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w 1. Introduction 

We define the set of conjugate powers of elements U and W in any group G, denoted 

CPa(U, W), by 

CPo(U,  W) = {(x, y) e Z2; U" ~a  W~} 

where " ~ a "  denotes the conjugaey relation in G. In  this paper  we show how these sets 

CPo(U, W) can be effectively computed for most finitely generated (henceforth f.g.) 

Fuchsian groups. The Fuchsian groups are the discrete subgroups of the group of all 2 • 2 

real matrices with determinant + 1. 

By a result of Poinear$ [11] (see also [8]), the class of f.g. Fuchsian groups consists 

of free products of cyclic groups, together with the groups 

G = ( a l ,  b 1 . . . . .  a,, br, cl . . . . .  c,; c~', . . . .  c~', R)  

where R is the word albla~lbl  I ... arbra71b;-lc1 ... c,, r, 8>~0, n l > l  for each 1 ~<i~<s, and 

2 r - 2 §  ~ ( 1 - n ~ 1 ) > 0 .  
I - 1  

I t  therefore follows that  the groups 

(~ = (cl, c2; c~', c~', (clcz)"'~ (1) 

are Fuchsian when n~ 1 § n~ 1 + n~ 1 < 1. The methods used in this paper  do no~ apply to these 

groups. They do, however, apply to a more general class than the remaining f.g. Fuehsian 

groups. Let  us denote this new class by F~ and indicate how it is constructed. 

To construct F1 we star t  with a class F 0 consisting of free groups and certain tree- 

products of one-relator groups with torsion. We then get F1 by  forming all free products 

of groups from F 0 with a cyclic subgroup amalgamated. Thus, G e F 1 if and only if 
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G = G1 ~ c G~ 

for some G1, G~ E F 0 and (possibly trivial) cyclic subgroup C of G~ and G.,. We include the 

trivial group in F0, hence, Fo ~ F1. The precise definition of F0 is given in Section 2, and 

from this it follows tha t  all f.g. Fuchsian groups, except  those given by  (1), belong to F 1. 

For the present and later use, let 

(r, s) + (a, b)Z = {(r +ax,  s +bx)eZ2;  xeZ}  

for any integers r, s, a, and b. I f  r, s =0,  then we write just (a, b)Z for this set. Also, for 

any subsets (I) and (P' of Z 2 we let (I) + q)' be the obvious set of sums. 

As our first result we have 

T H E 0 R n M A. We can e//ectively compute the order o/elements in any G/rom F 1. 

l%r the next  result, let [ U[ denote the order of the element U in G. 

that 

it IuI, IwI 

it IuI, JwI <oo. 

THEOREM B. Given U, WEGEF 1, we can e[/ectively compute integers a, b, and c such 

CPo(U, W ) =  (a, b)Z O (ac, - b c ) Z  

CPa(U, W) = (a, b ) Z + ( I  UIZ)  • (I WIZ) 

Note that  the sets CPa(U, W) are easily described if ]U] < ]W[ = + ,  or vice versa. 

We give the proof of Theorem B separately for F0 and P r In  the first of these we also 

show that  0 ~ - c < l ,  while in the second 0~<c~<2 or 0 ~ c ~  ICI according as G=G~-~cGz 

with C infinite or finite. 

The following is immediate from Theorems A and B. 

C o R 0 L L A R u C. A ll groups in F1 have solvable conjugacy and power-conjugacy problems. 

In  Section 7 we indicate how these results can be generalized by iterating the process 

of forming free products with a cyclic subgroup amalgamated.  The class F obtained from 

F 0 through this process generalizes a class studied by the author in [5]. From the results 

in :this paper, together with those in [5], it also follows that  the HNN groups 

<G0, p; rel Go, p S l p - '  = S~) 

have solvable conjugacy and power-conjugacy problems, where S 1, S 2 e G o e F, IS11 = IS2 I,. 

and p r G 0. 
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This work is the result of considering a question of M. Anshel on the  eonjugacy problem 

for free products  with cyclic amalgamat ions  of one-relator groups with torsion. M. Anshel 

and  P. Stebe [1] obtained a partial  solution of this problem using different techniques. 

w 2. Some basic definitions 

We state our definitions with respect to a fixed a lphabet  {al, a2, ...}, but  want  them 

to  carry over to a ny  alphabet.  Thus, let us call U a word on {a 1, a 2 .. . .  } if U is a word on 

{al, a2, ...} U {a~ 1, 6t21 . . . .  } in the usual sence. We use upper  case R o m a n  letters in the range 

P . . . . .  W, or variations of these such as P ' ,  P~, etc., s tr ict ly to denote freely reduced words. 

I f  U is such a word, then l(U) denotes its length. As a special symbol,  we also use A for 

the empty  word. I f  a t or a~ -1 occurs in U, then we say tha t  U involves at; and to display 

the letters in U, we use the notat ion 

gen (U) = {a 5 U involves at}. 

Let  us call a ny  non-trivial  cyclically reduced word simple ff i t  is no t  a proper power. 

Hence, we can define F 0 as the class of all groups 

G = (al ,  a 2 . . . .  ; R~', . . . .  R~k> (2) 

with k t> 0 (k = 0 means G has no relators), where each n t > 1, each R~ is simple, and 

gen (R~) N gen (Rt.) ~ gen (Rj) (3) 

for all i<]<~i' with i:#i'. When k > 0 ,  we call R 1 . . . . .  Rk the roots of G, which is meaningful  

as long as we work with specific presentations for the groups in P o. Recall tha t  we also 

include the trivial group in F 0. 

Wi th  this definition of F 0 it is easily verified tha t  all f.g. Fuehsian groups, except  

those given by  (1), must  belong to F r Recall  t ha t  F1 consists of all free products  of groups 

f rom F o with a cyclic subgroup amalgamated.  

Requiring all groups G to be given by  specific presentations, we m a y  denote the set of 

generators in the presentat ion of G by  gen (G). Elements  of G can then  be represented by  

freely reduced words on gen (G). We also include 1 as a special symbol  for the ident i ty  

in a ny  group. For  a ny  U, WfiG, U= W means U and  W define the same element in (the 

abs t rac t  group} G, while U ~ W means they  are identical as words. 

Let  us examine in some detail the groups (2). Those with just  one relator form the 

class of one-relator groups with torsion, a subclass we denote by  F . .  Most of the problems 

we need to consider for F 0 can be reduced to problems concerning F . .  
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Suppose now that  GEFo is given by (2) with k>~2. For each 2~<i~<1r let G~EF, be 

the group 

Gt = (gen (R~); R'~'); 

and similarly, let G~ GF,  be the group 

G~ = (gen (R1); R~) .  

I f  we then let G1 E F ,  be obtained from G'I by adding the remaining generators of G, we 

can write G as the tree-product (see A. Karrass and D. Solitar [4]) 

G = G1 ~F~ ... ~Fk-lGk (4) 

where each F~ is given by 

F~ = Gift Gt+r 

From the Freiheitssatz and the condition (3) imposed on the roots Rj, it follows tha t  each 

F,  ~ (gen (Gt) f) gen (Gi+l);) 

as a free group. 

Note that  when k ~> 2 we can also write G in the form 

G = (; '  ~ ~Gk (5) 

where F = F k _ I  and G' is the subgroup generated by U~Y~ gen (Gj). Of course, G' belongs 

to 1" o and has k - 1 relators. Moreover, if ]c >~ 3, then G' can also be written as a tree-product 

(4) of length ]c - 1. We utilize these facts to prove results about the class F o in Section 6. 

Before pursuing the various problems in F0, let us consider these for the subclass F , .  

w 3. Conjugate powers in one-relator groups with torsion 

Any group G E F ,  with root R of length ~>2 can be presented in the form 

G = (t, a 0, b 0 ... .  ; R '~  (6) 

where t, a0egen (R) and R begins with a0 ~:1. If  R has exponent sum zero on t, then G can 

also be realized as an H N N  group 

g -= (H,  t; ]~n, tSt-1 = O ( S ) ( V S e X ) )  (7) 

where H belongs to F ,  and has the root _~ with l{]~)<I(R). 

We only sketch here how (7) is obtained from (6), referring the reader to the paper  

[7] by J.  MeCool and P. E. Schupp for the details. The first step is to set for each integer 

i, a~ =t~aot -~, b~ =ttbo t -s, etc., and then rewrite R as a word _~ on these new generators. 
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If  v is minimal and p maximal among the subscripts of a-symbols involved in R, then let 

H have generators 
gen  (H) = ..., U {b,; i e Z }  U . . .  

and relator i~ n. By the Freiheitssatz, the subgroups X and Y generated by gen ( H ) -  {a~} 

and gen (H)-{a~}, respectively, are isomorphic under ~ : X - ~ Y  induced by a~-~a~+l, 

b~b~+l, etc. 

Suppose now that  G is given by (7). If S is any word on gen (H), let S (~1 denote the 

word obtained from S by shifting each subscript by x. If also gen (S (~)) =_gen (H), then 

S(z~ = tzSt -x. 

Let any word S in a group G be called/ree in G if gen (S) generates the free group 

<gen (S); > in G. By the Freiheitssatz, if G E F .  has the root R, then S is free in G if and 

only if gen (R)~gen (S). From a result of B. B. Newman [10] it follows that  if S is free 

in G, then gen (S) generates a malnormal subgroup of G. Recall that  H is malnormal in 

G if for any U, W E H ,  U = V W V - I ~ I  implies V E H .  

From B. B. Newman's Lemma 2.1 in [10], we deduce 

LEMMA 3.1. Let U E G E F ,  be ~ 1. Then, up to cyclic permutation, there exists at most 

one cyclically reduced /ree word S in G with U,.~ a S. Moreover, i/ S is such a word, then 

U = W ~ implies S - S~ with W '~a So. 

Proo/. Suppose that  S 1 and S~ both satisfy the lemma. If R is the root of G, then 

gen(R)~gen (St) for i = l ,  2. Thus, for some a, bEgen (R), aq g en  (S1) and b~gen (Sz). 

If gen (R) ~ gen (S1) U gen ($2), then b E gen ($1) and a E gen (S~). Since S 1 ~-aS2, this violates 

Lemma 2.1 in [10], hence, gen (R)~gen ($1) 0 gen (S~). But then S 1 and $2 belong to the 

malnormal subgroup F of G generated by gen (S1) U gen (S~), and therefore S 1 ~F S~. This 

proves the first half. 

To complete the proof, suppose that  S is free in G with U = W ~ =  V S V  -~. If we set 

W 0 = V -1 W V, then W~ = S, and therefore We S Wo ~ = S +1.  If F is the malnormal subgroup 

of G generated by gen (S), then W0 E F and the result follows. [] 

The proof of the next lemma is given in Section 5 where the necessary techniques 

are developed. 

LEMMA 3.2. I /  U ~ G e F . ,  then we can e//ectively decide i / there  exists any [ree word 

S in G conjugate to U. Moreover, we can e//ectively compute such an S, provided any exists. 

Let us establish some terminology concerning elements of the HNN groups (7). 

Words on gen (G) without any t's are called t-/tee. If  U involves t, then U can be written 

in the form 
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U = _ Uot~'U1 ... t**Uk 

with each U~ t-free. (Lower case Greek letters denote _ 1.) The number of t's occurring in 

U is called the t.length of U, denoted lt(U ). I f  U contains no subword t~U~t -~ with e~ = 1 

and UtEX  or e~ = - 1  with U~E Y, then U is called t-reduced. I f  all cyclic premutat ions of 

U are t-reduced, and U is either t-free or begins with t• ~, then U is called cyclically t-reduced. 

Let us also call U and W t-parallel if It(U ) =lt(W) =k, and they contain identical k-tuples 

of t +~. 

To s tudy the sets CPa(U, W) in F ,  we need 

L ~ M A  3.3. Let G be presented by (7). I / U ,  W EH, then U ,,~a W implies 

V = Vo~XVl W V l l t - X V o  1 

/or some t-/ree V o and V t. 

Proo/. By Brit ton's Lemma [2], if V is t-reduced and involves t, then U ~  V W V  -t  

implies U ~HS t and W ~~S~ for some cyclically reduced free words S 1 and S~ in H. I t  thus 

suffices to prove the lemma for U=-S1 and W - S  2. Now, if V-=--Vot~'V1 ... t~kVk, then 

we may  assume the words t '~ V~ t -~ to be t-reduced for each 1 ~< i ~ k with V~ ~ A. I t  remains 

to show that  V~--A for each 1 <i<~k. To this end, let i be maximal with Vt~A.  But  then 

t" Vt 8(: *(k t))Vi-'t-*' = t " T t - "  = T (') 

for some free word T. Lemma 3.1 now implies that  T -~P  TP -1 with T a cyclic premutat ion 

of S(~ ~(k-~)). By malnormali ty of the subgroup generated by gen (T), we easily see tha t  

t~V~t -~ cannot be t-reduced, a contradiction. [] 

LEMMA 3.4. Let U EGEF,  be ~ 1 ,  and suppose that (x, y)ECPa(U, U). Then 

(i) IUI = ~  implies Ixl = l y I ;  

(ii) ] u]  < ~ implies v x=  v ~. 

Proo/. We use induction on the length of the root R of G. I f  this length is 1, then G 

is a free product of a finite cyclic group and a free group. Both (i) and (ii) are easily estab- 

lished in this case. 

Suppose now that  I(R)~>2 with the result established for all G'EF,  having roots 

R' satisfying l(R') <I(R). Assume first tha t  G can be realized as the HNN group (7). I f  U is 

cyclically t-reduced and involves t, then I U I = c~ and the result follows from Collins' Lemma 

(p. 123 in [3]). I f  UEH, then Lemmas 3.1 and 3.3 imply UX,,,a Uy only if Ux,,~U ~. 

Since l(_~) <I(R), it remains to consider the case where no generator in gen (R) has ex- 

ponent sum zero in R. But  J.  McCool and P. E. Schupp showed in [7] tha t  G can then be 
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imbedded in an HNN group of the type (7) with the root /~ of H satisfying l(/~)</(R). 

The case just considered can therefore be applied. [ ]  

Note that  U=abab -1 is of infinite order in G = ( a ,  b; a 2 ) E F ,  and satisfies U-~c U-1. 

B. B. Newman proved in [10] that the centralizer of any nontrivial U E G E F ,  is 

cyclic. Hence, if we denote the centralizer of U in G by Ca(U), then for any U E G E F .  ~ 1, 

Ca(U ) = ( T )  for some T. Here ( T )  denotes the subgroup generated by T. 

Pending a proof of Lemma 3.2, we can now establish 

P R o P o s I T I 0 N 3.5. Le t  U, W E G E I ~, be el in/inite order. Then we can e//ectively compute 

integers a, b, and c with 0 ~ c  ~ 1 such that 

CPa(U, W) = (a, b)Z U (ac, - b c ) Z .  

Moreover, a and b are relatively pr ime i/  a~O.  

Proo/. Note that we can determine the order of elements of G. Let us show first that  

CPG(U, W) has the asserted form. Because of Lemma 3.4 it suffices to show: If (xz, yz)E 

CPa(U, W) for some x, y, zEZ with z~0 ,  then (x, y )ECPa(U , W). This is trivial if x--0. 

If  x=VO, then 
U = = VW~zV-1 = ( V W V - 1 )  ~ 

for some V. Let Co(U x~) = ( T ) ,  and note that  U and V W V -1 must therefore belong to (T) .  

Now, if U = T ~ and V W V  -1 = T a, then T ~= = T quz. Since [ T[ = oo, we must have 

U �9 = T ~  = Tq~ = (VWV-1)~  = VW~V-1.  

By a result of B. B. Newman [9], G has solvable conjugacy problem. Hence, it suffices 

to determine a', b' > 0 such that a, b ~=0 implies I a [ = a' and [b] = b'. For this, let us proceed 

by induction on the length of the root R of G. The case with l(R) = 1 is trivial, so suppose 

that l(R)>~2 with the result established for all G ' E F ,  having roots R'  with l ( R ' ) < / ( R ) .  

Suppose first that  G can be realized as the HNN group (7). J. McCool and P. E. Schupp 

[7] proved that  H has solvable generalized word problem with respect to X and Y, hence, 

we can effectively cyclically t-reduce words in G. Suppose therefore that U and W are 

cyclically t-reduced. If only one of them is t-free, let a', b' =0. If  both U and W involve t, 

let a', b ' > 0  be minimal such that lt(U~*)=lt(Wb'). If  U, W E H ,  we use the inductive 

hypothesis and compute CP~(U, W). From Lemmas 3.1 and 3.3 it follows that  CPH(U, W):@ 

{(0, 0)} implies CPH(U, W ) = C P v ( V ,  W). Suppose therefore that CPH(U, W ) = { ( 0 ,  0)}, and 

consider U ~ ~'o W~. If  x, y # 0 ,  then U ~H S1 and W ~ $2 for some cyclically reduced free 

words S 1 and S~ from X or Y (see Lemma 3.1). But ~*ĥ n~ -l~'~a~2,~v and so by Lemma 3.3, 

S[ must be a cyclic permutation of (Sl(z)) y for some z. By Lemma 3.2 we can compute S 1 

and S 2 and therefore also determine z. I t  is now elementary to compute a '  and b'. 
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Finally, suppose tha t  G cannot be realized as the H N N  group (7). By the remark 

a t  the end of the last proof, G can be imbedded in such an HNN group with the inductive 

hypothesis applying to the base group. Since this imbedding is clearly effective, and 

we only need to compute the integers a '  and b', the above case applies. [] 

The sots eRe(U,  W) with I UI,  I W[ < ~ are considered in Section 6. 

w 4. Some more definitions 

In  this paper we use two constructions of generalized free products 

G = G 1 ~e~G~ 

of groups G1 and G~ from F 0. In  the first of these we amalgamate  a cyclic subgroup H and 

get G in F1; in the second (see (5) in Section 2) the amalgamated subgroup H is free 

on gen (G1) N gen (G~) and G belongs to F0. 

For both of the above constructions we choose the natural  presentation for G, hence, 

gen (G) = gen (G1) U gen (q2). 

Now, any word U on gen (G) can be written in the (not necessarily unique) form 

U-= U1 ... U~ (8) 

where gen (U~) is contained in gen (G1) or gen (G2) for each i. I f  U S A  and gen (U t U~+I) 

is not contained in gen (GI) or gen (G~) for any 1 ~<i < k, then we call each Ut a syllable o] U. 

The number of syllables in U is called the s-length of U, denoted I,(U). 

Words U E G are called s-reduced if either 18(U)~< 1 or no syllable of U belongs to H; 

tha t  is, for no decomposition (8) of U into syllables U'I ... U~ does U't EH for any 1 ~ i  <~k. 

I f  also all cyclic syllable-permutations (henceforth s-permutations) of U are s-reduced, 

then we call U cyclically s.reduced. 

Both for generalized free products G in F 0 and F1 we need to determine for given 

cyclically s-reduced words whether or not these are conjugate in G. The main tool to deal 

with such problems is Solitar's Theorem (Thm. 4.6 in [6]). In  part ,  this theorem asserts 

for cyclically s-reduced words U and W of the same s-length >~ 2, tha t  U ~a W if and only if 

U = S W ,  S -1 for some cyclic s-permutation W~ of W and S e l l .  I f  we write U=--U1 ... U~ 

and W~ ~ W1 ... Wk in terms of syllables, and examine the identity 

U1 ... UkSW~ 1 ... W~ 1= S, 

then we note tha t  UkS W ;  1 = S x E H, Uk-x $1 W~1-1 = $2 E H, etc. Thus, we are led to consider 

the sets 
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{(S, S ' ) E H •  UjSWi  -1 = S'} 

in groups from F 0. However, for some of our applications we need to consider a more 

general situation. 

Let  G be a given group with subgroups H and K. For any U, W E G, consider the follow. 

ing subset of the direct product H • K: 

gph {U, W; H, K) -- {(S, T ) e H  • U S W = T(in G)}. 

This is the graph of the function G~(7, given by V-~UVW,  restricted to the (possibly 

empty) subset of H mapped into K. 

For any subgroup N of H x K and element (So, To) GH x K, let N(So, To) and (So, To)N 

denote the right and left translates of N by (So, To). For the next  lemma, note that  

gph (U, W; H, K) is a subgroup of H • K if and only if W = U -1. 

LEMMA 4.1. I/(So, To)E gph (U, W; H, K), then 

gph (U, W; H, K) = [gph (U, U-l; H, K)] (S 0, To) = (S o, To)[gph (W -1, W; H, K)]. 

Proo/. If US o W = T o then U S W = T if and only if U S W(U S  o W) -1 = USSo 1U -1 = 

TTo 1. Hence (S, T)E gph (U, W; H, K) if and only if (SSo ~, TT~I)E gph (U, U-l; H, K). 

The other half of the proof is similar. [] 

Much of the remaining work in this paper concerns the sets gph (U, W; H, K) for 

free and cyclic subgroups H and K of groups in the subclass F .  of F 0. In the special case 

when H = (S)  and K - - ( T )  as infinite cyclic subgroups of G, then we identify H and K 

with Z, and set 
gph (U, W; H, K) = {(x, y)eZ~; USXW=T~}.  

If this set is non-empty, then Lemma 4.1 implies that  

gph ( U, W; H, K) = (r, s) + (a, b) Z 

for any r, s with U S r W = T  s, provided (a, b )Z=g p h  (U, U-l; H, K). In  the next  two 

sections we show how we can effectively compute such integers r, s, a, and b. 

Let  us also consider the graphs for free subgroups H and K of G E F .  generated by 

subsets of gen (G). 

LEMMA 4.2. Let H and K be/tee subgroups o / G E F ,  generated by subsets of gen (G), 

and set N =H N K. Then, if gph (U, U-l; H, K) is non-trivial, there exists at least one pair 

(P, Q) e H  • K with U =Qp-1 and 

gph (U, U-l; H, K) =- (P, Q) [gph (1, 1; N, N)] (P, Q)-I. 
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Proof. Suppose first tha t  U = Qp-1, and note that  in this case, (S,T) Egph (U, U-l; H, K) 

if and only i f P - 1 S P ~ Q - 1 T Q = S  ' e N , , H  N K. Moreover, if USU -1 = T~=I for some (S, T) E 

H • K, then Lemma 3.1 implies that  S--  S 1S'S~ ~ and T -  T 1 T 'T~ ~ with S', T'  E N. But 

then, since N is malnormal in G and (TglUS1)S ' (T~IUS1)-I=T'=~I,  we must have 

T~ 1USI=SoGN. This in turn shows that  U =QP -1 for Q= T I S o e K  and P = S 1 E H .  [] 

In  view of Lemmas 4.1 and 4.2, we may say that  gph (U, W; H, K) has been com- 

puted whenever elements (S 0, To), (P, Q ) e H  x K have been effectively determined for 

which gph (U, W; H, K)4=O ff and only if US e W = T o, and gph (U, U-l; H, K) is non- 

trivial if and only ff U =Qp-1 and H fi K~(1) .  We assume here that  H, K, and G satisfy 

the hypotheses of Lemma 4.2. The problems involved in actually computing these sets 

are considered in Section 5. 

Conjugacy between elements of G 1 ~-~G,. belonging to the factors (71 and G~, will be 

considered in Section 6. 

w 5. Graphs in one-relator groups with torsion 

Consider the graphs gph (U, W; C 1, C~) for cyclic subgroups C I = ( S  ~ and C 2 = ( T  ) 

of GEF. .  To obtain results about such sets we proceed by induction on the length of the 

root of G. The HNN construction (7) allows us to apply the inductive hypothesis, but  this 

construction also introduces new problems. To illustrate this, suppose S and T to be t-free 

while U-Uot~'U1.. . t 'kUk and W-1-Wgl t~ 'W~  1 ...t'kW~ 1 with k>~2. If now U and W 

are t-reduced and satisfy USxW = T ~, that  is, if 

Uot~U 1 ... t~kUkSxWkt -~k ... Wl t - " W  o = y~, 

then UkSxWk=Sl in X or Y, Uk_lS~)Wk_l=Sz in X or Y, etc. Thus, we need to consider 

graphs gph (U, W; H, K) in groups G E F .  for the following combinations: H and K cyclic, 

H cyclic and K free on a subset of gen (G) (or vice versa), and finally, both H and K free 

on subsets of gen (G). 

For the remainder of this section, let us use the following convention: All subgroups 

denoted by F, F', F 1, etc. of given groups G E F .  are assumed to be freely generated by 

recursive subsets of gen (G). Cyclic subgroups are denoted by C, C 1, etc. 

Before turning to the various problems involved in computing the relevant graphs, 

we need a definition and a lemma. But  first, let us recall the "Spelling Theorem" of B. B. 

Newman [9] concerning groups (TEI". with relator B" (R simple). This theorem asserts 

for any U, SEG with S free in q and U not free, that  U = S  implies U.~UIU 'U ,  with 

U'V a cyclic permutation of R *n for some V with l(V)<l(R).  Let us therefore call ' the 

process of replacing U' by V -1 an R-reduction of U where we assume U' to be maximal 
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so tha t  U~ V-IU~ is freely reduced. Further  R-reductions of UxV-~U~ are also called 

R-reductions of U, etc. 

LEM~A 5.1. Let S and T be/ tee  in G E F .  where G has the relator R n. Then at most one 

R-reduction is possible in S T  (none i / n  > 2). 

Proo]. The remark about  n is obvious, so suppose tha t  n = 2 .  I f  an R-reduction is 

possible in S T ,  then S-~S1S' ,  T - T ' T  1, and S ' T ' V = R 2 .  8 for some cyclic permutat ion R .  

of R where l (V)<l (R) .  But  then gcn (R)=gen  (S ' )Ugen (T') ,  and therefore R * - U V  

with V ~- V1 Vz, S '  - U V1, and T '  -- V~ U. Moreover, for some minimal subwords W 1 of V1 

and W~ of V~, we must  have O~=gen (V~)-gen (Vj )_gen  (Wt) for 1 ~ i~ j~<2 .  Clearly, 

if W~W and W~W'  are cyclic permutations of R �9 and R'" respectively, then T = ~ ' = e  

and W = - W  '. This follows since gcn(W~)_gen(Wj)  only if i=].  Suppose now tha t  

S1V~IV~IT1 is the result of an R-reduction. Any new R-reduction of this word must  

involve all of W~ 1 or W~ 1, hence, must  be with respect to a cyclic permutat ion of R -2~. By 

the uniqueness of W x and W,, we then get a contradiction to the necessary fact tha t  

S 1 U V  x V~ U T  1 was freely reduced. O 

Most of the combinatorial difficulties involved in computing the sets gph (U, W; H, K) 

in G E F .  for H = F 1 or C~ and K = F 2 or C2, are handled by the next three lemmas. 

LEMMA 5.2. Let G E F .  have the root R with exponent sum zero on t where R involves t. 

Then, i[ we can e//ectively compute the sets gph (U', W'; F'I, F'2) in any G' E F .  having root 

R '  with l(R') <I(R), we can also e//eetively compute the sets gph (U, W; F 1, F2) in G. 

Proo/. We must  show tha t  given any U, W E G, we can effectively determine a t  least 

one pair (S, T) E F 1 • F z such tha t  gph (U, W; F x, F2) =~ O if and only if U S  W = T.  

Let  G be realized as the HNN group (7), and note tha t  the hypothesis of the lemma 

applies to H. 

Case 1. t ~ F 1 O F,.  I t  follows tha t  gen (F,) ___ gen (H) for i = 1, 2. We may  restrict our- 

selves to g-reduced words U and W with U and W -1 t-parallel. Consider U ~ UoW U 1 ... t**Uk 

and W - x - W ~ l t ~ ' W ~  1 ...t~*W~ 1 with k > 0 ,  and suppose tha t  (S, T ) E F x x F  2 satisfies 

US W = T. I t  then follows from 

Uot"U~ ... t~kUkSW~t -'~ ... Wx t - 'Wo  = T (9) 

tha t  U k S W k = T ' E F ~ ,  where F ~ = X  if ek=l, and F ' =  Y i f  e ~  = - 1. By assumption, we 

can effectively compute gph (U~, W~; $'1, F~) in H. I f  this set is finite, then S is uniquely 

determined, so suppose tha t  

gph (U~, W~; F~ F~) = (P, Q) [gph (1, 1; F,  F)](P-~S0, Q-~To) 
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as an infinite set, where Uk =Qp-1 and F = F 1 N F~ as guaranteed by  Lemma 4.2. Since 

we now have U ~ S W ~ = T ' = Q T Q - ~ T ~  for some T e F ,  let us replace t~U~SW~t -~  by  

Q(~*)T(~)(Q(~)) -~ T(o ~) in (9). This produces a new equat ion U ' S ' W ' = T  where U'  and 

( W') - I  are t-parallel, S '  ~- T ('~) E F~ = t~Ft -~  and lt(U') < l~(U). 

The above discussion shows how we can compute  the  sets gph (U, W; F 1, F~) in G 

for any  free subgroups F 1 and F~ of H with gen (F~) recursive subsets of gen (H) for i = 1, 2, 

using induct ion of lt(U ). 

Case 2. t E F 1, t ~ F 2. (The case with t r F 1, t E F z is similar.) By  relabelling the generators  

if necessary, we m a y  assume tha t  a 0 ~ F r The elements of F 1 can then be wri t ten as t- 

reduced words St x with S E F ~ = F  1 N H. Since U S t X W ~ T E F z  implies t ha t  Ix I <~lt(U)q- 

It(W), it suffices to consider gph (U, t~W; F'I, F 2) for each such x, using Case 1. 

Case 3. t E F 1 N F 2. Let  E'I = F~ N H for i = 1, 2, and note  t ha t  we can effectively compute  

gph ( V, 1; F'I, F)  and gph (1, V; F~, F)  in H for any  V E H and  F = X, Y. But  then, if U and  

W are t-reduced, we m a y  assume for any  (S, T ) E E  1 • Es t ha t  T - 1 U S  is t-reduced if 

U ~H, and S W T  -1 is t-reduced if W ~H. This in tu rn  implies T - 1 U S W ~ I  or W T - 1 U S ~ I  

if T - 1 U S  is t-reduced and S and T are not  both  t-free. A similar s ta tement  holds when 

S W T  -z is t-reduced. Since we can decide by  Case 1 if U S W = T  is possible for any  

(S, T) E F '  I •  2, we need only consider U, WEH. 

Suppose now that U, W E H. As in Case 2, we may assume that a 0 q F I and write elements 

of F 1 as t-reduced words St ~ with S E F~. Elements of F~ can be written as t-reduced words 

Tot~'T1 ... t~'T~ with T~EF~ for each i. If now 

UStzW = Tot~,T~ ... t~,T~, 

then I x I = r and x = z, I x I for each i. By  symmetry ,  it suffices to t reat  the case with x = r > 0 

and thus each v t = l .  Note  tha t  we must  have W T ' = P E X  for some T'EF'2. Since 

gph ( W, 1; F'~, X) can be effectively computed  in H, we m a y  as well assume tha t  W = P  $ A. 

Moreover, let P T '  be freely reduced for all T '  E F~. The words TorT 1 ... tTr m a y  be wri t ten 

such tha t  each T~ is either emp ty  or begins with a~ 1 for 1 ~< i ~< r. Suppose now tha t  Ta ~ A  

and T~=-A for each i >q  in the above. We then get 

UStqP r = Tort I ... tTq. (I0) 

If q>~l, then we must have Pr From the restrictions above (on PT'), 

it follows that P~ must result after one ]~-reduction of Pr By the proof of Lemma 

5.1, Pr must contain a certain unique subword W x which then uniquely determines 

r-q. Due to the shifting of subscripts in p(ql), no h-reduction is possible in PCI)T-a q q - l ~  
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therefore Tq_I~-A. Similarly, we must  have T~- -A for each l < i < q .  From the above 

equat ion (10) we now get 
USP(q q)= T o. 

Since Pq must  involve a-symbols (from the /~-reduction), we get q ~ u - v .  For  each such 

q we can decide if USP(q q> = T O is possible in H. I t  remains to consider the case with q = 0  

in (10). Then U S P  (r) = T o, and if P involves a-symbols,  then the remark about  Pq applies. 

I f  P involves no a-symbols,  then the words S P  (r) and T O are both free in H. Since U -1 

mus t  result after free reductions and possibly one ~-reduct ion of the word SP(r)To 1, it 

follows tha t  r is uniquely determined, hence, we can solve U S P  (~) = T O in H. [ ]  

L E ~ M A  5.3. Exactly like Lemma 5.2 with F'I and F 1 replaced by C'1 and C 1. Also include 

the assertion/rom Lemma 5.2 about gph (U',  W'; F'I, F~). 

Proo/. The case with C 1 finite is trivial, so suppose tha t  C 1 = (S} with [ S [ = c~. L e m m a  

3.1 together  with Lemma 4.1 show tha t  if gph (U, W; C 1, F2) is infinite, then US U -1 E F~ 

and  therefore U W E F  2. I t  suffices therefore to find just  one x such tha t  USXWEF~ if and 

only if gph (U, W; C 1, F ~ ) ~ O .  

Let  G be realized as the H N N  group (7), and note t ha t  the hypotheses of the lemma 

apply  to  H. 

By  changing U and W if necessary, assume tha t  S is cyclically t-reduced. 

Case 1. t ~ _F 2. I f  S ~ H, then US ~ W E F 2 forces a bound on [ x [, so we need only consider 

the case with S E H .  I t  then suffices to consider t-reduced U and W with U and W -1 t- 

parallel. The result is now easily obtained by induct ion on lt(U) (see Case 1 in the proof 

of Lemma 5.2), using the remark above concerning gph (U',  W'; C 1, F~) when this is 

infinite. 

Case 2. t E F~. By relabelling the generators if necessary, we m a y  assume tha t  a 0 ~ F 2. 

Elements  of F2 m a y  therefore be written in the form Tt ~ with T E F~ = Fg_ f) H. 

I f  S E H ,  then U S x W =  Tt ~ implies [y[ <-lt(U)+ It(W). For  each such y we can use in- 

duct ion on lt(U), just like we indicated for Case 1, and consider US~(Wt -~) = T. 

For  the remainder of the proof, assume tha t  S - t ~ S ~  ... t~'S~ with r >~ 1. I t  suffices to 

obtain a bound on I x I, so by  symmetry ,  we need only t rea t  the case with x > 0. We m a y  

assume x to  be large enough for us to t-reduce USxW and obtain a t-reduced word U'Sx'W ' 

with x' > 0. Bu t  then we m a y  also assume all e/s  in S to be equal. By  symmetry ,  let us 

only consider the case with each ~ = 1 .  I f  now U'S~'W'= Tt~=t~T (-~) with x', y > 0 ,  then 

we must  have S W ' t  -~ =QE Y and t-~'U ' =QoE Y for some z and z'. All the above reductions 

are effective, so we m a y  as well assume t h a t  U=~QoE Y,  W=-QE Y, and x" =x.  We now have 

Qo(tS 1 ... tSr)~Q = Tt z~. 
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If  x > 0 ,  then we must  have S,Q=PrEX,  Sr_IP(,1)=Pr_IEX, etc. By  changing Q0 and Q 

if necessary, we m a y  therefore assume S~ to be a word on gen (Y) for each i. Note  tha t  the 

P~'s are unique. 

Let  us now write 
t S 1 . . ,  tSr  = SotS~ . . .  tS 'r--  S '  

where each S~ is either e m p t y  or begins with a~ 1 for i > 0. Nex t  we write 

t s ;  . . .  ts" s o  = So t Z l  . . .  ts," =- G" 

with S" satisfying the same conditions as S'. Note  tha t  if G~ ~ A  for some i > 0, then  

we either get  S ~ - A  or l(G")<l(S'). Thus, after a finite number  of steps, tha t  we can 

keep t rack of, we mus t  arrive at  either ~0V with ~q0 involving no a / s ,  or t~ 1 ... t~q r with 

each ~q~ empty  or beginning with a~ 1. By  changing Q0 and Q if necessary, we m a y  assume 

tha t  G=-Sotr=-,-qoV or G=tS~ ... t S ~ - t ~  ... t~qr with the conditions just  ment ioned satis- 

fied. We m a y  also assume tha t  GoS~ ') is freely reduced, otherwise we can replace G o with 

a shorter word G0. 

Suppose now tha t  Qo(Sotr)XQ = TW for some x >0 .  We then arrive at  

QoSoS(o~)... G~ r)Q(=)= TE F~. 

If  Q involves some a~, then xr<--.#-v. Freely reducing both  sides gives an  equat ion in 

Y N F~ tha t  can be solved by  inspection. Finally assume tha t  S - t S  1 ... tSr with at least 

one S~$A.  Let  q be maximal  with Gq~i, and note t ha t  SqQ(r-q)=PEXN Y. Since Sq 

begins with a/, 1, it mus t  be completely absorbed in Q(r-q), hence l(P)<I(Q). Repeat ing this 

argument ,  note t ha t  if SkQt -~ =Pk E X for each k > 0, then l(Pk+l)< l(P~) for each such k. 

From this it is easy to bound x. [] 

LEMMA 5.4. Exactly like Lemma 5.2 with F~ and F~ replaced by C~ and C,/or i= l, 2. 

Also include the assertion~ /rein the previous two lemmas about gph (U',  W'; F~, F~) and 

gph (U',  W'; C;, F~). 

Proo/. Let  C I = ( S  ) and S 2 . . ( T ) .  If  S or T is of finite order, then we can easily list 

all pairs (S x, T ~) with UGxW = T ~. Suppose therefore tha t  I SI = I TI  = oo. 

Let  G be realized as the I-I~N group (7), and assume G and T to  be cyclically t-reduced. 

If  now T E H  with SCH, then US~W= T ~ forces a bound on Ix[. For  each such x we can 

decide if US~W---VzEH, and  then if V~E(T).  J u s t  let Co=(1 ) in H,  and consider 

gph (V~, 1; Co, C2). The case with S E H  and T q H  is similar. Two cases remain. 

Case 1. S, TEH.  I t  suffices to  consider t-reduced U and W with U and  W -~ t-parallel. 

Since we can compute  gph (U', W'; C 1, F'2) in H,  the result is easily obtained by  induct ion 

on lt(U ). 
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Case 2. S,  T ~ H .  Note  tha t  [y l l~(T)~l~(U)+l~(W)+ Ixllt(S) whenever U S x W = T  ~, 

hence, it suffices to bound I xl .  By  s y m m e t r y  we need only t reat  the case with x, y > 0. 

Let  a, b > 0  be minimal such t h a t  S ~ and  T b have the same t.length. Then U S ~ W = T  y 

if and only if  U,S~x'W s = T b~" where x = a x '  +r ,  y = b y '  +s ,  0 ~ r  <a, 0 <~s <b,  Ur= US' ,  

and Ws = W T  -s. Since there are only finitely m a n y  such pairs (r, s) to consider, it suffices 

to t reat  the case with a = b = 1. 

Following a remark in Case 2 of the last proof, we m a y  assume tha t  USxW is t-reduced 

for all x > 0 .  Suppose now tha t  S=-V'S1 ... t~'Sr and T = - t " T i  ... t~'T, satisfy U S ~ W =  T ~ 

for some x > 0. This implies 
S W T - ~ ( T ' )  -~ = Q e F~ 

for some z ~>0 and terminal segment T'  of T beginning with t+l; and 

(T") - IT-~ 'U =QoEF~ 

for some z' >~ 0 and initial segment T" of T for which T ~ T" T and  T begins with t +1. Here 

F~ = Y if 8i = 1, F~ = X  if e i -  - 1 .  Wi thou t  loss of generality, we m a y  assume tha t  U ~Q0, 

W ~-Q, and then consider 

Qo(t'~S1... t~'S,)~Q = (t~,T1... t*,T,) z. 

Note  tha t  we must  have y = x  and S and T t-parallel. Suppose now tha t  ~+i = -e~ for some 

1 <~i<r, and let S '  and T '  be the terminal segments of S and  T beginning with t ~+~. I f  

w e  s e t  

S'S~QT Z ( T ' ) - I = p z E F '  

for z=O, 1 where F '  depends on e~+l, then we must  have S~P1Pg~S;~eF ' as well. Hence, 

by  malnormal i ty  of F '  we get  S~ E iv' if/)1 #=Po- Since S~ E F '  would violate the assumption 

tha t  t'~Stt -'~ is t-reduced, we must  have either all ej's equal or P i  =Po.  The latter implies 

S~QT -~ ~ Q  for all x, thus bounding x by  0. 

By  symmetry ,  it suffices now to t reat  the  case with S - t S  i ... tSr and  T=- tT i  ... tT, .  

If  SQ T-14=Q, then for each i we must  have gph (St, T~- ~; Y, X) infinite; otherwise no x > 1 

can satisfy QoS~Q--T ~. But  then,  by  Lemma 4.2 we must  have each S,=P~Q~ -i for some 

(P~, Q l ) e X  • Y. By  assumption we can effectively compute  such pairs, and by  changing 

Qo and Q if necessary, we m a y  assume each S~ to  be a word on gen (Y). By  a similar a rgument  

we m a y  also assume each T~ to  be a word on gen (Y). 

We can now assume tha t  we have applied the cyclic reduct ion process f rom the last 

proof to S and  T, and consider the following subeases: 

Subcase 1. S - S o V  and  T=-To f ,  with S o and T o involving no a~'s, and SoS(o ~) and 

T o T(o ") freely reduced. F r o m  QoS~Q = T ~ we then get the equat ion 
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Q .  S o  S~r) . . . S(o~r-~)Q(=) = T O T(o~) . . . T(o= - r )  

in :Y. I t  is easy to bound x if l(So)~=l(To). Also, if l(So)=l(To) , then we can decide by 

inspection if the equation can hold for any x with (x-2) l (S0)> l(Qo)+ l(Q). 

Subcase 2. S - S o  tr as in Subcase 1 and T=-tTI  ... t T r , t  r with each T~ empty or begin- 

nlng with a~ 1. (The case with S and T interchanged is similar.) From QoSXQ= T x with 

x > 0 we then get 

Qo So S(o~) ... S(o~-~)t~Q = ( tT1. . .  tT,) x. 

But then Q T ~ - I = P E X  N Y,  and therefore all of T71 must be absorbed in Q. If  T ~ A ,  

then l(P)<l(Q). Since T ~ A  for at least one ], we must have V Q T - I = Q 1 E Y  with 

I(Qi) <I(Q). This forces a bound on x. 

Subcase 3. S ~ t S  1 . . .  t S r ~ t  r and T - ~ t T  1 ... t T ~ t  r where each S~ and Tj is either 

empty or begins with a,• 1. If  now 

Qo(tS1 ... tS~)XQ = ( tT  1 ... tTr) ~ 

for some x>0 ,  then we must have S ~ Q T V I = P r E X  N Y, S~_IP(~I)T:Jl=P~_IEX N Y,  etc. 

All of Sr and T71 must be absorbed in the free reductions of SrQT~ 1. Hence, unless Sr and 

T~ are empty, we must have I(P~) < l(Q). Since at least one S~ is non-empty, it follows that  

S Q T - I = Q 1 E  Y with l(Q1)<I(Q). This forces a bound on x, and completes the proof of the 

lemma. [] 

We can now establish all the needed results about computability of graphs in any 

G E F. .  Recall our assertions about free groups F 1 and ~'~ in G. 

1)ROI'OSITION 5.5. We can effectively compute the sets gph (U, W; H, K)  for any 

U, W EGE F .  where H =  F 1 or C 1 and K = F~ or C 2 as subgroups of G. 

Proof. We use induction on the length of the root R of G. If l (R )=1 ,  then G = C ~ e F  

for some finite cyclic group C and free group F. F 1 and F 2 must be subgroups of F, which 

we may assume to be nonempty. All three types of graphs can be effectively computed in 

C and E. But then, by modifying the techniques in the three last lemmas, we can also 

compute these sets in G. I t  is of course considerably easier to work with free products than 

with I-INN groups. 

Suppose now that  l(R)>/2, and that  the proposition holds for all G' E F .  having roots 

R'  with l(R') < l(R). If  R has exponent sum zero on one of its generators, then the above 

lemmas apply. Finally assume that the exponent sum is non-zero on all generators in R, and 

in particular, assume that  x ~ 0  and y ~ 0  are the exponent sums of t and a 0 respectively in R. 

Then let ~ E I~. be obtained from G by replacing the generators t and a 0 by t' and do, and 
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then replacing the root R by the cyclic reduction of i~, where i~ is obtained from R by 

replacing each t by do ~-~ and each a 0 by ~'~. This construction also defines an imbedding 

hu: G-~d. 

Now, G can be realized as an HNN group with stable letter ~ and base/~ E F ,  having root 

of length less that  l(R) (see [7]). For any VEG, let )9 be the ~-rcduced form of ~(V)EG.  

Similarly, if H is a subgroup of G, let /~ be the image in G of H under ~F. 

The case with C 1 or C 2 finite is trivial, so suppose that  both are infinite. Then 

gph (U, W; C1, C2) = gph (0,  IV; C1, r 

in Z 2, so this set can be effectively computed since ~I r is clearly effective. Next, consider 

gph (U, W; C1, F2) with C 1 = <S>. By relabelling the generators of G if necessary, we may 

assume that  tCF 2. If also ao~F2, let F 2 = P  2 in (~; otherwise let F2 be generated by 

gen (F2)-{ao~ together with ~. Now compute gph (~, l~; ~1, F2) in G. The case with this 

set finite is easy, so suppose it to be infinite. By an earlier remark, we must have 0 ~  ~-1 = 

~qoEF2 and 0 1 ~ =  ToEF2. But then, USzW = T E F  2 if and onlyif  (~--l)X ~W =~ T0=~" 
We can now decide if any x E Z and ~ EI~ 2 can satisfy this equation in F2. 

I t  remains to consider gph (U, W; F 1, F2). Up to relabelling of the generators, the 

following three cases exhaust all possibilities. 

Case 1. t, aoEFj, t ~ F  2. Let F~ be generated by (gen (F~)-{t ,  ao})O{~,do} in ~, 

while F~ is the group just considered above. Now compute gph (~, IV; F1, F2) in G. The 

case with this set finite is easy, so suppose that  

gph (0,  W; F~, F2) = (P, Q) [gph (1, 1; F, F)](P-~So, Q-~To) 

as an infinite set where ~=Qp-1,  (p,Q)EF1 • and F : - F  1 N F.~ (see Lemma 4.2). If 

now USW = T for some (S, T) E F 1 • F2, then 

= P~qp-1s o and ~ = Q~qQ-1T o 

for some ~EF.  Since d0r , it is easy to decide if these equations have a solution in F 1 

and Fe. 

Case 2. t ~ F~ U F 2. This is essentially like Case 1, only easier. 

Case 3. gen (R)={t ,  ao} , t~F1, ao~F ~. The cases with F 1 or F 2 cyclic have been 

considered, so suppose that  F~ = <t;> ~-F~ and F~ = <%;>-)(-F~ with F'l and F~ non-trivial. 

Hence, we must also have G=Go~eF for some non-trivial free group F where Go= 

<t, a0; Rn>. Let us assume that no terminal segment of U or initial segment of W belongs to 

F~, and similarly for U -1 and W -~ with respect to F~. I t  is now easy to decide if U S W  = T 

is possible for any (S, T) ~ F 1 • F~ with U, W, S, and T s-reduced. [7 
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Note tha t  we have also shown: All groups in F .  have solvable generalized word 

problem with respect to cyclic subgroups. This because U E C 2 if and only if gph (U, 1; 

F1, C 2 ) ~  where F 1 is the trivial group. 

We can now prove Lemma 3.2 as well. 

Proo] o / L e m m a  3.2. Let  U E G E F .  where G has the root  R. We must  decide if U,,~aS 

is possible for any  free word S in G; then we mus t  show how such an S can be effectively 

constructed whenever solutions exist. We proceed by  induct ion on l(R), observing tha t  the 

problem is trivial when l (R )=  1. Suppose now tha t  the result has been established for all 

G'E F .  having roots R '  of length less than  I(R), where l(R)>~ 2. 

First we consider the case when G can be realized as the H N N  group (7). Let  U be 

cyclically t-reduced. Note  tha t  if S is free in G E F .  and the t-reduced form S '  of S belongs 

to H, then S '  is also free in H E F , .  Suppose now first t ha t  U is t-free. By  the inductive 

hypothesis, suppose tha t  we have determined a free word S in H with U,~H S. Moreover, 

assume this S to be cyclically reduced. Suppose also tha t  there exists a free word T in 

G E F .  with U H a T. The cyclically t-reduced form T '  of T must  belong to H, moreover,  for 

some V =- VotXVt we must  have T '  = V S V  -t  (see Lemma 3.3). I t  now suffices to set 110, V 1 -= 

A, and check if T ' -=S  (x) for any  xEZ  and free word T in G E F . .  Finally, suppose t h a t  

U-=t"U1 ... tekUk with k~>l. By  Collins' Lemma (p. 123 in [3]), if U,'~aS with S cyclically 

t-reduced, then we must  also have I t (S)=k.  Replacing a 0 successively by  the elements 

from gen ( R ) -  {t} in the H N N  construct ion of G, we m a y  assume tha t  S involves no a- 

symbols. Hence, S can be writ ten S-=S  O t x with I xl = k. I t  is now enough to consider the  

case with U -=tU 1 ... tU~ and S --So t~. By Collins' Lemma,  if U ~aS,  then we m a y  assume t h a t  

tU 1 ... tU k = QSoteQ -1 (11) 

for some QE Y. But  then U k Q = P E X ,  Uk_1P(1)=P'EX,  etc. By  Proposit ion 5.5 we can 

effectively compute  pairs (P~,Qt)EX•  Y with U~=P~Qi -1 for each 1 <<.i<<.k (if (11) can 

be satisfied), hence, we m a y  as well assume each U~ to be a word on gen (Y). We can now 

use the cyclic reduct ion process on U tha t  we applied to the generator  of Ct in the proof 

of Lemma 5.3. If  we arrive at  a word without  a-symbols,  then we are done. Suppose there- 

fore tha t  we arrive at  the word V=--tV1 ... tVk with each Vt empty  or beginning with 

at~ 1 and V ~ A  for at  least one i. I f  now 

tV1 ... tVk = QSoteQ -1 

then V~Q=P~EX,  Vk_IP~I)=Pk_xEX, etc. Thus, Q-=V~IPk, P(~)=V-1k - k-lPk-1, ...,P~I)=- 

V{~P~. After these t-reductions we arrive at  

p~l) = QSo. 
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But this equation cannot be satisfied for any S O without a-symbols. To see this, note that 

P(11) •QS o is an equation in Y, and 

Q _  V ~ - I ( V k 1 1 ) ( 1 )  . . .  (Vl l ) ( -k+l)p(1-k+l)  

contains strictly more a~'s than P(11). 

The case remains where G cannot be realized directly as the HNN group (7). We then 

use the imbedding 

from the proof of Proposition 5.5. Suppose now that  there exists a free word S E G and a 

free word T E ~, such that 
UH aS and ~ b T -  

If t~gen (S), where ~F(t)=d0~ -~, then ~ is also a free word in (~, hence, by Lemma 3.1 

must be a cyclic permutation of T. We assume here that  S and T are cyclically reduced. 

Since the imbedding ~F depends on the particular choice of t, a0Egen (R), we must repeat 

this imbedding for each such choice, and then check if TE~F'(G) for some such ~ ' .  [] 

w 6. The main results for the class r0 

In this section we complete our study of the class I" 0. To this end, let G E F 0 be given by 

G = (a x, a 2 . . . .  ; R~', . . . .  R~k> (12) 

subject to the conditions on (2) in Section 2. In that  section we also showed that if k ~> 2, 

then G can be realized as a tree-product 

G : GI-~F,  ... ')(-F~ 1Gk (13) 

where each GtEF,  and each F~ is free on gen (G~) N gen (G~+I). Moreover, if G 'EF 0 is the 

subgroup of G generated by (J~:~ gen (Gi), then 

G = G' ~F FG ~ (14) 

where F = Fk_ 1. Note that G' has k -  1 relators, hence, this gives us a means of proving 

results about F 0 by induction on k in (12). 

B. B. Newman proved in [10] that  if J is malnormal in H I and H2, then H a and H2 

are malnormal in H 1 ~e~ H 2. Using this result together with transitivity of malnormality, 

it is easy to prove by induction on k: 

LEMMA 6.1. Let GEF 0 be given by (12) with k >~2. Then the subgroups G~ in (13) and G' 

in (14) are malnormal in G. 

Suppose now that G is given by (12) with k~> 1. If k = l ,  let GI=G; otherwise let the 
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subgroups  G~ be def ined b y  (13). Now, if U is a word  on gen (G) wi th  gen ( U ' ) _  gen (G~) 

for some subword  U' of U and  1 ~<i~<k, then  we call a n y  R~-reduction (see Sect ion 5) 

of U'  in Gt an  R-reduction o] U. If  no R-reduc t ions  are  possible in U, then  we call  U R- 

reduced. I f  also all  cyclic pe rmu ta t i ons  of U are R-reduced,  then  we call U cyclically R- 

reduced. N o t e - t h a t  these reduct ions  are  effective. 

Le t  /c>~2 and  consider  G as the  general ized free p roduc t  (14). Then,  if U is an  R- 

reduced  word  on gen (G), we claim t h a t  U is also s- reduced (see Sect ion 4) as an  e lement  of 

G'-)e v Gk. This is so because any  s - reduct ion  of U mus t  involve  an  R-reduct ion.  Similar ly ,  

if U is cycl ical ly  R-reduced,  then  i t  mus t  also be cycl ical ly  s-reduced.  

Using the  above  ideas we can prove  Theorem A for t he  class F 0. W e  s t a t e  th is  as a 

lemma.  

L ]~ IMA 6.2. We can e]/ectively compute the order o/elements in any G/rom F 0. 

Proo/. W e  use induc t ion  on k where G is g iven b y  (12). The resul t  is wel l -known for 

k ~ l ,  so suppose  t h a t  k I> 2 wi th  the  l emma  es tabl i shed  for all  G'E F 0 hav ing  less t h a t  

k relators .  Wri te  G=G'-)epGk as in (14), and  consider  UEG. By the  r e ma rks  above,  we 

m a y  assume t h a t  U is cycl ical ly  R-reduced.  Now, if U belongs to  G' or Gk, then  the  induc t ive  

hypothes is  applies,  while otherwise,  [ U ] = ~ .  [] 

Our nex t  resul t  generalizes Propos i t ion  3.5 and  establ ishes Theorem B for the  class 

F 0 �9 

THEOREM 6.3. Given U, WEGEF0,  we can e//ectively compute integers a, b, and c 

with 0 <~ c ~ 1 such that 

CPo(U, W) = (a, b)Z U (ac, - b c ) Z  

il IUI, IWl= ; 
GPa(U, W) = (a, b)Z §  U[Z)  • ([ W I Z  ) 

i / IuI ,  Iwl <co  

Proo/. W e  use induct ion  on the  number  k of roots  in the  p resen ta t ion  (12) of G. The  

case wi th /c  = 0 is t r ivial .  Also, k = 1 wi th  I U I, I W I = ~ is covered b y  Propos i t ion  3.5. 

To comple te  the  case wi th  k = l ,  let  U and  W be of f ini te  order  in G E F ,  where G 

has the  re la tor  R ~. Now,  if U or W equals  1, then  we can clear ly  t ake  a, b =0 .  Suppose  

therefore  t h a t  U, W~=I. Hence,  U,,~aR ~ and  W,, ,aR ~ for some 0 < p ,  q<n.  F r o m  L e m m a  

3.4 i t  follows t h a t  U x H a W ~ if and  only  if R ~x = R %  The integers  p and  q can be effect ively 

computed ,  hence, we can decide if U and  W are  power-conjugate ,  t h a t  is, if U ~ ~ a W ~ = l  for 

some x, y E Z. I f  U and  W are no t  power-conjugate ,  let  a, b = 0; otherwise de te rmine  the  mi- 
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n imal  a > 0 in Z with  R € R~b'4= 1 for some b 'E Z. Then  de te rmine  the  min ima l  b > 0 for 

which R ' a = R  qb. I t  remains  to  show t h a t  U * ~ c W  ~ implies  U*= U "~ and  W ~= W b~ for 

some z EZ. But  this  is easy  enough,  jus t  use the  Euc l idean  a lgor i thm and  wr i te  x = a z + r  

with 0 ~ r < a. Then observe t h a t  

R ~ = R~(x -az) ~. R,XR-~'c'~ = RqUR-~Oz= Rq(U-t,~). 

B y  min ima l i t y  of a, i t  follows t h a t  R ~ =  1, and hence, 

U~ ~ o  RP~ = R~"="~ U ~  

and  

W~ ~ o  Rq~ = Rqb~ ~ ~  W% 

The resul t  now follows f rom L e m m a  3.4. 

Suppose  nex t  t h a t  G has  k >~ 2 roots,  and  t h a t  the  theorem is va l id  for all  G' E F 0 wi th  

less t han  k roots.  We  can then  wri te  G = G'~e p Gk as in (14) and  a p p l y  the  induc t ive  hypo-  

thesis  to  bo th  G' and  Gk. Le t  U and  W be cycl ical ly  R-reduced.  B y  L e m m a  6.1 i t  is clear  

t h a t  
CP~(U, W) = CPG.(U, W) 

if U, W E G" for G" = G' or Gk. Moreover,  if U and  W belong to d i s t inc t  factors ,  t hen  U x ~'o WU 

implies  U x and  W u mus t  bo th  be conjuga te  in the i r  fac tor  to  some T E F .  B y  s y m m e t r y  

we m a y  assume t h a t  WEGk. If  WU4=l, then  W mus t  be conjuga te  in G~ to  some T o E F  

with T = T~. By  L e m m a  3.2 we can effect ively de te rmine  such a T O if i t  exists ,  so because 

we then  ge t  

CPc(U, W ) =  CP~.(U, To), 

i t  remains  to consider  W ~ ~ 1 .  Bu t  in th is  case {i.e. W ~ "~a T E F implies  T = 1) we m a y  set 

a, b, c=O. The case wi th  Is(U), ls(W)>~2 remains .  Since we can easi ly de te rmine  min imal  

integers  a ' ,  b ' > 0  wi th  ls(Ua')=ls(Wb'), we m a y  as well assume t h a t  ls(U)=la(W ). Now, 

b y  Sol i ta r ' s  Theorem we know t h a t  UxNo W * for some x ~ 0  if and  only  if Ux=S(WX), ,S  -1 

for some s -pe rmuta t ion  (W*). of W * and  S E F .  Since (WX)~ = W~ for some s -pe rmu ta t i on  

W.  of W, note  t h a t  if x > 1, t hen  

UtSW;, * = S~ E F 

for each 1 ~<i ~<x. Bu t  then  we mus t  have  S = S t ;  otherwise USS~IU-1=StS~14=l ,  and  b y  

m a l n o r m a l i t y  of F in G, we then  get  U E F .  The  case wi th  x <  - 1  is s imilar ,  so we can 

conclude t h a t  Ux,,,o W ~ for some x4=0 if and  only  if U"~a W. Thus,  i t  suffices to  deter-  

mine whe ther  or no t  U"~aW" for e =  + 1. Le t  us jus t  consider  e =  1. Now, if U - - U 1  ... Ur 

and  W -- W1 ... Wr in t e rms  of syl lables  and  U ~o W, then  
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UI. . .  U t S ( W I . . .  W t ) ;  1 = 

for some s-permutat ion (W1 ... Wr). of W. There are only finitely m a n y  such s-permuta-  

tions, so let us just  consider the trivial one.  By  considering S = U - 1 S W  if necessary, we 

m a y  assume tha t  U ,  W, E Gk. I n  this factor  we can effectively compute  gph ( U ,  Wj1; F ,  F)  

by  Proposi t ion 5.5. Moreover, this set can contain a t  most  one pair  (S, T), otherwise 

Ur, WrEF.  Now all we need to  do is to  check if U S W - t S - I = I  for this S. [] 

The final result we need for the class F 0 is the  following generalization of pa r t  of 

Proposi t ion 5.5. 

LEMMA 6.4. For any cyclic subgroups C 1 and C~ o[ GEF0, and elements U, WEG,  

we can e[/ectively compute gph (U, W; C1, Ca). 

Proo/. The case with C 1 or C~ finite is trivial, so suppose t h a t  C I = ( S )  and C a = ( T )  

with I S I, I TI  = oo. I n  this case we identify C 1 and C a with Z and set 

gph (U, W; C~, C~) = ((x, y)eZ2;  US~W = T~}. 

As a consequence of Lemma 4.1, we know tha t  this set is either e m p t y  or takes the form 

gph (U, W; C 1, C2) = (r, s) +(a ,  b)Z. 

Let  us proceed by  induction on the number  k of roots in G. The case with k = 0 was t rea ted  

in [5], while k- -1  is covered by Proposit ion 5.5. Suppose now tha t  k ~ 2 with the lemma 

established for all G' E I~0 having less than  k roots. Then write G = G ' ~  p Gk as in (14), not ing 

tha t  the inductive hypothesis  applies to both  factors. By  s tandard  arguments,  we m a y  

assume tha t  S and T are cyclically R-reduced, U and W R-reduced. The case with l~(S)= 

1 </~(T), or vice versa, is trivial since we can then bound Ixl or lYI" Let  u s  n o w  consider 

Case 1. ls(S ), ls(T ) >~2. By  considering a finite number  of cases, we m a y  assume t h a t  

S and T have the same s-length, and t h a t  gph (U, W; C 1, C a ) ~ O  if and only if U S z W  = T ~ 

for some x, y >/0. I t  suffices to bound x since this also yields a bound on y. Assume therefore 

tha t  x is large enough so tha t  we can s-reduce US~W and  obtain an  s-reduced word U'S~'W ' 

with x'>~ 2. (We accomplish this by R-reductions.) If  now U'S~ 'W'= T ~, then 

S W ' T - ~ ' T ~  1 = P E F  
and 

T~1T-~'U ' = Q E F  

for some syllable-segments T 1 and T~ of T for which T'  T 1 =- T -  T~ T ~, where Yl, Y~ >~ 0. Since 

we now have 
QS~'-lp = T~TY'T ' = T~'-I 
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where T O --- T" T 2 -  T1 T '  (comparing s-lengths),it suffices to show tha t  we can take x' - 1 = 1. 

But  clearly, if x '  - 1 > 1, then 

S*PT~ ~ = PiE F 

for each 1 <~ i <~x' - l, hence, malnormali ty of F in G implies P =P1. 

Case 2. Is(S ), l s (T)=l .  Suppose tha t  U=-U1 ... Up and W--W1  ... Wq as s-reduced 

decompositions into syllables where we allow U --- U 1 ~ A and W ~- W 1 -= A. Suppose further 

tha t  

U1 ... UpSXWs ... W~ = T ~ 

for some x and y. If  U, S, W, and T belong to one and the same factor, then the inductive 

hypothesis applies, and otherwise we must  have U,S  ~, SxW1, or UpS~W1 in F. If  this is 

an equation in Gk, then by Proposition 5.5 we can compute the corresponding graph. 

Moreover, unless the third possibility occurs with U, S U ;  1 = S  o E F and Up W1 E F, the x 

is unique. Also, in this ease with x not unique we can shorten U and W by a syllable, 

and repeat the argument with S replaced by SoEF. If  S~Gk and Up or W1, as the case 

may  be, belongs to G', then let U .  and W. be the remaining segments of U and W. We 

now get U,  1T~W.IE F, and hence, if U. ,  W.  ~ G~, then we arrive at  the graph gph ( U ,  Wj; 

F,  F) in Gk, where U~ -- U, or U,_s(A if p = l) and Wj--- W 1 or W2 (A if q = 1). By Lemma 

4.1, at  most one pair So, ToEF can satisfy U~SoWj=To, otherwise U~, WjEF .  By Pro- 

position 5.5 we can compute this pair (So, To), and hence, also determine x and y. I t  remains 

to consider the case with U. ,  W.  E Gk. But  this is just like the first part.  [] 

The following corollary is immediate. 

COROLLARY 6.5. The groups in I~o have solvable generalized word problem with re- 

spect to cyclic subgroups. 

With these results for F 0 we can turn to the main theorems for F r  

w 7. Proofs oI the main theorems 

With the results thus far established in this paper and techniques used in [5], the follow- 

ing is easy to prove, hence we omit the proof here. 

LEM~A 7.1. Let G = G  1 - ) ( - C G 2 E l l l  . Then /or any U, WEG we can e//ectively compute 

gph (U, W; C, C) in (7. 

Note that  by Corollary 6.5 we can effectively s-reduce and cyclically s-reduce elements 

in any G=G 1 ~r 
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Proo/o/ Theorem A. Let  U E G = G  1 ~e c G2E r t. To compute  I UI ,  let us first cyclically 

s-reduce U and obtain U'. I f  n o w / , ( U ' ) > I ,  then I UI = o% If  instead U' belongs to G~ 

or G2, then we can apply  L e m m a  6.2. [] 

We can also give the 

Proo/ o/ Theorem B. We have already proved this for all groups in F0, so assume t h a t  

G = G1 ~ q G~ E F1 with C non-trivial. Let  U, W E G be cyclically s-reduced, and consider 

first 

Case 1. ls(U), l~(W)> 1. As usual, we only t reat  the case with U and  W of the same 

s-length. Moreover, by  Lemma 7.1 gnd Solitar 's Theorem, it suffices to obtain a bound on 

x > 0 for which U ~ ~GW ~ is possible for e = + 1. By  a result in [5], We m a y  take x ~<2 if C 

is infinite. Also, if C = ( S )  in G with I S I < ~ ,  then U x "~a W~ implies 

U~S~W;, ~t ~ S ~, 
for each 1 ~< i ~< x, where 

U �9 = S~W~S-~ 

Here W= is some cyclic s-permutat ion of W. But  then, if x > I S I, we get  S z~ = S ~j for some 

~" < i, hence, 

implies 

with i - j < x .  

Case 2. I~(U), l s (W)= l .  If  U, WeG,  ( i= l  or 2) and some (x, y)eCP~(U, W) does no t  

belong to CPG~( U, W), then 

U~ ~ ~  S~ = T~ ~vj T: '  = S ~" ~ ~  W y 

where C = (S )  in G, and C = ( T )  in Gj (j ~=i). I f  I T I < ~ ,  then T ~ = T z" and therefore S ~ = S ~'. 

Hence, we must  have I TI = ~ .  But  then z'= - z  and thus (x, - y )  ECPa,(U, W). Since by  

Theorem 6.3, 
CP,(U, W) = (a', b')Z U (a'c', -b 'c ' )Z 

with 0 ~<c' ~< 1, we must  have c' =0 .  Therefore, if T ~ j  T-*, then we get 

CPG(U, W) = (a, b)Z U (a, - b ) Z  

with a'=a, b=b'; if T,v  % T -1, then CP~(U, W)=CPa~(U, W). 

Finally consider UEG~ and WEG~ with i~=j. Since U~:'~G Wy if and  only if 

UX ~o~ S~ = T~ ~G.~ W~, 

we can construct  CPG(U, W) from CPa~(U, S) and CPaj(T, W). [] 
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As for the generalizations alluded to in the introduction,  let F be the smallest class 

containing ]70 which is closed under  the format ion of free products  with cyclic subgroups 

amalgamated.  

Using techniques from this paper  and from [5], we can generalize Lemmas  6.4 and 7.1 

to groups in F. Also, if G = G  1 -)% G2EF, and I U] < ~ in G, then we must  have U conjugate 

to an element of a factor. Continuing, we note tha t  U mus t  be conjugate to an element of a 

subgroup G' of G with G'E F 0. 

I t  follows from the above tha t  we must  get  

Given U, W E G E I ~, we can e//eetively compute integers a, b, c 1 . . . . .  c~ TtIEOREM B'. 

such that 

if Ivl, Iw l :  

C P G ( U , W ) = ( a , b ) Z O  [~=Q(ac,-bc~)Z] 

CPa(U,  W) = (a, b)Z + ([ UIZ)  • ([ WIZ) 
if IuI, Iwl< 

Note  tha t  the generalized version of Lemma 6.4 implies we can cyclically s-reduce 

elements of a ny  G E 1D, hence we can compute  ] U I and ] W I in Theorem B' .  

The corresponding generalization of the results in [5] about  H N N  groups are straight- 

forward. 
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