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The study of closed (periodic) geodesics has a long and rich history. After Fet  and 

Lyusternik [2] in 1951 proved tha t  any compact riemannian manifold has at  least one 

closed geodesic, the most  outstanding problem has been whether such a manifold has 

actually infinitely many  distinct closed geodesics. Here closed geodesics are always 

understood to be non-constant, and two geodesics are said to be distinct if one is not a 

reparametrization of the other. No real progress was made untill 1969 when Gromoll and 

Meyer [7] obtained the following celebrated result. 

T H E OR E M. Let M be a compact connected and simply connected riemannian mani/old. 

Then M has in/initely many closed geodesics i/the sequence o/Betti numbers/or the (rational) 

homology o] the space o/ all maps S I ~ M  is unbounded. 

Here a map is always understood to be continuous and the space of maps S 1-~M is 

endowed with the compact-open (uniform) topology. Recently Sullivan and Vigud [21] 

showed that  the topological condition on M in the above theorem is satisfied if and only 

if the (rational) cohomology ring of M is not generated by  one element. 

Jus t  very recently we have received the second revised and enlarged edition of a 

manuscript to a monograph on closed geodesics by  W. Klingenberg [13]. In  tha t  

manuscript  a proof for the existence of infinitely many  closed geodesics on any  1-connected 

compact riemannian manifold is offered. The proof involves new methods and ideas and 

is very complicated. 

A related but more general theory than tha t  of closed geodesics is the one of isometry- 

invariant  geodesics developed by  the first named author in [8] and [9]. A non-constant 

geodesic c: R -~M is said to be invariant  under an isometry A: M-->M if A(c(t)=c(t+l) 

for all t E R. Clearly an A-invariant geodesic with A = idM is simply a closed geodesic and 

vice versa. In  contrast to the case of closed geodesics, there are examples of isometrics 
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which have no invariant geodesics (e.g. rotation on a flat torus). However, as a generali- 

zation of the theorem by Fet  and Lyusternik, any isometry A which is homotopie to 

idM has invariant  geodesics [8]. Furthermore, there are isometrics (even homotopic to 

the identity) which have no more than one invariant  geodesic (e.g. rotation on the round 

sphere). As a main theorem of this paper we shall prove the following generalization of the 

Gromoll-Meyer theorem. 

MAIN T~EOREM. Let M be a compact, 1-connected riemannian mani/old and let 

/: M ~ M  be an isometry o//inite order. Then there are in/initely many/-invariant geodesics 

on M i/ the sequence o/Betti  numbers/or the homology (any/ield as coe//icients) o/the space 

o/al l  maps (~: [0, 1 ] ~ M  with a(1)=/(a(O)) is unbounded. 

Note that  any ]-invariant geodesic is closed since / is of finite order. Furthermore,  

since the isometry group I(M) of M is a compact Lie group, we have that  the subgroup 

consisting of isometrics with finite order is dense in I(M). The theorem was announced in 

[12] and proved in particular cases in [10], [22] and [23]. 

In Grove, Halperin and Vigud [11] a necessary and sufficient condition is given (in terms 

of the action of / on the (rational) homotopy groups of M) in order for the space 

a: [0, 1]->M with ](a(0)) =o(1) to have an unbounded sequence of (rational) Betti  numbers. 

In  dealing with isometry-invariant geodesics we apply the "modern"  calculus of 

variations in the large i.e. critical point theory on infinite dimensional manifolds of maps. 

The A-invariant geodesics on M are precisely the critical points for the energy integral 

E A (with positive energy) on a suitable space of "A-invariant curves" on M~ _A(M, A). 

Now, Morse theory provides information about existence and number  of critical points for 

E n in terms of the topology of A(M, A). This, however, does not immeditately give in- 

formation about the number  of distinct A-invariant geodesics. For each closed A-invariant 

geodesic all its multiple covers are also A-invariant, but no such two are of course 

distinct. As in the Gromoll-Meyer proof the theorem follows if for each closed A-invariant  

geodesic, the corresponding tower of critical points (orbits) in A(M, A) contributes to the 

homology of A(M, A) with at  most a bounded amount.  We are able to show this when A 

is of finite order. The proof makes use of equivariant degenerate Morse theory as developed 

by  Gromoll and Meyer [6], [7] and a rather delicate s tudy of indices and nullities related 

to  the work of Bot t  [1]. In  the special case where all the critical points (orbits) are non- 

degenerate i.e. all nullities are zero, the proof becomes much simpler and we need not 

assume that  A is of finite order (cf. the discussion at the end of the paper). 

We refer to [5], [3] and [18] for basic facts and tools in riemannian geometry, 

geometry of path-spaces and algebraic topology. 
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1. Prelimlnaries 

Throughout the paper  (M, <., .>) shall denote a connected, compact riemannian 

manifold a n d / :  M--->M an isometry of finite order sEZ + i.e. /S=idM. Let A(M, / )  be the 

Hilbert manifold consisting of all absolutely continuous maps a: R-+M with locally square 

integrable velocity field d: R ~ T M  and with a(t+l)=/(a(t)) for all tER. The tangent  

space to A(M,/)  at  a consists of all absolutely continuous vector fields X: It--> TM along 

(~ with locally square integrable covariant derivative X '  and with X(t + 1) : / ,  (X(t)), where 

/ , :  TM-+TM denotes the differential of ]. The restriction map a ~ a l [ 0 ,  1] identifies 

A(M, / )  with the manifold AG(~)(M) introduced in [8]. A(M, / )  caries a natural  complete 

riemannian metric <-, . >1 induced from the metric on M. I f  X and Y are tangent vectors 

to A(M, / )  at  a then 
<X, Y>~ =<X, y>0+<X', Y'>0, 

where (X,  Y)o = SI (X(t), Y(t))dt is the L2-inner product. 

The critical points for the energy integral Er: A(M, ])-+R defined by 

are precisely the geodesics c: R -~M with c( t+l )=/ (c( t ) ) ,  i.e. either closed /-invariant 

geodesics or a constant belonging to the fixed point set Fix (/) of /. Furthermore, E r 

satisfies the important  Palais-Smale condition (C) which is necessary in order to apply 

critical point theory (see [8]). 

The R-action on the parameter  induces a continuous S 1 = R/s. Z-action by isometries on 

A(M, / )  under which E I is clearly invariant [9]. Orbits of critical points with isotropy 

group S 1 correspond to fixed points o f / ,  whereas orbits of critical points with finite cyclic 

isotropy group are embedded critical circles corresponding to oriented (unparametrized) 

/- invariant geodesics. By the index ~(c,/) and nullity ~(c,/) of a critical point c for E I in 

A(M, / )  we mean the index and nullity of the orbit Sl .c  as a critical submanifold. The 

Hessian of E r at  a critical point c is given by 

H(EI)(X, Y ) = ( X ' ,  Y '~o-(R(X,  6)5, Y)o, 

where R denotes the riemannian curvature tensor of M. I t  follows tha t  the selfadjoint 

operator S defined by 
H(E ~) (X, Y) : <SX, Y>I 

admits a decomposition S=id + k, where k is given by 

(kX, Y)I = - ( X §  ~)~, Y)o. 



36 K.  G R O V E  A ~ D  M. T A N A K A  

Since the inclusion of the Sobolev space L 2 into L ~ is compact so is k. In  particular the 

index and nullity of c are finite. Furthermore, the eigenvectors X of S with eigenvalue 

are smooth, being solutions to the elliptic differential equation 

(1 - i t ) X "  + R(X ,  ~)~ + 2 X  = O. 

We conclude this paragraph by  noting tha t  H ( E  I) restricted to the dense subspace of all 

smooth "/- invariant" vector fields along c may  be written as 

H(E s) (X, Y )=  <LX, Y)o, 

where L is an essentially selfadjoint elliptic differential operator defined by 

L X  = - X " - R ( X ,  ~)~. 

2. Index  and nul l i ty  

In  this paragraph we shall s tudy the sequences of indices and nullities of a tower of 

critical orbits determined by  one / - invar ian t  geodesic. In  order to do this we extend our 

domain of s tudy so as to contain the spaces A (Fix (/n),/m) for all n and m. Note tha t  

Fix (]n) is a (collection of) closed totally geodesic submanifold(s) of M and tha t  

/m (Fix (]~)) = F i x  (]~). A (Fix (]~), in) is of course non-empty only if ]m preserves a compo- 

nent of Fix (]~). 

Let  ~ be an /-invariant geodesic, fixed throughout this paragraph. The following 

explicit expression for all the ]-invariant geodesics with the same orientation as ~ and 

geometrically coinciding with ~ will be very important  for us. 

Let  c E A(M, ]) be a critical point of smallest Er-value such tha t  c and 7 are equal up to 

a positive change in parameter.  Then c is periodic of fundamental  period s /m for some 

positive inter m ~ s .  Now, s /m=so /m  o where s o and m 0 are relatively prime positive 

integers. Then s0EZ+ is the smallest positive integer with c (R)c  Fix (/s.) and ] "rotates"  

c by  the fraction mo/s o of its fundamental  period. Since (so, m0) = 1 we can find integers n o 

and /c 0 such tha t  m o n o = l + s o k  o. I f  we set h - ]  n' and define cU: R ~ M  for any u E R  by  

cU(t) =c(u.  t) for all t E R, then 5=c  lira~ is an h-invariant geodesic with fundamental  period 

s o and 5 (R)cF ix  ([s,). Furthermore, for any pair of integers m and r with m s o + r m o ~ O  , 

5 ms~ is /r-invariant and the set of all /-invaldant geodesics coinciding with c (and 

hence y) up to a positive change of parameter  is given by  the tower of Sl-orbits 

$1"5 'ns~ mEZ+U (0). 

In  order to derive the desired formulas for 2(6 ms~176 and v(6 ms~176 )r we need 

formulas for the index and nullity of 6 m'o+rm~ in A(M,/r )  for all r. 
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Fix m and r and set ~ = ms 0 + rm o. Let ~ ;  be the vector space of all C ~ vector fields 

along ~ which are orthogonal to ~. From w 1 we see tha t  

(2.1) 
2(~,  f )  = ~ dim {X E ]9;ILX = I~X, X ( t  + ~ )  = f , (X( t ) )  u fi R} 

v(~ ,  it) = dim {X e Y ~ I L X  = 0, X( t  + ~ )  =- f , (X( t ) )  u fi R}. 

Let us equivalently consider the eomplexification V~ = ~ | C of 19~ and let L and ] ,  denote 

also the C-linear extensions of L: ]9;-+]97 and ] , :  T M ~  T M  respectively. For each real 

number #, any non-zero integer m and every complex number ~o of absolute value 1, we 

introduce the complex vector space 

Note tha t  from (2.1) 

(2.2) 2(5 ~,/ ')  = ~ dimc S~[/~, ~ ,  ] .]  
/x<0 

v(~ ~, 1~) = dime S; [0, rh, 1.]. 

In  the next  lemma we reduce the s tudy of S~[/~, ~ ,  f ,]  to subspaces with boundary 

conditions imposed only a t  1. Here w e  may  consider ],~ also as a linear map of V; since 

is fixed by ]~. 

L]~tMA 2.3. For all m, fEZ  with mso+rmo:#O and a n y / t E R  

S;[ /~ ,~ , f f , ]=  O ~) | S~[ t~ , l , r176  
r tn'm=ct z~=ot -~ 

where ~h = ms o + rm o and ~ = m n  o + rk o. 

Proo[. We first observe that  

�9 s, h .  ] | S~[/~, 1, o h . ] .  ~ ; [ # ,  ~ , / , ]  ~ S ; [ # ,  ~ ~ "  = 

The first inclusion is trivial since [~ = id and the second is essentially the same as Theorem 

I in Bot t  [1]. Every  YES,  I/z, ~ . s ,  ~ h, ] admits a unique expansion 

given by 

Y = ~ eo Y~, with Y~ E 8~ [/~, 1, wh,] 
to ~s  = 1 

I~sl--1 

Y~(t)=l/]~l. ~ to-qh.q+:(Y(t+q - 1)). 
q=O 
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Since for XES~[/a, ~h, f . ]  clearly X~,ES-~[/~, ~, ].] we get 

s;[#,  ~ ,  1,] = | s ; [# ,  1, ~h,]  n 8;[~, ~ ,  t~,]. 
(or~s ~ I 

A st ra ight forward computa t ion  shows t h a t  

S; [/~, 1, wh.] N S~ [/~, sS, / . ]  = S; [/~, 1, ~oh.] N ker  (/.~ - eo -m) 

and  when ~ 0  an expansion a rgument  as above  for 

I ~ l - 1  
Y E s~ s0 k e r ( / ,  - ~  ~) with Y~= 1/IS I- 5 z-q/s,o(q-1)(Y) e ke r ( / ,  - z )  

q~O 

where  z ranges over  ~-roots of sc-l=w -m, proves  t ha t  

S~[p, l ,  eoh.] N ker  (/.~ - ~-~) = | S~[p, 1, oJh.] N ker  (/~' - z) 

In  the case ~ = 0  a direct computa t ion  shows t h a t  the above  equal i ty  holds. Thus  

S~-[#, ~ , / . ]  = | | | S;[/~, 1, eoh.] N ker  (/.0 _ z) 

and we are through because every  z with ker  ( / . ~  satisfies z ~/~' =1 .  

For  each complex number  z of absolute value 1, we define non-negat ive  integer va lued 

funct ions A z and N ~ on the  uni t  circle S i c  C by  

and  

AZ(~o) = ~ d ime  {Sz[#, 1, ~oh,] N ker  (/,~ - z)} 
1~<0 

N~(w) = d i m c  {S~ [0, 1, o~h.] (1 ker (f.' - z)} 

for all o)~S 1. F rom (2.2) and L e m m a  2.3 we obtain  the  desired formulas  

(2.4) 

2(6 "~~176 f )  = ~ X X A2  o~) 
~($JSo--1 (om$o+rmo=c< zmno4-rko=~ -1 

~(e'~~ /r) = ~ X ~ Nz(~) 
~8/8o=1 o)mSo+rmo~o~ z~;q77o ;~rko=~ -1 

Note  t h a t  A ~ and  N z are identically zero unless ker  ( / ~ - z )  =V{0}. I n  par t icular  there  

are only finitely m a n y  non-zero functions A ~ and NE We obta in  fur ther  propert ies  of 

these functions f rom the following observat ion.  The complexif icat ion of the normal  bundle 

5(R) • to 5(R) in M admi ts  a Whi tney  sum decomposi t ion into "e igenbundles"  for/~~ con- 

sidered as a bundle  map.  I f  5(R)X(z) denotes the eigenbundle for ].~ with the eigenvalue z, 
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and if V; (z) c Vs is the complex vector fields along 5 in 5(R) • (z) then clearly ker (],~ - z) = 

Vs (z). Furthermore L preserves V'~(z) since it commutes with ]~'. Let  L ~ be the restriction 

of L to V~(z), then 

S [ b ,  1, r f3 ker (]." - z )  = {XE V-~(z)IL~X =/xX, X(t ~- 1) = r 

I f  we identify A(M, h) in the canonical way with L~-sections of the mapping toms  bundle 

M •  • R/Z-~R/Z = S  1 of h, then the boundary condition X( t+l )=o~h, (X( t ) )  is 

exchanged with X(t+l)=eoX(t). Here Z acts on M • R by  (n, (p, t))~(h~(p), t+n) (see 

[10]). From this we see that  A ~ and N ~ are functions of the type A and N introduced 

in Bot t  [1]. In  particular A ~ and N ~ have the following important  properties. 

(2.5) For each z, N~(w)=0 except for at  most 2 dim 5(R)• (<~2 (dim M - l ) )  points, 

the so called Poineard points of L z. 

(2.6) For each z, A z is locally constant except possibly at the Poincard points of L ~. 

For each z, the inequality 

(2.7) lim AZ(~o) >~ A~(w0) 
a)--~oJ 0 

holds for any  co 0. 

Remark. The above properties for A z and N ~ as well as (2.1) can also be derived by  

the classical methods of Morse involving quadratic forms on finite dimensional approxima- 

tions of our spaces (se in particular Theorem IV, 3.1, IV 3.2 and I I I  2.3 in [15] and 

compare with [22]). 

We should also like to remark tha t  the Poincard points of L * can be described by  

means of the geodesic flow in the unit tangent bundle of M • h I .  Let P~ denote the differen- 

tial of the Poincard map for the closed orbit t~(c(t), ~/~t)/ll. II of the geodesic flow for 

M •  I f  we consider/so as an isometry on M • h i  (identity on I )  then P~ commutes 

with [,~ Hence, (the complexification of) P~ preserves the eigenspaces of ]~~ The Poincard 

points of L ~ can now be described as the set of eigenvalues of norm 1 for P ;  restricted to the 

z-eigenspaee for ~~ [**. Note tha t  in the horizontal and vertical splitting of the double tangent 
o sa bundle f~, = (],, [.0). 

We are now in position to derive a growth estimate for the sequence 

{~(e ~~ 

analogous to L e m m a  1 in [7]. 
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L ~ M n  2.8. 

such that 

Ei ther i (5  ~~176 l) = O lor all m ~ Z+ U {0) or there exist numbers ~, a e R + 

~.(~"0+"~ 1) - / t ( ~ ' " + ' %  1) >1 (m~ - mD so" ~ - a 

/or all integers m~ >~ m~ >~ O. 

Proo]. Fix  a z wi th  ker  (/~ - z )  =~{0}, in par t icular  z ~/~ = 1. Le t  0 <0:(z) < .., <0,re(z) ~< 1 

be the  Poincard exponents  wi th  respect  to z i.e. e ~~ . . . . .  e~*q,(~) (~) are the  Poincard 

points  of L ~ (see (2.5)). Set Oo(z)=O, O~(~)+~(z)~l, and  let ai(z)=AZ(eo) for w = e  ~*~ with 

ae]Oi_~(z),~,(z)[ and  l < ~ j < r ( z ) + l ;  compare  (2.6). In  c a s e  Or(z)(Z)=l set a~(z)+:(z)=O. 

B y  simple angle compar ison we get  

r ( z ) + l  

X A~(~,)/> Z [(rex So + too) (ej(z) - Oj-~(z)) - 1] aj(z) 

with a l = z  -m'n.-~~ and 

r (z )+  1 

Z A~(~)< Z [(m~so+m)(ej(z)-ej_:(z))+l]aj(z) 
r + mo = g~ j = 1 

with a 2 = z  -m*n~176 Thus  f rom (2.4) we get  

r ( z ) + l  

~(: ..... +'% l)-,:(e'~'~~ 1) > Z Z 
Z t = 1  

( (m 1 - m2) So(Qj(z ) - -  ~1_1 (,$))- 2)aj(z) 

Now, if i(5 m~+'~, ])q=O for some m, then  b y  (2.4), (2.6) and (2.7) there  is ~ z o and  ~ )o such 

t h a t  ej0_l(z0) <~j,(zo) and ajo(Z0)>0. Hence  

where  

/t( 5~'s~176 l) -- i (c  .... +too l) > (m: -- m2)s  o �9 s - a, 

r ( z ) + l  

e=(~j,(zo)--gjo_l(zo))aj,(zo) and a = ~  ~ 2aj(z). 
z 1=1  

The  nex t  l emma  is a crucial generalization of L e m m a  2 in [7]. Before s ta t ing it, no te  

t h a t  if c is a n / - i n v a r i a n t  geodesic fixed b y / m  for some m, then  c is also critical for the  

restr ict ion of E r to  A (Fix (/m),/). We denote the  nul l i ty  of c in A (Fix (/m),/) b y  

~ ( c , / [ F i x  (1'9). 

LEMMA 2.9. There exist positive integers k:, ..., lea and  sequences {m~}, i >0,  j = l  . . . . .  q 

such that the numbers "4k, are mutually distinct, (talk,} = ('~o +mol~  e Z+ U (0}} and 

44 m, 8. 4 ~ ~o~ 
~,(5 , / ) = ~ , ( ~ , / [ F i x ( /  ))=~,(~ , f l F i ~ ( /  )), 
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where s~ is the maximal integer relatively prime to m~ and dividing s/so, and where r is an integer 

with the property rm~--1 rood s0s~. 

Proo/. For each 1E{l ..... s/so}, each :r with (u, v)=1 and vls[s o let P7 be the 

collection of Poincar4 points for L z with z~= a-1 i.e. 

and let 

If we set 

P~ = {co [ X N~(w) > 0} 
z l =o~-1  

QT = {q E Z+13b E Z + s.t. (b, qv) = I, e~%v EP~}. 

Qz= U QT and Q= QI U , . .  U Qs/so U {1} 

then Q is a finite set by (2.5). Note that  if v(6 ms~176 ] ) ~ 0  for some mEZ+U {0}, then by 

(2.4) there exist l, a=e~"/v and (D=e2~iP/q with (p, q)=(u,  v ) = l  such that  coms~+m~ 

and (o EPT. The property mmso+m.= ~ implies that  v divides q i.e, q/v EQ~. 

For each subset D c Q ,  let k(D) denote the least common multiple of all the element in 

D. Choose distinct numbers ]gi . . . . .  kt such that  {]~z ..... f f i }={k(n)[DcQ}.  For each 

jE{1 ..... t} we select from the sequence m/cj, mEZ+ the greatest subsequence ~h~$, with 

the property that  whenever qEQ and q l ~ $ j  then qISj. Then the numbers ~ $ j  are 

mutually distinct and {~}/c~li>0, j = l  ..... t } =Z  +. Let now {$~ ...... ~jq} be the maximal 

subset of {/~1 ..... St} such that  {~h~j~li>O}N {-~0+m0ImeZ+U {0}}=~ for every r e  

{1, ..., q}. Choose subsequenees {m~}, i>0 ,  rE{1 ..... q} from the sequences {n~} so that  

{m~k~li>O, rE{1 ..... q}}={mso+molmEZ+U {0}}. If we set k~=/~j~, then we claim that  

the positive integers 1r ..... kq and sequences {m~}, i >0, j = l  ..... q have the required 

properties. 

Let  us fix a /cj and an m~. Then there is a unique integer m such that  mso§ j. 

Let /E{1, ..., S/So} be determined by l ~ m n o + k  o mod s/s o. Suppose that  for some ~ = e ~ / v  

with (u, v )=1  
~ lw(~),  o 

i.e. there is a n  O.)=e2:~ib/qvEP7 with (b, qv)= l ,  so that  m ~  =~. Hence m~ and v are 

relatively prime. Thus from (2.4) we get 

where s~ is the maximal integer which satisfies (s~, m~)= 1 and s~[s/s o. Let s~'-..., s$ ~ be 

the decomposition of s/sos ~ into prime factors. From m~k~no-/s o + 1 rood S/So and s~ ..... 
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%[m~ we see tha t  1 and s/sos ~ are relatively prime. Thus if z satisfies zS/S~ and z t = a  -~ 
s i s i _ m ! k ,  

where ~ J = 1 then z ~ = 1. I n  the above expression for v(c J ~,/) this means tha t  the sum 

over z is taken only for z satisfying ker (! , ' -z)4={O} and z~=l i.e. 

v(5 , / ) = v ( 5  , / ] F i x ( /  )). 

i Since (so, m~kj)=l  and (4, m J ) = l  we can pick an integer r so tha t  rmJ- -1  mods0s  ,. 
s g 

Therefore for each ~ with ~ J = 1 we have 

and hence 

m~ 
{co EP;I  co jkj = ~} = {o~ EP~I co ~j = a~} 

m~k . sos 
v(6 ' , !  F ix ( /  J))= Z ~ ~ N~(e~ - 

~ = 1  OJkJ=~ r z l - -o :  - t  

On the other hand  k s-= (rm) s o + r m  o mod SoS ~ and lr  ~ (rm) n o + rk  o mod a/s o. Thus we can 
s! 

find an integer n so tha t  k s = nso + r m  o and n n  o § rk  o - l r  rood s~. Therefore 6 k~ E A(Fix  (f~ ~),jr) 

and from (2.4) we have 

8o8 ~. '))= 
i 

si= 1 ,kj=~ ztr=~-~ 
Since (r, s~)= 1 we are done. 

3. Local  and characteristic invariants 

I n  finite dimensions Morse [15] associated to any  isolated critical point  a local homo- 

logical invariant.  His construct ion was modified and generalized to infinite dimensions by  

Gromoll and Meyer [6], in the case where the involved function satisfies condition (C) 

and the hessian operator  is of the form S = id  + k, where/c is a compact  operator  (see w 1). 

Consider an isolated critical orbit  S l . c  in A(M, / ) .  The Sl-action on A ( M , / )  induces 

an isometric Sl-action on the normal  bundle 7//of S l . c .  Let  ~Ie: ~ / -~A(M,/ )  be an a r b i t r a r y  

equivariant  smooth map which is the ident i ty  on the zero-section and of maximal  rank 

there. The image by  ~ of a sufficiently small disebundle of 7//defines an equivar iant  tubular  

neighbourhood ~ = S 1-/)c of S l ' c ,  where Dc is the fiber over c. By  the so called splitting 

lemma of Gromoll and Meyer [6] any  function with an isolated critical point  (and which 

has the above properties) splits locally in a non-degenerate par t  and a completely 

degenerate part .  F rom an orbit  version of t ha t  lemma it follows tha t  for Oc sufficiently 

small E f restricted to ~ satisfies condition (C) and has only c as a critical point  (compare 

[7] and [22]). 
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We can now define the local invariant for Er ]~c  at  c. For 8 > 0  we let d~: ~0c-~R be 

given by  

for all aED~, where E = E ~  I ~c -E~(c )  �9 Then for 8 sufficiently small 

Wc(8) = E-~[ - 8 ,  8] N df~( - o% 17. (~/5)2], We(8)- = E - ~ ( - 8 )  f~ W~(8) 

is a pair of so called admissible regions and 

~(E / ,  c) = H,(W~(8), W~(8)-) 

is a well defined local homological invariant of c (see [6]; for simplicity we have chosen 

~1 and ~0 there to be ~1=~ and ~0=(3/5).~ respectively). Here we take homology with 

coefficients in an arbi trary field. I f  we set W(8)=S 1. W~(8) and W(8) -=S  1. We(8)- then 

for 8 sufficiently small 
~4(E z, S ~.c) = H. (W(8) ,  W(8)-) 

is a well defined local homol0gical invariant  of the orbit S l . c  (see also Klingenberg [13] 

for a different approach). The crucial proper ty  of this invariant  is contained in the 

following lemma, which is proved by  deformation and excision arguments exactly as 

Lemma 4 in Gromoll and Meyer [7]. 

LEMMA 3.1. I /  b is the only critical value o/ E f in [b - e ,  b+e]  /or some ~>0  and i/  

$1.cl . . . .  , Sl.cn are the only critical orbits with ES-value b then 

n 

H.(A(M,/)~+~, A(M,/)b-g) = (~ W(Ef, $1. c~), 

where a.~ usual A ( M , / ) a = ( E S ) - l ( -  0% a]. 

Observe now tha t  (W(8), W(8)-) can be considered as a pair of bundles over the circle 

S 1 with fiber (We(8), Wo{8)-). I f  we write S 1 as the union of two intervals and apply the 

relative Mayer-Vietoris sequence [18] to the corresponding two pairs of trivial bundles, 

we get 
dim ~/~(E r, Sl .c)  ~< 2 (dim ~/~(E r, c )+d im ~ _ l ( E  f, e)) 

for all k. Hence it is sufficient to study the local invariants ?tt(E r, c). 

In  Gromoll and Meyer [6] there was also introduced a characteristic invariant ~/0, 

which will play a very important  role in this paper. This invariant  may  be defined as 

the local invariant of the degenerate part  of the function. Since v(c,/) ~<2 {dim M - l )  
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for any critical point c EA(M, ]) we get in particular that  the characteristic invariant of 

Ef  I ~ at c satisfies 

(3.2) :H~ c ) = 0  for k ~ > 2 d i m M - 1 .  

Furthermore, according to the shifting theorem of [6] 

:Hk+~(E I, c )=  ~~ c) for all k, 

where 2 =2(c,/) .  In particular, if we set 

Bk(c, ]) = dim ~k(E I, Sl.c) and B~ ~) = dim :/4~k(E r, c) 
then 

(3.3) Bk(c,/) <~ 2(/Tk_~(c,/) +B~ 1)) 

for all k, when ~L =~(c, ]) as above. We will use Bk(c) instead of Bk(c,/) when there is no 

danger of confusion. 

For the behavior of characteristic invariants we recall also the following very 

useful lemma of [6]. 

L~.gMA 3.4. Suppose c is an isolated critical point/or E: A-+R and let ~k be a closed 

Hilbert submani/old o/ A through c. I /grad  E restricted to A is tangent to ]k and i / the null 

space o/ the Hessian o[ E at c is contained in T~s then ~~ c)=74~163 c). 

From this lemma we shall now derive the following two impotant properties for the 

characteristic invariants of isometry-invariant geodesics. 

PROPOSITIO~ 3.5. Let iv be a totally geodesic submani /old o/ M with / (N )=N .  Let 

e: R---~N be an/-invarint geodesic such that S 1. e is an isolated critical orbit in A(M,/) .  Then 

~t~ ~, c)= ~t~ A(~V,/), c) i~ ~(c, /) =~(c, /I iV). 

Proo/. Since N is totally geodesic it is intuitively obvious that  grad E I is tangent  

to the closed submanifold A(N, / )  of A(M,/) .  In order to prove it we pick a #EA(N, / ) .  

Since the set C~176 of smooth /-invariant curves is dense in A(N, / )  we can assume 

that  a is C% Let  X E T ~ A ( M , / )  be orthogonal to A(N, l). Then X is pointwise orthogonal 

to N because N is totally geodesic. Hence 

dEr(X) = <X', d>o = - <X, ~'> = 0 

since a is smooth and d' is tangent to N. 
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Let  now S 1. ~ be an equivariant tubular neighbourhood of S x" c in A(N,  ]) and let D 

be an equivariant tubular neighbourhood of A(N, / )  in A(M,/ ) .  Then ~ = .DIS1. ~ is an 

equivariant tubular neighbourhood of S ~. c in A(M, / )  of the form S ~. ~ where ~c = D I ZY~. 

Since grad E s is tangent  to A(N, / )  we see from this that  gard (EII ~c) restricted to ~c N is 

tangent to ~3~. Moreover, the null space of the Hessian of Eli ~c at c consists of / - invar iant  

Jaeobi fields orthogonal to c. From h r totally geodesic in M and v(c, ]) =v(c, [ IN)  it follows 

tha t  the above null space is contained in TCV~. Hence ~~ c)=7tt~ c) by  

Lemma 3.4 

PROPOSITION 3.6. Assume that Sl .c  is a critical orbit o / E  r such that Sl .c  m/or some 

m is an isolated critical orbit/or E W in A(M,/m). Then S 1. c is also isolated and ~~ c) = 

~~ I~, c ~) i/~(e, l)=~(c ~, l~)- 

Proo]. By arguing on the mapping torus M x s I  for / (compare the remark in w 2) 

this proposition follows from Theorem 3 in [7]. For the sake of completeness we 

proceed as follows: 

Let  m: A(M, / ) -+A(M,  ira) be the iteration map defined by re(a) =(r m for all a E A(M, l). 

I f  we endow A(M, ]m) with the following equivalent riemannian metric 

<X, Y>l,m = <X, Y>o+m-~<X ', Y'>0 

then m is an isometric embedding. Furthermore E o m = m 2 . E  and hence :H~ = 

74~ m(A(M, 1)), c~). 

Note tha t  the action of / on M as well as the translation by  m -1 on R induces two 

isometric Z-actions on A(M,/m). Moreover, m(A(M,/))  is exactly the submanifold of 

A(M, /a )  on which these two actions coincide. Since both actions leave Efm invariant 

we see from this tha t  grad Ezm is tangent to m(A(M, ])). We can now argue as in Proposi- 

tion 3.5 so as to obtain ~4~ cm)=~/~ rm, cm). 

Combining the above propositions with Lemma 2.9 we see in particular tha t  there are 

only finitely many  characterisic invariants associated with a single (isolated tower of) 

/-invariant geodesic(s). 

4. Existence of infinitely many invariant geodesics 

Let M be a compact, connected and simply connected riemannian manifold and let 

A: M + M  be an isometry. Then the Banach manifold C~ A) of continuous curves 

(r: [0, 1 ] + M  satisfying o(1)=A(a(0)) with the compact-open topology is connected. Using 

the evaluation fibration "at 0", C~ A ) ~ M  with fiber the ordinary loop space ~ (up 
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to homotopy), it follows from Serre [17] tha t  the Betti  numbers bk(C~ A))=  

dim Hk(C~ A)) are all finite. Hence our main theorem is a consequence of the next 

theorem. 

THEOREM 4.1. Assume that M is a compact connected riemannian mani/old and 

that /: M--->M is an isometry o/finite order. I / there are at most finitely many/-invariant 

geodesics on M, then the sequence bk(C~ ])), k~>2 dim M is bounded. 

Proo/. Since the inclusion A(M, / )  c C0(M,/) is a homotopy equivalence [8] we may  

just as well prove the theorem for A(M,/ ) .  

Suppose ] has only finitely many  invariant  geodesics represented in A(M, / )  by the 

orbits Sl'st~ st+m1, . . . ,  Sl'Cr'r'r'~ r+mr, mEZ+U{0}, where 54 are F~-invariant as in w Since 

all these orbits are isolated we can apply the results of the previous paragraphs. By Lemma 

2.9, Proposition 3.5 and 3.6 there is a constant B > 0  such tha t  

kt ~ /~<B for all k , i = l  ..... r and m e Z  +U{0}. 

From this, (3.2), (3.3) and Lemma 2.8 

B~(5'~s~+mi)~4B fora l l  k , i  and m 

and the number of orbits with Bk(Sms*+m*):4:0 is bounded by a constant C > 0  for all 

k ) 2  dim M. Thus from Lemma 3.1 together with an exact sequence argument we get 

(Morse inequalities) for all regular values 0 <a<b 

be(A(M,/)b, A(M, 1) 6) ~ 4 B C  for k ) 2  dim M. 

For a sufficiently small a > 0, Fix ( f )c  A(M, / )  is a strong deformation retract  of A(M, ])~ 

[8]. Since furthermore dim Fix ([) ~< dim M we see  that  

bk(A(M, ])b) ~ 4BC for /c ~> 2 dim M 

and all regular values b. Fix now a k ~> 2 dim M and choose b so large that  Be(c ) = Bk+l(c) = 0 

for all critical orbits Sl.c with Ef(c)>b. Then, again by Lemma 3.1 and an exact 

sequence argument bk(A(M, [)) =b~(A(M, [)~). Hence sup {bk(A(M, ]))1k>/2 dim M} 

4BC. 

Note tha t  if M is not simply connected then C~ f) is not connected and we can 

very well have b~(C~ ] ) ) - -~  if k < 2  d i m M  even in the ease where / has only finitely 

many  invariant  geodesics. This may  happen if there is an ]-invariant geodesic all of 

whose iterates have index zero. 

As an immediate application of our theorem and the SuUivan-Vigu6 theorem [21] 

mentioned in the introduction we have: 
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COROLLARY 4.2. Let M be a compact, 1-connected mani]old whose rational cohomology 

ring is not generated by one element, and l e t / :  M ~ M  be a finite order smooth map which 

is homotopic to id M. Then there are infinitely many / - invar ian t  geodesics on M in any metric 

]or which ] is an isometry. 

Let  us discuss the general case where A: M - + M  is an  arbi t rary  isometry. One might  

still hope tha t  the condition {bk(A(M, A))}k>~ 0 unbounded  would ensure the existence of 

infinitely m a n y  A-invar iant  geodesics. 

Consider the example A = A  I x Az: S 2 x $ 2 ~ S  ~ x S ~, where A 1 and A S are rotat ions 

on the 2-sphere of constant  curvature  1. A is clearly homotopic  to ids~• and hence 

A(S ~ x S 2, A) has unbounded  sequence of Bett i  numbers.  F rom the geometry it is clear t ha t  

any  such A has infinitely m a n y  invariant  geodesics in the product  metric on S ~ x S 2. Note  

however, tha t  if the rat io between the rotat ions of A 1 and A s is irrational, then  A has 

only four closed invariant  geodesics. Hence as far as closed A-invar iant  geodesics is con- 

cerned our theorem seems to be optimal. 

Note  also tha t  if in the above example A 1 = A~ is an irrational rotat ion on S 2 then the 

isometric Sl-action on $2•  S ~ generated by  A has only finitely m a n y  (in fact  five) 

geodesic orbits. 

I n  general it is true, t ha t  if A has a non-closed invariant  geodesic then it has 

uncountab ly  m a n y  invariant  geodesics (see [9]). Thus if A has only finitely m a n y  invar iant  

geodesics c~, ..., cr then they  must  all be closed. Here again we are faced with the problem 

of the iterates of each ci, i = 1 .. . . .  r. Fix i E ( I ,  ..., r} and let c be an  A-invar iant  geodesic with 

minimal EA-value having the same image as c~. Then the fundamenta l  period of c is g for 

some cr and all the iterates of c are described by  c 'n~+l, mEZ+U {0}. Using a general 

index theorem by  Kl ingmann [14] together  with Lemma 2.8 (in the special case ]~idM) 

it is possible to derive a growth estimate for the sequence ~(c m~§ A)  ra >~0 exact ly  of the 

type  in Lemma 2.8 (see also [16]). Hence f rom our arguments  in the proof of Theorem 4.1 

we see tha t  the main theorem holds for an arb i t rary  isometry if there are only finitely 

m a n y  different characteristic invariants  among  ~/~ c~+1). As we observed, this follows 

from Lemma 2.9, Proposi t ion 3.5 and 3.6 in the case where A = / i s  of finite order, and it 

seems to  us t ha t  the general case will have to  be t rea ted  in quite a different manner.  

An interesting problem in connection with this paper  is to find necessary and sufficient 

conditions on A and on M for A(M, A) to have an unbounded  sequence of Bett i  numbers.  

Here one can assume tha t  A = ] is of finite order. As ment ioned in the introduct ion the 

problem has been solved completely for rational coefficients in the case ]=idM [21]. I n  

t ha t  case it is not  difficult to find the so called minimal model for A(M, idM), which 
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conta ins  all  the  in format ion  a b o u t  the  r a t iona l  h o m o t o p y  t heo ry  of the  space (see [19], 

[4], [20], [21] and  also [13]). The  general  case is more  subt le  and  will be t r e a t e d  in 

a subsequent  p a p e r  b y  the  f irst  n a m e d  au thor ,  S. Ha lpe r in  and  M. Vigu6 [11]. 
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