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w 1. Introduction 

The  s t u d y  of rea l -va lued  funct ions  whose g raphs  are min ima l  surfaces has  a long and  

rich his tory,  and  b y  now we have  a fa i r ly  p ro found  u n d e r s t a n d i n g  of the  subject .  I n  

cont ras t ,  a lmos t  no th ing  is known  a b o u t  vec tor -va lued  funct ions  whose g raphs  are  min ima l  

surfaces, and  this  paper  should expla in ,  a t  least  in pa r t ,  why  th is  is so. I t  will be shown 

t h a t  m a n y  of the  deep and  beau t i fu l  resul ts  for non -pa rame t r i c  min ima l  surfaces in codi- 

mens ion  one fail  u t t e r l y  in h igher  codimensions.  

W e  shall  be concerned p r imar i l y  wi th  the  Dir ichle t  p rob lem for t he  min ima l  surface 

sys tem on a bounded ,  convex d o m a i n  ~ in R n. Using  an  old a r g u m e n t  of Rado ,  we shal l  

show t h a t  for n =2 ,  the  Dir ich le t  p rob lem is solvable  for a r b i t r a r y  con t inuous  b o u n d a r y  

da t a .  However ,  we then  cons t ruc t  examples  to  show t h a t  these  solu t ions  are not unique 

in  general .  Moreover,  we shall  show t h a t  such surfaces need not even be stable in  con t r a s t  

wi th  t he  fac t  t h a t  in  codimension one, non -pa rame t r i c  m in ima l  surfaces are  abso lu te ly  

a rea  minimizing.  

W e  shall  t hen  show t h a t  for n >~ 4, the  Dir ichle t  p rob lem is not even solvable in  general .  

(1) Work partially supported by NSF grants MPS-74.23180 and MPS 75.04763. 
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I n  fact, for each n ~ 4  it is possible to find a C ~ f u n c t i o n / :  S ~ - l ~ I t  k for some integer k, 

2 ~</c ~< n - 2, with the proper ty  tha t  there are no Lipschitz solutions F to the minimal sur/ace 

system in D n such tha t  Fish-1 = / .  Moreover, the same s ta tement  holds for a l l / '  in a large 

C 1 neighborhood of /. Such a family of examples can be generated for each non-trivial  

element of ~_~(S~-~). 

Finally, by  examining certain specific cases in detail we are able to show the existence 

of non-parametr ic  minimal cones. I n  particular, this gives examples of Lipschitz solutions 

to the minimal sur/ace system which are not C ~, thereby making  sharp the basic regular i ty 

result of Morrey which states t ha t  any  C 1 solution is real analytic.  

We would like to thank  Bill Allard for several informative conversations relating to 

this work. 

w 2. The minimal surface system 

Let ~ be an open set in R n and consider a C 2 immersion F :  ~ R  n+k. Then F is a 

minimal immersion if and only if F satisfies the system 

Y =o, (2.1) 
~,~laX ~x 

where g = d e t  ((g~j)), ((gtj))=((gtj))-i and g~j=(OF/Ox ~, ~F/~xJ). This is equivalent  to the 

requirement tha t  F ( ~ )  have mean curvature  identically zero. 

The immersion F is said to be non-parametric if it has the form F(x)= (x,/(x)) for 

some function [: ~ R  k. I n  this case the system (2.1) has the form: 

~l~x  ]= . . . ,n  
".-, g) [] / - , j  c~/~ (2.2) 

where g and ((g~J)) are defined as above, and in this case 

\ 

This is clearly equivalent  to the system: 

~-IOX ] ~  " ' ' g n  
(22) 

" . t j  O~I  ^ [ ~ ~ - ~ =  u .  
t f , , ~ - I  ( ] .~ u .o  
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For  functions of class C 2, this system can be replaced by  the smaller one: 

n a 

To see this we note that  (2.3) simply expresses the fact tha t  the vertical projection of 

the mean curvature vector to the graph of / is identically zero. 

By a somewhat more subtle argument,  it is shown in [30] tha t  the system (2.2) (or 

(2.2)') for C 2 functions is also equivalent to: 

n 2 

5 g'J ~ / - 0 (2.4) 

Note that  the system (2.2) (or (2.2)') is defined in the weak sense for any locally Lip- 

schitz function / on ~ .  In  this case (2.2) is equivalent to the condition tha t  the first vari- 

ation of area of the graph of / with respect to smooth, compactly supported deformations 

of ~ • R k, is zero. In  other words, the graph of / is a s tat ionary integral varifold in the 

sense of Almgren (of. [3]). This leads naturally to the following. 

CONJECTURE 2.1. The systems (2.2) and (2.3) are equivalent for any locally Lipschitz 

function / in ~ .  

Suppose now that  ~ is bounded and strictly convex and tha t  d ~  is of class C r for 

r >~ 2. For the remainder of the paper we shall be concerned with the following. 

D I R I C H L E T P R 0 B L E M. Given a/unct ion r d ~  ~ It k o/class C s, 0 -~ s <~ r , / ind  a/unct ion 

/EC~ N Lip (~) such that / satisfies the minimal  sur/ace system (2.2)in ~ and ] [ ~ = r  

When s >~ l, we/urther require that the area o/ the graph o / / b e / i n i t e .  

The study of the Dirichlet problem usually falls into two distinct parts, those of the 

existence and the regularity of solutions. I t  is an unusual fact tha t  for the non-parametric 

minimal surface system more is known about regularity than  existence. 

T~EOREM 2.2. (Interior regularity; C. B. Morrey [22], [23]). A n y  C 1/unction / which 

satis/ies the system (2.2) is real analytic. 

THEOREM 2.3. (Boundary regularity; W. Allard [2]). Suppose that r is o/ class C s'~ /or 

2 ~ s ~ ~ or s = w, and let / be any solution to the Dirichlet problem/or r in ~ .  Then there is 

a neighborhood U o / d ~  such that /eCS'~(U fl ~) .  

Note. Theorem 2.3 is deduced from the work in [2] as follows. Since ~ is strictly 

convex and r is class C ~, the arguments in 5.2 of [2] show tha t  the graph F I of / in 

R n x R k, at each point of its boundary, has a tangent  cone consisting of a finite number  
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of half-planes (of dimension n), each of which projects non-singularly into R ~. Since each 

such cone is the limit of a sequence of dilations of FI, it is easy to see that  the cone consists, 

in fact, of a single half-plane. I t  follows that  the density O(llr111, x)=�89 at each boundary 

point x. Theorem 2.3 is then an immediate corollary of the Regularity theorem in [2, w 4]. 

Remark. Perhaps it should be pointed out that  if ~ is not convex, the Dirichlet 

problem is not necessarily solvable in general even for n = 2  and r = s = w .  In  fact when 

n = 2, convexity is necessary and sufficient for a solution to exist corresponding to arbitrary 

C s boundary values [12]. When n > 2, convexity is still sufficient, but  the precise necessary 

and sufficient condition is that  the mean curvature of the boundary with respect to the 

interior normal be everywhere non-negative [17]. 

w 3. A brief snmmary  of kllown results in c o d l m e n s i o n  o n e  

For comparison with our later results in higher codimension we list here some of the 

facts known about non-parametric minimal surfaces in codimension one. 

T H E o R E M 3.1. For k = 1, the Dirichlet problem is solvable /or arbitrary continuous 

boundary data. Furthermore: 

(a) The solution is unique. 

(b) The solution is real analytic. 

(c) The solution is absolutely area minimizing, i.e., its graph is the unique integral 

current o/least mass in R "§ /or the given boundary (the graph o/4).  

The existence for C ~ boundary data follows from Jenkins and Serrin [17], and for 

general continuous boundary data from the a priori estimates in [5]. The regularity of 

Lipschitz solutions follows from de Giorgi [7]. (See [37] or [25].) The remainder of the 

theorem is classic. (See [21, pp. 156-7] for part  (c).) 

For the purpose of completeness we mention the following strong removable singula- 

rities result. 

THEOREM 3.2. Let K be a compact subset o] ~ with Hausdor]/ (n-1) .measure zero. 

Then any (smooth) /unction /: ( ~ - K ) - ~ R  which satis/ies the minimal sur/ace equation 

(2.2)' in ~ - K extends to a (smooth) solution in all o / ~ .  

This was first proved by Bers [4] for n = 2 and K = {point}. The general 2-dimensional 

case was proved by Nitsche [27]. The result in arbitrary dimensions is the work of de 

Giorgi and Stampaeohia [8]. 

Note. I t  has been known for some time that  this last result is not true in general 
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codimensions. In fact, in [28] an example is given of a bounded function /:{(x, y)ER: 

0 < x 2 + y~ ~< 1 }-* R 2, whose graph is a minimal surface in R 4, but  which does not extend contin- 

uously across 0. However, under certain (necessary) restrictive hypotheses, removable 

singularity results can be proved in higher codimension (el. [14], [31]). 

w 4. The existence of solutions of dimension two 

The following result is not new. I t  is an immediate consequence of old techniques 

of T. Rado and has certainly been known to the authors for some time. (See, for example 

[29, Thm. 7.2].) We include a proof here because the arguments involved will be useful 

in the next  chapter. 

THEOREM 4.1. For n = 2  and any k>~l, there exist solutions /EC~(~)N C~ to the 

Dirichlet problem/or any given continuous boundary/unction r d ~ R  k. 

Proo/. We begin by recalling the notion of a generalized parametric minimal sur/ace 

in R" having a given Jordan curve 7 as boundary. This is a map ~o: A ~ R  ", where 

A = {z = x + iye  C: [z I ~< 1 }, with the following properties: 

(a) ~ e C(A) n C~(AO), 

(b) I~x l~= l~ l  ~ and <yJx, v/y>=0, 

(c) A~=0, 
(d) ~[ da: dA-~? is a homeomorphism. 

The fundamental work of Douglas and Rado asserts the existence of such a minimal surface 

for any given Jordan curve 7=  RN (of. [9], [32] or [6]). 

Theorem 4.1 will be an immediate consequence of the following result. 

THEOREM 4.2. Let ~ be a Jordan curve in R 2+~ and suppose that ~, can be expressed 

as the graph ol a continuous/unction r d~ -~R k where ~ is a bounded, convex domain in R 2. 

Then every generalized parametric minimal sur/ace with boundary ~ has a one-to-one, non- 

singular projection onto ~ ,  i.e., every such sur/ace can be expressed as the graph o/a /unct ion  

/: ~ R  k where/eC~ N C~(~) and / satis/ies (2.2) in ~.  

To prove this we shall need the following basic result of T. Rado [33]. (Rado states 

the theorem for N--3 ,  however the proof works in general, cf. [19], [29].) 

PROPOSITION 4.3. Suppose v2: A ~ R  N is a generalized parametric minimal sur/ace 

with boundary 7, where 7 is an arbitrary Jordan curve in R ~. Let ~: RN-~R be a linear/unction 
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and suppose that at a point (x0, Yo)EA0, the function ~o~ has a zero o/order k, i.e., 

8x,~yy..~(~oyJ ) = 0  for i+]<~k. 
(x0, Y0) 

Then the hyperplane H = { X E R~: ~t(X) = 0} meets V in at least (2k + 2) connected components. 

Roughly, this proposition follows from the maximum principle and the observation 

tha t  the zeros of ~toy~ in a neighborhood of a zero of order k have the structure of the zeros 

of a harmonic homogeneous polynomial of degree k + 1. 

Proof o/ Theorem 4.2. Let  ~: R 2 • R k ~ R  2 be projection and consider the map  ~o~v: 

A-+~.  (Note tha t  zro~v(A~ by  the strict maximum principle.) Suppose that  at 

some point (x0, Y0)EAO we had rank(d(~ro~v))~<1. Then for a non-trivial linear function 

of the form ),(x, y, zl, ..., z~) =2(x, y)=ax  + by, we would have that/~oyJ has a critical point 

of order >~ 1 at (x0, Y0). I t  then follows from Proposition 4.3 that  the hyperplane H defined 

by ~t = ~(x0, Y0) must  intersect ~ in at  least 4 components, t towever, by the convexity of 

~ ,  H N? has exactly two components. I t  follows then that  ~oy~: A ~  is a local diffeo- 

morphism which extends to a homeomorphism of the boundaries. I t  follows easily tha t  

~zo~p is one-to-one. This completes the proof. 

We now state another immediate consequence of the arguments above. Given a 

linear function ~t on R N and c e R, let Hc(~t ) = {X e RN: ~(X)=c}. 

PROFOSITION 4.4. Let ~ be a Jordan curve in R N and suppose ),: RN-+R is a linear 

function such that Hc(~ ) N ~ has at most/ice components for each c E R. Then for any generalized 

parametric minimal surface yJ: A ~ R  tr with 7, as boundary, the function ,~ov 2 has only non- 

degenerate critical points in A ~ and those critical points have index 1. 

w 5. The non-uniqueness and non-stability of solutions o |  dimension two 

In  this section we shall prove the following result. Let  

D = {(x, y)ER2: x ~ +y2 ~< 1}. 

THEOREM 5.1. There exists a real analytic function r dD--~R 2 with the property that 

there exist at least three distinct solutions (each of class C '~) to the Dirichlet problem/or r in D. 

Moreover, one of these solutions represents an unstable minimal surface; that is, the area of the 

graph can be decreased by arbitrarily small deformations which/ix the boundary. 

Proof. Let  ~ denote the graph of r in R i. I t  will suffice to show tha t  there exist two 

geometrically distinct parametric minimal surfaces with boundary 7', each of which has 
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the following additional property: 

The surface minimizes the area and Dirichlet integrals among all piecewise 

differentiable maps of A into Euclidean space which carry dA homeomorphically 

onto 7. (5.1) 

If  we succeed in proving this, then by the theorems of Morse-Tompkins [24] and Shiffman 

[35], there is a third, unstable parametric minimal surface with 7 as boundary. By Theorem 

4.2 every generalized parametric minimal surface with boundary 7 is, in fact, a non- 

parametric surface over D and we will have proved the theorem. 

For clarity of exposition we shall begin with an example in codimension 3. We shall 

then indicate how similar arguments will produce examples in codimension 2. 

Consider the regular, C ~~ Jordan curve 70 in R a pictured in Figure 1. This curve lies 

in the union of two pairs of parallel planes, each pair a distance e apar t  where s < l .  The 

curve is assumed to be invariant under the symmet ry  a0(x, y, z )=  ( - x ,  - z ,  y). Note tha t  

~olw preserves the orientation of 70. 

z 

Y 

Figu re  1 

Consider now the mapping r dD~7o given by  (the appropriate multiple of) arc- 

length, and set r = Re0 for some R ~ 1. We then define 7 to be the graph of ~ in R 5. Note 

that  since ao is an isometry and r is an arc-length parametrization, we have 

ao(r v)) = r - v ,  u) 

Hence 7 is invariant  under the symmet ry  

a(u, v, x, y, z) = ( - v ,  u, - x ,  - z , y ) .  
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Up to a scalar change, ~ represents an ever-so.slight deformation of ~0 into five-space. 

Our first major  claim concerning the curve 7; is the following. 

PROPOSITION 5.2. Let v2: A-~R 5 be any generalized parametric minimal sur/ace with 

boundary ~, and/et  ~: RS-~R be the coordinate/unction ,~ =x. Then ~ov 2 has exactly one critical 

point in A and that critical point is non-degenerate. 

Proo/. Each hyperplane Hc(~)ffi{XER6:2(X)=c} clearly meets ~ in at  most four 

points. Hence, by  Proposition 4.4 every critical point of ~toy~ in A0 is non-degenerate and 

of index 1. 

We now consider the corresponding non-parametric surface/ :  D-~R a guaranteed by 

Theorem 4.2. I f  re: RS-~R ~ denotes projection onto the first two coordinates, then h = 

reoy): A-~D is a homeomorphism and we have tha t  

~(z)  = (h(z), / (h(z)))  

for all zEA. Since h is a diffeomorphism on the interior of A and since ~o/oh =2oyJ, we see 

tha t  the function ~to/has the property tha t  each of its critical points in D O is non-degenerate 

and of index 1. 

When restricted to the boundary, the function )~o/Id~ =~tor has exactly four critical 

points, two non-degenerate maxima and two non-degenerate minima. 

We are now in a position to apply elementary Morse theory to ~to/. For each cER 

we consider the sublevel set Dc={(x, y)ED: 2o/(x, y)<~c}. For c slightly larger than c o 

= inf  D (~to/}, Dc consists of two components, each homeomorphic to a disk. As c increases, 

we add a one-handle to this manifold for each critical point in D ~ Since D~ = D, we con- 

clude that  there must  be exactly one critical point of ~to/in D ~ I t  follows that  ~o~ has 

exactly one critical point in A0. This completes the proof of the proposition. 

Figure 2 

From the work of Douglas [9] we know tha t  there exists a t  least one parametric  

minimal surface ~: A-~R 5 having boundary ~ and satisfying condition (5.1). Let  us suppose 

tha t  there are no other such surfaces which are geometrically distinct from yJ (i.e., which 
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Y 
a-invariant surface 

Y 
Comparison surface 

]Figure 3 

are not just a reparameterization of the same surface). Then since ~: RS-~R 5 is an isometry 

which preserves 7, we see that  ao~  is again a parametric minimal surface having boundary 

and satisfying condition (5.1). Hence, ~ and ao~  must have the same image surface, say 

]E, in RS; that  is, a(2])=~.  By  Proposition 5.2 the linear function ,~=x has exactly one 

critical point ~o when restricted to ~.o. I t  follows that  a(p) =p,  and so p =0.  

We will now show that  the surface r / canno t  satisfy condition 5.1 for R sufficiently 

large. In fact we claim that  the area of ~ satisfies the inequality 

A(~,) >~ 4~R 2 (5.2) 

whereas one can easily construct a surface ~,' with boundary 7 such that  

A (Z') ~< [2~ + 2 (~ + l) e] R 2 + 0 (R) + ~ (5.3) 

where I is the length of the four parallel arcs of 7 (ef. Fig. 1). To construct this surface one 

first chooses a parametrization ~o: D-~RS of the comparison surface pictured in Figure 3, 

with ~01dD=r The area of the comparison surface is bounded above by 2 z + 2 ( ~ + / ) .  

The surface ~.' is then defined to be the graph of the map yJ = RVJ 0. I t  easy to verify the 

inequality (5.3). 

To deduce (5.2) we consider the hyperplane H={XeRS: ,~(X)=0} and observe that  

Y.-  H decomposes into four connected components, (each parameterized by ~ restricted 

to one of the four wedge-shaped regions in the middle picture of Figure 2). Denote these 

components by Z1 ..... ~'4, and observe that  the boundary of each :E~ maps by orthogonal 

projection onto the boundary of a key-shaped region R~ in either the (x, y)-plane or the 

(x, z)-plane. Consequently, each Z~ maps by orthogonal projection onto R~. Since 

A(R~) >~R 2, it follows that  A(Z~) ~>gR ~ for each i and (5.2) is established. 

We have shown that  there must be two geometrically distinct parametric minimal 

surfaces with boundary 7, which satisfy condition (5.1). This establishes an example of the 

type claimed in the theorem with the exception that  the curve is class C ~176 and the codimen- 

sion is three. 
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4o 

J U  

Y 

F i g u r e  4 

~ X 

We now observe tha t  throughout the above argument  it is possible to replace the curve 

y with a real analytic approximation. This is done by  replacing r with a sufficiently large 

piece of its Fourier e~pansion. Since the Fourier polynomials preserve such properties as 

and 

for (complex-valued) functions F on the circle, we have that  the analytic approximation 

will also be o-invariant. 

We shall now indicate how to construct an example of codimension 2. The arguments 

are all essentially the same except that  one begins with a map r 1 6 2  where R>~I and 

40: dD-~It~ is a suitably parametrized double tracing of the curve pictured in Figure 4, 

where each loop is traversed once in each direction, and where the parameter  is a multiple 

of arc length. 

The graph of r is invariant  by the symmetries ok: IO-~R 4, k = 1, 2 where 

01(u, v, x, y) = ( - u ,  - v ,  x, - y )  

a,,(u, v, x, y) -- ( - u ,  v, - x ,  y). 

Let  ~ be the graph of r I f  we again assume tha t  there are not two geometrically distinct 

minimal surfaces with boundary ~ satisfying condition (5.1), then the surface ]E given by 

the Douglas solution to the Plateau problem for ~ must  be invariant  under o 1 and 02. 

The linear function ~t = x has exactly one critical point p on ~]. This follows from an argu- 

ment  entirely similar to the proof of Proposition 5.2. Consequently, r a~(p)=p,  

and so p = 0 .  The rest of the argument proceeds as above. The appropriate comparison 
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surface is given by  a map ~F = R~Fo where ~F 0 is chosen to be linear on the lines u -~- v = c. 

For I c ] ~< 1, ~F 0 will be constant on these lines. The image of ~F 0 will be the curve together 

with the region bounded by the loop on the left (covered twice). This completes the proof 

of Theorem 5.1. 

w 6. The non-existence of solutions in dimensions ~ 4 

The main result of this section is the following. Let  D~=(x~R~: Ilxll <1} and set 

S~ = dDn+l. 

THEOREM 6.1. Let r S n + k ~ S n c R  n+l be any C 2 mapping which is not homotopic to 

zero as a map into S ~, and suppose k >0.  Then there is an Re such that/or each R >~ Re there 

is no solution to the Dirichlet Problem/or the boundary/unction ~ = R .  r 

Remark 6.2. I t  follows from the Implicit  function theorem (cf. [26]) that  the Dirichlet 

problem is always solvable for sufficiently small boundary data. Hence, given r as in 

Theorem 6.1, there is an re > 0 such tha t  for all r, I r[ ~< re, the Dirichlet problem is solvable 

for boundary data Cr = r. r 

Proo/. The proof of this theorem rests on the following two results. In  the statements,  

the term minimal variety means any integral current T with compact support  such tha t  the 

first variation of mass is zero with respect to any smooth deformation supported away 

from the boundary of T. In  our applications we will only need to consider currents which 

are given as the oriented graphs of Lipschitz functions. 

THEORE~ A. Let V be any p-dimensional minimal variety in R N which is regular at the 

boundary (i.e., in a neighborhood o/supp (dV), V is given by an oriented, C 1 submani/old with 

boundary). Then the mass o/ V is given by the ]ormula 

.~,l f d 
31(V)=:, ( v , x )  -1 (6.1) 

v 

where x is the position vector with respect to any euclidean cordinate system and where ~' 

is the unit exterior normal/ield to d V along d V. 

Note. The mass of V is the "weighted volume!'. I f  V is a Lipschitz submanifold, 

3I(V) is just the Hausdorff p-measure of that  submanifold. 

We shall only need this result in the special case tha t  d V lies in a sphere about the 

origin in R N. Under this assumption the proof is quite easy, and the reader is referred to 

[13] or [20] for details. 
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TH~.OREZ~ B. Let V be a p-dimensional minimal variety in It  s. Suppose that xoER N 

lies on V and that B(xo, R)={xERN: <R} ao~ ~ot meet the boundary o/ V. Then 

M(V) >~ crR~ (6.2) 

where c~ i8 the volume o/ the unit ball in R ~. 

This is a direct consequence of the well known fact that  r  Iq B(xo, r))/%r p 

is monotone increasing and lim~_,o r (See [10], [13] or [20].) 

Let us now suppose that  for fixed R, there is a solution/R to the Dirichlet problem for 

Ca. Let  Vn be the minimal variety given by the graph of ]n in R N where N --- 2(n + 1) + k. 

By Theorem 2.3 VR is regular at  the boundary. We clearly have that  dVR = {(x, Rq~(x)): 

[[x[[ = 1 } is contained in the sphere of radius l/l + R 2 about the origin in R N. Hence, it follows 

from (6.1) that  

l/i + R2 M(dVR). (6.3) 
M(Vn) ~< n + k +~ 

We now observe that  ]R represents a homotopy of CR to zero in R n+l. Since CR is not 

homotopic to zero as a map into S n and since R n+1- {0} has the homotopy type of S n, 

we conclude that  /n(D n+k+l) cannot be contained in R n+l-{0}. Hence, there must be a 

point xoED "+k+l such that/R(Xo) =0, i.e., there is a point of the form (x 0, 0) on V~. 

We now have that  

dist [(x o, 0), dVa] = min ]/ x -  Xo//2 + [IR~b(x)ll ~ > R. 
kvl-1 

Hence, we may apply Theorem B to VR in the ball of radius R about (x0, 0) and conclude 

that  

M(Vn) >~ c~+~ + , R ~+k+ ' .  (6.4) 

One can easily see that  there is a constant c such that  M(dVR)<~cR n for all R > 0 .  

Combining this with the inequalities (6.3) and (6.4) gives the estimates 

V1 + R 2 

n + k + l  
c R  n . 

Since k > 0, the theorem follows immediately. 

Example 6.3. The simplest example of a map satisfying the hypotheses of Theorem 

6.1 is the Hopf map ~: S s ~ S  ~ given by 

~(z~, z~) = (] z~ J~ - J z2 J~, 2z~ ~ )  (6.5) 
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where S s is considered as the unit sphere in C 2 = R  4 and S 2 as the unit  sphere in R • C = R  s. 

In  this case we can make a fairly explicit calculation of R~. 

Observe tha t  the group SU(2) acts naturally on C 2 and on R 3 (as S0(3) =SU(2)/Z2). 

The map ~ is equivariant with respect to these actions. This is most easily seen by  recalling 

tha t  S 2 =PI(C) and S0(3) =PU(2) ,  the group of isometries of the projective line. I t  follows 

tha t  the graph of each ~ = R ~  7, R > 0 ,  is invariant  under the joint action of SU(2) on R 7. 

Since SU(2) is transitive on S s, each such graph is an orbit of this action. 

We now wish to compute the volume of the graph of ~R. By the homogeneity it will 

suffice to compute the volume element at  a single point. At any point x E S 3 we can choose 

an orthonormal basis el, e2, e 3 of Tx(S 3) such tha t  (~TR),(e3)=0 and (~R),(es), ~=1,  2, 

are perpendicular and of length 2R. Hence the metric induced by  the graphing immersion 

x'  ~-~ (x', ~R(x')) at  x has matr ix  

1 + 4R 2 0 ) 

1 + 4R ~ 

0 1 

with respect to the basis el, e2, e a. I t  follows tha t  the volume of the graph FR of ~R is 

vol (F~) = fs,  (1 + 4R 2) *1 -- (1 + 4R ~) 2~ ~. (6.6) 

Therefore, combining the inequalities (6.3) and (6.4) in this case we get 

~2 y~2 
R 4 ~< M(/~) ~< ~ ~ R 2 (1 + 4R~). 

I t  follows that  there are no solutions to the Dirichlet problem/or ~R in D 4 whenever R >~ 4.2. 

I t  is interesting to note tha t  while there is no non-parametric minimal variety with 

boundary FR for R>~4.2, there must  be some minimal variety with this boundary by  the 

basic work of Federer and Fleming [11]. In  fact there must  be such a var iety which is 

SU(2)-invariant [18]. This symmetric solution corresponds to a geodesic arc in the orbit  

space (cf. Hsiang and Lawson [16]). I t  can be described topologically as (the closure of) 

the graph of the rational map Q: D4-~pI(C) given by ~(Z1, X~)= [ZI/Z~]. I t  is diffeomorphic 

to the oriented 2-disk bundle over S ~ of Chern class 1. 

w 7. The existence o| non-parametric minimal cones 

The existence of solutions to the Dirichlet problem for boundary data  ~s = R . ~  

when R is small, and the non-existence when R is large, lead one to suspect tha t  there 

should be a critical value R 0 for which there exists some sort of singular non-parametric 
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solution. I n  the special case of the Hopf  map,  the symmetries  indicate t ha t  this singular 

solution should simply be the cone over the boundary  values. We shall show tha t  this 

is indeed the case. 

Recall tha t  for any  submanifold MY c S ~, the cone C(M Y) = (tx E R~+I: x E M Y and t > 0) 

is a minimal var ie ty  in R ~1  if and only if M Y is a minimal submanifold of S ~. For  each zr 

0 < ~ ~< 1 we consider the embedding i~: $3-~S 8 given by  

i~(x) = (~x, V1 - ~ ~(x)), (7.1) 

where 9 :$3-~$2 is the map given by  (6.5). Each  submanifold i~(S 3) is an orbit  of the act ion 

of SU(2) oil R:  =C 2 • R 3 given by  the natural  diagonal map  S U ( 2 ) ~ S U ( 2 )  x S0(3) (as we 

saw in the last section). I n  fact, these orbits are principal orbits since SU(2) acts freely 

on them. Now by  a basic result of Wu-Yi  Hsiang [15] the principal orbits of maximal  volume 

are minimal submanifolds of S 6. Therefore, we want  to compute  the volume function on the 

orbit  space X =$6/SU(2).  

We first observe tha t  the orbit  space itself is highly symmetric.  Recall tha t  SU(2) 

Sp(1)-~S a is just the group of uni t  quaternions, and the above representat ion on C2~H 

is just  quaternion multiplication on the left. The group SU(2) also acts on C2~=H by  

quaternion multiplication on the right. Let  ~ denote this representation, and extend it 

trivially to ~ =Q (~ ld  on R 7. I t  is clear t ha t  ~ commutes  with the action above (since left 

and right multiplication commute).  Hence, ~ descends to an act ion on the orbit  space X. 

An easy computa t ion  shows tha t  the generic orbits of ff on S are two-dimensional,  and tha t  

S U ( 2 ) / X  is diffeomorphic to a closed interval. The endpoints  of the interval  correspond 

to the two singular orbits: 

= {(x, 0 ) e n '  • Ilzll = 1} a n d  = {(0, y)ea  • llYil = 

The family of mappings i~: $ 3 ~ S  6, 0~cr ~ l, represents a curve in the orbit  space 

between the two singular orbits, and therefore all the isometry classes of orbits are re- 

presented by  this family. Hence, to find an orbit  of maximal  volume in S e we need only 

find an orbit  of maximal  volume in this family. 

Let  v(a) denote the volume of ia(S3). Then a computa t ion  similar to the one in w 6 

or a direct interpretat ion of formula (6.6) shows tha t  

v(a) = 27~2a(4 - 3~2). 

This function reaches its m a x i m um in [0, 1] at  ~=2/3 .  We conclude tha t  

is a minimal submanifold of S e. 
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I t  follows that  the cone over this submanifold is a minimal variety in R 7. Therefore, 

we have proved 

THEOREM 7.1. The Lipschitz /unction /: R 4 ~ R  3 given by 

/(x)=yl[xll  for x .O ,  

where ~] is the H o p / m a p  (6.5), is a solution to the minimal  sur/ace system (2.2). 

I n  particular, this shows that there exist Lipschitz solutions to (2.2) which are not o/class 

C 1 . 

Note. This theorem has been verified by  direct computation.(1) 

Analogous examples can be constructed using the t topf  maps 

~ ' :  $7--~ S 4 

The corresponding volume functions are 

y~4 
v'(~) = ~ ~ ( 4  - 3~2) ~ 

and ~": S15~SS. 

2:T~8 7 
and v"(~) = ~ ~ (4 - 3o:2) 4. 

Observe that  these submanifolds are all examples of compact minimal varieties in 

the sphere whose normal planes are at  a constant acute angle with respect to a fixed 

plane in R N. By a result of de Giorgi this is not possible in eodimension one unless the sub- 

m~nifold is a totally geodesic subsphere. A result of Simons [36], refined by Reilly [34], 

states tha t  if M is a compact minimal submanifold of codimension-k in S N-1 with normM 

plane field v satisfying 

V k-2 
<~,~'0) > ~ 2 

for some fixed k-plane ~0 in R N, then M is a totally geodesic subsphere. The examples above 

show tha t  there is a positive lower bound for the "best"  constant possible in this theorem. 

In fact, for the Hopf maps ~], ~', and 7/" above, there are planes v0 such that  (v, v0) is 

constant and equal to 1/9, (1/8]/;/) and (7 ' .2  -1'.3-5V7i5) respectively. 

Remark. I t  follows from the work of J.  L. M. Barbosa ("An extrinsic rigidity theorem 

for minimal immersions from S ~ into S~, '' to appear) tha t  there are no non-parametric 

(1) We should like to thank the MACSYMA program at M.I.T. and Bill Gosper of the Stanford 
University Artifieal Intelligence Laboratory. 
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minimal  cones of d imens ion  th ree  or  less. Moreover,  using this  fact  one can prove  t h a t  eve ry  

Lipschi tz  solut ion of the  min ima l  surface sys tem in th ree  (or fewer) i n d e p e n d e n t  var iab les  

is real  ana ly t ic .  Of course, b y  the  examples  above  such a s t a t e m e n t  is false for the  sys tem 

in four  or  more  var iables .  
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