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O. Introduction 

The purposes of this paper are to lay the foundations for infinite birth and death 

processes on R ~, in general, and, in particular, to develop the theory of nearest neighbor 

birth and death processes on the real line. We are motivated to do this by the paper of 

F. Spitzer I11] which, among other things, contains the theory for time reversible, nearest 

neighbor birth and death processes on the integers. Many of our results were already anti- 

cipated in [11]. The only ingredient which Spitzer was lacking was sufficiently strong 

theory for the appropriate class of birth and death processes. These are processes in which 

an infinite number of individuals exist at each instant and the rate at which new individuals 

appear or old ones disappear depends on the instantaneous configuration of the existing 

individuals. In Spitzer's case, the place in which individuals can live is a lattice; for us it 

is a continuum. However, it is a simple matter to transfer our results to Spitzer's context 

(cf. remarks 3.14 and 5.10). 

Section 1 is concerned with the basic results which we need in order to prove existence 

of the desired processes. In  Section 2 we study birth and death processes in a bounded 

region. Here we rely on several of the ideas of Preston [10] in which he studied spatial 

birth and death processes for which the total population is always finite. Section 3 contains 

a theorem showing that  under very general conditions the martingale problem for nearest 

neighbor birth and death processes on R i s  well posed. This is the only good uniqueness 

theorem for such martingale problems that  we have been able to prove. 

The last three sections are concerned with the existence of time reversible equilibrium 
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states. In  [11] Spitzer used a beautiful argument to find necessary and sufficient conditions 

for the existence of a t ime reversible equilibrium state for nearest neighbor birth and death 

processes on the integers. We prove the analogous results here. Our proof breaks naturally 

into three steps, which are carried out in Sections 4, 5, and 6. The results in Sections 4 and 

6 rely heavily on the ideas of Spitzer [11]. Section 4 is also similar to some results of Led- 

rappier [7]; however, he has more stringent smoothness conditions than we do here and 

does not relate his results to a stochastic process. 

The net result of Sections 4-6 is that  the only possible t ime reversible equilibrium 

states for nearest neighbor birth and death processes on the real line are renewal measures 

for some density function with a finite first moment,  and conversely every such renewal 

measure is a t ime reversible equilibrium state for some nearest neighbor birth and death 

process. 

1. Foundations 

We first want  to describe the state space in which the birth and death process takes 

place. This space is very similar to the phase space for infinitely many  classical particles 

used in statistical mechanics (see [6]), however there are two important  differences. The 

first is that  the particles have no momentum and the second is tha t  we require certain 

half spaces to have infinitely many  particles and no two particles to occupy the same 

point. This second difference changes the nature of the compact subsets of the state space 

considerably. Since the compact sets are important  to us, we begin with a careful descrip- 

tion of our state space. 

Let /~  be the set of all purely atomic locally finite measures, re, on R v such tha t  #({y}) E 

~ = ( 0 ,  1, 2 . . . .  } for all yER v. We endow ~' with the topology of weak convergence on 

compacts. Tha t  is tt~-+tt in $ if and only if 5 Vd/t~-+ 5 vdtt  for all q~ECo(R ~) (the space of 

continuous C-valued functions on R ~ having compact support). I t  is easy to check tha t  this 

topology makes ~ into a Polish space (i.e. $ admits a metrization in which it is a complete 

separable metric space). Next,  let E be the set of t t E ~  such that/x({y})E{0, l} for all 

y E R v and 

#({xER~: (x, ~} > 0} = 

for all ~ E ( { -  1,1 }y. Give E the relative topology it inherits as a subset of ~'. Obviously 

E is not closed in ~.  However, the next lemma shows tha t  E is a G~ subset of ~ ,  and there- 

fore is again a Polish space (under a suitable metric). 

1.1. LEMMA. The set E is a G~-subset o / ~ .  Moreover, a subset F o / E  is precompact in E 

q and only i/each o/the/ollowing is satis/ied: 
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(i) there exist constants CN, N >i 1, such that sup ,~ r  ~t(QN) <~ CN /or all N >~ 1, 

(ii) /or a l l~6({ -1 ,  1}) ~ 

lim inflx(lxeQn: <x,~7)~>l})  = ~ 
N-~ ~er \ l  

(iii) /or each N ~ 1 there exists an n ~0 such that 

sup sup ~(Q)~<I .  
Iz~ P QEH(N,n) 

Here QN={xeR~: Ixr <N /or 1 <]<v} and H(N, n) is the set o/open cubes Q having the 

/orm {xeR~: (kj-1)N/n <xj<(kj+ l)N/n with k j E { - n + l  ..... n - l } / o r  1 ~<]<v. 

Proo/. To see t h a t  E is a G8 set  in E note  t h a t  

AM,N ~- {/X E E: #({x 6 Q~: <x, ~> > 0}) > M for all ~ E ( { -  1, 1 })~} 

and  

BN, n -~ {~tEJ~: ~t(~)) < 2 for all QEH(N, n)} 

are open sets in E for all M,  N and n. Since 

E = ( N  UA~,~)n(n UB~.~), 
M~I N~>I N>fl n~>l 

we are done. 

Nex t  note  t h a t  (i) is a necessary and  sufficient condition for  F to be p recompac t  as a 

of 8 .  Thus  (i) is obviously necessary in order for F to be p recompac t  in E.  Now suppose 

t h a t  F is p recompac t  in E and  t h a t  (ii) fails. Then  there is a sequence {/~N}~~ F and  some 

~ e ( {  1, 1})" such t h a t  

Since F is p recompac t  in E, we m a y  assume that /~N-~u 6 E.  Bu t  this means  t ha t  for all 

M~>I:  

/a({XEQM: <X,~)> >M})<<'li~-~/x~({ xEQM: <x,~> > M } )  

and  so Ft({x: <x, 7> >0})  < ~ ,  which is a contradiction.  Nex t  suppose t h a t  F is p recompac t  

in E and t h a t  (iii) fails. Then  we can find an  N such t h a t  for all n >~ 1 there  exists a #n 6 F 

and a Qs n) such t h a t  ~t,(Q)>~2. Clearly we m a y  assume tha t  ~ t n ~ # E E .  Bu t  then  
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max /~(Q) >I lira max /~(~)) 
Q r m) n--),or Q �9 H(N, m) 

>~lim max /~(Q)>~2 
n--)*o9 Q r H(N, n) 

for all m, and so/~ r E. We have therefore established the necessity of (i), (ii), and (iii). 

Now suppose that F c  E and that (i), (ii), and (iii) obtain. Given {#n}___F, we may 

assume, because of (i), that/~n-+/~0 E E. What remains to be shown is that/z 0 E E. But by (ii), 

N]~n /~0({XE~)N: (X,~]) ~ 1 } ) ~  liNm ~Lm~Un({XE~)N: ~X,~]) ~ ~})  

~limg_>co ]~�9 ~({xE QN: (x, ~) ) ~})  = ~ 

for all ~E({--1, 1}) ~. Also by (iii), for each N~>l, there is an m ~ l  such that 

max ~u(Q) ~< lim max ~un(Q) < 1. 
Q �9 H(N, m) n-->oO Q r H(N, m) 

Thus #({y})e{0, 1} for all yeQN and all N~>l. Q.E.D. 

Define C~(E) and B(E) to be, respectively, the set of all bounded continuous and 

bounded measurable functions on E into C. Given S ~  R *, define Q(E; S) (B(E; S)) to be 

the set of those /ECb(E) (B(E)) such that /(#)=/(~) for all /z, vEE satisfying i~ls=vis. 

(Here, and throughout, #Is stands for the restriction of # to S.) The following is a useful 

criterion for determining classes of functions on E. 

1.2. LEMMA. Let S be a bounded measurable subset o/ R ~ and suppose ~t~_ B(E; S) is closed 

under bounded point-wise convergence. I / / o r  every/inite partition 0 o/ S into measurable 

sets I, ?It contains linear combinations o/ /unctions having the/orm 

~u~ exp[i ~ AH~(I)] , 
Iela 

where {~,: IE p } ~  R, then ~/=B(E;  S). In particular, i/ 74~_ B(E) is closed under bounded 

pointwise convergence and ]or every choice o / n  >~ 1 and bounded disjoint F 1 ..... F~ e Bn~ , 

contains linear combinations o/the/unctions 

/ ~  exP [ i / I~ ,#(F, )  ] =  

where {)~j}~ R, then ~ = B(E). 

Proo/, The last assertion follows easily from :the first, since, by the first part, the condi- 

tion on 74 guarantees that  B(E; Q)~_ ~ for all bounded cubes Q_ R ~, and 74 is closed under 

bounded pointwise convergence. 
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To prove the  first assertion it suffices to show that  C~(E; S)~_ 74. To this end, let 

{ ~)n: n ~> 1 } be a sequence of finite partitions of S such tha t  limn_.~ max~e,n diam (1) - 0. 

For each I E U ~ 0n, let ai E I .  Given # E E, let N z be the smallest number such that /u(I )  E 

{0, 1 } for all I E U ~, ~)n. For each n >~ 1, let I1. n . . . . .  I~ n, n be an ordering of 0n, and for 

n ~ N~ define 
k n 

/~nls~=/~ and /~nls= ~ ~(Ii,  n)(~aij,, 
j = l  

Given/ECb(E;  S), there is a function Fn: ~/k~-+C such that  

0 if n < N ,  
Fn(#(I~.n) . . . . .  /~(Ik,.~)) = ](/~n) if n ~ N~,. 

Since #n-+/~ as n ~  ~ ,  we now see tha t  our proof will be complete once we have shown tha t  

for any n~>l and F: ~k"-+C, the function #-+F(iAIl.n) ..... #(I~.n)) is in 74. To do this, 

it certainly suffices to t reat  the case when F vanishes off of a finite set, in which case F 

is the limit of linear combinations of functions having the form 

z-+ exp [i j~:~jzj]. Q.E.D. 

For reasons which will become apparent  very soon, we want to introduce yet another 

class of functions on E. Given # E E and y E R", define 

t # + d u  if/~({y}) = 0 
(1.3) /tA{y} = t / ~ - 6 y  if/~({y}) = ]. 

(We will often think of the elements of E as sets rather  than  measures. Thus the notation 

#A{y} for symmetric difference.) Clearly #A{y} is again in E. I f  /E B(E) and y E R ~, define 

(1.4) Au/(/t ) =/,u(/~) =/(#A{y}) --1(#). 

I t  is obvious that/ .u(#) is bounded and jointly measurable in y and/~. (In fact, by Lemma 

1.2, it suffices to check this for / of the form/(/u) =#(F),  where F E BR~. Bu t  then/,~(/u) = 

Zr(y)(1-2lu({y}), and {(y,/~):/~({y})=0} is open.) Also note that  if / eB(E~S) ,  then 

/ ,u(.)EB(E; S) for all yER~. Given a bounded measurable set S in R ~, let :O(E; S) be the 
set of /EC~(E; S) such tha t  

and let O(E) stand for the set of all/ :  E-+ • such that  /E O(E; S) for some bounded measur- 
able S in R". 
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1.5. L E M M A. For each ~f E C~ ( R ~) (the space o/non-negative continuous/unctions on R ~ having 

compact support), 2eC and C>0,  the /unction / given by /(/~)=exp [~(f q~(y)la(dy) A C)] 

is an element o/ O(E; supp (~)). In  particular, /or any bounded open set G in R ~, 

the smallest class o//unctions/: E-->C which contains ]0(E; G) and is closed under bounded 

pointwise convergence is B( E; G). 

Proo/. Let q~EC~(R~), ~EC, and C < ~  be given and define / accordingly. Certainly 

/ E Cb(E; supp ~). Moreover, if a E R ~ and #({a}) T0 ,  then 

0 if (y)/~(dy) - qp(a) >~ C 

(e-~"~)- l)/(p) if fq~(y)l,~(dy)<C 1,o(#)= 

e~(u)~(d~' ~ ) - e  ~c if fcp(y)l~(dy)-q)(a)<C< fq~(y)l~(dy ). 

Choose M so that  for Ixl ~<lI~I], ]e~Z-ll ~MixI"  I f  fq)(y)l~(dy)-iiq~]] >~C, then 

I/.a(t t) I#(da) =0. If ~ cf(Y)l~(dy ) %C, then 

S I/,a(~) I ~(da) < Me~J~ S ~(a)~(da) < MCe ~j~. 

If f q~(y)t~(dy) - Ilcfll < C < f qJ(y)l~(dy), then either/.a(Y) =0 or <~ Mel~lCIq~(a) l , and 

SO 

<~ Mel~lC( C § II ll)- 
T h u s / E  ~(E ,  supp (~)). 

To prove the second part, it is sufficient, in view of Lemma 1.2 and the fact tha t  

O(E, G) is an algebra, to prove that  for any measurable F ~ G  and 2ER the map #-~ 

exp [i2/~(F)] is a member of the smallest class containing ~(E;  G) and closed under bounded 

pointwise convergence. But  Zr is in the smallest class which contains Co(G) and is closed 

under bounded point-wise convergence. Q.E.D. 

Define ~ = D ( [ 0 ,  ~) ,  E), the space of right-continuous trajectories on [0, ~ )  into E 

having left limits. Given e o ~ ,  let/t~(o~) be the position of eo at time t and define ~ =  

B[/~s: 0 ~< s < t], t >/0. We give s the Skorohod topology, and denote by ~ the Borel field 

of subsets of ~.  Note that  ~ is a Polish space and ~ =a(  O ~>~0~). Given non-anticipating 

functions b =b(t, y; co) and d =d(t, y; w) on [0, ~ )  • ~ into the set of non-negative bounded 

measurable functions on R ~, we define the non-anticipating operator C~ on O(E) by 
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1.7. THEOREm. Let b, d, and I~t be given as in the proceeding and assume that b and d are 

uni/ormly bounded by numbers B and D, respectively. Let a: [0, oo) • E2~ E be a right con- 

tinous, non-anticipating/unction having left limits and P a probability measure on (~, ~ )  

such that P(a o =#o) = 1/or some #o E E. Then the/oUowing are equivalent: 

(i) / (at)  - St ~s](as)  ds is a P-martingale/or a l l / e  O(E), 

(ii) /(t A T, atAT)-- S~^T (b/~s + Cs)/(s ' as)ds is a P-martingale/or all bounded measur- 

able/: [0, T / •  E->C such that/(. ,  iz) ECI([0, T])/or all iz E E, and there is a bounded 

open cube Q/or  which/(t, .) e B(E; Q), t e [0, T] and ]b//~s(t, /z)[ ~< C/z (Q), (t,~) e 

[0, T/•  E, /or  some C < ~ ,  

(iii) /(at)exp [-]~O(s is a P-martingale /or all /: E--~C such that [/I is uni. 

/ormly positive and /E B( E; Q)/or some bounded open cube Q, 

(iv) exp[j~l~ja~(sj)-j~lflds fs (e~- l)b(s,y)dy-j~f~ds f~(e-~- l)d(s,y)~{dy)] 
is a P-martingale /or all n>~ 1, {;tj}~___ C n, and mutually disjoint bounded sets 

$1 . . . . .  S,~eB~,, 

ds (eiZJ-1)b(s,y)dy - ~ tds (e-*~-l)d(s,y)~s(dy) (v) e x p  

is a P-martingale /or all n>~l, {tj}~___R ", and mutually disjoint bounded sets 

$1, ..., S~ E B~'. 

Moreover, i / P  satis/ies one o/these equivalent conditions, then/or any bounded open cube Q 

and T > 0  

(1.8) P( sup a~(~)) -/z~ >J N) --.< (eB~]~Q~!T-tN " " 
0~t~<T \ zv I 

/or N > eBgQ I T, where I QI denotes the Lebesgue measure o/Q. 

Proo/. We will first show that  (i) implies the estimate in (1.8). Given Q, choose ~ ~ Co(R ~) 

so that  I V ~ < ~ 1 .  Given T > 0  and N>eBIQ [ T, define/~, for i > 0  by 

By Lemma 1.5, [xE ~(E) for all i >0, and so, by (i),/,~(~ ) - f t  Cs/~,(~,)ds is a P-martingale. 

Since h is uniformly positive, we can apply Lemma 2.1 of [14] to conclude that  
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is a P-mart ingale.  Let  v = in f  {t ~> 0: j" ~(y) at(dy) - ~ ~(y)/a~ >1 N}. Then, by  

stopping t ime theorem and an easy calculation, we see tha t  

is a P-supermart ingale  for all ~ > O. In  particular,  

~ exp[(e a - 1) B I supp ~1 T] EP[X~(T)] ~< exp[(e ~ - 1) B I supp ~o I iv]. 

Doob 's  

Taking a sequence of q~'s which decrease to Z~, we now have 

P(  sup at(Q) -/~0(Q) >~ N) ~< exp { - 2N  + (e ~ - 1) B[ Q[ T} 
O~t~T 

for all ~ > 0. Since N > eBIQ I T, we can choose 2 so tha t  e -~ = (B[Q I T)/N, and thereby obtain 

(1.8). 
Once (1.8) has been obtained from (i), it is simple to show tha t  for any  bounded open 

cube Q in R ~ and /EB(E; Q), ](~t)-Sto l:~/(as)ds is a P-mart ingale.  Indeed,  by  (1.8), 

EP[~t(Q)] is finite for all t ~ 0, and one can use this to show tha t  the set of /E B(E; Q) such 

t h a t / ( a t ) -  ]to s is a martingale is closed under  bounded point-wise convergence. 

One now simply applies Lcmma 1.5. The case when / depends on t as well as # is now 

easy (cf. Theorem 2.1 in [14]). 

Next  assume tha t  (ii) holds. Then since (ii) implies (i), the estimate (1.8) obtains, 

and we can use Lemma 2.1 in [14] together  with (ii) and (1.8) to  arrive at  (iii). 

Clearly (iv) is a special case of (iii) and (v) of (iv). Finally assume tha t  (v) holds and 

let Q be a bounded open cube in R ~. Given T > 0  and N>eB]Q[ T, define r = i n f  { t~0 :  

z,(Q) _#o(Q) >~ N}, bN(t, y)-Z(~.N)(atAdQ)-#~ Y), and tiN(t, y)=Z(_oo.N)(atA,(~ )) -- 

#~ y). Then if 0 is a finite part i t ion of Q into measurable sets I and {A~: I E  ~)}~ R: 

exp[i,;2~(')-~, f~(f bN(s,Y)(e'~'-')dy+ f d'~(s'Y)(e-'~'-l)~AdY)) d~] 

is a P-mart ingale.  Since ]~ bN(S , y)dy<B]Q[ and j'~ dN(S , y)~(dy) < # 0 ( Q ) + N ,  it follows, 

after an  application of Lemma 2.1 in [14] t ha t  

/ (~)-  ~ ds 
J0 

is a P-mar t ingale  for f E B ( E ,  Q) of the form 
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1(#) = exp[i  X 2~ #(I) ] .  
Jep 

Here  s is defined in t e rms  of b N and d~r as in (1.6). Since s is bounded on B(E,  Q), we 

can now app ly  L e m m a  1.2 to  conclude t ha t  

f: s l(o~s~,) / ( a ~ , ) -  (N) ds 

is a P -mar t inga le  for all [ E B(E ,  Q). I t  is now easy to derive the  es t imate  (1.8) for this Q, 

T, and/Y.  Since Q, T, and A T are arb i t rary ,  it follows tha t  (v) implies (1.8); and the  rest  of 

the  proof is now easy. Q.E.D.  

The nex t  result  is proved in exact ly  the same way  as Theorem 3.1 in [13]. 

1.9. THEOREM. Let b, d, s  and at be as in Theorem 1.7 and suppose P on (f2, ~ )  satisfies 

p(ao  = # o ) =  1 /or some #OE E and P satislies one o / the  equivalent conditions there. Given a 

stopping time ~, let o~ ~P~, be a regular conditional probability distribution (r.c.p.d.) o / P ]  ~ .  

Then there is a P null set N E ~1~ such that/or all co CN and a l l / E  ~ ( E )  

l(at) - l ( a ~  ~)) - Ca l (~s) d,~ 
A~&o) 

i.~ a P~-martingale. 

1.10. T~EOREM. Let b, d, s and at be as in Theorem 1.7 and suppose P on (f~, ~ )  satis/ies 

P ( a  0 =/z ~ --1 /or some fl~ E and one o / the  equivalent conditions (i)-(v). Given t ) 0  and a 

bounded set F E BR~, let ~[ (F) (~]t ~- (F)) equal the number o / s  E [0, t] such that (as - as-) I r = 5y 

( ( a s - a ~ _ ) i ] ~ = - S y )  ]or some y E F ~ s u p p ( a s _ ) ( y E F n s u p p ( a , _ ) ) .  Then /or any ~EC, 

bounded measurable g+ and g_ on R~ ~ C  having compact support: 

is a P-martingale. 

Pro@ Let  n ) 1  be t emporar i ly  fixed, and  for/~ ) 0  let co- ,P~ be a r.e.p.d, of P I ~k/~. 
B y  Theorems 1.7 and 1.9, there is a P-nul l  set NE'mk/n  such t ha t  if m ~ / ~  in an 

'mel t -measurable  m a p  of ~ into B(E ,  Q) (for some fixed open cube Q in R ~) then  

0 < in f . .  110,( ) I < sup . I < oo implies 
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is a P~ martingale for all m ~/V. In  particular, if 

]~(/z) = exp [~ttt(F ) +y(t t ,  zt~/~(a~))] 

where 

then 

g+(Y) 

' ( t t , ' )  = l ;-(Y) 
otherwise, 

f .  
exp [2(~v(k,n)(F) - ~kM~o; F)) + Y(~tv(k/.), ~/~((o)) 

l'(k/n)vt[ p 

- Jkj, U(exp{-'tZr(Y)+7(~"-O~'~kMw))-~(a"~"(w))}- l)d(u'Y)~'(dY)) du] 

is a P~-martingale for all o~ r N. Here we can take Q to be any  bounded open cube containing 

F U supp (g+) U supp (g_). Thus, 

exp [}t(at(F ) - •(F))  + Z ~l(O~tA(k+l)/n), ~tA(k/n)) X(~. )g~ ( t ) 
I Ir 

joq, ) - exp{~Zr(y)+y(~u+d~,~u.)-y(~.,~.)}-l)b(u,y)dy du 

- ; ( f (exp { - ~Cr(y) + 7(~u- ~, ~ . ) -  ~'(~u, ~,) }-  l ) d(u, y) ~Ady)) du] 

is a P-martingale,  where u~ = [nu]/n. 
Clearly the exponent of X~)g• (t) tends to 

,t(at(F)- Iz~ + f g+(y)v: (dy) + f g-(y)vi-(dy)- ;(f(e~zr(~)+~+(~)- l )b(u, y)dy) du 

- f~( f (e  l)d(u,y)a (dy)) du 
( n )  4- as n-> oo. Thus the proof will be complete once we show tha t  {X~. g_ (t): n >~ 1} is uniformly 

P-integrable for all t .>/O. Note t ha t  

Ix~%• l < l exp [~ y(~((~+,),~)~,, ~(~,~)~,)]lexp [At(I Q I + sup au(Q))], 
k O<~u<~t 

where 

A = (sup [ dxr(~)+ru'+% ~)-r(~'~)- l IB)  V (supl  e-~zr(~)+~(~+~'~)-~(t''~)- liD), 
y ,  t t ,  v y ,  t t , v  
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and; by (1.8), exp[fl sup0<~<~ ~(Q)] is P-integrable for all f l>0. Thus we need only show 

that  

sup Ee[[exp [~ y(~<(~+l)/n)^~, ~(~/~)^t)] I r ] < co 
n k 

for some r > 1. For this purpose, we can, and will, assume that  g+ and g_ are real valued. 

Then 

l exp [~ ~(~((~+0),.~)At, ~(~)At)]l 2 = exp [2 ~ ~'(a((~+~)/n)A~, ~(k~)^t)] 
k 

~) ~1~ [A's([Q[+ sup (Xo, 4g~(t)) exp ~(Q))], 
O~<u~$ 

where A' is determined in the same sort of way as A above. Since 

this completes the proof. Q.E.D. 

1.11. COROLLARY. Let everything be as in Theorem 1.10. Then ~.=#~ (a.s., P). 

In  particular, i] F is a bounded element o/ BR, and ar denotes the restriction o /a t  to F, then 

s~o~ r, O ~ s ~ t ,  consists, P-almost surely, o / a / i n i t e  number o I jumps, each o/which entails 

the addition or deletion o I exactly one atom. Finally, i I F e Bn~ is a set o I Lebesgue measure 

zero, then o~ r. =#~  -~.~ ]r (a.s., P). 

Proo]. Given a bounded F E BR~, take 2 =iO and g~ =T iOgr in Theorem 1.10 for some 

0 C R. Then 

E [exp [iO(~t(F) -/~~ -~+ (F) + ~ t  (F))]] = 1 

for all t~>0. Since B~ is countably generated, this proves that  ~ t=#~ for each 

t >~ 0. Since both sides of the preceding equation are right continuous in t, the first assertion 

is now proved. The second assertion is an immediate consequence of the first. Finally, to 

prove the last assertion, we must check that  V~(F)=0 (a.s., P ) i f  IFI =0. ]~ut if ~=0,  

g+ =iOZrnB(o.N) (B(O, N) is the ball with center 0 and radius N), and g_ =0 in Theorem 1.10, 

then 

EP[e~% +(rn'(~ = 1, 

and so the desired conclusion follows immediately. Q.E.I Z 

1.12. LEMMA. Let everything be as in Theorem 1.10. I / T  > 0 and S~_ R ~ is a finite set, then 

there is an 0 <~ < 1 depending only on D T  such that: 

P (~0inf r ~ ( S ) ~  ~ e-Dr) ~-- ~ 

8 - 772907 Acta mathernatica 140. l m p r i m 6  1r 10 F e v d e r  1978 
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Proo/. Firs t  note  tha t ,  b y  Corollary 1.11, u.(S) is P -a lmos t  surely non-increasing. 

Assume that /~~ = N >/1. We mus t  show t h a t  P(~T(S) ~ �89 -Dr) <~On for some 0 ~<~ < 1 

depending only on DT. 

Set 

l~)(~(Z))e-eDt(1--e-Dt) ~r if I~(S)>~n 
/ . ( t , ~ ) =  ~ 

0 if / ~ ( S ) < n  

for  n/> 0, t ~> 0, a n d / z  E E.  I t  is easy to  check t h a t  

~ -  D f ( / , ( ~ - O ~ ) -  /,(~))~(dy) 

and In(t, l a +Oy)>~/~(t, l a) for all y E R  ~ and tueE .  F r o m  these observat ions  it is easy to see 

t h a t / n ( T -  (t A T), ~t^T) is a P-submar t inga le .  Hence  

P(~T(S) ~> n) = EP[/~(0, ~r)] >/EP[/~( T, a0)] = /~ (T ,  lu~ 

and  so 
n- i/N\ 

P(O~T(S )<n)< ~. | | e-kDT(1 e-gr) N-k 
k ~ o \ k /  - " 

The  desired conclusion is immedia te  f rom this. Q.E.D.  

1.13. L E M M A. Let everything be as in Theorem 1.10. Given L > 0, let Q = {x E R~: - L  < x s < L, 

1 <<-~<~v}; and/or n>~l and k e ( { - n + l  . . . . .  n - 1 } F ,  set 

Q(k~)={xEQ: ( k j -  1 )L  (kj+ 1)L,  } - -  < x j < - -  l <~ j <~ v . 
n n 

Then/or each e > 0  there is an N>~I ,  depending only on B L T  and ~O(Q), such that i/ n >~N 

and m a x  k tu~ )) ~< 1, then 

P ( m a x  sup ~t(Q(~ )) > 1) < e. 
k 0~<t~<T 

Proo]. Let + o + c~+ ~ =/u +~t  �9 Clearly . is non-deere~sing and  6r <~ 6t +. Thus,  i t  suffices for  

us to prove  t h a t  for  each e > 0  a suitable choice of 1V can be made  so t ha t  n ~>h r and  

m a x #  ~r , 1 implies 

P ( m a x  ~+(Q~n)) > 1) < e. 
k 

~re do this first  under  the  assumpt ion  t h a t  b - - B ,  and  for convenience we will assume 

~ 1 .  
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Let  n be given, and  assume t h a t  ju~ for - n + l  <k<~n-1 .  Denote  b y  y(n) 

the  set of subsets,  S, of { - n + l  . . . .  , n} such t h a t  {k: - n + l  <~k<n and la~ 

(k + 1) L/n] N ( - L ,  L)) >~ 1 } ~ S c and for any  k E S N { - n + 2 . . . . .  n - 1 } nei ther  k - 1 nor  k + 1 

is in S. Then  

Notice tha t ,  since b - B, {~+(((/c - 1)L/n, kL/n]): - n  + 1 <~ k <~ n} are mutua l ly  independent  

~ -va lued  r andom variables  such t h a t  

(This observat ion  is immedia te  f rom Theorem 1.10.) Thus  

e_2BLr ~ y(~) B L T  I 

where .~j'(n)={SE y(n): IS] ~?'}. I t  is easy to  check t h a t  IJ~ n)] ~ ( 2 ; )  and  t h a t  for each ?" 

lira I ~ ' ) 1 / ( 2 i n )  = 1 
n---> 

a t  a ra te  t ha t  depends  only  on/z~ This completes  the proof  in the  case when b=--B. 

I n  general, we proceed as follows. Given n, we can use the  reasoning just  given if we 

can show t h a t  the  vec tor  

is s tochast ical ly smaller  t han  in the  case b = B. To this end, define 

B L T  ~ r f k L / ,  ) 
Ak(w) n .Io J((k-1)L)/~ b(u'y; eo)dy du 

for - n  § 1 ~< k ~< n. For  eo E ~ ,  let ~u~ be the  probabi l i ty  measure  on 712n given by: 

n (Ak(o~)F~ 
~ ( { ( m - ~ §  . . . . .  ran)}) = 1-I e - ~ ( ~ )  

k=  - n + l  ~ k  ! ' 
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then 

and so 

and define t5 on ~ • ~ so that  

P(A • {(m_~+~ ..... m~)}) = EP[#.({(m_~+~ ..... ran)}), A]. 

Then an easy computation shows that  if 

( ( ( k - 1 ) L , ? ] ) §  - n + l < - . . k ~ n  , x~=v~\\ -n 

=expi - (e'" , 
L L n + l  J J  - n + l  

-2BLr ~ /BLT\Z~ / 
Q.E.D. 

1.14. LEMMA. Let everything be as in Theorem 1.10. Given s>~O and a bounded open cube 

Q in R ~ there is a constant C depending on s, B, D, ]Q I, and #O(Q) such that: 

P((3tE[s, s + s ) ) ~  ~ )  <~ Ce. 

Proof. Let T=inf  {t~s: ~ : ~ } .  Let  r be a r.c.p.d, of P t  ~ and ~ t - - ~  + ~ .  

Then, by Theorem 1.9 

<~ (t - s)(BIQ I § Do:~(Q)). 

The result now follows from an application of (1.8). Q.E.D. 

1.15. THeOrEM. Let I be an index set and ]or each aCI  let b~ and d~ be non.anticipating 

functions on [0, ~ )  • g2 into B+(R ~) such that B=sup~lib~l I < c~ and D=sup~ Hd~l I < ~ .  Let 

{/~: ~EI} be a precompact subset of E. For o:EI, suppose P~ is a probability measure on 

(~, ~ )  such that P~(#o=# ~) =1 and ](#~)- ]to s is a P~-martingale /or a l l / e  D(E), 

where s is defined in terms of b~ and d~ as in (1.6). Then {P~: a e I }  is precompact in the 

weak topology on probability measures on ~. 

Proof. Using Lemma 1;14, one can show, by standard methods that  the Skorohod 

modulus of continuity on finite time intervals can be controlled independent of ~ E I. Thus 

it suffices to show that  for any s > 0  and T > 0  there is a compact K E  E such that  

sup P~( sup /~t~K) < s. 
O~t~T 

This can be done by using the characterization of compacts given in Lemma 1.1 and then 

using Lemmas 1.12 and 1.13 together with estimate (1.8). Q.E.D. 
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2. The martingale problem; birth and death in a bounded region 

Let  b: R ~ • E~[O, ~ )  and d: R ~ • E-~[O, co) be bounded measurable functions and 

define s on ~ (E)  by 

) = fb( , + fd( , 
A probabili ty measure P on (~,  ~ )  is said to solve the martingale problem/or ~ starting 

]rom # E E if P(#0 =~u) = 1 and/(#~) - ]~ E/(/~)ds is a P-martingale for all l E O(E). 

2.2. THEOREM. Let b, d, and s be as above. I / there exists a bounded open cube Q in R ~ 

such that b(y, - )=d(y,  - ) ~ 0  ]or y~Q, then ]or each/~EE there is exactly one solution P/~ 

to the martingale problem ]or ~ starting/rom #. Moreover, #~P~(A)  is measurable ]or all 

A E ~ and the /amily {P~:/~EE} is strong Marlcov. Finally i /To~O and ~ = i n f  {t>~T~_~: 

I~t:#:/~,~ ~}, n ~ l, then/or all t > 0  and n>~l: 

(i) P~(Tn~t and ~ ] t ~ - ~  ~=(~y /or some y E F I ~ , _ ~ ) =  ( 1 - e x p [ - ( t -  (tA v~_~)) x 

M(~,~ 1)]) [b(F,/~,_ , ) ] / [M(/~ ~)] (a.s., P,)  on (T~_~ < co and M(/~ ~) > O} and 

equals 0 elsewhere. 

(if) P,('r~ ~ t and/u~ - / a ,  ~ = - ~ / o r  some y E F I ~ , _ ~  ) = (1 - exp[ - (t - (t A ~-1))  x 

M ( / ~ _  ~)]) [d(F, /~,_ 1)]/[M(~u~,_ ~)] (a.s., Pz) on {'~_~ < ~o and M(~u~_~) > 0} and 

equals 0 elsewhere. 

(iii) P l ~ ( ~ t ) ' ~ O  as n ~ c ~ ,  where 

and 

b(F, #) = frb(y,  t~) dy, 

d(F, #) = frd(Y, tt)tr 

M (/~) = b(Q, i ~) + d(Q, lu). 

Proo/. Clearly uniqueness of solutions will be established once we show tha t  any  solu- 

tion must  satisfy (i), (if), and (iii). Let  P: be a solution to the martingale problem for s 

start ing from #0 and define ~ = inf {t >~ 0: #t(Q) _/~0(Q) ~ zY}. By  estimate (1.8); P(~N ~ t) ~ 0 

as N-~ o% Also, if we can prove (i) and (if) then  

from which it is easy to conclude Chat: 
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P(z .  < t < ~N)'~ 0 

as n ->oo for each N~>I. Thus (i) and (ii) imply (iii). 

We now prove (i) and (ii). Using the notation and results of Theorems 1.9 and 1.10 we 

have 

(2.3) P(Tn<~t and  pvn--p-rr,_l=(~y for some y e F [ ~ , _ l )  

n - 1  = P ~  (Tn--~t and /z~ -/z~,_l=(~ u for some yEF) 

n--1 
WPco + + = [n,A~.(F)-  ~,A~. I(F)] 

= F,P:- ' [ f )̂ ii"(~)(~,) ;rb(Y, m) dy ds ] 

= b(F,/~,_~) f t P~-a(v~ > s)ds, 
d t A zn - l(m) 

where eo-+P~ -1 is a r.c.p.d, of P[ ~ , -  1. Similarly, 

(2.4) e(v.<t and /~ - / ~  ~ = - ( 5  u for some yEF]~/~,_~) 

=P~o-l(Tn<~t and # ~ , , - P ~ - I = - d t y  for some yEF) 

f t t  n-1 =d(F,p~._ 0 ^~._~(~P,, (vn>s)ds. 

Taking F =Q in these two equations and adding we get: 

Po~ ('cn ~ t) - M(~.~,,_ a) P~-l('vn > s) ds, 
3t A'rn l(m) 

which implies immediately that: 

n - 1  I 0  J-f " t ' n _ l ( ( D ) = c x 3  o r  vn_x(c0)< ~ and M(/t~_~(~)(w))=0 
po (~.<t)= [ 1 -- exp [ -- (t-- (t A ~n_l(eO)) M(~u~,_l(~)(eo))] otherwise. 

Plugging this back into (2.3) and (2.4), one arrives at (i) and (ii) respectively. Thus (i), 

(ii), and (iii) have been established for any solution to the martingale problem for l: starting 

from/~, and so uniqueness of such solutions is obvious. 

Next assume that  b and d have the property that  b(.,/~) =d(-,/~)--=-0 for/~ such that  

#(Q) >~ N. In this case s is bounded, and, therefore, there are several ways of establishing 

the existence of a measurable Markov family of solutions {P~:/t E E} (cf. Theorem 2.1 in 

[12] for instance). In general, let bn(y,/t) = Zt0. N) (/~(Q)) b(y, l u) and du(y,/~) = Zt0.m (/~(Q)) d(y, ~), 
and define C Cm accordingly. For each N>~I, a measurable Markov family of solutions 
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{P~: # fi E} exists. Note that  if aN =ir~ {t/> 0:/~t(Q) >/N}, then, for any/~ fi E, 

ds 

is a P~+~-ma~ingale for all /fi O(E). Thus, by uniqueness p~§ equals P~ on 7~,N for 

all N. Moreover, by estimate (1.8), P~(aN<t)-~0 as ~T-> oo for all t>0  and ~fiE. Hence by 

standard extension theorems, there is, for each # fi E, a unique P~ on (~, 7/1) such that P~ 

equals P~ on ~ N  for all N >~ 1. Clearly P~ solves the martingale problem for I~ starting 

from # and/~Pz~(A) is measurable for all A fi ~ .  Finally, because of uniqueness, it is easy 

to derive from these facts that  {P~: # fi E} is a strong Markov family (el. [13]). Q.E.D. 

2.5. THEOREM. Let everything be as in Theorem 2.2 and let {P~:/~ fiE} be the unique family 

of solutions constructed there. Given ]fiB(E), set ut(t, I~)=E~'~(/~t)]. Then u1(t, #) is the 

unique bounded measurable ]unction on [0, oo) • E into C such that u(0, . )=] ( .  ), u(.,/~) fi 

C1([0, ~) )  ]or each #fie and Ou]Ot=F~u on [0, co)• E. Furthermore, if there is a bounded 

open cube Q' such that b(y, .) and d(y, .) are in B( E; Q') for all yfi R ~, then u1(t, -)fiB(E; Q') 

for all~t>~O q ]fiB(E; O'). 

Proof. Let T > 0  and/ :  [0, T] • E-~(] be given such that  f is bounded and measurable, 

/(-, ~u) fi C1([0, T]) for all # fi E, and l a//~t(t,/~) I ~ C#(Q), (t, #) fi [0, T] • E, for some C < co. 

Given #0 fiE, let [ be defined by [(t, #) =/(t , /~IQ+#~ on [0, T] x E. Then f satisfies the 

conditions given in (ii) of Theorem 1.7, and so 

t(t  j0 

is a Pzo-martingale. Since #. Io0  Olo0 (a.s. p,,), this shows that  

]tAr/0 
]('A T , /z t^ r ) -  Jo ~ + s  #~)ds 

is a P~~ In particular, if ]fiB(E) and u: [0, c~) x E-~(] is bounded measurable 

and satisfies u(0, . )=]( . ) ,  u(-,/~) fiC~([0, c~)), and ~u/~t=~u on [0, co) x E, then, for each 

/~fiE, u(T-- ( tA  T),/~t^r) is a P~-martingale; and so 

u( T, i ~) = E~,[l(/~r)] = ut(t, i~). 

We next want to show that  u t satisfies the asserted properties. First note that, by the 

preceding paragraph, 

ur(~,l~)=E'~'~(tz~)]=/(l~)+E'~[; s de]. 
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Next  note  t h a t  if 0 ~ s < t, then  

I E~ ' [~ l (~ t ) ]  - E P . [ s  < E~"[I s  - s I, t,~ I ,~* ~ I ,~3 

<~ CE~.[ sup (#~(Q))~]~(P,(ltt I Q ~ /as l o)) ~ 
O~u~t 

and the  last  line tends  to zero as t - s - + 0  b y  (1.8) and L e m m a  1A4. Thus us( . , / t )  6C1([0, ~ ) )  

for all # E E.  Nex t  define, for N >~ 1, s and  {pN: tt EE} as in the  proof  of Theorem 2.2. 

Then s is bounded and so u(N)(t, #) =et:(N)/(#) is well defined. B y  the preceding para-  

graph,  

u(~)(t, ~) = E~[/(~)], 

and, by  the  proof  of Theorem 2.2, EP~[/(#t)]-~EP,[/(#t) ] =ur(t,/~). Also, for each 2r 

~) =/(t~) + f~ s #) u(N)(t, ds. 

Thus,  by  let t ing N 7  ~ ,  we see t h a t  

ur(t, ~) =/(~) + f[ s ~) de. 

This completes the  proof t h a t  ~ul/~t = s  I on [0, oo) • E.  

Finally,  if b(y, .), d(y, " ) 6 B ( E ,  Q') for all y E R  ~ and #0, v0EE have  the p rope r ty  t ha t  

#0]O,=~0]Q,, define O: ~ - ~ 2  

uniqueness, P~0 =P~0o O -1. Since 

so t ha t  lut(O(w))=#tiQ,+#~ for all t~>O. Then,  by  

for /E B(E;  Q'), the  proof of the  theorem is complete.  Q.E.D.  

2.6. THnORWM. Let everything be as in Theorem 2.2 and let ~ E E  such that v(Q)=O. Set 

E~(Q) ={flEE:/~IQO=VIQo} and assume that there is a 5 > 0  such that d(y,/~) >~c5 /or all yEQ 

and #EEl(Q).  Then /o r  each 1V >~O there is a CN< oo such that EP~[~]~C~r /or all #EEl(Q)  

satis/ying # ( Q ) = N ,  where ~=in f  {t>~O:#t(Q)=O}. Moreover, i/ ~b(y ,~)dy>O,  then O< 

EP~[T ,] < 0% where ~' = inf {t >~ 0:/~t(Q) = 0 and (3s E [0, t)) #s(Q) ~=0}. 

Proo/. We learned the basic idea behind this proof  f rom Pres ton  [10]. 

Choose B > 0 so t ha t  ~ b(y; #) dy ~ B for all # 6 E.  Set ? = B/c5 and define V: T/-> [0, o~) 

so t h a t  V(0) = 0 and v(n) - v (n  - 1) = (n - 1)! y "-1 ~ o  ~ y -  k/k!, n ~> 1. Then it  is easy  to check 

t h a t  

B(v(n  + 1) - ~f(n)) + (~n(y~(u - 1 ) - v(n)) = - B 
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for all n ~> 1. Given N >/2, define/~(/~) = yJ(/~(Q) A N). Then if # E E~(Q) and 0 </~(Q) < N: 

s = fb(y,  #)(!p(lz(Q) + 1) - W(#(Q)))dy+ fd(y ,  #)(W(#(Q)- 1) - W(/z(Q)))#(dy) 

< B(~p(#(Q) + 1) - + , ( # ( Q ) )  - ( ~ a ( Q ) ( Y ( # ( Q )  - l )  - ~p(~(Q)) )  = - B .  

Given/z E E~(Q), 

/ N C ~ + ) -  ~"+ s ds 
jo 

is a P#-martingale. Thus if ~N=inf {t~>~:/~(Q) ~>N}, then f~(#+^+~^+++)- J+~A+:+VA+ ]/N(/~+)ds is 

a P/mart ingale .  Since Pg(#tEE~(Q) for all t>~0)=l,  we now have that  /~(/ZtA~VAz)+ 

B(t A ~N A ~) is a P~,-supermartingale. Thus 

YJ(#(Q)) >1/N(#) >~ EP"[/N(#t^~NA~)] + BEe'[ t A ~N A z] >~ BEP~[t A ~N A z]. 

Since ~=N/oo (a.s., Pg), this proves that  

EP'[z] <~ y~(#(Q))/B. 

Finally, note that  v ' > 0  (a.s., P~) because/~t(Q) cannot change from 0 to something 

not 0 and then back to 0 instantaneously. Thus Ee~[z '] >0. On the other hand, if a = 

inf {t~>0:/&(Q)40}, then, by Theorem 2.2, Ee'[a] =1] ]  b(y, v)dy and P~(#~(Q)=1)=l. 
Thus 

1 
EP~[z '] = EP~[a] + Ea[EV+~">[r]] ~< : +- C1. Q.E.D. 

f b( v)dy y, 

2.7. THEOREM..Let everything be as in Theorem 2.2. Given ~,EE such that v(Q)=0, (P~: 

~EE,(Q)} is a measurable, strong Markov /amily. Moreover, i/ there is a 3>0 such that 

d(y, #) >~ /or all yEQ and nEEd(Q), then/or all/~ E Ev(Q) and/EB(E): 

lim EP,[/(/~t)] = ~ /  dm ~, 
t--~00 J 

where 

(Here z' is as in the Ic~t part o/ Theorem 2.6.) In particular, (P~: #EE~(Q)} is an ergodic 
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Markov ]amily and its unique invariant probability measure m v has the property that 

m ' ( { v } )  = 

if f b(y,  )dy = o 

Proo]. The first assertion is immediate from Theorem 2.2. To prove the second asser- 

tion we show first tha t  

(2.8) lim EZ~[/(l~t)] 
t-*~o 

exists for all [EB(E).  Indeed, this is obvious when ~ b(y, v)dy=O, since, in tha t  ease, 

P~(l~t=~, for all t~>0)=l .  When Sb(y,v)dy>O, E e ' [ r ' ] < c %  and clearly r '  is a renewal 

t ime for the process P,. Thus the limit in {2.8) exists by  Section 9.8 in [1]. The idea of using 

the renewal theorem here is due to Preston [10]. 

Next  note tha t  if/~ E E,(Q), then 

E%[/(l~t] ) = E%[uj[t-  r,  v), r ~< t] + EP~[/(/~t), z > t]-> lim uf(t, v), 
t--~o 

as t ~ ,  where z is as in Theorem 2.6 and ur(t,l~)=EPz[/(l~t)]. Thus our proof will be 

complete once we identify the limit in (2.8) as ] / d i n  ~. I f  ] b(y, v)dy=O, there is nothing 

more to do. I f  ] b(y, v)dy>0,  

Thus since the limit in (2.8) exists it must  be equal to 

[ ]/ lim 2 oo e-~tEP'[I(IA ) ] dt = E ~, J(l~t) dt Ee,[z']. 
~-->o Jo 

Finally, it is obvious tha t  m ' ({v})= l  if 5b(y,v)dy=O; and if Sb(y,v)dy>O, then 

EP~[r '] < oo and EP,[S~ ' Z<,>(/~t) dt] = EP,[a] = (Sb(y, v) dy) -1, where ~ = inf (t/> 0: I~t(Q) :~ 0}. 

Q.E.D. 

2.9. L~MMA. Let b and d be bounded measurable:junctions on R" • E into [0, c~) and define 

F~ accordingly. Suppose m is a probability measure on (E, BE) and Q is a bounded open cube 

in R" such that 5 s  /or a l l / e  ~0(E; Q). Then 
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In  particular,/or all f E B ( E ,  Q), 1:feLl(m) and ~ ~]dm =0. 

Proof. Given N>~0, choose ~pEC~~ such that  ~ 1  on [0, N] and ~0=-0 off ( - 1 ,  

N §  Let (~n}~C~(Q) such that  0~<~/~ZQ and set/~(~)=~(~q~n(y)#(dy)). Then it is 

easy to check that  fn E ]0(E; Q) for all n, supn sup~ ~ [fn.y(fe) [/z(dy) < c~, and/~(/~) ~Z~O.N~(/~(Q)) 

boundedly and pointwise for all /zEE. Hence, if /(~)=Zto.Nj(t~(Q)), f lEE,  then C/n-~s 

boundedly and pointwise for ~u E E and so ] C/dm =0. But 

Z(~>(#(Q)) f b(y, ~)dy  + Z<~+~>(l~(Q)) f d(y, #)#(dy) ,  s 

and therefore 

Summing over/V >~ 0, we arrive at  the desired estimate. The estimate immediately implies 

that  E/ELl(m) for all fEB(E;  Q). Finally, consider the class ~ o f / ~ B ( E ;  Q) such that  

C]dm =0. Using the preceding estimate, it  is easy to see that  ~ is closed under bounded 

pointwise limits. Since/)(E,  Q)c ~4, it follows from Lemma 1.5 that  ~4 = B(E; Q). Q.E.D. 

2.10. THEOREM. Let b and d be bounded measurable/unctions on R ~ • E into [0, ~ )  and Q 

a bounded open cube in R ~ such that b(y, . )=d(y ,  .)~-0 ]or y CQ. Define C accordingly and 

let (P~: i~ E E} be the associated Markov /amily given in Theorem 2.2. I / m  is a probability 

measure on (E, ~E) such that f l : /dm=O ( f  /Cgdm= f gC/dm) /orall  /~  ~ ( E )  (/, y~  ~(E)) ,  

then m satisfies ] /dm= ~ EP'[/(l~)]dm (~ gEe'[/(l~)]dm= ~ /Ee'[g(#~)]dm) /or all ]EB(E)  

(/, geB(E)). 

Proof. By Lemma 1.5 and Lemma 2.9, it is easy to see that  Ch ELl(m) for all h E B(E)  

and S s  =0 ( ] ]Cgdm= Sgs  for a l l /EB(E)  (],gEB(E)).  (In fact, the Li(m)-norm of 

s is bounded by 2 II b II I QI H h II') Thus if / E B(E) (/, g E B(E)) and ux(t, �9 ) (uI(t , �9 ) and u~(t,.)) 

are defined as in Theorem 2.5, then for t ~> 0: f Cur(s , �9 ) d m =  0 ( f us(s , �9 ) ~ug(t - 8, " ) dm = 

.~ ug( t - s ,  -) s .)dm), O<~s<~t. Since d/ds S ur(s, . )din= ~ Cur(s, .)din (d/dsf ur(s , .) • 

ug( t -  s, �9 )dm = - f ur(s, �9 ) Cug(t - s ,  �9 )dm + f ug(t - s ,  �9 ) Cut(s, �9 )dm ~0), we now have the 

desired result. Q.E.D. 

2.11. THEOREM. Let b and d be bounded measurable/unctions on R ~ • E into [0, ~ )  and Q 

a bounded open cube in R ~ such that b(y, �9 ) = d(y, . ) --- 0 /or  y ~Q and b(y, �9 ), d(y, �9 ) E B(E; Q) 



124 R. h .  t t O L L E Y  A ~ D  D. W.  STROOOK 

/or all y EQ. Define s accordingly and let {P~: #E E} be the associated Markov /amily given 

in Theorem 2.2. I /  m is a probability measure on (E, BE) such that f s  (~/s  

]gs /or all /EO(E;  Q) (/, gEO(E;  Q)), then m satis/ies ]/dm=]EP'[/(t~t)]dm 

( f gEP'[/([~t)] dm = ~/EP'[g(~t)] dm)/or all / E B(E; Q) (/, g E B(E; Q)). 

P~vo/. The proof follows that  of Theorem 2.10. The only extra ingredient needed is 

the last part of Theorem 2.5. Q.E.D. 

2.12. COROLLARY. Let b and d be bounded measurable/unctions on R ~ • E into [0, oo) and 

Q a bounded open cube in R ~ such that b(y, �9 ) = d(y, �9 ) - 0/or  y ~ Q. Let ~ E E have the property 

that ~(Q)= 0 and d(y, f~)>~(~ > 0 /or  all y E Q and/~ E E~(Q). I / m  is a probability measure on 

(E, BE) such that m(E~(Q))=1 and ~ ~/dm=O /or a l l /E  ~(E;  Q), then m is the measure m y 

described in Theorem 2.7. In  particular, there is exactly one such measure m. 

Proo/. In view of Theorem 2.7, we need only show that  m is a stationary measure for 

{P~: #EEl(Q)}. To this end, define b~(y,/~) =b(y, #lo+~Ioo) and dr(y, #) =d(y, #IQ+~[Q~) 

for y E R ~ and/~ E E. If s is the associated operator, then ] s = 0 for all / E B(E; Q), 

since m(E,(Q)) - 1. Thus, by Theorem 2.11, m is stationary for the corresponding {P~: ju E E}. 

But P~ = P z  for/~ E E~(Q) and m(E~(Q)) = 1. Thus m is stationary for {Pz: # E E~(Q)}. 

Q.E.D. 

3. The martingale problem, a special case 

Suppose that  we are given b and d, as the beginning of Section 2, and define L: on 

D(E) accordingly. The purpose of this section is to find out what can be said about the 

martingale problem when we drop the assumption that  b(y, .)=d(y, . ) - -0  for y outside 

some bounded set. Our results here are rather incomplete and are really satisfactory only 

in a very special case to be described below. Before getting into that,  we present the next 

general theorem. 

3.1. THEOREm. Assume that b and d have the/oUowing additional properties: 

(i) /or all ~ E E and {#~}~o~ E such that #n~/~, b(., ~n) ~b ( ' ,  ~) in (Lebesgue) measure, 

(ii) /or all (y, #) E R ~ • E and {(y~, #n)}~~ R ~ • E such that #~({Yn}) = 1 and (y~, ~n)-~ 

(y,/~), d(yn, /~)-+d(y, /~). 

Then,/or a l l /E ~(  E), ~/  is a bounded continuous/unction. Moreover,/or each # E E, there is 

a solution P~ to the martingale problem/or ~ starting/tom/~. Finally, there is a choice o/ 

# ~ P z such that {P~: # E E} is a measurable, strong Mar]cov /amily. 

Proo/. The proof that  s  bounded and continuous for / E O(E) is left to the reader. 

As for existence of solutions, let QN={xER': ]x~] < N  for 1 < j ~ v }  and define bN(y, ")= 
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ZQ~(y) b(y, �9 ), dr(y, �9 ) = ZQN(y) d(y, �9 ), a n d  s accordingly. Given/xE E, let P~ be the solu- 

tion to the martingale problem for ~(~) starting from ~t. By Theorem 1.15 {P~: N ~ I }  is 

weakly compact on ~.  Let  {P(~:)} be a con~rergent subsequence and set P =limN,_~o0 p(N.). 

Clearly P(/z 0 =/~)= 1. Moreover, for any /E ~ ( E ) ,  s 1:/ whenever N'  is sufficiently 

large. Since ~] is continuous, it is now easy to check that  P solves the martingale problem 

for C starting from #. Finally, the assertion about the possibility of selecting #-+Pg so that  

{Ps: # E E} is measurable and strongly Markovian is easily derived by an obvious adapta- 

tion of the argument given by Krylov [5]. Q,E. D. 

Unfortunately, Theorem 3.1 is not very useful. In  particular, the relationship between 

and {P~: # E E} is too weak to draw any 'important conclusions about the properties of 

{P~: # ~ E} from facts about JE. For instance, it is impossible to show, from this theorem, 

that  ~ ]s  ~ 9s  for all ], gEO (and some probability measure m on (E, BE)) 

implies ~ gEe'[/(/xt)]dm = ~/EP'[g(#t)]dm. In  fact, similar implications in other contexts 

are well-known to be false (ef. [4] for example). 

We now turn our attention to a very special situation in which it is possible to prove 

much more refined and useful conclusions. In  the first place, we will restrict ourselves to 

one dimension. Secondly, we will assume that  our coefficients b and d depend only on 

"nearest neighbors". That  is, we assume that  there are bounded raeasurable functions 

fl: Z3-+[0, ~ )  and ~: Za-~[0, ~ ) ,  where Za={(l ,  y, r)ERa: t < y < r } ,  such that: 

(3.2) 

and 

(3.3) 

w h e r e  

and 

b(y, #) =fl(l~(y), y, r~(y)) 

d(y, #) = 6(/s(Y), Y, r~(y)), 

l~(y) = sup {/: l < y and #({/}) = l} 

rl~(y ) =in f  {r: r > y and #({r}) = 1}. 

If one considers the analogue of our set-up on the integers, then existence and unique- 

ness can be proved for many reasonable choices of b and d by adapting Liggett 's [8] tech- 

niques in the same way as we did in [3]. Moreover, L. Gray has developed a very powe;ful 

method of proving uniqueness for spin-flip type processes and he has used his technique 

to prove the first part  of our Theorem 3.13 in the integer context. In fact~ he discovered 

his technique before: we learned how to get away from our original assumption that  d be 

independent of /z .  I t  was only after we had learned of his work that  we found a way of 

proving Theorem 3.13 in the form that  it  now appears. Although we believe that  Gray's 
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ideas can be adapted to cover the real-line case, we prefer the approach that  we give below 

because it seems to us more direct and shows that  not only do the finite dimensional 

marginals of the approximants converge strongly but  the approximating processes them- 

selves converge strongly. This latter fact is a peculiarity of the nearest neighbor assumption 

and may prove useful in the future. 

I t  what follows, we will make frequent use of the following construction. Given a 

probability measure P on (~2, ~ ) ,  an eoE~ and a T > 0 ,  let O~| denote the unique 

probability measure on (~, ~ )  such that 

E(~ca|176 . . .  ]m(#.~..~,)gl(#~. l ) . . .  g,(~.~,.)] = ] 1 ( # 8 , ( ( - * 0 ) ) . . .  ]m(//.~sm(O)))J~P[gl(]Mh-T)... gn(~.~tn-T)] 

f o r  a l l  m,  n > ~ ] ,  O--.<sz < ... < s m < T < ~ t l <  ... < t ,  a n d / 1  . . . .  , ]m,  g l ,  "" ,  gnEB(E) �9 F o r  m o r e  de-  

tails see [13]. 

For t ~>0 and A an interval, let ~ A  be the smallest a-algebra of subsets of ~ with 

respect to which 

~-~ fff(y)~,(~; dy) 

is measurable for all 0,.<s<t and ~ ECb(R); and set )~A =a(Ut>~o ~ h ) .  

3.4. LEMMA. Suppose that b: R • E ~ [ 0 ,  co) and d: R • E-+[0, ~ )  are bounded measurable 

]unctions and that A is an interval (open or closed) such that b(y, �9 ), d(y~ �9 ) e B(E, A ) /o r  all 

yEA.  Let s be the operator associated with b and d. De]]he bh(y, ")=IA(y)b(y, ") and 

dA(y, . )=lA(y)d(y,  "), and s  accordingly ]or b A and d A. Denote by {pA; I~ E E } the ]amily 

o/solutions to the martingale problem/or I= h. Given T > 0 and a right-continuous ]unction 

P =~| a measure on ~: [0, T]-+E, let A.~ o h I /  P is probability (~, ~A)  such that 

P(/A~IA=/](t) IA, O<~t<T)=l and /or all ]EB(E,  N) (]( /~)-  I~ I:i/(/~s) ds, ~ i , p )  is a 

martingale alter time T, then P equals pA.,  on ~ A .  

Proo]. Define/~t(eo) =/~t(m) ]A § A T) IAC. I t  is then easy to check that  

P(/~t = U(t), 0 ~< t ~ T) = 1 

and that  ](/~t)- f~ F~A/(F,) ds is a P-martingale after time T for all ]E ]g(E, A). Thus the 

distribution 15 of/~ under P must be ph . , .  Since [/. [h =/z. ] i ,  this completes the proof. 

Q.E.D. 

3.5. LEMMA. Let b, d, and != be as in Lemma 3.4. Suppose ]harP is a probability measure on 

(g2, ~ )  such that/(Ft) - ~ l=](#~)ds is a martingale for al l /E ~), and let (P~,} be a r.c.p.d, o/ 

p] ~ A .  Then there is a P-nuU set N E ~ A such that ]or all w E N  and all ]E]0(AC), ] ( # t ) -  

f~ C](/~s)ds is a P~-martingale. 
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Proo/. Let n >~ 1, 01 . . . . .  On ~ R, and F~ . . . . .  Fn be mutual ly  disjoint bounded measurable 

subsets of R ~ . A .  We must  show tha t  

ds n t't l" d(y, la~)ff~(dy)] 

is a P~.martingale for P-almost  all oJ. Given 0 ~<t 1<Is, set 

Xt'(t~) = X(t~)/X(tl). 

Let {P~} be a r.c.p.d, of P I ~ t , .  Then, by Lemma 3.4 and Theorem 1.9 there is a P-null 
A ~ A  set Nt, E'mt, such tha t  P~ equals O,o|176 on if ~oSNt,. For o~r define 

q~ on ~ A  SO tha t  

dQ~ ,, 
dp---t ~ = E~%[ Xt'(t~) I ~ A  ]. 

Proceeding as in Theorem 3.2 of [12], we see tha t  for any m ~ 1, 21 ..... ;~m fi R 1 and mutual ly  

disjoint Borel sets Ax .... .  Am in A, (Y(t), ~ t  A, Q~) is a martingale after t ime q, where 

r . ,  m / ' t  ~ n t 

Y(t)=exp[j~;~J~t(AJ)-j~ JtdsJAj(ea~-1)b(Y,l~.)dY- ~ ftdzfaj(e-~-X)d(Y,t~s)ff~(dY) ] �9 

Hence, for co qNt, and/eB(E, A); (/(fit)- .[to s ~ ,  Qo~) is a martingale after t ime 

t r Since Qo,(fftlh=ttt(eo)]A, 0~<t~<tl)=l this shows tha t  Q~=(~| on )~h for 

e~ ~ Nt,. Thus 

Ee~[Xt ' ( t~) l~ ~]= 1 (a.s., P2) 

for all ~ SNt,. I f  A E ~ A  and BE ~ t , ,  we now have: 

EP[E~"[X(t,), B], A] = E~[X(t2), A 13 B] = E~'[X(tl) EF.'[Xt'(t,), A), B] 

= EP[X(tl) P~'(A), B]  

= E ~ [ X ( h ) ,  A n B] = E~[~ . [X(t l ) ,  B], A]. 

That  is, for each 0 ~< t 1 < t~ and B E ~ t ,  

(3.6) E~[X(t~), B] = E~[X( t l ) ,  B] 

for P-almost  all w. I t  is now clear tha t  we can choose one P-null set N E ~ A  So tha t  (3.6) 

holds for all eoCN, 0~<tl<t  2, and B e ~ t , .  This set N still depends on n, 01, ..., 0n, and 

F1 ....  , Fn. However, by  an obvious procedure, i t  is possible to choose one P-null set from 

~ A  which works for all n, 01 ... . .  0n and F, ... . .  Fn. Q.E.D. 
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3.7. LEMMA. Let b and d be coe//icients satis/ying (3.2) and {3.3) and assume that d(., �9 ) ~ D. 

Let A = (~, fl) and set 

b(y, it) = IA(y)b(y, /t [3 {a, fl}) 

D i/ y ~ a A  

d(Y'#) = IA(y)d(y,# U {a, fl}) otherwise. 

Given a P on (a,  ~ )  such that: P(#0lx=#0lx), where tt~176 and / ( t t t ) -  

f~ s is a martingale/or all /E B( E , A ), there is a P such that: P = P on ~ A  and P | o~ z~ = 

P~,,, where ~ - i n f  {t~>0: t&({a})ttt({fl})=0}, P~ is the solution to the martingale problem ]or 
and Z starting/rom tt and P | o Pz~(A ) = E~[(~. | o(.)~(.)(A)]. 

Proo/. Let ~ be the probability measure on ([0, ~)2, B[0.~)~) satisfying ~([x, ~) ,  

[y, ~) )  =e -(~+y). Consider the measurable space (s • [0, ~)~, ~ • B[o.~)~). We can think 

of/~. as defined on ~ • [0, ~)2 by #t((w, x, y)) =jut(w). We also define X(eo, x, y) =x  and 

Y(~o, x, y )=y .  Define 

a~= (inf{t>~o: s  X l )  A T~, 

a~= (inf {t>~O: s  tt~))ds>~ Y})  A ~ ,  

and 

where ~ = i n f  {t>~O: ttt({zr and ~ =inf {t>~O: ttt({fl})=0}. Define 

We want to show that  if P is the distribution of ~ under P • v, then P has the desired 

properties. I t  is easy to see that  this comes down to checking that  i f /C  B(E, A), then 

is a martingale, where ~ t  h =a(tt s Ix: 0 <s <~t). But this is equivalent to showing that  

is a martingale. Since ~ _ ~  ~ t  x B[0,oo)~ for all t~>0, we can afford to replace P by any 

P '  which equals P on ~ .  In particular, take P '  o -  = P |  If we can show that  for all 
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/6B(E, ~): (/(~,t)-f~ ~/(p,)ds, ~ ,  P '  • is a martingale, then we will be done. Surely 

this is true for /E  B(E, A); and so we will be done if we show that  

P '  • ~,(a~ > s ,  a# > t la(Zat lA:  t >! 0) )  = e -D('+t) (a.s. P' • ~). 

To this end, let A ea(ptlA: t~>O) and s, t>~O be given. Then 

P' • ~({(,~ > , }  n { ~  > t} n A) 

= P' x ~,({v,> s, X > f: (D-d(a,l~D)du} n {v~> t, Y > f: (D-d(f,~,))dza} n A) 

= EP'[M,̂ .=({~}) exp(- ; (D-d(m, P.))du) 

Note that,  by Lemma 3.5, if {P'} is a r.c,p.d, of P'I ~A, then for P'-almost all o): 

~,({~}) + f~ a(~, ~)~({~} ldu 

du 
jo  

and 

are all P~-martingales. Thus, so are 

X(t)=- Pt({~}) exp[; d(~, /a.)du] 

Y (t ) =- ta,( {fl } ) exp [ ; d(fl, P,,) du] 

and 

z(t) -= x(t) r(t). 

Hence for P'-almost all o~: 

Ef~[X(s A ~.) Y(t A ~#)] = EP~[Z(8 A t A "t'. A T#)] = EP~o[Z(0)]) .  

9 -  772907 Acta tnathematica 140. Imprim6 le 10 F6vrier 1978 
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Therefore, 

Ee'[t~sA~({~x}) e x p ( -  ; (D-d(o~,t,~,~))du) l.~tA,,~({fl') e x p ( -  ; (D-d(fl,  l~,))du) , A] 

=e-D(t+S)Ee'[X(s /~ v~) Y(t A T~), A] 

= e - o(~§ S)EP, [ Z  (0 ) ,  A ]  = e -  o(t§ ~)p,  ( A ) ,  

Since P'(Z(O) = 1) = 1. Q.E.D. 

Let A =(~, fl) and define ~ and d by 

~(y, ~u) - I%(~), l,(~)) (y) b(~,/~) 

I d(y,l~) if yE(r~(ar l~(fl)) 

d(y,/~)= 1 D if ye{re(g), l~(fl)} 
! 

! 
[ 0 otherwise. 

Let {P~:/~ e E} be the associated family of solutions to the martingale problem. 

3.8. THEOREM. Let ~~ be such that /~(A)~>2 and set~%=r~o(~), flo=l,.(fl), and Ao= 

(~o, flo). Suppose P on (~, ~ )  is such that 

/ ( / ~ t )  - ~g s is a martingale [or al l /e  B(E, A). Then there is a P such that: 

P = P  on ~ho and Dt, ~ =p|176 

where 7:--inf {t >~0: ~u~((ao})jut((flo} ) =0}. 

Pro@ Let/5 be as in the preceeding lemma relative to P and A o. Q.E.D. 

3.9. LEMMA. Let b and d be bounded measurable birth and death coe]/icients with d(., �9 )~ D 
and de/ine s accordingly. Le! 'I i =(l~, r~) and I~ A-(l'~; r~) and suppose that r~ < l~. Let ~o E E 
be such that #~176 and ~u~176 Let P be any measure on. 
(~, ~)such that P(/~olth,~/~01th, r J ~ l  and ] (~ t ) -~  s is a P-martingale ]or all 
]~ B(E;[I D r~]). De/ine 

/~(s,/~) = { ;  1-exp[-2D(T-s)j)'~(h)~z('~)~(N-~)f~ s > T. 

Then 

(3.10) Ee[/~(~, ~u~)] V (1 - e x p  [ - 2 D T ] )  ~, 

where v - i n f  {t >>0: I~t({l~})/~i({r~}i =0]. 
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Proo[. Let  x o = l 1 and Yo =% and xl, ..., XN-1 ~ I1~ Yl, ".', Y~-I e I S be such that./~~ ) 

#O({yO}) ~ 1 for i = 1, 2 . . . .  , N -  1. Define 

(1 - e x p [ -  '2D{T- s)]) ~{co~(<~})~(<~'>'> if s <  T 

h(s, /~)= 0 if s > T .  

Since/~({xo})/~({yo} ) = 0  and ~Ql#({x~})#{{y~}) 4#( I1)  A/~(I~), it follows tha t  P(/n(T,#~) < 

h(v,/u~) = 1. Thus it suffices to show tha t  

EP[h(z, #~)] ~< ( 1 - e x p  [ -  2DT])  n. 

Now (alas) h(s,#) = - D j (h ( s ,#~ .~)  -h(s,#))l~(dy), and therefore, since d < D and h(s,[~) < 

h(s, # ' )  if/~ _~u' it follows tha t  

s #) < - ~sh(s, ~). 

Since h(s A T, [~AT) -- y~Ar (O/~r + C)h(r, #~)dr is a martingale,  we have 

EP[h(T, /~)] = EP[h(v A T,/x:Ar)] 

~LT 

[3o \vr / j 

4 h(0,/%) = (1 - exp[ - 2DT]) ~. Q.E.D. 

3.11. THEoreM.  Let[v, d ] = I ~ A = ( ~ , / ? )  and let P be any measure on (fl, ~l) such that 

](#t) -fro s is a P=martingale /or a l l / e  B(E; A) and such that P(#o =/u~ = 1 / o r  some 

/~~ Let f l e e  and let A~=[rz(~)/9(fl)]" Assume that filA~=/~~ z and that ~((:t, c))A 

fi((d, fl)) >~n. Then 
[I P - P,~ I[w~ ~ < (1 - +xp[  - ~Dt ] )  ~, 

where {P~: # ~ E} is as be/ore Theorem 3.8. 

Pros/. The proof is by  induct ion on n. Let  A ~ Y~I~ be fixed. I t  suffices to show tha t  

] P ( A ) -  P;(A)} < (1 - e x p [ -  2DtJ)'L 

L e t / ~  and z be as in Theorem 3.8; and let (o-+/5 ~ be a r.e.p.d, of P l  ~ r .  Then by 

Theorem 3.8, 

(3.12) IP(A) - P~(A)I = IE~[P~(A) - ~o, |176 Pa~o,(a)]] 

<~ Ei'[IP~(A) - ~ |176 I]. 

0 Suppose now tha t  n = 1. I f  v ~ t then P~'(A) - 5~ | = 0 (a.s. P ) ,  and hence 

I P(A) - Ph (A)I ~< P(v < t) = 1 - exp [ - 2Dt]. 
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Assume next that  the theorem is true for n ~<N- 1 and that  n >i N. Since/~ is concentrated 

on the atom [eo],(~) and f(/~8)-S~ l~[(~us) de is a /3~ martingale after time ~(r for all 

] E B(E, A), the hypotheses of the theorem apply to P~ beginning at time v(co) and hence, 

by the inductive hypothesis, 

0 _< I P~(A) - ~ | P,, , (o, (A) I  -~ l,~(~(~'), ~,~), 

where IN is defined as in Lemma 3.9 with T = t  and I,=(r;,(~), c) and I2=(d, l;(~)). The 

proof is now completed by substituting this bound into (3.12) and applying Lemma 3.9. 

Q.E.D. 

3.13. THEOREM. Let b and d be bounded/unctions o/ the/orm (3.2) and (3.3). Then/or each 

]u e E there is exactly one solution P /, to the martingale problem/or E starting/rove i ~. More- 

over, the ]amily {P~: tz e E} is measurable and strongly Markovian. Finally,/or each e > 0 and 

T > 0  there is an N =N(e, T) such that i / A = ( a ,  b), 1=[c, 1], and laOeE satis/y a < c < d  <b 

and /~~ c))h/~~ b))~>h r, then ]or any probability measure P on (~, ~ )  satis/ying 

P(/~0 =/~) =1 ]or some i~e E with/~iA =/~~ p l u s / ( I h ) -  ~ s ds is a P-martingale/or all 

#e ~(E;  A) we have 

Pro@ The last assertion is an immediate consequence of Theorem 3.11 and therefore 

the uniqueness of P~,o is obvious. Moreover, once we prove the existence of a measurable 

family of solutions, the fact that  the family enjoys the strong Markov property is an easy 

consequence of Theorem 1.10 and uniqueness (el. [13]). Thus it remains only to establish 

the existence of a measurable family. To this end, let An = ( - n ,  n), bn(y, t~) =ZA,(y)b(Y, I~), 

and dn(y, t~)=ZA,(Y)d(Y, lU). Denote by {P~:/~ E E} the family of solutions associated with 

the corresponding operators l:n. By Theorem 1.15, for each/~s  the sequence {P~: n>~l} 

is weakly precompact; and by Theorem 3.11 for any bounded interval I,  T > 0 and bounded 

~IT-measurable (I): ~-~C, EP~[(I)]-*EP,[(P]. We will now use this to show that  P~ solves 

the martingale problem for l: starting from/~. Let O<~tt<t ~, I=[c,  d], and A E~[ ,  be 

given. I f / E  ~)(E; I), then for n satisfying I ~  ( - n ,  n): 

. r  c,, ] 

term on the M t  tends to EP~[/(I~t:)-l(#t,), A] as n-~ 0% it suffices for us to Since the 

check that  

EP~,[s A]  = lira EPT'[s A] 

for each t, But,  for all > t cl V I d I: 
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EP,[l:/(/ts), A fi (l~,(c) >~ - k and r,,(d) <~ k}] 

= lira E~[/:/(/~8) , A ~ (l~,(c) >~ - k and r~,(d) < k)]; 

and, by  Lemma 1.12, it is easy to check that  

lim sup P~(1,s(c ) < - k or rl,~(d ) > k) = O, 
k--~oo 1 ~n~oo 

where ~ = P#. Q.E.D. 

3.14. Remark .  The techniques used to prove Theorem 3.13 are very special. Unfortunately, 

they do not seem to lend themselves to easy generalization beyond obvious variations on 

what we have done here. In  fact for second nearest neighbor interactions with bounded 

birth and death rates it is easy to construct examples of non-uniqueness. One possible way 

to generalize what we have done here would be to replace Lebesgue measure in the birth 

term of I:: with some other locally finite measure. Everything goes through as above 

with the obvious modifications. If  we use counting measure on the integers instead of 

Lebesgue measure then an obvious modification of the proof of Theorem 3.13 yields 

existence and uniqueness for the birth and death processes on the integers in [11]. 

In  more than one dimension the situation is more complicated. We do not see how to 

handle the question of uniqueness for the martingale problem in more than one dimension. 

Of course, there are a few special cases which are amenable to known techniques; for 

instance, one can use methods familiar in the study of spin-flip models to treat the case 

in which a "hard core"exists {i.e. when there is an s > 0 such that  #({a}) = 1 implies b(y,tt) = 0 

for l Y - a l  <~). However, a satisfactory general theory appears to be difficult. 

4. Reversible equilibrium states---necessary conditions 

Let fl and ($ be positive bounded measurable functions on [0, cr and suppose that  

b(y, tt) =f l (y  - l~ (y ) ,  r~(y) - y )  
and 

d(y, tt) = 5(y - l~ (y ) ,  r ~(y) - y ) .  

Let l: be the operator on O(E) determined by b and d. We say that  a probability measure, 

m, on E is a time reversible equilibrium state for s if 

(4.1) f  wdm=f C dm for all ~0, ~pEO. 

Le t  g(l, r) =fl(l, r)/~(l, r). The goal of this section is to find necessary conditions on g in 

order for (4.1) to hold for some m. The results and methods in this section are due to 
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Spitzer [11] in the context of birth and death processes on the integers. Our contribution 

here is merely to make the modifications necessary to fit the present situation. 

We need the following additional assumption: 

(4.2) 
fl is uniformly positive on compact subsets of (0, oo)2 

and ~ is uniformly positive on compact subsets of [0, ~)2. 

These of course imply that  

(4.3) 
g is locally bounded on [0, +)2 and uniformly positive 

on compact subsets of (0, oo)2 

For the rest of this section let m be a fixed probability measure on E satisfying (4.1). 

If A is a finite interval, we denote by ~A t h e  smallest (r-algebra for which every 

element in {el: ~vEB(E; F) for some F with F rl A = O }  is measurable, and by m <h'") the 

r.c.p.d, of m ] ~A evaluated at/x. Of course m <~'') is d probability: measure on E~(A). (E~(A) 

is defined in Theorem 2.6.) 

The key to our analysis is the following observation. If % ~oE ~(E;  A) and yE/)(E,:IV) 

with A N F = 0 ,  then since I I ~ l l  IIAyyll ~ 0  it follows that  

and thus 

(4.4) 

Thus 

o= f ~ys fE(cfy)dm 

Equation (4.5) holds for all % yE D(E; A) and all yE D(E; F) provided F N A = O .  There- 

fore for each pair % yE D(E; A) we have 

(4.6) f ~s dm!A")= f ws (a.e., m ). 

From Lemma 2.9 it follows that  for a.e. (m)/~ 

Therefore for a.e. (m) tt the set of pairs for  which (4.6) holds is closed under bounded point- 
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wise convergence, and it is clearly closed under finite linear combinations. Let {h~, ~ >~ 1 } 
be a countable dense (in the uniform norm) set in C~(A) and let ~ ~(E;  A) be the set of 

functions of the form 

exp[i ~ ~(f hfly)g(dy) A n) ] 
for positive integral n and rational ~tj. By  Lemma 1,5 :~c D(E; A). Since 9: is countable 

there is a measurable set NEBE with r e ( N ) = 0  such that  if/zr then (4.6) holds for all 

~, ~pE :~. By Lemma, 1.2 the set of fnnctions which is closed under bounded pointwisc 

limits and finite linear combinations and contains ~ is B(E; A). Thus, except for a set of 

m measure zero, (4.6) holds for all ~p, yJEB( ~,  A). Now repeating the argument in (4.4) 

we see that,  a.s. (m), if ~ E B(E; A1) and yJ EB(E; As) with A~ N A ~ = ~ and A~ U A , ~  A, 

then 

f~(t~') s m(A'")(dt *') = O. (4.7) 

Let  2~ denote Lebesgue measure on R ~. We first show that  g satisfies a certain equation 

a.e. (;~). 

4.8. LEMMA. Let a <c<b. Then/or a.e. (m) # we have 

(4.9) g(x-l~(a), y -x)g(y  ~ll~(a), r~(b)-y)=g(y-x,  rf,(b ) =y)g(x-l~(a), r~(b)-x) 

/or a.e. (2s) (x, y) E (a, c) • (c, b). 

Proo/. Let A = (a, b), and if A~, A~ are Borel subsets of A let S(A1) be the event/t(A1) = 

0 and T(A1) (T(AI, As)) be the event #(A1)= 1 (tt(A1)-~/t(Ae)=1). 

Let  t t ~ A  be the element of E defined by ( t t~A)(A)=t t (A) - t t (ANA)andse t  

bh(y , #) =b(y, # ~ A )  and di(y, #) =d(y, ( / t~A)  +Or)" 

Now given A.c A let q~(/~)=/t(A) A 1 and ~(tt)=ZS(h\A)(tt), t he  indicator function of 

the event S ( A ~ A ) .  

where on T(A), y~ is defined to be the unique yEA for which # ({y~) - l .  From (4.7) we 

have, for a.e. (m)~: 

0 =  b(Y, td)dYZs(A~(# )ZS(A\A)(t t )-- (Y~,',l ~ )2r(A~(# ):~S(AXA)(#') m ( A ' V ) ( d ~ t ' )  �9 
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Thus 

m (A'") d ' d m(A'")(d~u'). 

On S(A), b(y, #') =hA(y, ~) a.e. (m(h'")), and T(A) fl S ( A ~ A )  = T(A, A). Thus there is a 

set N with re(N)=0 such that  if g SN 

(4.10) m(h")(S(A))~ bA(y, /~)dy= f r(,.A)d(~,, /~')m(A'")(d,') 

for all A c A .  If juCN (4.10) implies tha t  the measure A~m(A'~)(T(A, A)) is absolutely 

continuous with respect to ~1 and has density 

/(A.~)(y) = hA(y, ju)m(A.,)(S(A))" 
dA(y, I~) 

Now let Ac(a ,  c) and B c ( c ,  b). Let  ~ be as before and set ~=gr(B)ns(A\(~us)). 

Using these ~ and v 2 in (4.7) gives, for ~u ~N, 

(4.11) fr(B.A)[fAb(x, ia')dx]m(A'~')(dl~')=fr(A.s)nS(A\(AuB))d(y~,,lu')m(h'~)(dtu' ) 

Thus the measure on (a, c) • (c, b) determined by 

(4.12) A x B ~ m(A'")(T(A, B) N S(A"~(A U B)))  

is absolutely eontinuous with respect to ~ and has density 

(4.13) h~A.,)(x ' y) bA(y, I~) b(x, ( /~ \A)  + ~)  m(A.~o(S(A))" 
dA(y,/~) d(x, ( / ~ A )  + ~ + Or) 

If we interchange the roles of A and B in the above derivation we get 

bA(x, /~) b(y, ( l ~ A )  +_~) _m(A.,)cSCA~ ~ 
h(~A'~)(x'Y)=dA(X,]U-- ) d(y, ( ~ \ A )  + ~ + (~) . . . .  

as the density of the measure given by (4.12). Thus for a.e. (m)/~ we have h~h'~)(x, y) = 

h~ A" ~) (x, y) for a.e. (X~) (x, y) E (a, c) • (c, b). Since m TM ~) (S(A)) > 0 a.s. (m) (see Corollary 2.11), 

the conclusion follows immediately upon substituting the definitions of b and d into the 

equation h~ A'") -- h(A'")2 �9 Q.E.D. 

4.14. LEMMA. Let a <b. Then ~ on ( - 0% a) x (b, oo) is equivalent to the joint distribution o/ 
(l~(a), r/,(b)) under m. 
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Proo[. We first show that  22 is absolutely continuous with respect to the distribution of 

(/g(a), rg(b)) under m. To do this it suffices to show that  for each ~ < a  and ~>b  and F ~  

(:t, a) • (b, ;r with m((lt,(a), rot(b))EF) =0 we must have J~2(F) =0. This will follow if, setting 

A =(at, ~), m(h'~)((lg,(a), r , , (b)EF)=0 implies that  22(F)=0 for a.e. (m)/x. Fix cE(a, b) and 

let h(~ A'") (x, y) be the density with respect to ~e for the measure on (ar c) • (c, ~) determined 

by (4.12). h(x A'~) is given by (4.13} and is strictly positive in x and y for a.e. (m)/~. Note that  

T(A, B) N S ( A ~ ( A  U B)) = T(A, B) N T((~, c), [c, r)). If/z E T((~, c), [c, ~,)), ]et x~ (x~) denote 

the unique xE(~, c) (xE[c, y)) such that/x(x) =1. Then if F ~  (~, c) • [c, ~,) 

[ .  
(A. 1~) l J/~ m ((x~.,x~.)EF and T((~,c),[c,~)))= h(1A'~)(x,y)dxdy 

for a.e. (m)/~. The first half of the lemma now follows from the positivity of h(1 h'~) and 

m(h'~)((ll,,(a), rl,.(b)) EF) >~ m(h'~)((X~., X~,) EF and T((~r c), [c, ~))) 

f h(1h' ~)(x, y) dxdy. 
J r  

Conversely to show that  the distribution of (/~(a), r~(b)) under m is absolutely con- 

tinuous with respect to Lebesgue measure it suffices to show that  for each A = (~, ~) ~ (a, b) 

the distribution of (l~,(a), r#.(b)) on (~, a) • (b, ~) under m (A'~) is absolutely continuous with 

respect to 2~ for a.e. (m)/z. From (4.7) and Lemma 2.9 we see that  if Q is an interval con- 

tained in A then 

d ' ' d  

where ~ =inf {d(y,/s yEA and #' E E~(A)}. By (4.2), ~>0.  Now let I be an interval in A 

disjoint from Q and set ~0N(#) =#(I )  A N and ~(/~) =#(Q) A 1. By (4.7) we have for a.e. (m) # 

0 = f~os m(A'J~)(d~ ') 

Thus 

Ilbl121(I)m(A''(#'(Q) >~ l,  ~'(X) < ;V) >/5m(A.~)(#'(Q) >~ 1, 1 ~</t'(1) ~< N). 

Letting iV go to infinity and combining this with the previous inequality we have 

[[bll~21(1),~(O)/5 ~ >>. m(h'"'(#'(Q) >~ 1, # ' (I)  >/1). 

9 t -  772907 Abta mathematica 140. lmprim6 le 10 F6vrier 1978 
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Now if Q c  (~, a) and I ~  (b, 7) 

m!h'm(/~'(Q) ~> 1, # ' ( I )  >~ 1) ~> m(A'")((l~,(a), %,(b)) fiQ • I). 

Thus  

[[bl122~(Q • I)/~ 2 >1 m(h'e)((l~,(a), rz,(b)) eQ • I), 

which implies the  desired result  and  completes  the  proof. Q.E.D.  

4.15. LEMMA. For a.e. (2a), (x, y, z)E[0, oo)a 

(4.16) g(x, y)g(x +y,  z) -g (y ,  z)g(x, y + z). 

Pro@ Fix a<c<b.  F r o m  L e m m a s  4.8 and  4.14 we have  for a.e. (~a)(1, x,y ,  r)E 

( - ~ ,  a) • (a, c) • (c, b) • (b, oo) 

(4.17) g(x-1, y - x ) g ( y  - l ,  r - y )  = g(y - x ,  r - y ) g ( x - 1 ,  r - x ) .  

Since (4.17) holds a.e. (24) for all ra t ional  a<c<b it follows tha t  (4.17) holds a.e. (24) on 

A = {(/, x, y, r): l ~ x ~<y ~< r}. Consider the t rans format ion  (I): A ~ [0, ~ )3  given b y  

O(1, x, y, r) - ( x - l ,  y - x ,  r - y ) .  

Let  B be the  subset  of A on which (4.17) holds. I t  suffices to show tha t  ~a([0, ~ ) 3 ~ O ( B ) )  = 

0. Let  iF: A ~ R  • [0, ~)3  be the  t rans format ion  tF(l, x, y, r) =(l ,  O(1, x, y, r)). Tlie J acob ian  

of tF is identically one. Therefore  since 24(A~B)=0 ,  it follows t h a t  2a ( tF (A)~ tF (B) )=0 .  

Thus  for a.e. (21) l the  section of tF(A)~tF(B)  a t  1 has 23 measure  0. Le t  10 be such an 1 

and,  denoting the  l 0 section by  subscripts,  we have  

0 = 23((~-F(A)~F(B))t.) = 23([0, ~176 
= 23([0, ~)3~O(B~o))  ~ 23([0, oo)3~O(B)) .  Q.E.D.  

Our next, goal is to show t h a t  if g satisfies (4.3) and  the  conclusions of L e m m a  4.15 

then  there  is a measurable  funct ion / such t h a t  

(4.18) g(x, y) =/(x)/(y)//(x+y) a.e. (22) on [0, ~)2. 

This could be done by  writ ing down what  / should be (see (4.26)) and then  checking t h a t  

it satisfies (4.18). However ,  the  computa t ions  involved in this approach  are ex t remely  

tedious, so we first  prove  the  existence of such a n / .  The  question: of the  existence of such 

an / is ve ry  similar to the analogous question in the  theory  of cocycles (see [9]) and  we 

learned the  proof of L e m m a  4.20 below f rom [9]; however,  to  the best  of our knowledge, 

expression (4.27) is new. 
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4.19. LEMMA. I / g  satisfies (4.16) a.e. (2a) and h =g a.e. (2s) then h satis/ies (4.16) a.e. (ha). 

Proo/. I t  clearly suffices to  show tha t  the  corresponding factors  are equal  a.e. (~).  

For  the  factors  involving only two of the  variables  this is obvious.  Thus  we show t h a t  

g(x +y, z)=h(x+y,  z) (g(x, y + z)=h(x, y + z)) a.e. (ha). Bu t  for each fixed y, g(x +y, z)= 

h(x+y, z) (g(x, y+z)=h(x,  y+z)) for a.e. (~t2) (x, z). The  desired conclusion follows f rom 

Fubini ' s  theorem. Q.E.D.  

4.20. LEMMA. Suppose g satis/ies (4.3) and (4.16) holds a.e. (ha). Then there is a positive 

measurable/unction / and a positive C ~ G which satis/ies (4.16) pointwise and such 

that 

(4.21) g(x,y)=O(x,y)//((:)/+(Y I a.e.(~s) 

Moreover G(O, y) = G(x, O) -~ 1. 

Proo/. I t  suffices to  prove  (4.21) for x, y > 0 .  Thus  by  (4.3) we m a y  assume t h a t  all of 

the  integrals which follow are convergent .  Le t  ~(x, y)=ln(g(x,y)) and let a(x)>~0 be a C OO 

funct ion with compac t  suppor t  in (0, ~ )  and S~ ~ a(x) dx = 1. Set 

[(x) - [~(x, t) + ~(s, t + x) - ~(s, t)] a(s) a(t) ds dt. 

a n d / ( x ) -  exp [f(x)]. Le t  

~o(x, y) = ~(x, y ) - f ( x ) - ] ( y ) + [ ( x  + y )  

and  Go(x, y) = exp [~o(X, y)] = g(x, y) [/-i(x)/-i(y)//-l(x § y)]. G O clearly satisfies (4.16) a.e. 

(43). Now 

Y) = I ~  f ;  [~(x, y) - ~(s, x) - ~(s, y) + ~(s, x + y) - ~(x, t) + ~(s, x) + ~(s, t) - g(s, t + x) Go(x, 
- ~(y ,  t) + ~(s ,  y)  + ~(s ,  t) - ~(s ,  t + y)  

+ ~(x + y, t) - ~(s, x + y) - ~(s, t) + ~(s, x + y + t)] a(s) a(t) ds dt. 

Using the  ident i ty  

~(x, y) -~(z ,  x)+~(z, x+y)  = ~(z+x, y) a.e. (2a) 

four t imes together  with the  observat ion t h a t  if ~tl(N ) = 0  and  M =  {(x, y): x + y E N }  then  

~ts(M ) =O we see t h a t  for a.e. (~t2) (x, y) 

(4.22) Go(X,y)= fo fo 
- (~(y + s, t) - ~(s, t)) + (~(x + y + 8, t) - ~(s, t))] a(s) a(t) dsdt. 

1 0 - 7 7 2 9 0 7  Acta rnathematica 140. Imprim~ lc l0  F$vricr 1978 
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Similarly ~(s§ y)+~j(s+x§ t )=~(y,  t )+~(s+x, y+t)  a.e. (44) and ~(y, t ) -~(s ,  y ) -  

~(s+y,  t)-O(s, y §  a.e. (43). Successively substi tut ing these equations into (4.22) we 

see tha t  for a.e. (42)(X, Y) 

fo ; ~ (4.23) 0o(X, y ) =  [O(s+x , t+y)+O(s , t ) -O(s , t+y) -O(s+x , t ) ]a(s )a( t )dsd t  

jo~ = ~ ( s , t ) [ a ( s - x ) a ( t - y ) §  

Denoting the right side of (4.23) by  G(x, y) we see tha t  G(x, y) = e x p  [O(x, y)] is a positive 

C ~ function Which, by Lemma 4.19 satisfies (4.16) a.e. (4a) , and hence satisfies (4.16) 

everywhere.  Moreover (4.21) holds and, since 0(0,  y ) = 0 ( x ,  0 ) ~ 0 ,  we have G(O,y)-  

G(x, 0) - 1. Q.E.D. 

4.24. LEMMA. Let G be a positive Coo/unction on [0, ~)2 satis/ying (4.16) and with G(0, y) = 

G(x, O)= 1. Then there is a Coo/unction />  0 such that 

/(x)/(y) 
G(x, y) =/ (x  + y)" 

Proo/. Let  G(x, y) = l n  (G(x, y)) and 01(x,y ) = (~/~x)O(x,y). Set / ( t )  = e x p  []~ O~(O,u)du]. 

/ is clearly positive and Coo. Also 

/(t)/(s)//(t§ ] 

From (4.16) one easily finds tha t  01(0 , u + s ) -  01(0, u ) =  01(u, s). Thus 

[fo ] fit)/(8)//(t + s) = exp Gl(U, s) du = exp [G(t, s)] = G(t, s). Q.E.D. 

4.25. T H E O r E m .  Let g be a measurable /unction which satis/ies (4.3) and (4.16) a.e. (4s). 

Then there is a positive measurable /unc t ion/on  [0, ~ ) s u c h  that g(x, y)=/(x) /(y)//(x § y) 

a.e. (4e). 

Proo/. This follows immediate ly  from Lemmas 4.20 and 4.24. Q.E.D. 

4.26. Remark. The function / in (4.18) can be taken to be 

( 4 . 2 7 )  l(t) = 1 exp[f  9( t , s )ds -  f ~ 9 ( 1 - t , t + s ) d s + t g ( 1 - t , t ) ]  if t<~l. 
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To see this let [ be as in (4.18). (We know such an [ exists by  Theorem 4.25.) Subst i tu t ing  

the r ight  side of (4.18) for g in (4.27) we see t ha t  for a.e. (~1) t 

i(~) =i( t )(]( l ) )  -~, 

~nd thus / ( t )  also satisfies (4.18). I f  g is cont inuous , / ( t )  given by  (4.27) is the  unique con- 

t inuous funct ion satisfying (4.18) and bav ing / (1  ) = 1. 

5. Reversible equilibrium states-sutficient conditions 

Let  b and d be as in Section 4 and sat isfy (4.2). Again we denote fl(1, r)/6(l, r) by 

g(l, r). F r o m  Theorem 4.25 and L e m m a  4.15 we know tha t  if a t ime  reversible equil ibrium 

s ta te  is going to exist then  g(l, r) must  be equal a.s. ()~2) to/(1)/(r) / / ( l  § where ] is given 

by  (4.27). In  par t icular  since g is locally bounded on [0, 00)2, / is locally bounded on [0, oo). 

Le t  M(t) = sup0<s<t ](s). ]f 1 ~ a  <b  <;r define 

: f  f, u(l, a, b, r) = / ( r -  l) + (x: - l) 1 - [ / ( x j -  xj 1) /(r - xk) dxl  ... dxk 
k=l  Ja~.x~-<x2<...<Xk<bj j=2 

where l-I~:.> is t aken  to be one. One easily checks t ha t  

u(l, a, b, r) ~ M ( r - l )  exp [(r--1)M(r - l ) ]  < oo. 

Denote  the in terval  (a, b) by  A. I f  v E E is such t ha t  1,(a)-= 1 and r~(b)--r define m (h'~') 

to be the measure  on E~(A) for which 

(5.1) u(l, a, b, r) f 

~(r - l) + f i~  ~)/(r - x) dx 

: f  f + ~)({X 1 . . . . .  Xk} ) / ( X  1 - -  l) ~ [  / (X j  --  Xj_ 1 ) / ( r - -  Xk) d X l . . ,  d x  k 
k=2 j a,-~xl< ...<xk~b J .i = 2 

for all r A). Here  {x 1 ... xk} denotes ~ny element  of E whose restr ict ion to A is 

~_~ ~, .  

Let  ~I be the  set of probabi l i ty  measures,  m, on (E, Bx) such t h a t  for every finite 

interval ,  A, the  r.e.p.d, of m I ~A eva lua ted  a t  r is the  measure  on E~(A) given by  (5.1). 

This definition of ~r  in te rms of condit ional probabil i t ies involvi~:g' / is analogous to the  

usual definition of Gibbs s ta tes  in t e rms  of condit ional probabil i t ies involving a potential .  

We will see in the nex t  section t h a t  when ] is a probabi l i ty  dens i ty  with finite first moment ,  

then  ~ / h a s  the renewal me~sure de termined by  / as its only element.  Moreover this is 

essentially the only case in which Or is not  empty .  In  this case (5.1) describes the renewal 
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measure in terms of its conditional probabilities and (6.2) describes it in terms of its mar-  

ginals. 

5.2. LEI~IMA. Let b and d be nearest neighbor birth and death rates as above and assume that 

g(l, r)=/(1)/(r)//(l + r) a.e. (It2) /or some positive locally bounded measurable ]unction, /. Let 

m CA'v) be as in (5.1). Then/or all ]inite intervals A = (a, b) there is a set N c  ( - ~ ,  a) • (b, ~ )  

with 2~(N) =0 such that/or all vE E with (l~(a), r~(b)) ~N 

(5.3) f f 
/or all % ~EB(E;  A). 

Proo]. Assume first tha t  g(1, r)=](1)](r)/](1 § r) everywhere. Then 

q~(~) s - y~(l~) s = f ~ b(y,/~)[r v2(/~ + Oy) - ~(/~)~(# + ~y)J dy 

+ f~d(y,/~)[~(/z) ~(/~ - 5y) - yJ(~) ~(/~ - 5~)] #(dy). 

Denote  Iv(a) by  1 and r~(b) by  r, and let M k =  (#  E Ev(A): ~u(A)=/c}. Then 

f ( - W ) dm(A") f [ f 2 b(y, ) + ) - ) + ) ] dY 

f ~  d(y, ~u)[~(#) ~(# - ~ )  - ~(#) ~(# - 0y)]/~(dy)] m TM ~) (g/~) § 

I t  suffices to  show tha t  each of the terms in the two summations  is zero. The terms k = 0  

and /~ = 1 require slightly different notat ion,  but  the idea is exact ly the same as for the 

general te rm with which we deal. We consider only the terms of the first series. The results 

for the second series follow by  interchanging ~0 and ~. Fix/~ and set % = x 0 = l  and ze+~ = 

x~+~ = r. Using the identify ~(1, r)=fl(/, r)/(1 + r)/](l)/(r ) we have 
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f Mk [ f ~ b(y~ ~ ) ~f(~ ) y~(/z § ~y~ dy] m(A~)(d~u ) - /M. + t [ f 2 d(y~ [~ ) ~f(~`~ ) q)(~u - (~y~ ~(dy)] m(A.~)(d[ ~ ) 

= /(xj - x~_~) 
n = 0 J a4x~<...< xk~b J J = 1 

x fl(y--x~,x~+l--y)q~({xD...,xkl)y,({x 1 . . . . .  xk, y})d dx~ dxeu-~(1,a,b,r) 
LJXnVa 

k+ l ~a I/*k+ 2~ Z1-1)~(Zn_ Zn-1, Zn+l -- Zn) [- ]-(Zn+l :Zn-1)~ 1 
-- ~ ~Zl<...<Zk + l~b n=l  j ,=i/(z'] - ~(Zn+ 1 --Zn)](Z,- Zn-1)J 

X ~0({Z 1 . . . . .  Zn-1, Zn+l . . . . .  Zk+l}) ~({Z 1 . . . . .  Zk+l} ) d z i . . ,  dzk+~ u-l(1, a, b, r) = O. 

One obtains the last equali ty by  comparing the  term n = m in the first series with the term 

n = m + 1 in the  second series. 

I f  the equali ty g(l, r)=/(l)/(r)//(l + r) only holds a.e. (2~) then the above computa t ion  

still yields zero for ]c >~ 1. When  k = 0 we have 

/ ( r -  l) F fl(y- z, r - y) ~(O) ~f((y}) dyu-l(1, a, b, r) 

f~  f(x -- l)/(r -- x) (~(x -- l, r -- x) ~0(121) ~p({x}) dxu-l(1, a,  b, r), 

which is zero for a.e. (~2) (l, r)E( - o% a] • [b, o~). Q.E.D. 

5.4. THEOlCE~. Let b and d be nearest neighbor birth and death rates as above and satis/ying 
(4.2). Assume that g(1, r) =](l) /(r)//(l § r) a.e. (23)/or some positive measurable locally bounded 
]unction ]. Then every probability measure m E Of is a time reversible equilibrium state/or ~. 
That is 

(55) f ~s f vs W, ~e0(E). 

Proo/. From the  definition of Of and Lemma 5.2 it suffices to show tha t  if a <b  then 

the joint  distr ibution of (l,(a), r,(b)) under  m is absolutely continuous with respect to  23. 

Fix  a<b. I f  5 < a  and ~ > b  then the conditional distr ibution of (l~(a), r~(b)) on (d, a / •  

[b, b) given ~(~' ~) is easily seen to be absolutely continuous with respect to ~2. Since this is 

t rue for each d < a  and b > b ,  we have the desired result. Q.E.D. 

5.6. THEOREM. Let b and d be nearest neighbor birth and death rates as above and eatis/ying 
(4.2). Then necessary and su//icient conditions/or the existence o/a time reversible equilibrium 
etate, m, are that/or some positive measurable locally bounded/unction / 
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and 

(a) g(1, r) = l(1)l(r)/l(l +r) a,e, (~e) 

(b) mE ~r" 

_Pro0/. The only thing not yet proved is the necessity of (b). Fix A = (a, b). We must 

show that, if m is a time reversible equilibrium state, then m (A'~'), the r.e.p.d, of m l~ A 

evaluated at v, is given by (5.1). From (4.6) we know that  

fs = a.s. (m) 0 

for all ~fiD(E; A). If we set bA(y,#)-ZA(y)b(y,,u), dh(y, tt)=ZA(y)d(y, tt) and define 

s accordingly then t~(t t  ) = s for 9~ ~ ~(E;  A), and hence for all ~ fi ~(E;  A) 

f s  a.s. (m). 

The proof is completed by using Lemma 5.2, Corollary 2.12 and Lemma 4.14. Q.E.D. 

The reason for calling a measure which satisfies (4.1) time reversible for s is made 

clear by the following theorem. 

5.7. TI-IEOREM. Let b and d be non-negative bounded /unctions satis/ying (3.2) and (3.3) 

and de/ine s accordingly. Let m be a time reversible equilibrium state/or s and let (P/,:/t E E} 

be the /amily o/solutions to the martingale problem/or s Then/or all 7, y~EO(E) and all 

t ~ O  

(5.8) fyJ(tt) E%[q~(ttt) ] m(dtt) = f~( t t )  E%[~(ttt)] r e ( d / t ) .  

Proo]. Set bN(y, l t ) -  Z(-N.N)(y)b(y, tt) and dN(y, tt)-- Z(-N.N)(y)d(y, #) and define s 

accordingly. We first show that  if m is time reversible for s then it is time reversible for 

s We do this first for ~=~1-~02 and F=~PI"~2, where ~1, ~flE D(E; ( - N ,  N)) and F2, 

F~eB(E ; (  N,N)c )ND(E) .  In that  case, since s163 s163 and 

s  F~ F1) -F2  F2 s + 91 s F2) (see the argument before (4.4)) we have 

The last equality follows Irom (4.4). By Lemma 2:9 the set of % ~EB(E; ( - N ,  N)) for 
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which (5.9) holds is closed under bounded pointwise convergence and hence by Lemma 1.2 

fyJF,(~)cfdm = fcfl~(~)y~dm 

for all ~, y~EB(E). 
Now if (P~, ,a E E} is the family of solutions to the martingale problem for 1~ ('v), then 

by Theorem 2.10 we have 

r 
J+(# )  B e" [V(~ut)] m(d/~) JV(/~) [V(~ut)] re(d/z) 

for T, YJ E O(E). The proof is completed by letting N go to infinity and applying Theorem 

3.13. Q.E.D. 

5.10. Remarlc. For birth and death processes on the integers the analogue of Theorem 5.7 

is also true (see Remark 3.14). 

5.11. Remark. Let b and d be as in Theorem 5.13 and define IZ accordingly. Suppose that  m 

is a probability measure on E such that  

(5.12) Ss -O, /e~. 

One can show that  (5.12) implies that  

(5.13) ST~/dm= S/dm , /EB(E), 

where (Tt: t ~0 )  is the semi-group determined by ~. To see this, define for each interval A: 

b"  i(y,  . ) = ZA(Y) E~[b(Y) l B A] ("), 

d'n'i(Y, ") = )CA(Y) W:[d(Y) l BA]("), 

and let E,~,A be the associated operator. I t  is easy t o  check that  f o r / E  B(E, A) 

fs163 
and therefore by Theorem 2.11, 

ST~'A]dm= S/dm , /EB(E,A). 

Thus (5.13) will be proved once we have shown that  

(5.14) T~'A/(~u~ ~ as A / R  ~ 
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for each /E D, t > 0, and #~ E. But (5.14) is not hard to prove from Theorem 5.13 plus the 

observation that  

and 

so long as l~(y) and r~,(y) are in A. 

br"'h(y, I~) = b(y, p)  

dm'h(y, p) = d(y, /z) 

The main problem remaining in our study of time reversible equilibrium states is a 

discussion of whether or not Qr is empty and an identification of the measures, if any, in 

QI. In the next section we do this in the case that  / is locally bounded and locally uniformly 

positive. 

6. The set ~ 

In this section we follow the route laid out by Spitzer in [11] to find necessary and 

sufficient conditions for QI to be nonempty. We also show that  if Qj is not empty then it 

contains exactly one point. Except for the technical details, all of the ideas here are due to 

Spitzer [11]. 

6.1. THEOREM. Let / be a probability density on (0, ~ )  with f~  x / ( x ) d x = 9 - 1 <  oo. Then 

there is a unique measure mf on (E, BE) such that/or q~ e B(E; (a, b)) satis/ying ~(/~) = 0 unless 

tz(a, b )=k:  

(6.2) 

[ ~<  < ~ 9({xl . . . . .  x k } ) O ( 1 - F ( X l - a ) ) f l / ( x s - x j _ l ) ( l - F ( b - x k ) ) d X l . . . d x k  
| xl . . .<xk<b d J=2 

if k>~ 1 

Here F(t) = Sto/(s) ds and y]1=2/(xj- xj_ 1) = 1. 

Proo/. Let ~ = {# 6/~: p({y}) 6 {0, 1 }, y fi R}. From the proof of Lemma 1.1, we see that  

is a G~ subset of $ and E is a G~ subset of 8.  Therefore, we need only show that  a unique 

~hf satisfying (6.2) exists on (/~, B~) and that  ~hf(E)= 1. 

Let ~N be the smallest a-algebra for which all ~EB(E; ( - N ,  N)) are measurable 

(B(~; ( - N ,  ZT)) is defined by analogy with B(E;  ( - N ,  N)).) For co65, let [eo]N denote 

the atom of ~N which contains co. Note that  if N N=I [e0k]k#O for each N, then f) ~=1 [eok],# 

O. (This is not true on E and is the reason for introducing J~.) Thus, by a modification of 

Tulcea's extension theorem (see [15]), the existence of ~h I on (E, Bk) satisfying (6.2) will 
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follow if we can show tha t  the measure m~ defined on ~N by (6.2) (for ~ E B ( $ ;  ( - N ,  N))) 

are consistent. However ,  this is a s t raightforward computa t ion  if one uses the fact t ha t  

Fo(t ) + ~~ F*k ~ Fo(t ) ~Qt (see Feller [1], Section (11.3)), where Fo(t ) = ] ~ ( 1  - F ( s ) ) d s  and 

~e denotes convolution. We leave it to  the reader  to fill in the details. To show tha t  ~h1(E ) = 

], i t  is enough to show tha t  ~hi(#(0, N ) = k ) ~ 0  as N-~oo for each k (and similarly as 

N-~ - ~ ) .  Bu t  this is easy from the explicit  expression for ~r(ju(0, N) = k) given in (6.2). 

Q.E.D. 

We say a positive measurable function / on (0, oo) is locally bounded (1.b.) if M(t) 

sup0<s<t/(s) < oo for each t > 0 and tha t  / is locally positive (1.p.) if N(t)=-info<s<t/(s) > 0 

for each t > 0. 

6.3. THEOREM. Let / be a l.b. probability density on (0, co) with ~ x/(x)dx =~--1 < oo. Then 

Proo/. If  (a, b) = A c  I = ( ~ ,  fl), let B A'I be the smallest a-algebra such tha t  all ~v 6 B(E;  

I ~ A )  are measurable. Let  m~.A.i be the r.c.p.d, of ml] B h'I. I t  is an easy compu ta t i on ,  

using (6.2), to show tha t  on {#: #(~, a)~(b, l~) >~ 1}, m~.h.~ = m  (h'"), where m (A'") is given by  

(5.1). Now, since every  # 6 E satisfies #(:r a)/~(b, fl) ~> 1 for all cr sufficiently negative and fl 

sufficiently positive, we get the desired conclusion upon lett ing I / R .  Q.E.D. 

If  / is a 1.b. function and ](x) =e~/(x), then  it  is clear f rom (5.1) t ha t  ~ f =  ~7. Thus, if 

there  is a 2 for which ~ becomes a probabil i ty  densi ty having a finite first moment ,  then,  

by  Theorem 6.3, ~r#iD.  Our final goal is to show tha t  if / is a l.b. and 1.p. funct ion and if 

~r#iD,  then  there  is such a ~ and Qr has only one element.  

I f / s e E  and #(~, fl) = k  ~> 1, ident i fy  g 1(~.~) ~vith an element in Zk (~, fl) --= {(sx, s~ ..... sk): 

< s  I <s~ < ... <sk<f l}  in the obvious way. 

6.4. LEMMA. I /  / is l.b. and 1.p. and i/  m 6  Qr, then there is a measurable/unction B(x, y) 

on {(x, y): x < y} with the property that/or ~ < ~: 

(6.5) m(1.(~)e(a--e,  or), #(~ , f l )=O,  r.(fl)E(fl, f l + ~ ) ) =  j~_ dx d y B ( x , y ) / ( y - x )  

and/or  measurable Fc_ Z k (:r fl) 

(6.6) m(1Aa)e(zc-e,~),#l(~.a)eF, rAfi)e(fl, fl+ @ 

= dx ... s l . . .  dsk/(s 1 -  x) [I/(s~-- sj__l) dyB(x, y ) / (y  - sk), 
- ~  F ~ t = 2  

where 1--I1~2 / ( s j -  sj_l) =- 1. 
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Proo/. We only prove (6.6). The proof of (6.5) is similar. I f  l < a < x < y < b < r  define 

and 

+ b 
R(y ,b , r )=[ ( r -y )  f / ( r - s ) l ( s - y ) d s +  fy . . . . . . .  bf/(81-y)u(s2.81)/(r-82)dsld82" 

Here u(t) -u(O, 0, t, t) with u(l, a, b, r) as in (5.1). 

Now let a < a  e < f l + b < b  and FEBnk[Ek (~, fl)] be given. Then 

(6.7) m(l,,(~)6(~-~,~),~J(~.3)~F, r,,(fl)~(fl, 3 + ~)) 

= fEm(1,,(a)6 (~ -- 6, a),/~ ](~.3)E F, r,i(fl) 6 (fl, fl + (~)]~(a. 5))(v)m(dv) 

f= [ ~ "x ~3+~ L(l,(a), a, x) R(y, b, r,,(b)) 
[J~ ~ J3 u(1,,(a),a,b,r~(b)) "'" ,=2 

• m(gv) 

= dx .. sl . . .  dsk/(s l - x )  [(5'j--s s , ) |  dy/(y--sk) 
~ e ,~Y d j=2  J8 

fE L(l~(a), a, x) R(y, b, r~(b)) 
• u(l~(a), a, b, r~(b)) m(dv). 

Set 

f L(l~(a), a, x)R(y, b, r~(b)) 
(6.8) B(~,y)= :~ u ( ~ ) , ~ , b 7 ~ ( ~  ,~(d~). 

This defines B(x, y) for a < x < y < b .  But,  since the left side of (6.7) is independent  of a 

and b, it follows tha t  B(x, y) is the same, up to sets of measure zero, for any  choice of a 

and b satisfying a < x < y < b .  Hence B(x, y) is well defined for all x<y.  Q.E.D. 

6.9. LEMMA. I/  ] is 1.b. and l.p. and mE ~f, then B(x, y) satis/ies 

f ; / ( s - y ) B ( x , s ) d s  a.e. (2~). B(x,y)= 

Proo/. Let  ~1 < a~ < aa < a4 </5 be given, and note that .  

(6.10) m(l~(a2) :> O~ 1, jU(~ 2, ~8) = O, rz(aa) </~) 

-m(It~(~2) > ~, #(~, a4) = O, rt,(~4) <fl) 

-- m(lt,(ai) > cQ, ~u(a2, aa) = 0,/~(a3, fl) >~ 1, rt~(fl ) >fl) 

- -m( / /~ (~2)  > ~1, /~(0~2, 0~4) : 0 ,  ~ ( ~ 4 '  /~) ~ 1, r/t(/~ ) > /~ ) .  
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We now use Lemma 6,4 to rewrite (6.10) as: 

dx dyB(x,  y ) / (y  - x) = dx ds 1/(81 - x) 
1 a 1 a 

• B ( x , y ) / ( y - s l ) g y §  ds2 ... dskl-I/(sj--sj  1) B ( x , y ) / ( y - s ~ ) d y  . 
k = 2  1<.,,  <sk</~ 2 

Thus, for each fi and a.e. (R~) (x, 81) E Z e ( - ~ ,  fl), 

(6.11) B(x, sl) = B(x, y) / (y  - Sl)dy 

+ 
k = 2  J s ~  < . . .  < s k  < fl J 2 

By Fubini's Theorem, we know that  for a.e. (~3) (x, 81, fl)EE a ( -  ~ ,  c~), equation 

(6.11) holds. Thus, if A is the set of (x, sl) EY~e( - 0% o~) such that  (6.11) is true for a.e. (21) 

fl>sl ,  then again by Fubini's Theorem, A has full (~2)-measure in Y~2 ( - ~ ,  ~) .  But for 

(x, 8) EA, 

S/ B(x, 8) >~ B(x, y ) / (y  - s) ds 

for a.e. ().1)fl >s, and therefore for all fi >s. Hence, by monotone convergence, 

(6.12) B(x,s)>~ f ; B ( x , y ) / ( y - s ) d y ,  (x,s)eA. 

Next, define zt to be the set of (x, s l )EA for which 

(6.13) lira ~ su ... d s k ~ / ( s r  B(x, y ) / ( y - s k ) d y = O .  
fl~s~ k = 2  l < s 2 < . . . < s k <  fl 

I t  is clear, from the monotone convergence theorem, that  equality obtains in (6.12) for 

(x, Sl) EX. Thus it suffices for us to prove that  A has full (~2)-measure in Y~ ( 0% ~) .  For 

each x, set Ax={s: (x, s l )~A  }. By Fubini's Theorem, B={x:  ~l((x, o~)~Ax) =0} has full 

(Jti)-measure in R. Also, if s E R  and C(s)={x: x < s  and fT B(x, y ) / ( y - x ) d y < ~ ) ,  then 

(6.5) implies that ~1((- 0% s )~C(s ) )=O.  Thus, another application of Fubini's Theorem 

proves that  D ~ { ( x ,  s) EA: x E B  N C(s)} has full (~t2)-measure in Z~ ( -  c~, ~) .  I t  is there- 

fore sufficient for us to show that  D_~A. That  is, we must prove that  (6.13) holds for 

(x, 81)E D. To this end, let s 1 E R and x E B N C(sl) be given. Since x E B, 

f; V B(x, y) I(Y - s~) dy < B(x, y) I(Y - s~) dy ~ B(x, 8~) 
k 
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for a.e. (21) s k E (x, fl). Thus if M and N are as in the  paragraph preceding Theorem 6.3, 

then  we have: 

f f; (6.14) ~ ds~ ... d sk~ i l ( s , - s ,_~)  B ( x , y ) / ( y - s k ) d y  
k=2  l<S2<...<Sk< fl j ~ 2  

_< M (fl - s) eM(~_,)(~_,) [~dskl(s k -  x) B(x,  sk). 
"~ N ( [ J -  z) L ,  

The right side of (6.14) goes to  zero as fl decreases to  s I since xeC(sl) .  Q.E.D. 

Now define %(t) for x E R and t > 0 by  

c~(t) = B(x,  x +t). 
According to  Lemma 6.9 

(6.15) cx(t)= joC~(t + s)/(s)ds a.e. (2~), 

and by  changing %(. ) on a set of measure zero we m a y  assume tha t  for a.e. (21) x, %(. ) 

satisfies (6.15) for every t > 0 .  (cz(.) so modified m a y  be infinite on a set of measure zero.) 

6.16. LEMMA. Let f be 1.b. and 1.p. on (0, cr and let T(t) be a non-negative (possibly infinite 

on a set o/measure zero) function such that 

fo (6.1"/) q~(t)= q~(t+s)f(s)ds for every t>O.  

Then either rp-~ 0 or there is a 2 such that 

oetal(t) dt = 1 

and an ~ > 0  such that ( f ( t )=~e ~t. 

We postpone the proof of this lemma until  the end of the section. 

6.18. LI~MMA. With B(x, y) and f as above, there is a 2 such that ]~ e~t f(t)dt = 1 and a constant 

5 such that 
B(x, y) =ge ~(~-x) a.e. (2~). 

Proof. Since B(x, y) is not  zero a.e. (2~) the first s ta tement  follows from (6.15) and 

Lemma 6.16. Also from L e m m a  6.16 it follows tha t  there is a funct ion ~(x) such tha t  

c a t )  = e (x )  e ~t a . e .  (2~). 

Now if we had defined d y ( t ) = B ( y - t ,  y), then an a rgument  identical to  the above 

would show tha t  dy(t)= d(y)e ~t a.e. (2~) for some measurable funct ion d(y). Thus 

B(x, y) = cx ( y - x )  =5(x)e ~(y-x) =d(y)e ~(~-x) a.e. (22), 

I t  follows tha t  there is a constant ,  5, such tha t  ~(x)= 5 a.e. (21). Q.E.D. 



N E A R E S T  N E I G H B O R  B I R T H  AI~D D E A T H  P R O C E S S E S  ON T H E  R E A L  L I N E  1 5 1  

6.19. LEMMA. I / ]  is 1.b. and l.p. and 0 r ~ 0 ,  then there is a 2 such that e~X/(x) is a probability 

density and 

( 6 . 2 0 )  (e )  -1  = jo te  /(t) dt. 

Proo/. We al ready know t h a t  there  is a ~ such t h a t  eaX/(x) is a p robabi l i ty  densi ty  and 

B(x, y) = 6e ~<y-x). Since m is a measure  on E we have  

f ~  ~176 1 = m(l,(O) E ( - ~ ,  0), v,(O) E (0, ~ )) --- dyB(x, y) ](y - x) 
J - o o  J O  

fof  fo v -~ ,J o dy6e~(~-x)/(y- x) = 5 temPI(t) dr. Q.E.D.  

As we pointed out  before, if f(x) : e~ / (x )  for  some A, then  0 I =  07- L e m m a  6.19 says 

t ha t  if 0 I  is not  e m p t y  then  there  is a probabi l i ty  densi ty  ] with a finite first  m o m e n t  such 

t ha t  0 i =  07 and moreover  ](x) :e~/ (x)  for some ~. 

6.21. THEOREM. • ] is 1.b. and l.p. and 0r=~0 then there is a 2 such that ](x) =e~/(x) is a 

probability density with a/ ini te  ]irst moment, and 0 consists o/exactly one element whose 

marginals are given by (6.2) with ] in place o/]. 

Proo]. Every th ing  has been proved  except  the uniqueness. Bu t  this follows f rom L e m m a  

6.4 and  the  equat ion B(x, y)= 5e ~(~-~). Q.E.D.  

All t h a t  remains  is to  prove  L e m m a  6.16. We proceed in a series of lemmas.  Notice 

first t h a t  since ] is 1.p. it follows f rom (6.17) t h a t  ]KqJ(t)dt< co for all compac t  K ~  (0, c~). 

6.22. L E ~ A .  Under the hypotheses o/Lemma 6.16 either q)(t) ~ 0  or ~(t) > 0/or  all t > O. 

Proo]. Since ](s) > 0  for all s it follows f rom (6.17) t ha t  if ~(t0) = 0  then  ~0(t) = 0  for all 

t > Q. Suppose ~0(t0) = 0 for some t o. Le t  ~(t) =~ ( t  0 - t). Then  for 0 < t < t o 

YJ(t)= ~ q ~ ( t o - t  + s)](s)ds= ; q ~ ( t o - t  + s)/(s)ds<---M(to);~p(t- s )ds= M(to);Y)(s)ds.  

Since ~ is locally integrable and  non-negat ive  it  follows t h a t  ~(t) = 0  for 0 < t < t  0. Q.E.D.  

6.23. LEMMA. I] ] is a strictly positive, continuous ]unction on (0, ~ )  and q~ is a strictly 

positive measurable (possibly in/inite on a set o/measure zero) ]unction on (0, ~ ) which satisfies 

(6.17) and 

(6.24) Jo~ ~(s) ](s) ds = 1, 

then there is a unique 2 such that ~ eat/(t)dt = 1, and moreover of(t)=e ~. 
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Pro@ Let  19 be the vector  space of locally finite signed measures on (0, ~ )  wi th  the  

topology of weak convergence on compac t  subsets of (0, ~ ) .  19 is locally convex wi th  this 

topology.  Set Y = {/t E 19: /t is a posi t ive measure  on (0, ~ ) ,  S~/(s)/t(ds)~< 1, a n d / t ( K )  ~> 

S~/ t (K § s)/(s)ds for all compac t  sets K ~ (0, co )}. 

f= f / f o  (6.25) / t(K + s) [(s) ds = /t(dt) ZK(s + t) [(s) ds, 
o 

and .[~ ZK(s + t)/(8) ds = ~f~ Zt : (u) / (u-  t) du is continuous in t. Therefore,  since / is also 

continuous, it follows tha t  ~/is compact .  3 is clearly convex, and Y is metrizable;  therefore,  

every element  of 9 is an average  of ex t reme points  of Y. The measure/ to  E Y with densi ty  q~ 

satisfies 

(6.26) J o / ( s )  #o(d~) 1 a n d  

(6.27) /t0(K ) = S~ c/t0(K +s)/(s)ds for all compac t  K c (0, ~ ) .  

Thus  the  ex t reme points  of Y of which/t0 is an average  mus t  also sat isfy (6.26) and (6.27). 

I n  par t icular  there is an ex t reme point  fi of y which satisfies (6.26) and  (6.27). Because fi 

satisfies (6.27) and  the r ight  side of (6.27) is given by  (6.25) it follows tha t  fi has a dens i ty  

~v(t) which satisfies (6.17) and (6.24) and thus, by  L e m m a  6.22, is s tr ict ly positive. Ob- 

viously, 

y~(t)- f /  ~v~(s)s) ~(s)/(s)ds. 

Moreover,  for every  s for which ~p(s) is finite (which is a lmost  every  8) ~p(t § s)/~(s) again satis- 

fies (6.17) and (6.24) as a funct ion of t. Thus since ~(8)/(8)> 0 for every  8, .[~o ~,v(8)/(s)ds = 1, 

and fi is extreme,  it follows tha t  

y~(t)w(s) =~v(t+8) for a.e. (22)t, s > 0. 

Le t  a(8) E C~(0, 1) be such t ha t  S~ ~v(s)a(s)d8 - 1 and define ~(t) = .[~ ~p(t + s) a(s)d8 = 

f~  ~p(u)a(u-t)du. Cf(t)EC~(O, oo) and for a.e. (21) t we have  

fv(t) = f / ~ ( t )  ~(s) a(s) ds = v'(t). 

Thus  (v(t+s)=v~(t)v~(8) for all t, s > 0  and hence ~ ( t ) = d  t for some 2 and ~v(t)=d t a.e. (),1). 

But  since yJ satisfies (6.17), ~,(t) =e  ;'t for all t >0 .  

Since there is a t  most  one 2, with ~ eXt/(t)dt=l, this shows tha t  the measure  fi is 

uniquely de termined and hence / t0=f t .  This shows tha t  q(t) =e  ~t a.e. (2~), and since ~v satis- 

fies (6.17), r ~t for all t>O, where 2 is the unique number  such t ha t  (6.24) holds. 

Q.E.D.  
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6.28. LEMMA. 1/ / i8 a l.b. and l.p. /unction on (0, ~ )  and q~ is a positive (possibly in]inite 

on a set o /measure zero)/unction which sati.v/ies (6.17) and (6.24) then there is a unique 

such that ~ e~'f ]{t)dt = 1 and moreover q~(t) =e ~t /or all t >0.  

Proo/. Let  9(t)= ~[~ ] ( t - s ) / ( s )ds .  Since / is 1.b., g is continuous,  and  since / is 1.p., g 

is s t r ic t ly  posi t ive for t > 0 .  Also 

f c f ( t + h ) g ( t ) d t = f ~ ( t + h ) ; / ( t - s ) ] ( s ) d s d t  

= ji~/(s)ds f~q~(t + h)t(t-s)dt= f/~(s+ h)/(s)ds=q~(h). 

Therefore b y  L e m m a  6.23, there  is a unique ~ such t h a t  .I~ e~tg(t) dt ~-1 and q~(t) = e ~t. But  

f /  e~tg(t)dt = ( f ;  e~tf(t)dt) 2. Q.E.D.  

Proo/ o/ Lemma 6.16. F r o m  L e m m a  6.22 we see t h a t  we m a y  assume t h a t  ~ ( t ) > 0  

or all t > 0 .  Also ~(t) < ~ for a.e. (~,) t. Thus  there  is a sequence s~ '~0  and  a y > s  1 such t h a t  

(p(y) < co ~nd ~ ( ~ ) <  ~ for ~ll n. Le t  ~,( t ) -~(~, ,  +t)/q~(~). One easi ly checks tha~ V, a n d  

/ sa t i s fy  the  hypotheses  of L e m m a  6.28. Thus  there  is a 2 such t h a t  f~  e~t/(t)dt = 1 and  

y~(t) = e ~'t. Therefore  F(s~ + t) - ~(s~) e ~'~. Since s ,  ~ 0, this  shows t h a t  ~(t) is continuous.  Also 

el(y) -cp(e,) e ~(r ~"). Thus  

~ ( e ~  + t) - V (y )  e ~ y  -~") e ~t. 

Let t ing  n-~ ~ we get  the  desired result .  Q.E.D. 
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