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w 1. Introduction and statement ot the main result 

I n  this paper  we shall be concerned primari ly with the linear topological space A -~176 

whose elements are holomorphic functions 

co  

/(z) = ~ avzv 
0 

in the uni t  disk U = { z :  I~1 <1}  satisfying 

II(z)l <cs(1-I~1) -=, (z~u) (1.1) 
or equivalently,  

log+[av[ = 0 (logv) (v-* co). 

A -~176 can be thought  of as the union of Banach spaces A -n (n > 0), the norm in each A -a 

being defined as follows: 

I I l l l - , ,  = s . p . ~ , {  i1 (=)1(1  - I= I)"}  < oo. (1.2) 

The topology in A -~176 is introduced in a s tandard  way  [6]. Clearly, A -~176 is a topological 

algebra under  pointwise multiplication. I t  is the smallest algebra containing the disk 

algebra A (1) and closed under  differentiation. 

The dual  of A -c~ is the topological algebra A ~176 whose elements are functions F(z) 

holomorphic in U and infinitely differentiable in 0 :  

oo 

P(z)=~b~,z" (b=O(v ~)  Yk>O). (1.3) 
o 

The linear functionals in A - ~  are given by  the formula 

F(/)= ~__~i fovP(~)/(rC)~ o 00~ = ~  ,a, .  (1.4) 

(i) A is the algebra of all functions continuous in ~ and analytic in U with sup-norm and 
pointwise multiplication. 
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266 BORIS K O R E N B L U M  

Let T denote the (continuous) linear operator in A -~  of multiplication by the 

argument: 

(T/)(z)=z/(z)  (lEA-~176 (1.5) 

Since the set of all polynomials is dense in A -~176 it is readily seen tha t  every invariant  

subspace for the operator T is a closed ideal in the algebra A -~176 and vice versa. 

For every element O=4=/EA -~176 let Z/  denote the sequence {~v} of its zeros, 

0 ~< [ al ] ~< ] a2 [ ~<... < l, each zero repeated according to its multiplicity. Z I will be called 

the zero set of / .  For every closed ideal 0 = ~ I c  A -~~ the zero set Z,  is defined as the sequence 

of common zeros for all elements /E I,  each zero repeated according to its minimal 

multiplicity. For a complete description of A-~176 sets see [6] where a certain 

condition (T) was established and proved to be necessary and sufficient for a sequence 

a-~ {a~}c U to be an A-~176 set. This condition (T) implies in particular tha t  ever 

subset of an A-~176 set is an A-~176 set itself. Therefore sets Zz are in fact  not 

different from ZI: for every ideal 0:4=I~A -~176 there is an element /EA-~176 tha t  

Z:=ZI. 

Our main result (Theorem 1.1) concerns the description of closed ideals O & I c A - %  

I t  states tha t  every such ideal is uniquely determined by its zero set Z~ and by  its 

so-called n-singular measure at. Now, the notion of a n-singular measure a I associated 

with functions /(z) of the class A -~176 (and, for tha t  matter ,  with those of the larger class 

-~ A-~176176176 was introduced in [6], but  the definition adopted there depended heavily 

on a number of other concepts, in particular on tha t  of a premeasure o/bounded n-variation. 

There is, however, an alternative definit ion for a I ( /EA -~176 which is (at least formally) 

quite independent of the theory expounded in [6]. We shall use that  definition to state 

our main result (Theorem 1.1):but we do not see how to prove it without making exten- 

sive use of the results from [6]. 

In  this section we confine ourselves only to those preliminary notions and porposi- 

tions which are indispensible for introducing the concept of a g-singular measure and 

for formulating Theorem 1.1. 

Definition 1.1. A subset F of the circumference a U is called a Beurling-Carleson 

(B.-C.) set if 

(i) F is closed; 

(ii) $' is of Lebesgue measure zero, I FI  =0;  

(iii) ~1I~1 log~-~,l< ~ ,  
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where {Iv} are the complementary arcs of F (i.e. the components of ~ U ~ F )  and I Iv [ is 

the length of I v . 

I t  is well known [2; 3] that  B. 'C. sets coincide with null sets for the classes A n= 

{/:/(n)EA} ( n = l ,  2 .... ). Moreover [7; 8],  if F is a B.-C. set, then an outer function 

(I)(z) EA ~~ exists such that  F = {$ E~U: dP(n)(~)=0Yn >~0}. 

The set of all B.-C. sets will be denoted ~, and the set of all Borel sets B" such that  

/3 E ~ will be denoted B. 

Definition 1.2. A function o: B-~R is called a u-singular measure (u-s.m.) if 

(i) a is a finite Borel measure on every B.-C. set E c r U ;  

(ii) there is a constant C > 0  such that  

I~(F)I~<C~II~I (logl-/~i§ 1) (u  ~), (1.6) 

where {Iv} are the conplementary arcs of F. 

I t  is clear that  a u-singular measure ~ is completely determined by the values 

a(lv) (_FE~:); in other words, a function o: ~-~R possesses (if at all) only one extension 

to a u - s . m .  

The total variation I a/ of a u-s.m, a satisfying (1.6) is a non-negative u-s.m, with 

the constant not exceeding 2C. 

Notations like max {al ,~},  min{~l,~2}, 1.u.b. {av}, a l > ~  have their familiar 

meaning accepted in the measure theory. 

P R O P O S I T I O N  1 .1 .  Let O ~ / E A  -~176 FE ~. Let/urther (1)EA ~176 be a~ outer/unction such 

that F={~E~U:  (1)~n~(~)=0 V~>~0} and t ~ be a non-negative Borel measure on F. Consider 

and define 
~lv.r = {p: /v.~ EA-~176 (1.8) 

Then 

(i) ~ p ,  s does not depend on ~ ,  i.e./or any given F, i z all/unctions (1.7)~with di//erent (I)) 

either belong to A -~176 or are o.utside A-~176 

(ii) ~ F . I  has a maximal element/~o, so that 

~ , r  = {~: 0 ~<~ ~<#0); 

(iii) there is a constant C such that 

This proposition will be proved in section 4 in the' course of proving Theorem 1.I. 
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Definition 1.3. With every element O#:]s -w a non-positive u-singular measure a t 

will be associated defined as follows: 

af(F)= -/Xo(F ) = - max lu(F) (re6 :~). (I.I0) 
/~ e llt u l 

For / = 0  we set formally ~ 0 ( F ) = -  oo (u  

For every closed ideal O : # I e A  -w we define 

az = 1.u.b. of. (1.11) 
rex 

In  section 4 when proving Theorem 1.1 it will be shown tha t  Definition 1.3 is 

equivalent to another definition of a t as the z-singular par t  of a premeasure [6]. 

We are now in a position to formulate our main result. 

THEOREM 1.1. Let I#:{0} be a closed ideal in A-W; let Zt  and at be respectively its zero 

set and its u.singular measure. Then 

I = { l e A - w :  Z,D_Z 1, aft<at}. (1.12) 

Conversely, let ot = {ate} be an arbitrary A-w-zero set and a o be an arbitrary non-positive 

u.singular measure. Then 

I(ot; ao) = { l e A - w :  Zt~- or, at< a0} (1.13) 

is a non.trivial closed ideal in A -w. 

COROLLARY 1.1.1. The necassary and suHicient condition for an element / e A  -w 

to be cyclicQ) is Z I = O ,  atffi0. 

CORALLARY 1.1.2. Every closed ideal in A -w is principal, i.e. generated by a sinole 

element. 

CORALLARY 1.1.3, The only "maximal"  ideale in A -w are those o/ the torm Is.  = 

{ t e A - w :  t(zo)=0} (Zo e U). A closed ideal I such that Z~=O, a~#O is not contained in any 

maximal ideal. 

In the succeeding pages we shall first (in section 2 ) ca r ry  out a more thorough s tudy 

of u-singular measures and their relationship to premeasures of bounded u-variation [6]. 

In  particular, we shall establish the following facts: 

(a) Every  u-singular measure is concentrated on a uFa-set, i.e. on the union of a 

countable set of B.-C. sets. 

(b) For every non-positive x-s.m.a there is an e l e m e n t / C A  -w such tha t  a = a p  

(*) i.e. for t A  -a~ to be dense in A -w. 
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In section 3 we shall prove, using purely real-variable argument, a crucial approxi- 

mation theorem for premeasures of bounded u-variation. Essentially, this theorem shows 

that  in regard to some general measure-theoretical properties premeasure with a vanishing 

u-singular part  comport themselves in some ways like absolutely continuous measures in 

the classical theory. 

Finally, in section 4 we shall prove Theorem 1.1 using the above-mentioned approxi- 

mation theorem, some standard functional-analytic argument involving the dual space 

A ~ and the notion of annihilator, and results from [6] concerning holomorphic and 

meromorphic functions of the class ~ I f A - ~ / A  -~~ and their generalized Nevanlinna 

factorization. Incidentally we shall prove Proposition 1.1 and equivalence of the two 

definitions for af. 

We shall adhere throughout to the following notation: The letter C will be used to 

denote various positive constants which may differ from one formula to the next. 

The complement of a set S___ ~ U will be denoted S c = a U ~ S .  I SI is always used to designate 

Lebesgue measure of a set S~_DU. 

The author wishes to thank Lennart  Carleson for valuable discussions. 

w 2. Classes of harmonic functions and premeasures. 

For the reader's convenience we shall give here (in a slightly modified form) some 

definitions and results from [6] which will be used later. These results center round the 

representation of harmonic functions by means of generalized Poisson integrals involving 

so-called premeasures. Once such a representation is established, the problem arises to 

describe the class of harmonic functions under consideration in terms of premeasures. For 

the class ~/(see below) of harmonic functions a downright isomorphism exists between :// 

and the corresponding space of premeasures. I t  is clear that  such a close relationship 

should make it possible to treat  many problems concerning harmonic (and analytic) 

functions by purely real-variable means. 

Note that,  in the light of some recent results of W. K. Hayman and the present 

author [5], it is highly probable that  a similar relationship exists for much wider classes 

of harmonic functions than ~/. 

Definition 2.1. A real-valued harmonic function u(z) (zEU), u(0)=0,  is called 

u-bounded above (or just u-bounded) if 

1 
- c~ <u(z)<~ClogT--~  (zEU). (2.1) 

l - l z  I 
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The least constant C in (2.1) will be called the upper z-bound of u and will be denoted 

Hull*. 
Clearly [[u[[*>~0, and []u[J*=0 implies u(z)=-O. The class o f  all z-bounded harmonic 

functions will be denoted ~H +. 

Definition 2.2. 74 = 74 + -  ~+,  i.e. every u(z)E ~4 possesses a representation 

U(Z) = Ul(Z ) --Us(Z ) (Ul, U2e ~'~+ ). (2.2) 

PRO~>OSITIO~ 2.1. 74 becomes a Banach space i/ it is provided with the norm 

[]u[[ = min (]]u~[[* + [[u2[[*), (2.3) 

where minimum is taken over all the representations (2.2). 

The proof is immediate, by the use of simple compactness theorems for harmonic 

functions. There is at least one minimal representation such that  HuH = [[Ul[]* + [[u2H*. 

Next we turn to the notion of a premeasure. 

Definition 2.3. Let :K be the set of all open, closed and halfclosed arcs of the circum- 

ference ~U, including all one-point sets, ~U and O. A function u: :~-+R is called a 

premeasure if 

(i) #(11U Is) =1~(I1) +/~(1~) for all 11, I s E :K such that  

I 1U I SE:x, I i~  13 =O;  
(ii) /~(DU) = 0 ;  

(iii) lim~=oo/~(Iv) = 0 whenever Iv E :K, I1D 12 D .... N v Iv = 0 .  

Clearly, every premeasure is immediately extended by finite additivity to the class 

of sets 

S =  U I ,  (I, ER).  

With every premeasure # a function/2(0) =/x(I0) (0 <0 <2zt) will be associated, where 

I0={dt:  O<~t<O. Thus a 1 - 1  correspondence is established between the set of 

premeasures and the set of all real functions /2(0) (0<0~<2g) satisfying the following 

conditions: 

(a) /2(0-) (0<0~<2jt) and /2(0+) (0~<0<2~t) exist; 

(b) /2(0-)=/2(0) (0<0~<2~); 

(c)/2(2:t) =0.  

Clearly,/2(0) has at most a countable set of points of discontinuity, all of them jumps. 
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In what follows we shall adhere to the following notation: the distance between two 

points ~1, ~EOU is 

d(~l, ~) '1=~ min { arg ~ ,  arg ~1 }~  (0~ arg ~ < 27~ u 0U), 

so that 0~<d(~l, ~)~<1 (u ~2s the distance of a point ~EgU from a set F ~ U  is 

The 5-neighbourhood of a set S ~ U  is S~={$EOU: d(~, S)<(~}. 

De/inition 2.4. We shall assign to every open set Gc~U the quantity (which may 

be+ ~ )  

1 L n(G) = ~ ]log d(r G~)[ �9 [d$1; (2.4) 

Further, we define n(O)=n(OU)=0. 

A straightforward computation bows that 

{I~} being the set of components of G.(1) 

De/inition 2.5. The entropy ~6(F) o /a  closed set F with respect to an open set G~ F 
is defined as 

f .  1 f [. d($,F(JG~)I 
1 ilogd(~,FUGr d(~,G~ ) I IdOl. (2.6) ~ d F )  = ~ m g  . . . . . .  

The entropy with respect to ~U will be called simply entropy and will he denoted ~(F): 

~<F> : 1  foullogd<:,F>l.ld:[. 

We have ~a(~)=0. If IFI =0, then ~a(F)=x(G~F). According to Definition 1.1 

B.-C. sets are exactly those sets F with ~(F)< ~ .  From (2.6)follows easily that if 

~ F ~a(FllJ F2) < ~ d F 1 ) + z d  3). (2.7) 

(1) Somet imes  we  shall  use  no ta t ion  (2.5) also for sets  G, no t  necessar i ly  open,  consis t ing  of a 
finite number  of components  l~ E ~ ;  we  set  

IIA log +1 - 0  if II1=0. 
2. W~ 
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Definition 2.6. A premeasure Ft (and the associated function #(0)) is said to be 

u-boundeed above (or simply n-bounded) if for all open arcs I c O U  

I ~ ( I ) < C u ( l ) = ~ ( l o g 2 ~ + l )  (2.8) 

The least constant C in (2.8) will be called the upper n-bound of the premeasure/~ and will 

be denoted [[/~]] +. The set of all u-bounded premeasures will be denoted uB +. 

Clearly ]]/~][+ t>0, and ]I#H + =0  if and only i f /~=0.  

Definition 2.7. A premeasure # (and the associated function/2(0)) is said to be of 

bounded n-variation if for every finite set {Iv} of non-overlapping open arcs such that  

U vI~ =~U 

~ I / z ( / ~ ) I < C ~ u ( L ) = C ~ ~  ~ l o g ~ [ + l  . (2.9) 

The minimal constant C in (2.9) will be called the u.variation of/~ and will be denoted 

u Vat g. The set of all premeasures of bounded ~-variation will be denoted uu 

PROI"OSITION 2.2 [6]. Every n-bounded premeasure is o/bounded n-variation and 

Vartt  < 2IlA+. (2.1o) 

PROPOSITION 2.3. [6]. Every t tEuV is the di//erence o/ two u-bounded premeasures 

ft =t l l - t t2  with 

II ,ll+<a.u V ar#  ( j = l ,  2), (2.11) 

where a is an absolute constant. 

PROPOSITION 2.4. uV becomes a Banach space i/provided with the norm 

H = u Var (2.12) 

The proof is immediate. 

Next comes a theorem which, though not stated explicitely in [6], follows directly from 

the results of that  paper. 

THEOREM 2.1. There exists a linear operator u = ~)/~ (the generalized Poisson operator) 

which maps u V onto ~:  

u(z)=(~)~)(z)--[ PG, z)~(Idr (zeU), (2.13) 
d~ U 

where P (~ , z )=Re(~  +z)/(~-z)  (~eOU, zfiU) is the Poisson kernel and the integral is 

understood either as a Riemann.Stieltjes integral 



A BEURLING-TYPE THEOREM 

u(z) = J .  P(e z~ z) dry(O) 

or as a Riemann integral 

u(z)= - P(e% z)] dO. 

The inverse operator/~ = ~ - l u  is given by 

�89 + ~U(I)] = ,-~,lim- ~ f u(r~)ld~l , 

where I c D U  is an arbitrary open are. 

273 

(2.13') 

(2.13") 

(2.14) 

C O R O L L A R Y  2.1.1. There are two positive constant8 ~, and 12 such that 

2,.x Var~ ~< IID II  -<<x,.x Var  (V exV), 

,h" IIt'll § < I1  11"<  ,11 11 § (v ekB+). 

Remark. The existence of the limit in (2.14) for uE ~+ is the crucial point in the proof 

of Theorem 2.1. Recently W. K. Hayman and the present author proved [5] that  the 

limit in (2.14) exists for every harmonic function u(z) (zE U), u(0)=0, such that  

where 
k(r) = m a x  u(z). 

Iz l - r  

PROPOSITION 2.5 [6]. Let/~ be a premeasure o/bounded x.variation. Define/or every 

B.-C. set F 
a(F) = - ~ p(Iv), (2.15) 

Iv being the complementary arcs o / F .  (1) Then a possess~ a unique extension to a x-singular 

measure. Moreover, 
]a(F)l <x  Var~u.~(f) (YFe:~). (2.16) 

I /~uExB +, then a<~ O. 

De/inition 2.8. a will be called the x-singular part of the premeasure p. 

We prove now a somewhat different form of (2.15) which will be needed later. 

PROPOSITION 2.6. Let # be a premeasure o/ bounded x-variation and let ~ be its 

x.singular part. Then/or every F E :~ 

a(F) = l~.T0 p(F ~ ) = lim~ p(F~). (2.17) 

(1) The series (2.15) is absolutely convergent (cf. [6]). 
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Pro@ I t  is enough to prove the former equality.  For  every complementary  interval  

I ,  of F set 

L~ = {CE ov: d(C, I : )  >I ~} = ((L~/) ~. 

Clearly, 
~(F~) = - 7 ~(Lo). 

I%1>2~ 

This together  with (2.15) yields 

ix(F ~) - a(F) = ~ #(I , )  + , ~ e r  
I~1 <2~ I vl~>2 

The first sum tends to zero as 6 ~ 0 ;  wha t  remains to be proved is t h a t  

lim ~ /~(L~.L~) = 0. 

I f  we assume the contrary,  then there is sequence (}.40 such t h a t  

(i) [/~(G.)I >~e>0 ( n = l , 2  .. . .  ), 

where 
o. = U (L\Lo.+~); 

2 a . > l l v l ~ > 2 ~ n + ~  

( n = l ,  2 . . . .  ). (ii) u(G.) < 2-" 

Consider now 
N 

G (~')= U a.. 

G (N) is composed of a finite number  of disjoint open arcs, say, A~ ~'~, and it is easily seen tha t  

for the complementary  arcs B(~ s) 

7 ~(B~ ~)) < ~(F) < oo. 
v 

Therefore 

On the other  hand  

g(A(. m) + ~ g(B~ m) < r + 1. 
v r 

N 

E [t,(.4'/b[ + E [~,(B'/")] >/ Z I~,(0.)]/> l V ~  oo 
v n ~ l  

(N-* ~o). 

This clearly contradicts  our assumption tha t  x Var/~ < oo. Thus Proposi t ion 2.6 is proved.  

Our next  task is to prove tha t  every x-s.m. (cf. Definition 1.2) is concentra ted  on a 

xFr i.e. on union of a countable set of B.-C. sets. 

THEOREM 2.2. Let a be a u-s.m. Then there is a sequence {F~}~ ~ o/ B. -C.  sets, 

F I c F 2 c  - .... such tha t /or  every F E 

a(F)  = lim a ( f N  F~), l a l (F)  = lim lal (El] F~). (2.18) 
v--)O0 v--~00 
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Pro@ I t  is enough to prove the latter equality. Since ]~] is a u-s.m., it satisfies (1.61 

or, equivalently, 

la l (F)  <C~(F)  (v~e:~) .  (2.19) 

We shall prove the theorem by organizing a transfinite "process of exhaustion" and by 

showing that  this process stops after a countable number of steps. With this goal in view 

we shall introduce certain parameters associated with a u-s.m. 

Let  Gc~U be an open set such that  0 ~ G e : ~ ,  or equivalently IG~GI =0, 

~r < 0% ~(0U~(J)  < co. Define 

m(a; G) = sup, {I,~ I ( F ) -  C~o(F)}, (2.20) 

where C is the constant in (2.19). In view of (2.19) we have 

[a I (~') + I ~ I (OG) < C~(F U ~g) = C[~dF) + ~(G) + ~(0 U \ O ) ]  

for F c G, F e :~, where 0G = ~ G .  Therefore 

m(a; G) < C[~(G) +~(OU~0)]  - [hi (0e). 

On the other hand, putting in (2.20) F = O  we get re(a; G))O. Thus 

0 <  re(a; G) <. C~(OG)- ]al(OG). (2.21) 

To proceed further with the proof we need three simple lemmas. But first introduce 

the following 

De]inition 2.9. An open set GcOU will be called regular if ~(0G)< 0% The set of all 

regular sets G will be denoted 0. 

LEMMA 2.2.1. Let {Gv}~ ~ be a sequence o/regular sets. Let the [ollowing hypotheses hold: 

(i) ( / . ~ G . +  1 ( v = l , 2  . . . .  ); 
co 

G= U eveo;  
v=l  

m(a; Gv) ~ re(a; G) ( ~  oo). (2.22) 

Proo]. Let Fv =~Gv = Gv~Gv. We have 

m(~; a~)= sup {I~I(F)-C~a,(F)} 
Gv~ FG.~ 

<m(a; e)-1,71(F.)+C[~dFU Y.)-~o.(F)] (vg.=F~:~). 
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because the latter expression in brackets does not depend on F: 

-ua,( ) u(G~(F U Fv)) -u(G)-u(Gv~F )+~(Gv) xa(F~), 

and therefore 

lira m(a; G~) ~ m(a; G). 
v ~  

On the other hand, in view of (2.20) there is for every e > 0 an F fi 1~, F c  G, such that 

lot[ (F) >/re(a; (7) + Cfta( F ) - e .  

If v is large enough, then Fc G~ and 

m(a;Gv)>~]al(F)-C~a~(F)>~m(a;G ) + ~ ~ F -~ C[~dF)-~a~( )]. 

Using (2.23) we find 

~ F ~ ~ F ~ ~ F ~a(F)-~a~( ) = [~a(FU F~)-~a~( )]-[~a(FU Fv)-~a( )] 

~ F =~a(Fv)+~a( )-~dFU F~) >10; 

therefore from (2.25) follows 

lim re(a; Gv) >1 re(a; G), 

which together with (2.24) yields (2.22). 

LEMMA 2.2.2 

Proo/. Let {Iv}, 

lim re(a, F ' )  = la](F) (u 
0-*0 

]I1[ >~ ]12[ ~> .... be the complementary arcs of F. We have 

~ ( F ~ ' F , = ~ ( l o g ~ + l )  ~ 1+ ~ ] /V ' ( l og~-~+ l )  
Ilvl>~2A I Ivl <.~ 27t~ 

Hence 

and 

Now we have to show that 

u ( F ~ F ) - * O ,  ~p~(F)= ~t(F~\ F ) - x (Fa)~  0 ( ~ 0 ) ,  

(2.23) 

(2.24) 

(2.25) 

(2.26) 

lim re(a; Fs) <~ [a] (F). (2.28) 

Assuming the contrary, a sequence ~,>d}2>... and the corresponding sequence {Fv} of 

B.-C. sets, F ~ c  ~ , ,  could be chosen so that  

M(F~)>~ e ~ , ( F , , ) + l a l ( F ) + a  ( a > 0 ; v = l ,  2 .... ), 

lim re(a; Fs) >1 la] (F). (2.27) 
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C being the constant in (2.19). This implies 

Iol CRy\F) 
and consequently 

a 
I(F~\ Fe~') >/C~ro~(F~)+ 2 >~ C ~ r ~ ( F ~  Fe~') + 

for sufficiently large v' >v. Taking S~ = F ~ F ~ + :  with a sufficiently sparse subsequence 

(v~) and a suitable (~0>0 we can therefore construct a sequence {S~) of disjoint B.-C. 

sets, all contained in some F ~~ such tha t  

I~I(S~ ) >~ ~ a 

Hence, 

and therefore 

[ ( ~ S k  ) ~ ,, na ( ~ S ~ )  na 
~ = ~  ~ 4 

re(a; F e.) = ~ ,  

which contradicts (2.21). Thus our lemma is proved. 

LEMMA 2.2.3. Let 0~ denote the set o/all open sets G~ ~U composed o /a  finite number 

o/ open arcs with rational end points: G = [J ~ l l v ,  Iv = {~ E~U: r162 < arg $ <fl,}, av and tip 

rational. Then /or every pair a:, as o/n-singular measures such that In1 ]> In21 there is at 
least one G E 0~ such that 

re(a:; G)>m(aa; G). (2.29) 

Proo]. There is a FE :~ such that [0" 11(F)> 1 21 (F). Lemma 2.2.2 implies that  there is 

a ~ > 0 such that  m(al; F ~) >re(a2; F~). Moving slightly the end points of the components 

of F~ we can, in view of Lemma 2.2.1, replace F~ by a Ge 0r so tha t  (2.29) should hold. 

We are now in a position to complete the proof of Theorem 2.2. Let  a=av4=O be a 

~-s.m. Take a F:  E :~ such tha t  lal(F:)> 0 and define as(F ) = a : ( F ) - a : ( F  N F1) ( u  E :~). 

Clearly, l a:l > ]asI. 

We define now ~ ,  F~ by induction for all countable transfinite numbers ~. Assume 

the ffZ and FZ have already been defined for all ~ < ~ .  I f  lal(F)=sup,< lol(Fpn F) 
(u  E 5) set a~ =0  and av = 0  for all ~ > ~; if otherwise, take any S E :~ such tha t  I l(S)- 
sup,<~ [a[(FBN S ) > 0  and set Fa=(U~<~Fp) U S, ~(F)=cr(F)-~(FN Fa). We have thus 

constructed a decreasing transfinite system of u.-s. measures {lo l}. Since m(ff~; G)~< 

m(az; G) for ~ >8,  G E 0~ and since 0 ,  is countable, there must  be a countable transfinite 

7 such tha t  m ( ~ ;  G)=0  (u 0,). Lemma 2.2.3 yields tha t  ( ~ = 0 ;  therefore 

1 9 -  772903 Acta mathematica 138. Imprim6 lc 30 ]uin 1977 
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I~JIF/=supI~JiFpn FI (vFe:~l, 

which is equivalent  to the  assert ion of Theorem 2.2 because the  set 

F~ = U Fp 
,6<r 

is union of a countable  set  of B.-C.  sets. 

T~EOREM 2.3. Let a be a non-positive u-singular measure and let 

0 >~a(F) ~ - C ~ ( F )  (u  (2.30) 

Then there is a premeasure /~ such that 

(i) /~ is u-bounded above and 
I[/zll < aC, (2.31) 

a being an absolute constant; 

(ii) the u-singular part o//~ coincides with a. 

Proo/. The proof is broken into a number  of steps. Firs t  we consider the simplest  case 

when a is concentra ted  on a finite set of points. 

LElVIMA 2.3.1. Let F0={~ '~}~c0V , a ( { ~ v } ) = - a ~ < 0  ( v = l ,  2 . . . . .  n), 

a,<C~(F) (VF_~ F0). (2.32) 

Then a non-negative piecewise constant /unction p(~) exists de/ined and continuous on 

G = ~ U ~ F o  and such that 

fo p(~ ) (i) IdOl- Z (~ = 0 ;  (2.33) 
1 

(ii) /x ( I )=  ~ p ( ~ ) l d ~ [ -  Z a~<~aCu(I) (2.34) 
J i  

/or all open arcs I =  0 U. 

Proo/. I f  em' and e m' are the end points  of I then  t~(I) is l inear in 0, (i = 1, 2) on every  

complemen ta ry  are of F 0. On the other  hand,  u(I) being concave in 0~ ( i = 1 ,  2), the 

inequal i ty  (2.34) has to  be ensured only for those I ' s  with the  end points  in Fo, because 

it  will then  hold for all o ther  I ' s  automat ica l ly .  

Assume t h a t  the points  $~ are ar ranged on ~U counterclockwise and let I k, (1 ~<k < 

1 ~< n + 1) be the open arc between Sk and ~z ($n+l =$1). Wri te  those inequalities (2.34) which 
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correspond to the arcs Ikl in the form 

I 

(2.33) will then assume the form 

Moreover, 

! 

~. (~+aCx(I~,z+l) (l~<k</~<n); (2.35) 
~ - k + l  

n t~ 

:~ p,l,r,.,+,l = Z ~,. (2.36) 

p,  >/0 (v = 1, 2 .... , n). (2.37) 

We shall show that  the system composed of (2.35), (2.36) and (2.37) is consistent provided 

(2.32) holds and a = 1. By a well-known compatibility criterion for inequalities we have to 

verify that  for every finite system of arcs (Is}, I , =  Ikj~j, and for corresponding positive 

numbers (2s} such that  

~ 2jy,~,(~)>~ 1 (~E~U~Fo) (2.38) 
J 

the following inequality holds: 

n 

~ v  < 5 ~, 5 ~ + c 5 ~.(I~), (2.39) 

ZI(~) being the characteristic function of an arc I.  Clearly, we can confine ourselves to the 

case when all the 2j are rational. Moreover, replacing some of the arcs 1 t by shorter ones 

or discarding them altogether we can reduce (2.38) to an equality. Multiplying then 

(2.38) and (2.39) by the common denominator of the ~tj and replacing {Ij} by another 

system of arcs (with some arcs repeated several times, if necessary), we shall give the 

required result the following form: for any system of open arcs {Ij} which have their end 

points in F0, do not contain ~1  and cover F~) exactly n times, 

Zz, , (0  = n (~eF~), 
1 

the inequality holds 

or, equivalently, 

n 

n ~ a. < Y V a, + C ~ ~(I,) (2.40) 
v = 1 I ~v ~- 1 t 1 

( n -  Y l)a ,<C>Lx(/ j ) .  (2.41) 
~i C~:j J 

For n = 1 this is certainly true because (2.41) is then equivalent to (2.32), F being the set of 

end points of all the arcs Ij.  The general case is proved by induction which is made 

possible by the fact that  every n-covering {Ij} of ~ U ~ F  o (with ~1 not covered at all) can 

be split up into n simple coverings. 
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Thus we have proved the existence of a function p($) which satisfies (2.33) and (2.34) 

for any I not containing ~ l (a= l ) .  I f  ~16I, write (2.34) for the two components of 

/Z(lx) < Cu(I1), ~(Is)<~Cu(Iz). 

Then 

[ log 21 
/~(I) = #(11) +/~(I2) - al ~< C[~(Ix) + ~(Is)] < C z( I )  + 2~ J < aCx(I)  

with s = l  +log 2. Thus (2.34) has been proved with a = l  +log 2. 

Next  in the proof of Theorem 2.3 comes the case when a is supported by  a B.-C. 

set 2' 0. Let  Iv ( v = l ,  2 ... .  ) be the components of Fg and let (2.30) hold for any closed 

F 6 F 0. Consider the closed set 

S n = O U ' ~ U  I . =  tJ J(J) (n>~l) 
v = l  u = l  

which has exactly n components j(n) (v = 1, 2, ..., n) tha t  are either points or closed arcs. 

Choose in each .r(') one point r and let F (n) -~z(~)] ,  ~ v  - - t b l ,  fv=l* Place at  each $~") the mass 

-a( ) ' )=a(FoN J()~)) and apply Lemma 2.3.1. First check condition (2.32). For any  subset. 

.F~_ F (n) let Mr  denote the union of all those -J~(') that  have non-void intersection with F 

Then 

On the other band, 

and since 

we obtain 

u~-(n) = - a(F o N My) ~ C~(F o N MF). 
~(")eF v 

(2.42) 

~(Fo • MF) <~ ~(F) + ~ ~r 
v f . n - t -1  

lira ~ n(Iv)=0 
n--~O v ~ n + l  

~") < (C + e) ~(F) (VF_= F~")), 

e > 0 being arbitrarily small if n is large enough. Now we can apply Lemma 2.3.1. and find a 

premeasure (in fact, a measure) /zcn) with contant non-negative densities between the 

points ~(n) such that 

#(~)({~(n)}) = _ a(~)= a(F0 (~ j(~)), [[/~(~)H + 4 (C+ e) (1 + log 2). 

Using a Helly-type selection theorem [6] (or just a self-evident diagonal process) we can 

find a weakly convergent subsequence {#(~,)} such tha t  for every arc I c ~ U  whose end 
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points  are outside F o 

lim/z(n,)(I) --- ~u(I), 
8 - - ~  

where # is a measure  wi th  cons tant  non-negat ive  densi ty  on each I~. Clearly, II/~11+~< 

C(1 + log  2). I t  remains  to prove  t h a t / ~  =a. 

Let  F ~  F 0 be a closed set. Using Proposi t ion 2.6 we find t h a t  

/~o(F) = lim #(F~). (2.43) 
~--~0 

On the other  hand,  
/~(F ~) = lim #(n,)(F ~ ) 

8--)00 

if (~ is such t ha t  the  end points  of the  components  of F~ are outside F 0. We can now es t imate  

#(~)(F~) as follows: 

- Z a~(~)~</~(~)(F~) ~< - ~ o~-(~)+ (C+e)( l+log2)[~o(Fo)+• 

Let t ing  n-~ ~ we get 

a(Fo n F~) < ~(Fs) < a(F0 n F~) + C(1 +log 2) [~0(F0) +~(g)]. 

Since F 0 E :~ we obtain  

lira ~ ( F o )  --- 0, lim u(F~) = 0 
0 

and hence, bear ing in mind (2.43), 

lim/~(F~) = ~ ( F )  = a(F) (u  :~). (2.44) 

To  complete the  proof of Theorem 2.3 we have  to  consider the  general case when,  

according to Theorem 2.2, there is a sequence FI~_F2~_... of B.-C. sets such t h a t  

a(F)=l imn. -~a(Fn Fn) (u For  every  Fn there  is a (pre)measure #(n), ii#(nlH+~< 

C(1 + log  2), which has non-negat ive  piecewise cons tant  dens i ty  on F c and whose singular 

pa r t  is 
~(:)(F) =~(F)  =~(Fn F~) (VF~:~). 

Using again the Hel ly- type  selection theorem [6] we can ex t rac t  a subsequence {#ln~)} 

which converges weakly  to a premeasure  /z. Repea t ing  the  same a rgumen t  we used in 

proving  (2.44) we shall arr ive a t  the  following conclusion: 

/ ~ ( F )  = l im an(F) = a(F) (VFE:~).  
n--t*O0 

Thus  Theorem 2.3 has been proved.  

We shall la ter  need the  following result  which can be p roved  using the same technique: 
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COROLLARY 2.3.1. Let ax <~(r~ <-...<~O be a sequence o/ r-singular measures and let 

al (and consequently all the at) satis/y condition o/ the type (2.30). I /  in addition 

lim av(F) = 0 (VFE ~), (2.45) 
v - ) ~ o  

then there is a sequence {ber}~ o/premeasures such that 

(i) Ilbe~ll+<aC, �9 

(ii) the r-singular part o/be~ is equal to a~; 

(iii) sup1~lbe~(l)l-~o (v-~oo). (2.40) 

w 3. An approximation theorem for premeasures 

Definition 3.1. A premeasure be of bounded r-variat ion is said to be r-absolutely 

continuous below if there is a sequence {bev)~ of premeasures, be~ErB+, such tha t  

(i) be+~%ErB +, [[be+be~]]+<C (u (3.1) 

(ii) sup1~x](be+p~)(I)I-+0 ( v ~ ) .  (3.2) 

T H r OR ~ M 3.1. A premeasure be E~ V is r-absolutely continuous below i[ and only i / i t s  

r-singular part is non-negative: 

bee/> 0. (3.3) 
Proo/. 

A. Necessity. Let  be be r-absolutely continuous below, i.e. let there be a sequence 

{be~} satisfying (3.1) and (3.2). Take an arbi t rary set F E  :~ and let {I,} be its complementary 

arcs. We have 

-(be+be~)~(F)=~(be+be,)(In)= ~ (be+be,')(In) + ~ (be+be,')(In) 
n n<<.N n > N  

<~ E (be + be,)(I,,) + C E u(In). 
n ~ N  n > N  

Using (3.2) we get 

- lira (be + be~)o(F) < C ~ r(I~)-~ 0 

because ~(F) < oo. Thus 
nm (be +be~)~(F)/> 0. 

Since bev ErB+ its r-singular part  is non-positive; therefore 

From (3.4) and (3.5) follows 

which proves (3.3) 

(N~ ~),  

(be+bev)~(F) <be(F) (vFe7).  

be~(F) >/0 (VFE:~) 

(3.4) 

(3.5) 
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B. Su//iciency. Let hr~> 1 be entire. Consider the set s of half-open are 

Ikz = {e~a: (2~k)/N <. 0 < (2~l)/hr} (0 <~ k < l <~.u let/~(Ikl) =~u~l. If # is n-absolutely continuous 

below then (3.1) and (3.2) imply that  the following system of inequalities and equations is 

consistent: 

xkz < M~(Ikz), ] 

/~kl + x~, ~< min {C~(Ik,), e}, / (3.6) 
l-1 

Xkl  = ~ X S .  8+I, X 0 N = 0  (0~<k</<hr)  
8=k 

for any e > 0  and some M=M~. In fact, setting Xkz=/Zv(I~l) and writing out all the 

requirements of Definition 3.1 regarding the intervals I E s as well as all the additivity 

conditions and ~u~(~U)=0, we obtain (3.6). Conversely, if for any e > 0  and for some 

M =Ms (3.6) has solutions for h r = l ,  2 ..... then/~ is n-absolutely continuous below. To 

prove this we have to form for every solution {xkz} of (3.6) a measure x having constant 

density xs. s+l[ I I8. s+l I over every 18.8+1. Using then the Helly.type selection theorem for 

premeasures [6] and effecting transition to the limit with hr-~oo we shall obtain a 

premeasure x which meets the following conditions: 

x(I) <. Mu(I); /~(I) +x(I)  < min {Cu(I), e} 

for all open arcs I ~ U  which do not contain the point ~=1, the last restriction being 

easily removed if ( l+ log2)C ,  2e is substituted for C, e respectively (ef. the proof of 

Lemma 2.3.1). Consequently, if # is not n-absolutely continuous below then for every 

C>O there is an e>O such that,  however large M, (3.5) has no solutions for some h r. 

Repeating the argument used in the proof of Lemma 2.3.1 we shall arrive at the conclusion 

that  for such combination of C, e, M there is a covering of OU by a finite system 

of disjoint half-closed arcs {I~} such that  

~ min {/~(Iv) + Mu(I~), Cu(Iv), e} < O. 

Let {/~} be those arcs among {I,} for which 

min {/L(I~) +M~c(Iv), Cn(I~), e} --/z(Iv) +Mn(I~), 

and let {I~} = {I~}~{I:}. Clearly,/~(I~) < O. Setting F~  = U, I" we find 

p(FM) < -- ( M -  C) u(FM) -- CU(FM) -- C ~ u(I:) - e ~ 1, (3.7) 
II~,l<a I1~1~ 

where ~ is defined by the equation. 

C~ [ 2~z 1~ = (log + 8. ] 
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Put  now C=2xVar/~ and let M-~ ~ .  Bearing in mind the definition of x-variation 

we easily arrive at the following conclusion: 

(a) (I'~': [I:' I ~>(~},O for/>2C; 

(b) ~x(I,~')=O(1) ( M - ~ ) ;  

(e) x(FM)~0 ( M - ~ ) ;  

(d) /u(Fi)<-..-2xVar/~[X(FM)+ ~ x(I~")]-e. (3.8) 
II~,l<a 

We shall assume for convenience that  "~M is a closed set composed of a finite number of 

closed arcs and that  X( FM) stands for u(int FM); the parameter M will be assumed to run 

through a sequence M I < M 2 < . . . ,  lim M , =  ~ .  To simplify the notation we shall write 

Fn for FM. Our aim now is to extract  a subsequence {F~,} which will converge in some 

sense (to be specified) to a B.-C. set F, and to show using (3.8) t h a t / ~  cannot be non- 

negative on /~. For that  we need 

LEMMA 3.1.1. Let (Fn} be a sequence o/sets, each one composed o /a / in i t e  number o/ 

closed arcs. Let the/ollowing hypotheses hold (n~  ~):  

(i) I F . l ~ 0  

(ii) x(F~) = 0(1). 

Then there i8 a subsequence {Fn, } and a B.-C. set F such that/or every 0 >0 and some N = N 8 

(a) F.v c F*, 

(b) Fc~.~ 

/or v > N,.  

Proo]. Let {Ikn } be the complementary arcs of Fn arranged so that  [Iln [ ~[I2n [ ~> .... 

We show first that  [11,] are bounded away from 0. In fact, 

tio r l  
and therefore 

2• 2zz(F~) 
l o g ~ + l <  --iF,~ I . (3,9) 

F c Since [F~I-~27~ and x ( n ) - - O ( 1 )  (3.9) shows that  [Iln[ is bounded away from 0. We can 

therefore choose a subsequence 

{r~.} = {F'.} 
such that  
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I1, --~ J1 (n -~ ~ ) ,  (3.10) 

where { I ~ }  are the complementary arcs of F~, J~ is some open arc, [J~[ > 0, and (3.10) 

means tha t  the end points of I ~  tend to the corresponding end points of J v  If  

[Jl l  =2~  then {F'~} is the required subsequence and F=J~.  I f  [gi[ <~2:7~ then the same 

argument  shows tha t  

2r 27~(F~) 
~< ~--~ , (3.11) l~ 1 IF. l -  1I,. 

and since the denominator of the latter faction tends to 2 ~ - I J x [  > 0  the lengths I I~. l  

must be bounded away from zero. Therefore a subsequence {F~} = {F'~,.} exists such tha t  

I~',,~J 2. Continuing this process we shall either arrive after a finite number  of steps at  

a subsequence {F~ ) such tha t  

I ( ~ ) ~ J  ( n ~ ;  k = l ,  2, 8) k n  k " "~  

~j Is  j w is and 5~=1 IJk[ = 2~ in which case {F~ )} is the required subsequence and F =  ~ k = J  k, 

a finite set, or the number of steps is infinite. In  the latter case 

oo 

IJkl = 2~z. (3.12) 
k - I  

In fact, just as (3.9) and (3.11) it is easily seen tha t  

2~ 2zA 
log ~j~l + 1 ~< s - ]  

2 ~ -  2 I Jd  
k - Z  

where A is the upper bound for x(F~), and tha t  proves (3.12) since clearly I J ,  I ~  0 ( s~  ~ ) .  

~F (n)~ Taldng the diagonal subsequence ~ n s,~ ~ we get the required result. Thus our lemma is 

proved. 

Now we can continue the proof of Theorem 3.1. As (3.8) shows, the assumption tha t  

/~ is not absolutely continuous below implies the existence of a sequence {Fn}~ of sets, 

each Fn being composed of a finite number  of closed arcs, such that  

(i) u(Fn)-~O and a [ortiori [Fn[-+O ( n - ~ ) ;  

(ii) u ( F ~ ) ~ < A < ~  ( n = l , 2  ... .  ); 

(iii) /~(F,) ~< -C[u(F~)+Zt/k.t<~ u(Ikn)]-e ,  (3.13) 

where C = 2 ~  Var/~, {Ik,} are the complementary arcs of F n, and ~ and s are some 

positive numbers. Using Lemma 3.1.1 we can form a subsequence {F~} converging to a 

B.-C. set F in the sense tha t  for every ~ > 0 F ~ contains all but  a finite number of Fn~ and 
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is contained in all but a finite number  of F ~ .  Assume for simplicity tha t  {Fn} already is 

such a subsequence. We claim that  the u-singular p a r t / ~  of the premeasure # cannot be 

non-negative on F. 

I f  the contrary is true, then /~z(S)>/0 (VS_ F, S E~) and in particular ttr  

with Sn=FnN F. Using Proposition 2.6 we find limz_~0tt(S~)I>0. 

Therefore we can replace in (3.13) Fn by Fn~Sqn and choose Q~ so small tha t  (3.13) 

should still hold though perhaps with a smaller ~ and only for sufficiently large n. Thus a 

sequence of numbers Qn+0 can be chosen as well as a sequence of sets {Fn}~ ~ (each one 

composed of a finite number of closed arcs) such tha t  

Fn ~ FQ"\~ Q~+~ 

and 
/~(Fn) ~< - C[x(Fn) +~(Gn)] - s ,  (3.14) 

where G n = (FQ,~Fq,+])~Fn. 
Let [In, ~n and ~n  denote the systems of arcs I of which Fn, Gn and F Q- are composed 

respectively; let 

Further  let ~T0 be the system of arcs tha t  form 8U~F Q'. Summing (3.14) we get 

V I,u(/)l + V It,(I)l >/ I~,(f,)l/> v ,,(G,) + ~ 
l~:lo I~$ n ~, ~ I I, 

= C ~ . ( I ) - C  ~ .(I)+ne=C[ ~ . ( I ) -  ~ . ( I ) -  ~ . ( I ) ] + n e .  
1r IE~n + 1 le$ntJ~lo IE~n § 1 lEYo 

Since 
Y ~(I)-~ 0 (n-~ o~), 

lena + 1 

we obtain (for large enough n) 

~: I/z(1) I ~C  ~ ~(I). 
l~$nU~e IE$nU~le 

We have arrive therefore at  a contradiction, because Sn (J if0 is a system of non-overlapping 

arcs covering 8 U, and C = 2uVar/ t .  This contradiction completes the proof of Theorem 3.1. 

COROLLARY 3.1.1. Let ttE~V and kt#>~O. Then the/unction 

/(z)=exp{fov~-~p(ldr } (zeU) (3.15) 

possesses the/ollowing properties: 
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(i) it is analytic in U and belongs to the class ~ = A - ~ / A  -~176 (ef. section 4); 

(ii) / (0)=1;  

(iii) there is a sequence o//unctions (qv(z)}~ belonqinq to A -~  such that h~(z)=/(z)q~(z) 

belong to A -N with some JV > 0 and 

]]l--h~l]_N-~O (~-~ ~) .  (3.16) 

Proo/. iz is u-absolutely continuous below. Taking {~u,} as in Definition 3.1 and 

defining 

g~(z)=expIf~.~-~i~,ld~l) ) (zeU) (3.17) 

we obtain the required sequence. In fact, 

,g.(z)l=explfoP($,z)l~.(]d,]))<<. (1 - , z ] )  -~''''~''+ 

(see Corollary 2.1.1) so that  g~EA-% For the same reason /gvEA -a'c where C is the 

constant in (3.1). We have further 

and from (3.2) follows easily that/(z)g~(z)-+ 1 uniformly on compact sets F c  U. Therefore 

(3.16) holds for any N>22C. 

w 4. ProoI ot Theorem 1.1 

Corollary 3.1.1 implies in particular that  an element ]EA -~~ possessing representation 

(3.15) wi th/~EuB +,/~r is cyclic, i.e. the closed ideal 11 generated by / is A -~~ itself. 

Clearly, this covers an important special case of Theorem 1.1, provided that equivalence of 

the two definitions of :~ can be proved (cf. section 1). For the reader's convenience we 

shall give here some results from [6] related to the representation of functions of the 

classes A -~, ~.  

PROPOSITION 4.1. [2]. Every /unction /(z)EA -~, 1(0)=4=0, possesses a unique 

representation in the ]orm 

/ (z)=/(0) B.(z)exptfov~-~zlz( ,d~,) l ,  (4.1) 

where B~(z) is the "generalized Blaschke product" associated with a= {av} = Z f 
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/}~(z)= ~<,,~<~ i - ~ . - z "  ~ x P l ~ ) Z z ' l ~  I 

and /~ EuB+. Moreover, 

/or any n > 0 ,  C > 0 .  
Supll/~ll + < co (V l~ i - , ' ,  I l l l l_, ,<c) 

(4.2) 

(4.3) 

Remark. A corresponding result for the class T/ holds as well with # E u V  and the 

quotient of two generalized Blasehke products instead of /}~(z) in (4.1). 

Le t / ( z )EA -n, /(0)=~0, a={a~}=Z I. Define 

r s ( F ) = -  Z log 1 

Then T I is a non-positive u-singular measure satisfying condition (1.6) with the constant 

C =an, a being an absolute constant. This result follows immediately from the descrip- 

tion of A ~176 sets (cf condition (Tn) and (T) in [6]). 

De/inition 4.1. T I will be called the Blaschke n-singular measure associated wi th / .  

Definition 4.2. [6]. Let /(z)EA -~176 /(0)=4=0, be represented in the form (4.1). Let /~z 

be the x-singular par t  of the premeasure # and T- be the Blaschke n-singular measure. Then 

a I = / z ~  - -  T I ( 4 . 4 )  

will be called the u-singular measure associated with /. I f  /O)=/'(O)=...=f~-l(O)=O, 

/(kl(O)g=O (k ~ 1) and/x(Z) =z-k/(z) then by definition 

O'f = O'f,. 

Clearly a; ~ 0 for all f E A - %  

I t  will be shown later tha t  Definition 4.2 is equivalent to Definition 1.3. 

The notion of a u-singular measure as associated with an ideal 0 : 4 : I c  A -~~ is reduced 

to a r by means of (1.11). 

De/inition 4.3. C r176 is the linear topological space of all infinitely differentiable func- 

tions F(~) on ~U: 

F($)-= ~ b~$" (b,=O(IJ, I-k)Vk>O). 
- -00 

De/inition 4.4. C -~176 is the linear topological space of all forma series 

l = ~ a , r  ~, 
- -00 
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where 
a~=O(lv[ k) for some k = k I > O .  

The spaces Aoo and A-oo will be thought of as subspaces of Coo and C-oo respectively. 

The multiplication of elements belonging to C-oo will be understood as formal 

multiplication of the corresponding series, whenever this leads to meaningful formulas 

for the coefficients of the product. 

P R O P O S I T I O N  4 . 2 .  

(i) C~C -~ ~_ C-~; 

(ii) CooCoo ~ C~; 

(iii) A-o~A-oo c A-oO; 

(iv) # / eC  ~176 g, eC-oo (v= l ,  2, ...) and g~->g(v-+~) in the topology o/ C -~ 

then ]gv~]g in C-oo; 

(v) i[ gv-+g and h,-+h ( v - ~ )  in A-oo, then 9,h,--+gh in A-% 

The proof is obvious. 

Definition 4.5. The annihilator of a closed ideal Ic_A-oo is the subspace AI of C ~ 

whose elements F satisfy 

Let 
F/EA-OO (V/E I). (4.6) 

F0($) = ~ b~ ~" 
- O0 

be some element of A~; then for a n y / E I ,  

oo 

/(z) = ~ a~ z" 
9 

(4.6) yields 

~b_~_:a,=O ( k = l , 2  . . . .  ) .  (4.7) 

This shows that  FoEA l implies Fo+Aooc_At; in particular, A ~176 _ Av Thus what really 

matters in Definition 4.5 is the non-analytic part of F(~), i.e. the coefficients {b~}2~ ~ I t  is 

easily seen that  the quotient space A1/Aoo is isomorphic to the subspace A* of A + con- 

sisting of those functionals F* for which F*(])=O (u (see formula (1.4) for the defi- 

nition of Aoo as the dual of A +). 

PROPOSITION 4.3. For each closed ideal I~_A-oo 

I = {/eA-oo: F/eA-~ (4.8) 
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This is a direct consequence from Definition 4.5 and from the Hahn-Banach theorem 

for linear topological spaces (see, e.g., [4], chapter 2). 

hTow we prove some lemmas which will lead eventually to the proof of Theorem 1.1. 

LEMM). 4.1. Let O ~ F E C  ~176 and/1,/2, gl, g2 EA-r I /  F/1 =gl, F/2=g~ then/lg~=/~gr 

Proo/. (F / l ) /2  =_~(/1/2) =g i f t ;  (F/2)/1 = -~(/2/1) = g2/1; therefore gl/2 =g2/1" All the 

multiplications and transformations are easily justified. 

LEMMA 4.2. Let O~=FEC ~, /oEA -~176 and FloRA -~176 Then F / E A  -~  whenever lEA  -~  

is such that ZI~_Zr~ as <~al,. 

Proo/. First take up the ease ZI=ZI~ Using Proposition 4.1 we can represent/0 and / 

in the form (4.1); then dividing/0 by / we obtain 

/o(Z) 

where /~E~V and /~=as~ Applying Corollary 3.1.1 

(g~}T, g~EA -~, such that  

/7~EA-~176 /-~g'-- 1 (v-~ ~ )  

(4.9) 

we can find a sequence 

in the topology of A-% Multiplying by / we get /ogv-~/(v~ ~) .  Since by the hypothesis 

F/oEA -~176 we find (F/o)gv=F(/ogv)EA -~ and therefore, using Proposition 4.2, F/= 

lim~r F(/og~) EA -~176 

If Zr~ZI,  we can construct [6] a function flEA -~  such that  Zo=ZI~ZI. ,  ao=0. 

Then F(/og)=(F/o)gEA -~, Zr~ al.o=ar0~(~1, and the case ZI~Zr~ is thus reduced 

to that  already proved. 

LEMMA 4.3. Let (as in Proposition 1.1) FE:~, a0 be a non-negative Borel measure on 

F and ~P(z) (z E ~]) be an outer/unction belonging to A ~ and vanishing on F together with all 

its derivatives. De/ine 

I(z)=exp{- f~u~e~zao(Id$l) } (zCF), (4.10) 

and 

~(~) = (:(~)s-1(~) (~=~u\F) (4.11) 
(~e F), 

~l(z)={~o(Z)I(z) (zE/)~F) 
(zE F). (4.12) 
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Then 

(i) 

(ii) 

(iii) 

vtz CCoo, ~t~i CAoO; 

xF'W 1 = O ~ C A oo; 

an element ] e A  -~~ has the property W / e A  -~~ i/ and only i/ ar -ao.  

Proo/. (i) Since O(n)(z) = O[dN(z, F)] (z E U) for any  n ~> 0, N/> 0 and  I(n)(z) = O[d-~n(z, F)] 

( z C U ~ F ) ,  iF(z) and  ~FI(Z ) are infinitely differentiable on ~U. Note  t h a t  ~F(z)= 

O(Z)I-I(z) (ZE U) does not  belong to A - ~  barr ing the  t r ivial  case a0=~0. 

(ii) Obvious. 

(iii) Le t  l E A  -~176 and t F / = g E C  -~176 Multiplying by  q2 a we get r . I f  g E A  -~176 then  

equat ing  the  u-singular measures  on bo th  sides of the equat ion we find a1=ag -a0~<  - a 0 .  

Conversely,  if a f ~  < - a  0 then  applying L e m m a  4.2 we infer f rom LFUx2" 1 C A -(x) t h a t  ~F] C A -~176 

because vk~ 1 has no zeros and its u-singular measure  is - a  o. 

Incidental ly ,  L e m m a  4.3 proves  the  equivalence of Definit ion 1.3 and Defini t ion 

4.2, as well as Proposi t ion 1.1. 

We are now in a position to complete  the  proof of Theorem 1.1. Firs t  p rove  the  

second pa r t  of the Theorem.  Let  ~ = {av} be an A-~~ set  and let a 0 be a non-posi t ive 

u-singular measure.  By  Theorem 2.2 there is a sequence of B.-C. sets FI_~ F2___ ... and a 

sequence {av}~ of non-posi t ive u-singular measures,  av being in fact  the pa r t  of a 0 suppor ted  

by F~, such t ha t  for any  B.-C. set F ao(F)=lim~-,~a~(F)=lim~ooao(FN F~). Form as in 

L e m m a  4.3 for all F~ and the corresponding av the funct ion 

~ + z  
�9 ~(~) = (I)~(~) exp { - f~ u ~ - - z  a~(, d~ 1)}, (4.13) 

(l)v(z) being an outer  function of the class A ~~ with the  null set F~, and for every  zero 

av let ~ ( z )  = ( ~ -  ~v)k~, kv being the  mult ipl ic i ty  of t h a t  zero. Then L e m m a  4.3 shows t h a t  

I( :~,(r0)=(/EA-r176 W ~ / C A  -~176 :r~/EA -~ ~r 

Therefore I(~,  ao) is a closed ideal in A -~176 I t s  non- t r iv ia l i ty  follows f rom the fact  

t h a t  (by Theorem 2.3) there is a premeasure  tz CuB+ w i t h / ~  =ao, and by  the results of [6] 

there  is a funct ion / (z)CA -~176 with Z f = ~ ,  a i = 0 ;  therefore 

g(z)=/(z)exp{fovr 
meets  both  conditions Z a = ~  , ag=a0  . 

Take  up now the first pa r t  of Theorem 1.1. Le t  I ~ 0  be a closed ideal in A -~  and  

Al  be its annihilator .  Le t  F ~ 0 be a fixed e lement  of Az: 

F / = g ~ C A  - ~  (V/C/) .  (4.14) 
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By Lemma 4.1 the function 

h(z) = g,(z) 
/ (z)  

does not depend on the choice o f / e I .  Since h(z) belongs to the class Tl=A-~176 -~  it 

possesses [6] a unique representation in the form 

where ~'={a'~} is the zero set and fl'={fl~} is the pole set of h(z) and ,u'XE~V. Therefore 

fl'___Zz,/~< -az ,  i.e. each zero of / which is outside Z z must  also be a zero of gr, and the 

part  of ar which goes beyond a~ must  also be a part  of %f  Fix now a ]0 E I and assume for 

simplicity tha t  /0(0)#0. Let Z s , \ Z  ~ = {z,}, as , -a~  = a ' 4  0; let further a '  be concentrated 

on a set S =  U , F , ,  FI~_F2 ~_ . . .(F,E:~) so that  a '=g.l ,b.{a,},  where a , ( F ) = # ( F N F ~ )  

and 0>~al>~a2~> ... >t#. Multiply (4.14) by [ (C-z) (~-z2) . . . (~-z , ) ]  -1 ~F,(~) where ~F, EC ~ 

has the form (4.13) and apply Lemma 4.2; then we arrive at the conclusion tha t  F l E A  -~ 

whenever 
Zr=ZIU{z~}~+I, a r = a i + ( a ' - a ~ ) ,  n = l ,  2 . . . . .  

By use of Theorem 2.3, Corollary 2.3.1 and the technique developed in [6] for constructing 

function of the class A - ~  with given zero sets, we can form the following functions: 

(a) gEA -~  such tha t  Zg=Zz, ag=a~; 

(b) p~EA -~176 such tha t  Zr, = {zv}~+~, % = 0 ;  

(c) qnEA -~176 such that  Zq =O, aq = a ' - a ,  

and ensure that  p , ~ l ,  q=-~l in the topology of A -~. We have for all n~>l 

Fgpn q= E A-~ 

taking the limit when n - ~  and observing tha t  pnqn->l we obtain tha t  FgEA -r and 

therefore by Lemma 4.2 
F l E A  -~  (u ZI~_Z~, aI~a~). (4.16) 

Since F is an arbi trary element of A~ this yields 

{/EA-~:  F l E A  -~  u  ~ I(Zb a~). 

Using (4.8) we find I ~  I (Z  D az). On the other hand, if [ E I  then by the definition of Zz 

and a~ we have 
Z~_Z~,  a s~<az 

and therefore /E I(Z~, a~). Thus 
I = I(Z~, a~) 

and Theorem 1.1 has been proved. 
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