
IMMERSION AND EMBEDDING OF PROJECTIVE VARIETIES 

BY 

KENT W. JOHNSOSI(~) 

Institute for Advanced Study, Princeton 

Contents 

w 0.  ~ N T R O D U C T I O N  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

w 1. BASIC DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
1.1. T h e  t a n g e n t  s t a r  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
1.2. R a m i f i c a t i o n ,  i m m e r s i o n ,  a n d  e m b e d d i n g  . . . . . . . . . . . . . . . . . .  54  

1.3. D e s i r a b l e  p r o p e r t i e s  o f  i m m e r s i o n  a n d  e m b e d d i n g  . . . . . . . . . . . . . .  54  
1.4. O t h e r  p o s s i b l e  d e f i n i t i o n s  . . . . . . . . . . . . . . . . . . . . . . . .  55 

w 2. THE ~AMIFICATION AND DOUBLE LOCI OF A PROJECTION . . . . . . . . . . . . . .  56 
2.1. P r o j e c t i o n  f r o m  a l i n e a r  s p a c e  . . . . . . . . . . . . . . . . . . . . . .  56 

2.2. A g e o m e t r i c  d e s c r i p t i o n  o f  t h e  r a m i f i c a t i o n  a n d  d o u b l e  loc i  o f  a p r o j e c t i o n  . . . 57 

w 3. R A ~ I I F I C A T I O N  A N D  D O U B L E  C Y C L E S  . . . . . . . . . . . . . . . . . . . . . .  5 8  

3.1. A l g e b r a i c  c y c l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 
3.2. M a i n  t h e o r e m  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

w 4.  C H O W  T H E O R Y  A N D  C H E R N  C L A S S E S  . . . . . . . . . . . . . . . . . . . . . .  60 

4.1. C h o w  h o m o l o g y  a n d  c o h o m o l o g y  . . . . . . . . . . . . . .  : . . . . . .  61 
4.2. C h e r n  c l a s s e s  a n d  Segre  c l a s s e s  . . . . . . . . . . . . . . . . . . . . . .  61 

4.3.  S eg re  c l a s s e s  f o r  s i n g u l a r  v a r i e t i e s  . . . . . . . . . . . . . . . . . . . . .  62 

w 5.  H O M O L O G Y  C L A S S E S  O F  T H E  R A M I F I C A T I O N  A N D  D O U B L E  C Y C L E S  . . . . . . . . . .  62 

5.1. C a l c u l a t i o n  o f  t h e  c l a s s e s  . . . . . . . . . . . . . . . . . . . . . . . . .  62 
5.2. M a i n  r e s u l t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

w 0. Introduction 

L e t / :  X - +  Y b e  a m o r p h i s m  o f  a l g e b r a i c  v a r i e t i e s  d e f i n e d  o v e r  a n  a l g e b r a i c a l l y  c l o s e d  

f i e ld .  I f  X a n d  Y a r e  n o n s i n g u l a r ,  a n d  t h e  i n d u c e d  m a p  d]: T (X) -+T(Y)  of  t a n g e n t  

b u n d l e s  i s  a m o n o m o r p h i s m ,  t h e n  / i s  c a l l e d  a n  immersion. A o n e - t o - o n e  i m m e r s i o n  i s  

(2) T h i s  pape r  is a rev i s ion  of t he  a u t h o r ' s  thes i s  a t  B rown  IYniversity,  J u n e  1976. 
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called a n  embedding. I f  X or Y is singular, there are several possible definitions of immersion 

and embeding, corresponding to the various tangent cones which can serve as the tangent 

space at  a singular point. 

In  any category where one has notions of immersion and embedding, a natural  

question is the following: Given objects X and Y, and some equivalence class [/] of mappings 

X-+ Y, does [/] contain an immersion or an embedding? I f  / is a generic member  of [/], 

one might hope tha t  the rami/ication locus of ] (that is, the subset of X where ] fails to be 

an immersion) and the double locus of / (that is, the preimage in X of the self-intersection 

o f / (X)  in Y) determine classes in the homology of X which could be calculated in terms 

of invariants of X, Y and [/]. The question could then be rephrased in terms of the 

vanishing of these homology classes. 

Our main accomplishment in this paper is to carry out this program in the case 

when X is a (possibly singular) subvariety of some projective space, y = p m  is a smaller 

projective space, and [/] is the set of all projections of X to pro. Our definitions of immer- 

sion and embedding for singular varieties guarentee tha t  the ramification and double 

homology classes we calculate have uniform dimension. In  fact, these classes can be 

represented by  positive cycles whose supports are, respectively, the ramification and 

double loci of a generic projection of X to Pm (see w 5.2 for a precise s tatement  of the 

theorem). 

On manifolds it is possible to have positive cycles which are homologous to 0. 

So, for instance, it is possible for the ramification homology class determined by maps in a 

homotopy equivalence class []] to be 0 without having the ramification locus of any  of the 

maps in [/] actually be empty.  This cannot happen in our case, since the degree of a 

homology class on a projective variety is equal to the degree of an algebraic cycle which 

represents it, and a positive algebraic cycle can have degree 0 only if its support is 

empty.  Hence the theorem we obtain is much stronger than is possible in the topological 

case. 

I f  X is a nonsingular n-dimensional subvariety of /c-dimensional projective space, 

/c~<2n, and m is less than /c, we have a simple proof of the following result: 

(*) I /  X can be immersed in pm by projection, then it can be so embedded. 

Our definitions of immersion and embedding for singular varieties preserve both this 

result and our proof of it (w 5.2, Corollary 1). We are able to deduce tha t  (*) is true also 

if one defines immersion and embedding using the Zariski tangent space (which is not the 

definition we make, although it is perhaps the most obvious one) (w 5.2, Corollary 2). 

We note tha t  there is no theorem like (*) in the category of smooth manifolds. For 
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example, the Klein bottle K can be realized as a submanifold of R 4 which can be immersed 

in R a by  projection; but  K cannot be embeded in either R a or real projective 3-space. 

Our formulas for the ramification and double classes are in terms of homology 

invariants of X which are Poincard dual to the Segre, or inverse Chern, classes of X when 

X is nonsingular (w 4.3). The definition of these classes is similar to a definition of 

canonical classes given by  B. Segre [1, p. 113]. Since Chern classes and Segre classes of 

nonsingular varieties are related multiplicatively (see w 4.2), and multiplication is lost 

in homology, one should not expect any  obvious relation between these classes and the 

various homology Chern classes for singular varieties which have been defined in [3] and 

[14]. 
The literature on immersions and embeddings is much more extensive in topology than  

in geometry. 

A survey of results in the topological case can be found in [4]. The homology class 

determined by  the ramification locus of the projection of a manifold to euclidean space has 

been studied by  many  people, including Pontrjagin [20] and Thorn [25] in the smooth 

case, and MeCrory [15] in the simplicial case. McCrory [16] has also considered the 

homology class determined by  the double locus of such a map. 

The ramification class of a morphism between nonsingular algebraic varieties is given 

by  Porteous's formula [22], which is proved in great generality by  Kempf  and Laksov 

[10]. 

In  the paper which first made us interested in the subject, Holme [8] finds a sequence 

of numbers which he shows must  be 0 in order for a nonsingular variety X n c pN, N = 2n + 1, 

to be embeddable in pm by  projection. His idea is to determine the dimension of 

See X c pN, the var iety of secants of X. (If the dimension of Sec X is less than or equal 

to m, then X can be embedded in pm by  projection.) To determine this dimension he 

calculates, in A(P N • the class of the subvar ie ty  

((x, y)lxEX, and the line through x and y is secant to X} 

of pN • (This var iety is N-dimensional, and maps onto See X by  projection on the 

second factor.) Writing this class in terms of the natural  basis 

{[pN • p0], [pN-~ • p1] . . . . .  Lpo • r~])  

of AN(P N • pN), he observes tha t  if the coefficients of [p~--m-1 • 1 )m+l ]  . . . . .  [p0 X P~] are all 

0, then the dimension of Sec X is less than  or equal to m, so X is embeddable in pro. The 

coefficient of [pN-m-1 • pm+l] turns out to be the degree of the double cycle of a generic 

projection X-~p% 
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Peters and Simonis [19] calculate the number of secants to X n c p  2n+1 through a 

general point in p2n+l. This number is just half of the degree of the double cycle of a 

generic projection X ~ P  sn. Their approach is similar to ours, although we did not become 

aware of their work until ours was substantially complete. 

The more general problem of calculating the degree of the double cycle of 

morphism X ~  Y, where X and Y are both nonsingular, was dealt with by  Severi as 

early as 1902 [24]. In  1940, Todd [26] calculated the class of this cycle, in the ring of 

equivalence which had been developed by Severi, in terms of his "invariant  systems" 

(which are in fact Chern classes and Segre classes). 

In  two recent, very important  papers, Laksov has given modern proofs of Todd's  

results. In  the first [12] he defines a double cycle for a generic morphism X ~ P  m, where 

X is nonsingular, and calculates its rational equivalence class in terms of the Segre classes 

of X. He does not assume X to be a subvariety of P~ and take the morphism to be a 

projection, so his theorem is stronger than ours in tha t  respect. He constructs the 

double cycle by  defining a homomorphism O'~+1~F, where F is a rank 2 bundle on 

B = the blow-up of X • X along its diagonal; the double cycle is t hen  the push-down to X 

of the support of the cokernel of this homomorphism. The bundle F is obtained from a 

secant construction due to Schwarzenberger. 

The relation between Laksov's  approach a n d  ou~s is as follows: The sheaf homo- 

morphism O~+l-->_F gives a correspondence from B to GI(PZ), the Grassmannian of lines 

in pro. I f  X is a nonsingular subvariety of pN, and X-+P m is a generic projection, then this 

correspondence can be factored as 

B ~ ,GI(P N ) - - ~ G I ( P m  ), 

where ~, is the morphism we define in w 2.2. The set where GI(P N) - - ~ GI(P m) is not defined 

is precisely the Schubert variety W(H) of lines in P~ which intersect the space H defining 

the projection of X to pro; so the support of the cokernel of Or~+l--->F (that is, the set 

where B - - ~  GI(P m) is not defined) is the pullback of W(H) to B. Therefore our defini- 

tion of the double cycle and his agree in this case (cf. w 3.2, Theorem (ii)). 

In  the second paper [13] he calculates the rational equivalence class of a double 

cycle for a map X--->Y between nonsingular varieties. His argument can easily be 

modified to allow X to be singular, and so that  the Segre classes tha t  we have defined for 

singular varieties (w come into the formula [3]. 

Another recent  paper tha t  is closely related to ours is another one by Holme [9], 

in which he extends his earlier result to include the case when X is singular. His whole 

approach is different from ours (cf. our discussion of his work above), but  for comparison 
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purpoees what he does is to define ramification using the Zariski tangent  space of X,  

rather  than the tangent star (see w 1.4 below). This has the advantage tha t  the numbers he 

obtains are obstructions to being able to project X isomorphically. Our definition of 

embedding is not as strong as this. 

I would like to thank my  advisor, William Fulton, for his help in preparing this 

work. I am also grateful to Alan Landman and Clint McCrory for suggesting points of 

view tha t  have proved fruitful. 

w 1. Basic definitions 

In  this section we define notions of immersion and embedding for singular algebraic 

varieties. 

The terms "immersion" and "embedding" are borrowed from differential topology. 

In  the category of smooth manifolds, an immersion is a mapping which does not collapse 

tangent spaces (i.e., the induced differential homomorphisms between tangent spaces are 

all one-to-one), and an embedding is a one-to-one immersion. 

There are obvious analogues of these notions for nonsingular varieties. But  in the 

singular case, "collapsing tangent spaces" can be defined in various ways, since there are 

several tangent cones tha t  are reasonable replacements for the tangent  space, and, if a 

cone is not linear, "finite-to-one" might replace "one-to-one" as a criterion for non- 

collapsing. 

The tangent cone we use in defining immersion and embedding (which we call the 

tangent star, for lack of a better  name) is not an obvious choice. In  w 1.3 we describe some 

good properties tha t  our definition has, and in w 1.4 we give examples to show tha t  more 

obvious definitions do not have these properties. 

A variety is a projective and reduced scheme defined over an algebraically closed field. 

A nonsingular var iety is always assumed to be irreducible. 

1.1. The tangent star 

Let X be a variety, and let 3 be the ideal sheaf of the diagona ]in X • X; then 

G~_o3J/y ~+1 is a sheaf of algebras on X~d iag0na l  in X x X .  We define 

O9 

I f  x is a closed point in X/~, the scheme 

T(X)x = T(X)  • x Spee (k(x)) 

is called the tangent star to X at x. 
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I f  |  (Symox(Y/U2)), then | is the Zariski tangent space to X at x. The 

surjection Symox(Y/3~)~ | j+l [6, IV 16.1.2.2] induces an inclusion T(X)~| 
so the tangent star is a subscheme of the Zariski tangent space. 

I f  X is a subvariety of C ~, then T(X)x is the union of all lines 1 through x for which 

there are sequences {y~}, {y~} of points in X converging to x such tha t  the sequence of 

lines {span (y~, y~)} converges to 1. (See Appendix C.) 

The tangent star is different, in general, from both the usual tangent cone and the 

Zariski tangent space. For example, let X ~  C ~ be the union of three lines not lying in a 

plane which intersect in a point x. Then the tangent cone of X at  x is X itself, T(X)x is 

the union of the three planes spanned by the three pairs of lines of X, and | is C 3 

[28, p. 212]. 

At a nonsingular point, the tangent star and Zariski tangent space are the same. 

1.2. Ramification, immersion, and embedding 

Let X and Y be varieties, and let ]: X-~ Y be a morphism. Then ] induces a linear 

map d/x: @(X)x--> @(Y)rcx) for each x in X. We say that  ] families at  x if the 

map  T(X)x-+| (Y)r~z) induced by d/x is not quasifinite. (1) The set of all points in X where 

] ramifies is called the rami]ication locus. If  the ramification locus is empty,  then we call 

] an immersion. 
The double locus of ] is the union of the ramification locus with the set of points 

xEX for which there is a yEX, y=4=x, such that  ](y)=](x). I f  the double locus is empty,  

then ] is called an embedding. In  other words, an embedding is an immersion which is 

globally one-to-one. 

We note tha t  an embedding is an isomorphism when X is non-singulari but tha t  it is 

not an isomorphism in general. 

I f  X and Y are nonsingular complex varieties, these definitions coincide with the 

usual definitions of immersion and embedding for maps between complex manifolds. 

1.3. Desirable properties of immersion and embedding 

In  differential topology, immersions and cmbeddings of manifolds have been 

studied extensively [4]. I t  is known, for example, tha t  if M is a simplicial n-dimensional 

(1) W e  use  quas i f in i t e  ( tha t  is, f ini te- to-one)  r a t h e r  t h a n  one- to-one ,  because  one- to-one  l eads  to 
r ami f i ca t ion  loci t h a t  are  too big: let  X be  t h e  u n i o n  of t h ree  p lanes  in  Pa h a v i n g  a line l in c o m m o n ,  

b u t  o therwise  in genera l  posi t ion.  T h e n  a t  a n y  po in t  y in  l, T(X)y can  be ident i f ied  wi th  a dense  open  
s u b s e t  of t h e  un i on  of t h e  th ree  3-spaces  s p a n n e d  by  t h e  th ree  pa i rs  of  p lanes  in X;  so a generic  p ro jec t ion  
of T{X)y to  p3 is quas i f in i te ,  b u t  n o t  one- to-one.  The  rami f i ca t ion  locus  for a m a p p i n g  f rom a sur face  to a 

3 -d imens iona l  v a r i e t y  shou ld  h a v e  d i m e n s i o n  0, n o t  d i m e n s i o n  1 (cf. w 1.3). 
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submanifold of some euclidean space, and ]: M-+R a is a suitable projection to a smaller 

euclidean space, then the ramification and double loci of / determine ( 2 n - m - I ) -  and 

(2n-m)-dimensional  classes in the homology of M which are Poincar~ dual to 

eharacterisic classes of M [15], [16]. 

Our definitions of immersion and embedding for varieties lead to similar results in the 

geometric case. That  is, if X is a subvariety of some projective space, and f: X-->P ~ is a 

suitable projection, we are able to find positive cycles on X whose supports are the 

ramification and double loci o f / ,  and to calculate the rational equivalence classes of these 

cycles in terms of characteristic classes of X. The formulas for these equivalence classes 

are more comphcated than  their topological counterparts (w 5.2), reflecting the fact tha t  the 

tangent bundle to projective space is not trivial. 

There are two important  features from the case when X is non-singular tha t  are pre.  

served by  our definitions of immersion and embedding: the first is tha t  the ramification 

and double cycles are uniformly of diemensions 2 n - m - 1  and 2 n - m ;  the second is a 

simple relation between the ramification and double classes which leads to the following 

rather  striking result (w 5.2, Corollary 1): 

(*) Any  variety sitting in a projective space o] twice its dimension which can be 

immersed in a lower dimensional space by projection can be so embedded. 

In  the next section we discuss alternate, more obvious, definitions of immersion and 

embedding which do not enjoy one or the other of these properties. 

1.4. Other possible definitions 

There are several other tangent  cones one might use to define ramification, and 

hence immersion and embedding. The most obvious are (el. [28]) 

TI: The usual tangent cone; 

T2: The cone obtained by closing up the bundle of tangent  spaces over nearby non. 

singular points; 

@: The Zariski tangent space. 

The following example shows that  (*) cannot hold if one defines ramification using 

either T 1 or T2: I f  X is the union of two hnes in p2 intersecting at  x, then TI(X)x = T~(X)~ 

can be identified with an affine subset of X. So projecting X to p1 from a point off X induces 

a quasifinite map on all tangent cones, and so is an immersion. But  it is not an embedding, 

even though X is a 1-dimensional subvariety of p2. (This example also shows tha t  the 

double locus need not be closed when either of these tangent cones is used.) 
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Defining immersion and embedding with O has the advantage that  an embedding is 

always an isomorphism. However, using O(X) in our subsequent argument rather  than 

T(X) leads to ramification cycles which may  not have uniform dimension: for example, 

let X be a union of planes in p4, X = [-J ~=IP~, where P1,/02, and P3 have a line I in common, 

but  are otherwise in general position, and Pa intersects Pi in a single point xi ql, i = 1, 2, 3. 

Then dim O(X)x ~ =4,  i =1,  2, 3, and dim @(X)y = 4  for any point y in 1. So any projection 

of X to p3 ramifies a t  xl, x2, xa, and along 1. The ramification cycle in this case is Ix1] § 

Ix2] + [xa] § [lJ (see w 3.1 for notation). 

Remarks. 1. I t  follows from our main result tha t  (*) is true even if immersion and 

embedding are defined using 0 (w 5.2, Corollary 2). 

2. Another definition of ramification tha t  at  first glance may  seem reasonable is: 

/: X ~  Y families at x E X  i / the induced map T2(X)z~@(Y)I~x) is not one-to-one. However, 

the following example shows tha t  this definition is not a good one: let X be the curve in 

C a defined by  z ~ - x  3 and z - y  a (where x, y and z are the coordinates in C3), and l e t p  be 

the singular point (0, 0, 0) of X. Then Tz(X)v is the x-axis with multiplicity 2, so no 

projection of X to C 2 induces a one-to-one map T2(X)~-+C2; however, most projections of 

X are isomorphisms at  p. 

A better definition utilizing T~ is: /: X - + Y  families at x E X  i/ the induced map 

Tu(X)x-~ Te(/(X))f(x) is not one-to-one. We do not know any example where the resulting 

ramification locus is different from the one we have defined in w 1.2. 

w 2. The ramification and double loci of a projection 

In  this section we give a geometric description of the ramification and double loci for 

a projection of X c  pN to pm which provides the key to obtaining cycle structures on these 

sets in w 3. 

2.1. Projection trom a linear space 

I f  H is a subspace of pN cut OUt by  m + 1 independent linear forms L 0 ..... Lm, then 

there is a morphism pN~H-~Pm defined by x~-->(Lo(x ), ..., L~n(X)). The induced morphism 

on any quasiprojective subset of P N ~ H  is called the projection/rom H. 

L ] ~ A .  Let C c  ANa P N be an a]/ine cone, and let H be a linear subspace o/pNdisjoint 

/rom C. The projection o/ C /tom 1-I is quasi/inite i/ and only i/ H (~ C=~), where C 

the closure o / C  in pN. 
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Proo/. I f  Hf~ C = O ,  then the projection of C from H is finite [18, p. 246] and so has 

finite fibres [18, p. 243]. Hence a/ortiori the projection of C from H has finite fibres, and 

so is quasifinite. 

I f  HN C ~ ,  then since C is a cone there is a line in C (through the vertex of C) whose 

projective closure intersects H. This line is projected from H to a point. So the projection 

of C from H has a t  least one non-finite fibre, and hence cannot be quasifinite. 

2.2. A geometric description of the ramification and double loci of a projection 

If  x is a point in pn, and L is a hyperplane disjoint from x, then there is a canonical 

identification of 0(PN)x with PN~L,  [18, p. 327]. I f  H is a linear subspace of L, and ]: 

P ~ H ~ P  m is the projection from H,  then one easily sees tha t  the following diagram 

commutes: 

@(pN)x d], , @(P~)r(x) 

N N 

pN/I I_ [ ~pm 

(here 0(Pm)r(z) is canonically identified with P~(PmNL), as above). 

If X c PN~H is a variety, and x 6X, then the inclusions T(X)zc O(X)zc O(PN)xc pN 

identify T(X)z with an affine cone in pN. Since the above diagram commutes, the pro- 

jection of X from H ramifies at z if and only if the projection of T(X), from H is not 

quasifinite. But  by  the lemma in w 2.1, this happens if and only if T(X)z () H#O,  where 

T(X)~ is the closure of T(X)x in pN. Therefore the set 

R(H) = {x e X I T(X)~ n H=~e} 

is the ramification locus of the projection of X from H. 

Two different points in X have the same image under projection from H if and 

only if the line through the two points intersects H. Therefore 

D(H) = {x e X I3 y 6 X, y ~=x, such tha t  the line through x and y intersects H} 

is the double locus of the projection of X from H. 

One sees tha t  R(H) and D(H) are closed subsets of X as follows: let G be the 

Grassmannian of lines in pN, let X • X be the closure in X • X • G of the graph of the 

mapping 

X • X ~ d i a g o n a l  -+ G, (x, y) ~ the line through x and y, 

and let P(X) be the par t  of X • X lying over the diagonal in X • X, i.e. 

P(X) = X • X • x• diagonal. 
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Then the fibre of P(X) over (x, x) consists, as a set, of all lines through x in T(X)x (for 

proof, see Appendix C). 

The projection 

~: X •  

takes a point in P(X) to the corresponding line in G, and takes the point lying over 

(x, y )EX x X ~ d i a g o n a l  to the line through x and y. So if 

W(H) c G 

is the Schubert variety of lines which intersect H, then ~-lW(H)(x.z~ is non-empty 

provided there is a line in T(X)x  which intersects H, and ~,-1W(H)(x.y) is non-empty pro- 

vided the line through x and y intersects H. That  is, 

xER(H) <~y-lW(H)(x.x):4:0, and xED(H) <:~-iW(H)(z,y) :#~) 
for some y. 

We summarize these observations: 

PROrO SITION. Let ~,: X • X-~G and :~: X • X - ~ X  • X Pl , X be the projections, and 

let g =~ [P(x), P = ~  [P(x). Then 

(i) R(H)=pg- lW(H)  

and (ii) D(H)=:~- IW(H)  

where R(H) and D(H) are the ramification and double loci o] the projection o/ X /rom H. 

It/ollows that R(H) and D(H) are closed subsets o/ X.  

In  the next section we will construct ramification and double cycles for the projection 

of X from H by  means of cycle-theoretic analogues of (i) and (ii). 

w 3. Ramification and double cycles 

In  this section we find positive cycles whose supports are the ramification and 

double loci discussed in w 2. 

3.1. Algebraic cycles 

We recall some definitions from [2], [23]. 

Let  X be a projective scheme. The free abelian group on the set of irreducible sub- 

varieties of X is called the group of algebraic cycles of X. I f  V is an irreducible subvariety 

of X, we denote the corresponding cycle by  [ V]. The subgroup generated by  the p-dimen- 

sional subvarieties of X is called the group of p-cycles. 
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Let  X and Y be projective schemes defined over a field k, and let ]: X-~ Y be a 

proper morphism. There is a corresponding homomorphism / ,  of cycle groups, which is 

defined as follows: If  V is an irreducible subvariety of X, then 

/ ,IV] = d[/V], 

where d = 0  if dim d V < d i m  V, and d=[k(V): k(/V)], the degree of the function field 

extension, if d i m / V  =dim V. 

A positive cycle is a cycle ~ m~[V~] such that  mi > 0 for all i. The set U V~ is called the 

support of the cycle. 

If Y is non-singular, and W is an irreducible subvariety of Y such that  all compo- 

nents of / -~W have dimension dim X - c o d i m u W  , then Serre has defined n positive cycle 

[w],[x] 

whose support is ]-IW [23, V w 7], [2, w 2.1]. This cycle is called the pull-back of [W] by ]. 

3.2. Main theorem 

The following theorem says that  the set-theoretic identities R(H)=pg-IW(H) and 

D(H) =~y-IW(H) from w 2.2 have reasonable cycle-theoretic analogues. 

T~.OREM. Let X be a purely n-dimensional subvariety o/ P~. For a generic linear 

subspaee H o] p~r having dimension N - m - 1  (1) 

(i) R(H)=p,([W(H)].~[P(X)]) is a positive cycle whose support is the union o/ the 

components o/R(H) having dimension 2 n - m -  1. (These are the largest components o/R(H), 

and include all components not contained in the singular locus o] X.) 

(ii) D(H) =x,([W(H)].v[X • X]) is a positive (2n-m)-cycle whose support is all o/D(H). 

Proo[. We note first that  the lemma proved in Appendix A implies that  all compo- 

nents of g-IW(H) have dimension 2 n - m - l ,  and all components of y-IW(H) have 

dimension 2 n - r e .  I t  follows that  [W(H)].g[P(X)] and [W(H)].g[X • X] are positive cycles 

whose supports are g-IW(H) and y-IW(H) respectively (cf. w 3.1). Therefore R(H) and 

D(H) are positive cycles of the stated dimensions. 

To complete the proof of (ii), it suffices to show that  for any component V of y-IW(H), 

g(V) has the same dimension as V. V is not contained in P(X), since if it were it would be 

(a) When  we say  t h a t  a s t a t emen t  is t rue  for a generic (i-dimensional) H,  we mean  tha t  there is a 

dense open subset  U of the  Grassmannian  o f / -d imens iona l  subspaces of pN such t h a t  the  s t a t emen t  is 
t rue  for  all H corresponding to points  in U. 
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a component of g-IW(H), which its dimension does not allow. Letting V' be the open 

subset of V disjoint from P(X), we show tha t  the fibres of V'-+zt(V') are finite, which 

implies that  the dimensions of V' and ~(V'), and hence of V and zt(V), are the same: in 

fact, the (set-theoretic) fibre of ~r] v" over a point x in X is in one-to-one correspondence 

with the set of points y in X different from x such tha t  the line through x and y intersects 

H. This set is contained in L fi X, where L is the smallest linear subspace of pN containing 

both H and x. Since H has codimension l in L, and we are working over an algebraically 

closed field, the dimension of L f3 X must be 0 i n  order for X and H to be disjoint. So L f3 X 

is finite, and hence the fibre of 7~ Iv" over x is also finite. 

To complete the proof of (i), we consider the variety )~ c X • Gn(P N) which is the closure 

of the graph of the "Gauss map"  

X ~ s i n g u l a r  locus-+ Gn(PN), 

x ~-> the projective closure of O(X)~. 

(Gn(P N) is the Grassmannian of n-planes in pN). I f  Pl and p~ are the projections of 2~ to X 

and to G~(pN), then R(H) and pxp21W'(H) coincide on the nonsingular part  of X (where 

W'(H) is the Schubert variety of n-planes which intersect H). By  the lemma of Appendix A, 

all component of p21W'(H) have dimension 2n-m-1 .  Since Pl is an isomorphism on 

the nonsingular par t  of X, all components of R(H) which intersect the nonsingular par t  

must  also have dimension 2 n - m -  1. 

Remarks. 1. If  ramification is defined using the tangent cone T~ (cf. w 1.4), then the 

ramification locus of the projection of X from H is plp~lW'(H), which has the advan- 

tage over R(H) of being of uniform dimension when H is generic. The disadvantages 

of this definition were discussed in w 1.4. 

2. Components of R(H} having dimension less than 2 n - m - 1  are possible: for 

example, let X be the union of two planes in p4 which intersect in a point x, and let H 

be a line which is disjoint from X. Then R(H)={x}, but  2n m - 1  =1.  

w 4. Chow theory and Chern classes 

In  this section we state the facts about  Chow homology and cohomology, and about  

Chern classes, which we use subsequently. The reader is referred to [2] and [5] for details. 

We define Segre classes for singular varieties in w 4.3. 

Our argument does not require Chow theory specifically. Any homology-eohomology 
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theory tha t  has a projection formula and tha t  carries Chern classes in cohomology, such 

as ordinary singular theory, would work just as well. 

4.1. Chow homology and cohomology 

I f  X is a projective scheme, the Chow homology group of X is the graded group A.X = 

oA~X,  where A~X is the group of p-cycles modulo rational equivalence. I f  ]: X-~ Y is 

a proper morphism of projective schemes, then the homomorphism ] ,  defined on cycles 

induces a homomorphism A.X-->A.Y, which is also denoted ] . .  If  V is an irreducible 

subvariety of X, then IV] denotes either the cycle determined by  V or the equivalence 

class of that  cycle in A.X. The /undamental class of X is the class 

IX] =2 ~[v~], 

where V1, V~ .... are the reduced, irreducible components of X, and m~ is the multiplicity 

of V~ in X. 

One can also define a graded ring A'X, the Chow cohomology ring, which carries 

Chern classes for any  locally free sheaf on X .  (If X is nonsingular of dimension n, then 

AqX =A,_qX.) A proper morphism ]: X-+ Y induces a ring homomorphism/*:  A" Y-~A'X. 

There is a cap product ,",: A 'X  | which makes A.X into an A'X-module,  

and which also satisfies a projection ]ormula: If ]: X ~  Y is proper, and xEA.X, and 

yEA'Y,  then 

].(]*y ~x)  = y ~ ] ,  x. 

4.1.1. 1/ Y is a nonsingular variety, /: X ~  Y is a morphism, V~  Y, and [V].r[X] is 

de/ined, then the class o/ [V].r[X ] in A.X is /*[V]~[X]. 

4.2. Chern classes and Segre classes 

Let X be a nonsingular variety, let y be a locally free sheaf of rank r on X, and let 

P(Y)=Proj (Symox~) [6, II] .  If  ~EA1P(~) is the Chern class of the Sevre line bundle 

Oe(~) (1) on P(:~), then 

A'P(~) ~ A 'X  - 1)~ci 
t 

where Co=I=[X]EAoX, and c~=c~(:~)EAiX is the i th Chern class of :~. 

I f  p: P(:~)-->X is the natural  projection, then 

s~(~) =p,(U l+~[p(:~)]) ~A~X 

is the ith Segre class of :~. The Chern classes and Segre classes are related by  the equation 
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(t~o ( -- 1 )~ct) (~o st) = 1, n = d i m  X 

(so s~=c .  s~=c~-c~ .. . .  ). 

The i th  Segre class o] X, %(X), is defined to be s~(~x), where ~ x  is the cotangent 

sheaf on X. 

4.3. Segre classes for singular varieties 

Let X be a purely n-dimensional variety, let J be the ideal sheaf of the diagonal in 

X •  let P ( X ) = P r o j  (| let p:P(X)-+X be the natural  projection, let 

Op(x) (1) be the Serre line bundle on P(X), and let ~ =Cl(Opcx)(1))fiA1P(X). We define 

s,(X) = p.(~-~+~ ~ [p(x) ] )  ~ A~_, X 

to be the ith Segre class o/X.  When X is nonsingular this definition agrees with the one 

given in w 4.2 above, since in this ease ~x=Y/3  ~ and Symox(Y/Y~)=O~o:lJ/YJ+l 

[6, IV 16]. 

We note tha t  s~(X)=O if i < 0  or i>n. 

w 5. Homology classes of the ramification and double cycles 

In  this section we calculate the classes in A.X of the cycles we found in w 3.2. Our 

formulas are in terms of the Segre classes defined in w 4.3. In  w 5.2 we state our main results. 

5.1. Calculation of the classes 

Let  X be an n-dimensional subvariety of pN, and let H be an ( N - m -  1)-dimensional 

subspace of P~ which is generic in the sense of w 3.2. According to 4.1.1, the homology 

classes of the ramification and double cycles of the projection of X from H (cf. w 3.2) are, 

respectively, p,(g*[W(H)] ~[P(X)] )  and ~,(y*[W(H)] ~ [ X  • X]) (Recall that  y: X • X-+ 

G=GI(P N) and ~: X x X ~ X •  Pl )X are projections (w g=Yle(x), P=~le(x~, 

and W(H)cGI(P N) is the Schubert variety of lines which intersect H.) 

In  Appendix B we derive the following formulas: 

m-1 (m,: 1 ) 
g*[W(H)] = (2n - m -  1) (p'u) m -4- ~ (p*u)rn-l-t~ j+l 6A'P(X) (1) 

J=O 

n m-1 (m + ~2*[W(H)] = ~ (;7"g*U)kt rn-k-~- ~ ( --  l) i+1 ( ~ * u ) m - l - t ~  i+1 (2) 
k=0 j=o \ j + 2 /  

(1) If X is a subvariety of pN, then this is the same as the space defined in w 2.2 (Appendix C). 
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where u 6 A ' X  is the class of a hyperplane section, ~ is the Chern class of the Serre line 

bundle O~,~x) (1), t is the pullback of u by  the projection X • X - , - X  • X P2 , X ,  and ~ is the  

pull-back of the class of the exceptional divisor in 1 'N • P~(1) by  the inclusion X • X ~ P ~  • 1 aN 

(cf. Appendix C). 

F r o m  (1) we m a y  calculate directly t ha t  

p , ( g * [ W ( H ) ] ~  [P(X)]) 

= ( 2 n - m - 1 ) ( ( p * u ) m ~ [ p ( x ) ] ) +  ~ p.((p ~, ~ ~ [ P ( X ) ] )  
j=0 ~ '+2 

~=0 \ )  / 

(projection formula) 

p.[P(X)]  =0.  

m-1 [ m +  1'~ 
= ~ um-l-Jr n+2(X) 

j = ~ - 2 \ i + 2 /  

since P(X)  has dimension 2 n - 1  > n ,  so 

Changing indices, this becomes 

(If n = l ,  then 2 n - - m - - l < 0 ) .  

m n+l~m_~l ~ 
p . (g*[W(H)]~[P(X)])= ~=0 ~ \ i + n  / u  .... ~+I ~ s d X ) 6 A ' X "  (3) 

In  order to calculate z.(~,*[W(H)]c',[X • X]), we need the following lemma: 

LEMMA. z . ( ~ n + ' m [ X  •  = (--1)n-l+ts~(X). 

Proo/. Let  k: P(X)  ~ X  x X be the inclusion. Then k*~ = - ~, and k,[P(X)] =~1 c-, [X • X] 

(see Appendix ]3, w 4). So 

~,(rj ~+~ ,--,IX • X]) = ~,(rl ~-1+~ ,", (r~ ,", IX • X])) 

= ~,(~,~-l+,,.-.,k,[p(x)]) 

= 7e.k,(k*(~n-l+ *) c~ [P(X)]) 

(projection formula) 

= p,((-~)n-I+Q"-,[P(X)]) 

= ( - 1)n-l+~si(X). 

(1) pie x pN is the blow-up of pN • pN along its diagonal; or it can be defined as in w 2.2, in which 
case the exceptional divisor is p(pN). See Appendix C. 
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Then, using (2), we have 

~,  (r*[ W (H) ] ~-, [ X -~ 'X  ]) 

= 7~.((~.u)kt m k r ~ [ / x / ] )  + ~ (_1)i+1 Ff.((Ffau)m 1 ] ~ / + l f ~ [ ~ ' i ] )  
k=0 1=0 

= ~nkf...~;7.g.c(tm-kf-..[X~'~'iJ)-Jc ~ (--1) '  t~_]_2) um-l-]f",,7~:~('~ '+1 
k=0 j=0 

(projection formula) 

. . . . .  1 [m+ l~ m 1 ]...~ 
= u r n - n f ~ $ ( t n f ' ~ [ X x X ] ) -  j=n--1 ~ t j ~ - 2 )  u - -  s)-n+l(X)" 

( t z f~[XxX]  has dimension > n  for l<n, and t ~ is the pullback of u~EA'X, which is 0 

for 1 > n). Letting d be the degree of X, and changing indices, this becomes 

~ - n ( m + ] ) u  ..... ~-,sdX)eAX. ~ * ( Y * [ W ( H ) ] r " [ ~ ] ) = u m - ~ r " d [ X ] -  ~ i + n +  1 
i=O 

(4) 

5.2. Main results 

The following theorem is an immediate consequence of the theorem in w 3.2, and of 

formulas (3) and (4) above. 

THeOReM. Let X be a purely n-dimensional subvariety o/ pN, let R(H) and D(H) be 

the rami/ication and double cycles o/the projection o /X / rom a generic (N - m  - 1)-dimensional 

linear space H as defined in w 3.2, and let R,n and D,n be the Chow homology classes o /R(H) 

and D(H) respectively. Then 

m-n+l ( m  + 1 1  U m-n-i+l f - ~ s i ( i  ) 
Rm= 4=0~ \ i + n ]  

and D,n=um_n~d[X]__~n ( m+ l l )  um_ ~ ,~s~(X)(1) 
~-o \ i + n +  

where u EA1X is the class o /a  hyperplane section, sdX)EAn_~X is the ith Segre class o / X  

(w 4.3), IX] EAnX is the/undamental class o/ X,  and d is the degree o/ X.  It/ollows that 

(1) Laksov [13] defines the  r t h  T o d d  c l a s s  tr(]) of a mor ph i sm  ]: X-+ Y to be the  class 

ff(h = ~ ]*cr-l(Y)f"s~(X) �9 
i=0 

Using this  nota t ion  we can rewrite these formulas  more  compact ly  as  R m = t m _ n + l ( ]  ), D m = ] * ] , [ X ]  - t m _ n ( / ) ,  

where ]: X-+ pN is a generic projection. 
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(i) Both Rm and D m have non-negative degree, 

(ii) 1] X can be immersed in pm by projection, then Rm=0, and 

(iii) X can be embedded in pm by projection i / a n d  only i/ Din=0. 

1] X is nonsingular then the converse o/ (ii) also holds. 

Using the identity 

i + n + l ]  \ i + n + l ]  \ i + n !  

one can see tha t  the classes R m and Dm are related as follows: 

UDm -- Dm+l = Rm. 

This relation leads to a rather surprising corollary: 

COROLLARY 1. Let X be an n-dimensional subvariety o/ pN, N-~<2n. 1] X can be 

immersed in a lower dimensional projective space by projection, then it can be so embedded. 

Proo]. I f  X can be immersed in pm by  projection, then certainly X can be immersed 

in pro+l, pro+2 . . . .  by  projection, so Rm=Rm+ x . . . . .  Rzn_x=0. Hence 

u D  m - D,,+x = Rm = 0 

u D m + l  - Dm+2 = 0 

uD~_  1 - D ~  = 0 

and therefore uZn-mDm=D~. But Dan=0 (since X c p a , ) ,  so Din=O, and X can be 

embedded in pm by  projection. 

Note. This proof does not work when N =2n  + 1 because all terms in the equation 

uDan-  Dan+l = Ran are 0, all having dimension - 1 .  

There is a similar result for the stronger notions of immersion and embedding 

defined using the Zariski tangent space (cf. w 1.4): 

COROLLARY 2. Let X be an n.dimensional subvariety o/ pN, N <2n. 1] X can be 

projected to pm so that the induced maps o/Zariski  tangent spaces are all one-to-one, then 

X can be projected isomorphically to pro. 

Proo/. One need only show tha t  a generic projection of X to pm is one-to-one. Since 

such a projection induces one-to-one mups on Zariski tangent spaces by  hypothesis, it is 

a ]ortiori an immersion. By Corollary 1, it is therefore an embedding; in particular, it is 

one-to-one. 

5 - 772907 Acta mathematica 140. I m p r i m ~  le 10 F~vrier  1978 
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Appendix A 

In  this appendix we prove that  the dimension of the inverse image of a generic 

Schubert variety is always what it should be. 

Let G be the Grassmannian parameterizing r-dimensional subspaces of pN. For 

integers 0 ~ a  o <~a 1 <~... ~ar<~l~ , let F be the flag variety of all sequences A o c  A l c  ... c A~ 

of subspaces of pN such that  dim A~ =a~. The points of _~ can be identified with Schubert 

subvarieties of G, 

(A0, A 1 ..... A ~ ) o { L e G [ d i m  (L A A~)>~i, i = 0  ..... r}. 

LEMMA. Let X be a variety, and let /: X ~ G  be a proper morphism. Then /or 

Schubert varieties ~ in a dense open subset o / F ,  the components o / / - l ~  have codimension in 

X equal to the codimension o/ ~ in G. 

Proo/. Let Y be a nonempty irreducible subset of /X over which the fibres of / 

have constant dimension; then 

codimi-~ r / - l (  Y f~ ~)  = eodimr Y t3 ~ = eodim~ Y n 

where Y is the closure of Y in G. If the lemma holds for subvarieties of G, then 

c o d i m y Y A ~ = c o d i m G ~  for all ~ in a nonempty open subset of F. Since X =  U/-1Y 

for finitely many such Y, the lemma then holds for X. 

So we are reduced to the case when X is a subvariety of G, and we must show that 

for all ~ in an open subset of F, ~ and X intersect in the right dimension. Since it is not 

possible for the dimension of a component of ~ A X to be smaller than it should be 

[27, p. 146, Cor. 1], it suffices to show that  

codimx~ A X/> codima~. 

Let p be the projection of 

U ~x{~}cGxF 
~ G F  

on G; then ~ f3 X = p ( p - l X  xv~),  so 

dim (~ fl X) ~< dim (p - iX  x F ~).  

A standard fact about the dimension of fibres [18, p. 96, Cor. 1] implies that, for all 

in a nonempty open subset of F, 

dim (p- iX x v ~)  ~< dim p - i X  - d i m  F 

= dim X - codim a ~. 

Therefore codimx~ f~ X ~> codim a Y2, as required. 
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Appendix B 

The purpose of this appendix is to derive formulas (1) and (2) of w 5.1. 

w t .  Let G be the Grassmannian parameterizing lines in pN. There is an exact sequence 

of bundles on G, 

0 -~ K -~ E ~+~, 

where E N+' = A ~+~ • G is the trivial rank N + 1 bundle, and k is the "tautological" rank 2 

bundle (which has as fibre over a point in G the plane in A N+~ which determines the line in 

pN corresponding to that  point). 

Let P = P r o j  (Symoa~) ,  where ~ is the sheaf of sections of K. Let  ci=ci(Yf)eA1G, 

i = 1, 2, let ~ = Cl(Oe(1))E AlP, and let 5, ~1, ~2 E AsP x aP be the pullbacks of these classes 

by the projections P• P• Pi ,P, i = 1 ,  2. Finally, let ~EA1P• P be the 

class of the diagonal. 

LEMMA 1. (i) 51=~1+$2--~, and (ii) c2=~(~1-~) .  

Proo/. In  A~P• the equations ~ - 6 ~ 1 + ~ 2 = 0  and ~ - g x ~ + g 2 = 0  both hold 

(w 4.2). The second of these, together with (i), implies (ii): 

To prove (i), we argue as follows: since c 1 generates A1G (this follows from the Basis 

theorem, [7, p. 350]), the classes ~1, ~2 and Cl generate AxP •  So we may  write 

(} = a(~l  ~- ~2) A- bc 1, 

where a and b are integers. 

In  determining a and b we will use the fact tha t  the composition 

p ~  d . p x e p  p~ , p ,  

where d is the diagonal embedding and p~ is either of the two projections, is the 

identity.  

Claim 1. a = l ,  and pl,~2=[P]. 

Proo/. Pl,d =pl,d,[ P] =id,[P] = [P], so 

[P] = P l $  (a(~l  + ~2) -~ bcl) 

= apl,~ 1 +apl,~ ~- bpl$ 61 
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(both Pl*~I and px,51 are 0, by the projection formula). Since Pl,~2 is positive (because ~ 

is positive), the claim follows. 

Claim 2. b = - 1 .  

Proo/. Since d*~ =d*l)~ ~=~ for i=1 ,  2, we have 

d ,  r = r  = r 

by the projection formula, and therefore 

~(~1 -~2) = d,[P] (r - ~ )  = 0. 

Substituting 5 =~x +~+b51  in this equation gives 

~ - ~ + b S x ( ~  - ~ )  = 0 .  (1)  

From ~ = 5 x ~ - 5  ~ for i=1 ,  2, we have 

~f- ~ = e , ( ; 1 -  ~), 
which combines with (1) to give 

(1 +b)51(~1-~2) = O. 

since pl,~l=O and pl,~=[P]). 
51(~1-~2)#0, and hence b = - 1 .  

So we may conclude that  either 5x(~x-~z ) =0  or b = - 1 .  

Letting p: P ~ G  be the projection, we have 

p1,(~1(~1-~)) = p ~ , ( ~ l )  - p ~ , ( e ~ )  

= (p*cl)Pl* ~ l  - -  (p*cl)Pl* ~ 

(projection formula) 

= - - p * C  1 

p*ci~O , because c1=4=0 and p* is an injection. So 

w Let A be the diagonal in pN• As in w let pN• be the closure in 

pN• pN• G of the graph of the mapping 

P~ • PN~.A -~ G 

(x, y) ~-> the line through x and y. 

Let  E =pN• pn •215 r~ A, and let p: p_~pN be the projection of the diagonal in P x a P  

o n  A .  
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L V.MMA 2. There is a morpMsm 6: P~ x P ~ P  x v P  making the ]ollowing square corn- 

mute/or i = 1, 2: 

l ~ x P  N , P x a P  

pN , P p 

(the vertical arrows are the obvious pro]ections). Moreover ~*~ = [El. 

Oz -~ ~ 0  of sheaves on G gives an inclusion p ~ p N  x G, Proo]. The exact sequence ~+1 

and hence P x a P  is contained in pN x pN x G. P x a P  coincides with pN x P~ over pN x PN~A,  

and so, since P x a P  is closed, and pN x pN is reduced, we have P~ x P~'  :r , P xoP.  

Since E=P~xP~xp•  where D is the diagonal in P xGP, it follows from 

[2, w 2.2, Lemma (4)] that  ~*(~ =[E] .  

Remark. :r is actually an isomorphism, since P x a P  is reduced and irreducible. 

w 3. Let i: X'~x X ~ P  N x P a be the inclusion induced by X ~ P  ~. Then y: X x X-+G is 

the composition 

X x X  --PN x PN , P x a P  ,G. 

Let ~ =i*[E] EA1X x X, let u E A I X  be the class of a hyperplane section, and let Pl, P2: 

X x X ~ X be the projections. Recall that  c~ = c~(~)EA'G. 

LEMMA 3. (i) y*Cl=p*u+p~u--~, and (ii) ~*c2 =Pu*u(Pl* u -~) .  

Proo/. This is an immediate consequence of Lemma 1, once we have established the 

following claims: 

Claim 1. i*~*~i =p~u, and i*a*~=p~u. 

Proo/. We know from Lemma 2 that  the following diagram is commutative for i = 1, 2: 

~ '~ -~  o~oi , p xa P 

X J ~p~ 1) p 

Hence p~j*OeN(1)=(aoi)*p[*Op~(1), i = 1 ,  2. The Chern class of the former is p 'u ,  and 
t ,  

then Chern class of the latter is i*~*~ (since p*OP~(1)= Op(1), ~ =clOp(1), and ~ =p~ $). 
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Claim 2. i*a*~ =~. 

Proo/. :r =[E] (Lemma 2), so i*~*(~=i*[E] =~ b y  defini t ion.  

THEOREM. I /  H is an ( N - m - 1 ) - d i m e n s i o n a l  subspace o/ pN, and W(H) is the 

Schubert variety in G o/ lines which intersect H, then 

m m 1 
r,[W(H)]= H (p*u)k(p u) m k+ ( - 1 )  '+1  P*u) 

k=0 j=0 \ j + 2 /  

Pro@ Le t  Q be the  universa l  quot ien t  on G, t h a t  is, the  r ank  N - 1  bundle  which 

makes  the  sequence 
v 

0-+K~EN+I~+Q-+0 

exact .  I t  is wel l -known [ l l ,  Prop.  5.6] t h a t  [W(H)] =cm(Q). The exactness  of the  above  

sequence implies  t h a t  

(1 + cx(/~ ) + c2(/~))(1 +cx(Q) +c2(Q) + ... + cN_I(Q)) : 1, 

since E N+I is trivial.  Wr i t ing  cl=cl(K):-c1(I~) ,  c2=c~(K)=c~(I~ ) as before, we m a y  

solve for the  Chern classes of Q to ob ta in  equat ions  

cm(Q) =clc,,_l(Q) -c~c~_2(Q), m = 1 ..... N - 1 .  

H e n c e  

?*cm(Q) = (~,*cl)?*cm_l(Q) - (?*c2)?*C,n_~(Q) 

* U ~ e~ n = (p*u +p'~u-~)~*c,,_~(O) -p~ ~pl -~)~*Cm_~(Q) 

(Lemma 3). Solving these equat ions  induct ively(1)  gives the  s t a t ed  formula  for ~,*cm(Q)= 

y*[W(H)].  

Le t  p:  P ( X ) + X  be the  na tu ra l  project ion,  let  g: P ( X ) ~ G  be the  res t r ic t ion  of ?,  and  

let  ~ =c I Oe(x)(1) EA1X. 

COROLLARY. I /  H and W(H) are as in the theorem above, then 

m - l  ~m-F"  l ~  ( p , u ) r n - l - i ~ i + l  g*[W(H)[ = ( 2 n  - m - I )  (p*u)Z+ "~ 
j~% \ i + 2 /  

Proo/. Let  k : P ( X ) ~ X •  be the  inclusion. Then  g=yok ,  so g*=k*?*, and  the  

(1) In solving one can make use of the identity (pl u -p2  u)~ = 0 (which follows from the correspond- 
ing identity (c 1 - c2) 6 = 0 found in the course of the proof of Lemma 1). This identity also implies that  the 

* and p* formula for ~,*[W(H)] is symmetric in Pl u u. 
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formula for g*[W(H)] is an immediate consequence of the theorem above and tho following 

two claims: 

Claim 1. k*p*u=p*u /or i=1 ,  2. 

This is because p = p l o k = p 2 o k  (recall that  Pl, P2: X ~ - ~ = X  are the projections). 

Claim 2. k*~ = -~ .  

This is one of the statements in the lemma below. 

w 4. The following lemma is used in the proof of the lemma in w 5.1: 

L]~MMA. Let k: P(X) -+X •  and i: X x X~+PNxP N be the inclusions, let E be the 

exceptional divisor in Pg • let ~ =i*[E], and let ~=cl01,(z)(1 ). Then (i) lc*~ = - ~ ,  and 

(ii) ~ ~ [ X  x X] =k.[P(X)] .  

Pro@ The diagram 

P ( X ) ,  ~ x x x 

E ~ , p N •  

is commutative, and it is known that  k'*[E] = - ~ ' ,  where ~' =ClOE(1 ) [21, p. 123]. Since 

i '*~'=~, it follows that  

k * ~  = k * i * [ E ]  = i ' *k '*[E]  = i ' * ( - ~ ' )  = - ~ .  

To prove (ii), we note that  the above diagram is a fibre square. Since [P(X)]= 

[E].v [P(X)], we may use [2, w 2.2, Lemma (4)] to conclude that  

/c.[P(X)] = k.([E].i, [P(X)]) = [E].~ [X x X]. 

In Chow groups, this equation becomes k.[P(X)] =~ ~ [ X  x X], as required (of. 4.1.1). 

Appendix C 

In this appendix we show that  the two definitions of P(X)  that  we have given 

(w 2.2 and w 4.3) agree. An immediate corollary is the set-theoretic identity of P(X)~ with 

the set of lines through x in T(X)x, which was used in w 2.2. We also justify a remark we 

made in w 1.1. 
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w 1. Let  ~ be the cotangent sheaf on PN, and let 

P = Proj (Symovx~(1)). 

The underlying set of Px, for x in pN, is the set of all lines in P~ through x. 

Let  G be the Grassmannian parameterizing lines in pN. Our first goal is to define a 

morphism P-->G whose underlying set-theoretic map is the obvious one. Recall tha t  a 

morphism P ~ G  is just an exact sequence O~p+I-~M-->0 of sheaves on P, where M is locally 

free of rank 2 [17, p. 32]. 

The exact sequence 

0-~ ~(1)-~ 0 ~ 1 - ~  OVN(1)--~ 0 

Of sheaves on pN lifts by the natural  projection r: p_>pN to an exact sequence on P,  which 

we incorporate into the following diagram of sheaves on P: 

0 0 

Z Z 

0 , r*~(1) ,O~ +1 ,r*OvN(1) , 0  

1 1 
o - 0 ~ ( 1 )  . . . . . .  M . . . . .  r * O p ~ ( ] )  , 0 .  

1 1 
0 0 

Here Op(1) is the Serre line bundle on P,  and Z is defined to make the left column exact; 

then M is defined to make the center column exact. Maps indicated by the broken arrows 

can then be defined so tha t  the bot tom row is exact. Since Op(1) and r*OrN(1 ) are both 

line bundles, M must  be locally free of rank 2, thus defining the morphism P-+G.  

w 2. Let  pN • pNcpN • p~ x G be the closure of the graph of pn • pn~diagonal_+ G, 

(x, y} ~-> the line through x and y. Let  I be the ideal sheaf of the diagonal in pN • pN, and let 

B = Proj I j 

(this is the blow-up of PNx PN along its diagonal [6, I I  8]). 

P R  0 r 0 S I r I 0 N. pN • pN and  B are isomorphic as pN • pN.schemes. 
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Proo]. We define an injection B ~ l  )~ • pN • G whose set-theoretic image coincides with 

pN• p~ off the diagonal in pNx pN. Since both pN• pN and B are complete, reduced and 

irreducible, this suffices to show tha t  they are scheme-theoretically isomorphic. In  fact 

there is a natural  projection B-~pN• pN, so it is enough to give an appropriate morphism 

B ~ G .  

Holme [8] defines a morphism 2: B ~ P ,  which can be composed with the morphism 

P ~ G  defined in w 1 above to give a morphism B-~G. The underlying set-theoretic map of 

takes the point lying over (x, y), x:4=y, to the point in P~ corresponding to the line through 

x and y. Taken together with the set-theoretic description of P-+G given in w 1, this shows 

tha t  the morphism B ~ G  acts as desired on sets. 

w 3. Let  X be a subvariety of pN, and let J be the ideal sheaf of the diagonal in X • X. 

Let  

X • X = Proj 

be the blow-up of X • X along its digonal. This is the proper transform of X • X in B, so 

by the above proposition it agrees with the definition given in w 2.2. From this it follows 

that  

that  is, the definitions of P(X) given in w167 2.2 and 4.3 agree. Since T(X)  =Spee ( ~ o  y~/yJ+l) 

by definition, the set P(X) ,  consists of all lines through x in T(X),,  as claimed in w 2.2. 

The following remark was made in w 1.1: 

I / X  is a subvariety o /pN over C, then the closure o] T(X)x in P~ is the union o /a l l  

lines 1 through x /o r  which there are sequences {y,}, {y;} o/points in X converging to x such 

that the sequence o] lines (span (y~, y~)} converges to l. 

Proo/. The points in P(X)x are exactly the limits of the sequences of points in 

X • X which are lifted from sequences {(y~, y'~)} of points in X • X ~ d i a g o n a l  converging 

to (x, x). So the lines in T(X)x through x correspond precisely to limits of the sequences 

{span (v,, y~)}. 
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