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§ 1. Introduction

If U and V are bounded self-adjoint operators on Hilbert space with VU —~ UV =(1/5)C
in trace class, then the so called principal function g(y, z) associated with the algebra
generated by U and V was defined by the relation

dy dx

det[(V—'l)(U—z)(V—l)“(U*zY‘l=expz‘l‘mﬂ"(y”‘)y‘—'zx—z

(1.1)

and studied in a series of papers.

There are two main points which underlie our interest in the principal function.

(A) g(y, x) is explicitly computable from the symbols S, (U; V) of V with respectto U.
This is explained fully in [15] and is described in example 9.1 below. Furthermore the
unitary invariants of these symbols and g(y, ) remain unaltered by trace class perturba-
tions of U and V.

(B) g(y, z) EL}(R?, dydx)

Because of relations like det[e¥e%e~Ye~9]=exp Tr [W, @], which is valid for smooth
operator valued functions W and @ of U and V, there is a natural bilinear form associated
with the study of the principal function. This useful fact was discovered by one of the
authors [32].

Indeed it has been known from the beginning of this theory that relations like

Tr[U!V*, V]= 2% Ua—i z'y*g(y, x) dedy

follow at once from (1.1) by taking residues at oo in [ and z.
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A symmetrized version of this last equation is easily obtained by means of an alge-
braic lemma due to N. Wallach; namely, Tr [W, @]=(i/2n) [ {W, @}9ly, x)dxdy as we
will show in section 5. In this equation { W, @} is the Poisson bracket of the complex valued
functions W(z, y), Q(x, y).

The results (A) and (B) above were obtained by introducing a certain operator valued
function of two complex variables, the so called determining function E(l, z) of T=U +:iV.
This is a complete unitary invariant for the non normal part of 7' which can sometimes
be computed.

This function was discovered originally as the solution of a certain Riemann—Hilbert
problem associated with 7', and the connection of the principal function with symbols and
the Lebesgue summability of the principal function expressed in {A) and (B) follow from
an analysis of the boundary values of E(l, z) as [ and z approach the spectrum of ¥ and U.

Recently, other authors [24] have taken up this theory and focused attention purely
on the bilinear form Tr [W, @] without using E(/, 2).

If E, and F, denote the spectral resolutions of U and V, then

27 Ja Ja

The right hand side thus leads to a measure X defined on the plane, and—since the
above relations were known—it was natural to show that Tr [W, @]=(¢/2n) [[ {W, Q} dZ
directly, without using the E(l, z) funetion.

However this rewriting of the theory does not seem to give the absolute continuity of
d¥ and it gives up the computability of g(y, z) in terms of the symbols or other local
data.

In the case where more than two operators are involved the situation is different.
In the multivariable case the focus on the trace form and the associated topological
development is quite interesting because there has so far been no counterpart to E(l, z)
introduced in this situation.

Here an extension of the connection (made by one of us) of the principal function
g(y, z) with the index of T'—(x +1y)1 is established in terms of trace forms.

We wish to explain a little more fully why it is nice to have a function g(y, x) rather
than just a measure dX.

Suppose T is a completely hyponormal operator and 7*T —T'T™* has one dimensional
range. One result due to the authors [11] (whose proof depends on Theorem 7.10 of the
present paper) is the following
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THEOREM. 2 s an eigenvalue of T* if and only if there exists a ball B, about z such that

—9ly, )
f B, | @+ iy — z|2dxdy< o

The proof of this result relies on the fact that the trace class perturbation problem
T¥T,~T,Ty (T,=T—z21) has an associated spectral displacement function which is re-
lated to the principal function g(y, ) in a simple way. This connection between principal
functions and scattering theory is one of the main points of the present study.

There are also quite a few other results relating the spectral multiplicity of U and of
V by means of the principal function [31] as well as invariant subspace results [11] and
some more subtle relationships which will be reported elsewhere.

An analogy may perhaps be in order. M. G. Krein [29], extending and sharpening
results of the physicist I. M. Lifshitz, established the existence of the so-called spectral
displacement function §(-), by considering Tr [(4 —1)"*—(4 +.D—I)-1] where 4 is self-
adjoint and D is self adjoint and trace class.

He showed that 4(- ) is Lebesgue summable and that Tr [f(4 + D) —f(4)]= [ ' (0)d(c)do
for a certain class of functions f(-). Furthermore, det S{¢) =exp ( —2rid(c)) where S(o)
is the scattering operator associated with the perturbation problem 44 + D.

In scattering problems the existence of a summable phase shift 27d(s) has con-
siderable importance. Naturally, in potential scattering problems the study of the phase
shift depends upon a study of the boundary values of Greens functions.

We have said all this to partly justify the technical complexities of the present paper.
We have as our main goal here the extension of our results to the case of von Neumann
algebras, and although it is indeed the case that a simple transliteration of the results for
Tr [W, Q] to T[W, Q] where T is a relative trace gives results like 7[ W, @] = (¢:/2x) [ [ {W, Q}dZ
for some measure X; the knowledge that d¥=g(y, x)dxdy for a summaéble function would
be lost without the more extensive development which we give here.

Two additional remarks are in order before we turn to an outline of the paper.

The theory of mosacis and principal functions extends naturally to the treatment of
pairs of operators {W, V} and {W, U} where W, U are unitary and V is self adjoint. In
these situations one encounters some new structure if the spectrum of W or U is the whole
unit circle. For instance in the type I case there are simple examples which show that the
index class of the corresponding C*-algebras is not determined by the symbols alone but
requires knowledge also of a certain spectral displacement function.

In addition there are results about compressions of unitary operators and symmetric

operators. These results will be presented elsewhere.
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We remark also that replacing r by a center valued trace leads in a natural way to a
theory of center valued principal functions.

In this paper we show how the determining function theory of operators with trace
class self-commutator 7*7 — 7' T* extends to the context of von Neumann algebras equipped
with a normal trace (see [31], [34], [10], [12]).

We construct the so called mosaics of T', B(v, u) in this new context and show how
they serve as local data from which the principal function can be computed. The mosaics
themselves are operator valued functions which occur in the study of the boundary be-
haviour of the determining function either on the spectrum of Re (7') or Im (7). The
principal function is the relative trace of the mosaic. We also show how the index and trans-
formation properties of the principal function familiar from the previous investigations of
the type I case remain valid in the type II case.

The principal function g(v, u) coincides with the Breuer ({6], [7]) index of T —(u+1v)
when 7 — (u +iv) is (relatively) Fredholm, i.e. when u +» is not in the (relative) essential
spectrum of 7. But g(», u) is everywhere defined, and is not (like the index of T'—(u +iv))
defined only on the components of the complement of the essential spectrum of 7'; further-
more, we will see that g(», 1) is invariant under unitary transformations of 7' belonging to
the algebra, and under perturbations of 7' by elements of the trace ideal of the algebra.

There is a basic functional calculus associated with the operator 7', which we will now
describe, and some nice formulae for the trace of certain commutators which explicitly
involve the principal function.

Let us think of 7' in the form 7’=U+iV, where U and V are self-adjoint elements
of & von Neumann algebra M equipped with a normal trace, 7.

Let M(R?) be the space of complex measures @ on R? such that [lw]=
Jf @+|¢]) 1+ |s])d|w(t, 8)| <oo.Under convolution M(R?) is a commutative semi-simple
B* algebra. Let F(x, y)= [ [ e"***"vde(s, t), the characteristic function of w. Let M(R?) be
the set of all characteristic functions of measures in M(R?).

We can associate with F € M(R?) and the pair {U, V} an element in 1 defined by the
integral (iterated or muitiple)

FU, V)= ffF(z, y)dE, dF,,

where E, and F, are respectively the spectral resolutions of U and of V.

Note here that any function F'(z,y) which coincides with F(z, y) on o(U) x o(V)
will define the same operator F(U, V) since then F(U, V)= [{ F'(z, y)dE,dF,. Thus, the
restriction that F(x, y) be in M(R?) only has force on sp (U) xsp (V).
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The association F(z, y)—>F(U, V) defines a functional calculus of the Mikhlin-Weyl
type; [Fy(U, V), Fy(U, V)], Fy(U, V) Fy(U, V)~ (F, Fy)(U, V), and F(U, V)~ F(U, V)
are all in the trace ideal.

We will show that, as has previously been known when M is of type I [11], that

oF, oF, oF, oF,

(U, V), FyU, V)] =5 f f (—é; R —6—;) o0, ) dvdy. (12)

whenever F, and F, are in M(R?). (For a weaker result when M is of type I which does
not identify the right-hand side of (1.2) specifically see also [24].)

As a relatively simple, but important, consequence of (1.2) it becomes possible to find
the principal function associated with a new pair of self-adjoint operators 4 and B ob-
tained from U and V by a change of variables. That is, suppose 4= [ a(z, y)dE . dF, =
a(U, V) and B= || B(x, y)dE dF,=p(U, V) where «, f§ are real valued functions in M(R2)
on sp (U) xsp (V). Let Q=a+14f.

The principal function §(e, ) associated with the pdir {4, B} is easily seen to be given
by

§(o, f) = [sgn (Jacobian Q)1(v,, u)g(vs, 4 (13)

the summation being extended over those points (v, u,) for which Q(v, u,) = (e, ).

To see this, note that if we use the functional calculus based on 4 and B, then

~ ) Fl) F 2
AR, B), By, Bl =g [ [ 20000 g,y dadp.

But
‘E[Fl(A, B), Fy(A, B)]= ‘?[Fl(ac( U, V), B(U, V), Fyle(U, V), AU, V)]
L €A te 1) o(x, B)
T on ff a(;’ /3)2 (a(p, v), B(pa, 7)) 2. %) gv,p)dvdu.
Hence,
a Fla F . .
J‘J‘(a(Tﬂ)i) [>[Sgn (Jacobian Q) (u;, »,)19(v;, ;) — §(B, )] deedf = 0.

for all F,, F,€M(R?). The equality (1.3) follows since F, and F, are arbitrary.
One of the most interesting changes of variables is the change from cartesian to polar
coordinates.

Suppose that x=r cos 8, y =r sin § and that T'= W@ is the polar decomposition of 7T'.
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Thus @=(T*T)2 and W is a partial isometry with initial space equal to the range of T*
and final space equal to the range of 7'.

If 0¢sp (U) xsp(V), then we can see readily that [ (x+iy)(2?+y?) V2dE, dF, will
differ from W by a trace class operator. For, let k(z, y) = (2? +y2)V2, Uz, y) = (22 +y2)-1/2,
and m(x, y) =z +1iy on some neighborhood of sp (U) xsp (V). Call the trace ideal I,.

Then lok(U, V)—UU, VKU, V)€L,, WU, VKU, V)—1€1,, and mol(U, V)=
m(U, VYU, V) (mod I,). Since m(U, V)=T (mod I.), we have mol(U, V)=
WQUU, V) (mod I,) or mol(U, V)=W (mod I )—since QUU, V)=1 (mod I.).

This simple reasoning fails if O€sp (U) xsp (V). However, §(r%, 0)=g(r sin 0, r cos 0)
has an interesting meaning in terms of a functional calculus built on the minimal unitary
dilation space for W. In particular, we prove as one of our main results Theorem 7.1 which
gives an analogue of (1.2} in terms of dilated operators.

We have already given one illustration of the utility of this result. The eigenvalue
criterion for T’ presented earlier is a consequence of this relation.

Another observation shows how the prineipal function is a kind of two dimensional
spectral displacement function, and gives for example a trace expression for the Laplace
transform of the principal function that is suggestive and sometimes quite useful. This
result is particularly interesting when the essential spectrum of 7' is thick, and the prin-
cipal function is not the index of 7' —(x +iy).

Let H(r)€Cy(R") and let H,(r)=2H [or. Then by the functional calculus for self-adjoint
operators both H(T*T) and H{TT*) are well defined. It is also easy to see that H(TT™*)—
H(T*T)eI,. Theorem

t{H(TT*) - H(T*T)} = 71! ‘UHl(xz +9°)9(y, z)dady. (L.3)

Section 2 introduces the determining function and its basic properties.

In section 3 we establish an exponential representation for Aronszjan-Weinstein
matrices associated with a self-adjoint perturbation problem. We then apply this result
to obtain a weak * measurable family of operators B(y, u)€ M, 0 < B(v, u) <1 where g and
v are real. The principal function is defined in terms of the mosaic B(v, u).

These operators arise from a study of certain boundary values associated with the
determining function, and have been studied before in the type I situation in relation to
certain symbols associated with U +¢V [13], [15]. In particular it is known in the type I
case how to construct an operator with a given mosaic [13].

In section 4 we establish our functional calculus modulo the trace ideal.

In section 5 we prove (1.2), and establish a continuity property of the principal func-

tion which enables us to evaluate g(v, u) for some examples with thick essential spectrum,
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i.e. positive two-dimensional Lebesgue measure. We also establish a cut-down property of
the principal function, and we show that a known result in the type I case [34] extends to
the present situation, that is we show that if 7=U +4V is completely semi-normal and
if [U, V]€I,, then sp (T) is the essential closure of the support of the principal function.

In section 6 we consider a pair of operators {W, P} where W is a partial isometry, P
is self-adjoint, and WP —PW € . By means of a natural unitary dilation theory associated
with W, a new functional calculus is noted, and a version of (1.2) ig then established with
a summable function §(4, 7) defined on the cylinder — oo <A <oo, |z|=1.

In section 7 we specialize these considerations by taking W and PY2 to be the
partial isometry and modulus entering into the polar factorization of 7'. We then
establish a fundamental relation between §(A,7) and g(, u); namely, §(A% 7)=g(», u)} i
utiv=7Jr.

In section 8 we prove that g(v, u) =Index (U +¢V — (1 +1v)) in the sense of Breuer [6]
when y +iy belongs to the complement of the essential spectrum.

In section 9 we give some examples and show how, when 7 is taken to be a super-
position of translation operators, g(», u) is connected with the mean motion of a certain
associated exponential polynomial. We will state a conjecture about this connection.

If A4 is a C*-algebra, we will sometimes use the notation 4° to denote the seif-adjoint
elements of 4. Moreover, if A4 is a subalgebra of L(H), the algebra of bounded linear
operators on a Hilbert space W, and M € 4°, we let M, (resp. M,) denote the absolutely
(resp. singular) continuous part of M. The absolutely continuous space relative to M
shall be written as H,,(M); the singular subspace which is the orthogonal complement of
H..(M) shall be denoted H,(M).

Recall that a von Neumann algebra M is a C* algebra which is also the dual space
of a Banach space M, [36]. A factor is a von Neumann algebra with trival center. The
set of projections, P(M), the hermitian idempotents of M becomes a complete lattice
under the order relation <, defined by E<F<EF = E. The lattice D(M) has an equiv-

alence relation ~ and an order relation < defined in the following way:

E ~ F<there is a U€ M such that E=U*U and F=UU"*.
E < F<there is an E’'€ D(M) such that E~ E'<F.
It is easy to see that E<F and F<E imply E~ F.

An element E € P(M) is called finite relative to M if for every F € D(M) the relations
E~F and E>F imply E=F.
A functional v on M, the positive portion of M, with values >0, finite or infinite,

is called a trace on I when
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(i) it A, BE M+, 7(4+B)=(4) +7(B)
(ii) if A€M+ and 4 is a non-negative real number, 7(A4)=A1(4) where Q- (+ o0)=0.
(iti) if A€ M+ and U is unitary in T, 7(U*4AU)=1(4).

A trace is faithful if 7(4)=0 implies 4 =0; semi-finite if for every non-zero 4 € M+, there
exists a non-zero element B in 4% with 7(B)< + o0 and B<A4. A trace is normal if for
every uniformly bounded increasing directed set {4,}<= M+, t(l.u.b., 4,)=Lub.,7(4,).

The basic result about traces is the following well known fact: see, for example [36].

The set of A € M+ with 7(4) < + oo is the positive portion of a two sided ideal J, of
‘M. There exists a unique linear functional 7 and J, which coincides with v in J, N N+, and
one has 7(AX)=7(XA)(4€J,, XEM*).

If E is a Banach space, with dual space E*, the weak *—topology of E* is denoted
by o(E*, E). In particular, the weak *—topology of a von Neumann-algebra M is denoted
by (M, M,); the strong topology is denoted by s(M, M,) while the strong*-topology is
written s*(M, M,). The commutative C*-algebra of complex valued continuous functions
on R* (n=1, 2) vanishing at oo, is denoted Cy(R"} while the subalgebra of continuously
differentiable functions is written C3(R™).

When (€2, 4) is a o-finite measure space and E is a Banach space, L}, u; E) is the
Banach space of E-valued y-Bochner integrable functions f with the norm ||f]| = [ | f(¢)du(¢).
For a von Neumann algebra with separable predual I, the notation L®(), u; ) will be
used to denote the Banach space of M-valued essentially bounded weak* u-measurable
functions. The importance of using weak* measurable as opposed to Bochner measurable
is that L®(€2, u; M) is naturally isomorphic to the von Neumann algebra tensor product
L*(Q, u; €) ® M having LY(Q, u; M,) =LYQ, u; C) ®, M, as predual. (y is the greatest cross
norm.) See [36].

Finally we note that if R€L®(Q, u; M) and [|h(-)[| €LY, u; C), then [ A(t)du(t) is
well defined as a weak* integral and represents an element in M.

§ 2. Determining functions

In this chapter we review the basic definitions and constructions of the determining
function theory, adapted slightly to our present purpose.

The material after Propositon 2.1 can be omitted on a first reading.

Let A be a C*-algebra with identity 1. Let T€ 4. Set U=§(T+T*), V= —4(T - T™).
With D=[T, T*]=TT*—T*T note that [V, Ul=VU—UV = —iC where C=}D. Let A+
be the set of all positive elements in 4; 4+ is a convex cone in 4. If M€ 4°, then M =
M. —M_ where M, € A+. Consider the C*-subalgebra of 4 generated by C and the iden-
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tity. Call this subalgebra C. By the Gelfand-Naimark theorem, C is isometrically iso-
morphic with C[sp (C)], the continuous complex valued functions on the compact set sp (0).

Form the map

—iV =21 2A<0
=1 o A=0
Va A>0

and note that it defines an element in C[sp (C)]. Thus, there exists a unique element ¢
of C whose Gelfand transform is C(1). The relations (2=C, 0C*=C*C=C,+C_=|0|
are clear.

The determining function of the pair {¥, U} is defined to be

E(l,z)=I+%O(V—l)‘l(U—z)“IO (2.1)
for z¢sp(U), lésp (V).

We note that E(l, 2), for each fixed [ and z, is in the C*-subalgebra of 4 generated by
T and I, the identity.

LeMMA 2.1. E(l, 2) 18 an invertible element of A.
Proof. We will show that E-1(I, 2) =1 +iC(U —2)~Y(V —1)-1C. We can write
Bl z)-{I+iC(U—2y"(V-1)"'C}

= [H%O(V—z)“‘w—zrlé] [I+i0U -2~V -1}

=I+i0(U—z)“(V—l)“0+%O(V—l)“(U—z)“@
+ OV - U—-2)'CHU~2)"'(V-1)"'C=1,

since C2=0, and (V—1)"{(U—2)"10(U—2)"{(V—1) 1 =i(V=1)" YU —2)"1 —i(U—2)~"{(V - 1)L
Similarly, {I+0(U —2)~Y(V —1)-1C} B, z)=1.

LEMMa 2.2,
E-Y1, 2) E(l, w) = I —i{w —2)C(U —2)"Y(V —1)"4U —w)C. (2.2)
Proof. By Lemma 2.1, we have

E-Y, 2) B(l, w) = I +i0(U —2)"Y(V = 1)1 —iC(V —1)"{(U —w)-1C
QU —2)" YV -0V — )" YU —w)2C. 2.3)



162 R. W. CAREY AND J. D. PINCUS

But,
(@—2)(U =24V — ) YU —w)
=(U—) (V11— (U—=2)"Y(V-U)"1—i(U —0) V=110V -1)"} (U —w)!
+(U —2)"{V =D 10V =)y (U —w)*
Aceordingly
—(U=2y" (V=02 + (V- YU —w) 2+ U —2y YV =1)"1C(V - )" (U —w)!
=(w—2)(U—2)" YV~ (U —~w)?

Insertion of this relation into the right-hand side of (2.3) completes the proof.

Let A4** be the second dual of the C* algebra A. It is known that 4** is a von Neu-
mann algebra [36], and 4 is a C* subalgebra of 4** under a canonical embedding. We
assume throughout this paper that these identifications have been made.

Let the polar decomposition of C relative to A4** be given by C=(sgn 0)|C|, where
sgn C is the associated partial isometry. Note that [sgn €, 0]=0, and € sgn ¢ =C*.

ProrosiTron 2.1.
t(B(l,, z5) sgn CE*(l,, Z,) — E(l,, 2,) sgn CE*(l,, z,))
= (I, =1 (2s = 5)C(V = 1)U —2,)"{(U — %,V —1,)1C~.
The necessary details of the proof is a repetition of the preceeding algebra, and will

be omitted.

This proposition enables us to derive a certain positivity result. Let

E(l,, z,) sgn CE*(l,, 52) E(ll? zl) sgn pE*“m zx)
- lz)( —%)

Note that K(l,, z;; 1, 2,) € A4 and is analytic in [, and z,; conjugate analytic in [, and z;.

K(ly, 2y ly,2) =1

By the Gelfand—Naimark theorem 4 has a faithful representation x as a C* subalgebra
of C(}) for some Hilbert space H.

Let {z,,1,}s1 be a finite set of non-real pairs and let {f,};., be a set of vectors in H.
Then, by Proposition 2.1

<1

AL

(K (Ug, 255 Lar 2) f5, fodu = Zn —2z) N (V — Zﬁ)’lo*fp,Zn(U—za)‘l(V— 1) 1C*,)u=0.
2.4)

&,

Thus n(K) defines a positive definite matrix function.
This fact enables us to construct a reproducing kernel Hilbert space which provides
one means of constructing operators from determining functions.

The following proposition is very easy to prove.
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ProPosiToxN 2.2.

E*(1,2)sgn CE(l,z)=sgn C (2.5)
ilTZTi(?:ii {E*(1, z) sgn CE(l, z) — B*(l,z) sgn CE(l, z)} € A* (2.6)
[ I-E@2)||<T|ImI|*|Im 2| (2.7)

for some positive constant T".

Although it is not crucial for the purposes of the present paper, it will give the reader
a more complete picture if we note that the determining functions can be characterized
purely as functions of two complex variables by means of certain symmetry and positivity
properties.

After determining functions were introduced [31], the possibility of finding such a
characterization arose in discussions between L. de Branges and the second author,
and the resulting characterization was subsequently found, in the case of positive self-
commutator, by both de Branges and the second author working separately. We give a C*
version of these old results.

Suppose that a function £(l, z) defined as analytic for Im /<0, Im z+0 and taking

values in a C* algebra A4 is given such that

1= E¢, 2)|| = O(|Im I| 7} | Tm 2| 1) (oty)

and C=i-lim; ., |2||l](1 ~ E(l, 2)) exists and is self-adjoint in 4. In 4** let the polar
decomposition of C be given by C=(sgn C)|C|, where sgn C is the usual partial isometry
and [sgn C, |C]]=0.

Suppose, in addition, that s is a faithful * representation of E, and

E*(,2)sgn OE(l. z) = sgn C. (ea)
Now with B, =n(E) let
Efﬂy 2,) sgn CE7 (L, %) *_En(ll’ %) sgn OE;(Z2"ZI)
(- l) (2~ 7)) 7

aK(ly, 251, 25) =3
and assume that

z nK(lﬂ’za; lou zﬂ)fﬂ’fd)>0 (ﬂ)

a, =1

for finite sets {l,}s-1, {24}5-1, {fa}o-1-
For convenience we will also restrict ourselves to bounded operators, and assume that
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(y) E,(l, 2) is continuous on the real [ axis outside of a compact interval and that E.(, 2)

is continuous on the real z axis outside of a compact interval.

THEOREM 2.1. Let & be the C* algebra generated by { E(l, ), sgn C} satisfying (o), (o),
(B), and (y). Let 7 be a faithful x representation of E. There exists a Hilbert space '-fl,, and a
completely non-commuting pair of bounded self-adjoint operators U and V in C('fl,,) whose

determining function coincides with n(E(l, z)) on ?2,,.

In this statement the assertion that U and V are completely non-commuting means
that there is no non-trivial invariant subspace for both U and V on which they commute.
Two other facts should be noted.

COROLLARY 2.1. There exists an embedding 7 of € into a O algebra on a Hilbert space
B, and a completely non-normal operator T € B such that E-(l, z) =n[E(l, 2)].

THEOREM 2.2. Suppose {r,, #,} and {n,, ,} are unitarily equivalent representations
of {E(l,z),sgnC}. Let Ty and T, be operators which implement n[E(l, 2)], i=1,2 as in
Corollary 2.1; then T, and T, are unitarily equivalent.

The fact that the determining funection of & completely non-normal operator 7' is a
complete unitary invariant for 7' was noted in [34].

For the sake of completeness, we will give & schematic description of the proof of
Theorem 2.1 (which can be omitted on first reading).

Denote the closure of the range of #C by h. Using () and the theory of reproducing
kernel Hilbert spaces, it can be shown that there exists a unique Hilbert space il,,, whose
elements are h-valued analytic functions F(z,, z,) defined for non-real z, and z, such that
for every vector b €k and non-real numbers w, and w,, TK{wy, Wy; 2y, 25)bisin 5[,, as a fune-

tion of z; and z,, and

(F(wy, wy), b)p = {F(ty, ty), K (wy, wy; £y, t2) bDiie

We identify % with the subspace of constant functions. It is known (see the appendix in
[33]) that the maps

F(zy, 2) — F(2,, wy)

2o — Wy

F(zl, 22) >

F(zy, 25) — En(zla 2,) En(wb 22)—1F(w1, Z5)
2 — Wy

F(zy, 25) >
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for Im w,+0, Im w, +0, are resolvents of bounded self-adjoint transformations in il,,
which we will call H, and H, respectively. If G(z,, z,) =[F(2,, 25) — F(24, 05)]/ (25— w,), then
(H, —wg) G(21, 25) = F(2,, 25). Since

F(zy, 1y5) — Flzy, w2)=

lim iy, G(z,, 1Y) = lim 1y, — F(z), wy),
Yi>00

Y10 1Yy~ Wy
we see that

Flzy, 25) = (25— 05) Gzy, 25) — lim vy, G2y, 1y,),
Y200

so that
H, G2y, 25) = 2, K2y, 20) — lim 3y, Gz, 15).

Y3~»00
Similarly
H, G(zy, 25) =2, G2y, 25) — En(zl, zy) lim gy, G(iy,, 2,),

Y10

and a calculation shows that

(HyH,— Hy H,) G(z,, 2,) = H({2, G(2y, 2,) —lim 1y, G(2,, iy,)}
Yab00

— Hy{2,G(2,, 25) — B a2y, 2,) - lim iy, G(iyy, 2,)}

Y1—>0

2,2, G(21, 25) — 7, lim 1y, G(zy, iy,)
Ya>o

-~ En(zp 2,) lim i?/l{zz G(iyy, z5) — lim 1y, G(iy,, iy,)}
Y10

10

—21290(2,,25) + 2, E,,(zl, 29) lim iy, G(iy,, 2,)

V1—»00

+ lim i?/z{zl G(z, iy,)—E,,(zl, iy,) lim iy, G(iy,, iy,)}

Y0 Y10

—i[1 = Ea(2,, 2,)] QB)

where

Q@) = lim 1y, 1y, G(1y,, 1y,).
v1—»00

Y900

Let G(zy, z5) =K (wy, wg; 2,, 23)b, & generic element of I,; then

Q(G) = lim 4y, iy, {En(i!/p 1y,) sgn CE;(wzr ;.’72) ‘En('iyn (,) sgn CE;(CUI’ w,)} b

Y10 (Y, — @) (ty, — @)
Y0

=sgn C[1 — En(w,, w,)]b.
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Let k(G)=[1 - E}(w,, w,)]b. So k is a linear map from I, to k. Then for €k, we have

k*d, Gz, 32)>un ={d, k(K (wy, 0y 21, 22) b)>, = <d, (1~ E:(wl, w,) b}y,
= <(1 - Eiz(wl’ (,()2)) drb>h'

Thus the adjoint &*: d— (1 — £ (w,, w,))d is a continuous linear map from & into il,,, and

therefore we can write
(A H,—HyH )Rz, 2,) = — ik* [sgn OkG] (24, 2,).

In what follows we make repeated use of the relation in (2.5).
Suppose now that we chose an operator J so that [J, sgn C]1=0and J2=sgn 0, J*J =1.
Then with g€k and k*Jq=[1— (2, 2,)]Jq,

(Hy o) H,—w,) *Jg

(H, oy Pl ) = Balm, 03)

23— Wy

. {En(zl’ zg) __'_‘Ejn(zlgfgz) _

il

1 gEn(w)’ 22)_—1?7!(7“)1"0)2))} J

-~ . E‘n(zl, zg) En(wly 22) (22 — wz) (zl — wl)

(2o — 0,) (2 — )
. E (21, 25) Baley, Zz)A’Enff’lez) - En(?n )

J
(25— @y) (7, — wy) 7

. B2, 2,) sgn CE;(@'hﬁ%L'_‘_Egg(‘zn ©,) sgn CEMN &y, @y)

-sgn OB (o, w,)Jq
(22—~ wy) (2, ~ w,) & TR

I

1
= K (@y, g, 21, 2,) 580 CF {0, w,) Jq.
Thus

1
i Ji(H, — o) '(H,— wz)ﬂlk*v{? = JkrK(®y, @y, 2, 2) g CEn(wz: w,)Jq,
but kK (@, @q; 21, 25} b =11 — Ex(®,, ®,)]1b. Hence, we have

LMy = 0y)  (Hy — 0g) g = J[L - By, 3] sgn OBaleoy, 02) Jg
=J sgn CEn(wy, wy) Jg— J sgn CE N w,, ) Br(wy, w5) Jq
= (T Baley, 0 T =~ 1) g =T #{Bafwoy, 05) = 1) .

Thus we see that B ,(w,, @,) is unitarily equivalent to 1 —¢JE(H, —w,) Y H, —w,)~1k*J
on h. In particular J2C = kk*. -
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We have already noted that essentially these reproducing kernel constructions arose
out of conversations between the second author and L. de Branges. But the definition
of determining function is slightly changed from that in [31].

We turn now to the modifications which are necessary in order to prove Theorem 2.1.

Let the polar decomposition of k be given by k= |k|W where |k|=(kk*)}/2=|C|V/?
and W is the canonical partial isometry. Then

k*=W*|k|, and k* sgn Ok=W*|k|sgn C|k| W =W*CW.
Thus, C=Wk* sgn CkW*= |k|sgn C|k|, and
O = |k|J = J|k| = JEW* = Wk*J.

Let us now note the following simple facts:

(a) closure (Range k) reduces £,

(b) E,, restricted to the orthogonal complement of (Range k) is the identity. To show
this, note that since E,(I,2)=1—iJk(H, —1)"Y(H,~2)"k*J and [J, |k|]=0, the range of
k is invariant for E. But E*(, z)=sgn CE;'(l, z) sgn C, and E-Y(l,2)=1+iJk(H,—2)!
(H,;—1)"'%*J. Thus we can conclude that the closure of the range of k is invariant also for
EX(1, z). This proves (a). In order to prove (b), let L R(k). Now E,(, z)x==—y where
y € R(k). But E (I, 2)x€ R(k)*, and hence £,(I, 2)z=x.

Let R (W) denote the initial space of W. We define an isometric dilation space in
terms of W by setting

U= H,OR(W)»*OR(W) D ...

Define W on H by: & =<2y, 2y, ¥y ...>) W =Wz, P,x,, x,, ...>) where P, is the projection
of '-]:l,, onto R, (W),

We can also extend k, H; and H, to 1} by identifying them with the zero operator off
of H, D000 ...

Now, since W is an isometric map

J*E (1, 2)J = Vi —iJkW*W(H, — ) W* W (H,—2) W*Wk*J
= Li, —iC(WH, W* —1)-"\(WH, W* —2)1C,

If we extend J to H by setting Jx=z, (z in R(W)*) and do the same for E,(l, z), we shall
have

E.(l,z)=1;+ tl JOTHIWH, W*J* =) (JWH, W*J* —2) ' TCT*
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and
[JWH, W*J*, JWH, W*J*] = - iJOJ*.

Thus £,(I, 2) is the determining function of the pair U =J WH 2 W*J* and V=JWH 1 WeJ*
on L.

§ 3. Boundary values and mosaics

We first discuss some notational conventions and recall some known facts.

Let LY(€2, 1) be the Banach space of all complex valued u-integrable functions, with
a positive o-finite measure u, on a measure space {{2, u) and let E be a Banach space.
LY, u)®, E denotes the completion of the algebraic tensor product of LYQ, ) and F in
the topology induced by the greatest cross norm y defined by y(f)=inf 37, ||l ||vl]
where the inf is taken over all representations of f. Then LYQ, u)®, E =LY(Q; u, E) by
Grothendieck [23], where LY(Q, u, E) is the Banach space of all E-valued Bochner u-inte-
grable functions on the measure space (Q, u). If M is a von Neumann algebra with a
separable predual M,, then LY(Q, u, M,)* =L*(Q, u, M) where L®(Q; 1, M) is the Banach
space of all M-valued essentially bounded weakly* u-measurable functions on Q {36].
From here on we shall assume that M, is a separable Banach space.

In the present paper we shall be concerned with the case when Q= R! or R? and u

is the Lebesgue measure, dt or dA.

Diagonalization of self-adjoint operators

Suppose M € C(H)®. Let us consider the diagonalization of M,.. In this respect the
operator M, acting on H,.(M) may be identified with the following system: F, (M) is
the direct sum of function spaces ¥,=L*A,; D.), «=1,2,3, ..., and oo, where the A,
are disjoint Borel subsets of the real axis and the ], are separable Hilbert spaces with
dimension D, = «. The symbol L¥A,; D,) denotes the set of all D, valued strongly measur-
able functions f(1) on A, satisfying [ [|/(4)||2dA < o. The function

o AE€EA,

m(l)={0 1¢U, A,

is the spectral multiplicity for M.

We shall assume that D, < P,< ... < P, = D so that all ¥, (hence H itself) may be
regarded as subspaces of L3A; D) where A=U_,A,. The action of M,, is that of multiplica-
tion by the coordinate in each of the H,: MHA)=1f(A), f€H,.
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M-smoothness

Let M be a self-adjoint operator on H and suppose K € L(H, x). Set R,=(M —z)~? for
Im 2+0.

Definition 3.1. K is said to be M-smooth if

supremum |({R,— R} K*x|K*z)|/27||z|?= || K ||y < oo (3.1)
Im2+0,]|z|[+0
The notion of M-smoothness originates with Kato in [26] and [28] where it was shown,
among other things, that if K is M -smooth, then K necessarily annihilates every vector in
H,(M). Such smoothness is equivalent to the fact that K*K has a representation as anintegral
operator with an essentially bounded kernel in a Hilbert space in which M is diagonal.
Observe that if o is an essentially bounded Lebesgue measurable function on R with
supremum |||, then p(M)= [ y(A)dP,, E; defines a bounded operator on ¥ such that
whenever Q€ £(Q, y) is TM-smooth, then so is Qyp(M) and {|Qp(M)|| <[|@||xl|%|l -

THEOREM 3.1. Let 4 be a von Neumann algebra and let A and D be elements in A°.
Suppose D is factored in the form D=K*JK where J is self-adjoint and unitary in 4 and
K € A. Let B be the subalgebra generated by A, K and J, then there exists a unique element B in
L*(RY, d}, B) such that for almost all t, 0< B(t)<1; B—}(1—J)ELY(RY; dA/(1 + ||), B) and

dU)=J + KA —1)"'K*= exp {’;—' (1—J)+ fB”)fi(—l ~J) dt} (3.2)

for Im 1> 0. The integral is taken in the weak* sense.
Proof. The proof is based on two results of T. Kato which we now state:

Result one. Let f be holomorphic on a region P in the complex plane which is conform-
ally equivalent to the closed unit disk. Let G be an element in 4 whose spectrum is con-
tained in P. Then, if W[G], the numerical range of G, is contained in P, it follows that
W{j(G)] is contained in the closed convex hull of f(P) [Thm 7; 27].

Result two. Let #=L*RY; D) and let M be the multiplication operator in . If
LeC(H, X) is M-smooth, then there is an L(X, D)-valued strongly measurable function
L(-) defined on R! such that ||L(¢)|| <|/L||» and L*z = {L(t)x} for every xz € [26].

We have used the notation L*x={L(f)x} to indicate that L*x€ }{ is represented by
the function ¢ {L{t)x}.

We will prove the theorem by working in a faithful *.representation {g, X} of A.
12 — 772903 Acta mathematica 138. Imprimé le 30 Juin 1977
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Since B has a separable predual, X is a separable Hilbert space. Henceforth we will assume
that 4, K, and J are in C(X).

With these preliminaries stated, we now enter into our demonstration.

Observe that ®(1)-1 exists and in fact ®(1)-1 =J —JK{4 + D —1}-1K*J. Thus 0 ¢sp (D(}))
for Im 1<0. Moreover the numerical range of ®(l) is contained in the closed upper half
plane when Im I>0.

Let f(I)=In ! where In ! denotes the branch of the logarithm determined by —x/2<
arg 1< 3x/2]. For fixed >0 consider the function f,(I)=f(I+in). It is clear that f,(I) is
holomorphic on P={l: Im ! > 0}.

By result one we see that, for Im >0, W[f(QP(l)]={l: 0<ImI<x}. Therefore,
0<Im f,(®(!))<zl. Consequently, since lim, o+ f,(I)=f(!)=In!, and the limit is uniform
on a neighborhood of sp (®(7)), it follows that f,(®(l)) converges to In ®(l) in the operator
norm topology and

0 <Imln®()<al. (3.3)

Therefore we can invoke an operator generalization of the Herglotz—Riesz representa-
tion theorem for analytic functions with imaginary part positive in the upper half plane
[8] to obtain a bounded nondecreasing operator valued function €)(-) such that, for some

bounded self-adjoint operator N (which is determined below)

1 t
In ®(l)=N+ f{ttl - l—+—t2} dQ(t) (3.4)
for In1>0.
The integral which occurs here is a Stieltjes operator integral and
f dQ(t) < oo
1+ ’
Consider the map
t
1
t—> W(t) = JLOO m dQ(S) .

By the Naimark dilation theorem (8], there is a Hilbert space Til, an operator K EL('fl, X)
and a resolution of unity {£,} in H such that

W(t) = K E,K* (3.5)

Let M = { tdE,, where as usual the domain D(M) is {z€ H: f 2| E,x||? < oo.
The subspace H generated by {(M —1)-1K*z: € X, Im =0} is separable and invariant
for the family { E,}. Let M denote the restriction of M to H. (We note that we can choose



MOSAICS, PRINCIPAL FUNCTIONS, AND MEAN MOTION IN VON NEUMANN ALGEBRAS 171

H to be the direct integral diagonalizing space of M so we identify ¥ with L2(R2, D).)
It is not hard to see that In p(l) =N +K [ (1+1)/(¢t—1)dE,K* =N +K(1 +1M)(M ~1)-K*
from which, together with the inequality (3.3) we can see that K is M-smooth (see defini-
tion 3.1). Thus result two stated above allows us to conclude that the action of K* is given
by K*z={K(t)x}(x€X) where t—K(t) is a strongly measurable function with values in
LK, D), ie. K(t)EL(X, D) for almost all ¢ and for each € X, t— K (t)x is Lebesgue meas-
urable.

Moreover, ess; sup ||(1+#2)12K(¢)|| <1. With h€ ¥ and ¢~ [|A(t)||> summable, a small
modification of Lemma 5.3 in [26] implies that ¢— K(¢)*k(t) is Bochner integrable and
Kh= | K(t)*h(t)dt.

Accordingly, with Im I+0 and A= {(1+U)(t - 1) K{t)x} =1 +IM)(M 1)Kz, z€ X

we have

K(L+1M) (M ~ 1)K ¥z = f IT“:—ZZ—‘ Kt)*K () zd. (3.6)

Thus, with B(t)=(1 +2) K (¢)*K(t) we have 0 < B(t) <1 for almost all ¢, (as an operator

on X), and

¢

(Inpl)]z=Nz+ J‘{t{*l—- 1 +t2} B(tyzdt, =z€X. (3.7

We shall now estimate || B(¢)—}(1 —J)|| for large ¢. To do this, we first observe that
since B(t)=na"! Im In ®(¢) for almost all ¢ in a neighborhood of infinity, say A, we see that
B{t) coincides with the projection onto the negative spectrum of the self-adjoint operator
J + K(A —t)1K* = ®(t). Since the spectrum of J < { —1, 1}, we can choose A so that for all
tEA, the spectrum of ®(t) is a subset of the union of the intervals {—3,2, —1/2) and (1/2,
3/2); then for t in A

- 1 _ T
B(t)—g(I—J)=%L(¢(t)—l) t(J-0'dl (3.8)
where I'is {I: |I+1| =4}}.
But
(@)~ )1 —(J — 1)L = —(J — )" 1K(A -ty K@) — 1)1 (3.9)
Hence
- 1
IIB(t)—%(I—‘J)II=0(m) a8 [t|->oo. (3.10)
Now

1 t . . i
f{m—m} dt=in if Imi>0;
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therefore it follows that

In ®(l) = N + in/2(I - J)—f{Bt)— d-Jy- dt+f{Bt)— I-J")}tdftl. (3.11)

Since lim ®(iy) =J, and InJ = }7i(1 —J) we conclude that

N= j{B ty— 3T —J) f+_t§ (3.12)
Hence
In ®(l) = in/2(I —J) + f{B(t)—%(I —J)}%. (3.13)
Taking exponentials yields
O(l) = exp [m/2 I-J)+ f {B(t)-3(I—J }—] (3.14)

To complete the proof of the theorem, we must show that the operator B(t) which we
have constructed is in g(B) is unique and is weak* measurable.
The fact that B(t) is in ¢(B) follows easily by observing that

f( 61;(21 sdv=Tm In[J + K(A— (¢+1e)) 'K *] (3.15)

and that because 0 < B(t) <1 and X is separable

;t lim -(;%%):s dv=B(t)x

on a set of full -measure which can be chosen independently of z€ X.

Finally the weak * measurability follows from the weak measurability of B(t) and
[36; Prop. 1.15.2] or {20; Chap. 1., sec. 4, Thm 1]. This finishes the proof.

By taking adjoints it follows immediately that the relation extends to Im [ <0 if we
change }iz(1 —J) to its negative.

Let P, =}(1+J), P_=}(1—J). These are the projections onto the positive and nega-
tive eigenspaces respectively of J.

We will now obtain an estimate for P, B(t)P, and P_(1 — B(t))P_ when ¢ is large. In

order to do this we note that, for large £,

B(¢)= 2mf (@(t)—1)'dl where now I'=(l: |l + 1| =}).
Thus
P+B = '—f P+{ t)—-—-l)“ _l)—l}P+dl’
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since

1 = 1 _
o fFP+(J~l) P.dl=0.
By (3.9) we have

P.Bit)P,= — ;;i L P AT~ 'K(A—t)"'K¥®(t)—1)~'P,} dl.

Also,

_I_ T _ -1 0Nl T v-1 __:E_ __ V-2 o\l %

o JFPJr(J DIKA--)'K*J-)"'P,dl 2 I‘(PJr NP, KA4—-t)'K*P, dl
since [J, P,]=0 and JP,=P,. But the last integral is the zero operator, by the residue
theorem.

Consequently,

P, B(t)P, = 231;; frm{(f —) KA -ty KT — 1) 'K(4 - ) K*(@(t) - 1)} P, dt.
Accordingly P, B(t)P, =0(1/|t|?) as t goes to co. Therefore P, B(t)P, is weak * integrable.
That is, for each f in B, the complex valued function t—>{P_ B(t)P,, f> is integrable. Simi-
larly, P_(1 - B(t))P_=0(1/|t|?) as t approaches oo, and so P_(1—B(t))P_ is also weak*
integrable.

We will now establish the relations:

fP+ B(tyP,dt=P, KK*P, (3.16)
fP_(l—B(t))P_ dt=P_KK*P_. (3.17)
We begin by noting that
271

J.(v{s_—B—(y-)—e— dy =Tm In (®(¢ + i¢)) = Im L frln 2(D(t + te) — 2) "' dz

where I' is now the contour pictured in fig. 1
We have

1 1
Im T frln 2] —2) "dz=mP_
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v

Fig. 1.

hence,

Im i fln 2P, (J—2)"'P,dz=0.
2m

Accordingly, using identity (3.9)

eP.B)P. , o1 e o
f Gotpre = TImgy | AP —2) KA~ (b4 i) KNP+ i) = 2) P

Multiplying both sides by ¢ and letting £too, we obtain via the Lebesgue dominated
convergence theorem applied to the right hand side

2
lim f‘i_l)+ B(y) P,

1
L = - : P —z)1 *(J — )1
=1+ e dy=1Im o frzlnz (S =2y T KK*J —2)""P,dz

gfoo
=Im LJ‘ tInz(l-2)"%dzP, KK*P, =P, KK*P,.
27 T

Now, since ||P, B(t)P,||=0(1/|t|?) (as t approaches o) for each f in B, we have, by the

Lebesgue dominated convergence theorem,

. 2 P, B P, pHd
nme( (y_()tl))2+g2f> y=f<p+3(y)P+,/>dy-

et

Accordingly,
fP+ B(y)P,dy=P,KK*P,.
Similarly,

f P_(1-B(y))P_dy=P_KK*P_.
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We will now study the operators B(t) when K is assumed to be in the Hilbert-Schmidt
ideal.

Suppose M is a von Neumann algebra and 7 is a normal trace on M+ Recall that the
set of T'€ M+ with 7(7') < oo is the positive portion of a two-sided ideal J, of T, and that
there exists a unique linear functional 7 on J, which coincides with v on J,N M+ such
that 7(TA)=7(AT) (T €J, A€ M). Furthermore, the linear functional 4+>7(7'4) or M is
o(M, M,) continuous [36]. The ideal J,J,={4-B: 4, B€ J.} is denoted Cy(M, 7).

In this context Theorem 3.1 becomes a bit more definitive.

ProProsiTioN 3.1. Suppose M is a von Nemann algebra equipped with a normal trace.
Let A4, J, K and B(t) be as in Theorem 3.1 and suppose K €Cy(M, 7). Then B(t) satisfies
the following properties:

P.B()P,>P_[1-B@#)P_€7, n' M+ (3.18)
[1—B({)IV2P_€Cy(M, 7) (3.19)

P, B(t)2€Cy(M, 7) (3.20)

B(t)[1—- Bt)leJ.nm+ (3.21)
B(t)—P_€Cy(M, 7). (3.22)

Proof. We begin by showing that the functions t>+[P, B(¢)P,] and t—>1[P_(1 ~ B(t)]P_]
are Lebesgue measurable.

By (20; Chap. I, Sec. 3.4, Cor. 3] there exists a central projection E in the weak closure
of J, such that ET =T for all T€ J,. Moreover, by [20; Chap. I, Sec. 3.4, Cor. 5] there
exists a directed set {E},; of elements in J, N M* such that weak lim,,; E,= E. Since
M, is a separable space, the (M, M,) topology on norm bounded subsets of M is a metric
topology [22; Vol. I, Chap. V, Sec. 51, Th. 1] and consequently is first countable. Thus we
can select a sequence of operators [E,}%-1< {E }i; such that lub.,,, E,=E. For n=
1,2, ..., the map A><[{E, AE,] is oM, M,)-continuous since t is normal [36, Thm 1.13.2].
Therefore [E, P, B(t)P, E,)] is Lebesgue measurable since t— B(t) is weak * measurable.
Again by the normality of 7 it follows that lim,,T[E, P, B(t)P, E,}=[EP, B({t)P, E]=
[P, B(t)P,] for almost all . Consequently, t—1[P, B(t)P,] is measurable. By a repeti-
tion of this reasoning it follows that t—1[P_[1 — B(t)]P_] is also measurable. Now the
map A—>1(E,AE,) defines an element f,in M, by [36, Thm. 1.13.2]. Thus by definition of
the weak* integral, v{E, [ P, B(t) P, dtE,}= [{(P,B(t)P,, f,>dt= [ v(E, P, B(t)P, E,)dt.
By the normality of 7 and relation (3.16) lim .4, | *(E,P, B(t)P, E,)dt=v(P,KK*P,). By
the Fatou lemma we see that ¢~ (P, B(t)P,) is integrable. Therefore, applying the Lebesgue
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dominated convergence theorem we see that [ (P, B(f)P,)dt=v(P,KK*P,). Similarly,
we deduce that { vP_(1—B(t))P_dt=7(P_KK*P_).

Assertion (3.18) follows at once whereas (3.19) and (3.20) are immediate consequences
of (3.18). It remains to consider (3.21) and (3.22). Note that P, B(¢)V/2 and P_ B(t)€C,(M, 7)
as does P_[1 — B(t)]'/2. Accordingly, P, B(¢:)P_{1 — B(t) V2 + P, B(t)P [1 — B(t)]*2€ J,. But
then P, B(t)[1— B(t)]/2€J, since P, B(t)P, €J,. Thus, P, B(t)[1—B(t)]€J,. Using the
same ideas it is easy to see that P_B(t)[1 — B(t)]"*€ J,. Relation (3.21) follows at once by
addition. It is plain that (3.22) follows from (3.19) and (3.20).

Remark 3.1. When K €C,(I, t) and 7 is faithful, a result of K. Asano [1] tells us that

the principle value integral

Pf 5-(%)———5: dt=lim U”_SB——(” — P fw B~ P. dt]

egloo —o0 - vte -

(the limit being taken with respect to the C,(,t) norm) exists for almost all v in the
completion of Co(M, 7). If M is of type I, then Cy(M, 7) is a complete Hilbert algebra con-
tained in M. Thus we can conclude, upon taking exponentials from (3.2) that

lim K{4 — (v-+1ie)} 'K*
£§0

exists in Cy(M, ), and a fortiori in . A proof of the familiar Kato-Rosenblum theorem

can be given based on this observation. For example see Birman and Entina [2].

The phase shift
We now define a scalar valued function by setting
o(t) =7[P,B&)P.—P_(1— B(@))P_]. (3.23)

It is plain that —z(P_) <é(t) <7(P,). Also for nonreal ,

-{[B{t)—P._ - B(it)-P_ -{P_(Bit)y—P_)P_
t(f——t_l -dt)=t(P+f———t_l dtP+)+t(f -y dt)

_ f%<P+B<t)P+) . fi(P_(Bm—l)P.)dt= o) 4 (308

t—1 t—1 t—1

The residue theorem implies that the first integral is in J,.
The following result identifies §(t) with the so-called spectral displacement function

corresponding to the perturbation problem 44 +KJK*.
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LeMMa 3.1. For 1¢sp (4) Usp (4+K*JK),

HA-) " —(A+KJK*=1)""} = f (té_( l>)2 i

Proof. With n>0 and 0 <¢ <1+, form
F(t,1) =exp (—intP_) exp (itP_+ T(1))
where 7'(1)=f (B(t) — P_)/(t — 1) dt when Im 1> 0.
For ¢ >0, there exists L>0 such that |!| >L implies
| F, 1)~1| = ||exp [intP_+ T(l)] —exp intP_|| <e

whenever 0 <t <1+ 7.
Thus In [F(¢, 1)] is defined for |I| >L, and is real analytic in ¢ in trace norm.
Hence z(In [F(¢, 1)]) is analytic in {. By the Baker—Campbell-Hausdorff theorem we
know that
In [F(t, 1)] = T(@)+ Git, 1)

for small enough ¢ and |I| >L, where G(t, 1) is in J, and %(G(¢, 1)) =

Thus, for such I and ¢, we have
T(In [F(t, 1)) =%(T(1)).
By the analyticity in ¢, we can conclude that

#(In [F(1, )]) =%(T(1)),
and hence that
z(in 1 +JK(A -1 K*)) =%(T(1), [!| >L.

But a straightforward calculation shows that

d. - -
i T(In[1+ JK(A —DI'K*)=3(A-)'—=(A+K*JK-1)"]; (3.26)
see [20; Chap. I, Sec. 6.11, Lemma 3].

Hence, we have shown that

)

HA—1) = (A+E*JE—1)") = f ‘S(”l)z
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for |I| > L, and by analytic continuation in ! this will be true everywhere off sp (4) U sp (4 +
KJK*). This lemma can be extended to a class of functions considered by M. G. Krein,
who obtained these results for type I [29].

CorROLLARY 3.1. Let f(1) =const. + f (e"* — 1)/(t) dow(t) where w(t) is a complex-valued
function of bounded variation, and | d|w(t)| <oo. Then

T[f(A + K*JK) - {(4)) = ff’(i) 3(A)dA. (3.27)

Since this extension of the lemma is obtained in a familar way, we omit the proof.
We do note however that (3.27) suggests a sense in which “z(E}— E3)=06(1)" where E} is
the spectral resolution corresponding to 4 + K*JK and Ej is the spectral resolution corre-
sponding to 4. Indeed if M is of finite type this “‘result” is correct and constitutes a
possible definition of §(4) in that case.

Relation (3.27) can also be interpreted in the following way:

Let (- be a linear form on polynomials which annihilates constants. It is plain that
{R>=L(dR) where d is a derivation (the derivative) and L is a linear functional.

A necessary and sufficient condition that there exists a von Neumann algebra M
equipped with a normal trace 7, together with a pair of * homomorphisms s, and 7, from

polynomials into M commuting modulo J,, for which
(B =1[ny(R) —my( R)]

is that L be represented on E! by an absolutely continuous real signed measure having
compact support. Relation (3.27) shows necessity. Sufficiency can be shown by choosing
M= L(}) and selecting a suitable perturbation problem [9].

Corollary 3.1 and integration by parts on R! for Lebesque-Stieltjes integrals imply
that, with 9, and 7, small and positive, and

& 1

fe(d,v)= Y g

for all 1 in a neighborhood A of the point » in which the operator 4 is Fredholm (either in
the classical sense or in the sense developed by M. Breuer [6], [7]) and f,(4, ») continued

smoothly to zero outside this neighborhood, we have

fﬂ(l, v—na) — &,y — )18 dA= |T(E}.,,,— Bi_, ) fo(A,v)dA+ Ji[Eﬁm — B3, 114, v)d4,

(3.28)
the classical Fatou theorem gives us the following result:
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THEOREM 3.2. Let v€A where EY(A) and EXA) are in J,. Then for almost all 1, and
7, tn some positive neighborhood of zero

O(v+ns) —8(v —1y) =T[EYy —n1, v +75) — B =1y, v +1,)].
COROLLARY 3.2. 8(t) is supported on the interval (— (|| 4] +|| K|, (| 4] + ] K|}?).

Proof. If |v|>||4|| + | K||?, then »ésp (4). Suppose »>0. Then for any 7,>0 and
sufficiently small n, >0 we see that §(» +7,) —d(v —1;) =0. Thus J(¢) is constant for ¢>».
Since 4 is integrable, this constant value must be zero. Similar reasoning shows §(t) =0 for
v<=(|l4] + | X[®

Mosaics

In this section we develop the machinery necessary for the construction of the princi-
pal function of a pair of operators {U, V} with trace-class commutator. In doing this we
find it natural to follow these ideas into a broader context; however definitive information
beyond the trace class situation is lacking.

Our object in the next few paragraphs will be to study the boundary values of the
determining function on the spectrum of the operator U. (We could just as well consider
the operator V.) By examining a certain combination of products of the determining
function, we shall obtain for each >0 an element of the unit ball of L®(R2; d4, M), i.e.
8 dA-essentially bounded 7M-valued weak* measurable function defined on R?; since
(norm) bounded subsets of L®(R?; dA, ) are compact in the o(L°(R?; dA4, M), L'(R?, d4,
m,)) topology, L*(R?, d4, M,) being the predual of L*(R2;, d4, M), for any sequence of
7’s converging to zero we obtain a weak subsequence of elements {B,_ }%.in L*°(R?, d4, M)
with limit say B. Such a limit will be called a mosaic of the pair {U, V}. If M is a von
Neumann algebra equipped with a normal trace T and [U, V]€ J, the principal function
g(», A) is defined as 3

g(v, A) =[P, B(y, )P,]—[P_[1- B(», )1P_]
where P (P_) is the spectral projection of the operator i[V, U]€ W corresponding to the
non-negative (respectively negative) real axis. Uniqueness of B (i.e., independence of the

sequence {7,}>~:) is known only when M is type I!

Construction of the mosaic

Let T=U+¢V €M and let E(l, z) be the determining function of 7. We can use (2.2)
to conclude that E*(, 2)JE(l, z)=J —i(z—5)0*{U —2}-1{V —1}-}{U —2}-'C where J =
sgn C.
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In order to apply Theorem 3.1 to the present context it becomes convenient for us to
introduce the notation K,=V —i(z—2)C*(U — 2)-2, and to set 4 ="V. (Here Im 2>0.) Then

6, z)= B*(, 2)JE(l, 2) =J + K {4 —1}K?. (3.30)

By Theorem 3.1 there is a weak* measurable function B(-, z) taking values in the
positive part of the unit sphere of L®(R; dt, M) such that [|B(t, z)—P_[|=0(1/|t|) as ¢
approaches oo and

Bz P dt} (3:31)

0(l,z) =exp {mP_+f Py

as long as z is a fixed point in the upper half plane, and Im 1> 0.

For each fixed >0 we form the map B: R,—L*(R?'; dt; M) given by A->B(-,1+1),

We construct a product measurable representation of this map, i.e. a weak*-product
measurable function B,( , ) such that for almost all A B,(-, 1)=B(-, A +n) as elements
of L®(RY, dt; M). To this end let {f,} be a countable dense subset of M,. Then for
each choice of # the L®(R}, dt; C)—valued maps A—>(B(-,A+n), f,> m=1,2,3, ... have
product measurable representations, say 7',( , ) (see, for example, Lemma 16 and Theorem
17 pp. 196-200 of [22] volume one). Thus, for (¢, 1) in a set of full product measure the
sequence {T (¢, )}%-1 defines a C-valued map B,(t, 1) on the dense set {f,}5-; by setting
By(t, N fm=Tn(t, 1), m=1,2,3, ...

In order for B,(t, A) to define an element of the dual space it suffices to verify uniform
continuity on {f,}m-1 a8 well as linearity of the corresponding everywhere defined exten-
sion.

Continuity is established in the following way:
| Byt, A fn = Bylt, Df] < es8 sup | By, A)fru = Bylt, D |
< eas sup [esstsup [Tt A)— T'u(t, A)]]
< ess sup (esstsup (Bt A+ ), = Fo> <V fm— Fall

since 0< B(t, A +in) <1.

The linearity of the extended map can also be easily demonstrated. We will continue
to use the notation B,(t, ) for the extended map.

Thus, since My =M by definition, we have a map (¢, 1)~ B,(t, ) € M and the weak*
measurability of this map is clear. Furthermore, for almost all 4, B,(-, 1) =B(-, 1-+in)
as elements in L®(R!,dt; M). Thus B,(-, ) is a product measurable representation
of A—=B(-,A+in). It is clear that all such representations define the same element of
Lo(R: dA, M).
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The family {B,(-, -),7>0} lies in the unit sphere of L*(R?; d4, ) which is weak*
compact by the Alaoglu theorem. Since M, is separable, L1(R?, dA: M, )*=L*(R% d4; M)
(see [36]); therefore, by the Eberlein-Smulian theorem we can select a positive sequence
{n,}7=1 with limit zero such that B, (-, -) converges weak * in L®(R%, dA: M) to a limit
B(-, *). Thus for some choice of ,>0j=1,2,3, ...

1i1¢n Jf{B(t, A+amy), (¢, 2)) didt= f (B(t, 4), f(t, A)> deda (3.32)
¥ 0
when fELYR2 dA; 'M,).

We will also show now how B(t, 1) is related to Ul,,.

ProrosiTion 3.2.

Um B(t,4) P, dA < 2z|C|'2P, P, (U)P,|C|"® (3.33)

ffP,_ [1- B¢, A)] P._dtdA<2n|C|'*P_P,(U)P_|C|'* (3.34)

as positive operators. Moreover, P, B(v, )P, =0 and P_B(v, A) P_=P_ whenever 4 §sp (Uy,).
If P, or P_=0, then we have equality in (3.33) and (3.34).

Proof. We shall establish (3.33). The proof of (3.34) is only a repetition of the same ideas.

We can use (3.16). In the present situation this gives us, for fixed >0

fP.., By(t,A)Podt=P, K,K*P,. (z=A+ in).

But
dE,

P,K,K}P,=29P, 0¥ U -3 (U—2)"'CP, = 217P+0*f(t T ¢ép.,,

where E; is the spectral resolution of U.
Choose s(-) and r(-)in L'( RY; dt, C) where s(- ) is continuous and positive and 0 <r(t)<1.
Also choose m € M, . We evidently have

f s(A)dA [ f r(t) Py By(t, A) P, dt] <2P.C* [ f 8(4) ( f 0 _"zfj;?) dz] OP,.

Now taking the weak* limit as 7,0 we have

f s(A)dA [ f r(t) P+ B(t, ) P, dt] <2P,0* [lim J ( f ﬁf@%ﬁfz) dE,] ér,
40 -4+

=2aP,.C*s(U)CP,.
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Let us take s(A) = (ot/n) (1/((A — p)® + «?)) with «>0 and u a fixed real number.
Applying the functional m € i to both sides of this last inequality, letting « tend to

zero and noting that () is arbitrary

f (P, B(t,u) P, m)dt<2n (% (P, C*P,(U)E,CP,,m)

A=p

Since P,0*=C*P, = |C|V2P,, relation (3.33) follows upon integrating this expression.

We also note that this last inequality tells us that P, B(v, )P, =0 whenever A ¢sp (U,,).
Similarly, it can be shown that P_{1— B(v, 2)]P_=0 for A ¢sp (U,,).

Inequalities (3.33) and (3.34) can be strengthened to equalities when C is positive (or
negative).

Suppose that P_=0; then

E-Y1, A—in) B, A+in) = 1 +20CV%(U — (A~ i)"YV —1)~{(U — (A+in))-CV2

= exp {J‘B—:(:t_%) dt}. (3.35)

Therefore, by taking residues at infinity in [, we get
fB,,(t, Aydt=29C"3(U — (A—in)) (U — A+ i) C".

Note that B,(t,A) is compactly supported in ¢ on a set that is independent
of n and of A. Indeed, B,(t,A) is supported in an interval A which contains sp (V) U
sp (V +29(U — (A —in))*C(U — (A +in))™) and 2||(U— @A~ i) *C(U = (A-+in)~"|| is uni-
formly bounded independent of A and 7. For, observe that, by inverting (3.35),
E-\(I, A+in) E(l, A—1n)

= 1240V (U — (A —in)) YV +2q(U — A+ ) 2C(U — (A —im)) = )=HU ~ (A+im))*CV2.

Analyticity in ! outside sp (V) then implies that 2n|/(U —(A+in)"'C(U —(A—in))Y|| is
bounded uniformly in % and A.

Now take 7(t) to be the characteristic function of the interval A so that with any
s €ELY(RY; dt, C) as above we get

ffs(l) B(t, A) dtdy=lim fj's(l)B,,(t, Aydeda

n}0
=lim 2y fs(l) O3 (U — (A~ i)™ (U — (A+1i4)"  C"2dA
70

=2nCV2(U) C2.
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In particular, by taking s(4) =(1/7) (5/((A — p)®+ 7%)), we get for almost all u

fB(v,,u)dv;‘ (% (C*E,C'®)| . (3.36)

A=z
Remark 3.2. Suppose M is type I and that C is trace class; the limits
Hm E(l, A £ in) = E(l, 2 £40)

n}0
exist in the Hilbert—Schmidt norm except possibly on a set of Lebesgue measure zero which
is independent of I.
Inthiscaseitisknown [15]thatif [U, A]is trace class, then s —lim,., . ,e VA P, (U) =
S.(U; A) exist, and

E*(1,A+i0)JE(, A +1i0)=J +2 di; (C*E, S.(U; V=)' 0) (3.37)

where the derivative is taken in the trace norm.
Applying Theorem 3.1 to (3.37) gives us

= B ~P_
B*(1, A+0) JE(l, A+ i0) = exp {inP_ + f _%tizl— dt}
for Im !> 0, for some operator f?(t, A).
It is not difficult to show that the operator 1~?(t, A) which enters into this relation
coincides with the weak limits B(t, ) introduced in the previous paragraphs.

In this case we note that the inequalities (3.33) and (3.34) also become equalities.

§ 4. Functional calculus modulo an ideal

In this section we develop a functional calculus corresponding to a pair of self-adjoint
operators {U, V} whose commutator UV — VU belongs to a prescribed semi-normed ideal
J in M. The prototype examples are those where M is equipped with a normal trace t
and J is one of the associated C, ideals, p=1, 2, .... Recall that C, is the ideal generated
by the positive elements P in I for which [ |A|?dr(E,)<oo if P= [ AdE;. The class C,,
the trace ideal, is of particular interest since it leads to the construction of the functional
which is expressed in terms of the principal function of {U, V}. This in turn leads to the
basic transformation law satisfied by the principal function.

Let M(R?) be the space of finite complex valued Borel measures w on R? satisfying
lwl| = §fr. (L +|¢])(1+ |s])d|w(t, s)| <oo. The characteristic function of w is the scalar

function

Flx,y)= J‘fme“““”dw(t, 8),
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The set of all such F will be denoted here by M(R?). The map w— F of M(R?) onto the func-
tion algebra M(R?) is a *-isomorphism if we define the norm of F to be || F|| = ||e||. Note that
if F€M(R?), then F(z,y) has continuous partial derivatives which are bounded on R2.
Moreover, if F is a function on R? having compact support and partial derivatives satis-
fying a Holder condition with exponent greater than 4, then F€M(R?). In fact, for such
an F, the corresponding measure o is absolutely continuous.

In a similar way we define M(R!) as the set of characteristic functions of measures
on R! with ||| =f (1+ [¢])d|w(t)] <oo; if F is the characteristic function of w we again
define || F|j =| el

Suppose now that J is a semi-normed closed ideal in M whose semi-norm ||| ||| is
related to the norm || || in M by

ll4Bell < |lafien 2l
(I18* it =1l 21l

for 4, C'in M and B in J. For an example, take J=J, where 7 is any trace on M.

LeEMMA 4.1. Let A and B be elements in M with A — B in J. Suppose F € M(R!). Then
F(4)—~F(B)€J and ||| F(4) - F(B)|| <|| F|| | 4 - B|.

Proof. Of course F(A) and F(B) are defined by the functional calculus for self-adjoint
operators.
We begin with the observation that for any t€ R, |{|e!** —eB||| < |¢] ||| 4 — Bl||; this

follows immediately from the relation

%elt.’ie—itA =iellB(B__A)e—uA’

the derivative being taken in the uniform norm of M. With F(z)= [ ¢**dw(t) we evidently

have
F(A)—- F(B)= f{e“"‘ —e" B} dw(t).

Hence,

1) BBl < [lle - e lidlow] < [ + b dla] 14~ Bl = |21 4 Bl

Since F(A) and F(B)€ M the lemma is proved.

Next we establish a similar result involving commutators.
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ProrosiTioN4.1. If A and BE M* and [4, B1€ J,then[A, F(B)]€ J for any F € M(RY)
Moreover, || 4, FBIII<I| Fi T4, Bl

Proof. We will use Cayley transforms. Let o be a positive real number. With
iC=[4, B}, Wo=1-2ui(4+ ai)", and D,=(4+ o) 'C(A — i)™, we have D, W,=
(2x)" B, W,]. Thus, (B—2aD,)W,=W,B, and therefore F{(B—2aD,)W,=W,F(B).
This last equality can be expressed in the form

2%@, (A + ai) {F(B — 2aD,) — F(B)} (A — ai) = [4, F(B)].

Accordingly,
T4, P < |4+l |4 —asfl | 2] [l D]l
< |4 +ai]| | (4 + i) |4 e[| (4 = ai) 2 2] I Cl-
But ||(4 +ai)"1=1/x and so
T4, FB|| < || 4/a+il| |4/~ | F I Il
Letting « tend to + oo we arrive at
lt4, FBMI< IF|ITCl-

CoROLLARY 4.1. If A and BEM* and [A, B1€J, then [F(A), G(B)]€J for any F, G
in M(RY). Moreover, |[|[F(4), GB]|| <4 F[l ] lll4, Bl

Proof. This follows at once by decomposing F and & into real and imaginary parts and
then applying Proposition 4.1.
Suppose F € M(R?) so that

F(z,y)= er““"”dw(t, s)

for some w € M(R2). Me associate with the pair {4, B}(4, B€ W) an element F(4, B)EM
defined by the iterated integral

F(4,B)= f ( f F(z, y)dE,) dF,. (4.1)

We shall see shortly that in fact F(A, B)€C*-algebra generated by 4 and B. It is clear
that F(4, B) depend only upon the values of F(z, y) on sp (4) x sp (B).
The iterated integral in (4.1) may be regarded as an iterated or multiple integral [19].

Since A and B€ M the families of orthogonal projections E, and F, are constant
13 — 772903 Acta mathematica 138, Imprimé Je 30 Juin 1977
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outside the compact sets sp (4) and sp (B) respectively. Also, |F(x,y)—F(4, p)| <
L(Ja—A]*+ |y —p|*) for some constants L>0 and a«>}; a result of Birman and Solomyak
[3] asserts that the uniform limits of Riemann-Stieltjes integral sums of the form

n

S ([rawan)are). ges)
o=
exist and equal F(4, B), and further that F(4, B) is the uniform limit of the Riemann-

Stieltjes sums of the form
2. F(z,, y,) E(y,) F(0,), (%,€ye Yp€dy).
».Q

LEMMA 4.2,

F(4,B)= ffe”“e‘wdw(t, s).

Proof. Of course the above integral is to be regarded as a multiple Bochner-integral.
By the Jordan decomposition of the real and imaginary parts of w, it will suffice to prove
the result when w is a positive measure.

We will initially assume that w is compactly supported.

For fixed n, let [1™ be a sequence of disjoint rectangles with J,[];” > support w,
and such that lim,_., (max diameter []5™)=0. Choose (™, si™) to be the center of [7§™.
Then

er“" e*Fdw=lim i exp (ity"A) exp (is'"B) w([1§™)
>0 j-1
in the uniform operator topology.

Let w,,, be the measure which assigns the point mass w([1j™) to the points (£;™, sj@)
in the plane. Define w,=>/; w, ,. Then w, converges weakly to w.

Let

Fz,y)= E_l exp (it{V4) exp (is;”B) w([15")-

Because w has finite absolute first moments, it follows by [30; Thm. 6.8] that

lim Fn(x: y) = F(xa y)a (42)

and
lim 2 Fr(x )=2F(x ) 4.3
Jim 2 )= o Flay), (4.3)

with both limits being uniform on compact subsets of R2.
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Now
n
lim 2 exp (i 4) exp (¢5{B) w([15™) = lim fan(x, y)dE, dF,.

n-»00 j=1 N—>00

The uniform convergence in (4.2) and (4.3) enables us now to use a result due to Ju. L.
Daleckii and S. G. Krein [19] to conclude that

lim {an(x, y)dE',dFy} = f{fF(x, y)dEz} drF,.

This establishes the lemma for functions # whose associated measure has compact
support. The case of arbitrary measures in M(R?) is easily reduced to this one since the

compactly supported measures are dense in M(R2) and

'U U Fy) dE,] dF,

where I is a constant which depends only on the size of sp (4) xsp (B) [19].

<T-||F|

ProOPOSITION 4.2. Let F and G€NM(R?) and [A, B]€J. Then

F(A, B)*—F(A, B)eJ (4.4)
and
IIF4, B*—F(4, B < || F|||llt4, Bl
F(4, B)&(A4, B)—(F-G)(4, B)€J (4.5)
and
I#(4, B)G(4, B)—(F-&)(4, B)|< || F|| ||l lIlt4, Bl
[F(4, B), G(4, B)]€J (4.6)
and

lLFA, By, ¢4, Billl< | Fll |l T4, Billl
In particular F(A, B) has self-commutator in J.

Let C' and D be elements of M such that C—F(4, BY€J and D—G(A, B)€J. Suppose
P is a polynomial in two commuting variables; then with Q(z,y)=P(F(z,y), Gz, v)),
QEM(R?) and Q(A, B)—P(C, D)€ J, where P(C, D) is any choice of ordering for the operator
valued polynomaal. 4.7)

Proof. Let F and @ be the characteristic functions of the measures w and u respectively.
Then F(z, y)= [ [ e"**"%dg. Hence

F(A,By*—F(A,B)= ffe"-‘“’e—“'* —e e 8B,
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By Corollary 4.1 we note that
[lle-#Pemit4 —e#4e=5B]|| = ||| [~ e~41]|| < |s] |¢] Il L4, BIll-

Accordingly,
74, By~ F(4, Bli< || Ff[il[4, Bl

Next we consider the proof of (4.5). We note that F~G=w/ *\,u Therefore

F(A,B)-G(4,B)—-(F.-G)(4,B)= ff f [eft4 ¢!sB glad pibB _ it + DA G+ BB] dos(t 5) du(a, b).

4.8)
But the operator integrand in (4.8) is equal to e*“[¢!*Z, ¢!44]¢®2. Hence

#e. Bra, 5= F-0,Bl < [ [ [ il c=lialote, ol uo, )

< [[ [[1st1aldtat. sidlue pilica, 2
<IFIeN fed B

The proof of (4.6) follows immediately from (4.5). It remains to consider (4.7). The fact that
Q€ M(R?) follows at once since M(R?) is an algebra. We now consider Q(4, B) —P(C, D).
Since Q(z, ¥) =2 @ . F(z, y)"G(x, y)™, if P2, y) =2, @pnxz™y™, it is clear that

Q(A, B) = Z anm(Fn' Gm) (A’ B)

Therefore,
Q(4,B)~P(C,D)= 2 a,,{(F"G")(4, B)—- F"(4, B)G"(4, B)}

modulo J. But by (4.5) we see that each term in this last sum is in J.

The reader may note that although the operator F(A4, B) depends solely on the values
of the function F in a neighborhood of sp (4) x sp (B), the estimates in Proposition 4.2 in-
volve the first moments, i.e., ||i|dw(t, s), ||s]djw(t, s)|; these estimates may be con-
sidered somewhat crude when compared with estimates which monitor the size of F and

its derivatives locally on sp (4) x sp (B).

§ 5. The tracial bilinear form—cartesian

Let M be a von Neumann algebra equipped with a normal trace 7. Let T=U +:V,
where U and VEM? and [U, V]€J,, the trace ideal.
For F and G € M(R?), the operators F(U, V) and (U, V) are defined as in section 4

We will prove the following result:
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THEOREM 5.1.

HBW, V), 60, V=5 [ [(7. ) g0, ) ava 5.1)
where
_oF oG _oF oG
(7.0} -2 2B,

This result is the extension to the von Neumann algebra context of a result in [32].

It is clear from this theorem that g(», i) is invariant under inner automorphisms of
M as well as under perturbations of U and V by elements in J.,.

We point out here that it is also true that if W is a partial isometry whose defect
projections belong to J,, then {WUW*, WV W*} has the same principal function as {U, V}.

The proof of Theorem 5.1 depends upon a sequence of lemmas and propositions.

ProprosiTION 5.1. Let E(l, z) be the determining function of {U, V}. Then, for |l|

and |z| sufficiently large

dv du

- 1
T(In[E(l,2)])) = o ffg(”,,“) vl (5.2)

where g(v, u) is a summable function with compact support.

Proof. Note that for z fixed and ! chosen sufficiently large (depending on Im 2),
In [E-1(1, Z) E(l, 2)] is defined, since by (2.5) and (3.30) we have
E-\1,2)E(l, 2) = I+JK (V —1)"1K*.
From (3.25) and (3.26) we have

Hn (B (1,2 B2~ [on 0,2

where g(v, z) =7(P, B(», 2)P,)~1(P_(1 ~ B(», 2))P_). Now we note that if 4 and B€J,
and [[| 4[|+ {l| B]ll <3, then
7(n[1+A4][1 + B]) =t(In [1+ 4] +In [1 + B)).

Since In {1+ A4]-1= —In [1 + 4] we deduce that
dy

t(In[E7(,2) E(l,2)])) = %(In [E(, 2))) — 7(In [E(, 2)]) = fg(v, ey

provided we choose I sufficiently large. Thus for >0, Im 2>0, and [ sufficiently large,

depending only on %
T(In[E(l, 2z + in)] — In[B(l, z + in)) = fg(v, z+in) ;@—_vl-
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Let us define, for such fixed [

T(In[E(,z+1y)]), Imz>0

Pyl = {%(m (B, z—in)]), Imz<O.

Observe that the scalar function
L. dy
A= |gv, A+1in) o

is differentiable in A for >0. Let

= (g [ fov i 237

and consider the difference P, (I, z) —~@,(l, 2). Clearly, for each fixed large
P, A+1i0) —Q,(l, A+io) = P,(I, A —i0) —Qy(l, A —10)

with both sides of this equation realizing the limiting values locally in L(E?'; dt, C) with
respect to A.

Hence P(l, z) —Q(l, 2) is an entire function in 2. But since both P(l, z) and @(l, 2) have
limit zero when z becomes infinite, we can conclude that P(l, z) =Q(l, z).

We therefore have for sufficiently large |1|

(In[E(l, 2+ in)])) = ~—ff l+m @ —di', Imz>0

and

t(In[E(l, z—in)])=

Thus we see that for each number % >0,

P, (l2)=7(In[E(, 2+ in)]) (

Imz>0
Imz<0

have analytic continuations in the l-variable to all { with Im !+:0. Furthermore these

continuations are related in 7; for with n <z’
Pil,z)=Pi(l,zti(n' —n))

since this equality remains valid for large enough . Thus we can define v {In [E(l, z)]) for
all non-real ! and z by setting

7(In [E(, 2)]) = Piim o, 2F ¢| Im 2{).

Therefore we shall have established the formula

dv dA
e e | P
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where g(v, 1) is a summable function, provided we can develop a sequence {g(-, + +,)}%-1
with 7, {0 as n 1 o such that

. L dv dv
i [ o2 ina 2 o Joen 5 59)

for each nonreal [ and z.

We now enter into this final step.

Let B, (v, &) converge in a(L*(R% dA'M), L*(R* dAM,)) to B(, 4) for some sequence
7, of positive numbers converging to zero. We have seen in the discussion preceeding Propo-
sition 3.2 that such a sequence exists.

Now by [20; Chap. I, Sec. 6.1, Prop. 2 and Cor.] there exists a family of pure states
{m.}i; in ‘M, such that 7=, m, on M+

Since (3.16) and (3.17) tells us

Uﬂ B,(v, ) P, dvdi=P, C

and

f P_(1—B,(» 1) P_dvdv=~P_C

we can conclude that for a denumerable subset of pure states {m; },,, we have

dP (B, ) P 1= 3 (P, By, ) Pr,my
i)’

and
[P (By(v,A)-1) P_] =§ {P_(I-By»v,))P_,mp.

It follows from (3.33) and (3.34), and the Beppo-Levi theorem that P_B(», A)P, and
P_(1—B(»,2))P_ are in L (R% dA, J,). Define g,(», ) =3[P, B,(v,A)P,] —7[P_(1—B,(»,
A)P_]and g(v, ) =[P, B(v, )P, ]—t[P_(1 — B(», 1)].

We shall verify (5.3) for the sequence {g,, (v, )}%-: and g(v, 4).

For each 1€J’, we have by the convergence of B, (v, 1) in o(L®(R% d4, M),
LY(R% dA, M,)) that

di

ff<P+ B(’V l) P+s m1>( l)z ( __z)2

hm f<P+ yn”l)P+,mt>( )(7“—

And, hence by integration on [ and z the analogous equality holds for the functions

(v—3)Yx—2)7L, since [[ (P, B, (v, )P, m;»dvdl is uniformly bounded in n. Similarly

dv dl
-2

tim f f (P_11~ By (r, P md j (P~ B, 1 P_,m
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for nonreal ! and 2. Now, let § be an arbitrary positive number. For each index M we can

write
dv d
[f {9, (v, ) — g(v, 1)} ”“fz
dv di
<G ” [<P +1Byu(v,2) = B, D} Py my> + (P{B,, (v, 1) = B(v,A)}P_,m,>] s
dy dl
[<P {B,,(v,4)~ B, )} Py, m +{P_{By, (v,A)~ B( v,).)}P_,m,>] |
(5.4)

Suppose we choose M large enough so that with || ||, denoting the norm in L¥ R?, d4; C)

4_1_

,L
13-

ZM <‘0|, m) <6/2;

we can then find an index N so that for all » >N we have

vdl
—li—z2

f (P By, 1)~ B0, M} oy -2

<M

£>M

f (P_{B,,(»,4)~ B(, 1)}P-,m,> Ad <é/2.

It is clear from the Schwartz inequality that the secnd term on the right-hand side of
(5.4) is bounded by /2. Thus for all >N we have that

d d
l f (000 ) g, 1} 2 2

Since 6 was an arbitrary positive number, the result (5.3) is established.

<4.

-2

The fact that g(v, A) has compact support follows from the analyticity of the left side
of (5.2) for I and z large and outside the spectrum of ¥V and U respectively.

Remark 5.1. We have obtained B(v, 1) as & weak limit of a subsequence B, (v,4). A priori
another choice of convergent subsequence B, (v, 1) could have a weak* limit B'(», A) +
B(v, ). We have not proved equality. Nevertheless, g'(v, ) =g(», 1) since it is clear both
functions satisfy (5.2). Thus the principal function of the pair {V, U} is uniquely defined.

PrOPOSITION 5.2. For nonreal | and 2

fg( 02 = U= Y - U =20, D)
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Proof. Recall (2.2) which says
E-Y1, 2) E(l, w) = 1 —i{w —2) Q(U —2)~Y(V — 1)~ YU —w)2C (5.5)

for nonreal /, z and w. With |z —w| small and Im [ large as needed (depending on Im z and

Im ) we can take logarithms and then traces of both sides of (5.5) to arrive at
#(In [E(l, w)]) —z(In [E(l, 2)]) =7[In (1 —i(w —2) C(U —2)~ YV — 1)~} (U —w)~*C)).

This gives us at once the relation

27”.]‘.[ )—{y P Iul }d:"‘:%(ln[l—i(w—z)O(U—z)‘l(V_l)~l(U_w)_1C,]).

Use of the power series expansion of
In [1—i(w—2) O(U —2)"Y(V = 1)U —w)~1(]
enables us to conclude that

| e

= —iw—-2)T(CU—2)" (V-1 (U—-w)"C)+0(w~=z|, (5.6)

where O(|w—z|?) designates an operator whose norm approaches zero like |w—z|? as

|w—2] 0. If we divide both sides of (5.6) by (w —2) and let w approach z we shall have
- ff )zdvd,u HOU -2 (V=U" (U~-2)"0). 6.7)

Our assertion now follows from the observation that
—i(O(U —2)~ NV = )Y U —2)-1C) =7((U —2)~Y(V —1)~{(U —2)~Y V, U)).
LeMmMa 5.1, For each pair of nonnegative integers n and m:

U™ V)= -3 S U PlymUnvy, U)).

o< pg n—-1

Proof. This result is trivial. We simply note that [U"V™, V]=[U", V]1V™ and that
(o vi=— 3 UV, UlU™?1,

ogpg -1
Thus
UV V)=—3( > U=s-1p"UsV, U)).

ogpgn-1
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LemMma 5.2. (N. Wallach). Let (-, -> be an antisymmetric bilinear form in two commul-
ing variables x and y such that (Po R, Qo R) =0 whenever P and Q are single variable poly-
nomials and R is a polynomial in the two variables x and y. Further assume that (P, y>=0
for arbitrary plynomials P. Then -, > is the zero form.

For the details of proof, the reader should consult [24].

Using this result we shall first demonstrate relation (5.1) when the restriction of the
functions F and @G to sp (U) xsp (V) are given as polynomials in z and y. To do this, it

suffices to prove the following:

ProrosiTION 5.3. Let R and S be polynomials in x and y. Then
HRW, ), S0, V)= 5 [ [ (R} g0 ) v
Proof. In view of Lemma 5.2, it is enough to prove that
([UmV™... U»V™, V])= %f Nu¥ Mgy, u)dvdu, (56.8)

where n,, m; are nonnegative integers and N=72,.,c, n, and M =3, ,,m, (Note that
if (5.8) were true the bilinear form (R, 8)~>([R(U, V), S(U, V)))~(:/2n) [{R, S}(u, v) X
g(v,n)dvdy would satisfy the conditions of Lemma 5.2.) From z([UV¥ V])=
T([U™MV™ ... U™V, V]) and Lemma 5.1 it is plain that we will have established our result
once we show

S ureipMyry, U]]=§:;if Nu¥~YoMg(p, p)dvdp

CCpEN-1

%J {u¥oM, v} (i, v) (v, ) dvdp. (5.9)
This step depends on Proposition 5.2:

By equating moments at infinity (with respect to [)

R e e U | R L

Relation (5.9) now follows directly from this last equation by extracting moments at in-
finity with respect to 2.

We are now ready to prove Theorem 5.1 in its entirety.

Proof of Theorem 5.1. We begin with the observation that straightforward estimates
when combined with Proposition 5.3 yield

F([e"Yes", iaUeibV])_ ff{d“ﬂ“” @M gy, u) dvdu
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for all real values ¢, s, @ and b. Thus, suppose

F(x, y) — J‘J‘eit:cﬂsydw
G(.’t, y)= ffeitz+islldo-’

where w and ¢ are measures in the class M(R,). By Lemma 4.2

FU, V)= ffe""e’svdw
G(U, V)= ffe"”e’svda.

Repetition of the Fubini theorem and our remarks above then yield

and

o[F(U, V), G (JJ‘J‘ [e!VetY, “’Ue""’]) dw(t, s)do(a, b)

fff [eitU lsV iaUele])dw(t’ S) da(a, b)

= 2’; ffff [f {eitnrm gars o} () ) g(y, ,u)dvdlu] dew(t, s)do(t, s)
“on ”{H el o H o dota, b }(u, v)g(v, ) dvdp

f {F(p,»), G, v)} (1, v) dvdy.

A result in [13] implies that given any compactly supported function g{», u) in L}( R
dA, RY) there is an Hilbert space  and operator 7' € L(#) with [T™*, T] trace class (relative
to C()) having g(v, u) as its principal function. In view of this fact the content of Theorem
5.1 can be expressed in the following manner:

Let (-, > be an antisymmetric bilinear form on polynomials in two commuting
variables x and y such that (P(R(x, y)), @(R(x, y))> =0 when P and @ are single variable
polynomials and R is a polynomial in the two variables x and y; then (R,S)=
L{{R(z, y), S(x, y)}), where L is a linear functional.

A necessary and sufficient condition that there exists a von Neumann algebra equipped
with a normal trace r, and a *-homomorphism 7 from polynomials into the algebraic quotient

ring M/ J, such that for all polynomials R and S (with representatives 7z( R) and z(S) in 1)
(R, 8 =%([#(R), 7(S)])
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is that
L(R)=5- f f R(p,»)do(, p),

where w is an R? absolutely continuous real signed measure with compact support and

finite total variation.

ProrosiTION 5.4. Let M be a von Neumann algebra with normal tracet. Let {T,} be a
sequence in TN such that lim, ,_,., T, =T in the strong * topology.
Suppose further that [T, T,)€J, for each n=1,2, ..., [T* T1€J, and

lim [T%, T.]=[T% T1
n—»00

in the sense of convergence in J,. For each n, let g, be the principal function of T, and let g
be the principal function of T. Then g,—g in the o(Cy(R?)*, Co( R2)) topology.

Proof. Since polynomials in z and y are dense in Cy(R?) it suffices by Theorem 5.1 to

show for each pair of positive integers » and s that

Lm Z([(T%), T5) = 2(L(T*), T°))-

n—»00
To do this, we note that for each n=1, 2, ...

[(T2), Tal= 2 2 (T TN, TR To(Th ).

0gkgr-1 0glgs—1
Therefore our proof will be complete once we know that: for 4,, C,€ M

s—limAd,=4, s-lm(C,=C

n-—»00 n—»a0
and B,, BEJ,
lim ||| B, - B|| =0
n—
implies }
lim 7(4, B, C,) =1(4BC). (5.10)
n=>00

But this is easily seen by the s(M, M,) continuity of the mapping (X, Y)>X-Y on

norm bounded sets and noting
A4,B,C,—ABC=(4,—A)BC+A4,(B,-B)C,—A4,B(C—C,).

For then relation (5.10) follows at once from the o(M, M,) continuity of the map
M—C given by R—7(RS) (S a fixed element in J;) [36] and the estimate |||RSX]|| <
IERIISN I X || where R, X€ M, S€T,.
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ProrosiTioN 5.5. Let U and V be elemenis in M with [V, U1€J, and principal
function g(v,u). Let F be a real function in NM(RY). Then the operator U+iF(U)VF(U)

has self commutator in J, and principal function

(v, 1) = {g(v/F(,u)”,/A) F(u)=+0
gF nu' O F(‘u)=0

Proof. Note that [F(U)VF(U), Ul=F(U)[V, UIF(U)€],.
For each pair of nonnegative integers n and m, we have by Theorem 5.1

[{F(U)YVFH}", U™) =T(F(UY¥"V", U™)

“5 f f {F (s, u™} (4, 9) g(v, p) dvdp

=_i . n-1,m-1 2n
2nffm ™ um T R () g (v, p) dvdp

- U meny" " u" g (v F(u), p) dvdp.
27 (1 F(p)+C)

As an immediate corollary to Propositions 5.4 and 5.5 we note the following:

If A is a Borel set of Baire class 1, there is a bounded sequence {F,} of real functions
in M(R’), converging pointwise to the characteristic function y,, so that F,(U) converges
strongly to E(A). The operators T,=U+:iF (U)VF(U), n=1,2,.. and T=U+
wa(U)Vya(U) satisfy the hypothesis of Proposition 5.4; accordingly the principal func-
tion of the cut-down operator E(A)UE(A)+iE(A}VE(A)=EA)(U+iV)E(A) equals
g(v, 0) xr-2a(®, p). (This result suggests a functional ealenlus based on L functions.)

From Theorem 5.1 it is clear that g(v, #) is a unitary invariant of T=U +¢V as well
as a trace class one. Taken together these invariance properties show that if W is a partially
isometric operator in M whose defect space projections belong to J,, then T and WTW*
have the same principal function. The necessary details of proof will be left to the reader.

Suppose now that 7' is completely non-normal and semi-normal. Then it was shown
in [34] that the essential closure of the support of the principal function is the spectrum of
T in the type I case.

This theorem retains its validity in the present context. The proof, as before relies on
a cut-down theorem of Putnam [35], and upon the cut-down property of the principal

function which we have established.

TurEoREM 5.2. Suppose T is completely non-normal, hypo-normal, and T*T —TT*€ J,.
Then the essential closure of the support of the principal function of T* is the spectrum of T*.
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Proof. Let [a, b] x [c, d] be a square disjoint from the essential closure of the support
of g(v, u) and centered at a point (. Call the spectral projections associated to U and V
over the intervals [a, b] and [c, d] respectively E and F, i.e. U= [AdE,;, V= [AdF; and
E=E,—E, F=F,— F,. Form the completely non-normal, hypo-normal operator FETEF.

We have seen that the principal function associated with (FETEF is just
g(v, u)xlo, 8] (1) xlc, d](v) where y(a, b) (1) and x[c, d](v) are respectively the characteristie
functions of [a, b] and of [¢, d] evaluated at u and at ». '

Thus, since g(v, u)=0 on [a, b] x[¢, d], t[(FETEF)*, FETEF]=0 by Theorem 5.1.
But since the commutator is semi-definite, this means that it vanishes. Accordingly,
FETEF =0. But the Putnam “cut-down’ result [35] tells us that sp (FETEF)=sp (T) n
[a, b] x [¢, d); hence, [a, b] x [¢, d] N sp (T')=¢ and { ¢sp (7). The reverse inclusion is clear.

§ 6. The tracial bilinear form—another version

This section will be devoted first to the task of obtaining an analogue of Theorem 5.1
which corresponds to a change of variables from Cartesian to polar coordinates.

We will also obtain some further information about the functional calculus.

All of the considerations of the present section take place in a von Neumann algebra,
M, equipped with a normal trace T, which we regard as a subalgebra of C(H) for some
fixed Hilbert space .

We will again denote the trace ideal by J,.

Suppose W is a partial isometry for which

WV =(V+D)W

where V and D are bounded self-adjoint elements in M= L(H). Note that the initial and
final spaces W, and ¥, of W are invariant for ¥ and V + D respectively. Define the Hilbert

space

X=..HjoHoHoH o Hi©....
and let W be defined on X as transforming

E=1[... x_p, T_q, g, Xy, Xy, ..]
into
Wz =[...x_q, ®_g, x_; + Wax,, Ppg, 24, ...

where Py is the projection H— ;. Further, let

V& =[..(V+D)x_y, (V+D)x_y, Vi, Va,, Vizy, ...]
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and
Dz=1...0,0, Dx,y, 0,0, ...].

Tt follows easily that WV =(V + D) W, and that W is the minimal unitary dilation of W
(see [10] for the proof).

With D defined so that D2=D, DD*=DD = | D] (recall the definition of C') we define

(1, w): X—X by setting

¢, 2) =Ly - DW(W —2)1V —1)1D
for (I, z)¢sp (V) xsp (W). It is clear that H< X is a reducing subspace for §(I, w). This
operator valued function is closely related to the determining function E(l, z), [10], [12].

Let 7'~n denote the direct sum von Neumann algebra ... Do o ®MPoDo @ .... Let
B denote the W*-algebra generated by W and TH.

Note that T has a natural trace induced by the trace on M, ie., T(4)=7(4).
Further, the compression of B to H=0o0Do@HUBPoDo®... is precisely M. To see this,
call P the projection from X into H. It is plain that PBP={PB| U BE€ B} contains M.
To show the reverse inclusion, we note that W is a strong * dilation of W and We M.
It is then clear that 71> PBP. We conclude that P&, 2)|z€ m.

ProPOSITION 6.1. For Im 20, |2z| *1,
$(z, ) §(x, 271 = L1y + (@ —2) DW(W — )YV —2)-Y(W —2)-1D. (6.1)
Proof. Since, as can easily be seen by direct multiplication,

é(x, 2)"1 = Ly — DW(V —z)~Y (W —2z)~1D,

we have
@, 0) §(x, 2)t = Ly + DW{(W —w) YV —2)"1 = (V — )~} (W —2)-!
—(W~o) YV —2)DW (P —a) (W - 2)} D. (6.2)
On the other hand
(@ =2) (W =)V —2) (W —2)7

= (@=2)(W =) [(W -2V —2)t —[(W 24P —2)"]

= (0 =2} (W =) (W ~2)" YV —a)1—(W —2) "V ~2) 1 DW(V —2)"{W —2)-1}.
By the resolvent formula (w —2) (W —w) YW —z)"1=(W —w)~' — (W —2)~1 this last expres-
sion becomes

(W —) ™ (V =2yt~ (W —2) YV ~ )2 — (W ~) YV —2)DW(V —z)- YW —2)~!
(W —2) XV — ) DW(V —2) YW ~2)-1.
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Therefore,

(@ —2) (W —) YT —2) YW —x)~
= (W -y YV —z)2~(W —2) YV —a) 1+ [(W ~2)~L, (V — 2)~1]
— (W —w) YV —2)DW(P —z)"Y(W —2)?
= (W -w) YV —2)t—(V ~2)- (W —2)1
— (W =)V —2)DW(V —2) (W —2)-L. (6.3)

Insertion of (6.3) in (6.2) gives the result.

LEMMA 6.2. For n>0, m=>0, P{W*P™, V)5 and PW"P™[W, V)5 belong to the trace
tdeal J, and
HP{WrTm, V],,-,)=%(Po< > 1W"—"—l17""17f7"(W, Pl
<p<n-
Proof. Since P commutes with ¥, PW*3=W" and [W,P]=DW we have
P(WPm, P}=[W"V™, V]and PW"V™(W, V] =W*V"DW. Accordingly, these operators
are in the ideal J,. The proof that

BWP™ Ny =L > WP "W W, V1))

o<pEn—

is essentially a repetition of the proof of Lemma 5.1 except that we multiply both sides by
B before evaluating the trace.

LeEmMMaA 6.3. Let N=(ny, ny, ..., n,) and M=(my, my, ..., m;), |N|=ny+ny+..+n,
and | M| =m,+my+ ... +my, where the n;'s and m,’s are nonnegative integers. Then

B PP P, P
belongs to the trace ideal J, and
T B{WnPmEmPm WP, V) =2 PIWYP¥, Tl3). (6.4)

Proof. The first part of the lemma follows as in Lemma 6.2. The equality (6.4) follows
in a trivial fashion since P commutes with ¥ and 7([7, V])=0 whenever T is in the trace
class.

In section 3 of the present paper we proved the existence of the principal function g(v, u).

The next result is analogous.
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THEOREM 6.1. There exists a unique real-valued summable function g*(4, t) defined
on the cylinder (— oo, o) x {v: |t| =1} such that

QmH )‘”dT DWW —2) (P =1y (W—2)7D),  (6.5)

whenever (1, z) ésp (V) xsp (W).

We do not wish to take the considerable space which would be necessary to give a
full proof of this result starting from (6.1), since the proof is only a modification of the
corresponding proof of Proposition 5.2 above.

By Lemma 3.1 for 1¢sp (V) U sp (V + D), there is a summable function §(t) such that

{(V-y?*—-(FV+Db-1)"

Here d(t) is the spectral displacement function corresponding to the perturbation
problem V-V +D.

We will show now that §(t) can be derived from the polar principal function ¢g¥(4, 7).

THEOREM 6.2.

_L o

6(2)—27:]; gF(A, ) db.

Proof. We begin by observing that
, -1 AT -1
Py J‘f dé‘d/l DWW - " (W—2) (P -1}

This result is exactly analogous to Proposition 5.2 and is proved by the same reasoning.
Now take z=0. Then

1 1 -
2‘; ffg”(l, e'e) (—1_ l)g dld@ -‘_—‘T{DW(V— l)_IW*(V— l)él}.
But W(V —1)-*W*=(V + D —1)-1. Thus
vH (4, e“’) l)szde DV +D~-)* (V-1 }=2{(P-1)"'D(V+D-1)1}.
But (P+D -1yt —(¥ —)1=— (¥ -)B(V + D —1)-2. Thus

1 2",, . dA el
—f(%ﬁ (4, ")de)( =¢g{(V+D-)"'—(P-0)"}.

14 -- 772903 Acta mathematica 138. Imprimé le 30 Juin 1977
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But Lemma 3.1 asserts that

. o(A
r{(V—l)-1—~(I7+D—l)-1}=f(T(_—)—l)zdz.

1(, di [ 6(4)
f (ﬁ f 74, ") ‘w) G0 f -2

for all non-real /, and we can conclude that (1/27) [7g"(4, e*%)d6=5(4) a.a. 4.
We wish now to derive a version of Corollary 5.1 for the pair {W, V'}. Before doing

Thus

this, we develop an associated functional caleulus.

Let M(Z) be the collection of Borel measures u on the integers such that [(1+|n|) x
d|u(n)| <oo. Let M(Z x R') be the collection of Borel measures x4 on Z x R! for which
Jfzxm(+|n])(1+|t])d|u(n, t)| <oo. The norm of the characteristic functions of measures
in M(Z) or M(Z x R!) is defined in the usual way.

ProrosiTION 6.2. Let W be a partial isometry, with WV — VW =DW, and V€ W,
Dem:n J,. Let HEM(R'). Then PIW, H(V)}z€ T, and ||| PLW, B(V))alll < | H| | D).

Proof. We have WV =(V+D)W. Hence WH(V)=H(V +D)W. But, by Lemma 4.1
H(V)—H(V+D)€J, Hence [W,H(V)€J,. But [W, H(V)]=P[W, H(V));;. Moreover
[[HV +D)—HV)|l| = | H|[ || DI||. Therefore || 2[W, H(?)}alll < || H]| | DIl-

ProProsiTiON 6.3. Let W be a partial isomelry, le¢ VEM', DEM*NT, and
assume that WV —VW=DW. Then for FEM(Z), we have P[F(W), H(V)]4€J,, and
I PLEW), Halll < |H I NIDI-

Proof. For n=0 we have

(WLHPN= 3 WW HP)IW"
1

o< n—

Accordingly,
PIW  HMz= 2 PWPBCPW 5= 3> WOW"/,

0<j<n-1 o< n—-1

where=C=H(V +D)—H(V),=and C=H(V+D)—H(V). Thus,=||B[W", H("))zlll<
al|l Ol <=l H] DI
Since W*=W-1, analogous considerations give us

2w, @l <= |H|IDII,

for any integer n, positive or not.
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Thus, if F(e) = f,e'™du(n) and F(W)= [, W"du(n), we will get
e, 2l < (207 B sl
<Nl {Inlalaco D1 < ZNIFI DI
Now let FE€NM(S’ x RY), so that
P, x)= f f e'™ et du(n, t),
Z JR!

where [; [m(1+|n|)(1+|t])d|u](n, t)<co. Define F(W, V)= [;{m WretVdu(n, t). We
will show that the map F-PF(W, V) defines a complex *-homomorphism of M(S’ x R?)
into 7 modulo the ideal 7,.

THEOREM 6.3. Let F, H€M(S' x RY), then

(PF(W, V) 5— PE(W, V)7€T., (6.6)
PFW, V) PHW, V)5 — B(FH)(W, V)3€7., (6.7)
[PF(W, V), PH(W, T)z)€T,. (6.8)

Thus, in particular, PF(W, V) has a trace class self-commutator.
Proof of (6.8).

PFRW, Vy*5— PE(W, V)= ff Pe"”f'W*"ﬁ,d/Z(n, t)-—f DPWHne “T’,;,dﬂ(n, t)
Zx R!

Zx R

= f Ple Y, W)z di(n, t).
Zx R!

But we know by Proposition 6.3, that

N 2IW™, V1l < (1 + )y (1 + ) ||| DIl

Hence

18R, Py%s— PR, Pisll< [ [@+1nh @+ DDl dal 0] < .

Proof of (6.7). Suppose that F =4 and H=4#. Then F-H=/4/*\v, and

F-HW, V)=sz . WretVd(u % v) (n, t)==fjz m{j . RlW"*“e“”")‘-'dy(n,t)}dv(a, b).
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Therefore

F(W, PYAW, V)~ (F-H)(W, V)
= ffz o J‘fZXRl{WneitY/Waetb'i/_ Wnta i+ b)i/} . d,u(n, t)dvla, b).

Note that the operator integrand in this expression is equal to W"[eit?, Wa]ebV,

Accordingly, since we have
N BWrLe?, Wepeglll< (1 +|al) (L + e[l DL
we get

WWPFEW, VYHW, V)5~ PF-H) (W, Pl
<o [ [[. a+leba+lhauimdvien< o)z a).

It remains only to observe that (6.8) follows at once from (6.7).

THEOREM 6.4, Let W be an intertwining partial isometry in M for which WV =(V + D)W
where V and D are in W and D is in the trace class. For F and H polynomials in two vari-

ables

- 1
(PIF(W, V), HW, ?)]z) = i f {F,H}(, ) g"(2, {)dAdL.
Proof. Using Lemma 5.2 it suffices (as in the proof of Theorem 5.3) to show that
i 1 .
YPLWmPmWhP ™ W™, P]g) = e f J (;r g'”') (A g (A, &) dAde

where |N|=n,+n,+...+n, and |M|=m,+m,+ ... +m, By Lemma 6.3 the theorem
will be proved once we show that Z(P[W'M P1¥ P2y =(1/2n3) [[|N|Z™M1AMIgR(A, ) dAdL,
or equivalently

HP s e, Py = o | |l g, e,

0K P<|N] -1

We shall make use of formula (6.5). By integrating around a large contour containing

the spectrum of V in the interior, we get from (6.5)

T(PW(W —2)" T (W —2)" (W, V}i;,)=i$i”ﬁ“'(—c_lz)ég*’(z, £)dade.



MOSAICS, PRINCIPAL FUNCTIONS, AND MEAN MOTION IN VON NEUMANN ALGEBRAS 205

We now similarly form

L (M P ( AN ) =7 ( IN] — ) I — g)1 iy
2m’f MMigP LYde o dz) di=7 | 2MP(W —2) VMW —2) [ W, V] j5dz
for a contour large enough to include the spectrum of W in its interior. Then, by taking

residues, we get

z:?@ f |N|EMI AP, D dadL =TP{ 3 WINPT, P
0<PIN|-1

Note that if F=@, H=4 (w, u€ M(Z x R')) where w and y are supported on Z+ x R!

(Z+ the nonnegative integers), then

HEOF, V), 607 V=g, [ [, 1y e v oy ez,

§ 7. The equality of the polar and cartesian principal functions

Let T€M with [T*, T1€J, and define T,=T —z1. Then T, admits a representation
is the form W,Q, where (T T',)V/2=@, and W, is the canonical partial isometry. Denote by
g%(4, 7) the principal function associated with the pair {W, @.} and let g(», 1) be the princi-
pal function of {U, V} where U +1iV is the cartesian form of 7.

THEOREM 7.1, Let d+¢y=V2ae". Then for fized z=z+iy, gi(A, €*)=g(y +y, 6 +x)

dA-almost everywhere.

Proof. Since the assertion is for fixed z =z + ¢y, and since the cartesian principal func-
tion g,(», 1) corresponding to the pair {U—zl, V—yl} is g(» +y, u +x) where g(v, u) is
the principal function of {U, ¥} we may assume, without loss of generality, that 2=0.

Let T=U+iV=WQ where Q= |T| and let P=T*T =|T|2 Then if TT*—T*T =D,
we have WP —-PW = DW € J.. Furthermore,

P2 —(P+Dy*e].. (7.1)

To see this, note that f(x) =2°* is continuously differentiable, and hence if we modify
f outside sp (P) U sp (P + D) so that the modified function is differentiable and has compact
support, then the modified function will be in M(R?). The operators f(P) and f(P+ D) of
course only depend upon f on sp (P) U sp (P + D).

Let A=WPs3. Then
(4, 4*1, [4, P}, [4*, P1€T,. {1.2)
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These relations follow at once. For, {4, 4A*]=WPP*W* - P3W*WP3=WPsW* - ps
which is in J, by an iteration of the relation WP —PW = DW. To prove [4, P]€ J,, note
that {4, Pl=WPP—PWP3=WPi— WP+ B where B€J, (since [W, P]€J,).

Finally, [4*, P]= —[4, P}*, and therefore [4*, P]€ J..

Now let 2 be a neighborhood of sp (U) xsp (V) which contains the support of g(», u).

Set
(x+iy) (@*+y%)** on Q=sp(U)xsp(V)

0 outside.

Flz,y)= {

Then F(z, y) € M(R?) and F(x, y) € M(R?). Accordingly, we may consider the operator
F(U, V) defined by the functional calculus.
By the basic relations of that calculus, we can conclude that

F(U, V) =4 modulo J, (7.3)
F(U, V) = 4* modulo J,. '
Now define
(@*+y*) on sp(U)xsp(V)
H(z,y)= .
0 outside a compact set
so that H € M(R?)
The functional calculus enables us to conclude that
H(U, V) =P modulo J,. (7.4)
Thus if p and ¢ are polynomials in two variables, we must have by Theorem 5.1
[(p(4, P)g(4*, P)]=i{pe(F(U, V)), H(U, V))),qo(F(U, V), H(U, V))]
=ﬁff{p°(F,H),q°(17’, H)} (u, ) g(v, ) dudy. (7.5)

However, since W*P3—P3W*€ 7.,
7[p(4, P), q(4*, P)] =t[p(WP3, P), g(W*P?, P)].

In section 6 we defined the dilation space X and the projection 2 from X onto H =
. @oDoPHPDoDod .... With the notation of that section we have

(WP, P), q(W*P?, P)] =7(P[p(WP?, P), q(W*P*, P)}).

This equality follows from the fact that W is a strong * dilation of W and P kills
any vector outside of .

Let now J(z,r) be defined to be smooth enough and of compact support such that
J(&, r)y=¢r3, || =1 on a neighborhood of sp (W) xsp (P).
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Then J(-, -)€ M(Z x R?), and we can use the functional calculus developed in Sec. 6
to conclude that 4 — PJ(W, P);€ J, and A4*—PJ(W, P);€ J,. Therefore, by Theorem 6.4

t[p(4, P),q(4*, P)]= Tp[p° J(W,P), P),qo(J(W, P), P)]a]
J {po (&, 1), 1), g0 (£, 1), )} (&, 7)-g7(r, D)drdl. (1.6)

Now take p(z, y) =2™™, q(z, y) =8%y* where n, m, s, tEZ+, the nonnegative integers.
Then with z+éy=r{=r (cos 8¢ sin §) in a neighborhood of the support of g(», u),
we have
po(F, H)(C, r) = [(r{)r5]"r*"
go(F, H)(L, r) = [(rl)r*Tr*
or
po(F, H)(L, r) = r8n+2mln
go(F, H)((, r) = ros+2fs.

Now if u+iv=re', { =", then

8(po(F, H),qo(F, H)) _8(po(F, H),qo(F, H)) &6, r)
op,v) 26, 7) a(u,v)

~{1o°(1" H),qo(F, H)}<C,r)--

Hence by (7.5)

T(p(4, P), q(4*, P)] ff{W(F H),qo(F, H)} (¢, r)-g(r0) drdl,

where we have written g(r0)=g¢(», z). But, a calculation shows that {po(F, H),
go(F, H)} (L, r) =i[(6n +2m)s + (B3 +2t) n] > +2m+os+2-1kn-90 Hence

7[p(4, P)q(A*, P)]= ;nl [6nrs + (ms+ nt)] ffr“"””‘*e”z"le""‘”og(re“’) drdd. (1.7)

We can, however, find a relation for 7{p(4, P), ¢(4*, P)] in terms of the polar bracket
formula and g¥(r, €"%): po(J(, r), r=J(C, )" =L"3"" and go(J(L, r), r) ={*r¥+, since
E=¢- (|¢] =1

Hence the Jacobian is

q t}((3”_*_,”L)Tan+m—lcn (38+t)7‘38+t—1c_3)
€

nr2n+mé—n-l _ 8r33+t€—s—1

= —[s(8n+m) + (35 +t)n]rPnHmiisti-lpn-s-1
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Thus, substituting { =e’ in (7.6), we get

— 6ns + (ms + nt)]

7[p(4, P),q(4*, P)= %

ffra(n+s)+m+t~lei(n~s)ogP(7,, eiO) drdﬁ (78)

Now let # =72 in (7.7), then

+ ms + ni]
27

%[p(A, P),q(A*, P)]= —[6ns fff3(n+s)+m+t~lei(n—s)ﬁg(‘/;elﬂ) d7db.  (1.9)

Consequently, with (n, m) =+ (0, 0) and (s, ¢) =+ (0, 0)

ffra("”H"'”‘le“"_s"’[g(l/;ew) —g¥(r, )] drd =0. (7.10)
With t=1, n and s+ 0 fixed, we will have for all =0, 1, 2, ...

f ™ dr f 98 2 () — g(r, €°)]d6 = 0.

Since the polynomials are dense in the continuous functions over a compact set, we

can conclude that indeed
P fel("“S)o[g(V;elo) _ gP(r, e"’)] d6=0
for almost all r. Hence,

f e 0 fg(Vret) — g7(r, )] d = 0

for almost all . Since this holds for all non-zero » and s, we can in turn use this last result

to conclude that g(Vre'®) =g?(r, ¢’®) for almost all r and 6.

One elementary application has been stated in the introduction.

THEOREM 7.2. Let H(r)€ C}(RY) and let H (r)=0H|or. Then t{H(TT*)— H(T*T)} =
Un [ § Hy(#* +y*) gly, ) dzdy.

Proof. Let 6(A) be the spectral displacement function corresponding to the perturba-

tion problem 7'7T*— T*T introduced in (3.23).
According to (3.27)

T[H(TT*) — H(T*T)] = le(r) 3(r)dr.
But §(r) = 1/2n [&"¢7(r, €'®) d, by Theorem 6.2. Hence we have

HH(TT*) - H(T*T)]=§1— f > f “ Hy(r) g?(r, ) dbdr.
0 ]

T
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The theorem is proved if we now invoke Theorem 7.1 and make the change of vari-
ables x=Vr cos 6, y= Vr sin 6.

Remark 7.1. Let T = W@ be the polar decomposition of an element in I with [T, T'|€
J.. Let K€J, and consider the new polar form T+ K =WQ. Then @2—J%€J,, but we
cannot say the same for W —W. (In fact, let 77=0 and take K =L| K| where L is unitary
in ‘M.) Nevertheless, Theorem 7.1 tells us that the polar principal functions for T'—z
and 7 + K —z are identical.

§ 8. Index results

In this section we shall assume that 1 is a von Neumann subalgebra of C(H).

Call 7€M finite if the projection onto the range of 7', R(T), is finite and call T
relatively compact if it is the limit in the norm of finite elements of 1.

M. Breuer [6], [7] has defined the notion of relatively Fredholm operator.

According to Breuer an operator T is relatively Fredholm if (1) the projection onto the
null space of T, W(T), is finite and (2) there is a finite projection E of M such that the
range of 1 — F is contained in the range of 7. The set of Fredholm elements of T will be
denoted by F(M).

This definition does not imply that the range of 7' is closed unless the finiteness of £
relative to M implies the finiteness of E relative to the full algebra C(H).

We will assume throughout the following paragraphs of the present paper that
is equipped with a semifinite normal faithful trace 7. In addition we will assume that
Eep(m, E finite implies that 7(E) < + oo, If B€ D( M) is finite, we define dim (E) =7(E),

and with Breuer make the definition:
Index 7 = dim R(T)—dim 7(T™).

Breuer proved the von Neumann algebra analogues of the familiar Atkinson results
about Fredholm operators and index; namely, F( M) is open in the norm topology, T € F(M)
iff 7' is invertible modulo the two sided * ideal of compact elements of M. Furthermore, if
S, TeF (M), then Index $*= —Index 8, Index 87 =Index S+ Index 7, and if Index
S=Index T, then 8, T lie in the same component of F{M).

Assume now that T is a Fredholm operator in . Let E3 be the spectral resolution
corresponding to 7T'T*, and let E) be the spectral resolution corresponding to T*T.

ProrosiTioN 8.1. Ei—Ej is in trace class and T(E}— E3) is constant in a positive
netghborhood A=0.
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Proof. Let T'=W(T*T)'/? be the polar decomposition of T. Then WW*=R(T) and
W*W =R(T*). Also WT*T =TT*W, and it follows that WE;=E,W.
But

E}— B3~ Eiy+ B} — Ejopy— Bl + Ejy — B} = Ejo + E} — Ejoy — Ejyy — W(Bi — Ely)) W*.

If A> 0 is sufficiently small, each of the projections which occurs in this expression is

finite, and we can take the trace on both sides of this last equation to obtain
2(E: — E3) =%(El) + 7(Ei — Bp) — T By — 1 B} — Ey) =%(Bjy — Efy)-

The fact that ¢(W(El,— E})W*)=1(El—E}) follows from t(W(Eh —E})W*)=
T(W*W (B}, — E})) and W*W |R(T*)=1.

Hence 7(E} — E3) =7(Ek — E%,) for A> 0 and sufficiently small.

Let us now consider the case where 7', =T —zI is Fredholm. Let Ej(z) be the spectral
resolution associated with 737, and let Ej(z) be the spectral resolution associated with
T,T% Then

HﬂT}ﬂ”*@M}ﬂ4FJﬁW? fmn

If we now denote by §,(2) the phase shift associated as in section 3 with V=737,
V+D=T,T?, we will have by Lemma 3.1

{0 - @ re-n )= [ 28

Furthermore, since 0¢sp,(7,7;), Theorem 3.2 implies that 8,(A) =7(E}(z) — E}(z)) for
A>0 and sufficiently small; thus §,(2) is constant near A=0 and equals the index of 7',.

On the other hand, the index of 7T, is constant on the components of the complement
of the essential spectrum of 7. Select a component, say Q; with z€(), there exists a number
b(z) >0 such that §,(1) =Index (T'—2) a.a. A in the interval [0, b(z)].

Take A€[0, b(z)]. Then (1/27) [3"gF (4, €°)d0 = Index T — z). Thus, if 0 < R <b(z).

1 R 27 R2
— f }.d}.f g% (4, €% df = Index (T — z) -
2n Jo 0

Now we use Theorem 7.1. Tf §+iy=VAe®, 1>0 for fixed z=z+iy, then gf(4, €)=
gly +y, o+ ).
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Therefore, if B,(R) denotes the ball centered at z with radius R, we will have with
g(&)=g(», u) for {=p+iv and {=Ae"

Jf g($)dA= ff g(l+2)dA= fnldl fzngf(lz, €'%)df = Index (T — z) nR®.
By(R) Bo(R) 1] Q

Now divide both sides by 7w R? and go to the limit as R approaches zero.

The fundamental theorem of the calculus enables us to conclude that g(z)=
Index (T —2z).

We have in fact proved the following

TueorEM 8.1. With z not in the essential spectrum of T, Index (T —2z)=4§,(3)=g(z—
(@ +1»)) when A is positive and both A and u®+v? are sufficiently small.

As a consequence of Theorem 8.1 we shall show that the bilinear form
(F, @)~T([F(U, V), KU, V)
on M(R?) is supported on sp, (U +iV). We first prove a lemma.

LEMMA 8.1. Let E and A be elements of M with E compact, self-adjoint and [E, A1€7,.
Then t([E, A])=0.

Proof. It is clear that we can assume that 4 is also self-adjoint and in that case it is
enough to prove that the principal function of E +1iA4 is zero. But this follows easily from
Theorem 8.1 since sp, (E +i4) has zero planar measure and for z ¢sp, (E +¢T) we have
Index (E +14 —z2l)=Index (34 —2zl) =0 since E is compact and 4 is self-adjoint.

Now suppose F, and F,€M(R?) and they define the same function on sp, (U +iV).
Since U and V commute modulo the trace ideal J,, a fortiori modulo the compact
operators, by looking at the Gelfand transform we can see that F(U, V)—FyU, V) is
compact. Since [Re {F\(U, V)—FyU, V)}, KU, V)] and [Im {F (U, V)—Fy(U, V)},
G(U, V)] are trace class the previous lemma asserts that T([F,(U, V), G(U, V)])=
T([Fy(U, V), G(U, V)]). The same reasoning applies to considering the case of two functions
G, and G, in M(R?) which agree on sp, (U +iV).

§ 9. Examples

In this section we present two different kinds of examples. The first is for rings of
type I, while the second is of type II. In the type I case, we outline a general procedure
by means of which the principal function can be computed; this procedure is valid for all



212 R. W. CAREY AND J. D, PINCUS

operators T in M with [T*, T'] trace class and enables one to associate a principal function
with certain pairs {U, V} even when [U, V] is not trace class.

The second example is more specific, yet quite interesting. For Toeplitz operators
with almost periodic symbol {, the index (hence the principal function) at z=yu +iy is
known to coincide with the mean motion of f—2z whenever f—=z is bounded below away
from zero [17]. We conjecture that g(v, u) coincides with the mean motion of f— (u+i»)
for almost all (v, u); using a result of Bohl [4] this is verified when f is a superposition of

two exponentials.

Example 9.1. Type 1.
For details and proof of the following statements the reader should consult [15].
Suppose M is a factor of type I, i.e. M= L(H) where ¥ is an infinite dimensional
(separable) Hilbert space. Let U € M°® and denote by M(U) the C*-subalgebra of M gen-
erated by the collection of operators T'€ M for which 77U — UT is trace class. Then, with
P, (U) the projection of H onto H,(U) (the absolutely continuous subspace of U), the
limits
lim e Te ®P (U)=s,(U; T)
t—>100
exist in the strong operator topology for any T' in M(U); moreover s, (U; T)€ M(TU). The
mappings T—s_ (U; T) are conditional expectations which are also *-homomorphisms of
M(U) onto the commutant of U. (Cf. [18, §2].)
Suppose V € (U)° and assume that the spectral multiplicity funetion of U, is finite
almost everywhere. In a direct integral space H in which U, is diagonal, (i.e., multiplica-

tion by the spectral variable) the operators s, (U; V) are decomposable. With
H- (o

we have

8.(U; V)=f®81(U; V)(A)da. (9.1)

Here we are identifying s, (U; V) with their restrictions to the subspace H,,(U). Of course
s,(U; V) on H,,(U)* are represented by the zero operator.
Qur assumption on the multiplicity of U,, means that dim H,; < co for almost all 4.

For any complex number ! not in sp (V) we have

5o (U3 V = D)s(Us [V —)Y) = f@mv; V1) (s (U3 [V — 11™") (A) dA.
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If we apply the usual determinant, det, we get for almost all 4,

y—1

det {s,(U; V — 1) (2)s_(U; [V~lr1></1>}=exp{fg(v,/1> ﬂ},

where g(v, A) is a dA-integrable function having compact support. If the commutator
[U, V]is trace class, then g(», 1) is the principal function of {U, V}. By choosing a suitable

branch of the argument, we have

g(v,A)=lim arg det {s, (U; V — (v + i&)) (A) s_(U; [V — (v + 1e)] ) (A)}
40
for almost all v, A. If the roles of U and V are reversed we could obtain an expression for
g(», 4) in terms of boundary values in sp (V).
For singular integral operators V of the form
- 1 k*(R) o) ()
Vx(/'l)—A(l)x(l)-Fnin P du,
where the coefficients A(A) and k() are measurable essentially bounded (with respect to
linear Lebesgue measure) operator valued functions of 4, A(4) being self-adjoint and k(4)
Hilbert-Schmidt, the symbols of V with respect to the multiplication operator Ux(1)=
Ax(4) are equal to s, (U; V){(A)=A(A)F k*(A)k(4). Thus, the principal function g(», 1) for
the pair {U, V} is given by

g(v,A) =lim arg det {[A(A) — k*(A) k(A) — (v + 1€)] (A(A) + k*(A) k(A) — (v +2€)] '}
ed0
for dA-almost all », 4.

Example 9.2. Type I1.

Let /4 denote the C*-algebra on L*(R!') generated by multiplications M, and transla-
tions T'; where M u(z)=¢(x)u(x) and T u(z)=wu(zx — A1), for w€L3(R). Let A4 be the C*-
algebra gencrated by translations on L} R+), with R+ the nonnegative reals. Observe that
after an inverse Fourier transform, a linear combination of translations > ,a, T, on L} R+)
takes the form PM = W, where P is the projection onto the Hardy space H%R!) and ¢ is

the exponential polynomial 3, a, e

. (The approximation theorem for AP(R?), the almost
periodic functions, enables one to identify W, with a sum of translation operators.)
It is clear that 4 is isomorphic to the C*-subalgebra of A generated by translations

restricted to R+, {xg+ T;zr+: AER!} where zg+ is multiplication by the characteristic func-
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tion of R*< R. The closed two-sided ideal in 4 generated by commutatorsin A is the closed
span of all finite sums >, My T, where ¢, is a function of bounded variation with compact
support in R+ and a, is in R [16]. Moreover, the algebra 4 contains W, for each almost
periodic function ¢ on R while every element in 4 can be written uniquely in the form
W4+ where ¢ is in AP(R’) and C is in the commutator ideal [16; Theorem 1].
Let 2‘;0 be the set of operators on L*(R') which have the form
> M, T;,AER, j=1,2,...,N<oo,
1I<ngN
where ¢, €LY(R), the space of essentially bounded functions which have compact support.

Consider the linear functional 7 defined on /i{,* by
0
©[S M, T;,)= f dolt) dt
—co

where ¢(t) is the coefficient of the identity translation, i.e. 1, =0. The weak closure M of
,40 is a factor which contains 4 and the linear functional z defined on ,-40 may be extended
to a faithful, semifinite, normal trace on M [17], [38]. Hence M, ={T € M: zp+ Txp+ =T}
is a type 1I, factor and the restriction of T to M, is a faithful, normal, semifinite
trace; (in fact, all such traces on M, can differ at most by a constant positive multiple).

Let JC,,,+ denote the norm closure in M, of the trace ideal.

Following Breuer [6], [7] Fred (M., J(,,,+) ={T €M, invertible mod J(,,,+}. As was
shown in [17; Theorem (2.2)] W,+C€Fred (M,, JC,,,+) if and only if ¢ is invertible in
AP(RY).

1f $ € AP(R) put

$(t) = + | $(t)| exp 2mix(t),

where the sign of +|¢()] is to be chosen for every ¢ in such a way that z becomes a con-

tinuous function of £. The function z is said to have (for {— + o©) a mean motion u if
®)jt—>u, ie., xz({t)=ut+O(t), t->oo.

The problem of the existence and determination of this constant u goes back to Lagrange’s
treatment of secular perturbations of the major planets. The existence of the mean motion
has been established for exponential polynomials by Jessen and Tornehave [25] and R.
Doss [21]. For exponential polynomials with three terms it was determined explicitly by

Bohl [4]; this result is cited below. For general exponential polynomials

$(t) = > exp (At + f)
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where 4,7, are real, a,>0 and the frequencies 1, are linearly independent over the field

of rational numbers, it was shown by H. Weyl [39] that the mean motion takes the form
1
7; (Wl 11 + W222+ con + W,,Zn)

where >, W, =1 and W, are independent of the initial phases 7.
On the other hand if ¢ € AP(R?) is bounded below away from zero, i.e. ¢ is invertible
in AP(R!), the mean motion exists and H. Bohr [5] has shown that

$(t) = exp i(ut + (1))
where w € AP(R?).

Now, if W, is a Fredholm operator so that ¢ is invertible, a simple homotopy argu-
ment shows that index Wy=pu. Thus, if ¢ €AP(R') and W has a trace class self-commuta-
tor (for instance, take ¢ to be an exponential polynomial), then the principal function
g(v, u) corresponding to W, coincides with the mean motion of (¢(t) —2), z=pu-+iv when-
ever |$(t)—z| >a, a>0 for co>t> — oo,

In particular the principal function for e;= W,z equals 4 times the character-
istic function of the unit disc.

The determination of the principal function in situations where the range of the al-
most periodic function ¢ is space filling remains unsettled, although there is some evidence
that it still agrees with the mean motion at points inside the essential spectrum. As an
illustration of this contingency, consider in detail the case where ¢ is a superposition of
two exponentials:

#(t) = a, exp it +7,) T a, exp i(dt + 8,).

For convenience we shall take 0 <2, <4,.

1f the ratio of the frequencies p =4,/4, is rational, then ¢ is periodic, its range is closed
and has zero area. Thus, the principal function being defined up to null sets, is determined
as the mean motion of ¢ on the complement of the range.

The case of interest here then is when g is irrational.

Let z=|z|exp i(arg z). We consider ¢(t)—z. Following Bohl [4], the numbers |z],

@, @, determine a triangle with corresponding angles w,(|z|), w,(|2]), ws(]2|). Define
b(z) = B, — [arg z+ 7} — (B, — [arg z + =) /g),

1
£e) =, (@slz]) +ewnllzD),

w)= 5 (= @)+ Dlarg )+ lo)-
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1t is plain that 0 <p <1 and 0<{(z)<1. If g is rational, let 9 =m/n where m and n are
relatively prime positive integers. Let H(z) denote the number of integers in the interval
(nw(z), nlew(z) +{(2)]). Finally, let h(z) be the number of integers in the set {nw(z), n[w(z) +
L)1}

Then, the mean motion of the almost periodic function ¢(t) —z equals
1 L
— (A wy(]z]) + A3w4(l2])) o irrational
7

;—;— (h(z) + 2H(2)) o rational.

When g is irrational, we shall prove that the principal function g(v, u) is almost every-
where equal to the mean motion. We do this by first observing how the mean motion in
the irrational case, i.e. ¢ irrational, is a limiting situation of the rational one. For let {4,,}
and {4,,} be sequences of rational numbers with the respective limits 4, and 1, such that
0<p,=2; [Ay=m,[n;<1. It is clear that n,—~ oo ag j— oo since g, is rational and g is not.

The mean motion for ¢,(t) —z where

$,(t) = ay exp i(Ay;t + B,) +a, exp i(Ayt +B,)
agrees with
u,(2) = (Agy/2m,) (h(2) + 2H (2)).

But, upon letting j— oo, we see that

7y

Accordingly, u,(2) = (1/7)(4, (| z]) + Ayw4(] 2|)). The sequence of principal functions {g(», u),}
1 €92 oo corresponding to the operators {W,bj} 1<j< oo likewise converge pointwise to
the values (1/71) (A, w(2) +A;w4(2)). Moreover, the fact that the sequence {g(», u),} 1 <j<oois
uniformly‘ bounded in L*(R%; d4, C) implies that the sequence {g{(», u),} 1 <j < co converges
in the weak*-topology of L®(R? d4, C).

In view of the continuity property (Proposition 5.4) the identification of g(v, u) with
(1/z) (A wql|z|) +A04(|2])) (z=p +1iv) will be settled once we establish the following lemma.

LeMwMma 9.1. The strong limit relationships

; _ Y * _ Tk
s—lim Wy, =W,, s—lim Wg =Wy,
100 >0

hold. Moreover,
lim [W;j, W¢;] =[Wi, W] (inJ,) (9.2)
F=00

Proof. The first part of the statement follows at once from the fact that 1,—~4 implies

s—lim,,qe;,=€; and e5 =e_;, for any sequence of real numbers Ay, A, .... It remains
J—>00 C4; J] 7] 1 /42
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to consider the last part involving trace class convergence of the commutators. But in
view of the considerations in the proof of Proposition 5.4, together with the preceding
remarks, in order to establish (9.2) we need only observe that
0 if A and u have the same sign
ler, e]=1 €riuXo -1 if A<0,u>0
—eiruXo. -y i A>0,u<0.

We have seen that the index group for the algebra 4 is the discrete reals. In this
connection we observe that for subalgebras A4'< 4 generated by translations in a sub-
group (G of the reals, the corresponding index group will be . One way of seeing this is
that the mean motion of an almost periodic function on R belongs to the module generated
by the corresponding frequencies. From this fact we should also expect that the values of
the principal function also lie in §. Thus, for instance if G is the group {m +nf: mu=
0, +1, +2,...; 8 an irrational number} and A, is the algebra generator by translations in
G, then the principal function map for the algebra 4, has its range in §.

Other examples of type I, factors are obtained by taking the tensor product of the
algebra M with C(}) for dim H < co. In this case the symbols are elements in 4P(R') x
L(HH) and the corresponding index is given as the mean motion of the determinants. In

this context see [18] for a treatment of algebras generated by translations on R" for n>1.
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