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1 .  I n t r o d u c t i o n  

Let  X be a compact ,  connected  n-d imens iona l  R i e m a n n i a n  mani fo ld  of class C a, wi th  

in ter ior  ~ and  nonvoid  b o u n d a r y  •. Moreover,  le t  ~ be a comple te  R i e m a n n i a n  mani fo ld  

wi thou t  b o u n d a r y  of d imension  N>~2, and  of class C a. To every  ma pp ing  U: X - ~  of 

class C 1 one can associate  an  energy E(U) def ined b y  

E(U) = f x  e(U)dR n. (1.1) 

Here  R n s t ands  for the  n-d imens iona l  Lebesgue measure  on X induced  b y  i ts  me t r i c  

while the  energy density 
e(U) = �89 U. ,  U.>m 

is the  t race  of the  pul l -back  of the  met r ic  t ensor  of ~ under  the  ma pp ing  U t aken  wi th  

respect  to  the  metr ic  tensor  of X. A m a p p i n g  U:  ~ - + ) ~  is sa id  to  be harmonic if i t  is of 

class C 2 and  satisfies the  E u l e r - L a g r a n g e  equat ions  of the  energy  funct ional .  I n  local 

coordinates ,  these can be wr i t t en  in the  form 

A x  ut + F~k(u)y~D~u~DBu k = 0, 1 ~< l < /V,  (1.2) 
where 

A x = ~- 1/2D~(~l12)~tJn3 ) 

is the  L a p l a c e - B e l t r a m i  opera to r  on X. Here  and  in the  sequel we use the  following nota-  

t ions: ?,=# are  the  coefficients of the  met r i c  of X,  wi th  respect  to  some local coord ina te  

sys tem,  (y=#) is the  inverse of (y=#), and  y = de t  @~#). The coefficients of the  met r i c  of )~/ 

(1) This work was partially carried out under the auspices of the Sonderforschungsbereich 40 at 
the University of Bonn. The first-named author also wants to thank Stanford University for its hos- 
pitality during the academic year 1975-76. 
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are denoted by g~k with (g~) being the inverse of (g~k), while Flk are the Christoffel symbols. 

Greek indices ~, fl . . . .  are to be summed from 1 to n, Latin indices i, ?', ... from 1 to N. The 

Einstein summation convention is used. 

Our object is to solve the Dirichlet problem, i.e. to find a harmonic mapping U whose 

restriction to $: coincides with a given function (I): ~-~ ~ .  

In  order to give a precise statement of our results we introduce the notion of normal 

range of a point P E ~  as the complement of the cut locus of P in 7~/, i.e. the maximal 

domain of any normal coordinate system with center P. Our assumption on the Dirichlet 

data  qb will be that  (I)(]~) is contained in a geodesic ball 

~(M(P) : {Q E ~ ;  dist (Q, P) ~< M} 

which lies within normal range of all of its points. For a discussion of this condition, which 

is implied by a strong convexity condition, we refer to section 2. 

We can now formulate the following theorem which is a consequence of Theorems 2, 

3, and 4 below. 

TH ~ OR E M 1. Assume that the image o~ (I)E CI(Z, ~ )  is contained in a ball ~(M(Q) which 

lies within normal range o/ all o/ its points, and/or  which 

M < ~z/(2 ]/~) ( 1.3) 

where ~ ~ 0 is an upper bound [or the sectional curvature of ~/. Then these is a harmonic 

mapping U o/class C2(~, ~ )  N C~ ~ )  such that U I ~: = ~ and U(X) c ~M(Q). 

In  the case n = 1 this is a well-known result about  geodesics. For n - 2  the theorem can 

be derived from the work of Morrey [16], taking our estimates (2.2) and (2.3) into account. 

However, since Morrey's main tool, a regularity theorem for minima of certain variational 

problems, is true only for n = 2 this approach cannot immediately be carried over to higher 

dimensions. The variational method due to Eliasson [4] and K. Uhlenbeck [19] is not 

applicable to the Diriehlet problem for harmonic maps, since it rests in an essential way 

on the assumption that  the boundary of X is void. 

In  arbi trary dimensions, the first boundary value problem for harmonic maps was 

recently solved by R. S. Hamilton [6] provided tha t  the sectional curvature of ~ is non- 

positive. The approach of Hamilton, as well as tha t  of the preceding work by Eells and 

Sampson [3], and Har tman  [7], is to deal with the parabolic system connected with (1.2). 

The present authors [9] recently reproved parts of Hamilton's  results using degree 

theory and a priori estimates, much in the spirit of [2]. In  [10] they extended their method 

to include manifolds also of possibly positive curvature, assuming tha t  M <7e/(4 ~/~) instead 

of (1.3). 
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In  the present paper we shall use the direct mcthod of the calculus of variations to con- 

struct a "weak"  solution U of the problem 

E(U) ~ min 

with the side conditions U]r~ = (b and U(X)~  ~M'(Q), where M < M '  <~r/(2~ff~). Then an 

appropriate maximum principle implies that  U is in fact a weak solution of (1.2), and satis- 

fies U(X)C~M(Q ). Next we derive a regularity theorem which shows tha t  this weak 

solution is actually a classical solution. The proof of this result is based on the methods of 

[11], but an important  idea is borrowed from Wiegner [22]. Finally we complete the proof 

of Theorem 1 by  showing tha t  the regularity of U holds also onto the boundary. In  fact, 

we shall give more precise results on the boundary behavior than tha t  stated in Theorem 1. 

At the end of the paper we exhibit an example of a weakly harmonic mapping 

U: X-+ 7~/=S N which is discontinuous and satisfies U(X)~  ~M(Q) with M =7t/(2V~r 

Hence our regularity result is optimal in this respect. I t  is tempting to conjecture that  

the Dirichlet problem for harmonic mappings cannot be solved in general if the condition 

(1.3) is violated. 

2. Auxiliary differential geometric estimates 

The following functions will enter in our estimates: 

a~(t)=/  tVvctg( t l /v)  if v > 0 ,  O<t<zt / ] /v  

t t V ~ v  ctgh (tJ/~v) v ~ 0 ,  0 ~ < t < ~  

sin (t~/v) 
tf~ v>o,  o<t<~/f; 

b,,(t) = if 
sinh (t ~/ -  v) 

tV-~ v<o,  o < t < ~  

LEMMA 1. Let u = ( u  1, u 2 ... . .  u N) be normal coordinates on "In associated with an arbi- 

trarily chosen normal chart ~(Q) around Q such that Q has coordinates (0, 0 ..... 0). Denote by 

g~(u), Flk(u), and Ftk,(u) the coordinates o[ the /irst [undamental /orm and the Christo/[el 

symbols, respectively, in this coordinate system. Assume that the sectional curvature K o[ 

satis[ies 
( o ~ < K ~  w i t h - - ~ < w ~ < 0 ~ < r 1 6 2  

Then/or  all u satis/yin9 J u J = (u'u() 1~2 < ~r /~  and/or all ~ fi R N we have the [ollowing estimates 

{au( Ju] ) - 1}g,~(u)~'~ k <~ ['~kz(u)uz~ k < {ao,( JuJ ) - 1 }g~k(u ) ~,~k (2.1) 
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(~,k - a~( lul )g ~k(u) }~'~ k <~ F ~,~(u)u~'~ ~ <~ (~ ~k - a~( lul )g~k(u) }~,~k (2.2) 

b~( lul ) ~'~' < g~k(u) ~ '~  < b~( lul ) ~,~k. (2.3) 

Proo]. The estimates (2.1) and (2.3) follow from Raueh 's  comparison theorem (for a 

proof, cf. [8], Lemma 6). To verify (2.2) we use Gauss' lemma (cf. [5], p. 136). For normal 

coordinates we obtain 
g~k(u)u ~ = u ~ 

whence by differentiation 

F ~k(u)u I = (~k --g~k(u) - F~kz(u) u( (2.4) 

Now (2.2) follows immediately from (2.1) and (2.4). 

In  the regularity proof below we shall need a bound for the second member  of (1.2). 

For our purposes it is sufficient to note that  for reasons of compactness, there exists, to 

every Q E ~ and M E R + such that  M < i(Q), a constant c = c(Q, M) with the property tha t  

< cl l 2 for ~ e R  N, lul < M, (25) 
l 

if the F~k are calculated with respect to normal coordinates around Q, and where i(Q) de- 

notes the cut locus distance of Q. 

I t  is possible to estimate the constant c in terms of the tensor R (I), introduced by  

Kern, 
R(')(X, Y , Z ,  W) = ( D x R ) ( Y , Z ,  W ) - ( D z R ) ( W ,  X ,  Y) 

where Dx R and D z R  denote covariant derivatives of the Riemann curvature tensor R 

of ~ ,  and X, Y, Z, and W are vector fields on ~ .  These estimates are, however, rather 

complicated to state and to prove wherefore we refer to [14] for statements and proofs. 

As was mentioned in the introduction, the condition that  the ball ~M(P) be within 

normal range of each of its points can be thought  of as a convexity condition. In  fact, 

:~M(P) is convex provided tha t  it is within normal range of its points and satisfies M < 

~/(2~x) [13, 4]. Also, if :~ is a compact set in ~ which does not meet its cut locus, then 

there exists a neighborhood ~ of :K with the same property [12, 3.5]. Hence, if ~M(P) 
is within normal range of its points then the same holds for ~(M+~ (P) with e > 0 sufficiently 

small. 

I t  is also known that  ~M(P) lies within normal range of all of its points if one of the 

following four conditions is satisfied. Here K denotes the sectional curvature. 

(i) ~ is simply connected, and K <0  ([5], p. 201). 

(ii) ~ is connected and orientable, N is even, 0 < K < u ,  and M<z/(2~/~) ([5], pp. 

227-228, and [13], pp. 3-4). 
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(iii) ~ is compact, connected, and non-orientable, N is even, 0<K~<n, and M <  

~ / ( 4 ~ )  ([5], pp. 229-230). 

(iv) 7fl is simply connected, 0 < n / 4 < I ~  ~<~, and M < ~ / ( 2 ~ )  ([5], p. 254). 

Finally we note that  in local coordinates the energy density of a mapping U E C ~ is 

given by 
e(U) = �89 gig(u)y~'PD:u+D~u ~:. (2.6) 

3. Existence of weakly harmonic  mappings 

The Sobolev space HI(~ ,  R N) is constituted by measurable mappings u: X-+R N with 

the property that  uog -1 E H 1. Ior R N) for every coordinate map i~ of X with range W c  

R~=(xERn;  xn>~O}. The Hilbert space structure on H,~(~, R ~+) is defined by a scalar 

product with associated norm 

where the invariant eN is defined in local coordinates by 

eN(u ) = �89 Da(ul oz -1) D B(u~oz-1). 

The subspace /~ (~ ,  R ~) is the closure of C~(~, RN). I t  is easy to check that  all properties 

of Sobolev spaces of a local nature are retained. For example, every element of HI(~ ,  R N) 

has a trace on Z in L2(Z, R N) such that  if two elements have the same trace then their 

difference belongs t o / ~ ( ~ ,  RN). 

Since the composition of an H+ ~ function with a C 1 mapping is another H 1 function, 

we can define H~(~, ~ )  unambiguously if we require that  an element UEH~(~, ~ )  have 

its image within normal range of some point Q e ~ ,  and that  its representation in nor- 

mal coordinates around Q belong to H.~(~, RN). The same applies to /~1(~, ~ )  and 

Hi  N L+(~,  ~ ) .  

To simplify the notational apparatus we introduce the following 

Conventions. An equality sign between two H~ mappings means that  equality might 

hold only R" almost everywhere, while the abbreviation sup l ul should be interpreted as 

ess sup In[ with respect to R n, etc. Moreover, if the choice of local coordinate system in 

X is immaterial for the purpose at hand, we shall not distinguish between a point x and 

its coordinate representation (x 1 .... , xn), between a subset S c  X and z(S) ~ R~, or between 

u ] s and u oz-~, if u E H~ and S ~ Z-x(W). This abuse of notation will not cause any confusion. 

In order to circumvent the lack of (global) linear structure in H~(~, ~ )  we introduce, 

for any Q e ~ and any M'  < i(Q), the set 
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BM" = BM.(Q) = {UEH~(~2, It/l); supr dist (U(x), Q) < M'}. 

Via a normal chart with center Q we can identi/y BM,(Q) with the convex, weakly sequenti- 

ally closed subset of H~(~2, R N) defined by  {uEH~ N L~(~ ,  RN), supa lul < i ' } .  The energy 

functional E can then be extended to BM., using the formulas (1.1) and (2.6). 

If  ~ is isomorphically imbeddable in R n it is well known tha t  E is lower semicontinuous 

on BM,, i.e. if {uk}TE ~M' converges weaky to u in H~(~, R N) then lira infk_,~ E(u~)>~ E(u). 

I t  is easy to see, however, tha t  the proof of this fact, see e.g. Theorem 1.8.2 in [17], can be 

carried over to the general case. 

LEM~A 2. Assume that the ball ~M'(Q) lies within normal range o] its center, and that 

M '  < 

where ~ >~0 is an upper bound/or the sectional curvature o/ ~ .  Then to every q)E BM,(Q) there 

is a solution o] the variational problem 

E(u)-+ rain, UEBM, N {u-(p E/~I(~, R~)}. 

Proo/. The element ~ itself being admissible, the clearly non-negative infimum E of 

the variational problem is finite. Moreover, from (2.3) and from the fact that  the metric 

tensor (7:z) is positive definite we deduce that  for some constant c o > 0 

E(u)>~Co[ ev(u)dR n, UEBM,. 
J l i  

This implies that  

Ilull  < eons t  [ ( / ' )~  + E(u)] 

whence we see that  a minimizing sequence is bounded in H~(~, l t ' ) ,  and we may assume 

that  it is weakly convergent to some u E BM,. By the lower semicontinuity of E we must  

have E(u) = ~, and hence u is the desired minimizing element. 

A straight-forward computation shows that  the first variation of the functional E, 

at U E BM'(Q) in the direction of y~, defined by 

6E(u, v2) = lira e-l{E(u + ~v) - E(u)}, 
e 'a0  

exists for all ~v E/~1 N L~(~ ,  R N) such that  u + e Z E BM,(Q) for all small enough nonnegative 

~, and is given by 

OE(u, v2) = I ~e(u, v2) dRL 
Ja 
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Here the invariant variational derivative &(u, vd) is given, in local coordinates, by 

&(u, ~p) = g~(u)7~ZD~u~Dz~p ~ + �89 g~(u)y:ZD~u~D zu~p ~. 

Taking the identities 

D~g~ = F a ~ + P ~ ,  F{~ = g ~ F ~  (3.1) 

into account, we can formulate this as 

LEMMA 3. The minimizing/unction u o~ Lemma 2 satisfies 

r~E(u, yJ) = f a  &(u, ~f) dR n >i 0 

/or all y~E~I~ NL~(~,  t t  N) such that U +e~)E~M,(Q ) /or some s > 0 ,  where 

&(u, ~p) -- {g~k(u)y~Z D~ u' D pyf ~ + F u~(u)y~B D~u' D puky~ ~} 

= g~k(u)y~D~u'[Dpy~ + F~ DBuJv2~]. (3.2) 

L E ~ M A 4. Suppose that the /unction cp o /Lemma 2 satisfies q) E BM /or some M < M'. 

Then the solution u o/ the variational problem is also contained in BM, and saris/lee 

OE(u, y>) = 0  for all ~pE/~ NL~(s RN). 

Proo/. If  ~?~0 belongs to C~(~, It) we see that  lu -Eu~l  = ]1-e~l lu]  ~ M '  for ~-~> 

sup~ ~, and since u - e u ~ - 9 9  EII~ we may  use v 2 = - u ~  as a test function in Lemma 3, and 

thus 
6E(u, u~7) <~ O. (3.3) 

Now using the inequality (2.1) and the Gauss lemma, g~k(u)uk=u ~, we see tha t  from 

(3.2) follows 

&(u, u~ ) = g Mu) u~7~P D~ u~ D ~ +~]y:~[g,~(u) D,, u~ D pu ~ + utF,~(u) D~u~ D ~u k/ 

>~ �89 ]2DB~ + a~(M')~g,~(u)y~n~u~D~u ~ >1 �89 l u ]~D~ ~. 

In  view of (3.3) the function l u] * E H [ N L~(~ ,  It) is a weak subsolution of the Laplace-  

Beltrami operator on ~,  and it follows from an obvious extension of Stampacchia 's  maxi- 

mum principle ([11], Lemma 2.1) that  

sup  l ul sup o l ul = 

The first par t  of the lemma thus being proved, the second par t  follows from Lemma 3 
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upon realizing tha t  if supa lul < M  then u•  M, for every ~pEH 1 N L~176 R N) and for 

all small enough e. 

I f  U is a harmonic mapping with range in a ball ~M(Q) with M <i(Q) then we can use 

the equations (1.2) and Stokes' formula to see tha t  the representation u of U satisfies 

f O~(u, ep) dRn=O N L~(~,  R N) (3.4) for all 

where 
5~(u, q~) = ~ZD~u~Dzq~ ~ - Flk(u)~ZD~u~Dpu%f z. 

I t  is therefore natural  to make the following. 

De/inition. A mapping U e H~(~, ~ )  is weakly harmonic if, for some point Q E ~ ,  U(~)  

lies within normal range of Q, and if its representation u in normal coordinates around Q 

satisfies (3.4). 

A simple computation, involving the formulas (3.1), shows that  (~(u, ~f)=~e(u, ~), 

if ~J = g j w  z. Thus a mapping is weakly harmonic if and only if it is a critical point of the 

energy functional E. From this fact it is also obvious tha t  the definition of weakly har- 

monic mapping is coordinate invariant,  i.e. if U(~)  lies within normal range of some other 

point Q'E ~ then its representation u'  in normal coordinates around Q' satisfies, mutat is  

mutandis, the relation (3.4). 

We can formulate the results of this section in 

THEOREM 2. Assume that the inu~ge o/ (1)eH~(~, ~ )  is contained in a ball :~M(Q) /or 

which 
M < min {~/(21/~), i(Q)}, 

~ 0 being an upper bound/or the sectional curvature in ~ .  Then there is a weakly harmonic 

mapping U EH~(~, ~ )  with U ( ~ ) ~  :~M(Q ) such that the traces o/ U and (1) on Z coincide. 

Remark. I t  is easily seen that  it is sufficient to assume ~ to be a bound for the sectional 

curvature in ~KM(Q). The same remark applies to Theorems 1, 3, and 4. 

Proo]. We need only apply Lemmata  2-4 with an M '  satisfying M < M'  < rain (~/(2 I/~), 

i(Q)} and take into account the remark above about extremals of E and weakly harmonic 

mappings. 

4. Regularity of weakly harmonic mappings 

THEOREM 3. Let ~M(Q) be a ball o~ ~ which is within normal range o~ all o/ its points, 

and/or which 
M < ~/(2]/u) 
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where ~ >10 is an upper bound /or the sectional curvature o/ ~1. Then a weakly harmonic 

mapping U with U ( ~ ) = ~ M ( Q )  is harmonic. 

Remark. B y  well-known results f rom the theory  of l inear elliptic par t ia l  differential  

equations one immedia te ly  concludes t ha t  if X and :m are of class C ~ wi th / z  > 2 then  a 

harmonic  mapp ing  U belongs to C~(~, 7~/), i f /z  is not  an integer,  and else to C~-'(f2, ~ )  

for all e > 0. 

Proo/. We s ta r t  by  observing t ha t  it is sufficient to prove  t h a t  U is cont inuous in ~ .  

In  fact,  it then  follows f rom (2.5) and the  results of [11], [15], or [18], t h a t  U is HSlder  

continuous in ~ ,  and  by  methods  which b y  now have  become s tandard  (see e.g. [15] and  

[17]) one raises the regular i ty  of U as far  as the  coefficients of the  sys tem will allow. 

To prove  cont inui ty  a t  an a rb i t r a ry  point  x 0 of ~ we for once introduce normal  co- 

ordinates  in a sui tably  small neighborhood ~*, with smooth  boundary ,  such t h a t  x 0 

has coordinates  (0, 0, ..., 0). I n  g2* we consider the Green funct ion G of the  opera tor  

L = -D~(I@y:PDp) .  I t  is well known, cf. e.g. [20] and  [21], tha t ,  for n >~3, G satisfies 

O<~G(x,y) < K l [ x - y [  2-n, x, y e ~ * ,  (4.1) 

G ( x , y ) > ~ K 2 [ x - y ]  2-n, if Ix[,  ]y] < ~  and B2q(0)=~*,  (4.2) 

IV~G(x,y)[ <K3]x-Yl ~-~, x, ye~*. (4.3) 

Here K 1 and K 2 > 0 depend on n and on the  ellipticity cons tants  of L. K 3 will of course 

depend on ~* as well as on the  coefficients ~/~y~B. 

We shall also have  occasion to use a slightly mollified Green function G~ y) defined 

b y  

where we have  

/ ~  fl L ~ ( ~  *, R) and  satisfies 

G~ y) < 2~-2gllx-y[ 2-~, 
and 

G~ f G(x,z)dz, B,(y)=(lz-yl<cr}=s 
Ba(Y) 

used the nota t ion  ~ s v dx = [mes S] -1 ~s v dx. G ~ obviously belongs to 

i f~< �89  (4.4) 

f ~ D ~ D ~ G ~  = f ~dx for ~1 . ~ eH2(f~ , It). 
Ba(Y) 

For  the sake of b rev i ty  we use the no ta t ion  

q( v ) = y~D( D~ v ~ D p C - v z F~ k(v) Da v~ D p v k) 

(4.5) 

(4.6) 
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for any  representation v of the given mapping U with respect to normal  coordinates with 

center in ~M(Q). We have Ivl <~2M<z~/V~, whence by  (2.2) 

q(v) ~ 2ax( I v I ) e(u). (4.7) 

We fix a normal coordinate system around the center Q of the ball ~(M(Q) and reserve the 

letter u for the representat ion of U with respect to these coordinates. B y  (2.1) we get 

q(u) >~ 2a~(M)e(u) > 0. (4.8) 

Now in the defining relation (3.4) we use as a test  vector ~ =uGh(., y) and obtain 

Let  w EH~(Ys , It) be the solution of the Dirichlet problem 

f [ / ~ n ~ w n ~ d x = O  for all w - [ u ] 2 E / t i ( ~ * , R ) .  ~ C T ~ * , R )  (4.10) 
2* 

In  view of (4.5) we get, after put t ing  ~ = G~ y) in (4.10) and subtract ing the result f rom 

(4.9), 

Invoking  Fa tou ' s  lemma, (4.6), (4.8), and a theorem of Lebesgue we find 

2 ~ q(u)G(.,y) l / ydx~  w(y ) -  lu(y)l ~ a.c. yED*. (4.12) (1) 
J~ 

Also, on account  of the max imum principle, Iw] 4 M  2, and we get  f rom (4.8) and (4.11) 

e(u)G(.,y) Wax < - - - -  for  all yE~*. (4.13) 
~. 2a.(M) 

In  particular, 

lim ~ e(ulG(., O) ]/~dx = 0. (4.14) 
R-.~O J B R(O) 

coordinates a round Qt = Qt. n E ~M(Q), 0 <. t <~ 1, 0 < R < R o. 

by  their having s tandard  coordinates t(tR =t ~ r ~ u d x  where 

Now introduce new normal  

These points are defined 

T2R = B~R(0) \ BR(0). 

(x) Having proved this inequality one can use (4.2) to see that this implies that we actually 
have equality here. This is nothing but the Riesz representation for subsolutions. 
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R 0 is chosen so tha t  B4m(0 ) c ~*. The representat ion of U I ~" in these coordinates is 

denoted by  v = vt, R. 

If, in the relation (3.4) proclaiming tha t  v is weakly harmonic,  we use as test vector  

cf=vG"(., y)~], where [yl<R, 0 ~ < a < l - R ,  ~=~REC~(B2R(0) ,R) ,~ /~I  in BR(0), and  

IV~I <~KR-1 with K independent  of R, we get 

The first integral is equal to ~ ,,(~)Iv ] ~dx, if U,(y) = Bn(O ). In  the second one we write 

Iv(x) l 2 = dist~ (QI, Qt) ~- [d ist2 (U(x), Qt) -d i s t 2  (Qt, Qi)] 

where by  the triangle inequali ty 

]dist 2 (U(x), Qt)- dist~ (Qt, Q~)I < 4M I dist (U(x), Qt)- dist (Qt, QI)[ 

4M dist (U(x), Q~) ~ K[u(x)-~[ .(1) 

Hence by (4.5) we find tha t  the second integral differs from dist z (Q1, Q~) by  a term 

which in view of the Poincare '  inequality, (4.2), and (4.3) can be est imated by  

where K is independent  of R for small enough R. The Cauchy-Schwarz  inequality, (4.2) 

and (4.4) yield tha t  the fourth integral in (4.15), finally, can be majorized by  

Now we can let ~-~0 in (4.15), taking into account  the estimates above, (4.4), (4.13), 

and a theorem of Lebesgue to arrive at  

[v(y)12<dist'(Ol, Qt)-2fq(v)G(.,y)v~/ydx+K{~2Re(u)G(.,O)l/ydx} 11" (4.16) 

for almost  every y E BQ(O), Q < R/2. 

(t) In fact, by (2.3) we have dist (U(x), Q1) <~ be(M) [ u(x) - fi [ if eo is a non-positive lower bound 
for the sectional curvature of ~ in ~M(Q). 
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The first integral on the right hand side is divided into two parts in both of which we 

use (4.7): 

~2do)qG(',Y)~V'~dx+~2R,,2do)qG(',Y)~ V~dx 

2a,(sup]v]) ~ e(u)G(.,y), U~dx+ 2 a ~ ( 2 M ) ~  e(u)G(.,y),V•dx 
B2Q J B2Q ,] B2 R \ B2Q 

For all xEB2n\Beq and yEBq(O), e<R/2,  we have Ixl<lx-yl+lyl<lx-yi+e<. 
2 [ x - y [ ,  and by  (4.1) and (4.2) it  follows tha t  

By (4.14) this integral tends to zero as R-~0, and it can be absorbed into the last term of 

(4.16) whence we get 

Iv(Y)] 2 < dist2(Q1, Qt) - 2a~(sup]v D ~ e(u)G(.,y) 
B2q J B2Q 

2R 

where K is independent of R (at least for small R), t, y, and ~. 

Our first aim now is to prove that  for all t ~. 1 and all small enough R, we have I v(y) 12 = 
Iv .R(g)12<M , for an arbi trary M I > M  such that  a~(M1)>0. To this end introduce 

h:[0, 1 ] ~ R  + by 
h(t) ~ lira sup lira sup Iv~.n(y)l, 

Since t~-~]vt, n(Y)] = dist (U(y), Qt.n) for almost every y and every R is a Lipschitz function 

with constant dist (Q1, Q)<~M it is immediate tha t  h is Lipschitz continuous. Obviously 

h(0) ~ M  < M r  Hence, if h(t) were greater than M 1 for some t ~  < 1 there would be a t o such 

tha t  h(to) = M 1. Choosing e > 0 so tha t  a~(M 1 + e )>  0 we find tha t  supszo ] vt, ' R I < M1 + s for 

all small enough R and all Q <C0, for some ~)0 =~)0(R) >0.  Then we get from (4.17) for such R 

lira sup Ivl~ ~ dist~(Qi.R, Q~,.,)+K e(u)G(.,O) l/~,dx . (4.18) 
0~0 BQ B2 R 

Noting that  Qto.n lies on the geodesic ray from Q to Ql,n we see tha t  dist 2 (QLR, Q,o.a) ~'M2 

and thus, in view of (4.14), we reach the desired contradiction: 

h~(to) = lim sup lim sup Iv ]2 ~< M s < M~. 
n-,,o ~ Be 



A N  E X I S T E N C E  T H E O R E M  F O R  H A R M O N I C  MAPPII"TGS OF R I E M A N N I A N  M A N I F O L D S  13 

Having thus proved that  h(1) ~<Mz we may  return to (4.17) and there take t = 1. This leads 

to (4.18) with t = 1, which implies tha t  U is continuous at x 0 since for all small enough R 

it follows that  

lim sup dist(U(y),U(z)) 
y,zeB~ 

< lim {sup dist(U(y), Qz. R) + sup dist(U(z), Q1. R)} 
r w% z~% 

Ir ~< 2 lim sup Ivy. R(x) l ~ K e(u)a(., 0) l/~ dx , 
g-~O B 0 (d  B2R 

where the last term can be made arbitrarily small. 

The theorem is proved. 

5. Boundary  regulari ty 

We shall now state and prove a result on the boundary behavior of harmonic maps. 

I t  is obvious tha t  Theorem 1 is a corollary of Theorems 2, 3, and 4. One also sees that ,  

in fact, the regularity assumption on the boundary value mapping (I) in Theorem 1 can be 

weakened to (I)EH2~(~, ~/1) N C~ ~ ) .  

THEOREM 4. Let U EC2(~, 71~) N Hi be a harmonic mapping with range in a ball ~M(Q) 
which is within normal range o/ i ts  points, and/or which 

M < zr/(2 l/~) 

where ~ ~ 0 is an upper bound/or the sectional curvature o/~l~. I / the  trace o / U  on ~ is con- 

tinuous, H61der continuous, or has H61der continuous/irst derivatives, then the same holds 

/or U in X .  

Remark. I f  X and ~ are of class C ~, with # > 2 ,  and if the trace of U on Z is of class 

C ~'~, 0 <. a < 1, with v + zc </x, then U is of class C ~'~ on X. This follows from Theorem 4 and 

the linear theory. 

Proo/. The statement about  t t5lder continuity follows immediately from the results 

of [11], once it is known tha t  U is continuous on X. The HSlder continuity being proved 

the rest of the theorem can be derived from the results and methods of [15]. 

Hence to finish the proof we need only show tha t  U is continuous at  every point of Z. 

To that  end, let x 0 E Z and let Qt E ~ ,  0 <~ t ~ 1, be the points on the geodesic line from Q = Q0 

to Qz = U(xo) such that  dist (Q, Qt) =t dist (Q, Q1). For each t and R, R small enough, we 

consider the solution w=wt.R of the boundary value problem Lw=O in Bn(x0)= 
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{xCX; dist  (x, x0)<:-R), w-]v[2Ef-I~(BR(xo) , R) where v ~ v  t is the representa t ion of U in 

the  chosen normal  coordinate  sys tem around Q~. 

Well-known results f rom the theory  of linear elliptic par t ia l  differential  equat ions tell 

us tha t  w is continuous on Z N Bn(x0); in part icular ,  limy_.x0 w(y)=w(x0)=dist 2 (U(x0) , Q~). 

Repeat ing  the a rgumen t  t ha t  led to (4.11), and  using (4.7), we see t ha t  

{]v(x)12-w(x)}dx~ - 2a~( sup lvl) ~ e(u)G~(.,y) ]/~dx (5.1) 
J B~(y) B R(x~) ,JB R(x~) 

if G" is the  mollified Green funct ion of Bn(xo). 

We claim t h a t  h(t) = lira sup~.-~x. ] vt(x) 1 ~ M~ for all t E [0, 1] if M~ > M is chosen so t h a t  

a , (M1)>0 .  I n  fact ,  if this were not  so there would be a t0>0  such tha t  h(to)=M1, since 

h(t) clearly is Lipschitz  continuous and h ( 0 ) < M .  Hence  for R small  enough we have  

a~(supsa~x~ [ ) > 0  and  af ter  discarding the  r ight  hand  side and let t ing a -~0  in (5.1) we 

find tha t  
lvt~ 2 ~- wto(y), ys 

which implies t ha t  h2(to) <~ lira supy_,x~ w(y) ~ dist  2 (U(x0) , Qt) -'; M~, a clear contradict ion.  

Thus, knowing t h a t  h(1) ~< M1, we m a y  re turn  to (5.1) and note  t h a t  for R small enough 

a~(sups n Iv I [ ) > 0, and for such R we find t h a t  

]vl(y)[ 2 ~< WLR(y ). 

But  wi.n(y)-~dist(U(xo), Q l ) = 0  as y-~x o, and this proves  our assertion, since ]vl(y)l .... 

dis t (U(y) ,  U(xo) ). 

6. An example 

In  this section, we shall show tha t  the example  given in [11, p. 67] can be construed 

to furnish an example  of a discontinuous weakly  harmonic  mapp ing  U: X-*  ~ with U(X) = 

~M(Q) and M =~/(21/~ ). 

For this purpose let  n = N ~> 3, and choose ~ = S~, the  N-dimensional  sphere of radius  

R imbedded  in the na tu ra l  way  in R N' 1. Clearly, ~ has constant  sectional cu rva tu re  

- R  -2. Choose as one char t  on ~ the s tereographic project ion a of ~ f rom the nor th  

pole P = (0, 0 . . . . .  R) onto  the equa tor  plane {u E R N+I, u N+l = 0} which in a na tura l  way  can 

be identified with R N. Set u=a(u), u = a - l ( u ) = ~ ( u ) .  Then  

2u t 
.d(U)= l + ~lul - ~ 2  for l~<i . .<N 

2 
rN~'(u)= ( 1 - - 1 +  ~,u-i~.) R 
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whence we get tha t  
g A u )  = 2 a ( l u ] ) O ~  

where a(t) = 2(1 + z t~) -2. Note  tha t  a'(R) = - 2a(R) R - L  

Let  ~ be any  bounded domain in R" containing the origin and having smooth boundary  

Z; we set X = ~ 0 Z and provide X with the s tandard  Euclidean metric. 

Then the energy integral of any  mapping  U: ~2-~ ~ \ ( P }  is given by  

E(U) = f  (1 1)Ivul ~d~ 

if u is the representation of U in the coordinates given above. 

Consider the "equator  mapp ing"  Ue: X-~ ~ c  R N+I defined by 

Xl, ~ X 2 . . . . .  ixiXn, 0 

Since the equator  is mapped  into itself by  a, we find tha t  the representat ion ue=ao Ue 

is given by  % ( x ) - x R [ x l - 1 ,  which shows tha t  UeEH~ NL~176 ~ ) .  Obviously, U~(X)c  

~M(P) with M =~/2]/~. I t  is s t raight-forward to check tha t  U e is a critical point  of E, since 

a ' (R)= - 2 a ( R ) R  -1, cf. [ l l ,  p. 67]. Thus U~ is a weakly harmonic  mapping  having the 

s tated properties. 
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