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w 1. Introduction 
The starting point of this paper is the well known theorem of Dvoretzky [6] on the 

existence of almost spherical sections of convex bodies. Our interest is in getting good 

estimates for the dimension of the almost spherical sections. I t  turns out tha t  it is possible 

to obtain quite sharp general estimates which in many interesting examples give actually the 

best possible results. The theorem of Dvoretzky is by now a very important  tool in Banach 

space theory, in particular in the so called local theory of Banach spaces. I t  is not sur- 

prising therefore that  sharp estimates on the dimension of the spherical sections have also 

many applications. 

Though the main purpose of this paper is to present new results, we have tried to 

make several parts of the paper selfcontained by presenting also some proofs of known 

results. Most of these proofs are simpler or different from the proofs appearing already 

in the literature. An announcement of the main new results of this paper appeared in [10]. 

The basic idea of our approach is that  used by the third named author [29] in proving 

Dvoretzky's theorem. We use the approach of [29] in a slightly simplified form and examine 

in detail the estimates which go into each step of the proof. Let  up point out however, that  

for Dvoretzky's theorem itself there is known by now a shorter measure theoretic 

proof (cf. [32] and especially [9]) as well as functional analytic proofs (cf. [19], [35]). 

The approach of [29] and of the present paper is based on a lemma of P. Lev3~ [22] 

which is a simple consequence of the isoperimetric inequality for subsets of the unit sphere 

S"-~={(x~, x~ ..... xn); E~-~ z2= l}  in 

subset of S n-1 having the same ( n -  

which have the smallest boundary 

not appear explicitely in this paper; 

R n. This inequality states tha t  among all the closed 

1)-dimensional surface measure the caps are the sets 

measure (the boundary measure itself will actually 

we use instead a quanti ty which enters in the usual 
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definition of boundary measure). The isoperimetric inequality was as far as we know, 

proved first in the general case by  E. Schmidt [33]. The original proof of Schmidt was 

very long and has been simplified (see e.g. Dinghas [5]). We present in the appendix to 

this paper a proof of the isoperimetric inequality which seems to be simpler than the other 

available proofs, though it is based on classical ideas (like symmetrization) which are dis- 

cussed in detail e.g. in the book of Hadwiger [14]. 

In section 2 we show how to deduce from Levy's  lemma the main general estimates 

on the dimension of spherical sections. In order to explain these results let us recall first 

the definition of the Banach-Mazur distance coefficient d(X, Y) between isomorphic Bausch 

spaces X and Y: d(X, Y) =inf (IITII IIT-Zll, T ranges over the isomorphisms from X onto Y}. 

Our first general result on the dimension of almost spherical sections is the following. Let  

(X, II II) be an n dimensional Bausch space, let III III be an inner product norm on X with 

I[x[[ <b[I]x[[I, x EX and let M r be the median of r(x)=[[xll on {x; []lx][[ =1} with respect 

to the rotation invariant measure on this set. Then whenever/c <~TnM~/b ~ there is a subspace 

Y of X with dim Y = k  and d(Y, l~)-<<2 (here W is a positive absolute constant). By using 

duality we deduce from this result a formula which is very useful in applications 

k, >1 (1.1) 

where /c z and k s are such that  there exist subspaees Y c X ,  Z c X *  with d(Y, l~')42, 

d(Z, l~') -<<2 and IIP[I is the norm of a projection P which projects X onto Y or X* onto Z 

(depending on whether k s >~/c 1 or k z >~k2). Another formula proved in section 2 connects 

the dimension of the almost Hilbertian subspaces of X to the projection constant of X*. 

Section 3 contains various applications and examples related to (1.1). We compute 

for example the exact (up to a multiplicative constant) dimension of the largest possible 

almost Hilbertian subspaces of the spaces l~, 1 < p  ~< co and C~, 1 ~<p ~< oo. We show that  

(1.1) implies the following inequality concerning convex n-dimensional polytopes which 

are symmetric with respect to the origin. If Q is such a polytope having 2s extreme points 

and 2v faces, then log v. log s >~yn where y is some absolute constant. We present examples 

of polytopes which show that  this result (as well as other consequences of (1.1)) are asympto- 

tically the best possible. We also present in section 3, as an application of (1.1) (mainly 

of the term [[P[[ appearing in it), an answer to a question of A. Pelczynski on absolutely 

summing operators. 

In section 4 we examine the Dvoretzky Rogers lemma [7] and its relation to the dis- 

cussion of section 2. We show first (following the reasoning in [29]) how to deduce from the 

Dvoretzky Rogers lemma the fact tha t  every Bausch space X of dimension n has an 

almost Hilbertian subspace of dimension ~ log n. This of course is Dvoretzky's theorem 
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(Dvoretzky's  original proof gave however the weaker estimate ~ (log n)l/~). In  section 4 

we present also a new version of the Dvoretzky Rogers lemma whose proof is very simple. 

This version gives some information which does not seem to follow from the known versions 

and proofs of the Dvoretzky Rogers lemma. 

Section 5 is devoted to the s tudy of the connection between the dimension of almost 

spherical sections and the notion of the cotype of a Banach space. We show tha t  the cotype 

of an infinite-dimensional Banach space X can be determined up to an arbi t rary e > 0 by  

considering the dimension of almost Hilbertian subspaces of finite-dimensional subspaces 

of X. We also present in this section an example due to W. B. Johnson which clarifies the 

role of the e. 

The results of sections 2-5 are all in the following general direction: Given a Banach 

space X with dim X = n  then for some suitable k (often surprisingly large) "mos t "  k- 

dimensional subspaces of X are close to l~. In  section 6 we investigate the situation where 

for a given k=k(n)  all k-dimensional subspaces are close to l~. I t  turns out tha t  if 

log k(n)/log n >~9, for some positive ~ independent of n then X itself must  be close to an inner 

product space (i.e. l~). This fact is proved by examining some constants which enter naturally 

in the s tudy of the type or cotype of a Banach space. We present in section 6 also some con- 

sequences of this result. In  particular, by combining this result with a result from section 2, 

we are able to solve the local version of the complemented subspaces problem: I f  all the 

subspaces of a finite dimensional space X are nicely complemented then X must  be close 

to an inner product space. 

In  section 7 we indicate briefly some directions in which the approach used in section 

2 can possibly provide additional interesting information. 

As we mentioned already above, the paper ends with an appendix which contains a 

proof of the isoperimetric inequality. 

In  this paper we consider only Banach spaces over the real field. The results and their 

proofs are valid (with some obvious minor modifications) also in the complex case. There 

are several universal constants which enter into the estimates below. These constants are 

mostly denoted by the letters 7, ~, c. We did not carefully distinguish between the different 

constants, neither did we t ry  to get good estimates for them. The same letter will be used 

to denote different universal constants in different parts of the paper. 

w 2. The basic estimates 

As mentioned in the introduction our approach is based on an isoperimetric inequality 

for subsets of the usual Euclidean sphere. Before stating this inequality let us introduce 

some notation. 
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L e t  ,.~a-1 = {z---= (z1 . . . .  , z a ) e  Ra; ~ - 1  I ~ , 12= 1 }. T h e  sphe re  ~n-1 h a s  a n a t l l r a l  s t r u c t u r e  

as a measure space as well as a metric space. We let/x,_~ denote the unique rotat ion in- 

variant  measure on S "-1 normalized by  p,_l(S "-1) = 1. As the metric on S n-x we take 

the usual geodesic distance, i.e. d(x, y) is the angle between the lines joining x and y to 

the origin (O<d(x, y ) < g  for all x, yES"-1) .  The intersection of S ~-1 with half spaces of 

R n are called caps; these are exactly the balls with respect to the metric d, i.e. sets of 

the form B(Xo, r) = {x G S "-1, d(x o, x) <~ r}. For a set A ~ S n-1 and e > 0 we let A~ be the set 

{xGS'-I ;  d(x, A)<~e}. 

TH~.ORI~M 2.1 [33]. Let A be a closed subset o / S  ~-1 and let B be a cap o / S  n-1 so that 

p._I(A) =#n_I(B). Then for every e > O, ff,~_l ( A ~) >~ ff n_l ( B ~). 

Observe tha t  if B is the cap B(x, r) then Be is the cap B(x, r +e). The requirement tha t  

p ,_ l (A)  =ff ,_l(B(x,  r)) determines r uniquely and therefore it determines also f f ,_l(B(x,  r)~) 

for every e >0.  A proof of Theorem 2.1 will be presented in the appendix. 

The usefulness of Theorem 2.1 stems from the fact tha t  for a cap the quant i ty  ff~_l(B) 

is trivially evaluated, namely 

~ r - ~/2 
g,_l(B(xo, r)) = 7nj_, /z  cos n- 2 t dt (2.1) 

where 

~ :z/2 
(2 2) 

The key to all the results in this section is tha t  for large n, f f ,_l(B(x,  ~ +~t/2)) is very 

close to 1 already for small e. Consequently, by Theorem 2.1, the same is true for ff~-t(A~) 

whenever ffn_l(A)= 1/2. The sets A which we shall use will be level sets of functions ] 

defined on S n-~. We state now the lemma of Levy which is the precise version of Theorem 

2.1 which will be applied in the sequel. 

L~.MM, 2.2. Let f(x) be a continuous real valued junction on S ~-1. Let M I be the median 

o / / ,  i.e. the unique number satisfying 

#=_l{x; l(x) ~< MI} >t 1/2, ff~_l{X;/(x) >/MI} >/1/2. 

Let A1={x; l(x)=MI}. Then tor every e>0 

f; pn_,((Al),) >1 27~ cosn-~t dr. (2.3) 
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Proo/. Let  Ar+={x; /(x)>~Mr} and  A(={x; ](x)<.Mr}. Then  /_~n_~(Ar+)>~l/2 and  

/~n_l(Ar_) >~ 1/2. Observe t h a t  for eve ry  e > 0 

(Ar+)~ fl (A~_)~ = (A~)~. 

Hence  b y  Theorem 2.1 and  (2.1) 

1 -  ~u._x((A')~)~< 2(1-y . f~ .~cos~-~tdt)  

and  this  implies  (2.3). [] 

I t  is convenien t  to  give (2.3) a s impler  form. The  func t ion  / ( t ) = e  ~'/~ cos t decreases  

on [0, ~t/2]. Hence  for 0 ~<e ~<:~/2 

Also since 

we get  t h a t  

o o  

c o s ' t  dt ~< 

F(2 + l)<-/n+ lXl/2-/n+3\l/~'r[~--) l'[-~) <(-~-)(n+ l)\'~2-[n+ l~l'[~-) 

~ 2 ( ~ i /  �9 

Thus  we deduce  f rom (2.3) t h a t  for e < 1 

(n - l ~ l`s 
p,_x((Af)~) >~ 1 - \ n ~ - -  2] e-(n-2)t'/2 >~ 1 - 4e - '~'/2. (2.4) 

W e  app ly  now L e m m a  2.2 to  the  funct ion  r ( x ) =  II~ll def ined on S n - '  ={x;  Ill-Ill = 1} 

where II" II is a norm in an  n d imens iona l  Banach  space X and  Ill" Ill is an  inner  p roduc t  

no rm on X so t h a t  

alll~lll < II~ll < blll~lll, ~ e x  (2.5) 

for sui table  0 < a ~ < b <  oo. Le t  M r be the  med ian  of r(x) with  respect  to  the  ro t a t ion  in- 

va r i an t  measure  #n-x on S "-1 and  let  A ={x; IIIxlll =1, Hxl] =Mr}. Assume t h a t  yEA~ for 

some e > 0 ;  i.e. y is a po in t  on S n-1 so t h a t  d(x, y)<.e for some xEA. Recal l  t h a t  d(x, y) 
is the  geodesic d i s tance  f rom x to  y on S n-1 and  th is  q u a n t i t y  is a lways  larger  t han  IIIx -YlI[" 

Hence  IIx-y[] <~b]llx-ylll <~b~ a n d  thus  

Mr-be  < ltYll ~< M,+b~, yeA~. 
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I t  follows now from Lemma 2.2 (or more precisely from (2.4)) that  

1 -#n-,{Y; [[lYIII = 1, [ [lYll-Mrl ~<be} <4e  -n''j2. (2.6) 

From this inequality it is easy to deduce the following proposition. 

PROPOSITZOl~ 2.3. Let (X,  [I ]D be a Banach space o /d imens ion  n. Let HI']I[ be an 

inner product norm on X so that (2.5) holds. Let M r be the median o/ r(x) = Ilxll on {x; IIIxlll = 1} 

and let 0 < e < l .  Let {yt}~n=l be any m points o /norm 1 in l~ where m <<-e'~'12/4. Then there is 

an isometry U from l~ onto (X,  I[] " Ill) so that 

Mr-be<~HUy,]]<~Mt+be , i = 1 , 2  ..... m. (2.7) 

Proo/. Let U 0 by any isometry from l~ onto (X, I]I Hi). Let  a be the normalized Haar  

measure on the space of all orthogonal transformations V of (X, Ill III}. By (2.6) we have 

for every unit vector y in l~ 

a{V; M r - b e  <-IlVUoy]l < Mr+be} > 1 - 1 / m .  

Hence there is at least one orthogonal transformation V o of (X, I]] ]]]) so that  (2.7) holds 

for U = V0 U0. [] 

Remark. If we take as m a number which is smaller than 4-~e ~'/2 say ?e n''/2 with a 

small ? then the proof of the proposition shows that  for "most"  choices of V 0 (or more 

precisely, for a set of Vo'S of large a measure) the operator U = V 0 U 0 has the desired 

properties. 

The most useful way to apply Proposition 2.3 is to choose the points {Y~}~-I so that  

they form a "J net"  in a subspace of /~ of a suitable dimension. In this case {Uyt}~-I 

also form a ~ net in a subspace of (X, I]] "11]) of the same dimension. By the term "~ net"  

in a metric space (K, ~) we mean a subset K 0 of K so that  for every x E K  there is a y E K  o 

with ~(x, y) ~<r 

We need first two elementary lemmas, both well known. 

LEMMA 2.4. Let X be a k-dimensional Banach space and let d}>0. Then { x e X ; ]lx]] =1)  

haz a ~ net of cardinality<.(1 +2/0) ~. 

Proo]. Let {xt}~'-i be a maximal subset of the boundary of the unit ball B of X consist- 

ing of points whose mutual distances are larger than 8. The maximality of {xj}~'_l implies 

that this set is a ~ net of ~xEX;  Ilxll = 1}. The sets x, + �89 are all disjoint and are contained 

in (1 +~/2)B. By comparing volumes we get that  m(~/2)~<(1 +~/2) k and this proves the 

lemma. [] 
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LEMMA 2.5. Let (X, I1" ]1) be a Banach space and let ]11" IH be an equivalent inncr product 

norm on X .  Let 0 <8, 5 < 1 and assume that/or a 3 net Ko o! the set {x; IIIxlll = l} we kno~ that 

1 -5~11~11 ~<1 + 5 / o r  every x E K  o. Then/or every x f iX  

/or some/unction F(5, 6) (depending only on 5 and r but not on X) /or  which limo.~,o F(5, 3) = 1. 

Proo]. i f  I I1~0111 = 1 we can represent  x o as x o = x, +3x~. + ~ ' x  a + . . .  with x, e K o for every  i. 

Hence I1~011 < (I +5)/(1 -6)  i.e. I1~11-< <1 + 5)lllxlll/<1-8) for every ~+X. We identify X 
with X* v ia  the  inner  p roduc t  induced b y  III 1II and  let  I1~11, be the  norm of x as an  e lement  

of x *  (i.e. Ilzll, =sup  {(~, ~); Ilzll <1)) .  For  every  x E K  o let  Yz be an e lement  in X so t h a t  

(y,, z ) = l  and IlY, ll, <~/(1-5) .  Then 

1 < lily, Ill < (1 +5)/(1 - 6 ) ( 1 - 5 ) ,  IIl~+y,lll >~ 2. 
Hence  

IIl~-y,ll l  ~ ~< 2 +2(1 +5 )~ / (1 -3 )~ (1 -5 )  ~ - ~  = a~(5, 6) 

where lim~,~_~o A(5, 6) =0 .  

r u t  ~7, =y~/l l ly, lll. Then II1~,-~tll <a(5, 6). Hence the set {77,; xCKo} forms a ~ + A(5 , 6) 
net in {y; IllYlII = U'  Since I1~,11.-< 1/(1-5)  for every ~ K 0  we get from the first step of the 
proof t h a t  

Ilyll, < Illylll/(~ -5)(1 - ~ - ~ ( Q ,  @, y e x  
and consequently 

I1~11 >~ 111~111(1-5)(1-,~-A(5, 3)), ~ e x  

and this concludes the proof. Y~ 

Summariz ing  the preceding results we get  

T H rOB E M 2.6. For every ~ > 0 there is a constant ~(~)> 0 having the/ollowing property. 

Let (X, 1] H) be an n dimensional Banach space and let HI'Ill be an inner product norm on X 

so that (2.5) holds. Let M,  be the median o/ r(x)=llxll on {x; I11~111=1}. Then /or k= 

[~/(v) "nM~/b 2] there is a k-dimensional subspace Y o] X so that d( Y, l~) < 1 +v. 

Proo/. Given T > 0  choose 3 > 0  and  5 > 0  so t h a t  F2(5, 6) < 1 + v  where F is the  funct ion 

appear ing  in L e m m a  2.5. We claim t h a t  ~(v) =5~/4 log (3/3) has the  desired proper ty .  Indeed ,  

by  Proposi t ion 2.3 with e =sM,/b we can find, for every  choice of m = [�88 exp  (nq2M~/2b~)] unit  

vectors  {Yt)7'-I in l~, an i somet ry  U f rom l~ onto  (X, M7111[.IH) so t h a t  1-5<~]lUy,I]  ~1 +5 

for every  1 <i<m.  B y  L e m m a  2.4 and  the  fac t  t h a t  b y  our choice of ~(v) and  k 
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we may  choose the points {yt}~.~ so that  they form a (~ net in a k-dimensional subspace 

Y0 of l~. :By Lemma 2.5 we get tha t  d(UYo, l~)<~1 +v. 

Remark. The probabilistic nature of the proof (see the remark following Proposition 

2.3) shows tha t  if we replace the ~(~) by a smaller constant then we can achieve tha t  

"mos t"  k-dimensional subspaces of X are of distance ~< 1 +T from l~. "Most" means here 

a set of measure close to 1 (the closeness to 1 depends on the choice of ~(v)) in the natural  

measure induced by II1" Ill on the Grassmann manifold of k-dimensional subspaces of X. 

Since this measure depends on the choice of the inner product I[[" Ill it is not an intrinsic 

notion related to (X, I1" I[)- 

The usefulness of Theorem 2.6 depends very much on the possibility of choosing "good" 

inner product norms [[[-[[[ on X and on the possibility to evaluate the median M r. Let  

us recall the fact due to F. John  [15] tha t  for every Banaeh space X of dimension n, 

d(X, l~)<~n x/z. More precisely, if E is the (unique) ellipsoid of minimal volume containing 

the unit ball B of X then B~n-1/2E, i.e. [llx[[[<[[xl[<~nl/211[x[[ [ for every x e X  where 

[[[-[[[is the norm whose unit ball is E. 

For inner product norms such as this one (i.e. for which b/a 4 n  1/2 in (2.5)) the median 

M, behaves like the mean ~s--~ ]]x]]dtzn-~(x), a quanti ty which in practice is much easier 

to compute. The reason for this is the high concentration of r(x)=[[x][ near its median 

which is exhibited in (2.6). 

LEMMX 2.7. There is an absolute constant e so that whenever (2.5) holds with b <<.n 1/2 

(where n = dim X) then 

Proo/. For every integer m we have by (2.6) 

~._~{x; [I]x[][ =I; m<[ ilx[I-M~l <re+l}  <4e . . . .  '~ 

G - -  r and thus - ~ m - 1  4(m + 1)e -m'/2 has the required property. [:3 

I t  follows from Lemma 2.7 tha t  whenever b/a <~ n 1/~ we have 

�89 1 II lld . (2S) 
, j ~ - I  

for some absolute positive constant 7" The high concentration of r(x) near its median shows 

also that  for every Q >0,  ~s--1 [[x[[~ behaves like Mg, i.e. tha t  

,(e) , a,.-,(=) / (2.9) 
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for some positive constant y(~), whenever b/a <~ n 1/2. The constant 7(~) is bounded on every 

compact set in (0, oo). 

We shall present now some variants of Theorem 2.6 which do not require the computa- 

tion of M r. A completely trivial way to eliminate Mr is to observe that  always M~ ~> a and 

thus by  choosing the inner product norm in (2.5)so tha t  b/a =d(X, l~) we get tha t  

k~(X) >1 ~(~)n/d2(X, l~) (2.10) 

where k = k~(X) is an integer so tha t  X contains a subspace Y with d( Y, l~) ~< 1 +~. 

We present now an improved version of (2.10) which involves the projection constant 

of X*. Let us recall that  the projection constant )~(X) of a Banach space X is the infimum 

of all the numbers ~t such that  whenever X is a subspace of a Banach space Z there is a 

projection of norm ~<~t from Z onto X. I t  is known (cf. [17], [12]) tha t  ~t(X) <~n 1/2 for every 

X with dim X =n.  For a Banaeh space X we denote by  z~I(X ) the number  

~l (X)=sup  II~,ll; (x~}y_lex, 2 Ix*(x,)l~llz*ll all x*eX* . 

t=1 

In  terms of absolutely summing operators (which will be discussed briefly in the next 

section) ~I(X) is the 1-absolutely summing norm of the identi ty of X. The number  ~I(X) 

is related to ~t(X) by  the inequality ~t(X)~ 1 (X) >~ n, and this inequality becomes an equality 

for spaces X which have "enough" isometries (e.g. if X has a basis whose symmetric 

constant is 1, el. [12]). 

THEOR~.M 2.8. For every z > 0  there is a ~(v)>0 so that/or every Banach space X o/ 

dimension n the/ollowing/ormula holds 

k~(X) >1 ~(T) n2/d2(X, l~)~2(X *). (2.11) 

As be/ore, kT(X ) is an integer such that X has a subspace whose distance/rom the Hilbert 

space o/the same dimension is <~ 1 + ~. 

Proo/. We deduce (2.11) directly from Theorem 2.6 and an estimate of M,  in terms of 

~I(X*) which is due to Rutovitz [31], which we reproduce now. 

Let  Ill'Ill be an inner product norm on X so tha t  (2.5) holds wi th  b/a =d(X,  l'~). We 

identify i with X* via the inner product induced b y  Ill'HI and as before (the proof of 

Lemma 2.5) let ]lxll. be the norm of x as an element in i * .  Clearly 

b-ll:llxll I ~ Ilxll,~<a--llllxll l, x e x .  (2.12) 
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Let {xj}~_l be elements in X so tha t  
k 

II ~,11, > /~ (x*) /2  (2.13) 
]ffil 

k 

I(:~, x,)l -<- II:~ll, ~ x .  (2.14) 
, ]-1 

By integrating (2.14) on {x, II1~111 = 1} with respect to the normalized rotation invariant  

measure on this set we get 

| l z l l l = l  J - z  d l l l x l t t = l  J - 1  

where 
I "  

o:,,= I,_ , It~ld/~,,-l(t) .  
t , = l  

I - l '  

A direct computation shows tha t  ~ = 2~,,,/(n - 1) where ? ,  is the number  defined in (2.2). 

Hence ~, i> n-a/2/2. By (2.a), (2.12), (2.13) we deduce from (2.15) tha t  for some absolute 

constant ~ > 0 
k k 

M,/> 7" n"2 Y II1~,111/> ~an-"" Y II~,ll*/> ~]an-l/2;;rrl(X*)/2 > / ~ a n l / 2 / 2 ' ~ ( X * )  �9 (2.16) 
t - 1  . I f1 

Substituting this estimate for M,  in the value of k~(X) appearing in the s ta tement  of Theo- 

rem 2.6 we get 

k~(X) >~ ~(T)~ZnSaZ/4b2X~(X *) = ~l(v)~2n~/4d2(X, l~)X~(X *), 

and this proves the theorem. []  

Remarks. Tha t  (2.11 ) is an improvement  on (2.10) follows from the fact tha t  it(X*) ~< n 1/2. 

For spaces which do not have "enough" isometries it is preferable to state (2.11) in the 

sharper form kT(X ) >~F(T)~t~(X*)/d~(X, l~). We mention also tha t  the proof of Theorem 2.8 

and (2.9) shows tha t  for every Q > 0  there is a F(~, 9) so tha t  

k , (X)  >1 ~(~, q)zt~(X*)/d2(X, l~) (2.17) 

where ~tq(X*) is the 9 absolutely summing norm of the identi ty of X* (the estimate (2.17) 

becomes better  as Q approaches 0). 

:Perhaps the most useful version of Theorem 2.6 is obtained by considering simul- 

taneously k~(X) and kt(X*). 

THEOREM 2.9. For every v > 0  there is a ~(~) > 0  so that /or  every Banach space X o/ 

dimension n the JoUowing ]ormula holds 
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Here IIPII is the norm of a pro~ection P which acre either on X or on X*. I f  k 1 =kT(X)~<k~ = 

k~(X*) then P is a proiection from X onto a subspace Y for which d( Y, l~') ~<1 +3. l / k 2 < k  1 

then P is a pro~ection from X* onto a subspace Z for which d(Z, l~') <~ 1 +3. 

Proof. Let ]H" [11 be an inner product norm on X so tha t  IIIgll < I1~11 ~<dlll~lll for every 

x q X  where d=d(X,  l'~). By identifying X with X* via the inner product induced by II1" III 
get that d-~lllgll <llgl*-<lll~lll for every x E X  where Ilgl.  denotes the norm of ~ when 

considered a s  a f u n c t i o n a l  o n  (X, II III. In other words X*=r II I1.1- Let M~ and M,. 
be the medians.of r(x)=llgl and r*(~)= Ilgl* on {~; II1~111 = l } .  By Theorem 2.6 there are 

subspaces Y of X and Z of X* so tha t  d(Y, l~ ~) ~ 1 +3  and d(Z, l~ ") ~ 1 +3  where k 1 ~> 

~(3)nM~/d ~ and k 2 >~7(3)nM~,. In  order to prove (2.18) it  suffices therefore to find a pro- 

jection P so tha t  IIPII <~yM, M,.  for some absolute constant y. 

We recall now tha t  if ~/(3) is chosen small enough we can ensure not only tha t  

d(Y, /~ ' )<1+3 but  tha t  for a set of isometrics U of (X, HI'lID whose Haar  measure is 

> 1/2 we have tha t  d(U Y,/~')/> 1 + 3 (see the remark following Proposition 2.3). A similar 

remark holds for X* and Z. Thus if e.g. k 1 < k~ there is no loss of generality to assume tha t  

Y ~ Z .  We claim now that  the orthogonal (with respect to II[" ][])projection P from i onto 

Y satisfies ][PH ~< (1 +~)~M,M,.. Indeed, we have for every yE Y 

Ilyll < M,(1 + 3)Illylll, Ilyll. ~< M,,(1 + 3) lllYlll. 
Hence for every x fi X 

and thus 

IllPxlll * = (Px, Px) = (P~, x) < IlPxll.ll~[I < M,,(1 +3) lllV~lll IIxll 

IIP~ll < MT(1 +~ll l lPgll  < (I+312M, M,.I[gl. [] 

Remark. We would like once again to point out the measure theoretic nature of the 

proof and the result. I f  ~(3) is chosen small enough we get tha t  most (in the sense of having 

large measure with respect to the natural  measure induced by  Ill" m on the Grassmanian) 

subspaoes Y of X of dimension k 1 satisfy d(Y, 12 ~') ~ 1 +3 and similarly for subspaces of 

X* of dimension k 2. Moreover if k 1 ~ k2 then on most subspaces Y of X of dimension k 1 

there is a projection P from X onto Y whose norm may  be used in the right hand side of 

(2.18). 
To conclude this section we state explicitely two formulas which are weaker versions 

of (2.18). Since always ]]PH ~ 1 and d(X, I~) ~ n  1/2 we get 

kT(X ) k~(X*) ~ ~(3) n (2.19) 

max (kr kT(X*)) >~ (8(3)" n) I/2. (2.20) 
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I t  should be pointed out  tha t  in order to derive (2.19) (and thus (2.20)) we do not  have to 

go through the construct ion of the projection P in the proof of Theorem 2.9. I t  is clear 

directly t ha t  we always have MrMr. >71. This is a consequence of the trivial inequali ty 

1 = (x, x)~< [[xl[ Hxll, for every x with I[[x[l[ = 1. 

w 3. Examples and applications 

I n  this section we present several applications of the results of section 2 and especially 

of Theorem 2.9. We shall most ly  consider subspaees Y with d(Y, l~) < 2 and not  the more 

general case of 1 +v.  The passage from 2 to 1 + v  changes the dimension we get by  a multi- 

plicative constant  which depends only on ~. This follows by  applying (2.10) to a Banach 

space X with d(X, l~) 42. 

- ~ ~< c~, n = 1, 2, There is a constant  c so tha t  X contains Example 3.1. Let  X - l ~ ,  1 ~<p ... 

a subspace Y with d im Y = k  and d(Y, l~)~<2 where 

(i) ]c = c  log n, if p = 

(ii) ]c=cn ~/~, if 2 < p < ~  

(iii) k=cn, if 1 ~<p~<2. 

In  all three cases these are the best possible estimates. 

Proo/. Let  II1" III be the usual Euclidean norm in R', i.e. I l l (q,  t2 . . . . .  *.)111 = ( Z ~ I  t,~) "~ 

For p >--2 we have t ha t  n("~),l '~'l l lxll l ~ Ilxll ~ IIIxlll a~d in particular a(t;, l~)~n (1/2)-(1/D) 

Assertion (ii) is therefore a consequence of (2.10). In  the other eases however, (2.]0) does 

not give the desired result. 

For 1 < p ~ 2  we have I I I x l l l < l l x l l ~  '''~' 'i'~'lllxll I and it is q~ite easy to compute 
Mr. By (2.8) and (2.9) we have 

f, Llxtl'd.,_.(x) . 1,11"d...(,) 
I l x l l l ~ l  t~=l 

where the symbol an-~fln means tha t  ~n/fl~ is bounded and bounded  away from 0. Also, 

since 1 ~<p~2 

we get tha t  Mr'-" n (1/p)-(1/s) and thus  (iii) is a consequence of Theorem 2.6. 
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Also (i) can be verified b y  comput ing  Mr and  apply ing  Theorem 2.6. This  compu ta t ion  

is somewhat  more  delicate and  will be done in the nex t  section in a somewhat  more  general 

context  (el Proposi t ion 4.3). The  simplest  w a y  to  prove  (i) is b y  a direct  a rgument .  Le t  

(Yj}~=I be a ~---net on the  bound a ry  of the uni t  ball of l~. B y  L e m m a  2.4 n can be t aken  

~ 5  k, i.e. k>~logn/log5. The opera tor  T: l~-~l~ defined by  Tx((x, Yl), (x, y~), ..., (x, yn)) 

satisfies �89 ~ IITxll <~ Ilxll for every  xEl~ and thus  d(l~, Tl~) <<.2. 

Let  us ver i fy  t h a t  (ii) and  (iii) are the best  possible est imates .  For  (iii) this is obvious.  

For  (ii) the simplest  a rgumen t  is the  following one ( taken f rom [2]). Le t  uj = (tj. 1, tj. 2 . . . . .  tj. n), 

= 1, 2 . . . . .  k be vectors  in l~ so t h a t  

k ~1/2 U k [ k \ 1 / 2  

for any  choice of scalars (;t.~}51. Then  if (rj(s)}~-i denote  the R a d e m a c h e r  funct ions on 

[0, 1] we have  for every  sE[0, 1] 

k p k k ]~/2~l[j~lr,(8)2Jll : i~11 ,~1 rJ(6') 'io, I �9 

By integrat ing with respect  to s and  using Khin tch ine ' s  inequal i ty  we deduce t h a t  for some 

c(p) 
i k \~12 

Since by  our assumpt ion  on t h e  {~1}~. 1 we  have  t h a t  (E~-I t~.~) 1/2 ~< 2 for 1 ~<i~< n it follows 

tha t  k ~/a <~2~c(p)n and thus  (ii) cannot  be improved.  

Assertion (iii) is also a consequence of (2.11). Indeed  since ; t ( /~ )= l  we have  t h a t  

;t(l~) <~d(l~, l~) <~n 11q for 2 ~<q < r Thus  if ( l ip)  + (l/q) = 1 and  X =l~ with 1 ~<p < 2  we get  

f rom (2.11) t h a t  k~(X) >~y(~)n~/n =y(v)n. 

I t  is perhaps  also ins t ruct ive  to deduce (ii) and  (iii) f rom (2.18). Le t  X=l~ with 

2 < p <  ~o. B y  (2.18) 

k(X) k(X *) >1 <~n~/d2(l~, l~) = <Sn t +(~lp). 

Since we verified direct ly t h a t  k(X)<~C(p)n alp and t r ivial ly  k(X*)<~n we deduce (ii) and  

(iii) (for p >  1). I n  this way  we get however  (iii) in a slightly weaker  form in which c is 

replaced b y  a cons tant  depending on p.  The  w a y  to  overcome this diff iculty is to  t ake  in to  

account  also the  t e rm IIPII in (2.18) which we ignored above.  Using this t e rm we can deduce 

(iii) also for p = l .  Indeed  since 2(1~)=(2n/~) 1/~ (cf. [31], [12]) we get b y  tak ing  X = l ~  in 

(2.18) t ha t  I[PII >~ (kl/2~) 1/2 and  since klk2>~n~kl/2~n it follows t h a t  k~>~On/2~. [] 

5 -  772904 Acta mzthematica 139. Imprim6 1�9 14 Octobre 1977 
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We have still to  verify tha t  (i) is the best possible estimate. This fact  will be used 

several times in the sequel and we state it therefore explicitly (cf. [29]). 

PROPOSITXON 3.2. Let T be an operator/rom l~ into l~ so that IITII lIT-HI 44. Then 

log n >~ C(2) k where C(2) is a positive constant depending on 4. 

Proo/. By the remark in the  beginning of this section it suffices to prove the proposit ion 

for some 2 > 1  say for 4=8/7 .  We m a y  assume tha t  IITII =1 .  Let  {e,}7-1 be the uni t  vector 

basis in lln--(10o) n * and pu t  y~= T*etEl~, 1 <.i<.n. The vectors yt are all in the uni t  ball of 

l~ and for every xEl~ with IIx]l = 1 there is an i so tha t  min (llx + Y,II, II x -Yt l l )  < 1/2. Indeed,  

since IIT-111<8/7 there is an i so tha t  I(x, y~)] = I Tx(e,)l >17/8 and hence for a suitable 

choice of the sign I Ix +_ y~]l 2 = I lxll 2 + I lY,II 3-+ 2(x, y~) < 1/4. The union of the balls in l~ with 

centers (_+Y~}~-I and radius 3/2 cover, thus the ball with radius 2 centered at  the origin. 

By  comparing volumes we get  t h a t  2 k < 2n(3/2) k and this proves the proposition. [] 

I n  Example  3.1 we exhibited various ways in which the estimates of section 2 can 

be used in verifying (ii) and (iii). (Another probabilistic method for proving (ii) is presented 

in [2].) We shall now illustrate still another  approach in which the results of section 2 can 

be applied by  comput ing the dimensions of almost  Hilbert ian subspaces of the spaces 
n n B n Cp, 1 < p  < ~ ,  n = 1, 2, 3 .. . .  The Banach space Cv is the space (12) of all operators T from 

l~ into itself endowed with the norm IlTllp= ( ~ - 1 2 r )  1/~ where {2,}~=1 are the eigenvalues 

of [T  I = (TT*)  1/z. For  p = ~ we get the usual operator  norm, for p = 2  we get the Hilbert- 

Schmidt  norm. Recall t ha t  (C~)* is isometric to C~ where p-1 + q-1 = 1. Clearly dim C~ = n 2. 

Example 3.3. Let  X = C~, 1 < p  < co, n = l, 2 .... There is a constant  c so tha t  X contains 

a subspace Y with dim Y = k and d( Y, l~) < 2 where 

(i) k = c n  1+2m i f 2 < p < o o  

(ii) k = c n  2 if 1 < p < 2 .  

These estimates are the best possible. 

Proo/. We settle first the case p = c~. For  every 1 < p  < cr it is obvious tha t  C~ has a 

subspaee isometric to l~. This proves (i) for p = c~. In  order to  prove tha t  (i) cannot  be 

improved for p = ~ it is enough by  Proposi t ion 3.2 to show tha t  d(C~, Z) < 2 for some sub- 

space Z of l~ n for some constant  ~. This follows from Lemma 2.4 and the fact  tha t  

IITII~>~�89 max,.<<,.t<m (Tx~, x,) for every TfiB(l~) if {X~}~n_1 is a �88  in the boundary  

of the unit  ball of l~. 

w e  pass now to  the case 2 < p < o o .  Let  Y ~ C ~  be such tha t  d ( Y , / ~ ) < 2  and let Y0 

be the same space as Y but  with the norm induced from C~o. Since for every T e B(I~), 
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IITHoo<<.HTII~<~nl/~IITIIo o we get that  d ( Y  o, l~)<~2n 1/~. By (2.10) we get tha t  Y0 has a sub- 

space Y1 with d(Y1, 1,~)~<2 where s>~i]c/4n~-/P. By the case p = o c  we deduce tha t  8<cn  

and hence 

k ~< ~70n 1+2/~ (3.1) 

for some constant ~o. Observe also tha t  for p > 2 and T E B(l~), I] TI]~ ~< I] TI]2 ~< n(l'~)-('~)]] T]]. 
and thus d(C~, l~')~<n (l/~)-(1/~). I t  follows from (2.18) tha t  

]r C~) k( C~) ~/ (~(n2)2 / ( n(1/z)--(1/v)) 2 : (~n 2+(1+2/p). (3.2) 

Assertions (i) and (ii) are immediate consequences of (3.1) and (3.2). Also, (3.1) asserts 

that  (i) is the best possible estimate. Clearly (ii) is also the best possible. []  

We pass now to some examples of spaces whose unit  balls are polytopes. First we 

present a general result on polytopes. 

THEOREM 3.4. There is an absolute positive constant ~ so that the/oUowing holds. For 

every convex polytope Q in R n which is symmetric with respect to the origin (and has the origin 

as an interior point) we have 
log s log t >/7n, (3.3) 

where 2s is the number o/vertices o/ Q and 2t is the number o / ( n  - 1)-dimensional/aces o /Q.  

Proo/. Let X be the Banaeh space whose unit ball is Q. Then X is isometric to a 

subspaee of l~ and X* is a subspace of l~o. Inequali ty (3.3) is thus an immediate consequence 

of (2.19) and Proposition 3.2. [ ]  

For furture reference we state explicitly the following consequence of (3.3). 

max (log s, log t) >1 (yn) 1/2 (3.4) 

Theorem 3.4 is a partial solution to the so called "lower bound problem" for symmetric 

convex polytopes: Give a lower bound for the number  of ( n -  1) dimensional faces for a 

symmetric polytope in R n having 2s vertices. For s with log s<~,n formula (3.3) gives 

such a lower estimate and as we shall see below this estimate is asymptotically the best 

possible in this range. Let us note that  for general (i.e. not necessarily symmetric) polytopes 

the lower bound problem was solved in precise terms by  Barnette [1]. For non symmetric  

polytopes the situation is different from tha t  expressed in (3.3). In  the non symmetric 

case we have no logarithmic (or equivalently exponential) terms, this is seen by  considering 

e.g. a simplex in R ~ where s = t = n % l .  

Let us point out tha t  though Theorem 3.4 is a theorem in the combinatorial theory 
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of convex polytopes its proof allows us to make some statements which relate combinatorial 

quantities to the global shape of the polytope. We note first that  our proof shows e.g. 

that  the following variant of (3.3) holds. Let  Qt and Q2 be two symmetric convex poly- 

topes in R n so that  Q1 c Q2~ 2Q1. Then (3.3) is valid if we take as 2s the number of vertices 

of Q1 and as 2t the number of faces of Qg.. Note also that  (3.3) was derived from (2.19) 

which in turn was obtained from (2.18) by replacing d(X, l~) by its upper bound n 1/2 and 

IIP]I by its lower bound 1. Thus in case where Q is nearer to an ellipsoid than n '/~ or if Q 

does not have nicely complemented almost spherical sections our proof gives a stronger 

estimate than (3.3). 

Our next  example is of a very simple polytope for which we have almost equality 

in (3.4). I ts  main purpose is to illustrate how the term ]]P]] in (2.18) can be used to solve 

a problem in the theory of p-absolutely summing operators. 

--(/1G/10...(~/1)oo has a subspace Y of dimension k>~cn Example 3.5. The space X -  "n ~ ~" 

with d( Y, l~) ~< 2 so that  there is a projection P from X onto Y with [IPI] ~ c(log n) ~/2. 

Proo[. The number of extreme points in the unit ball of X is 28 = (2n) n and the number 
n 

_ n n of extreme points of the unit ball of X*-(lm|174 is 2 t=n .2" .  Observe that  

log t..~n and log s..~n log n while dim X = n  z i.e. in this case (3.4) is close to being an 

equality. 

We apply now (2.18) to this space X and obtain k(x)k(x*)~n~llpll  ~. From the 

evaluation of s and t and Proposition 3.2 we deduce that  k(X)<~n and k(X*)<~n log n 

and thus HP]I <~(log ~)1/1/(~1/2. From this information it does not follow directly that  

k(X) >~n for some ~ >0  (and not only k(X)>~Tn/log n). In order to show that  k(X)>~n 
we go back to Theorem 2.6 and evaluate Mr. The norm in X is given by ll ll = 

supl~<,<~n(Z~.l I x~.t] ). As an inner product norm Ill" H] in X we take ]l]xl]] = (X,".,-1 ]:~t.)12) 1/2. 

Clearly ][Ixlll. ~--1/2 ~ ][Xl] ~.~ H IX]l[ nl/2 for every x E X. Also 

fl  ~ 1 1 1 
[Ixl[d~nm-l(X)~> ~" ]xi'lld~tnm-i(x)>~n'2"(nU)l/2 2' 

[[x[[i-1 |-1 Hx[[l 

and thus, by Theorem 2.6, k(X)>~n~/4(nl/2) 2 =~1n/4. This concludes the proof. []  

Remark. We do not know whether there is a sequence kn with limn_~ kn = oo and a 

constant c independent of n so that  X contains a subspace Y with dim Y = kn, d( Y, ls k~) ~ 2 

and so that  there is a projection P from X onto Y with IIP[I <c. 
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Example 3.5 enables the solution of a problem of A. Pelczynski concerning p-absolutely 

summing operators. Recall that  a bounded linear operator T: X-+ Y is said to be p absolutely 

summing, 1 < p  < c~ if there is a constant K so that  

/ n \ lip 

II T ,II < sup I 
~ffil [Iz* I1~<1\1=1 / 

for every choice of n and {x~}P_l in X. I t  is easily verified and well known that  if Pl <P2 

then every p,-absolutely summing operator is also p~-absolutely summing. Thus the smallest 

family of operators among those defined above is that  of 1-absolutely summing operators. 

A fundamental result of Grothendieek [13] (el. also [23]) asserts tha t  every bounded linear 

operator from 11 into l~ is 1-absolutely summing. I t  was proved in [23] that  this result 

actually characterizes in a certain sense the pair (/1, 12) among all pairs of Banach spaces 

(e.g. if X has an unconditional basis and the pair (X, Y)~=(/1, 12) then there is a bounded 

operator from X to Y which is not 1-absolutely summing). The situation changes if we 

consider pairs (X, Y) such that  every bounded linear operator from X to Y is 2-absolutely 

summing. Here there are much more examples, e.g. for every 1 < p  ~<2 the pair (co, l~) 

has this property (ef. [23]). Pelczynski conjectured that  the class of all Banaeh spaces X 

such that  every bounded T: X ~ l e  is 2-absolutely summing is closed under direct sum 

in the sense of 11. I t  follows easily from Example 3.5 that  this is false. 

PROPOSITION 3.6. There exists a bounded linear operator T: (Co|174 which 

is not p-absolutely summing/or any p < ~ .  

Proof. By Example 3.5 there is for every n a projection Pn from X=(c0 |174 , 

onto a subspace Yn so that  d( Yn,/~) ~< 2 and I[Pnl[ ~< c(log n) x/~. The space Y = ( ~ o x  | Y2~)2 

is isomorphic to 12. The operator T: X-~ Y defined by 

Tx = (P2x, 4-1P, x, ..., n-~P~,x .. . .  ) 

is hounded but  it is not p-absolutely summing for any p < oo (apply the definition of a 

p-absolutely summing operator to a set {x~}l~l which corresponds to an orthonormal basis 

in l~ ~ by the isomorphism from Y~, onto l['). 

We conclude this section by an example which shows that  (3.4) (and therefore also 

(2.20)) are sharp estimates. 

Example 3.7. Let  {Xn}n~.l be the sequence of Banach spaces defined by Xx= l~  

and for n > 1 

X2~ = (X2n_I| X2~+, = (X,n| 
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Then dim X2n = 2 ~n and the unit ball of X2~ is a polytope with 2s. vertices and 2tn faces 

with log sn, log tn ~<3.2 ~. 

Proo]. A straightforward verification shows that  2s n =2 2"+~-1 and 2t, =2 2"+~+2"-2. [] 

Remarks. 1. Observe that  by (2.18) and Proposition 3.2 there is a constant ) ,>0 

so that  for every n there is a subspaee Yn~X2n with dim Yn=kn>~y'2 n, d(Yn, l~")<<.2 

and a projection P~ from i2n onto Yn with IIP, II <r-~. 
m oo 2. Let ( n}~=~ be a sequence of integers so that  ~na:)_-i 2 -n log mn < oo. If we change the 

rnn 

definition of the (X~}~~ 1 in the example above by putting X~n -(~72n-~ | X2~-x |174 X~n_l)~ 

and keeping the definition of X~.+I then we get that  dim X ~ = 2 " . m x m  ~ ... mn, log s~...2 n 

and log tn,.~mxm2 ... mn. This shows that  (3.3) can become an equality (up to a constant 

independent of n) if log s is given in advance provided that  log n=O(log s) and 

log s = O(n/log n). 

w 4. The Dvoretzky Rogers lemma 

In this section we discuss the "Dvoretzky Rogers Lemma" and various variants of it. 

We also show how this lemma is used in proving Dvoretzky's theorem on the existence 

of almost spherical sections. 

We begin by stating the Dvoretzky-Rogers Lemma in its original formulation 

(cf. [7]). 

THEOREM 4.1. Let (X, II II) be an n dimensional Banach space and let E be the ellipsoid 

o/maximal  volume contained in the unit ball o] X .  Let III IIl be the inner product norm induced 
U n n on X by E. Then there exists an orthonormal basis { ~}~=1 o/ (X, I]1 I]1) and vectors {x~),~a 

in X so that IIx~[I =lHx~lll =1 and 

n - i + l  
x , = ~ a , . j u s ,  a~ . ,=l -~a~. j>~ , l ~ i ~ < n .  {4.1) 

1~t  t< f  n 

This theorem is by now well known and its proof has been reproduced in many places 

(e.g. in Day's book) so we do not reproduce its proof here. We just mention that  the proof 

is based on a variational argument. 

Let us point out explicitly one immediate consequence of (4.1). We have for every i 

Ila,.,udl >~ I[x,[[-nx,--a,. ,u,I I >7 1 - ] l l x , - a , . , u , n  [ 

= 1 - (1 - a [ j ) ' ~  = a~.fl(1 + (1 - a ~ ) ' ~ )  

and thus Ilu,l[ >~ [a,.~[/(1 +(1 -a[,)x/~). Consequently, by (4.1) 

llu,[[ >/1/2 if i - 1  ~<~n. (4.2) 
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In other words there are c dim X vectors in X which are orthogonal with respect to 

Ill []] and on which the norms ]][. ]]1 and ]] I I differ by the factor two at most. There is an 

obvious duality between the ellipsoid E of maximal volume in the unit ball of X and the 

ellipsoid E' of minimal volume containing the unit ball of X*. Thus the result of Fritz 

John [15] which was mentioned already in section 2 shows that  in the notation of Theorem 

4.1 

n-'~lll~lll < I1~11 < II1~111 for every x E X  (4.3) 

Theorem 4.1 enables us to give a non trivial estimate of the median M r of r(x)= II~ll 
on  {~; Ill'Ill = 1} i.e. on  the  s u ~ a c e  of E.  For obtaining this estimate we need the following 

computational result. 

L~,MMA 4.2. Let 1 <~m~n be integers. Then 

fs  maxlt'ld~n-l(t)>~c(l~ m/n)l/2 
n--1 l<~t<rn 

(4.4) 

where c is an absolute constant, Sn-~={(ta ..... t~); ~ _ ~ t ~ = l }  and i~n_~ is the normalized 
rotation invariant measure on S n-x. 

Proo]. Let u be the measure on R n whose density is given by exp( - ~  ~*1 tt2) �9 For every 

continuous real valued function/( t)  on S n-1 let T(t) be a function on Rn~ {0} defined by 

/ (t)=ll lt l l l / (t / l l l t l l l )  where IIItlll =(Z~-, t,b "~. It  foUows immediately from the uniqueness 

of a normalized rotation invariant measure on S n-1 that  there is a constant ~t, so that  

fR. T(t)dr(t) = ~. fs.-1 t(t) dp,_~(t), I E C(S"-~). (4.5) 

By taking 1--- 1 in (4.5) we deduce that  

an= f. ,Htllldr(t)< ( f s  [[]t][[2dr(t)) r2= (fs , , -~t~ exp ( - z  ~lt~)dt x ... dr,) v~ 

/ Coo \ l / z  
(4.6) 

Observe next that  for every e>0 ,  and 0<(~<1/~ we have ~{t;maxl<,<~lt~l < 

(~ log m) 1/~} < e provided m >~ re(O, e). Indeed, put  ~ = (~ log m) 1/~, then 

f :  e-,U' dt >~ l.~ e-,,~'= m)-l/S m-,,~ elJm) 1 
4 ~  ~-~(~ log >�89 
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and thus 

(f_ e-""at)" ~,(t; max It, [~< ~} = < (el~m) m= e 

by using this observation for e =5 = 1]4 say, (4.5) for the function ](t)=maxa<t< m Its] and 

(4.6) we deduce that  

m)"2  (log m/ny [] 

PROPOSITION 4.3. With the notation preceding Lemma 4.2 we have Mr~>~/(log n/n) ~/2 

]or some absolute constant r 1 > O. 

Proo[. By Lemma 2.7 it is enough to prove that  

t~ ut .~_x(t)/> )J(log n/n) 1/2 
1 J3".-  ii~=a 

for some constant ~. Let {rt(s)}~l denote the Rademaeher functions on [0, 1]. Observe 

that  for vectors {wt}~-, in a Banaeh space ~01 II~-x r~(s)wdlds is just the average of 
n + I1~,-1- w,II over all choices of signs and is therefore ~>max, Ilw,H. Consequently by (4.2) 

and {4.4) we get for m =[4n/25-1]  

fs~.. ~lL~-~t'u"ldm-~(t)= ; fs._~ll,_~ r,(s)t,u, lldla~-~(t)ds 
>/fs-  max IIt, u,}ldl~_alt)>~ �89 f s .  

- 1  l~<t~<n - 1  
max It, ldl~._~(t) >1 ),(log n/n) 1/* 
l<~l~m 

[] 

From Theorem 2.6, Proposition 4.3 and (4.3) we deduce immediately Dvoretzky's 

theorem (with an estimate first given in [29], which is better than the original estimate) 

THEOREM 4.4. There i8 an absolute constant c so that every Banach space X with 

dim X = n  has a subspace Y with dim Y=K>~c log n and d(Y,  l~) <2. 

I t  follows from Proposition 3.2 that  this estimate cannot be improved in the general 

case. By combining Theorem 4.4 with 2.10 we get that  if dim X ffin then XD Y with 

dim Y =k, d( Y, l~)<2 and k >~c max (log n, n]d~(X,/~)). I~ is natural to ask in view of 

this formula whether Theorem 4.4 can be improved in situations where we know that  

d(X, l~) =o(n 1/2) (but of course d(X, l~) ~>c(n/log n)1/2). The answer is negative as the follow- 

ing example shows. 
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Example 4.5. There is a Banach  space X of dimension n so t h a t  d(X, l~) = (n/log n) t/~ 

and so t h a t  X does not  have  subspaces close to a Hi lber t  space of dimension ~> C log n. 

Proo[. Let  X be R n wi th  the  norm defined as follows 

II(t. t2, ..., t.)ll = m a x  ((log nln)l/2( ~ t~) 112, It, I, i = a . . . . .  ~) 
~=1 

Put IllItl, .,., t.)lll = <~-1  t~)a,~. Then (log ~/~)-2111~111 < Ilxll < II1~111 for every z E X  and thus 
d(X, l~) <~ (n/log n) 1/2 (actually we have  an equal i ty  in this inequali ty) .  Le t  Y be a subspaee 

of x and let Ill II10 be an inner product norm on Y so t h a t  Illylll0~<llyll <2111ylllo for every 
y E Y. I t  is an e lementary  fact  t h a t  every  ellipsoid in R 2k with  the  origin as center  has a 

k-dimensional  section through 0 which is a ball (cf. e.g. [6]). Thus  b y  passing if necessary 

to a subspace of Y of half the  dimension we m a y  assume wi thout  loss of general i ty  t ha t  

IiiYH]o=ai[]y][] for some a > 0  and every  yE Y. 

We consider now separa te ly  two cases. 

Case (i): a >  (log n/n) 1/'. In  this case Ilyll >( log  n /~)" l l ly l l l  and thus  Ilyll =maxa<~<, It, I 

for every  y = (tl, t 2 .... tn) E Y. The fact  t h a t  d im Y ~< C log n follows now from Proposi t ion 

3.2. 

Case (ii): a~< (log n[n) x/2. Let  yt=(u~.x, ut.2 . . . . .  ut..~), 1 ~<i~<k be an or thonormal  basis 

in (Y, I]] []I0). Then ~ .~=xu[ ,=a - '  for every  i. Also for every  choice of {3.,}~., with 

~k 3.2_ 1 we have  t=1 t -  

and hence k 2 ~t-1 u~.j <~ 4 for every  i- Consequently 

a-2k = ~ ~u~. ,= ~. ~u~a<~4n 
~=1 t - 1  t=1 |=1 

or k < 4na 2 ~< 4 log n. [ ]  

F rom Theorem 4.1 we deduced (cf. (4.2)) the  existence of m a n y  or thogonal  vectors  

with respect  to ]11" [11 in which the  r ight  hand inequal i ty  of (4.3) is close to being equal i ty.  

In  general this is not  t rue  for the  left hand  inequal i ty  of (4.3). More precisely, if 

3. = sup (lllxHI; I[xll = 1 } then  in general  we cannot  f ind m a n y  othogonal  points  on the  surface 

of the  ellipsoid appear ing  in Theorem 4.1 for which Ilxll is up  to a small  cons tan t  factor  

(say a constant  independent  of n) equal  to 113.. As we shall see in the  nex t  section it is 

useful for some purposes to have  an inner  p roduc t  norm III Ill0 with say all[xll[o<~[[xll <<. 
blilxlIIo so t ha t  bo th  sides of the  inequal i ty  are up  to  a cons tan t  factor  precise for a large 
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set of or thonormal  vectors with respect to II1" Ill0 We shall prove now a version of the 

Dvore tzky  Rogers lemma which ensures this. The proof we present is much simpler than  

the known proofs of Theorem 4.1. 

TH~.OREM 4.6. Let (X, [[ H) be a Banach space o/dimension n and let I[1" Ill be an inner 

product norm on X so that II[xll[ >~llxl[ ~ [l[x]l[/d /or every xE X and some d<~n. Let K and 

be constants so that 0 < F < 1 and K > 1. 

Then there exists a subspace Y o / X  with dim Y =m >~n ~ +l~176 ;c and constants a and 

b so that 

 lllylll Ilyll < blllylll (4.7) 

/or every yE Y and so that/or every subspace Yo o/ Y with dim Y0>~(1 -~ , )m there are vectors 

Yl and Y2 in Yo satis/ying 

II[yi[ll=l[[y2[l] =1, Ilyl[I >~b/K, [[Y2[[ < a K .  (4.8) 

Before proving this result let us make some comments.  The main point  in this result 

is tha t  it ensures for both  inequalities of (4.7) the existence of m a n y  or thonormal  vectors 

in which these inequalities are close to being sharp. Indeed,  by  an obvious induct ive argu- 

ment  we get  for k=[Tm ], k vectors {u~)~_i in Y which are or thonormal  with respect to 

[[I [[[ and for which [[u,[[ >~b/g as well as k vectors {v,}~ol in Y which are or thonormal  with 

respect to Ill'ill and for which []v,I [ <aK.  Let  us also remark tha t  the d appearing in the 

s ta tement  need not  be the distance from X to l ~ The fact  tha t  we allow as d a number  2" 

as large as n enables us to apply Theorem 4.6 wi thout  using the result of Fri tz  John.  

Proo/. If  we cannot  take X itself as Y then there is a subspace X 1 of X with dim X 1 

(l - y ) n  so t h a t  in i 1 we have either IIIxlll >~ Ilxll >JKIIIxlll/d or I[Ixlll/K >1 Ilxll >~ IIIxlll/d 

for every x E X. If  we cannot  take X 1 as Y there is a subspace X 2 of X 1 of dimension ~> 

(1 - ) , )2n  so tha t  on it for suitable]l.~, ]2.~ (each being either 0 or 1 or 2 with ~1.~ + J2.~ =2)  

we have 

K- II,2H[xH] ~ ]ix]] >~ gJ2,~[ilxH]/d xeX~ .  

We continue in an obvious way. I f  this process does not  stop before the p ' t h  step we get  a 

subspace Xp of X with d im X~/> ( 1 - ) , ) r n  and so tha t  for suitable Jl,r, j~.~E (0, 1, 2 . . . . .  p} 

with Jl.p +J2.~ = P  

K-Jl.~H[x[I [ >>- [Ix[[ >1 US'~,p{[[xH[/d, xEX~. 

Consequently KP<~d<~n, i.e. p<.logn/log K.  Hence dim Y=(1-7)Pn>~(1-),)l~176 

This concludes tbo proof. [] 
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Another version of Theorem 4.1 appears in the paper of Larman and Mani [21]. 

Larman and Mani apply a variational argument  which is ,very similar t o  tha t  used by  

I)voretzky and Rogers (but somewhat more involved) to an ellipsoid which determines 

the Banach-Mazur distance d ( X ,  l~) = d, rather  than the ellipsoid of maximal value contained 

in the unit ball of X. Using this ellipsoid they are able to find 2 sequences of k orthogonal 

points like the points {Ul}k=l and {v~}~=l described after the s tatement  of Theorem 4.6. 

In  Larman and Mani's proof we get k .~cd .  This gives relatively little information when 

d is small but  very useful information if d is close to its maximum i.e. n x/2. 

Usually an ellipsoid which determines the distance from n �9 12 is very far from the ellipsoid 

of maximal volume (this is a source of many  difficulties which occur if we t ry  to apply 

the results of this paper to various open problems). Let  us mention a simple and well 

known example which exhibits this difference. Let  X be the Banach space obtained by  

taking in R n the norm whose unit ball B is the convex hull of B o = {(tl, t 2 . . . .  , tn), ~=1 t~ = 1} 

and the points _+(1, 1, 1, 1, ,.). Then B 0 is the ellipsoid of maximal volume in B (it is 

even the ellipsoid of maximal volume in the unit  cube  Q={(t l  ..... t,); max, It, I <1}. 

We have B o ~  B ~  nl/2Bo and n 1/2 cannot be replaced by a smaller number. On the other 

hand the set B is obtained by rotating a 2 dimensional figure (namely the convex hull 

of + (n ~/2, 0) and {(ti, t,); t~ + t~ ~< 1 }) and thus d ( X ,  l~)<~ 21/3. 

w 5. Connection with the notion of cotype 

The results proved in the previous sections have an interesting connection with the 

notion of the eotype of a Banach space. Let us first recall the definitions of t h e  notions 

of type and cotype. 

A Banach space X is said to be of type p (resp. cotype q) if there is a constant :r < oo 

(resp fl >0) so that  for every integer m and every choice of (x~}~.l in X we have 

respectively 

1 m m 
fo t--~lr| (8)x| I ds~~ (5.1) 

(5.2) 

where {r~}~x denote as before the Rademacher  functions o n  [0, 1]. Let  us recall tha t  from 

the classical Khintchine inequality it follows tha t  necessarily for every X, 1 ~<p ~< 2 ~< q ~< ~ .  

The constants a resp. fl are called the p-t~ype and q-cotype constants of X. We mention 
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also a result of Kahane [18] which asserts that  there is a constant 7(r) for every r > 1 so 

that  for every Banaeh space X every choice of m and {x~}~l 

r'r rx'") jor'l" x,l[ds" <5.3) 

Since obviously (S~ Hb~"~l r,(s)x,H')l/r>~S~ Hb'~=l r,(s)x,[[ds w e  see that  of functions /(s) 

of the form H~=l rt(s)xtH all the L, norms are equivalent and thus we could use on the left 

hand side of (5.1) and (5.2) and Lr norm (with of course a suitable change in ~ and/~). 

In the preceding section (the proof of Proposition 4.3) we used already integrals of 

the form appearing in (5.1) and (5.2) for computing medians. For spaces in which we know 

the type and the cotype this computation gives naturally more information. 

PROPOSITION 5.1. Let (X,  [[ H) be an n dimensional space whose p-type constant is 

and whose q-cotype constant is fl /or some 1 <~p <2 <~q<~ cr Let [[]. [][ be an inner product 

norm on X so that aH[xH[ <~[[xH<~bH[xH] /or every x e X  (with b/a<~nl/2). Let {u,}~_, be an 

orthonormal basis o/ (X, [[[ lID so that [[u,[i~>l[u~[[J>...~>[[un[ [. Let Mr be the median o/ 

r<~)=ll~ll on {~; Illzlll = 1 }  T ~ n  

c~ Ilu, II ~,,<~-,, ~>M,~>c-~fl m a x  {llu.llm~'"n-~"}. <5.3) ! l<<.m<~n 
where c is an absolute constant. 

Proo]. We apply Lemma 2.7 which allows us to replace M, by the mean of I1~11 (it is 

here that the assumption b/a <~ n 1/z is used). We have 

fs. Ilxlld~,.-~(x)= fs._ llZt, u, lld/,.-l(t)= fs. , f: ,~ r,(s)t,u, dsdp,_l(t ) 
C / n \lip 

L:llt:,u, II ,) 
n \(2-p)/gp p / n ,~\1/2 

1 / Js - l \ ~ - I  

= ~ [[u,[[~,,~,-,, \~'-'''''. 
L 

This proves the left hand inequality of (5.3). To prove the right hand inequality we use the 

following estimate for every 1 ~< m ~< n 

~n_l(i~lll,|Ul,lr ) 1/q d/{zu_ l(t) ~ 11 urn,/f~_ 1(,~1 / t | m  1r 1,q d[~Zn-l(t) 
p / m \ l lZ  

~>llu~llm~'~-"=| / Y l t ,  l'} d~.-~(tl>~�89 -1'=- []  
Jtn--l\ |=l ] 
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In  general it is convenient to use different orthonormal bases in the two inequalities 

of (5.3). For the right hand inequality we use (u~}~l for which []ud[ is as large as possible 

(preferably with ][u~]] close to b) while for the left hand inequality we use (u~}~-i for which 

]]ud[ is a small as possible (preferably ]]udl close to a). The right hand inequality is more 

convenient to use since for it, it is enough to have a good estimate on ][u~]] only for a large 

set of indices i and not for all 1 ~< i ~< n. In  particular if we take as ]]1 ]1] the norm induced 

by the ellipsoid of maximum volume in the unit ball of X we have b = 1 and by  (4.2) we 

may choose the {u,)~=l so tha t  I]udl >~ 1/2 for 1<~i<~9n/25. Hence we get tha t  in this case 

Mr>~Cfln 1/~-x/2. Thus we deduce from Theorem 2.6 the following result 

THEOREM 5.2. Let X be a Banach space o/cotype 2~<q< co and let fl be the q-cotype 

constant o / X .  Then/or  every subspace X o c  X with dim X o = n  there is a 8ubspace Y c  X o 

so that d( Y, l~) <~ 2 and k >~fl2n~/q where ~1 i8 an absolute constant. 

Since every uniformly convex space is of cotype q for some q < ~ (cf. [27]) it follows 

tha t  in the presence of uniform convexity we always get Hilbertian subspace of X 0 

of dimension ~> (dim X0) ~ for some ~ > 0. 

The space Lq(0, 1) is of cotype max (2, q) and the same is true for the space C a of 

operators on l~ with the norm ]]T[]q=(trace (TT*)q/2) l/q, cf. [34]. By applying Theorem 

5.2 to the spaces l~cLq(0, 1) we recover exactly the results proved in Example  3.1 (for 

1 ~<q< c~). This shows that  the result of Theorem 5.2 is sharp. By applying Theorem 5.2 

to the spaces C~c Cq we get the same result as tha t  in Example  3.3 for 1 ~<q <2  while for 

q > 2 Theorem 5.2 does not give the best possible result which is presented in Example  3.3. 

Theorem 5.2 gives however much more information than Examples 3.1 and 3.3 (at least 

for 1 ~<q<2) since it applies not only to the spaces l~ and C~ but  to any finite dimensional 

subspace of Lq(0, 1) respectively Cq. 

Theorem 5.2 can actually be used to characterize the cotype of a Banach space (up 

to e>0).  A result of Krivine and Maurey and Pisier (cf. [28]) states tha t  if X is a Banach 

space and if q0=inf (q; X is of cotype q} then for every n there is a subspace Yn of X so 

tha t  d(Yn, l~0)~<2. Note tha t  by  Example 3.1 these spaces Yn do not contain subspaces 

close to Euclidean spaces of dimension larger than cn ~/~~ Consequently if X is a Banach 

space which satisfies the conclusion of Theorem 5.2 then X is of cotype q + s  for e v e r y  

e > 0. The e cannot be dropped in this statement.  This is shown by the following example 

due to W. B. Johnson. 

Example 5.3. Let  q >~ 2, e > 0 and a sequence of integers {an}Y- 1 be  g i v e n  so  t h a t  lira n an oo , 

Then there is a Banach space X of type 2 which is not of cotype q and yet has the follow- 
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ing property. For every subspace Y c X  with dim Y = n  there is a subspace Z c  Y with 

dim Z>~n -an  and a subspace Z of lq so tha t  d(Z, Z) <~ 1 +~. 

This example which was kindly communicated to us by W. B. Johnson is a slight 

modification of another example of Johnson's  which appeared in [16]. Observe tha t  the 

an may  tend to 00 as slowly as we wish. Thus if q = 2  and e.g. an=[log n] every subspace 

Y of X with dim Y = n  has an almost Hilbertian subspaee of codimension ~<log n. Also 

if q > 2 we get from Theorem 5.2 that ,  if a n ~ n/2 say, the space Z and therefore also Y has 

an almost Hilbertian subspaee of dimension ~7]n 2/q. 

Proof. We call a finite collection {Es)s\ 1 of subsets of the positive integers allowable 

if the Es are mutual ly disjoint and the smallest integer in U~-I Es is >~n+l .  Let  X 0 

be the linear space of all sequences of scalars which are eventually 0. For every subset 

E of the integers and every x E X  we denote by Ex the vector defined by  Ex(i)=x(i)  if 

i E E  and Ex(i) =0  if i ~E .  Let (~>0 and ~ >  1 be such (1 +~)7] ~<1 +e. 

We define now inductively a sequence of norms {11" ]l~}~=~ on X 0 as follows: Ilxl[1 = 

ilxll+,, =max,+ Ix(i)l, and for k>~l 

max 7]-' sup ,=,llE'xllg] '~+ { D,=, allowable, n =  1, 2, NxH~+I 

It is easy to see that I1=11~<(~=~ I=(i)l~ for every k and th~s lim~ N=II~=II=N exists 

for every x E X o. The completion of X 0 with respect to this limiting norm is denoted by  

)7 = f~ ( q, 7]). 

I t  is easily verified tha t  the unit  vectors (e,}~ 1 form an unconditional basis of )~ and 

I l z l l = m a x  II+llc., 7 ] '  sup I IE,+I I  o , {Es)jL, a l lowable . (5.4) 
J 

Also, if {xj}~'~l are elements in )~ with disjoint support  (with respect to the unit  vector 

basis) we get that  

l=~l 3~j < ~ ]iX)Ii q\l/q* (5,5) 

The example presented in [16] is the  one obtained by taking q = 1 and 7] =2. The main 

technical argument  in [16] is the proof of the fact tha t  with these choices of q and 7],/~(q, 7]) 

does not contain a subspace isomorphic to I I. The same argument  (with some obvious minor 

modifications) shows tha t  for a general 1 <q < o~ and 7] > 1 the space J~(q, 7]) does not have 

a subspace isomorphic to lq. I f  follows from this tha t  )~(q, 7]) has no infinite-dimensional 

subspace of eotype q. Indeed, suppose tha t  W is an infinite-dimensional subspaee of X of 
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eotype q. Then by the standard gliding hump argument we get a sequence {wj}~l of vectors 

of norm 1 in W which are almost disjointly supported with respect to the unit vector 

basis. Since W is of cotype q there is a f l>0  so that  [ 1 ~1  2jw~][ >~f l (~i  [Jtj[q) i/q for every 

choice of scalars {).j}j~. By combining this inequality with (5.5) we deduce that  {wj}~i 

is equivalent to the unit vector basis of lq and this, as mentioned above, is impossible. 

We quote now a result due essentially to Pelczynski and Rosenthal [30] (el. also [16]) 

which we shall need in the sequel. For every integer n and 5 > 0 there is an integer hr = N(n, 5) 

having the following property. If W is a space with an unconditional basis (whose uncondi- 

tionality constant is 1) and Y is a subspace of W with dim Y = n then there is a subspace 

~ c  W spanned by h r vectors with mutually disjoint supports and an operator T: Y-~ 

so that  IIY]] ~<]]Ty]] ~<(1 +5)11y[] for every yE Y. 
a oo Using this function N(n, 5) we define in terms of the given sequence { n}n~x and the 

5 we have chosen above a sequence k~ of positive integers so that  k~>~max {N(n, 5); 

a(n) <~i}. We claim that  the subspace X of Y which is spanned by the sequence {ek~}~l 

has the required properties. 

To prove this fix n and let 

V=(xEXcS~;x(k,)=O, i = 1 , 2  ..... an}. 

m Observe that  if {yt}t~1 a r e  non zero vectors in V which huve mutually disjoint supports 

and m ~ N(n, 5) ~< ka, then the sequence {supp Yj}~I of the supports of the y / s  is allowable 

and thus by (5.4) and (5.5) 

( ,~  [[).jyj[[,)aJq >~ L~l ) ' jy'  I ~ ~-l(j=~l ]]2JYJ]]q)~/q' 

~tj scalars. 

Hence d(span {y~}jml, l~) ~<~. 

Let now Y c X with dim Y = n and let Z = Y f~ V. Clearly dim Z/> n - a,. The discussion 

above shows that  Z is (1 +5)-isomorphic to a subspace of V spanned by N(n, 5)disjointly 
supported vectors which, as we have just seen, is r/isomorphic to lq N. 

That  X is not of cotype q was already verified above. We omit the proof of the fact 

that  X is of type 2 since this fact is not needed in the present context. [] 

In order to complete the discussion of the relation between the cotype of a space 

and the dimension of almost spherical sections we present another example. 

Example 5.4. For every q >/2 there is a Banach space X of type 2 and of cotype q + 

for every e >0  yet there is no constant c so that  every y c  X with dim Y = n  has a subspace 

Z with k = d i m  Z>~cn~/q and d(Z, l~)<~2. 
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Proo/. As X we take the Orlicz sequence space IM where M(t) = tq/I log t I near t = 0. The 

fact tha t  X is of cotype q + e for every e > 0 and of type 2 follows from the following general 

result (cf. [25] and [11]). An Orlicz sequence space 1M for which M(2t)/M(t)<~ for t E (0, 1] 

is of type p, p ~< 2 (respectively of cotype q, q ~ 2) if and only if 

M(uv)/M(v) <~ Ku  q resp. M(uv)/M(v)>~K-lu q 

for all u, v E (0, I ] and some K < r 

As for the dimension of almost Hilbertian subspaces, let Xn be the span of the first 

n unit vectors in lM and let Y~ c X~ with dim Yn =k~ and d( Y~,/~) ~<2. Since 1M is of type 2 

it follows from a result of Maurey [26] tha t  there is a projection Pn from IM (and thus from 

Xn) onto Yn with IIPnll ~<y with T independent of n. By comparing projection constants 

we get 

A short computation shows tha t  this implies tha t  k, ~<c(n/log n) 2/q, for some constant c 

independent of n. [] 

Remark. The estimate we just obtained for k~ is precise. For every subspace Y of 1 M 

where M(t)=tq/llog t I (q>~2) with dim Y = n  there is a subspace Z ~  Y with k = d i m Z > ~  

r/(n/log n) 2/q so tha t  d(Z, l~) ~< 2. This follows from a generalization of theorem 5.2 which 

involves the notion of (Gaussian) cotype / where / is a non negative nonincreasing function 

on [0, (g/2)1/2]. A Banach space X is said to be of cotype / (wi th / -cotype  constant c) if 

for every finite sequence {x~}~_l~ X with 

z= fo lldP(og)*O 
one h ~  ZT., l(ll ,ll/X) c (a,(o~) are independent normalized Gaussian variables in the 

probabili ty space (f~, P)). 

Now in the setting of Proposition 5.1 we have 

where cn is a constant depending only on n. More precisely the proof of Lemma 4.2 shows 

tha t  c n equals ~ ( ~ - 1  Y~(oJ))l/2dP(og) and hence c n >~cn 1/~ where c > 0 is an absolute constant. 

Since, as in the proof of Theorem 5.2 

/([I x, l[/J) >i (9/25)./(I/2J) 
t-I 
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we obtain that  

fs,-, [Ix[[ = g/cn ~ ~-112/1-1(~'/n) (5.6) 

for some constant y. 

From (5.6) we get a useful estimate for Mr and hence for k(X) whenever we know/ .  

In the case of Orlicz sequence spaces there is an explicit formula for / (cf. [25] and [11]) 

l St~M(uv) } /(t)=inf~u~M(v); t<u<.l, 0 < v ~ < l  (5.7) 

for t E (0, 1). The estimate for/on mentioned in the beginning of this remark follows from 

(5.6) and (5.7) after some elementary computations. 

w 6. Spaces all whose subspaces of a given dimension are almost Hilbertian 

In the previous sections we investigated for a given Banach space X with dim X = n 

the question for what integer/r does X have k dimensional subspaces which are close to 

being Hilbertian. Our proofs usually proved not only the existence of such subspaces but  

that  "most"  subspaees of a given dimension are almost Hilbertian. In this section we 

consider the problem under what conditions can all the k dimensional subspaces of X 

be close to Hilbertian. I t  will turn out that  if k is large enough (compared to n) then X 

itself must be close to being Hilbertian. 

Convenient tools for handling the problem mentioned in the preceding paragraph are 

again the notions of type and cotype which were introduced in the previous section. In 

this section we shall only be interested in type 2 and cotype 2 but  we shall examine in 

more detail the constants associated with these two notions. 

Let  X be a Banach space and let N be an integer. We let an(X) resp. fin(X) be the 

smallest numbers such that  the following inequality 

~n(X)-i(,~l ,[x, ll2)X/~ < (f~]l,~lr,(t)x, I'dt)l/~<<.a.(X)(,=~ (6.1) 

holds for every choice of {x,}~_: in X. 

I t  is clear that  the sequences ~n(X) and fin(X) are monotonely increasing with n and 

that  X is of type 2 (reap. cotype 2) if and only if supn ~ ( X )  < oo (reap. sup, fin(X) < ~ ) .  

I t  is also clear that  if X is a Hilbert space then ~ ( X )  -~n(X) = 1 for every n. These equations 

characterize spaces which are isometric to Hilbert space (indeed, the equation ~2(X)= 

fls(X) = 1 is precisely the parallelogram identity). Spaces X which are isomorphic to Hilbert 

6 - 772904 Acta mathematica 139. l m p r i m 6  le 14 O c t o b r e  1977 
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space are characterized by the relation supn a~(X)< c~ and supn fin(X)< c~. This is a 

result of Kwapien [20]. We shall state (and apply) in the sequel Kwapien's result in a 

slightly stronger form. 

The quantities an(X) and fin(X) were investigated by Maurey and Pisier [28]. We shall 

need here the following simple facts concerning these constants. 

an,,(X) 4 an(X) am(X), finm(X) 4 fin(X)fim(X), m, n = 1, 2, ... (6.2) 

fin(X) ~< an(X*). (6.3) 

Let  us recall the proof of these inequalities. The first inequality in (6.2) follows from 

) ,( ;.m ). 
+ r2(8) (0 x, + . . .  + rm(S r,( 0 x, d r &  

t -  I - n  n + l  

/*1 m II jn r,(t)x, Zdt nm 
~<am(g)*| Y~ I Y~ < - a , . ( x ) 2 ~ ( g )  * 7. I1~,112. 

d O 1 - 1  t * ( / - 1 ) n + l  t = l  

The proof of the second inequality in {6.2) is the same, Inequality (6.3) is proved as follows. 

Pick any {x,}'~_leX and let {x*}~.leX* be such that  IIx,[12=l[x*ll2=x~(x,)for every i. 

Then 

~ ,,x,,,~--~., x:(z,)= ; (,_~r,(t)x*)(~.r,(t)z,)dt 

11' \,/' n 

li.,li') tJoll,_Z.,(,,-, .,). 
As in the remark at the end of the preceding section it will be useful for us to introduce 

variants of ~n(X) and fin(X) obtained by replacing the Rademacher functions by inde- 

pendent random variables gi(to) on some probability space (tl, P) each having a normalized 

(i.e. mean 0 and variance 1) Gaussian distribution. We let for every integer n, ~r and 

/~n(X) be the smallest constants for which 

fin(x)-'(,_~ '\'/' " [ ,,x, ll ) <-<(~[]~_g,(w)x.ll*dP(o.,))a/'<~(X)(~_[lx,,,*)'/' (6.4) 

for every choice of {x,}l'_l~ X. 
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We shah use the following relation between ~ (X )  and ~n(X) (resp. fin(X) and fin(X)) 

~ ( x )  ~< ~ ( x ) ,  ~ ( x )  < fi~(x), n = 1, 2 . . . .  (6.5) 

Indeed, by the symmetry of the g,'s we get 

2 1 ~ 2 
f ~  ,=~I~,((D)~ t dP(r /o /~[I,_lri(t)gi(co)x . alP(co)dr 

J ~  1=1 t-1 

and analogus inequality holds for the fin(X). We mention without proof some other results 

on the relation between these constants which can be found in [28] but which we shall 

not use here. For every Banach space X and every n, gn(X) ~< (~z/2) 1/2 tin(X). On the other 

hand there is a constant c so that  fin(X)<<.cfln(X) for all n if and only if X is of cotype 

q for some q < oo. The constants 5n(X) and fl~(X) are in general not submultiplicative in 

the sense of (6.2). From the results we quoted it follows that  5n(X) is always equivalent 

to a submultiplicative sequence (namely a.(X)). This is false for fin(X)' For example if 

X =c  o it is not hard to verify (this is related to Lemma 4.2) that  fin(c0)~-(n/log n) 1/2. The 

importance of ~ (X)  and ~n(X) in our context stems from the following lemma: 

LEMMA 6.1. Let X be a Banach 8pace with dim X=n. Then ~(X)=Sn(n+l)/2+:(X) 

and ~M(X) =fln(,+l)/2+l(X) /or every m > n(n + 1)/2 § 1. 

Proo/. Let m>n(n+l)/2+l and let ~x~)~-i be any m elements  n X. Then Q(x*)= 

~'~-1 x*(xt) 2 is a quadratic form on X*. Since the dimension of the space of quadratic forms 

on X* is n(n+ 1)/2 it follows from Caratheodory's theorem that  Q(x*) can be represented 

as a convex combination of fewer than m quadratic forms of the set (mx*(xt)Z}'~_l. Hence 

there exist ~t/> 0 with ~ - 1  Jtt = 1 so that  at least one ~ti (say ~tl) vanishes and Q(x*)= 
m~'~_l~lX*(X~) ~. Let ~t=maxl.<t.<m~tt (say that  ~t=~tu) and put  y~=(~/~)l/2x~ and 

z~--(1-~,/~)l/Zx~, 1 <<.i <<.m. Then 

YI=0, z z = 0 ,  (6.6) 

I1 ,11 == Ily, ll' + II ,ll'. (6.7) 
i-1 t-1 t-1 

Also Q(x*) = 2m ~ - 1  x*(y,) 2 and thus 

fnlL~_lg,(co)y, llZdP(co)f (~m)-l falL~_ ,,(co)x,]r dP(r (6.8) 
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(Here we used the basic property of normal variables namely tha t  the value of 

~ ]1~-~ g~(~ depends only on the quadratic form ~ x*(u~)2.) Similarly 

|~I~t((D)X ~ ' dP(w) .  (6.9) 

Since by  (6.6) the sequences (z,}7'_~ and {Y,}[~=I consist of a t  most m - 1  non-zero 

vectors we get from (6.7), (6.8) and (6.9) tha t  ~r and fl~(X)~<flm_l(X) and 

this concludes the proof. [] 

Remark. By using a variant  of Caratheodory's theorem valid for cones a similar 

argument shows that  we can actually replace n(n + 1)/2 + 1 by  n(n + 1)/2. 

In  order to apply Lemma 6.1 we have to use the theorem of Kwapien [20], which was 

mentioned already above, in the following form. Let X be a Banach space. Then there is a 

Hilbert space H so tha t  d(X, H)~<sup, ~(X)f l , (X)  (This result has of course a meaningful 

contents only if sup, ~,(X)f l , (X) < oo). 

THEOREM 6.2. Let X be an n dimensional Banach space and let 1 < k ~ n .  Then 

d(X, l~) <<. (ok(X) ilk(X)) 1+2 log n/log k. (6.10) 

In  particular i/ d( Y, l~) <-c /or every k dimensional subspace Y o/ X then 

d(X, l~) <~ c 2(1+~ log n/log k). (6.11) 

Proo/. Let r = [1 + 2 log n/log k]. Then k r >1 n 2 >i n(n + 1)/2 + 1. By (6.2) and (6.5) 

@(x) < o~,(x) < a~(x)', ~,(x)  < &,(x) < L(x) ' .  

By Lemma 6.1 and Kwapien's  theorem we have that  d(X, l ~ ) ~ , ( X ) f i k , ( X  ) and this 

proves the first assertion of the theorem. The second assertion follows from the following 

obvious remark 

ok(X) = sup (a~(Y), Y c X,  aim X = k} ~ sup (d( Y, l~), Y = X, dim Y = k} 

and the analogous remark for fl~(X). 
Another consequence of Lemma 6.1 is the following 

[] 

THEOREM 6.3. Let X be a Banach space o/type p <~2 and cotype q>~2. Then there is a 

constant 7 (depending only on the type p and cotype q constants o / X )  so that [or every Y c  X 

with dim Y = n  

d( Y, l~) ~ 7n  2(1/p-I/q). (6.12) 
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Proo]. By the definition of type  p and the result of Kahane  (cf (5.3)) it follows t h a t  for 

some ~(p) 
ns  

Hence 5~,(Y) ~< ~.,(Y) ~< ~(p) n s(l/~-l/s). Similarly /~,,(Y) ~< ~(q) n s<l/2-1/q). An application of 

Kwapien ' s  theorem gives the  desired results. [ ]  

We do not  know whether  the factor  2 appearing in the exponent  of n in (6.12) is 

really necessary. Our proof would show tha t  it could be dropped if we knew tha t  ~,,,(X) ~< 

c~r ) for some absolute constant  c and all X with dim X =n. In  the case of X =L~(0, 1) 

or X=C~ (6.12) takes the form d(Y,  l~)<<.yn~llI~-llSl for every Y c X  with dim Y = n .  

We do not  know even in this special case whether  the factor  2 is necessary (without  the  

factor  2 we would certainly get  the best possible result since d(l~, l~) = n 11/~-1/2 I).(1) 

Observe t h a t  Theorem 6.3 asserts in part icular  t ha t  the second s ta tement  of 

Theorem 6.2 is in a sense the best possible. Indeed  let k(n) be a funct ion of n so tha t  

lim n log k(n)/log n =0. Choose for every  n apn  > 2  so tha t  k(n) zr =2 ,  and let X n =l~,. 

Then by (6.12), d(Y,l~r for every  Y ~ X ,  with dim Y=k(n)  while d(Xn, l~)= 

n1/2-1/~-=2 l~176 Theorem 6.2 states of course tha t  we cannot  find such Xn if 

lim~ inf log k(n)/log n > O. 

We present now a var iant  of Theorem 6.3 where the factor  2 in the exponent  in (6.12) 

is eliminated in the expense of replacing Y by  a suitable subspace of Y of relat ively high 

dimension. 

PROPOSITION 6.4. Let X be a Banach space o/type p<--.2 and cotype q>~2. Then there 

is a constant ~ (depending only on the type p and cotype q constants o / X )  so that/or every 

Y c  X with dim Y = n  there is a subspace Z ~  Y,  k=dimZ>~�89 1-a~176176 so that 

d(Z, l~) <~?k II'-IIq+(3n~ lo~ k). 

Proo/. We apply  Theorem 4.6 to a given subspace Y of X of dimension n with 

K = n  111~176 and  7 = l - 1 ] l o g n .  We obtain a subspace U of Y with d im U=m>~ 

n ' -a~162176176 and an inner product  norm ]][.[]] on U so tha t  alllYlll<llYll<.blllYlll for 

every  y~  U and suitable constants  a and  b and so t h a t  for every subspace  Ue~ U with 

dim U 0/> m/log n there are vectors y~ and ys in U 0 with 

]][Yl]]] = ]]]Y~[]] = l ,  []y,][ > / b / g  and ][y~[] ~<aK. 

In  particular,  we can find k>~(1-1 / log  n)m vectors {u,}~=l in U so tha t  the (u~)51 

are or thonormal  with respect to []].111 and satisfy ]]u~]]<~aK, i =  1 ..... k. L e t Z  = s p a n  {u~}~_~. 

(1) (Added in proof). D. R. Lewis proved recently that if YcL~(0,1) with dim Y = n and 1 < p <  oo 
dthen ( Y, l~) <~ n Illp-11~ I. 
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Clearly d im Z = k >/m/2. B y  the  construct ion of Z there  are h >7 (1 - 2/log n) m ~ m/2 vectors  

(v,}~-i in Z so t h a t  the (v~}~.l are or thogonal  with respect  to HI" II] and  sat isfy Ilvdl >~b/K 

for every  i. We shall use these vectors  (uj}~_l and  (v,}~_, in order to es t imate  M =  

Sllz]ldl~k_l(Z), where the  in tegra t ion is t aken  over  (z; zeZ,  IIIzlll = 1} with the  usual rota-  

t ion invar ian t  measure/~k-1. B y  the  proof  of Proposi t ion 5.1 applied to the (uj}~=l we get  

t h a t  
[ k \ (2-p)/2p 

M ~  -. a(,~l Ilull] u,,'(,-2)) ~ aaKk 1/'-lju (6.13) 

where a is the p - t y p e  cons tant  of X. Similarly if fl is q-cotype cons tant  of X we get  b y  the  

proof of the  same proposi t ion (this t ime  using the  a (v~}~l) t h a t  

M ~ �89 flbK -1 hl/qk -z/s ~ flbK -~ kl/S-1/q2 -1-1/q. (6.14) 

B y  combining (6.13) and (6.14) we get  t h a t  

d(Z, l~) <~ b/a <~ ~(a, fl) K2]c Izp-~zq <. ~7(a, fl) k 1/p-l/q+(s/l~ log k) 

and this concludes the  proof. [] 

Proposi t ion 6.4 is of interest  only  in the  case where p is close to 2 and q is re la t ively  

large. I f  q-~2 Proposi t ion 6.4 is of course much  weaker  t han  Theorem 5.2. 

We re tu rn  to L e m m a  6.1 and  present  some addi t ional  appl icat ions of it. This  l emma 

can be used in get t ing new informat ion  concerning the so called three space problem which 

was t rea ted  in [8]. This problem is the  following: Le t  X be a Banach  space which has a 

subspace Y so t h a t  X / Y  and Y are bo th  isomorphic to a Hi lber t  space. H o w  far  can X 

itself be f rom a Hi lber t  space? 

THEOREM 6.5. Let X be a Banach space having a subspace Y so that X / Y  and Y are 

isomorphic to a Hilbert space. Then there is a constant c so that/or every Z c  X with dim Z = n, 

d(Z, l~) <. c(log n) ~. 

Proo/. As we shall show below (Proposi t ion 6.6) it  is enough to prove  the  theorem in 

case where Y and X / Y  are bo th  isometric  to a Hi lber t  space. In  [8] the following generaliza- 

t ion of (6 .2) is  proved  

anm(X) < an(Y)am(X)+a~(Y)am(X/Y)+o~n(X)am(X/Y), n, m = 1, 2 . . . .  (6.15) 

In  our  case we have  an(Y) = an (X/Y) - -1  for every  n and  thus  we get  f rom (6.15) t h a t  

am,(X) --<2am(X) + 1 for every  m. Since a2(X) <~d(X, l~) <21/3 we deduce by  easy  induct ion 

t h a t  a2,,(X ) ~<2'(21/* + 1) - 1 for every  k or 

an(X) ~< (23/*+2) log S n, n = 3, 6 . . . . .  (6.16) 
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By (6.3) we deduce from (6.16) tha t  also fl,(X)~<(23/*+2)log2n. Hence by  Kwapien 's  

theorem and Lemma 6.1 it follows tha t  for every Z ~  X with dim Z =n 

d(Z, l~) <~ 5 . , (X)~ , (X)  < o~.,(X)fln,(X ) < 16(3 + 2  a/2) (log 2 n) *. (6.17) 

PROPOSITION 6.6. Let X ~ Y, Yo and Z o be Banach spaces such that Y is isomorphic 

to Yo and X~ Y is isomorphic to Z o. Then there is a Banach space X oD Yo so that Xo/Yo 

is isometric to Z o and 

d(X, Xo) <~ d(Y,  Yo)d(X/Y,  Zo). 

Proo]. Another way to formulate this proposition is the following. Given Banach 

spaces X, Y0 and Z 0 and bounded linear operators T: Y o ~ X  and S: X ~ Z  o so tha t  

S T  = 0, I[Ty[[ >~ [[y[[, y e Y0 and [[Sx[[ ~>inf~Gr, [Ix + Tyl[ for all x e X .  Then there is a norm 

I] ]10 on X so tha t  

IlTH-'ll ll -< IIxll0 < liSllllxll z e x  

and so tha t  in [[. [[0, T becomes an isometry and S a quotient map. I t  is easily checked 

tha t  such a norm [[. [[0 is obtained by taking as its unit ball the set of all x of the form 

z = Ilyll ,+max (l lz,  ll, IIS lll) < 1. 

Remark. I t  follows from Theorem 6.5 in particular tha t  if X ~  Y with n =d im X and Y 

and X / Y  both inner product spaces then d(X, l]) <~e(log2 n) 2 for e=16(3+28/2). In  [8] 

an example is constructed of such an X for which d(X,/~)>~(logn) 1/2 for some ~ > 0 .  

Hence up to the exponent of the log n Theorem 6.5 is the best possible. Observe also tha t  

in the setting of Theorem 6.5 the distance from X to a Hilbert space is essentially the same 

as the smallest norm of a projection from X onto Y. 

We conclude this section with the solution to the local version of the complemented 

subspaces problem. In  [24] it was proved tha t  if X is an infinite dimensional Banach space 

so tha t  every closed subspace of X is complemented then X is isomorphic to Hilbert  space. 

The first step in this proof was the simple observation (made in [3]) tha t  it is enough to 

prove tha t  there is a function )t-*](A) so tha t  if on any closed subspace of X there is a 

projection of norm ~<A then the distance of X from a Hilbert space is ~<](A). In  this formu. 

lation this problem makes sense also without the assumption tha t  dim X = oo. The proof 

given in [24] does not suffice for proving this case. In  order to clarify this point let us 

review briefly the argument of [24]. I t  went as follows. We star t  with an arbi t rary finite 

dimensional subspace g c X  with dim g ffik say, and put  d(g, l~)=d. By the assumption 

there is a projection Q from X onto Z with I]Q[I ~<~t. The space ( I - Q ) X  is infinite-dimen- 
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sional and hence by Dvoretzky 's  theorem there is a Zoc ( I - Q ) X  such tha t  d(Z 0,/~) ~<2. 

Let  T be an operator from Z onto Z 0 with [[x][/2d<[[Tx[[ <~[[x[[ for every xEZ. By using 

the assumption there is a projection P from X onto (x+2e22Tx, xEZ)  with norm -~<2. 

The computation done in [24] shows tha t  this implies tha t  

d = d ( Z ,  ~) < 2~.2 ~. (6.18) 

The point where this argument  breaks down in case dim X < co is the choice of Z 0. 

This difficulty can however by  overcome if we use the results of section 2 as well as Theorem 

6.2. 

T ~ . O R E M  6.7. There is a/unction 2 ~ /( 2 ) so that i / X  is a Bausch space with dim X = n  

such that/or every y c  X there is a projection o/norm <~2 ]rom X onto Y then d(X, l~) 4<.](2). 

One can take/(2) = c2 a2/or a suitable constant c. 

Proo[. If  every subspace of X is 2-complemented then every subspace of X* is (1 +2) 

complemented. Indeed, if y c  X* and P is a projection from X onto Y•  X then Ix .  - P *  

is a projection from X* onto Y. By (2.19) we have k(X)k(X*)>~n for some ($>0. Hence 

there is no loss of generality to assume tha t  every subspace of X is (2 + 1)-complemented 

and there is a subspace Y in X with dim Y = k/> ((in) 1/2 and d(Y, l~) ~< 2. Let  Z be any 

subspace of X with dim Z =m <k/2. Let Q be a projection from X onto Z with ][Q[I ~<2 + 1. 

We take now as Z 0 an m dimensional subspace of Y N kern Q, and proceed as in [24]. 

I t  follows from (6.18) tha t  d(Z,/~)~<290.+l) 4. Consequently if m=[�89 ln] then 

~m(X) < 29(2 + 1)4 and tim(X) <<- 29(2 + 1 )4. Consequently by Theorem 6.2 el(X, l~) ~ c2 s~ for 

a suitable constant c. [] 

Remark. By repeating the same argument using this t ime (2.18) instead of (2.19) 

and using in (2.18) the estimate we just obtained for d(X, l~) we actually get tha t  d(X, l~) <~ 

c1224 provided tha t  n >c~2 ~. 

w 7. Additional results 

The approach we presented in section 2 for proving the existence of almost spherical 

sections was based on Proposition 2.3. This proposition allows us to choose any m points 

on the surface of the unit  ball in l~. The choice we made in section 2 was always tha t  of a 

O-net in a subspace of a suitable dimension. I t  is however quite likely tha t  other choices 

of the points in Proposition 2.3 will lead to some useful consequences. We present here one 

result obtained by  making a somewhat different choice of the points appearing in Pro- 

position 2.3. 
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Let  {ej}~n=l be an orthonormal basis in l ~2, let k < n  be an integer and let ~}>0. We 

choose the points (yt}~nffil SO that  they form a ~}-net in all the subspaces of  l] spanned by 

choosing k distinct elements out of {el}~ffi 1. In view of Lemma 2.4 an estimate for the 

number m of points needed is given by 

(1 + 21~)~(~) < (1 + 2/~)~n~/k~ ~< (c(~)nlk) ~ 

for some constant c(5). Comparing this estimate with the one allowed by Proposition 2.3 

we get that  we can make the desired choice if 

k log n/k <~ ~((~)nM~/b 9. (7.1) 

Consequently we get the following result. 

THEOREM 7.1. (i) There is an absolute constant ~ >0 so that the following is true. Let X 

be a Banach space o/dimension n and let [11"[11 be an inner product norm so that (2.5) ho/ds. 

Let k = [~nM2r/b z log n]. Then there exists a basis {X/}~_ 1 O/ X 8o tha~ 

(j=~l ~]2)1/2 ~ ,  n_~l ,~, x, II ~< 2 (j~l ,~.~) 1/~ (7.2) 

/or every choice o/scalars {~j}~-I/or which at most k scalars are di//erent /rom O. 

(ii) Let X be a Banach space o/ cotype 2. Then there is a constant ~,>0 (depending 

only on the cotype 2 constant o/ X )  and a basis {xj}~-i o / X  so that (7.2)holds/or every 

choice o/scalars {2j}~ 1 so that at most ~n o/ the  scalars are di//erent ]rom O. 

To derive (ii) we use (7.1) and the estimate on Mr deduced in section 5 (for the I1['1[[ 

appearing in the Dvoretzky Rogers theorem). Let  us note that  in the case of statement 

(ii) we get by the triangle inequality that  the right hand inequality in (7.2) holds for arbit- 

rary {2t}~= 1 provided we replace 2 by 2y -1/z. 

One unfortunate fact about the basis {xj}~=l appearing in (7.2) is that  it is usually 

a "bad"  basis from the Banaeh space point of view since its basis constant may be large. 
X n For example if X =l~ we may apply assertion (ii) of Theorem 7.1. The basis { j}j=l we 

get will always have a basis constant >~cn 1/z since every projection from l~ on a subspace 

close to l~ has norm >~0k 1/2. 

Another general remark which may be useful in some applications is the following. 

Since the approach in section 2 is probabilistic in nature we can ensure the existence of 

subspaces which are almost Hilbertian in several given norms simultaneously. More pre- 

cisely, given v and s there is an ~(v, s ) > 0  so that  if {ll I1,}~-~ are norms on R" and ][1"11[ 

is an inner product norm on R ~ then there is a subspace y c  R ~ with dim Y = k  so that  
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d(( Y, ]]" 1],), l~) < 1 + �9 for i = 1 ..... s, where k = [~(v, s) min,  nM~/b~] (and Mr~ and b, have the 

obvious meaning). A similar bu t  somewhat  more complicated s ta tement  can be made  

if instead of keeping s fixed we allow also s to grow with n. 

w 8. Appendix--A proof of the isoperimetrie inequal i ty  

We present in this appendix a complete proof of Theorem 2.1. We s tar t  by  introducing 

some notations.  For  a subset A c S  n-1 we let r(A) be the radius of A defined by  

min {r; ~ x E S  n-l, A c  B(x,  r)}. I t  is obvious tha t  the min imum always exists. The geodesic 

metric d on S n-1 induces a natural  metric ~ (the Hausdorff  metric) on the space of closed 

non-empty  subsets of S n-1 by put t ing  ~(A, B ) = r a i n  (r; A c Br, B c  At}.  The set of closed 

subsets of S n-1 forms a compact  metric space in this metric ~. The funct ion R(A)  is clearly 

a continuous funct ion of A, the function/~,,_I(A) is however only upper  semicontinuous 

i.e. ~(A ~, A ) -+ 0 implies i~n_l(A ) >~ lim~ sup/~n_l(Ak). 

The main tool in the proof of Theorem 2.1 will be the not ion of spherical symmetr iza-  

tion. Let  Z ~  S n-1 be a closed set and let ~, be a half circle on S n-1 joining the pair of ant ipodal  

points x o and - x  o. For  each y s let H u be the hyperplane in R" which is or togonal  to the 

line joining x 0 with - x  0 and which contains y. The intersection H u fl S n-1 is an ( n - 2 ) -  

sphere which we denote  by  S n-2'u (if y = x  o or y = - x  0 then H u N S ~-1 is just  a single point). 

We let/~n-2.u be the unique normalized rotat ion invar iant  measure on S n-2'u. For  yE~, 

we let A U = A  N H u and let B u be a cap in S ~-u'u with center y such that /~_2.u(B~) = 

ttn_2.u(A u) (if ttn_2.u(A u) = 0  we let B u be either the e m p t y  set or the set consisting of the 

point  y only depending on whether A u is e m p t y  or not; we do the same also in case y = _+x0). 

The set B =  (Ju,r  B u is called the symmetr iza t ion  of A with respect to 7 and is denoted by  

ar(A ). I t  follows from Fubini ' s  theorem tha t / tn_ l (B  ) =/an_l(A ). I t  is also easily seen tha t  

the function y--,-lun_2.u(A u) =ken_~.u(/~) is upper  semi continuous and hence B is a closed 

subset of S n~l. 

The proof of Theorem 2.1 is by  induct ion on n. The theorem is trivial for n = 1. For  

general n it is an  immedia te  consequence of the  following three lemmas. 

L~MMA 8.1. Let A ~ S  n-1 be a clo~ed set and let M ( A ) = { C c S n - 1 ;  C closed, tun_l(C)= 

/~n_l(A),/~n_l(C~) ~</~n_l(Ae)/or every e >0}.  Then there is a B ~ M ( A )  with minimal  radius, 

i.e. min (r(C); C ~  M(A)} exists. 

L E M ~ A  8.2. Let A ~ S ~-~ be a closed set. T h e n / o r  every hal/circle ~, a~(A ) e M (A ). 

L~.MMA 8.3. Let B ~  S ~-~ be a closed set which is not a cap. Then there exist a / i n i t e  

]amily el hall circles (r~)7-~ so that r(ar,(ar, ~ ... ar~(B))) <r(B) .  
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The induction hypothesis will be used in the proof of Lemma 8.2 (the proof of this 

lemma for n = n  o assumes the validity of Theorem 2.1 for n = n o -  1). 

I t  is clear from the definition of M(A) tha t  B e M ( A )  and C ~ M ( B )  implies Ce M(A ) .  

Thus Lemmas 8.2 and 8.3 imply tha t  an element of minimal radius in M(A)  must  be a 

cap. By Lemma 8.1 such an element always exists i.e. M(A)  must  contain a cap. This is 

exactly the assertion of Theorem 2.1. 

Proof of Lemma 8.1. Since the function B-~r(B) is continuous it is enough to show tha t  

M(A) is a closed subset in the space of all closed subsets of S~-L Assume that  B~EM(A),  

k = l ,  ..., and (~(B ~, B)-*0, and let e>~0. For every ~ > 0  we have for large enough/c that  

B c  B~ and thus B e c  B~,,. Consequently 

/~_I(B,) < tu,_l(B~+~) < jun_l(A~+~). 

I t  follows tha t  

#n-l(B~) < inf #n-l(Ae+n) = ~n-l(  17 A~+n) = tt.-a(A~). 
rj ~>0 

In  particular f o r  e = 0  we have [a,_I(B)<~p,_I(A ). On the other hand /~_I(B)>~ 

limk sup #~_I(B k) =#~_dA). This shows tha t  BEM(A) .  [] 

Proof o/Lemma 8.2. Let  A be a closed subset of S n-a and let y he a haft circle on S n-1 

joining x 0 with - % .  Let u be the midpoint of 7. We identify the sphere S n-~'u with S n-2 

(this identification preserves the usual n -  2 dimensional measure as well as the distances). 

For every y E 7 (y =~ • %) we define a mapping v u from S n-2' u onto S n-2' u = Sn_~ by projecting 

along the meridians (i.e. for xES  n -2.u, %(x) is the point on S n-2'u which belongs to the 

half circle joining x0, x, -xo).  I t  is obvious that  there is a function ] such that  whenever 

xa E Sn- 2. u,, x2 E Sn- 2. v, then 

d(xl, x2) =/(Yl, Y2, d(v~,(Xl), %,(x2))). 

Hence there is for every Yl, Y~ET, e > 0  (with d(yl, Y2)<-e) an ~(Yt, Y~, ~)>~0 so tha t  for 

every subset C of S ~-2'~', C e n S  n-2"~' -1 =v~, ((v~,C),(v,.~,.,)). (If d(yl, Y2)>e then clearly 

C, ~ S'-2" ~, = r Hence for every e > O, y E~, (y =4= +_ xo) we have 

r~((A,)U) = U (v,A'),c,.u.,). (8.1) 
Z~y 

d(z.y)~<e 

Let B =aT(A). By applying (8.1) to B we get 

-r~,((BJg= U (%,B'),z.~... 
zE~" 

d(z. y) ~s 

(8.2) 



9 2  T. F I G I E L  ET AL. 

For every zEy the set ~z Bz is by definition a cap in S "-1 for which/~n_~(~z Bz) =/~n_~(~AZ). 

By the induction hypothesis (i.e. Theorem 2.1 for n -  1) we get that  

/~,,_~( (~ B%(z. ~. ~)) <~ #._2( (z~A %(~. ~. ~)) (8.3) 

for all admissible y, z, e. Since all the sets appearing in the right hand side of (8.2) are caps 

with the same center (namely u) we get from (8.1), (8.2) and (8.3). 

/~,_2(~y(B~) ~) = sup /~,_~((~zB~),(~.~.~)) 
ZG~' 

d(Z, y)<~e 

~< sup/~.-2((~ A%(~. ~..)) <../~._2(vdA~F). (8.4) 
ZGy 

d(Z, y)~e 

In other words we have for every y~= _ x  0 in ~ that  

~,_2.~((B~) ~) -<< ~,_,.~((A~)~). (8.5) 

By Fubini's theorem this implies that/~,_x(Be) <~#n_l(Ae) and this concludes the proof of 

the lemma. [] 

Proo/ o/Lemma 8.3. Let B c S  n-1 be a closed set which is not a cap and let r=r(B). 

Then there exists a uES n-1 such that  B c  B(u, r). We shall perform now some spherical 

symmetrizations on B. All these symmetrizations will be with respect to half circles 

whose middle point is u. All these symmetrizations leave B(u, r) invariant. We perform 

first one symmetrization of B with respect to any half circle Yl with center u. Since B is 

not a cap arl(B) is not all of B(u, r) and thus it does not contain the entire boundary 

~B(u, r) of B(u, r). 

We make now the following two simple observations 

(i) Let C be a closed subset of B(u, r) and xE~B(u, r),~C then for every half circle 

whose center is u, av(C) does not contain x. 

(ii) Let C be a closed subset of B(u, r) and G a relatively open subset of ~B(u, r) which 

is disjoint from C. Then for every xEOB(u, r) there is a relatively open set G x of ~B(u, r) 

and a half circle Yx with center u so that Gx N arz(C ) =~. (Both G~ and ~x depend only on x 

and G but not on C). 

By using (i) and (ii) (taking as G an open subset of OB(u, r) which does not belong to 

a~,(B)) and the compactness of ~B(u, r) we deduce that  there are (x~}~.2 in OB(u, r) so 

that  (~z,(arx,_l ... arx,(ar~(B))... ) is disjoint from OB(u, r) and thus has a radius smaller 

than r. This concludes the proof of Lemma 8.3 and thus of Theorem 2.1. [] 
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