded. Since X is connected, 

it is well-known tha t  each X~ has only finitely many  components. Collapsing each to a 

point we get the set ~r0(X~). The inclusion-induced sequence 

~: ~ 0 ( X D '  A ~ro(XD ~ Is . . . .  

thought  of as a sequence of compacta, has an infinite mapping cylinder Map (~). We map 

this onto X, 
F: Map (~)-+ X, 

so tha t  by  restriction we have 

(i) :z0(Xi) -> X t tha t  is inverse to the quotient map and 

(ii) Map (/~)-+X,. 

2' is none other than  a choice of base points and connecting base paths. 

Define :zl(X~) to be the collection of ~rl's of the components of Xi taken at the above 

base points. We have an inclusion-induced sequence using F, 

zl(X1) ~- ~I(XD ~- .... 

which can be thought  of as a functor from the diagram(1) a to groups. Similarly for ~r,(Z~), 

~,(z,, x,), H,(?,, ~,), C,(?,, f ,) ,  etc. 
By a projective module Pi  over Z[Tq(X,)] = A i is meant  a collection 

{Pc[ C a component of X~) 

(1) An object of r is a component of some X~, and an arrow of a corresponds to an inclusion of 
components. 
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(really a function C ~-->Pc), where Pc  is a projective module over Z[:rl(C)]. A projective P~+I 

over A~+I yields one called P;+I =A~| over At; we just work component by com- 

ponent. When two more more components of X~+I fall into the same component of X~ 

we add up (using | the projectives obtained by tensoring. With these conventions, the 

reader will perceive that  the above proof can be repeated verbatim in the general case. �9 

Appendix 2. An alternate deseription of the total obstruction 

The purpose of this section is to show how to carry out the description of the total 

obstruction fl(M) which was outlined in the introduction w 1. For this it  will be convenient 

to use the language of the weak proper homotopy category (cf. [6]). We say that  proper 

maps / ,  g: X-~ Y are weakly proper homotopic provided that  for every compactum B c  Y 

there exists a compactum A c X and an ordinary homotopy from / to g, each level of which 

takes X - A  into Y - B .  Using this, one then defines weak p.h.e, in the obvious manner. 

We are given a Q-manifold M which has finite type and is tame at  0o and we want 

to prove that  M is p.h.e, to Map (a), where a is some inverse sequence of compact poly- 

hedra which is defined as in w 1. Here are the main steps in the proof. 

(i) M is weakly p.h.e, to Map (0). 

(ii) If  M, /V are weakly p.h.e. Q-manifolds (or polyhedra) which have finite type and 

are tame at c~, then ~r, • are p.h.e. 

Remark. (ii) is still true if the assumption " tame a tc~"  is dropped; see D. A. Edwards 

and H. M. Hastings, Trans. Amer. Math. See., 221 (1976), 239-248. For  the question if 

every weak p.h.e., itself is a genuine p.h.e., compare H. M. Hastings, On weak and strong 

equivalences in pro-homtopy (to appear). 

_Proof o/(i). Using the Corollary to Lemma 5.1 we can write M = [ J ~ l M i ,  where the 

M / s  are compact and clean, M~cInt(M~+l) and such that  there exist compact polyhedra 

X~c In t  (Mr+l) - Mt and maps a~: M - In t  (M~)-~ X t for which ~ ~_ id (with the homotopy 

taking place in M - I n t ( M t ) ) .  Using the fact tha t  M has finite type we can choose M 1 

large enough so that  there exists a compact polyhedron X0= Int(M1) and a retraction 

no: M_~Xo such that  ~0 mid. Let  no: M-+M be such a homotopy with ~g---id and ~0=~o. 

Similarly let ~ :  M-In t (M~)-~M-In t (M~)  be a homotopy such that  ~ = i d  and gl = ~ -  

Define/~: X~+I-~X ~ by/~=~[X~+~, for all i>~0, and let a be the inverse sequence {X~,/~} 

i>~0. 

Our next  step is to define a proper map / :  Map(a)-~M. To do this it  suffices to define 

a map fi: M ( / t ) ~ M - I n t  (Mr), for all i ~>0 (where M 0 =~),  which extends the inclusions on 

X~ and X~+ 1. For xeX~ U X~+ 1 we therefore define f~(x)=x and for (x, t)eX,+l • [0, 1) we 
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put  ff (x, t)=o~(x). (See w 4 for mapping cylinder notation.) Then we piece the [i's together 

to obtain our required f. 

To show tha t  [ is a weak p.h,e, we will now define a weak proper homotopy inverse 

g: M-~Map(a)  of ]. To define g it suffices to define a map g~: M~+l-Int(M~)-~M(/ i  ), for 

all i~>0, which agrees with ~ on ~(Mt) and ~i+x on ~(Mi+l). Let  ~(M~)• [0, 2 ] c M ~ -  

(Int  (Mi-1) U X~_x) be a collar on ~(M~), for each i/> 1, where ~(M~) -~(M~) • {0}. Without  

loss of generality we may  assume tha t  ~ is defined on ( M - I n t ( M t ) )  U (O(M~) • [0, 2], for 

all i ~> 1. Define g~ = ~ on M~+x- [(~(M~+i) • [0, 2)) U In t  (M~)], for all i >/0, and on ~(M~+I) • 

[0, 2] we define 

j 2- ~x), for 14 t~<2  
g(x,t) =[(o~+l(x),t)eX~+l • [0, 1), for 0~<t <1 

We then piece the g~'s together to get g: M ~  Map (a). We leave it as a manageable exercise 

to show tha t  g is a weak proper homotopy inverse of [. �9 

Proo[ o[ (ii). Let  [: M - + N  be a weak p.h.e. I f  M ' ~ M  is compact and clean, then we 

know from the Corollary of Lemma 5.1 tha t  M - M '  is finitely dominated. Using [20] we 

see tha t  ( M - M ' )  • S 1 has finite type.  Applying Proposition 5.3 it follows tha t  M • S x is 

p.h.e, to Map (e)(1), for some inverse sequence e of compact  polyhedra. Similarly N • S x 

is p.h.e, to some Map (v). Thus we have a weakly proper homotopy commutat ive diagram 

M xS1/xid NxS~ 

Map(e) , Map(v), 

where the horizontal arrows are weak p.h.e.'s and the vertical arrows are genuine p.h.e.'s. 

By  the proof of Proposition B of [24] we can find a genuine p.h.e. Map (e)-~ Map (v) which 

is homotopic(2) to g. Thus we observe that there is a genuine p.h.e, h: M • SL~ N x S 1 ]or 

which the [ollowing diagram homotopy commutes: 

M x Si h ~/3TxBi 

pro  / roj 

We will prove tha t  the composition 

i 
ho:M , M •  ~ 

(i(m) = (m, *)) is a genuine p.h.e. 

S i 

h , N  •  x pr~ 

(1) i%o knowledge of Wall's finiteness obstruction is required here! 
(8) In fact weakly proper homotopic to g. 
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Let  h': N • SI -+M • S 1 be a proper homotopy inverse of h and let h~: N ~ M  be de- 

fined in analogy with h 0, i.e. h~ = (proj)h'i. Since h commutes with projection to S 1 (up to 

homotopy) it is easy to see that  the composition i(proj)h i, 

M i , M •  1 h , N x S  1 pro j  N i , N x S 1 ,  

is proper homotopie to hi: M - + N  • SL Thus we have proper homotopies 

id [M - (proj)h'hi "~ (proj)h'i(proj)hi = h~ h o 

Similarly we can prove that  hoh~: N - ~ N  is proper homotopie to id[N. �9 

A p p e n d i x  3. W h a t  does  it  m e a n  to h a v e  a b o u n d a r y ? Q )  

There are, to be sure, other notions of boundary. Here we point out that  some are 

essentially equivalent to ours (which was set out in the introduction w 1). 

A first alternative was suggested by B. Rushing. Say that  the Q-manifold M admits 

a globally-E boundary B if there exists a compact Q-manifold N such that  M is open in ~Y 

while B = i V - M  and B is globally-E in N in the following sense: for any neighborhood U 

of B in N the inclusion ( U -  B)~+ U is a homotopy equivalence. 

PROPOSITION. Suppose M admits, a globally-E boundary. Then M admits a boundary 

(as in w 1). 

First we establish 

Assertion (for above data). I /  V is any neighborhood o / B  in N,  there exists a smaller 

clean compact neighborhood W c V such that W is a collar on its/rontier (~ W in N. 

Proo/o] assertion. For convenience we can assume V is a compact and clean Q-sub- 

manifold of N. Since V - B ~  V is a homotopy equivalence, we can find a homotopy of 

id lV ]ixing ~V to a map ]: V-~ V - B .  (To see this use for instance the fact ( V -  B) • 0 is 

a strong deformation retract of V • [0, 1], see [26, p. 31].) We can then arrange that  / is 

an embedding onto a E-set in V - B .  Then/(V) has a clean collaring/(V) • [0, 1] in V -  B, 

with /(V) •  Defining W =  V - / ( V )  x [0, 1]. We observe that  (SW=/(V) • 1, and 

that  W is a collar on ~W since/( V)~  V is simple homotopy equivalence (indeed homotopic 

to a homeomorphism). �9 

Proo/ o/Proposition: The assertion shows that  B is a nested intersection o/ compact 

clean neighborhoods W~, with W~ and also W ~ - I n t  W~+ 1 a collar on (~W~. Then criterion 4.2 

shows that  M admits a boundary. �9 

(1) Added Jan.,  1976. 
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As a second alternative, say  tha t  the Q-manifold M admits a boundary B in a compac- 

turn if there is a metric compac tum N so tha t  M is open in N while B = N - M  with B 

a E-set in N in the  following sense: there exists an ~-homotopy of i d I N  to  a map  into 

N - B = M .  

I n  this situation, S. Fer ry  [14] has shown (using [ l l ] )  t h a t  N is a Q-manifold provided 

it is an ANR.  Bu t  S. Kozlowski has observed (el. [14]) t ha t  N is here necessarily an ANR,  

presumably  by  verifying t h a t  N is s -dominated by  locally finite complexes (because M 

is); which implies N is an A N R  (Halmer 's  eriterion [16]). 

Thus this apparent ly  more general not ion of boundary  is really identical to  ours. 

Final ly we note  t ha t  the problem of finding a boundary  can reasonably be posed for 

locally compact  ANR's .  Say tha t  a locally compact  A N R  M admits a boundary B in a 

compactum N (if just  as above) s = M  U B with B a compact  E-set in N. As above, N is 

necessarily an A N R .  

For  a locally compact  A N R  M to admi t  such a boundary  it is certainly necessary t ha t  

the Q-manifold M • Q (cf. [ l l ] )  admi t  a boundary  (as in w 1). Question: Is it also sufficient? 
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appendix;  i t  was recently noticed by  T. Chapman. l~eplace the sentence by:  

(~ L 'appl ica t ion ]: M-~S  x est homotope A une fibration loealement tr lviale si et seulement 
si: (i) ~ ( M , / ) = 0 ,  (ii) 2~ est de type  fini, et  (iii) la torsion p , ' e ( T ) e W h ( ~ l M  ) est z6ro, p: 
~r->M. Cette torsion p .  ~:(T) est inddpendante du type  fini impos~ sur _~ r u e  la suite exacte 

Wh (z121~) id. -____~T. Wh (zl M) p* * Wh (Zl M), pa r  [25, Chap. I I I ] .  Supposant  v~rifi~es ees trois 
conditions n6cessaires, on peut  ehoisir F_~M d'apr~s (i), et  choisir ensuite ~: F--~F une dqui- 
valence simple d'apr~s (iii), et  m~me un hom~omorphisme PL.  Finalement  on a (M, ] )~  
(FQ • Q, proj.) d 'apr~s (i), off visiblement proj. :  F~ • Q ~ S  1 est u~ fibr4 de fibre F • Q ~. 

This corrected triple condition is equivalent to ~ ( M , / ) = 0 ~ T ( M ,  f) in W h ( ~ I M  ), where 
f is ] followed by  complex conjugation. 
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