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w 1. Introduction 

Let X be a given set and C a collection of subsets of X which are chosen according to 

some random procedure. For each positive integer m, let Nrn equal the number of subsets 

necessary to cover X m  times. We study in this paper the distribution and expectation of the 

random variables Nm. We refer to this study as the random covering problem. 

To make the problem precise, we define the random procedure for choosing subsets of C. 

Let P be a given probability measure on the space C. Let ~ = C • ... • C x ... be endowed 

with the product measureP • ... • P • .... ~ is the sample space corresponding to the process 

of choosing independently subsets of C according to the probability law P. We assume 

that  the Nm's are measurable functions on ~ .  This assumption is readily verified in all 

ensuing examples. 

The random covering problem has been studied in the following instances, if X 

consists of a finite number of points and C is the collection of singletons, then we have the 

classical occupancy problem (see [5, chapter 4] which discusses the case where the elements 

in C have equal probability). If  X is the circle of unit circumference covered by arcs of 

length a(0 < ~ < 1) thrown uniformly and independently on X, then the distribution of N 1 

has been calculated by Stevens [10]. If X is the d-dimensional sphere (d ~ 2) covered by 

spherical caps of equal size, the centers of these caps being chosen uniformly and inde- 

pendently, then no exact formula for the distribution of ~V 1 is known (a notable exception 

occurs if the caps are hemispheres; see [7, 13]). The 2-dimensional case has an interesting 

application in virology and has been studied in [8] by certain approximation techniques and 

simulation methods. 
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Since exact formulas are difficult to obtain, it is natural to inquire whether one can 

describe the asymptotic behavior of the distribution and expectation of the Nm's as the 

size of the caps goes to 0. This is indeed the case, and we direct ourselves in this paper to 

this aspect of the random covering problem. We deal in fact with the following generaliza- 

tion. Let X be a C a connected compact d-dimensional Riemannian manifold, normalized 

so that its volume equals 1. (We say that a Riemannian manifold is of class C k, k ~ 1, 

if it is a C k manifold and the components g~s of the metric tensor are of class C k-1 in any 

admissible coordinate system. The C 4 requirement is made to insure the validity of Theorems 

2.3, 2.4 of section 2). For any two points p, qEX, we define the Riemannian distance 

5(p, q) to be the g.l.b, of the lengths of all pieeewise C 1 curves joining p to q. I t  can be 

shown that  J(p, q) is a distance function on X rendering it into a metric space [12, p. 219]. 

For any p E X  and r > 0 ,  let B(p, r)=(q[5(p,q)<r}. B(p,r) is called the open 

ball of radius r centered at p. Let C = C~, r > 0, consist of all open balls of X of radius r. 

The balls of C~ are in 1-1 correspondence with their centers, so that Cr may be identified 

with X. The Riemannian volume is a probability measure on X, which we designate both 

by v and dp. The probability measure P assigned to C~ is assumed to be the measure v 

on X via the above identification. Thus, the balls of C~ are chosen uniformly and inde- 

pendently from X. 

We relabel the random variables Nm as Nrm. Let a = (~/~/F((d/2) + 1)) rd; observe that 

a is the volume of the d-dimensional Euclidean ball of radius r [3, p. 125]. Define X~m 

by: 

N~m = (l/a) (log ( I / a )+  (d + m -  1) log log ( I / a )+  (Xrm/a)). We shall prove 

THEOREM 1.1. For each m > 0 ,  3 r l > 0  and C>0 ,  r 1 and C depending only on m, such 

P(Xrm>x)~Ce -z/s, x>~O, r<.rl, (1.1) 

P(Xrm<x)~Ce ~, x~<0, r ~ r  1. (1.2) 

THEOREM 1.2. Let E(Nrm) be the expectation o/Nrm. Then 

1 1 
log ! + E(Nrm)=~ (log~+ (d + m - 1 ) l o g  0(1)) as r-~0. (1.3) 

The point to Theorem 1.1 is that  it provides estimates for the tails of the distribution 

of Xrm which are uniform in r. As shown in section 6, Theorem 1.2 is an immediate con- 

sequence of these uniform estimates. In  view of Theorem 1.1, it seems natural to conjecture 

that there exists a limit law for Xrm as r-~0. This is indeed the case if X is the circle, in 
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which case the limit distribution can be identified [6] (see also [4] for a discrete analog 

of this result). In  general, though, the existence and identification of the limit distribution 

remains an open problem and our methods do not seem powerful enough to settle it. 

The proofs of inequalities (1.1), (1.2) are given respectively in sections 4 and 5. The 

method used for (1.1) is tha t  of diseretization. Namely, we replace X by a finite set S of 

points sufficiently dense in X and compare the probabili ty of covering Xm times with 

tha t  of covering Sm times. The discretization procedure does not seem strong enough to 

yield (1.2), and we use a different method based on moment  estimates discussed in [9]. 

In  section 2 we prove some geometrical results and in section 3 we obtain a probabil i ty 

estimate for the classical occupancy problem. These results are subsequently used to derive 

inequalities (1.1), (1.2). We employ the latter in section 6 to prove Theorem 1.2 and to 

generalize a result of Steutel [11] concerning the asymptotic  behavior of E(Nr,n), when X 

is the circle. We also obtain in section 6 results similar to Theorems 1.1, 1.2 for the family 

C~ consisting of all open balls of given volume v. I t  is shown tha t  the results for C~ follow 

readily from those for C~. 

w 2. Geometrical prerequisites 

We prove in this section various results concerning the distance function 5(p, q) 

and the volumes of the balls B(p, r). These results will be used in section 4.5 to derive 

Theorem 1.1. The proofs of some of the theorems are lengthy, especially tha t  of Theorem 

2.4, and the reader is advised to take the theorems on faith upon a first reading. We assume 

throughout that  X is connected. 

THEOREM 2.1. Let X be a C 1 d-dimensional compact Riemannian mani/old. For each 

positive integer n, 3 a set S~ o / n  points o / X  such that suppex (~(p, Sn)<Co/n -l/a, ~(p, Sn) 

denoting the distance between p and S~ and C o > 0 being a constant independent o/n.  

Proo/. We cover X by a finite number of coordinate patches (r C) ..... (r C) where 

each r is a homeomorphism from the d-dimensional cube C: 0 ~<x 1 ..... x d ~< 1 onto a closed 

subset r of X. Let gt.j~(x)dxJdx ~ be the line element for the coordinate patch (r C) 

(we are using the standard summation convention concerning upper and lower indices). 

For each i, 1 <~i<s, 3 M~>0 such tha t  

d 

g~.jk(x)~J~k<M~Z(~J)~,xeC and ~1 . . . . .  ~a arbitrary.  (2.1) 
1-1 

For x, y E C, let p = el(x), q = ~bl(y), he(x, y) = Euclidean distance between x and y, O(p, q) = 

Riemannian distance between p and q. (2.1) implies readily tha t  (~(p, q)~< ] / ~ i e ( x ,  y). 
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Assume n>~s and let m=[(n/s)lle], [a] denot ing  the  gretes t  integer  ~<a. Le t  L be the  

set of m ~ points  (il/m . . . . .  id/m), 0 ~<i 1 ..... i~, ~<m -- 1. Then ~(x,L) < V[1/m, Oe(x,L) being the  

Eucl idean distance between x and L. {.J~=Ir consists 'of k points,  k<.m~s. Add to 

L U~=1r ) an a rb i t r a ry  set of ( n - k )  points  and  call the  result ing set Sn. Any  poin t  

p E X is contained in some r Since (n/s) lid ~ 2m for n >~ s, we obta in  suppG x~(p, Sn) <~ c/n l/e, 

n>~e, where c=2slJa(d Maxl<~<~l/M~. For  1 ~< n<s,  choose Sn to be an a rb i t r a ry  set of n 

points  and set cn = n  1/~ s u p ~  ~(p, Sn). Theorem 2.1 then  follows by  let t ing C o = M a x  (c, 

C 1, . . . ,  C s _ l ) .  

THEOREM 2.2. Let X be a C 1 d-dimensional Riemannian mani/old. For each positive 

integer n, 3 a set S n o / n  points o / X  such that 

Min (~(p, q) >1 C1/n l/d, 
p, qeS 
P * q  

C 1 > 0 being a constant independent o/n. 

Proo/. Let  (r C) be a coordinate  pa tch  on X, C being the cube: 0~<x 1 . . . . .  x~-~<l and  

let g~jdx~dx j be the  corresponding line element.  Choose M > 0 so t h a t  

e 

gtj(x)~'~J>~M~(~)2, x e C  and ~1 . . . . .  ~e arb i t rary .  (2.2) 

Let  m = [ n l l e ] + l  and L the set of m s points  ( i , / (m+l)  ..... ie/(m+l)), 1 <~i 1 ..... id<~m. 

Then (i) ~e(X, y)>~ 1/(m + 1) for x, y EL and x:#y, (ii) Be(x, ~C)= 1/(m + 1) for xEL and aC 

the boundary  of C. Le t  Sn consist of n dist inct  points  of r Supposep  = r q = r E Sn, 

p~q .  Let  F be any  piecewise C 1 curve in X joining p to q and I(F) its length. I f  F = r  

then  (2.2) and (i) imply  I (F)>/V~I/(m + 1). I f  F r r t hen  F meets  r and (2.2), (ii) 

imply  I(F)/> VM/(m + 1). I t  follows t h a t  8(p, q) ~ VM/(m + 1) >~ �89 VM n -lId for p, q E S~, 

p =~q, and Theorem 2.2 is p roven  with the  choice C1 = �89 ~/M. 

In  the sequel we, v(p, r) denote respect ively ~e/2/F(d/2 + 1), v(B(p, r)). The following 

l emma will be required in the proof of Theorem 2.3. 

LEMMA 2.1. Let G(a) and n x n symmetric matrix valued /unction o~ class C k, b >1 O, 

on the m-dimensional open set A. Suppose that the associated quadratic/orm ~'G(a)~ is positive 

definite in ~ /or a e A .  Then 3T(a) o/class C k such that T'(a)G(a)T(a)=E, a e A  (E denotes 

the identity matrix and T' the transpose o /T) .  

Proo]. For  n = 1, G(a) is a posit ive n u m b e r  and  we choose T(a)= 1/~/G--~. Suppose the  

l emma holds for n. We  show t h a t  i t  holds for n + 1. Le t  G(a)=[g~j(a)], 1 <~i, j<~n + 1. 
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Since 2'G(a)~ is positive definite, gll(a) > 0  for  aEA.  Let  ~1 : V~ll (21 ~- (g12/gll)2 2 ~-... -}- 

((gl,~+~)/gl~)~+~), ~ = 2 ~ , 2 ~ < i ~ < n + 1 .  Let  # = ( ~  ..... ~+1). Then ~'G(a)2=~+~'H(a)~ 

where H(a) is a symmetr ic  matr ix  of class C ~ on A. Sett ing ~ =0 ,  we find tha t  ~'H(a)~ 

is positive definite in ~], a e A. Hence ] n • n matr ix  S(a) of class C ~ such tha t  S'(a) H(a) S(a) -- 

E , a ~ A .  Let  ~1=$~, ~=S(a)~, where ~=($e .. . .  ,~+~) ,  and let v = ( ~  ~ .. . . .  Sn+~). Then 

2 = T ( a ) v ,  where T(a)~C ~ on A. We have v'[T'(a)G(a)T(a)]v=~'G(a)2:~'E~, for a e A  

and  all ~, so tha t  T'(a)G(a)T(a)=E, a~A.  

T H ~ O R E M 2.3. Let X be a C 4 d-dimensional compact Riemannian mani/old. 3 numbers 

s, R > 0 such that 

]v(p,r)--mdrd] <~Cr d+l, p E X  and r < R ,  (2.3) 

i.e./or small radius, the volume o[ a ball in X is almost that o /a  Euclidean ball o/the same 

radius, (2.3) giving a uniform bound ]or the di]]erence. 

Remarks. (1) Theorem 2.3 is a special ease of Theorem 2.4. The proof of the lat ter  is 

however  more complicated and introduces extraneous notions. We therefore first present 

a proof of Theorem 2.3. (2) Examina t ion  of the proof reveals tha t  the term r ~§ m a y  be 

replaced by r d~'z, if X is assumed to be of class C 5. The above est imate suffices however  

for our purposes. 

Proo/o/ Theorem 2.3. Let  I ,  J be the respective cubes, - 1 ~ x t . . . . .  x ~ ~ 1, - 2 ~ x 1 . . . . .  

x d ~< 2. We choose a finite number  of coordinate patches (r J )  .... , (r J )  such tha t  r 

.... q~(I) cover X. Let  g~j(x)dx t dx j be the line element for the coordinate patch  (r J) .  

The g,j's are C a functions on J ,  and the Christoffel symbols 

((g~) is the inverse matr ix  to (gtj)) are C ~ functions on J .  Let  x(a, ~, t) be the solution 

to the differential equations 

d2 x ' ~ dx j dx ~ 
dt ~ + Fjk(x)~/~ -dr- = 0 (2.4) 

satisfying the initial conditions x(0) =a ,  (dx/dt)(0) =2;  thus x(a, 2, t) is the geodesic emanat-  

ing from a with initial velocity ~. Let  I xl = M a x  ([ xl[ ..... I x~l). I t  follows from s tandard  

theorems in differential equat ions ([2], chapter  1) tha t  3~1=0 such tha t  x(a, 2, t )EJ  

and is C 2 for la[ <~], 12[ <1 ,  It I =2z  1. x(a, 2/Q, sit) satisfies (2.4) with initial conditions 

x(O)=a, dx/dt=2, so tha t  x(a, ~, t )Eg and is C 2 for lal < i ,  121 <el ,  It[ <2 .  
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Set x(a,})=x(a,}, 1) for la[ <a, Then x(a,O)=a and x(a,~)eC ~ for la[ <~,  

I } I < ~1. Le t  e~ be the vector  with components  5~, 1 ~< i, i ~< d. We have 

Ox dx dx 
O}-- ] (a, O) = dr- (a, e~, t l)] ,=o = ~ (a, e~ t) I~=a = e,. (2.5) 

I.e�9 ax{/a~J(a, O)=~, 1 <. i, i <~ d. The Jacobian ](a, ~)=a(x  1, ..., xa)/a(~ 1 ..... ~d) E C 1 and 

~(a, 0 ) = 1  for lal <~,  I~l <e~. Hence ~ 0 < e 2 < ~  , such tha t  ](a, ~ ) > 0  for aeI ,  I~1 <~2. 
Thus x(a, ~) is 1 - 1 on I~[ <ca provided a e I ,  and ~ serves as a local coordinate a t  el(a). 

The  length of the geodesic x = x(a, ~, t), 0 4t~< 1, equals | / ~ ( a ) ~  ~. For a ~ I ,  I~1 <ez, 

i t  is known tha t  this length =(~(p, q) where p =r g=r ~)), [12, p. 310]�9 Le t  R 1 = 

Mm,~rl~l>~J/g,~(a)~. If  aeI ,  r<R~, then  ~(a)~<-.~r a I~[<ea.  I t  foUows tha t  

g~(a)~ ~ <r a is the description of the ball B(r r) in the ~ coordinates. Le t  G(x)= 

Igor(x)], h(a, ~) = Vdet G(x(a, ~))/(a,  ~). We have 

v(qll(a),r)= fgtj(,)~tr h(a,})d} , aEI and r<R.  (2.6) 

By  Lemma  2.1 3 T(a) of class C a on J ,  such tha t  T'(a)G(a)T(a)=E. Let  ~ = T ( a ) ~ .  

(In section 5 ~] will be referred to as a local normal  coordinate  a t  r ]det  T(a)l = 

1/Vd~--~(a] = 1/h(a, 0) and ~.6) becomes 

v(r fl k(a,~l)d~h aEI and r<R~, (2.7) 
DTII~ r 

where k(a, 7) = h(a, T(a)~)/h(a, 0), I]~[[ a = ~ - 1  (~,)2�9 k(a, ~) e C ~ for  {a I < ~, Ilvll < R,, and 

k(a, 0) = 1. I t  follows tha t  3 0 < R'I < R1, 6' 1 > 0 such tha t  

] ~ ( a , v ) - l l < c ,  JJvll, a e I  and Iivl]<R',. (2.8) 

Let  C'1 =d/(d+ l)o~dC1. (2.7), (2.8) yield 

Iv(q~,(a),r)-wardl=] f (It(a, ~ / ) -  1)dr/I <~ Cx f ]lrl]]drl=C',r a+', (2.9) 
dl I~l[~<r J IPTll~<r 

aEI  and r<R'l. 

Similarly, we prove (2.9) for r 14i<~s, replacing C'1, R'I respectively by  C', R'~. 

Since r ..., r cover X, we have proven (2.3) with the choice C = M a x  (C'1 . . . . .  C~), 

R =Min (R'I, ..., R's). 

We establish several lemmas which will be required in the  proof of Theorem 2.4. 

In  Lemma 2.2, v denotes Euclidean volume. 
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LEMM), 2.2. Let A,  B be two d-dimensional Euclidean balls o/radius r > 0 .  Assume that 

the distance e between the centers satis/ies 0 ~ e <~ 2r. Then 

v ( A -  B)=  2Wd_lfi'2(r2--X~) ̀ a-1)/2 dx, (2.10) 

(Dd- 1 rd- 18 ~.~ v(A - B) <~ eo~_ I rd - 18. (2.11) 

Proo/. We m a y  assume t h a t  A, B are centered respect ively a t  0 and  p = (e, 0 . . . . .  0). 

Le t  S = A  N B N {xixi>~e/2} =A  N {xixl  >~e/2}. A N B is symmet r i c  with respect  to the 

hyperp lane  xi =e/2,  so t h a t  v(A N B)=2v(S).  Hence 

v ( A - B )  = v ( A ) - v ( A  N B) = v ( A ) - 2 v ( S ) = v { x [ x E A ,  [Xl[ <~} (2.12) 

Since v ,x lxEA, lXl[  <~ = d _ 1 3  0 (r2-x2)'d-')'"dx, we have  proven  (2.10). 

F rom (2.10), we get 

v(A - B) <- cod_lrd-le (2.13) 

which is the  r ight  inequal i ty  of (2.11). We now prove  the  left inequal i ty  of (2.11). For  

0 <~2x <~e <~ V3r, r 2 - x  ~ ~r~/4, so t ha t  (2.10) gives 

For  |/3 r<e<2r ,  

(Dd I rd IE. v(A - B) >t 2a I 

cod ira J(V3r) cod !ra 1 e 
v(A - B) ~ -2-d- 1 ~ 2d . 

(2.14) 

(2.15) 

Thus  in ei ther case v(A - B )  >1 (~oa- 1/2 d) r d le. 

The  following l emma is a global version of the Impl ic i t  funct ion theorem. 

LEMMA 2.3. Let A be a d-dimeneional open set. Let a, 7, /(a, 7) be d-dimensional vectors, 

/(a, 7)eC~(k >J l) /or aEA,  117H < r  ( r>0) .  Suppose that the Jacobian ] (~/'/~7~)(a, 7)I =4=0, 

aEA and 11711 < r. For any open set A o with compact closure contained in A,  3 5(Ao) > 0  such 

that x=/(a,  7) has a unique solution 7=g(a, x) whenever aEA o and IIx-/(a,  0)11 <5(A0). 

Furthermore g(a, x)E C k/or a E Ao, ]]x- /(a, 0)11 < ~(Ao). 

Proo/. Let p E A .  Since ](~/'/~qJ)(a, 7 ) ] ~ 0 ,  a EA and 117U < r ,  we conclude f rom the 

Impl ic i t  function theorem t h a t  3(~p>0 such t h a t  x=/(a,  7 ) has a unique solution 7 =  
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g(a, x), provided Ila-Pll, IIx-l(p, 0)11 <a,, a(a, ~) being C k for these values of a, x. Choose 

0 <5~ <&p so that  I]a-pll <5'p., Ill(a, O)-](p,  0)H <5~/2. Then Ha-pll <5'p, IIx-/(a, 0)H < 

(~p/2 -~ [[a-pl I <(~p, [[x-/(p, 0)11 < ~ .  I t  follows that  x=/(a,  ~) has precisely one solution 

=g(a, x), provided Ila-pll <(~'~, IIx-/(a, 0)1 [ < ~J2, and that  g(a, x )eC k for these values 

o f  a ,  x .  

By the Heine-Borel theorem, A o is covered by a finite number of balls B(pl, (~'~) .... .  

B(p~, ~'p~). Let ~(A0)=Min [�89 ..... �89 Then ~1 =g(a, x) is the unique solution x=/(a,~), 

whenever aeAo, IIx-/(a, 0)]] <~(Ao) and g(a, x )eC k for aeAo, IIx-](a, 0)H <~(A0). 

LEMMA 2.4. Let x, /(x) be d-dimensional vectors,/(x) being C I and I~/l/OxJ(x)] ~ 0  on 

Ilxll ~<r, r>0 .  Let m=Inflw~ll=~ II/(x)-](O)l I >0. Then image o~ the ball B(O, r), under the 

mapping y =/(x), contains the ball B(/(O), m). 

Proo]. Assume, without loss of generality, tha t / (0)  =0. Let S be the image of B(0, r) 

under the mapping y=/(x).  We prove the following proposition ~). If bES and ]]bll <m, 

then B(b, (m-I[b[[)/2)~S. Let yEB(b, (m-[[bll)/2) and set g(x)=li/(x ) -y l l  2. g(x) is c x for 

]lxll<r. Now b=/(c), where Ilcll <r .  Thus g(c)= IIb--Yll~<((m-Ilbll)/2) ~. For Ilxll =r ,  

llg(x)ll ~> (m -Ilbll  - l i b  - YlI)~ > ((m -II bll)/2)~. W e  conc lude  t h a t  g(z) at ta ins  its minimum 

on I1~11 ~< r at some interior po in t  p,  I lPll < r. H e n c e  (Og/ax') (p) : 0, ~ ~< j ~ d. W e  have  

d a / '  , 
.~ ~xj(p)" (/~(p) - y~) -- O. (2.16) 

Since ]Of/OxJ(p)]:V(), we conclude from 2.16) that  y'=/'(p), l<i<~d. I.e. y=/ (p )eS ,  

thus proving ~). 

Since 0ES, ~) asserts that  B(O,m/2)cS .  Suppose that  B k = B ( O , m ( 1 - ( 2  k ) ) c S  

for some positive integer k. Let yEB~.I .  Then z=(2 k§ -2)y/(2  k+~ - 1 ) E B  k. (m-]lzll)/2> 

m2 ,k.,i), Ily-zll =[[yl[/(2k+i-1) <m2-(~+1). Hence [[y-z[[ < (m-UzH)/2, and we conclude 

from ~) that  yES.  Thus Bk+icS,  and by induction B k c S ,  1 ~<k< cr I t  follows that  

B(O, m)= U 1~%1 B ~ S .  

THEOREM 2.4. Let X be a C 4 d-dimensional compact maul]old. Let v(p,q, r )=  

v[B(q, r ) -  B(p, r)]. Let ve(p, q, r) be the volume o/ the di//erence o/ two Euclidean balls o/ 

radius r, the Euclidean distance between their centers equalling 5(p, q). 3 numbers C, R > 0 

such that 

Iv(p, q, r)-v~(p, q, r)l < Crd~(p, q), ~(p, q) < 2r and r < R. (2.17) 

Remark. Dividing 2.16) by ve(p, q, r) and using the left inequality of 2.11), we obtain 

limr-,o v(p, q, r)/ve(p, q, r )=  1 uniformly in all pairs p, q satisfying 0 <(~(p, q)~< 2r. 
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Proo]. We imitate the terminology and reasoning used to prove Theorem 2.3. Thus 

we choose coordinate patches (r J) ..... (r J)  such that  ~1(I) ..... r cover X. For 

the coordinate patch (~1, J), 3 e > 0  such that  x(a,~) is a C ~ function whose Jacobian 

I~xt/O~ j] >0 for la[ <~,  [~[ <e. Then3Rl>Osuchthatx(a,T(a)~)isC2forla  [ <~, [Iv/]l <R1. 

Rename x(a, T(a)~) as x(a, ~) and let ](a, ~/)= [ax~/@J[. Then i(a, ~/)e C 1, j(a, 0 )=de t  T(a), 

i(a, V)~=0 for Ilall < ], II~ll < R~. Hence x(a, ~) is 1 - 1 on II~/[I < R1, provided [a ] < ~. Observe 

that  for these values of a, ~/, ~[r r ~))] = [[~[[. 

For [ a ] < ~, r > R~, B(r r) is described in the ~/coordinates by the Euclidean ball 

B(r)=(~lll~ll <r}, and in the x coordinates by x(a, B(r)), x(a, B(r))denoting forgiven zr 

the image of B(r) under the mapping x =x(a, ~). Since x(a, 0) =a ,  we may choose 0 < R~. < R~ 

so that  IIx(a, 3)11 <~ for [a[ <~, 1131i <R~. Then y(a, v, ~1)=x(x(a, 3), ~) is C ~ for ]a] <~, 

113[[, Ilvll < R~. :For p = r  q =r 3)), we h a v e  

v(p,q,r)= f~(~,~.,(~),_~(~. ~(~)) t /d~(~)d~,  lal<~,ll3ll,r<R~. (2.18) 

We express the above integral in the z/ coordinates. By Lemma 2.3, 3(~ > 0 such that  

x=x(a, ~) has a unique solution ~ =x-l(a, x) satisfying I1~11 < R~, provided la I <~, ]l x - a l l  <(~, 

x-l(a, x) being a C 2 function for these values of a, ~. Since y(a, 0, 0) =a,  we may choose 

0 < R s < R  ~ so that  Ily(~,3, n)-all<O if [ a l <  ~, 113[[, H < R 3 .  Hence z(a, 3,~/)= 

x-l(a, y(a, 3, ~7)) is C ~ and Iz(a, 3, ~)l <Rz, I~z'/@'( a, 3, v)[ #o for lal <b IM[, I1~11 <Rs. 

Since y(a, ~, O)=y(a, O, ~)= x(a,~) and x-l(a, x(a, ~/))=~/whenever lal <~, 11311, H <Rs, 

we have z(a, 7, O) =z(a, O, ~]) =~t. 

For lal <~, 11311, r<R~, we write 

y(a, 3, B(r))-x(a, B(r)) =x(a, z(a, 3, B(r)))-x(a, B(r))=x(a, z(a, 3, B(r))-B(r)). 

(2.19) 

By the change of variables formula, (2.18) becomes 

v(p,q,r)= fz .k(a,~)d~la[< ~, H3H, r < R  s (2.20) 

where k(a, ~) =Vdet G(x(a, ~?)). I~(a, 7) 1 and where z* = z(a, 3, B(r)) - B(r). Observe that  

k(a, O) = Vd-~ G(a). I det T(a). I = 1. 
Let E(3, v/)=3 +v/and E* =E(v, B(r))-  B(r). Then 

v~(p, q, r) = f z* d~. (2.21 ) 

17 772903 Ac:a mathematica 138. Imprira6 le 30 Juin 1977 
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Let l(a, ~)=k(a, r i ) -  1. l(a, ~) is C 1 for la] < ~, 11 11 <R1. (2.20), (2.21) give 

v ( p , q , r ) - v e ( p , q , r ) = [ f z k ( a , ~ ) d ~ - f z . k ( a , , ) d , ] + f ~ . l ( a , ~ ) d , = I i + I ~ ,  (2.22) 

where p=~l(a), q=q~l(x(a, 3))and lal  ll3ll, r<R./2. 
We estimate 11, 12 . We first establish the bound (2.28) for the Euclidean volume of 

the symmetric difference of z(a, 3, B(r ) ) -  B(r), E(3, B(r ) ) -  B(r). 

Applying the mean value theorem to z~(a, v, ~) -zt(a, O, ~), we get 

z,(a, 3,v/) = , , +  3, + J=,~ t-Oz' ] [~xxJ(a,0t~,~)--5~ 3 j, l ~ i ~ d ,  (2.23) 

where 0 ~<01 ..... 0a ~ 1. 

Now z(a, 3, O)=3 -* az~/~vJ(a, 3, O)=~, 1 <~i, j<.d. Since z(a, % ~) is a C 2 function, 

we conclude from (2.23) that  30 < R 4 < R3/2 , 0 < C 1 such that  

]]~H(1-clll3]l)<]lz(a, 3,~)-3]l<ll~ll( l+CllMD, la[ < 1, ]]'rl[, II~/l[ < R, (2.24) 

The right inequality of 2.24) implies 

z(a,% B(r))=Z(% B(r')) lal  < l,  11311, r < R, (2.25) 

w h e r e  r' = (1 § Clll311)r- 

We conclude from the left inequality of (2.24) and Lamina 2.4 that  

Z(3, B(r"))cz(a, 3, B(r) [a I ~< 1, 11311, r < R, (2.26) 

where r" =Max (0, [1 - C~H3]l]r). 

Let UAV denote the symmetric difference of the sets U, V. (2.25), (2.26) give 

z(a, 3, B(r))A~ (3, B(r))~ ~(~, B(r '))-E(3,  B(r")). (2.27) 

The Euclidean volume of Z(3, B(r ' ) ) -Z(3,  B(r"))=wn((r')a-(r")a)<.Cz]lv]lr ~ where 

C 2 = 2deoe C1(1 + C 1 R4) d-1. Hence 

ve[z(a, T, B(r))A~(3, B(r))] < c~H3Hr a la[ <~ l, 11311, r < R 6 (2.28) 

where v, denotes Euclidean volume. 

With the aid of (2.28), we readily estimate 11. Let U, V, W be d-dimensional measur- 

able sets and [(x) integrable on UU V. Since U -  W - [ V -  W ] = [ U -  g ] -  W c  U -  V, 

we obtain 

(2.29) 
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l(a, 0 ) = 0  and l(a, 7 ) i s  C ~ for [a I <} ,  17] <RI" Hence 3 C s < 0  such tha t  

II(a,7)l < callTII lal <~ 1, 11711 < Ra. (2.30) 

Since II~(a, ~, 7)11, IIZ(~, 7)11 < R ,  for lal < 1, IMI, 11711 < R,, we conclude from (2.28)- 
(2.30) t ha t  

IZll < C,(CaR~+l)llrllr a, lal -< 1, I1~11, ~ < R,. (2.31) 

Lemma 2.2 and (2.30) imply 

Iz21 < ca~-l(l l~ll  +r)[13l[ r~-I lal < 1, 11311, r < R,. (2.32) 

Le t  C a = C~ + C 2 C a R 2 + 3Caoga_ 1. We conclude from (2.22), (2.31), (2.32) t ha t  

Iv(p,q,r)-vAp, q,r)l<<-C, llTIIr'=Cor'O(p,q) lal<l,  ll3ll<--.2r<R,, (2.33) 

where p = ~l(a), q = q~l(x(a, 3)). 

Rename Ca, R J 2  as C'1, R'1. (2.33) can also be established for each coordinate  pa tch  

(~ ,  J) ,  1 ~<i ~<s, replacing M'~, R't by  M'I, R'I. Since r . . . . .  ~s(I) cover X, we have proven 

(2.17) with the choice C = M a x  (C'~ . . . . .  C~), R = M i n  (R'I . . . . .  Rs). �9 

w 3. A probability estimate |or the classical occupancy problem 

We derive in this section the following estimate,  of some independent  interest,  which 

will be used in the proof of inequal i ty  (1.2). 

THEOREM 3.1. Let N balls be thrown independently at n urns labelled, 1 . . . . .  n. Assume 

that /or  every throw the probability that the ball /all  into the ith urn =p~ where p l  +.. .  +Pn <- 1. 

The probability that all urns contain balls <- YI~-I (1 - ( 1  -p~)U). 

Proo]. We say tha t  i is hi t  if the  i th  urn  contains a ball. Then 

P(i4- 1 . . . . .  n are h i t ) =  I~ P(i4- 1 is h i t ] l  . . . . .  i are hit). 
t ~ 0  

We prove 

(3.1) 

P ( i + l i s h i t l l  . . . . .  i a r e h i t ) < ~ P ( i + l i s h i t ) = l - ( 1 - 1 a ~ + l )  N, l <<.i<<.n-1 (3.2) 

(3.1) and (3.2) imply the theorem. We rewrite (3.2) in the equivalent  form 

P(i  + 1 is not  hi t  11, ..., i are hit) >~ P(i  + 1 is not  hit), 1 ~< i ~< n - 1 (3.3) 
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For  any  t w o  events A, B of positive probabil i ty,  we 

P(AB)  >-P(A)P(B) ~=~P(B]A)>~P(B), so tha t  (3.3) becomes 

P(1 .. . . .  i are h i t [ i + l  is no t  hit) ~>P(1 . . . .  , i are hit), 

have P(A [B) >~P(A) r 

l <<.i <~n-1 (3.4) 

Let  P(i, N; Pl . . . . .  Pn) = probabi l i ty  t h a t  urns 1 .. . . .  i, 1 ~< i ~< n, are hit  in N idependent  

throws, given tha t  on any  throw the j th  urn  is h i t  with probabi l i ty  pj, 1 ~<j ~<n. We m a y  

rewrite (3.4) as 

P(i, N; q~ ..... q,_,) >~ P(i, N; p l  .. . .  , p , ) ,  1 ~< i ~< n - 1 (3.5) 

where ql ..... qn-lare the numberspl / (1  -P,+I) .... ,p~/(i-pt+x),p~+2/( 1 -P ,+ I )  .... ,p, /(1 -P~+I). 

(3.5) is proven as follows. Let  nj  = probabi l i ty  t ha t  precisely j of the N th rown balls fall 

into the (i + 1)th urn. Then 

N 

P(i ,N;px  . . . . .  Pn)=  ~ g j P ( i , N - j ; q l  . . . . .  q n - 1 ) ,  1 < ~ i < n -  1. (3.6) 
1=0 

Since P(i, N; ql ..... q,) clearly increases with N, we conclude from (3.6) t ha t  

N 

P( i ,N ;p l  . . . . .  pn)<~ ~ ~P( i ,N ;q~  . . . . .  qn_~)=P(i,N;q~ . . . . .  q~_~), l<<.i<~n-1. (3.7) 
1=0 

thus proving Theorem 3.1. �9 

w 4. Proof of inequality (1.l) 

Let  eoarn=l/e,  n(r)=[(1/o~)(log(1/a))a], 0 < r < r : ,  where a=eoar ~. Since a~<l/e, we 

have (I/u)(log (1/:r d >~e and n(r)>/2. Choose S = S n  to  be a set consisting of n(r)points of 

X satisfying the requirements of Theorem 2.1, denote  these points  as Pl .... ,p , .  Let  N'Tm = 

number  of open balls of radius r which need to be th rown to cover Sm times. For  each 

positive integer N, the event  [N'Tm > N ]  means tha t  some point  p ,  has no t  been covered 

m times in the first N throws. Since p, EB(q, r) iff qEB(p,,  r), we conclude t h a t  the pro- 

babil i ty t h a t  p,  be covered precisely j t imes in first N t h r o w s = ( ~ ) a ~ ( 1 - a t )  N-j, where 

oq=v(p,, r). Hence the  probabi l i ty  t h a t  p,  be covered < m  times in first N t h r o w s =  

~_~I(~) ~ ( I  - ~,)N-J, and 

P(N'rm > B) < a{(1 - a i )  N-j ~< 5 e-'*N. (4.1) 
,-1 j -o  \ )  / ,-x j -o  

According to Theorem 2.3, we m a y  choose 0 < r~ < r 1, C > 0 so tha t  

l : q - ~ l  <Cl~( a+l)/~, ~i<2r162 f o r l ~ < i ~ < n ,  r<.r~. (4.2) 
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I t  follows tha t  if N~  i> �89 r < r e, then 

Let  

P(N'~m > N) < 2"-Xen(No~m-le-~N exp (CI(No~)o~lld). 

i )  N = I  l o g - -  ( d + m  1) log log  + x  , x>~0. 
0~ 6 r  

(4.3) 

(4.4) 

We have P(N'rm>N)=P(N' , ,>[N]) .  For  ~ > l / e ,  x~>0, [N]o~>~Na-a>~e-1. We m a y  

therefore insert  [N] into (4.3) and obtain 

P(N'.~ > N)  ~ 2~-aeSn(N~)'n- le -~N exp (CI(N~) aa/a) 
m - 1  

<~ 2m-le e-x exp (Cx (Ne) ~11a) 1 

for x>~O, r<<.r2. 

Choose 0 < r a < r 2 so t h a t  

(4.5) 

exp (Cx(Na)aa/d) ~ 2eX/2, for r ~< r 3 

Then 

P(N'~m > N) ~ (2me 2) e- x/2 log 1 

tA, 

(2me 2) (d + m + x)  m-1 e -x/2 ~ C2e -xl4, 

(4.5) 

x ~ 0 ,  r<~r a, (4.7) 

where C~ = 2me z sup {(d + m + x) ~ -1 e-X/4}. 
0~<x<ao 

Now 

n " ~ ~ - - I ~  d 1 as r -*0 .  
log ~ log r - 

I t  follows t h a t  we m a y  choose O<r4<rs, so tha t  Q=r-Con- l /a>O for r<.r4, C o being 

the constant  appearing in Theorem 2.1. Let  o~ =o~j  e, fl =wa~ ~. I n  view of Theorem 2.1, if the 

balls of radius Q cover Sm times, then the balls of radius r cover X m  times. Hence Nrm <~N'em 

and 

P(Nrm > N) <~ P(N'qm > N) (4.8) 
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Let  l ( : t )=(1/~)( log ( 1 / o t ) + ( d + m - 1 )  log log  (1/~t)) and define 

We express fl in the terms of r, and y in terms of r and x. We have 

d 0 1 

We eonelude f rom (4.10) by  s t raightforward computa t ions  t h a t  

[ 0 1 

which in tu rn  yields 

so tha t  

y by  the relat ion 

(4.9) 

r -~0 .  (4.10) 

(4.11) 

i1~ 
l(fl) = 1(~)+ 0 ( ~  I ,  (4.12) 

( )) y = O ( 1 ) +  1 +  -~ x as r ~ 0 .  (4.13) 

We m a y  therefore choose 0 < r a < r4, C 8 > 0 so tha t  

y > X  2--C3, (4.14) 

provided r<~r 5. I f  x~2Ca,  then y>~0 and we conclude from (4.7), (4.8), (4.14) t ha t  

P ( N . n  > N)  <~ C~ e -y/4 <~ C 2 eC'/4 e -xjs (4.15) 

for x >~ 2C 8, r ~< r 5. 

For  0 < x ~ 2Cz, P(N~m > N)  ~ 1 <~ eC'/4e - x/s. I t  follows t h a t  

P(N,~  > N)  ~ C4e -~/s, x>~0, r ~< rs, (4.16) 

where C4=e c'/4 Max (1, C2). Renaming  C 4, r 5 as C, % we obtain (1.1). �9 
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w 5. Proof o! inequality (1.2) 

Our derivation will be based on the lower bound (5.1) for P(Nrm>N).  As mentioned 

in the introduction the measure space C~ can be identified with X so tha t  ~ can be identified 

with X • X • • X • The probabili ty measure on ~ ,  denoted by  deo, is then the product 

dp • dp • ... • dp • .... where dp is the Riemannian volume measure on X. The points of 

are denoted by  co. 

THEOREM 5.1. Let #(w)=volume o/the set o/points o / X  not covered m times in the 

/irst N throws. Then 

P(Nrm > N) ~ E2(#)/E(# 2) (5.1) 

E(#), E(/~ 2) denoting respectively the expectation o/]u and/~2. 

Proo/. We reproduce the proof found in [9]. Let 

1, if X fails to be covered m times in first N throws 

~(eo) = 0, otherwise 

Observe that  g(eo)=/~(m)r For if ~b(eo)=l, then this equation becomes /~(eo) = 

g(w), and if r =0,  then ~(eo) = 0  so tha t  the equation becomes 0 =0.  Applying Schwarz's 

inequality, we get E2(g)<~E(g~)E(~). But  E(~)=probabi l i ty  that  X fails to be covered 

m times in first N throws =P(Nrm > N), thus proving (5.1). 

We derive next expressions for E(/~), E(#~). 

THEOREM 5.2. 
m~l(N / 

E(p) = t~o \ i / f x (v(p, r)) j (1 - v(p, r)) N- ~ dp (5.2) 

Proo]. Let p E X, eo E ~ and define 

1, if p is not covered m times in first N throws 

~(p, w) = 0, otherwise 

Then/~(eo) = Sx r r and, by Fubini 's  theorem, 

E(~)=fxfr p. (5.3) 

We have however 

fQ~(p,  dw is covered times in first N (D) P(p not m throws) 

= ~ ( v (p , r ) ) ' ( l - v (p , r ) )  ~-~. (5.4) 

Substitution of {5.4) into (5.3) yields (5.2). 
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T H E O ~ . ~  5.3 Let v ( p , q , r ) - - v [ B ( q , r ) , B ( p , r ) ] , w ( p , q , r ) = v [ B ( p , r )  N B(q,r)]. Then 

= f r o  (v(p'r))~(v(q'r))J(1 - v ( p , r ) - v ( q , r ) ) N - ~ - J d q d p  

(v(p, q, r) )' (v(q, p, r) ) j (w(p, q, r) ) k 
+ ~ i ! j ! k ! ( N - i - j - k ) !  q)<2r 0~1+ k, J+ k ~  rn--1 (p, 

• (1 - v(p, r) - v(q, r) + w(p,  q, r))N-~-J-kdqdp (5 .5 )  

the indices i, j, lc in the second sum being >~ O. 

Proo/. /as(o)) = f x f x r162 so that, by Fubini's Theorem 

L L L r o)) r  )do)@dq. (5.6) 

Now 

f n r  do) = P (Both and are not covered m times in first N throws). O)) r  6O) P q 

(5.7) 

The above probability can be computed as follows. Suppose that  of the first N balls 

thrown on X, i of the centers be in B(q, r) - B(p,  r), ~ in B(p,  r) - B(q, r), k in B(p,  r) N B(q, r) 

Then both p and q are not covered m times in first N throws iff i+k ,  ~+k~<m-1 .  I t  

follows that  

f n  /V~ r  o)) r (q, o)) do) = 0 < .  ~ . ~  k< ~ -  1 i! i! k! ( N  - i - i - k)! 
(v(p, q, r)) ~ (v(q, p, r)) ~ 

• (w(p,q,r))k(1 - - v ( p , r ) - - v ( q , r ) + w ( p , q , r ) )  N-~-~-k. (5.8) 

Observe that  for ~(p, q)>2r,  v(p, q, r)=v(q,  r), w(p, q, r )=0 .  Thus in this case, the 

sum in (5.8) simplifies to 

Nt 
i! j! v(p,r))~(v(q,r))J(1 - v ( p , r ) - v ( q , r ) )  N-t-~ (5.9) 

0<,.j~<m-1 i ! ( N -  i -  

Substituting (5.8), (5.9) into (5.6), we get (5.5). �9 

We designate respectively the two sums appearing in the right side of (5.5) as ~1, ~ ,  

so that  E(# ~) = ~ l  + ~ .  In the sequel, C denotes a" generic positive constant depending 

on ly  oil m.  
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THEOREM 5 .4  (i) ~ 0  such t h a t  

~l~E~(~t), for r~<e, 

(ii) 3e > 0, C > 0 such that 

:2< ~(Na)m-~ fx(1-v(p,r))Ndp, 
Proo/. (i) Squaring both sides of (5.2), we get 

1 

for r < e, Na >~ l. 

E:(~)  = 
O<~t,]<.m-1 
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(5.10) 

(5.11) 

(~) (~) f x f x(v(P,r))~(v(q,r))~(1-v(p,r))N-~(1-v(q,r))N-Jdpdq. 

with similar expressions for log ( I - a - y ) ,  log ( 1 - 2 a - x - y ) .  I t  follows that the first 

bracketed term of (5.15)=a2(1 +O(al/~)), and the second bracketed term=O(a). Hence 

(5.15) may be rewritten as 

Na(1 + O(al/~)) + 0(1) >/0 (5.17) 

(5.13) is obvious and we prove (5.14). Let v(p, r )=a+x,  v(q, r)=a+7~. Taking log- 

arithms, (5.14) becomes 

N [log ( 1 - a - x )  +log ( 1 - a - y ) - l o g  ( 1 - 2 a - x - y ) ]  

+[(i+j) l o g ( 1 - 2 a - x - y ) - i l o g ( 1 - a - x ) - j l o g ( l > a - y ) ] > ~ O  (5.15) 

According to Theorem 2.3, 3R>0, C>0, such that Ix[, [y[ ~Ca 1+1/d for all p, qEX 

and r < R. Using the Taylor expansion for log (1-z), we obtain 

a~ + O(a2+l/d) l o g ( 1 - a - x ) = - a - x - ~  as a-~0 (5.16) 

(1--v(p,r)--v(q,r))N-~-~<~(1--v(p,r))N-I(1--v(q,r)) N-j for p, qEX, O<r~e ,  

Na>~ -,1 O<i , j<~m- 1. (5.14) 

We prove (5.10) by showing that each term of ZI~< corresponding term of E2(/x). 

This inequality follows from 

N~ 

and 

(5.12) 
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(5.17) clearly holds if r ~ ,  Na  >/l/e, provided s-~0 is sufficiently small. Hence (5.14) 

holds and we have proven (5.10). 

(ii) We shall estimate 

I(p,r)~ f ~ (v(p,q,r))~(v(q,p,r))J(w(p,q,r))~(1-v(p,r)-v(p,q,r)) N-t-j kdq 
J 6(p, q)~2r 

(5.is) 

provided r ~ r~/2. 

Let Q, 01 ..... 0~_ 1 be polar coordinates in the 7-space (~)= 11711 and the 0t's are res- 

pectively the radial and angular coordinates). The integral of (5.22) becomes 

rod-1 r ~ 
oQ t§247 1-v(p,r)--  ~ ~) d~da (5.23) 

for small r, uniformly in p and in the indices i, j, k. 

I t  follows from Lemma 2.2 and Theorems 2.3, 2.4 tha t  3r~>O such that  

v(p, r) <<. 2~, r <~ r~, and p arbitrary (5.19) 

co~-Jrd l(~(p,q)~< <~ 2o~_1 r 1, 5(p,q) <~ 2r. 2d+l v(p,q,r) r~-lr)(p,q), r<~ (5.20) 

Using (5.19), (5.20), and w(p, q, r)<~v(q, r), we obtain 

o~_, r ._ lo "  .1 ~' 
I(p'r)<'Cr<~+'+~)" <'+"j~<p.q>~,r [O(p,q)]'+' 1-v(p ,r)  ~ otp, q) j dq, (5.21) 

r ~ r 1 and p arbitrary. 

An examination of the proof of Theorem 2.3 shows that  30 < r~ < r 1 such that  the follow. 

ing holds: 

(i) For each p e X ,  a local normal coordinate 7 may be chosen at p valid for llTll < r ,  

(if) Let  the element of volume dq= k(p, 7)d7, 11711 <r~, where 7 is the chosen local 

normal coordinate at p. k(p, n) is uniformly bounded for pqX,  11711 <r~. 

Hence the integral appearing in (5.21) is 

~._, ~ - ,  llTiiVdT) (5.22) 
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where S is the  uni t  d-dimensional  sphere ~ = 1 and da is the  area  e lement  on S. Le t  

(t~d_ l rd-  I 
2~+1 ~). (5.21)-(5.23) yield 

f l0-v r~ (5.24) I(p,r)<~ Co~ -~+i t t+J+~-l(1--v-- t )Ndt ,  r<. 

and p a rb i t r a ry  where v = v(p, r). Let t ing  t = (1 - v ) ~ ,  we get  

I(p,r)<~Cak-~+l(1--v)Nf~o]t'+J+d-l(1--~)Nd]t. (5.25) 

The integral  of (5.25) is recognized to  be the  be ta  funct ion B(i+~+d, iV+l)= 

(i § ] § d - 1) !iv!/(i + j + d + iV)!. Hence  

I(p, r) < C~k+d+l(1 --V)N/N ~+l+d, r<.rJ2 and p a rb i t ra ry .  (5.26) 

Subst i tu t ing  (5.26) in to  E~, we get  

c ~2<-No<,+k.~k<m_l(N:C)k-d+l (l--v(p,r))Ndp, r<r 2. (5.27) 

Le t  iva>~l .  Since k~.m-1, we have  (N~)k-~+l<~(No~) m-~. We conclude f rom (5.27) 

t h a t  

? 
~ (g~)m-d~(IJx -v(p'r)I"dP (5.2SI 2 

for r <r2/2, Nx/>  1, thus  proving (5.11) with the  choice e = r2/2. �9 
We can now provide  the  

Proof of inequality (1.2) Let  r 1 = M i n  (1, e). Theorems 5.1, 5.4 imply  

P ( N ~ >  N)>~ E2(P) , r<r t  N o ~  1-. (5.29) 
E~(t,) + ~ (N~)~_~ f x( l _v(p,r) ),, d p r, 

so tha t  

C ( N ~ )  m-~ f x ( 1  - v(p, r)) N dp 1 
, r~r l ,  N~>I--. P(N,,~ < N) < E~(l~) rl (5.30) 
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From Theorems 2.3, 5.2, we conclude t h a t  3 0 < r~ < r 1 such t h a t  

E ( t t ) ~ C ( N a ) m - l  : x ( 1 - v ( p , r ) ) N d p ,  r ~ r 2 ,  N a ~  1-. (5.31) 

Hence 

C 1 
P(Nrm ~ N)  ~ : , r <~ r 2, N a  > / - .  (5.32) 

N(Na)a+,, -2 | (1 -- v(p,  r))Ndp r2 

J x  

We remark  tha t  (5.32) has been derived under  the assumption tha t  N is an integer. 

Since P(Nrm<-N)=P(N~m<<.[N]) and N ~ [ N ] / 2  for N~>I,  it is readily seen tha t  (5.32) 

remains t rue for all N ~> 1, provided we replace r~ by  r2/2 and change the constant  C. 

Let  N = (I /a)  (log (1 / a) + (d + m - 1 ) log tog (1 / a) + x), x ~< 0. Choose 0 < r a < r j 2  so tha t  

a~<l/e for r<~r a. We consider first the case N>~l/(2a) log (I/a) ( N ~ e / 2  so tha t  (5.32) is 

applicable). Using the inequali ty 1 - z ~ e  . . . . .  , O<.z<~�89 and Theorem 2.3, we choose 

0 < r 4 < rs/2 so tha t  

(5.32), (5.33) yield 

1 - - v ( p , r ) ) N d p ~ � 8 9  r<~r 4 (5.33) 

Ce~  N 
P(N,m <~ N)  ~ N(Na)a+rn~ 1 <~ 2 e ~ m - I C e x  ' (5.34) 

Suppose next  t ha t  N~<(1/(2a)) log (l/a).  P(Nrm<<.N)=0 for N < 0 ,  in which case (1.2) 

is obviously true. We therefore assume N ~> 0 ~ x >~ - log (1/a) - (d + m - 1) log log (1/a). 

Let  n(r)=[(C1/2r) d] where C I > 0  is the constant  appearing in Theorem 2.2. Choose 

0 < r  5 < r  4 so tha t  n =n(r)>~ 1 for r<<-r a. According to Theorem 2.2, there exist n points 

Pl  . . . .  , Pn so tha t  the distance between any  pair  of these points ~C1 n-1/a. Since 

r <. C 12n -l/a, we conclude tha t  any  open ball of radius r can cover at  most  one of the pt 's.  

Let  _N'~ = number  of throws necessary to cover the pt 's.  Since N,m ~> N'~, we have P(Nrm ~< N) ~< 
~ <  t <  P(N,- .~N)  can P(N,- .~N).  be est imated by  Theorem 3.1 (just change the  terminology,  

replacing the  phrase "ball  falling into an u rn"  by  "ball  covering a point") .  We obtain  

P(N'm<<'N)<~P(N'r<~N)<~ t f f i l  ( 1 - ( 1 - v ~ ) N ) ~ < e x p - ,  (1--V~)N (5.35) 

where v t =v(p~, r). 
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Using the  inequa l i t y  1 - z ~> e- z- ~,, 0 ~< z ~< �89 a n d  Theorem 2.3, we choose 0 < r 0 < r 5 so 

n 

5 (1-~,)N>~ v_e-~ ' r~r,.  (5.36) 
~=1 

C' ~N~ P(N~m <~ N) < exp - ~ e  ] ,  r ~ r6. (5.37) 

F o r  N ~< (1/(2~)) log (1/~), - (C/~)e -~N <. - Ca -a/2. - Co~ -1/2 <~- - -  log ( l / a )  - (d + m  - 1) • 

log log (1 /~)<  x for r suff ic ient ly  small .  We  conclude f rom (5.37) t h a t  30 <r~ < r a such t h a t  

P(Nrm<~.N) <~ e ~, prov ided  N < (1/(2~)) log (1/~) and  r ~< r 7 (5.38) 

R e n a m i n g  r 7 as rl,  (5.34) and  (5.38) y ie ld  (1.2). �9 

w 6. Proof of Theorem (1.2) 

Theorem 1.2 follows d i rec t ly  f rom the  inequal i t ies  (1.1), (1.2). W e  have  

P ( N ~ ) = l - ( l ~ 1 7 6 1 7 6  E(X'~))  ar (6.J) 

We mus t  show t h a t  E(X,~) = 0(1 ) as r-~ 0. Le t  F~m(x ) = P(Xrm ~ x). Then  E(lXrm ] ) = 

~_~olxldF,~(x). F o r  R >  0, we have  

(6.2) 

B y  (1.1), 1 - F,z(X) <. Ce x/s for 0 < r <~ rl, x >~ O. Le t t i ng  R ~  cr in (6.2), we conclude t h a t  

]x[dF,~(x)= ( 1 - F ~ ( x ) ) d x < . C  e-X/Sdx=8C, O<r<~r 1. (6.3) 
0 0 

Thus  S~]x]dF,~(x) is un i fo rmly  bounded  for  0 <r<~r 1. A similar  a r g u m e n t  shows t h a t  

.fo ~ ix I dF,~(x) is un i fo rmly  bounded  for 0 < r < r l .  I t  follows t h a t  E ( X ~ )  = 0(1)  as  r -~  0. 

W e  can also employ  (1.1), (1.2) to prove  the  following genera l iza t ion  of S teu te l ' s  

a s y m p t o t i c  formula  for E(Nn) ,  in case X is the  circle. 
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T~EOREM 6.2. Let X be the circle o /uni t  circum/erence. Then 

E ( N , ~ ) = l  ( l o g ! + m l o g l o g l + T m + O ( 1 ) )  as r -~0 ,  (6.4) 

where Ym = Y -  log ( m -  1)!, y being Euler's constant 

Proo/. W e  mus t  p rove  t h a t  limr_,o E(X,n)= limr-,o S~_~oxd/,n(X)= Fro. As shown in [6], 

limr-.~oF~m(x) = exp ( - e-~/(m - 1)!). Since 1 - Y~(x)  <~ Ce -x/s, x >~ 0, r < rl ,  we conclude 

f rom (6.3) and  the  D o m i n a t e d  convergence theo rem t h a t  

f: f:[ ( 1 ) ]  l im xdFrm(X) = lira [1 - Frm(X)] dx = 1 - exp  - e -z dx 
~--~ r- , .o J o  (m - -  l ) !  

oo ] 

A similar  resul t  holds  for limr-.0I-~o, so t h a t  l imr_~ol~=xdF,=(x)=~c~xd(exp(-e-Z/  

( m -  1)!)). Le t t i ng  t = (e-X)/(m- 1)!, we ob t a in  

1 1 ~ 1 1)!e_X\dx) f_  x d ( e x p (  (m_~i .e -X) )  ( m -  1 ) . f  x e - = e x p ( - - ( m -  

We have foe 'at=l,fOOogt)e tdt= -F ' ( I )=  -y[1]. 

Hence  limr_~0E(X,~) = F - log (m - 1)! 

F ina l ly ,  we ob ta in  the  analogs of Theorems  1.1, 1.2 for Cv, the  fami ly  of open bal ls  

of g iven vo lume v. I n  view of Theorem 2.3, we m a y  choose r o <~ R(R is the  n u m b e r  occur ing 

in Theorem 2.3) so t h a t  v(p, r) >~ ~oJar d for p E X,  0 <~ r ~ r 0. Le t  v 0 = ~oar~. Thus  for 0 < v = v 0 

and  a r b i t r a r y  p,  3B(p ,  r) of vo lume v. Hence  C~ is well def ined for 0 < v < v  0. The  bal ls  

of Cv are in 1 - 1  correspondence wi th  the i r  centers.  The  p robab i l i t y  measure  P assigned 

to  C~ is t he  volume measure  on X v ia  th is  correspondence.  The r a n d o m  var iab les  Nm 

are  re labeled  as N~m and  we def ine X~m b y  N ~  = (I /v)( log ( l / v ) +  (d + m -  1) log log ( l / v ) +  

Xvm ). W e  have  

THE O E E M 6.3. For each m > O, 3v 1 > 0 and C > O, v 1 and C depending only on m, such that 

P(Xvm>~X)<~Ce -x118, x>~O, v<~v 1. (6.7) 

P ( X ~  <~ x) <. Ce ~/2, x ~ O, v <. Vl. (6.8) 
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THEOREM 6.4. Let  E(N~,,) be the expectation o / N v ,  ~. Then 

E(N~ = l (l~ ~ + (d + m - 1 )  l~ l~ ! + 0(1) as v~O (6.9) 

Proo/. Theorem 6.4 is derived from (6.7), (6.8) in the same way tha t  Theorem 1.2 is 

derived from (1.1), (1.2), so tha t  we need only prove Theorem 6.3. Le t /~ (p ,  v), p E X  and 

v ~< v0, be the open ball of volume v centered at  p. For  given p, the funct ion v = v(p, r) is 

continuous and strictly increasing for O<~r<~ro, with v(p, O)=0, v(p, ro)>~v o. I t  follows 

tha t  the inverse function r=r(p, v) is continuous and str ict ly increasing for O~v<~vo, 

~i th  r(p, O) =0, r(p, %) <r o. Define b(v)--Inf~Ex r(p, v), C(v) =sup~x  r(p, v), fl(v) =oodb d, 

7(v) =oJdc ~, 0 ~ v <<. %. 

According to Theorem 2.3 3C > 0  such t ha t  

Iv-ood[r(p, v)]d[ ~< Cv (d+l)ld, p E X ,  v <~ v o. (6.10) 

In  (6.9) we may  replace wd[r(p, v)] ~ both  by/~(v) and 7(v). Hence 

13(v)=v+O(v(d+l)t~), 7 (v)=v+O(v  (d~l)ld) as v-~0. (6.11) 

Now B(p, b(v)) c B(p, v) = B(p, c(v)), v <~v o. Hence Ncm <~Nv" . ~ No,., where b =b(v), 

c =c(v) ,  so t ha t  

P(N~m > N) ~ P(Nb" . > N), P(N,,,  < N) <. P(Ncm < N). (6.12) 

Le t  N = (l/v) (log (l/v) -f- (d §  - 1) log log (I/v) + x) 

= (1/fl)(log (1/fl)+ (d + m -  I ) log  log (1/fl)+y) 

= (1/~,) (log (1 /7 )+(d+m-1)  log log (1/7) +z  ) 

I t  follows from (6.11) and an analysis similar to the one leading to formula (4.13) t ha t  

y=O(vl~dlog~) + (l +O(vlJ~))x, z=O(vl~"log~) + (1 + O(vl:d))x. (6.13) 

Hence 3 0 < v l ~ v  o such tha t  fl(v),~,(v)~r 1 for  v<~vl(r 1 is the number  appearing in 

Theorem 1.1) and 

X 
y > ~ , x > ~ l ,  v>~v 1 

X 
z <~ ~,x<~ -- l, v<~ v 1 

(6.14) 
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We conclude from (1.1), (1.2), (6.12), ( 6 . 1 4 ) t h a t  : I C > 0  such that  

P(N~m> N)  <-Ce -x/l~ x>~O, v ~ v  1 

P(N,m < N)  <- Ce x/2, x < O, v ~ v 1 

(6.15) is ident ical  with (6.6)-(6.7). �9 

(6.15) 
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