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1. Introduction 

The fundamental problem in investigating the unitary representation theory of a 

separable locally compact group G is to determine its space G ̂  of (equivalence classes of) 

irreducible representations. I t  is known that  when G is not type I, G ̂ , with the Mackey 

Borel structure, is not standard, or even countably separated. This is generally interpreted 

to mean that  the irreducible representations of such a group are not classifiable, and so 

the problem becomes to find a substitute for G ̂ , simple enough to afford some hope that  

it  can be described completely, yet  complicated enough to reflect a significant part  of the 

representation theory of q. Two promising candidates have been proposed, both defined 

using the group C*-algebra C*(G) (which has the same representation theory as G): the 

space Prim G of primitive ideals of C*(G), which was shown by Effros [19] to be a standard 

Borel space in the Borel structure generated by  the hull-kernel topology; and the space 

Gao r of quasi-equivalence classes of normal representations (traceable factor representa- 

tions) of C*(G), shown by Halpern [35] to be standard in the Mackey Borel structure. 

(The results of [19] and [35] are actually valid for arbitrary separable C*-algebras, not just 

those arising from groups.) 

In  the case that  G is type I, both of these spaces may  be naturally identified with 

G ̂ . Striking evidence that  they are natural objects of s tudy may be found in the beautiful 

result [49] of Pukanszky, that  for connected G they are "the same" in the sense that  the 

map which associates to any element of Gno r the kernel of its members is a bijection of 

Gnor onto Prim C*(G). (It is easily shown that  this bijoction is in fact a Borel isomorphism.) 

(1) Supported in part by an NSF Graduate Fellowship and by a Grant-in-Aid from the Graduate 
Divisiort of the University of California, Berkeley. This paper formed a portion of the author's doc- 
feral thesis, submitted to the Univ. of Calif. in September, 1976. 
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This paper grew out of an a t tempt  to extend Pukanszky's result to a wider class of 

groups, and more generally, to develop the basic theory of Prim G and Gnor for arbitrary 

groups. In pursuing these investigations it became apparent that  it  is convenient to work 

in the more general context of what we call "twisted covariant systems". Such a system 

consists of a triple (G, A, if), in which G is a locally compact group, .4 a C*-algebra on which 

G acts continuously by  automorphisms, and ff a homomorphism of a closed normal sub- 

group N~ of G into the unitary group of the multiplier algebra ~/~(A) of A, such that  

satisfies certain conditions with respect to the G-action on A. (See Section 1 for a precise 

definition.) To each such system can be associated a C*-algebra C*(G, A, 0") (the "twisted 

covarianco algebra" of the system) whose representation theory coincides with the "co- 
variant" representation theory of (G, A, if). The usefulness of twisted covarianee algebras 

in the study of group C*-algebras stems from the following facts: given a closed normal 

subgroup K of a locally compact group G, there is a natural twisted eovariant system 

(G, C*(K), ~K) whose C*-algebra is isomorphic to C*(G). Using this system it is frequently 

possible (and useful) to break up C*(G) into more manageable pieces, which are no longer 

group C*-algebras, but  which are twisted covariance algebras. Finally, the C*-algebras 

associated to the projective representation theory of q can be naturally described as 

twisted eovariance algebras (and in so doing, one avoids entirely the necessity of dealing 

with coeycles). 

With the above facts and the further special case of covariance algebras as motiva- 

tion, we have at tempted in this paper to describe some of the basic local structure theory 

(with emphasis on the primitive ideal and trace structure) of twisted covariance algebras. 

This necessitated the development of a theory of induced representations of such algebras 

which generalizes that  of Rieffel [51], [52] in the group case. This theory, invo l~ lg  Rieffel's 

concept of (strong) Morita equivalence, is much better suited to investigating the local 

structure of the G*-algebras of non- type I groups than is the classical Mackey theory, 

especially now that  Morita equivalence is beginning to be better understood ([30], [59]). 

The outline of the paper is as follows (we let (G, A, ~) denote a fixed twisted eovariant 

system): Section 1 contains the definition and some basic properties of twisted covariance 

algebras. (These algebras, under the name "produits crois4s restreints", have also been 

studied in [12]; they can be regarded as special cases of the enveloping C*-algebras of cross- 

sectional algebras of Banach *-algebraic bundles [24], and are related to the generalized 

/~ algebras of [40], [41], [42]. There is little overlap in this paper with the methods or 

results of any of those references. Many of our results can be proved in the more general 

context of [24], but with greater technical complications.) 

In  Section 2 we develop a theory of induced representations of twisted covarianee 
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algebras, including an imprimitivity theorem. The essential techniques are those of [51], 

with some modifications and simplifications. 

Section 3 contains results on continuity of the induction and restriction processes, 

generalizing results first obtained by  Fell [22] for the case of separable locally compact 

groups. Our methods are quite different from Fell's, and rely on the special form of the 

imprimitivity theorem obtained in Section 2. Section 3 also contains a number of miscel- 

laneous results, concerning among other things the implications for the inducing process 

of amenability of the groups involved. 

In  Section 4 we develop a "Mackey machine" for twisted covarianee algebras which 

emphasizes structure theory. The first part, involving the reduction to stability groups 

(for the action of G on Prim A), generalizes Rieffel's theory in [52]; we have, however, 

substantially simplified his proof. The second part, involving the case of a G-stable primitive 

ideal P of A, is new in the form we give it, and states roughly that  (at least in nice situa- 

tions) the part  of C*(G, A, if) which "lives over" P decomposes as a tensor product of 

simpler algebras. 

Section 5 contains our results on Prim C*(G, A, 7). These center around a generalized 

form of a conjecture of Effros and Hahn, which roughly speaking states that  every primi- 

tive ideal of C*(G, A, 7) should be "induced" from the algebra of a stability subgroup. 

Our results contain as special cases results of Gootman [27] and Zeller-Meier [57] concerning 

this conjecture. The methods used appear to be new, and simpler than those used in earlier 

attacks on the conjecture. 

Section 6 concerns traces on C*(G, A, 7). We begin with a result on inducing traces 

from A to C*(G, A, 7), which generalizes a theorem essentially obtained by  Pukanszky 

in [49, Section 2] for the group case. (A somewhat weaker result than ours was proved by 

Dang Ngoc in [12].) We then formulate an analogue of the Effros-Hahn conjecture for 

traces, and prove it in the special cases of "discrete" and "regular" systems. The result in 

the discrete case is obtained by filling in a slight gap in work of Zeller-Meier [57], but  the 

result in the regular case (which corresponds to the case of a regularly embedded normal 

subgroup) appears to be new, and depends on a result concerning normal representations 

of Morita equivalent algebras. 

In  the seventh and final section we consider "abelian systems", i.e. those for which 

G/2V~ (but not necessarily A) is abelian. We show first tha t  the imprimitivity theorem for 

such systems may be regarded as a generalization of a weak form of the Takai Duality 

Theorem [54]. Using this, and the second part  of the Mackey machine of Section 4, we are 

able to give new and considerably simplified proofs of results of Kleppner [38] and Baggett 

and Kleppner [3] concerning projective representations of abelian groups; we also answer 
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a question raised in [38]. Oar final theorem, which may be regarded as the culmination of 

the paper, concerns the trace and primitive ideal structure of systems which arise as 

"restrictions" of regular systems. This theorem has as a corollary the result tha t  if (7 and H 

are separable locally compact groups, and 7i a continuous injective hom0morphism of 

H into G whose image contains a type I regularly embedded normal subgroup K of G 

such that  G/K is abelian, then every point of Prim H is locally closed and the natural 

map of H.or into Prim H is a bijection. When combined with results of Pukanszky and 

Dixmier on algebraic groups this leads to a considerably simplified proof of the theorem 

of Pukanszky mentioned earlier, as well as of the result of Moore and Rosenberg [46] 

that  points in the primitive ideal spaces of connected groups are always locally closed. 

In  the proof of our theorem we have been greatly influenced by Pukanszky's arguments 

in [49]. 

Our methods throughout the paper are heavily algebraic in nature. We require 

practically no knowledge of group representations, developing all the necessary tools from 

scratch, but on the other hand we assume familiarity with the basic theory of C*-algebras 

as contained in the first five chapters of [15]. Some acquaintance with Rieffel's theory 

of imprimitivity bimodules and strong Morita equivalence of C*-algebras, as contained 

in [51, Sections 2 and 4-6], and [52, Section 3], would also be helpful. 

We use R, C, and T to denote the reals, complexes, and unit circle in C, respectively. 

Ends of proofs are denoted by "///". 

I would like to thank Professor Rieffel, who was my graduate adviser, for a careful 

reading of the manuscript which eliminated a number of obscurities, and for several help- 

ful suggestions. 

1. Twisted covariance algebras 

We recall some basic facts (cf. [lS], [55], [8]) about covarianee algebras. A eovariant 

system ((7, A) consists of a locally compact group G, a C*-algebra A, and a (left) action 

(s, a)~-->Sa of G by *-automorphisms of A, which is strongly continuous in the sense (usual 

for representations of topological groups on Banaeh spaces) tha t  for every a in A the map 

s~-~Sa of G into A is continuous. A (covariant) representation JL of (G, A) on a Banach space 

B = B~ consists of a uniformly bounded strongly continuous representation VL of G together 

with a norm decreasing non-degenerate representation M~ of A such that  VL(s) ML(a) VL(s -1) = 

ML(~a) (s and r are to denote arbitrary elements of G, a and b elements of A throughout 

the paper; we will frequently omit quantifiers involving these letters to avoid tedious 

repetition). By  non-degeneracy of M~ we mean that  ML(A)B (the closed linear span of 

(Mz(a)~: a EA, ~ e B}) is equal to B; all algebra representations are assumed nondegener- 
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ate, unless otherwise stated. When B is a Hilbert space we further require that  Vr. be 

unitary and ML be *-preserving. 

To each covariant system we associate the Banach *-algebra LI(G, A) of all Boclmer 

intograble A-valued measureable functions on G with respect to a fixed symmetric Haar  

measure ds (that is, ds= A(s)~�89 where d~ is a left Haar measure on G, and A =/x  a 

is the modular function of G), with multiplication and involution defined by 

(/~ g) (r) = f /(s)8(g(s-lr)) d2(s);/*(r) = r(f(r-1)*). 

(Usually LI(G, A) is taken with respect to d,~, necessitating the introduction of A into the 

formula for the involution; the algebra defined above is isometrically *-isomorphic to the 

latter one via the map/F-> A-�89 The modified definition above results in some notational 

simplifications, which is our reason for introducing it.) 

To each covariant representation L of (G, A) there corresponds a representation (also 

denoted by  L) of L~(G, A), called the "integrated form" representation and defined by the 

formula 

L(/) ~ = I'ML(/(s)) VL(s) ~ds 
J 

for each ~ in B and / in LI(G, A). In  particular, the representation of LI(G, A) on itself by 

left multiplication is the integrated form of the covariant representation given by  

( r ( s ) / )  (r) = ~ (8?~(/(s-lr)) 

and 
(M(a)/) (r) = a/(r). 

These actions of G and A are easily seen to extend to actions on the enveloping C*-algebra 

C*(G, A) of LI(G, A), and so induce homomorphisms R~ and R A of G and A into the multi- 

plier algebra [1] ~(C*(G, A)); we will occasionally identify elements of G and A with their 

images in ~(C*(G, A)), thus writing sa for Ra(s ) RA(a), etc. (The usefulness of multiplier 

algebras in the theory of eovarianee algebras was first pointed out in [8], to which we refer 

the reader for further details.) If H is a closed subgroup of G and we set R~=RGI~, then 

R~ and R~ define a covariant representation of (H, A) on C*(G, A), the integrated form of 

which gives a *-homomorphism of LI(H, A) into ~(C*(G, A)); since the latter is a C*- 

algebra this homomorphism "factors through C*(H, A). Similarly the integrated form of 

RH gives a *-homomorphism (also denoted RH) of C*(H) into ~(C*(G, A)). We note the 

useful fact tha t  the set {/a(=Ra(/)RA(a))[/EC*(G),aEA } of products in ~(C*(G,A)) 
is contained in C*(G, A), and generates it as a C*-algebra--this follows from the easily 
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proved fact that  elements of LI(G, A) of the form s~-->/(s)a, where/ELl(G,  ds) and aEA, 
have dense span in C*(G, A). 

Any non-degenerate *-representation of LI(G, A) extends uniquely to C*(G, A), and 

hence to ~I(C*(G, A)), and so defines (by composition with Ra and RA) a covariant *-re- 

presentation of (G, A); viewed as a map from *-representations of LI(G, A) to covariant 

*-representations this process is inverse to the "integrated form" construction. 

C*(G, A) is often referred to as the covariance algebra, or crossed product algebra of 

the system (G, A). We will at times use the same letter to denote a covariant *-representa- 

tion of (G, A) and the uniquely associated *-representation of C*(G, A). In particular (i.e. 

the special case A =(~) the same letter will be used for representations of G and C*(G). 
Similarly we sometimes use the same letter for a *-representation of a C*-algebra and the 

canonical extension (el. [37]) to its multiplier algebra. 

We now introduce a refinement of the concept of covariant system. A twisted covariant 
system (G, A, if) consists of a covariant system (G, A) together with a continuous homo- 

morphism 9" (called the twisting map of the system) of a closed normal subgroup Nz of G 

into the group of unitaries of ~ (A) ,  equipped with the strict topology [7], such that  

9"(n) a g ' (n  -1) = na and 9"(8n8 -1) = sg'(n) (we extend here the automorphism defined by  s to all 

of ~ (A) )  for all hEN, aEA, and sEG. The twisted covariance algebra (or twisted crossed 
product algebra) C*(G, A, 9") is defined to be the quotient of C*(G, A) by the unique minimal 

(closed two-sided) ideal 17 of C*(G, A) having the property that  for any *-representation 

L of C*(G, A) with ker L ~  Iz, the following holds: 

VL(n) = ML(9"(n)) for all hENs. (1) 

To see that  17 is well defined, observe that  a *-representation L "preserves 9"", in the 

sense that  (1) holds, iff the kernel of its extension to 7I~(C*(G, A)) contains the ideal I of 

~(C*(G, A)) generated by (na-9"(n)alnEN , aEA} and that  by nondegeneraey of L this 

holds iff k e r L  contains the ideal C*(G, A).I=C*(G, A) N I of C*(G, A). Thus we may 

define 17 =C*(G, A) N I. 

*.Representations of (G, A, 9') are defined to be those covariant *-representations of 

(G, A) which preserve 9". They are thus in natural 1-1 correspondence with *-representa- 

tions of C*(G, A, 9"). 

Throughout the remainder of the paper (G, A, 9") will denote a fixed twisted covariant 

system. 

Whenever ~ is a continuous homomorphism of a locally compact group H into G we 

can form an associated twisted eovariant system (H, A, 9"H) (the "pull-back" of (G, A, 9") 
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along ~) by  defining ta='(t)a for all t in H and a in A and ffn=ffogl.-~(N 0 (so that/VZH= 

~-i(N~)). Note that  when H is a closed subgroup of G containing/Vz and ~ is the inclusion 

map, fin is just ft. 

In  [12] Dang Ngoe discusses twisted eovariance algebras under the name "produits 

crois6s restraints". He gives a somewhat different construction of them which we now show 

is equivalent to ours. Let  Co(G, A, ~') denote the set of continuous A-valued functions / 

on G, having supports whose images in G/Nz are relatively compact, and such tha~ 

l(n~) = l(s)if(n) -i for all nENz, sEG. 

Fix left t taar  measures on N = Nz and G/N, normalized so that  

f /(s)d2(s)= fajN fN [(sn)d2(n)d)~(~) for all [EC~(G), (here $=sN), 

and let dn, d~ be the associated symmetric measures 5N1/~(n)d~(n), /~ 5~N~2($)d2($). We give 

Q(G, A, ~T) the structure of a normed *-algebra by  

l~g(s) = fajJ(r)'g(r-ls) d2(~);/*(s) = Sl(s-i)* 

II/11( ) =/o,, II/(,)ll 
Let  A~,N(s)=d(8-'n)ldn (so that  A~(s)= A at~(~) A c.~(s)), where S-'n= s-ins. 

There is a norm-decreasing *-homomorphism g of Co(G, A) (the sub-algebra of LI(G, A) 
consisting of continuous functions of compact support) into Cr A, if), defined by ~(/) (s) = 

I/(sn) ff(~n)dn. The proof of [50, 10.9] (with slight modifications) shows that  there is an 

isometric cross section for ~. I t  follows that  ~ extends to a *-homomorphism (also denoted 

~) of Li(G, A) onto the completion LI(Q, A, if) of Co(G, A, if), and that  LI(G, A, if) carries 

the quotient norm from LI(G, A). In  particular LI(G, A, if) has a bounded approximate 

identity, and so it has an enveloping C*-algebra B which is a quotient algebra of C*(G, A). 

Dang Ngoc defines the  produit erois4 restreint of (G, A, if) to be this enveloping algebra B. 

Observe that  there are left actions of G and A on C~(G, A, if) given by 

(r/) (s) = A ~2N(i)V(r-is); (a])(s) = a/(s), 

the integrated form of which gives the natural left action of Co(G, A) on Cc(G, A, if) arising 

from the homomorphism ~. For  n e N, we check that  (n])(s)= ~(n)/(s). I t  follows easily 

that  for any *-representation L' of B, L' o~ preserves ft. On the other hand given a covariant 

*-representation L of (G, A) which preserves if, we easily check that  
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L'(/) ~ = / ~  M~(/(8)) V,(s) ~d~. 

defines a norm decreasing *-representation L '  of Co(G, A, if) satisfying L(g)=(L'o:~)(g) 
for all g 6 C~(G, A). I t  follows that  a *-representation of ((7, A) preserves ff iff its integrated 

form factors through g, showing that  B is naturally isomorphic to C*(G, A, if) and thus 

that  our definition agrees with Dang Ngoe's. 

Among the most interesting twisted covariant systems are those arising from group 

extensions. We treat  these systems as special cases of "iterated twisted covariant systems". 

(The latter are also discussed in Section 2 of [12], where a different proof of the proposition 

below is given.) 

Let  K be a closed normal subgroup of (7 containing/Vz. We may define an action of 

G by *-automorphisms of C~(K, A, if) by 

( s / ) ( t )  = ~G/N, KIN(8) S(/(8--1~8)). 

This action is isometric and strongly continuous with respect to the L 1 norm, and so by 

the universality property of the enveloping C*-algebra it  extends uniquely to a (strongly 

continuous) action on C*(K~ A, •). Observe that  the natural left actions defined earlier of 

G and A on Co(G, A, if) give rise to a covariant pair (R~, R~) of homomorphisms of G and 

A into ~(C*(G, A, if)), which preserves ff in the sense that ,  if / ~  denotes the natural 

.RG(n) = extension of R~ to a homomorphism of ~ ( A )  into ~(C*(G, A, if)), we have 

R~(ff(n)) for all n6N~. ( /~  exists because A acts non-degenerately on C*(G, A, if).) 
Similarly, we have homomorphisms R~ and R~.K of K and A into ~(C*(K, A, if)). Then 

it  is easily verified that  ~K=R~ is a twisting map for the system (C, C*(K, A, if)), so we 

can form the "iterated twisted covariance algebra" B(a'K)=C*(G, C*(K, A, if), ff~:). We 

proceed now to show that  this algebra is naturally isomorphic to C*(G, A, if): 

Let R 1 and R ~ denote the natural homomorphisms of G and C*(K, A, if) into ~(B(a'~)), 

and /~2 the extension of R 2 to ~(C*(K, A, if). Let Ra=I~oR~.K. Then (R 1, R a) is easily 

seen to be covariant and if-preserving, and thus, via the integrated form construction, 

defines a *-homomorphism R of C*(G, A, if) into ~(B(C'K)). Now C*(G, A, if) is generated 

by Rg(C*(G))R~(A) (this fact, observed previously for covariance algebras, holds for 

twisted covariance algebras since they are quotients of eovariance algebras), and B (a'K) 

by RI(C*(G))(([~oR~(C*(K)))(Ra(A))); but since k~oR~=RI]K, and since R~[K(C*(K)) 
acts as multipliers on RI(C*(G)) (via the action of C*(K) by multipliers of C*(G)), we have 

R(G*(G, A, if)) = RI(G*(G))Ra(A) = B (a'K). 
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On the other hand, we have a natural map R 4 of C*(K, A, if) into ~(C*(G, A, f/)), and it 

is easily verified that  the pair (R~, R 4) defines a covariant homomorphism of (G, C*(K, A, 

if), I/K) into ~(C*(G, A, if)); let R' be its integrated form, /~' the extension to ~(B(a'K)). 

Then t~%Rl=R~, and ~'oRS=R~. I t  follows easily that  /~ 'oR is the identity map on 

C*(G, A, ~), so that  (since R has image B(a'K)): 

PROPOSITION 1. With the above notation, R is an isomorphism o/ C*((7, A, ~) onto 

the iterated algebra B (a'K)= C*(G, C*(K, A, ~), ~K). /// 

Applying this to the caze A = C with ff trivial, we get 

C o R 0 L L A R Y. For each closed normal subgroup K o/G there is a natural twisted covariant 

system (C, C*(K), ~K), (with IY~:=K) such that C*(G, C*(K), [1 K) is isomorphic to C*(G). ]// 

2. Induced representations 

We proceed now to develop a theory of induced representations for twisted covariance 

algebras which imitates and extends that  of Rieffel [51] for the group case. As in [51] we 

find it convenient to work with "pre-C*-algebras", in particular the dense subalgebra 

Co(G, A) of C*(G, A). In  addition to its norm topology this algebra carries the "inductive 

limit topology": a net (/a) in Co(G, A) converges to / in this topology iff it tends to / uni- 

formly (for the norm on A), and for some ~0 and compact K_~G all the ]a with ~>~0 are 

supported in K. One sees easily that  the restriction of the norm topology of L~(G, A) to 

Co(G, A) is weaker than the inductive llmlt topology, so that  in particular the restriction 

of any *-representation of ZI(G, A) to Co(G, A) is continuous for the inductive limit topology. 

Let H be a closed subgroup of G, and define the "imprimitivity algebra" E=E~H to 

be the covariance algebra of the system (G, A| (Coo(G/H) denotes the algebra of 

continuous complex-valued functions on G/H vanishing at infinity, and | the minimal, 

or spatial, tensor product--see [53, p. 59]) where A | is given the diagonal action 

of G, defined on elementary tensors by S(a|174 here s] is defined by s](C)=/(s-lC) 

for ] E Co~(G/H), C E G/H. Using the canonical isomorphism of A | C~(G/H) with C~(G/H, A) 
[53, pp. 59-60] we may alternatively define this action of G via sy~(C) =s(~(s-lC)) for all 

in CAG/~, A ). 
As in [51], we will construct an "imprimitivity bimodule" X between E and B- -  

C*(H, A), which will then be used to define induced representations of C*(G, A). 

To begin with we work with the subalgebras Eo=Cc(G, Co(G/H, A)) of E and Be= 

Co(H, A) of B; we regard elements of E 0 as continuous A-valued functions on G x G which 

are constant, in the second variable, on cosets of H. Then Xo=Cc((~, A) can be made into 
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an E 0 - B 0 bimodule aS follows: Let the algebra C(G/H, A) of bounded continuous iunetions 

on G which are constant on H-eosets act to the left of X 0 by multiplication: 

(~ox) (r) = ~o(r) x(r) (v 2 E C(G/H, A)) 

and let G act to the left on X o by 

(sx)(r) = z ~ / ~ ( 8 ) ~ ( x ( 8 - ~ r ) ) ,  

Here as in the rest of the paper x, y, and z denote elements of X o (or of its completion X,  

once that  is defined). Then E 0 acts on X 0 via the integrated form representation 

B 0 acts to the right by 

(/x) (r)= fc/(s,  r)8(x(s-lr))d).(s) (/EEo). 

(xg) (r)= f x(rt-~)rt-'g(t)de(t) (gEBo), 

the integrated form (with respect to right Haar measure e on H) of the right A-action 

defined by 
(xa) (r) = x(r)(ra) 

and the right H-action defined by  xt(r) =x(rt -1)/x~lt2(t) (t will denote elements of H). I t  is 

easily verified by use of the Fubini theorem that  these formulae define commuting actions 

of E o and B o. Next we introduce E o and B0-valued inner products on X 0 as follows: 

(x, y)Eo(S, r)= f z(rt -1) ~(x(s -1 rt-1) *) de(t) 

= fqs(X(8--1) $) *(y(s-lt)) d]t(s). (x, 

I t  may readily be verified that  (x, Y}s~ is constant under right translation of the second 

variable by elements of H, and that  the resulting function on G x G/H is continuous of 

compact support. Similarly (x, Y}Bo is verified to lie in B 0. The following formulae follow 

from routine computations: 

(x, yg}~o -~ (x, Y}Bg, (/x, y}~o =/(x ,  Y}Eo, 

(/x, y}E~ = (x, /*Y}Bo, (x, Yg)Eo = (xg*, Y}z., 

for all gEB o and ]EEo; and 

(x, y)~, = (y, x)s0; (x, y)*~ = (y, x)~o; x(y, z)~. = (x, y)s.z. 
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To complete  the  proof t h a t  X 0 with  the  above  inner products  is an  E 0 -  B 0 impri-  

mi t iv i ty  bimodule ,  we need the  following lemma.  Recall  t h a t  an  app rox ima te  iden t i ty  for  

an  act ion of a topological algebra ~4 on a topological module  ~ is a net  (fa) in ~4 such t h a t  

for each m in ~/ ,  (/am) converges  to  m. 

L E M ~ A  2. (i) There exists a net (/~) in E o which is an approximate identity with respect 
to the inductive limit topologies for the left and right actions of E o on itself and the left action 
on Xo, and which has the property that each fa is a/inite sum o/elements o/the form <x, X>Eo. 

(ii) There exists (g~) in B o with similar properties. 

Proof. (i) Le t  (a~)j~ be an  approx ima te  ident i ty  for A consisting of posit ive elements  

of norm ~<1. To each quadruple  ~c=(U, K,  ], e), where U is a neighborhood of the  iden t i ty  

in G, K is a compac t  subset  of G/H, ~ E Y, and e > 0, we associate a n / ~  E E0 as follows: 

Le t  C be a compac t  subset  of G whose project ion into G/H contains K.  As in the  proof 

of [51, 7.11] we choose a " t runca ted  Bruha t  app rox ima te  cross sect ion" h in Cc(G ) such t h a t  

~ h(st -1) do(t ) = 1 for all s inC .  Le t  D be the suppor t  of h. Choose V to be a symmet r ic  neigh- 

borhood of the  iden t i ty  of G such t h a t  V~___ U and II~a~/~ -a}/211 <~ for all s in VL Multiplying 

h pointwise b y  the  elements  of a suitable par t i t ion  of uni ty ,  we obta in  non-zero funct ions 

h,, i = 1, ..., n each having suppor t  in Vs~ for  some si EG, and  such t h a t  ~=~  Ix h,(st-i) d~(t) 
x~(r)=(h~(r)ai )7~ = 1  for all s in C. Now let 7~=l/[.ah~(s-1)d~(s), and define x~ in X 0 b y  ~/z 1/2 

for each i = 1 . . . . .  n. Then  <x~, x~>x0 (s, r) = ~z x~(rt -x) ~(xds-~rt-~) *) do(t) -=7~ f.z h~(rt -~) a~ ~" 
h~(s-~rt -~) ~ay~ d~(t). I n  par t icular  

<x~, x,>~~ r) = 0 for s t  V ~, (2) 

and  for all r in C and all s we have  

a,= ~=i f h~(rt-~)ajdo(t)= ~=l f hdrt-~) fJ~h,(s-lrt-~)ajd~(~)d~(t), 

so t h a t  

C r t  - 1  = 8.  

n X The inequal i ty  follows b y  u s ing  (2) and  the  fact  t h a t  [1%11 ~< 1. D e f i n e / ~ = E , = I <  ,, x~>,., 

and  direct  the  set  of ~ 's  b y  ( U, K, ~, e) <~ (U', K ,  ~, e ) iff U '  ~ U, K '  ~ K,  ~' >~ ~, and  ' -< 
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Given ] e E 0 and e > 0, put  D =Pl (supp/)  and K =p~ (snpp/)  where Pl and p~ denote 

the projections of G • G/H onto its first and second factors respectively. A routine compact- 

ness argument shows tha t  we may  choose ] in Y and a neighborhood U of the identi ty of 

G such tha t  Ilas/(So, r ) - / ( s  0, r)H <e  and II~](s-lso, s - l r ) - / ( s  o, r)l I <8 for all s 0, r in (7 and s 

in U. A straightforward computation using the facts proved above shows that ,  with 

= (U, K, ], ~), ]~ ~ / h a s  support  contained in UD • UK. Using 

f f h,(s-lrt-1)d't(s)dq(O---1 
and the facts above, we see that ,  for all s o and r, 

II5 r ) -  I( o, r) ll 

= ll fot,(*, l( o, r) 

r)da( ) II 

~ + II  o-r)dt(s)-aj �9 II/(s., r)l I + Ilafl(8o, r)--1(8o, r) ll 

< r)ll, 

which shows tha t  the l~ are a left approximate identity; continuity of the *-operation for 

the inductive limit topology then implies tha t  they are a right approximate identity. A 

similar computation shows tha t  they are an approximate identi ty for the action on X 0. 

(ii) has a similar, but easier proof; we m a y  in fact take the g~ to be of the form (x, x)B., 

with the x having supports tha t  shrink to the identity. /// 

From this lemma it follows that  the span of the range of ( , >no contains an approxi- 

mate  identi ty for the inductive limit topology, hence since it is an ideal in E 0 it is dense in 

this topology and so a fortiori in the C* topology. Similarly the range of ( ,  >Be has dense 

span in B 0. 

To verify positivity of the inner product, consider any  x 6 X  o. From the lemma we can 

find x~ tending to x in the inductive limit topology, such tha t  each x~ is of the f o r m / ~ x - -  

~=1 <~'~, Xi>EoX" Then 

t=1  t = l  t=1  

is a positive element of B 0. I t  is readily verified tha t  (x, xa>B~ tends to <x, x)~ in the 

inductive limit, and so in the C*-topology; thus (x, x>B 0 is positive. A similar argument  

shows tha t  (x, x)so is positive. 
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To complete the proof tha t  X o is an E o -  B o imprimit ivi ty bimodule we need only verify 

the norm conditions [51, p. 235]: (ex, ex)B~ < IIeIP<~, ~>,., and (xb, xb)s ̀  < Ilbll,<~, ~>.. 
for each e E Eo, b E B e. To do this, first observe tha t  the previously defined left action of 

C(G]H, A) on X o (by multiplication) satisfies the norm condition; this we see from the 

computation 

where ~o o denotes the element ( IMI~  - v * ~ )  ''~ of e(o/H, re(A)) and II II ~the norm on C(G/H, A). 
Given any / (regarded now as a function on G) in E o and x in Xo, the function sF~./(s)(sx) 

is continuous for the inductive limit topology, and so a fo r t io r i  for the topology on X o 

defined by  the inner product p ( ( ,  )z,) where p is any  state on B o. Denoting by  II lit 
the norm from tha t  inner product, we compute easily using the above formula (3) tha t  

II/(s) (s~)ll~ ~< II/(s)ll~ ll~ll~, and so II/xll~ = 11 S l(s)(sz)dslb ~<(~ II/(~)lloods)I1~11,,. 
Since this is true for all states p of B 0, it follows tha t  I acts as a bounded operator (see 

[51, Def. 2.3]) on the pre-Bo-Hilbert space X0, and that  the homomorphism so obtained 

of E 0 into the pre-C*-algebra l:(Xo) of such operators (see [51, pp. 194-199]) is norm 

decreasing for the L 1 norm on E 0. By the universality property of the enveloping C*- 

algebra of LI(G, C~(G]H, A)) we see tha t  this homomorphism is also norm-decreasing for 

the C* norm; from this the norm condition 

</x,/~>.. < II/ll~<~, x>B. 

follows immediately. The argument for the other norm condition is similar (but easier). 

We have completed the proof of the following "imprimit ivi ty theorem": 

P R 0 P 0 S I T I 0 N 3. X O i8 a n  E o - B o imprimitivity b i m o d u l e .  I// 

COROLLARY (of the proof). Any *-representation o/ Cc(G, A) which is continuous/or 

the inductive limit topology is continuous/or the C* norm topology. 

Proo/. Take H=G; then Eo~-Cc(G, A ) " B  o. In  the proof above we can replace the 

C* norms on E o and B 0 by  any  stronger norms which induce topologies weaker than  the 

inductive limit topologies, and still get an imprimit ivi ty bimodule. Taking any such norm 

on E o, but  the original C*-norm on B0, we deduce tha t  the homomorphism of E o into IZ(Xo) 

is still an isometry for the new norm (since this always holds for an imprimit ivi ty bimodule); 

tha t  is, the new norm coincides with the usual one. I t  follows tha t  given any *-representa- 

tion of E o continuous for the inductive limit topology, the sup of the C* semi-norm on E o 

14 - 772908 Acta mathematica 140. Imprim6 le 9 Juin 1978 
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induced by  this representation and the usual C* norm coincides with the latter; i.e. the 

representation is continuous for the usual C* norm. //] 

We now apply the argument  following [52, Prop. 3.1] to see tha t  X0 may  be completed 

in the semi-norm Hxll ~ ]l(x, x~~ 1/2 (after factoring out the elements of norm 0) to obtain 

an E - B imprimit ivi ty bimodule X. I t  is easy to show tha t  the actions of G, H, A, C(G/H, A) 

etc. on X 0 which were considered above extend to continuous actions on X. Given a 

(closed 2-sided) ideal J of B, we denote by  XI the closed E - B  sub-module X J  of X, and  

by  j s  the ideal of E which correspond to it (see [52, Thin. 3.2]). Then the quotient X J = 

X/X~ carries the natural  structure of an E/J  s -  B / J  imprimit ivi ty bimodule. We will 

frequently identify elements of X 0 with their images in X 3 when no confusion is likely to 

result. 

Given a *-representation L of B we may  induce it up to a *-representation of E via the 

tensor product construction described in [51, Thm. 5.1]; this then extends to a *-representa- 

tion of the multiplier algebra ~ ( E ) ,  and since we have a natural  homomorphism of G*(G, A) 

into ~ ( E )  (the "integrated form" of the homomorphisms of G and A into ~ ( E ) ) ,  we get 

a *-representation I n d - L = I n d ~  (L) of G*(G, A). I t  is easy to see tha t  the restriction of 

this representation to Go(G, A) is the same as tha t  obtained from the natural  left action of 

Co(G, A) on X 0 |  L defined b y / ( x |  =]x| (for / in Co(G, A)), where the action of 

Q((7, A) on X 0 is taken to be the integrated form of the left action of G on X 0 given earlier 

and left multiplication by  A. 

To extend our theory of induced representations to twisted eovariance algebras we 

need to know tha t  the induction process described above "preserves twisting". This will 

follow from the next  lemma, which is adapted from Lemma 2.4 of [52]. We assume for the 

rest of the paper  tha t  H is a closed subgroup of G containing N~, and continue to denote 

by  E = EH G the imprimit ivi ty algebra constructed earlier. 

L w MM a 4..Let t E 2V~, and a, a' E A. I / x  E Xo is o/the torm x(s) = yo(s) b,/or some go E Go(G) 

and b EA, then 

(i) x ( t a -  a')fi (the closed linear span in Z o /{b(Tt 'a-  ~a')X It E supp x}). 

(ii) ( ta -a ' ) xe the  closed linear span o 1 

{x( ' t  "a e supp 

(Here 't = r t r - !  and ( ta -a ' )  is regarded as an operator on the left and right of X by  means 

of the H-  and A-actions considered earlier.) Similar statements hold for an arbi t rary x in 

X, if "supp x"  is replaced by  "G" in the above formulae and b ranges over all of A. 
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Proo/. Assume first that  x is of the form ~pb, and choose e >0.  Then if y is any element 

of X0, we compute (letting /e denote convolution in the algebra Gc(G , A), and using the 

fact tha t  Aa(t)= Az~(I)= Ass(l)) 

x -~ (ta --a') y = x(ta --a') -)e y. 

Multiplying x pointwise by the elements of a suitable partition of unity of G, we may  write 

it as a finite sum of elements of the form x,, xi(s) =lpt(s) b, where each yJ, has support con- 

tained in an open subset U, of G with the property that  lir'c-~'ell <e  for all r~, r~e U~, and 

c denotes t a - a ' ,  regarded as an operator acting to the left on the Banach space X. Then 

(x, ~ ( t a -  a') y) (r) = f yJ~(s) b s ( ( ta-  a') y(8 -1 r)) d2(s) 

f b(St 8a - Sa') vA(s ) Sy(s-1 r) dJ.(s) 

= z~(r) + fb(S~Sa- Sa' - s*t ~'a- 8~a') yJ,(8) 8y(s-lr) d~(s) 
d 

where 

Thus 

zi(r) = b(~t"a - ~a') f yh(s) ~y(s" 1 r) dg(s). 

( x ( ta -  a) -)e y) (r) = ~ (x~(ta-- a') -)e y) (r) 

= ~ z~(r) -t- b(St Sa - "a' - s~t~S'a - S'a') ~(s)  Sy(s-1 r) d~(s) 
i = l  t= 

The norm of the second term is 

sup I1 b( a t ' a -  Sa' - "~t ~'a- ~a')[]. f [  ~(s)[. ][ ~y(s -1 r)[[ d2(s) 
l ~ i ,~n ,  s e  Ur 

Since 8 is arbitrary and the zi are in the closed span of 

(b(rt' -r 'lXI esupp x}, 

so is x( ta-a ' ) -~g .  Now if we choose (y~) to be a right approximate identity for Gc(G, A) 

for the inductive limit topology, then x( ta-a ' ) -~g~ tends to x ( ta -a ' )  in norm, so that  

x ( ta -a ' )  also lies in the indicated subspace. 

The argument for (ii) is similar. Since finite linear combinations of elements x of this 

form are dense in X these results extend immediately to arbitrary x in X. /// 
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The following corollary permits us to define induced representations of twisted co- 

variant systems. 

COROLLARY 5. Let I be a closed ideal o/C*(H, A). Then 

(i) The natural covariant representation o/(G, A) on the left o / X  I preserves ff i// I ~  I~. 

(ii) I / L  is a *-representation o/C*(H, A), then IndHa L preserves ff i// JL does. 

(iii) E/(I~) ~, the imprimitivity algebra /or the B/Iz-rigged space X z = X ~ ,  is naturally 

isomorphic to C*(G, Coo(G/H)| ~^), where N~. =Nz and ~^(n)(/|174 ~(n)a /or all 

/eC~(G/H), neN:7, and a6A.  

Proo/. (i) Let  n61V~ and a6A,  and put  a'=~(n)a. If I~_I~ then, since 8a'=~(Sn)Sa, 

we have X(SnSa-~a')c_Xx for all s in G; by  the lemma this implies tha t  (na -a ' )X~X~,  

so that  the covariant representation of (G, A) on X I preserves ft. The other implication is 

proved similarly. 

(ii) follows from (i), since whether or not a *-representation preserves ff depends only 

on its kernel in the covariance algebra. (Note that  the kernel of Ind~ L consists of those 

elements / of C*(G, A) such t h a t / X ~ X ~ L  ). 

(iii) follows from (i) also, together with the observation that,  since E X  is dense in X, 

the kernel of the action of C*(G, A) on X ~ consists of those / 6 C*(G, A) for which (/e)Xc_ Xz~ 

for all e ~<E (recall C*(G, A) acts as multipliers on E). /// 

The above corollary allows us to induce *-representations of C*(H, A, ~')up to 

*-representations of C*(G, A, ~) by means of the bimodule X z. We note that  X z may be 

viewed (as a C*(H, A, ff)-rigged space) to be the (Hausdofff) completion of X 0 with respect 

to the Co = Co(H, A, ff)-valued inner product 7~H(<", " >S~ where B o = Co(H, A) and ~H is the 

canonical homomorphism of B 0 onto C 0. However it is easily checked that  r~H (<X, Y>S~) (t) = 

(~a(X)*~gV(y)) (t), SO that  we may define X z to be the completion of X~o=Cc((7, A, if) 

with respect to the inner product defined by <x, y>c,(t) = (x*-)ey) (t). The natural left action 

of Co(G, A, if) on X z then restricts on X~ to ordinary convolution. This description of 

the induced bimodule will be convenient later. I t  can be used, as in the proof of [51, 5.12] 

to relate our definition of induced representations to the more "classical" ones, such as are 

given in [55] and [12]. 

We will use E ~ to denote the imprimitivity algebra C*(G, Qo(G/H)| if") in  the 

following. X z will always denote the bimodule for inducing from (H, A, if) to (G, A, if); 

when it is necessary to emphasize the groups involved, we write G(XZ)H. The following 

"Imprimitivity theorem" now follows easily from Rieffel's imprimitivity theorem for 

C*-algebras [51, 6.29]: 
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THEOREM 6. Let L be a *.representation o] (G, A, 9'). Then L is induced/tom (H, A, 7) 

i]/ there exists a *-representation M o/C~(G/H) on ~L whose image commutes with Mz(A), 

and such that (with (M, Mrs) denoting the resulting *-representation o] Coo(G/H) | ) the pair 

(VL, (M, Mz) ) defines a covariant representation o/(G, C~(G/H)| 7^). /// 

PROPOSITION 7. Let K be a closed normal subgroup o/G, and suppose H ~ K .  Then 

(with the notation o/ Proposition 1) X ~ is naturally isomorphic to the bimodule I zzK /or 

inducing representations o/ B(H'~:)=G*(H, A, if) up to B (a'K) =~G*(G, A, if). (Thus the latter 

two isomorphisms "respect the inducing process".) 

Proo/. The homomorphism R of Proposition 1, when restricted to Co(G, A, if)=X~o 

is easily seen to implement the desired isomorphism. /// 

PROPOSITION 8. ("Induction in Stages.") Let H~_K be closed subgroups o/ G con- 

taining N~, and L a *-representation o/(K, A, if). Then IndH G (Ind H L) is unitarily equivalent 
to Indg G L. 

Proo/. Let a(Xo)H, H(X0)K, a(X0)K denote the bimodules for the respective inducing 

processes, and define a bilinear map 

a(Xo).• 

by  (x, y)~-->xy, where on the right hand side of the arrow we regard y as an element of 

Co(H, A) acting on Q(Xo) H. I t  is easily verified tha t  this map is BomCc(H, A) balanced and 

thus defines a linear map T of 

~(Xo). | 

into o(X0) K which preserves the left-Co(G, A) and right-Co(K, A) actions. I t  also preserves 

Co = Co(K, A)-valued inner products when we define ( , )co on the tensor product by  (x  1 | 

x2Qy2)co=((x~, xl)s.Yl, Y2)co. From L e m m a  2 we may  deduce tha t  the range of T is 

dense in the inductive limit topology, and hence in the norm topology. Thus the comple- 

tions of the tensor product bimodule and of a(X0)K are isomorphic. The proposition now 

follows from [51, Thin. 5.9]. /// 

3. Induced ideals 

We turn now to some results on continuity properties of the induction and restriction 

processes which generalize those of Fell [22] for the group case. I t  will be convenient for 

this purpose to view these processes as giving maps between spaces of ideals (rather than  
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of representations, as in [22]) of the C*-algebras involved. We give the space Y(D) of 

(closed 2-sided) ideals of a C*-algebra D the topology having as a sub-base for its open 

sets the family {Qz}I~(~), where 

O~ = {gq Y(D)[J~. I} .  

This topology restricts on the space Prim D of primitive ideals to the usual (Jacobsen) 

hull-kernel topology. I t  is essentially the same as Fell's "inner hull-kernel topology" 

[22], which may be defined as the topology induced on the set of unitary equivalence 

classes of *-representations of D (on some "large" Hilbert space) via the map L~-~ker L 

of this set into Y(D). 

Note that the canonical bijeetion of ideal spaces 3(D)~ 3(F) induced by an i~ -  D 

imprimitivity bimodule (cf. [52, Section 3]) is a homeomorphism, since it is a lattice iso- 

morphism. We write F for the ideal of F corresponding to IE Y(D). 

We also remark that the action of G on ~(A) defined by 

is jointly continuous--this follows from t r iba l  mod_ifioagions of Glimm's proof [26, Lemma 

1.3] that the action on Prim A is jointly continuous. 

In  the following H will continue to denote a closed subgroup of G containing N~. 

l~or L a *-representation of C*(G, A, if), Res~ L (the "restriction" of L to G*(H, A, if)) 

denotes the *-representation of C*(H, A, 9') defined by the covariant representation 

(Vz [~, Mz) of (H, A). The continuity properties we require are given by the following result: 

P~oPosrTIozr 9. (i) Let D, F be C*.algebras, and P a *.homomorphism of F into a 

C*-algebra D" containing D as an ideal. Then 

P.: Y(F)---> 3(D) 

J ~ t h e  ideal generated by {Prd[/eJ, tieD} 

preserves arbitrary unions (the "union" of a collection of ideals being the ideal they generate), 

and 
P*: Y(D)-+ Y(F), I~--~{/e $'[Ps. D ~_ I)  

is continuous and preserves arbitrary intersections..Furthermore P .  and P* are order pro. 

serving, and form a "Galois correspondence" in the sense that the ]ollowlng relations hold: 

P*p.p* = p*; P.P*P, = P ,  

P*P,(J) ~ J, P,P*(I) c I for all XE :I(D), J e  ~J(F). 
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(ii) Let F=C*(H, A, if), D=C*(G, A, if), and let P be the canonical homomorphism o] 

~' into D' = ~(C*(G, A, if)). De/ine 

Res~ = P*: Y(C*(G, A, ~))---> Y(C*(H, A, ~r)), and 

EX~ = P , :  Y(C*(H, A, if))---> 3(C*(G, A, if)). 

(Exert I will be called the "extension" o] I.) Then Res~ (kerL)=ker  ResHaL/or any *-re. 
presentation L o/C*(G, A, fT). 

(ill) Let F=C*(G, A, if), D=the imprimitivity algebra E ~ o/ X ~, and let P be the 

canonical homomorphism o / F  into D' = s De/ine 

Ind,: Y(O*(H, A, if))-> y(O*(a, A, if)), _r~+P*(X ~) 
and 

Sub~: y(C*(G, A, if))--> Y(C*(H, A, if)), J~-->(the unique 

I e 3(C*(H, A, if)) such that I ~ =P. ( J ) ) .  

Then Ind~ (ker L )=ke r  (IndH ~ L)/or each *-representation L o/C*(H, A, if). 

Proo/. (i) The fact that  P*(I)<y.F (i.e. P*(I)Ey(F)) when I . ~ D  is a consequence 

of the fact that  I ~ D ' .  Given J E 3 ( F ) ,  we have (P*)-I(Q~)={KEy(D)]P*(K)~_J)= 

(K E Y(n)]P(J). D ~ K)  = Qr, where g '  is the ideal of D generated by P(J). D; this proves 

continuity of P*. The other statements of part (i) are easy. 

(ii) is an easy consequence of the nondegeneracy of L, while (iii) follows from the facts 

that  the representation of E ~ induced from L has kernel (ker L)E~ [52, Prop. 3.7] and 

is nondegenerate. [/[ 

In the case that  H =hrz we can obtain more precise results on the induction, restric- 

tion, and extension processes. First we observe that  the map/~->/(e) gives an isometric 

*-isomorphism of Cc(N~, A, if) onto A. Hence Gc(hr~, A, if)=LI(2V~, A, ff)=C*(2V~, A, if) 

and so we ean identify C*(N~, A, if) with A. We will use this identification to view Ind~ ,  

Res~z, and ExNV as giving maps between Y(A) and Y(C*(G, A, if)). 

Recall (from the disenssion preceding Proposition 1) that  when K is a closed normal 

subgroup of (7 containing 2V~, there is a natural action of G on C*(K, A, if). This action 

induces an action on the collection of *-representations of C*(K, A, ~') via (~L)(b)=L(~-'b), 

for all b q C*(K, A, if) and any *-representation L of C*(K, A, if). 
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LEMMA 10. Let K1D_K 2 be closed normal subgroups o/G containing Nz, and let s6G. 

(i) For any *-representation L o/ C*(K~, A, if), IndgK~ (~L) is unitarily equivalent to 

'(Ind,: (L)). 

(ii) For any I ~  C*(K~, A, ~), IndKg~ (sI)= ~(IndgK~ (I)). 

Proo/. (i) We write ~ for ~HL, and :Hs for the same Hilbert space when regarded as a 

Bo=Cc(K2, A) module via sL. The underlying Hflbert space of Ind~' L may be defined as 

the completion of Xo| (where X0=K,(X0)~, ) endowed with the pre-inner product 

<xl | x~ | = <<x2, xl>B0~l, ~2>u. (This is equivalent to Rieffel's definition [52, p. 222], 

which uses Xo| instead of Xo| because elements in X , |  of the form x b |  

x| (for b6B0) have length 0.) Then if we define Sx(t)= Aa,~(s)S(x(s-lts)) for x in X., 

it may readily be checked that  U: Xo|174 8, x |174  (~8 denotes the vector 

when viewed as an element of 748) preserves pre-inner products, and tha t  it intertwines 

the action of C~(K1, A) on X0| defined by 

l(x| = C ' I ) ~ |  

with that  on X 0 | ~4~ given by 

1(~| = ix |  

I t  follows that  U extends to a unitary intertwining operator for ~(Ind~ L) and IndKK~ ~L. 

(ii) is immediate from (i) in virtue of the relation ker 8L = S(ker L). /// 

Definition. The G-hull aI of I ~ A  is the G-invariant ideal generated by I .  The G-kernel 

aI= A s ~ J I  of I is the largest G-invariant ideal contained in I .  /// 

PROPOSITION 11. Let Res =ResG , and similarly/or Ex, Ind and Sub. 

(i) Res I and Sub I are G.invariant ideals o /A ,  and Ex (Res I ) _  I _ I n d  (Sub I ) , /or  

all I ~  C*(G, A, if). The smallest ideal o/ C*(G, A, •) having the same restriction as I is 

Ex (Res I). 

(ii) Ind I = I n d  ( J ) ,  Ex I = E x  aI, Res Ex I = a I  and Res Ind I = a I  , /or all I ~ A .  

When restricted to the set ay(A) o/ G-invariant ideals o/ A, Ind and Ex are 1 - 1 ,  and Ind is 

a homeomorphlsm onto its image;/urthermore Ex I__c Ind I /o r  all 16 a 3(A). 

Proo/. (i) That Res I is G-invariant follows from the easily proved fact that  the restric- 

tion map is G-equivariant and the fact that  I is G-invariant (since it is also an ideal in 

~(C*(G, A, if))). By Proposition 9 (i) and (iii), Sub I is the minimal ideal J of A such that  

Ind  J _  I; by Lemma 10, if Ind J_D I, so does Ind s j  for any s in G, so Sub I must be 

G-invariant. The remaining statements of (i) follow immediately from Proposition 9. 
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(ii) Lemma 4 implies that  when I is a G-invariant ideal of A we have I X  = X I  (where 

X = G(X)N~); since Res Ind I is G-invariant and is the largest I'<): A such that  I'X~_ XI ,  

and since X I ' # X I  if I ' # I  (we use [52, Thin. 3.2]), we must have I = R e s I n d I .  In 

particular the restriction of Ind to aJ(A) is a homeomorphism onto its image, since Res 

and Ind are both continuous. The facts tha t  Res and Ind are intersection preserving and 

that  Ind  * I = I n d  I then imply that  Res Ind I = a I  for all I E  J(A). 

Now again assume IEe~(A), and let J = I n d  I.  Then by Proposition 9 and the pre- 

coding, Res Ex I = Res Ex Res J = Res J = 1. Since Res and Ex are order preserving and 

Res Ex I~_I for arbitrary IEy(A) ,  we see that  in general R e s E x  I=aI ,  and so also 

Ex I = E x  aI. Finally, to prove that  Ex I ~ I n d  I when IEa~I(A) we apply the relation 

Ex Res J~_J (for JE Y(C*(G, A, 7)) to J = I n d  I.  /// 

For any I<f.A there are natural homomorphisms of ~ ( A )  into ~ ( I )  and "tn(A/I). 

I t  follows easily tha t  when I is G-invariant there are natural twisting maps fx and f l  

for the systems (G, I) and (G, A/I) respectively. The following result relates the corre- 

sponding twisted eovariance algebras to C*(G, A, 7). 

PI~OPOSITION 12. Let I be a G-invariant ideal o/ A. 

(i) The inclusion map o/Co(G, I, 71) into Co(G, A, 7) extends to a *-isomorphism ~i = ~,. e 

ol C*(G, I ,  fix) onto EXN~ I.  

(ii) The map ~ o/ Q(G, A, 7) into Co(G, A/I ,  fi) de/ined by az~(/)(r)=l(r)+ I extends 

to a *-homomorphism ~z= ~. e o/C*(G, A, 7) onto C*(G, A/I ,  fz) with kernel ExNa~ I .  

(iii) These homomorphisms respect the inducing process in the/oUowing sense: 

The bimodule Yz /or the (H, I, f z ) -  (G, I, fx) inducing process is isomorphic, as a 

right C*(H, I, fx)-rigged (see [51, De/. 2.8]), le/t C*(G, I, fi) module, to (XZ)I, where J=  

-x EXNa is identi]ied with C*(G, I, f i)  via ExH~ I is identi/ied with C*(H, I, fl) via ~I.H', and 
- 1  

O~L G" 

Similarly, the bimodule Z ~ /or the (H, A/I ,  f l ) - ( G ,  A/I ,  f~) inducing process is 

isomorphic to (X~) J. 

Proo[. Since C*(G, A, 7) is generated as a C*-algebra by AQ(G) (where we identify 

A and Co(G) with their images in ~(C*(G, A, 7))), E x ~  I is generated a s  an ideal of 

C*(G,A, 7) by IACo(G)=IC~(G). However products of elements in 1C~(G) by elements of 

A or Co(G) give elements in the C*-algebra generated by ICo(G), so E x ~ I  is in fact 

generated as a C*-algebra by ICo(G). Trivial modifications of the proof of [29, Lemma 1] 

(which is the special case where A is abelian and f is trivial) now yield (i) and (ii). 
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(iii) I t  is readily verified that  the inclusion map of Y~ = Co(G, I, ~ll) into X~ preserves 

the bimodule structure and Co(H, I, ffz)-valued inner product, and so extends uniquely 

to an isometric embedding of Y~ into X ~. The image of Y~ contains (X~0)I, and hence 

also X~o(Cc(H, A, ~l)I), as a dense subspace: but  the closure of the latter space is just 

XaJ = (X~)l. 

(X~) ~ may be defined as the Hausdorff completion of X~ with respect to the norm 

defined by the C*(H,A/I, ffX)-valued inner product defined by <x,y)=~I'H((x,y)~) 

(where B=C*(H, A, ~/)). Arguments similar to those above now show that  the map ~c~'a'. 

X~-->Z~ extends to the required isomorphism of (X~) 1 with Z ~. /// 

The above proposition is typically used to "break up"  twisted covariance algebras 

into more manageable pieces; this technique will be of great use in the following sec- 

tions. 

In  the remainder of this section we discuss a situation in which the inducing process 

is better behaved than in general. 

Let  /~ be a quasi-invariant measure for the action of G on G/H, and let V be the 

*-representation of C*(G) on L~(G/H,/~) associated to the "quasi,regular" representation of 

G (the latter is defined as left translation of functions, modified by  Radon-Nikodym 

derivatives so as to give a unitary representation). The coset space G/H is said to be amen- 

able if the kernel of the trivial (one-dimensional) representation of C*(G) contains the kernel 

of V. A number of equivalent conditions, involving the existence of G-invariant means 

for various spaces of functions on G/H, are given in [21] and [32]; when H is normal, the 

condition reduces to amenability in the usual sense (of [31]) for the group G/H. 

Our interest in the concept arises from the following proposition, the first part  of 

which generalizes [54, Prop. 2.2] and [12, Thm. VIII-2]. The method of proof used in those 

references is quite different from the one used here, which goes back to an idea of Fell [22]. 

PROPOSITION 13. Assume G/H is amenable. 

(i) Ind , (0 )= (0 ) .  (In other words, the canonical homomorphism ot C*(G, A, if) into 

~(C*(a, C~(G/H, A)), if^)) is laithlul.) 
(ii) Let also H =N~: then for any G-invariant ideal I of A, Ind G I =EXH a I .  

Proo]. (i) Let  L 1 be any faithful *-representation of C*(G, A, if). We define a representa- 

tion L~ of (G, A | on the Hilbert space tensor product ~/rl | by tal~ing 

Vz, to be the (inner) tensor product of V~, with the quasi-regular representation V, and 

ML, to be the spatial tensor product representation Mr.,| of A | (where M 

denotes the representation of C~o(G/H) by multiplication of functions on L~(G/H, ;u)). I t  
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is easily checked that  L 2 preserves 7 and so defines a representation of C*(G, A | 

if^). 
To prove (i), it suffices to show that  the restriction, L, to C*(G, A, 7) of the extension 

of L 2 to ~(C*(G, A| 7^)) is faithful. Let  D=LI(C*(G, A, 7))| then 

~ ( D )  may be identified with an algebra of operators on ~r.,| #). Noting that  

Vr.=Vr.,| and tha t  Mr. is given by a~->Mr.,(a)| we see tha t  Vr.(G) and Mr.(A) lie in 
LI('~I(C*(G , A, 7)))| V('tl~(C*(G))) and hence also in the (generally larger) algebra ~ (D) .  

Thus also L(C*(G, A, 7)~ ~(D), the corresponding action of G*(G, A, 7) on D being the 

integrated form of the G and A actions. We may thus regard L as a homomorphism of 

6*(G, A, if) into ~(D). 
Let Vo denote the direct sum of V with the trivial representation on a one-dimensional 

space 741. By our hypothesis that  G/H is amenable, V0 factors through V(G*(G)), and so 

can be regarded as a representation of V(C*(G)). Then the representation of C*(G, A, if) 

obtained by composing L with the extension to ~/~(D) of I |  o (I denotes the identity 

representations of LI(C*(G , A, 7))) contains as a subrepresentation (on the subspace 

74r., | ~l)  a representation equivalent to L 1. As L 1 is faithful by assumption, so is/5, and 

(i) is proved. 

(ii) Let IeaY(A). By (i), applied to the system (G, A/1, 71), the (0)-ideal of A/I  
induces to the (0)-ideal of C*(G, A/I, if1); from Proposition 13 (ii) and (iii) it now follows 

easily that  IndNa I = k e r  0~'a=EXN~ I. //[ 

We conclude this section by applying the preceding result to show that  nuelearity 

(in the sense of [39]) of twisted covarianee algebras is preserved under "amenable exten- 

sions" of the groups. The perception that  amenability is related to nuclearity appears to 

have originated with Guiehardet, and in fact the germ of the following proof can be seen 

in his observation that  the C*-algebras of amenable groups are nuclear (see [34]). 

PROPOSITION 14. Suppose G/H is amenable and C*(H, A, 7) is nuclear. Then C*(G, 
A, ~) is nuclear. 

Proo]. Let B be an arbitrary C*-algebra; we must show that  the maximal tensor 

product (see [39]) C*(G, A, ff)| B is the same as C*(G, A, ~)| We construct a 

system (G, A| ~') by letting G act on A| via the inner tensor product of the 

action on A with the trivial action on B, and defining 7 ' =  7 |  (with 2Y~. =N~). Then 

*-representations L of (G, A| 7') correspond to triples (V, MA, MB) such that  

L' = ( V, MA) is a representation of (G, A, 7), and MB is a representation of B whose image corn- 
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mutes with V(G) and M4(A) (and hence with L'(C*(G, A, if))). As L(C*(G, A | if'))) 
is generated by V(C*(G))'M4(A)MB(B) and so by L'(C*(G, A, ~')))M~(B), it follows easily 

that  C*(G, A | ~1') is naturally isomorphic to C*(G, A, ~ ) |  B. 
Similarly C*(H, A| ~") is isomorphic to C*(H, A, ~/)| Choose faithful 

representations L 1 of C*(H, A, ~), and M1 of B; our assumption that  C*(H, A, ~1) is nuclear 

then implies that  Lz = L  1 |  1 is a faithful representation of C*(H, A, ~) | B. We regard 

L 2 as a faithful representation of C*(H, A | if'), and form L=IndH~L2. An inspec- 

tion of ]z~, the bimodule for the (H, A| ~")-(G, A| if') induction process, 

shows that  it contains a dense subspace of the form X~ |  B (where X~ is the bimodule 

for the (H, A, ~ ) - ( G ,  A, ~') induction process); it is then easy to see that  the representa- 

tion L (which has as underlying space the completion of ]z~| ) decomposes (when 

regarded as a representation of C*(G, A, ~1)| B) as the spatial tensor product IndH G L 1 | 

M 1. By Proposition 13 (i), L and IndH G L 1 are both faithful, so C*(G, A, ~)| B coincides 

with C*(G, A, ~I)| as desired. 

When H is normal we can give a different proof, using the recent characterization 

[10] of nuclear algebras as those C*-algebras for which the commutant of every *-representa- 

tion is an injective yon Neumann algebra. Namely, given any *-representation L of 

C*(G, A, ~1), its commutant L(C*(G, A, [/))' may  be identified with the fixed point subalgebra 

of (Res~L)', for the natural action of G on (Res~L)' induced by conjugation by unitaries 

in VL(G). Since VL(H) commutes with (ResHaL) ' this action drops to an action of G/H, 
and as G/H is amenable and (Res~L)' is injective (by our assumption that  C*(H, A, ~l) 
is nuclear), this fixed point algebra is injective (see [11, Section 6]). (This argument ap- 

parently does not generalize to non-normal H, and since in any case [10] depends on the 

very deep results of [11] our earlier direct proof seems preferable.) /// 

4. The "Mackey  machine"  

In this section we develop a version of Mackey's [44] normal subgroup analysis (also 

called the "orbit  method") for twisted covariance algebras. The first theorem below 

generalizes to our context a result of Rieffel [52] which gives a more precise formulation, 

involving Morita equivalence, of one part  of the orbit method. (Actually, our result is 

more general than Rieffel's even in the group case, in tha t  it  incorporates an idea due to 

Moore [2, Chapter 2] for extending the Mackey analysis.) In  proving it we make use of a 

well-known result of Dixmier [13] which states that  there is a natural action T of C(Prim A) 

on A, uniquely determined by the condition Tja-/(J)aEJ for all aEA, /EC (PrimA),  

J ~Prim A, and that  this action identifies C (Prim A) with the center of ~ (A) .  
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LE~IMA 15. Let W be a locally compact Hausdor// space, D a C*-algebra, and 1)1, Pz 

two *.homomorphisms o/Coo(W) into D whose images commute. Assume (i) the image o /P ,  

does not annihilate any non-zero element o / D , / o r  i = 1 ,  2; and (ii) ]or any two distinct points 

wl, w 2 e W there exist/1,/~ E C~(W) such that/~(w~) :4=0/or i = 1, 2, and PI(/1)P~(/~.)=0. Then 

P1 =P2" 

Proo/. Since the images of P1 and P2 commute we may  assume tha t  D is commutative,  

so let D = Coo(We) for We a locally compact Hausdorff space. The hypothesis (i) implies 

then P1 4 = Ps,  so tha t  we m a y  tha t  the "dual"  maps P*: Wo-->W are well-defined. I f  P14:P2 * * 

choose w E W  o such tha t  wl=P~(w ) is distinct from w2=P~(w); choosing/1, /~ as in (ii), 

we have 

0 = (PI(I1)P~(I~)) (w) = ll(Pt (w)) l~(P'~ ( w ) ) .  O, 

a contradiction. Thus P1 =P2. / / /  

The following lemma (which generalizes [51, Example  2.14]) is perhaps of some in- 

dependent interest. 

LE~t~A 16. Let E and B be C*-algebras, Y an E - B  imprimitivity bimodule. Then the 

natural injection o / E  into I=( Y) extends to an isomorphism o/7YI(E) onto I=( Y). 

Proo/. Regard E as a right E-rigged space via the inner product (el, e2)E=e~e 2. The 

calculation of [51, Example 2.14] shows tha t  the left action of 7?/(E) on E is by  bounded 

operators with respect to this inner product. I t  follows ([51, Thm. 5.9]) tha t  ~/(E) acts 

naturally by  bounded operators (with respect to the B-valued inner product) on the comple- 

tion ya of the tensor product bimodule E | Y. But  one easily verifies tha t  the map e | 

ey extends to an isomorphism (as B-rigged spaces) of y1 onto Y, thus giving a *-homo- 

morphism ~ of ~?/(E) into E(Y); ~ extends the natural  injection of E into E(Y), so (as no 

nonzero element of ~/(E) annihilates E) it is faithful. Now since E is an ideal of E(Y) with 

trivial annihilator, ~ has an inverse, so it is surjective. /// 

THEORE~ 17. Let ze: Prim A--->G/H be a continuous G.equivariant map. Let I be the 

H.invariant ideal ker (z~-l( {eH} ) ) o / A ,  and J = E x H  I. Then the natural homomorphism o/ 

C*(G, A, if) into s ~) is an isomorphism onto the imprimitivity algebra o/ (X~) I. I n  

particular C*(G, A, •) is Morita equivalent to C*(H, A, ff)/J, and so (by Proposition 12 (ii)) 

to C*(H, AII, if'). 

Proo]. Let D e denote the imprimit ivi ty algebra for (X~)J; thus D O is isomorphic to 

Ez/J  ~ (in the notation of Section 2). By  Lemma 16 we may  identify D = ~/(D0) with 
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I~((X~)~). The natural left actions of Coo(G/H) and A on (X~) ~ give *-homomorphisms p1 

and Q, respectively, of those algebras into D. Since the action of A on D o induced by Q is 

non-degenerate, Q extends to a homomorphism (~ of ~ (A)  into D; composing (~ with vr* 

(the homomorphism of Co(G/H) into ~ (A)  induced by ~r) we get another homomorphism 

p2 of Coo(G/H) into D. 
We wish to show that  p1 =p,.. As the images of p1 and Q commute, so do the images 

of p1 and p2. Furthermore the condition (i) of Lemma 15 follows easily from non-degeneracy 

of the Coo(G/H) and A actions on (X~) ~, so we need only check condition (ii). 

I t  is sufficient to show that  for any/1,  /2eCoo(G/H) of disjoint support, P~,P~,=0, 

or equivalently (by non-degeneracy of the A action) that  P~,P~,Q(A)=O. Thus let aEA 
be arbitrary, and let d = T=,(r,)a, so that  P~,Q(a) =Q(d). Regard/x and/~ as functions on 

G which are constant on H-eosets; the condition %hat they have disjoint support then 

implies that  dE'I, and hence that  "-'dEI, for all sEsupp / r  Let xEX o be of the form 

x(s) =~p(s) b, for some ~0 E Q(G) and b E A. By Lemma 4, d(f ix) is in the closed span of (X Sd 8b: 

s-lEsupp/1}, and hence in XI. Thus if ~ denotes the canonical image of x in (XZ) J, we 

have d(L~)E(X~)~I=((X~)~C*(H,A, ff))I~_(X~)1J=O. Since elements of the form 

have dense span in (XZ) J, 

Pp, Q(a) P~.(X~) J = Q(d) P~,(X~) ~= (0), 

as was to be proved. Thus p1 =p~. 
Now D O is generated by C*(G)AC~(G/H) (where we identify elements of C*(G), etc., 

with the corresponding operators on (X~)~), and so (since, by equality of p1 and p2, Coo(G/H) 
"multiplies" A) by C*(G)A. Thus the natural homomorphism of C*(G, A, if) into s J) 

has image equal to the imprimitivity algebra, and it remains only to show that  this homo- 

morphism is faithful. 

To do this, we begin by observing that  there is a natural homomorphism R' of 

Coo(G, H) | into ~(C*(G, A, if)), defined by R'(/| = R~(T,,,(~a). I t  is then easily verified 

that  the pair (Re, R') is covariant and if^ preserving, and that  its integrated form gives a 

*-homomorphism R of E~=C*(G, Coo(G/H| ~^) onto C*(G, A, ~'). Let J '  denote the 

kernel of /~; then J'= (,]1) E~ for a unique ideal J1 of C*(H, A, if), and the natural homo- 

morphism R 1 of E ~ onto the imprimitivity algebra E 1 of (X~) J' has kernel J'. One easily 

verifies that  RI=QloR, where Q1 denotes the natural homomorphism of C*(G, A, if) into 

E((X~)a). This implies that  Q1 is faithful, since otherwise (as R is surjective) R~ would 

have kernel larger than J'. I t  follows that  for any J~_c Jx the natural homomorphism Q~ 

of C*(G, A, if) into s ~) is faithful, since Q1 is the composition of Q~ with the natural 

homomorphism of s ~) into s 
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Thus it suffices to show J ~  J r  This is equivalent to (X~) J~ J = 0, and hence to (X~) J~ I = 

0. Thus assume (X~) J~ 1 . 0 ,  and choose d e I and x e (XZ) J1 such tha t  Ilxdll = 4  and llxll = 1 

There exists an open symmetric neighborhood U of the identi ty of G such tha t  ]]~d-dll < 1 

for all s e  U. Since ~de~I, the norm of the image of d in A/~I is ~1  for s e  U. Now choose 

/e  C(G/H) of norm 1 such tha t  / is identically 1 outside e(U) (where e denotes the projec- 

tion of G onto G/H) and which vanishes on a neighborhood V of ell. 

Ident i fy C(G/H) with its image in ~/~(A) under ~*, and let d'=TId.  I claim tha t  

lid'-rill <2: By [15, 2.7.1] it is enough to verify tha t  for any  P e P r i m  A, II  (d'-d)ll <2, 
where/~p denotes the projection of A onto AlP. For P in the complement of ~-l(e(U)) we 

have d ' - d e P  (by definition of T), so II  (d'-d)ll =0.  T h u s  we  may  assume Peze-l(e(U)); 
choose s e U such tha t  n(P)=e(s) .  By  equivariance of ~r, ze(~-'P)=ell, so P _  ~I. Thus 

II  (d'-d)ll II , F-d)ll < IIT II II , ,>dll + II ,, ,dll <2 .  

The claim follows, and we deduce tha t  Ilxcl'll >~2. 

Now d' is in ker (a-~(V)); thus if W is a symmetric neighborhood of the identi ty of G 

such tha t  e(Wa)~ V, we must  have *(d')ef'l~ew,~I for all s e W .  Using Lemma 2 (if) (or 

rather  the more precise form thereof stated in the proof) we may  find y e X  o of the form 

y(s)=~(s)b (for some ~veCc(G), beA), such tha t  Ilx<y, y> .-xll<x/lld'll (where B0= 

C~(H, A)) and such tha t  s u p p y G W .  Choose geC~(G/H) vanishing outside e(W 2) and 

identically one on e(W). Then (working now in X 0, and using Lemma 4) we have 

yd' = gyd' eg[A ~d'X :s e W] ~- [g( [7 ~I) X] 
r e  W~ 

where the square brackets denote closed hnear span. We observe next  tha t  because the 

natural  homomorphism R 1 of E ~ into s ~') factors through R, the natural  homo- 

morphism of Co~(G/H) into s J1) arising from the left action (by multipheation) of 

C~(G/H) on (X~) J1 coincides with the homomorphism obtained by  viewing Co~(G/H) as a 

subalgebra of ~ ( A ) .  Thus the image of [g(f3rew, TI)X] in (X~) 11 is [T~(f3rew,~I)(X~)J'], 
which is 0 since g vanishes outside e(W2). 

Let  Yl denote the image of y in (X~)J'; the above shows yld" = 0. Let B 1 = C*(H, A, ff)/Jl' 

Then <Yx, Yi>B, is just the image of <y, Y>B~ in B1, so x<y 1, yl>z,=x<y, Y>Bo. Thus 

11> IIx<y. y > ,d'-xd'll = II<x, = II d'll, a contradiction. Hence we must  

have Jx~_J, as was to be shown. /// 

The hypotheses on (G, A, 7) in the preceding theorem are apparent ly qui te  Special, 

but in practice it is frequently possible, by  means of Proposition 12, to break up twisted 
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covariance algebras into pieces to which the theorem applies. (More precise comments on 

this process appear in the following section.) 

Note that  when the map ~ of the theorem is a homeomorphism, the ideal I is maximal, 

so that  A/ I  is in particular primitive. Thus in this case the theorem "reduces" (modulo 

Morita equivalence) the study of C*(G, A, 9") to the study of a system in which the algebra 

acted upon is primitive. The second half of the "Mackey machine", to which we now turn, 

concerns such systems. 

Let  ~/= ~/(~(A))  denote the unitary group of ~ (A) ,  equipped with the strict topo- 

logy, and ~): / / the quotient group of ~ / b y  its center. With the quotient topology ~ 7/ 

is a topological group. The process of associating to any u E ~ / the  corresponding "gener- 

alized inner" automorphism a~--~uau* of A induces a continuous injection of ~ / i n t o  

Aut A (endowed with the topology of pointwisc norm convergence on A.) The system 

(G, A, 9") is said to be generalized inner if the action of G on A is induced by a continuous 

homomorphism of G into ~ ~/; this is stronger than requiring merely that  each element of 

G act via a generalized inner automorphism, since in general the topology on ~ ~/is stronger 

than that  on Aut A. 

Let  (G, A, 9") be a generalized inner system, and ~ the corresponding homomorphism 

of G into ~ ~/. Assume also that  A is primitive; then the center of ~/~(A) consists of scalar 

multiples of the identity, so that  the natural homomorphism fl of ~ /onto  ~ ~/has  kernel 

isomorphic to T. Let  G" denote the fiber product of ~ / an d  G with respect to the homo- 

morphisms ~ and fl; thus 

a" = {(s, u)  E a  • u :  . ( s )  = ~ ( u ) } ,  

with the relative product topology and group structure. There is a natural short exact 

sequence of topological groups 

(1) T 7r  G" ~" , , , G  , (1 )  

defined by  7T(t) = (la, t I~,(A)) and a"(s, u) =s. In particular G" is locally compact. The map 

7N: n~->(n, 9"(n)) is a continuous isomorphism of N=N~ onto a closed normal subgroup of 

G". The subgroups 7T(T) and 7N(N) intersect in the identity element of G", so N" =TT(T) 

yN(N) may be naturally identified with T • N; we let PT and PN denote the corresponding 

projections of N" onto its factors. 

We now describe two twisted covariant systems associated with G". First, 9"1: n"e+ 

PT(n")- (the bar denotes complex conjugate) defines a twisting map of N" into T, giving rise 
f f l ~  A'~ " to a system (G", C, 9'i). Observe that  ker Ra~_7~( ), thus if we define G' =G"/TN(N ), and 

9": N"/TN(N)--->T, n"~N(N)~-->PT(n")-, there is a natural eovariant homomorphism of 
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(G', (3, if') into ~I~(G*(G", (3, if1)), and it is easy to see (using the fact that  C*(G", (3, ~ )  = 
t~.(C*(G")) R~'((3)=/~g*'(G*(G"))) that  the integrated form of this homomorphism gives an 

isomorphism of G*(G', (3, if') onto C*(G", (3, fix)- We refer to (G', (3, if') as the Maekey 
system for (G, A, if). Note that  G'/N~.~=G"[N"-~G/N~. 

We obtain another system, (G", A, ff~), by letting G" act on A via the composition of 

~r with the given homomorphism of G into Aut A, and taking ff~ == f lop  s. An argument 

similar to that  in the preceding paragraph shows that  C*(G", A,  ff~) is naturally isomorphic 

to C*(G, A, if). 

We now proceed to construct an isomorphism between A |  (3, fil) and 

G*(G", A, ff~). First define a map R' of G" into ~(C*(G", A, ff~)), continuous with respect 

to the strict topology on the latter, by 

R'(s, u) = R~'(u-X)l~(s,  u). 

Using the fact that  u and s induce the same automorphism of A we easily verify that  the 

image of R' commutes with R~(~(A) ) .  Thus 

R,(8182, UlU2 ) R ~ , ( u ~ - l )  z ,  - 1  if, = R~ ( u l )  Ra-(s. Ul) R~.(s~, u.=) 

~. -1  ~. ~ 2  j ~,,~ ~ , u ~ ) = l ~ ' ( s .  u ~ ) l r ( s ~ , u 2 ) ,  = RA (Ul)Ra.,(Sl, U l ) R ~ ' - I ~ R ~ s  

so R' is a homomorphism. 

Another simple calculation shows that  (R', S), where S denotes the canonical homo- 

morphism of (3 onto scalar multiples of the identity of ~I~(C*(G ~, (3, if1)), is a ffl-preserving 

covariant homomorphism; its integrated form B" thus defines a *-homomorphism of 

C*(G", (3, if1) into 7/~(C*(G", A, ff~)). As the image of R" commutes with R~'(A) we see that  

(R~ ~, R") defines a homomorphism R of A | (3, fix) into 7~l(G*(G", A, ~2)). 

We wish to show that  the image [R~(A) R"(C*(G", (3, if1))] of R is precisely C*(G", A, ff~). 
Since R"(C*(G ~, (3, ffl))=R'(C*(G")), it is enough to show that  R~'(A)R'(Lt(G")) spans 

a dense subspaee of C*(G", A, ~2). Thus choose aEA, ]eC~(G"). Given s>0 ,  we may par- 

tition supp I into finitely many Borel sets (B~)~.I, with representatives (st, u~)~=l, such 

that  for all (s, u)EB~ we have 

[[ aR~(u) -~ - aR~(u~) -1 [[ < s/(n sup l(s~)) 
8*EG ~ 

where n denotes the d(s, u)-measure of supp I. Let I~ denote the (pointwise) product of t 

with the characteristic function of B~; then 1~ ELI(G") �9 Define T to be the element 

| - 1  

1 5 -  772908 Acta  mathemat ica  140. I m p r i m ~  le 9 3u in  1978 
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of ~/I(C*(G", A, 7~)). A straightforward calculation shows that  for any geC*(G", A, 7~) 

of norm < 1, l[ Tgl[ <~" Thus T itself is of norm <e, so that,  as ~ was arbitrary, 

R~'(A) R'(Vo(a)) _~ [R%'(A) R~(e*(a))] _~ v*(a ", A, 7~). 

Similar reasoning shows that  for any aEA, hECc(G"), the element R~2(a)R~;(h) can be 

approximated arbitrarily closely by elements in the span of R~'(A)R'(I~(G")). I t  follows 

that  R has image equal to C*(G", A, 73)- 

To see that  R is injeetive, we define homomorphisms R~ and R2 of A and G", respect- 

ively, into ~ (A)  | C, 7x))~ ~ ( A  | C, 7~)), by R~(a) =a|  R~(s, u) = 

u| u). Then (R1, R~) is covariant and 7~-preserving, hence its integrated form 

gives a *-homomorphism R a of C*(G", A, 73) into C=  ~ ( A |  C, 72)). Let R o 

denote the canonical extension of R a to ~(C*(G", A, 72)). We identify 7t~(C*(G", C, 71)) 

with the subalgebra 1 | [3, 7ix)) of C; then it is easily verified that  RooR' equals 
ffl  Ra.,, hence its integrated form/~0 o R" is the canonical embedding of C*(G", C, 7~) into C. 

Furthermore RooR~' is the canonical embedding of A into C. I t  follows that  R 0 is a right 

inverse to R. Thus R is injective, and so an isomorphism onto C*(G", A, 7~). 

In virtue of the isomorphisms indicated earher of C*(G", A, 7~) with C*(G, A, 7) and 

C*(G", C, 7~) with C*(G', i3, 7'), we have proved 

THr.OR~M 18. Let (G, A, if) be generalized inner, with A primitive, and let (G', {3, if') 

be the associated Mackey system. Then there is a natural isomorphism o /A  | C, 7") 

onto C*(G, A, 7). /// 

Systems (G', C, if') (such as the Machey systems) /or which if' is an isomorphism o/ 

2~. onto T are said to be reduced. (Note that/or such a system Nz, is always central in G'.) 

We will take up the study o/reduced systems such that G'/Nz. is abelian in section 7. 

Remark. Systems (G, A, if) for which A is isomorphic to the algebra ~(~4) of compact 

operators on a ttilbert space ~4 are always generalized inner. This essentially well-known 

result follows from two observations: 

1.7/~(~(74)), with the strict topology, is naturally isomorphic to s  with the strong 

topology (cf. [1]), so ~ / (~(~H))  is isomorphic to the projective unitary group ~)(~H) 

with the strong topology; 

2. Every automorphism of ~(~H) is induced by a unitary of :H, and the topology of 

pointwise norm convergence on Aut ~(74) coincides with the strong topology on ~(~4) 

(this follows from the argument of [52, Lemma 8.4]). 

I originally proved Theorem 18 in the special case A = ~(~H), using arguments sug- 
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gested by the proof of [17, Prop. 6]. The proof of Theorem 18 which is given above is 

based in part on a suggestion by Marc Rieffel for simplifying the original proof. We note 

that [17, Prop. 6] follows easily from Theorem 18, since Prim (:~(~4)| C, if)) is 

naturally homeomorphic to Prim C*(G', C, ~'). //] 

5. Primitive ideals and the Effros-Hahn conjecture 

In this section we apply the theory of induced representations developed in the 

preceding sections to the problem of determining the structure of twisted covariance 

algebras. The first step in investigating the structure of any C*-algebra is to describe its 

primitive ideal space; we are far from being able to do this for general twisted covariance 

algebras, but at any rate Mackey's "orbit method" suggests a general method of attack. 

The idea is to break up the problem into two parts by analysing the action of G on Prim A: 

first, show that, at least in reasonably nice situations, all primitive ideals of C*(G, A, ~Y) 

are induced from primitive ideals of C*(H, A, if), where H is the stability group Ge of 

some PEPrim A; second, determine the primitive ideals of C*(H, A, if). We proceed now 

to give a more precise formulation of a conjecture (first raised by Effros and Hahn [20, 7.4] 

in the special case in which A is abelian and ff is trivial) concerning how the first step 

in this process should work. 

Definitions. The G-quasi-orbit Qp =Q~ of P EPrim A is the set of all primitive ideals 

of A whose G-kernels are the same as that of P--or  equivalently, whose G-orbit closures 

in Prim A coincide with that of P. The common G-kernel of the elements in a quasi-orbit 

Q is denoted by ker Q and is called the G-primitive ideal corresponding to Q. A primitive 

ideal J of C*(G, A, •) is said to live on the quasi-orbit Q if Res~ J =ker Q; if it exists, this 

Q is denoted by Qa(j). One says that (G, A, if) is quasi-regular if every primitive ideal of 

C*(G, A, ~Y) lives on a quasi-orbit. /// 

We endow the collection 0 of all G-quasi-orbits in Prim A with the quotient topology 

arising from the surjection ~a: P~-->QP of Prim A onto O- The following lemma shows that 

this topology coincides with the hull-kernel topology on the set of G-primitive ideals 

when we identify quasi-orbits with their corresponding G-kernels. 

Lv,~MA. ga is open, and the map Q~->ker (Q) is a homeomorphism onto its image in 

~Y(A). 

Proof. We show that PF-->aP is a continuous open map of Prim A onto its image in 

aJ(A); from this both parts of the lemma follow immediately (since the image of Prim A 

in aY(A) will have the quotient topology). 
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Continuity follows from continuity of Res and Ind and the fact that  aP = Res~  India P 

(Proposition 11); it can also be proved directly. To verify openness choose a basic open set 

O = QI f3 Prim A of Prim A, and let J = aI. For any P E Prim A, if P E O then aP does not 

contain J ,  so aPE Q~. On the other hand if c,P e Q~, then there must exist s in (7 for which 

~P~ I ,  as otherwise we would have a P =  ['I~G~P~--aI. Since a(~P)=aP it follows that  the 

image of O in a y  is equal to the intersection of Q1 with the image of Prim A. Hence P~+aP  

is open. /// 

We proceed now to prove some (essentially known) sufficient conditions on • for 

((7, A, 7) to be quasi-regular. A topological space is totally Baire if each locally closed sub- 

set of it is Baire (with the relative topology). By [15, 3.4.13, 3.2.1, and 3.2.2], Prim A is 

totally Baire; since the image of a totally Baire space under an open continuous map is 

totally Baire, the preceding lemma implies that  (2 is totally Baire. A topological space is 

irreducible if it  is not the union of two proper closed subsets, or equivalently if every non- 

empty open set is dense. An almost Hausdor]] space is one in which every closed subset 

contains a dense relatively open Hausdofff subset. 

L v, M~A. Let T be a totally Baire space which is either second countable or almost Haus- 

dot/l; then a non-empty closed subset F o / T  is irreducible i /and only i / i t  is the closure o] a 

single point. 

Proo]. The subset E satisfies the same hypotheses as T, so we may assume that  T 

is irreducible and non-empty. Then any non-empty open subset is dense, so if T has a 

countable base for its topology it must have, by  the Baire property, a point which is 

contained in every non-empty open subset and is thus dense. If  on the other hand T is 

almost Hansdorff, then a dense open Hausdorff subset must consist of a single point, 

since otherwise it  would contain two disjoint non.empty open subsets. 

For the "if" direction, observe that  any topological space containing a dense point is 

irreducible. /// 

COROLLARY 19. I /  Q is second countable or almost Hausdor]/ then (G, A, 7) is quasi- 

regular. 

Pro#. There is a natural bijection between aY(A) and the collection of dosed subsets 

of Q, which to each IEaY(A)  associates the image in Q of the hull of I (in Prim A). We 

show that,  for an arbitrary PEPrim C*(G, A, if), the closed subset C of (2 corresponding 

to ResN~ P is irreducible. 

Thus assume that  C = G 1 U O~, where C 1 and O~ are proper closed subsets of C. Then 
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the ideals I~ and I s of A corresponding to C 1 and G~ satisfy I 1 N/2 = I, with I the ideal 

corresponding to G. Since C*(G, 11, ~x,) C*(G, Is, ~i2) ~ C*(G, I, ~z), Ex 11 N Ex I~--- Ex I = 

Ex R e s P ~ P .  Since P is prime we have (relabeling Ix and I9. if necessary) Ex II~_P , so 

11 ~Res Ex I1~ Res P = I ,  contradicting our assumption that  G~ is properly contained in 

C. I t  follows that  C is irreducible. 

By the preceding lemma there exists Q E Q with closure equal to C; the ideal corre- 

sponding to C is then just ker Q. Thus P lives on the quasi-orbit Q. /// 

Remark. Dixmier has asked whether every prime ideal of a C*-algebra is primitive. 

This is equivalent to asking whether every irreducible closed subset of the primitive ideal 

space of a C*-algebra is a point closure. One may  ask more generally whether quasi-orbit 

spaces always have this property--if so, every ((~, A, g) is quasi-regular. I know of no 

counterexamples. There are totally Baire spaces which do not have the property: for 

example, any uncountable set with the topology consisting of complements of finite sub- 

sets, together with the empty set; this space is irreducible but has no dense point. /// 

We now introduce some stronger regularity properties which Prim (G,A, 9") (=  

Prim C*(G, A, 9")) may satisfy. Recall that  by [5, Lemma 1], the stabilizer, Gp, in (7 of 

any PEPr im A is closed; since N~ acts by unitaries of ~(A) ,  Gp always contains Nz. 

Definitions. A quasi-orbit Q is EH-regular if, for every JEPr im (G, A, if) which lives 

on Q, there exists PEQ and IEPr im (Gp, A, •) such that  Res~  I=P  and Ind~p I=J.  
Q is regular if it  is locally closed, and if there exists PEQ such that  the map sGp~->sP is a 

homeomorphism of G/Gp onto Q. The system (G, A, g) is EH-regular (resp. regular) if it is 

quasi-regular, and each quasi-orbit is EH-regular (resp. regular). //] 

The generalized Elites-Hahn conjecture is then that  every system (G, A, g) for which 

G/Nz is amenable is EH-regular. In some situations (one of which is given below) EH- 

regularity holds even when G/Nz is not amenable, but it is unlikely that  the conjecture 

would hold in general if this hypothesis were dropped. The remainder of this section is 

devoted to showing that  certain systems are Eli-regular. 

In the proof of the following proposition we make use of the well-known fact (cf. [15, 

2.11.5]) that  for any ideals I ,  J of a G*-algebra D with I ~  J ,  Prim (I/J) is naturally homeo- 

morphie to the locally closed subset S of Prim D consisting of primitive ideals which contain 

J but not I; the map g-*Prim I /J  is given by P~--)-P N I/J, while its inverse associates to 

P'/JePrim (I/J) the unique ideal of D maximal with respect to the property that  its 

intersection with I be P' .  
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PROPOSITIO~ 20. A regular quasi.orbit is EH-regular. 

Proo/. Let Q be a regular quasi-orbit, J a primitive ideal of (G, A, if) which lives on 

Q, and P EQ. As Q is locally closed and G-invariant there are G-invariant ideals 11 and 12 

of A with hulls in Prim A equal to Q-~Q and Q-, respectively. Then I~ =ker  Q =ResG J .  

Let Jt =Ex~z It, i - 1 ,  2. By Proposition 11, J~J~  but J~J1 ,  so in particular (J N J1)/Ju 
is a primitive ideal of J1/J~. By Proposition 12, J1/J2 is naturally isomorphic to C*(G, I1/I~, 
(ffx,)z2). Let P' denote the primitive ideal (P N I1)/I ~ of I1/I ~. Our hypothesis of regularity 

implies that  sGp~->sP ' is homeomorphism of G/GI, onto Prim I1 / I~Q,  so (taking ~ to be 

its inverse) we may apply Theorem 17 to deduce that  the inducing bimodule gives a Morita 

equivalence of C*(G, I1/I~, (fix,) t') with C*(Gp, I1/(P N I1), (ffi~)Pn~'). The latter algebra 

is (again, by Proposition 12) isomorphic to the subquotient J~/J~ of C*(Gp, A, if), where 

g~ = E x G  11 and J~ = E x ~  (P N 11). In virtue of the Morita equivalence there is by [52, 

3.8] a unique primitive ideal J~/J~ of J~/J~ which induces up to (J N J1)/J~. Let L 0 be an 

irreducible *-representation of J~/J~ with kernel J~/J~; then L 0 extends canonically to an 

irreducible representation of C*(Gp, A, ff)/J~, which in turn lifts to an irreducible represen- 

tation 15 of C*(G~,, A, if). I t  is then easy to see, using [52, 3.6 and 3.7], that  the kernel of 

IndGap L is the unique primitive ideal of C*(G, A, if) whose intersection with J1 is J N J1; 

that  is, kerInd~pL=J. On the other hand R e s ~ L  0 has kernel (PA I1)/(PN I1) (since 

I1/P N 11) is simple), so Res~  L, as the canonical extension of Res~ L 0 to A, has kernel 

equal to the unique ideal of A maximal with respect to the property that  its intersection 

with 11 be PNI1; i.e. k e r R e s ~ L = P .  Thus, taking J ' = k e r L ,  we have I n d ~ p J ' = J ,  

ReSNC~ J '  =P ,  which proves EH-regularity. /// 

LEM~A 21. Let H be open in (7. Then the natural isomorphism iH o/ C~(H, A, if) onto 
the subalgebra o/ C~(G, A, if) consisting ol/unctions which vanish o]1 H extends to an iso- 
morphism o/C*(H, A, if) onto a C*-subalgebra o/C*(G, A, if). 

Proo/. Let Y0 denote the subspace of X~ consisting of functions which vanish off H; 

then Yo is a submodule for the right and left actions of Co(H, A, if) on X~, and it is easily 

verified that  Y0 is isomorphic (as a right C~(H, A, ff)-rigged space) to the bimodule for 

inducing representations of Co(H, A, if) up to itself. From the proof of the corollary to 

Proposition 3 it follows that  the norm induced on Co(H, A, if) from its left action on Y0 

is just the ordinary C*-norm, so the same is true of the action on X~; thus the natural 

homomorphism of Co(H, A, if) into I:(X~) is an isometry. Since this homomorphism "fac- 

tors through" i~, and since i~, being norm decreasing for the L 1 norms, is also norm de- 

creasing for the C*-norms (by universality), we see that  i R is itself an isometry. Thus it 

extends to an embedding of C*(H, A, if) into C*(G, A, if), as claimed. /// 
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We will use this lemma to identify C*(H, A, 7) with a subalgebra of C*((7, A, 7), 

when H is open. In  particular when N~ is open we identify A ~ C*(2Vz, A, 7) with a sub- 

algebra of C*((7, A, 7). 

LEMMA 22. Suppose (7/N~ is compact, and let PEPrim A. 

(i) sGew-> ~P is a homeomorphism o/G/(Te onto Q =Q(P). 

(ii) I / ( P }  is locally closed in Prim A, then Q is regular. 

Proo/. (i) That  s(Tp~->sP is a homeomorphism of (7/(7p onto the orbit e{p} of P follows 

from [24, Lemma 17.2], so we need to show only that  a{p} =Q. Observe first tha t  e({p}-) = 

U 8 e a ~({P}-) is closed in Prim A-- th is  is a consequence of the fact that  for any topological 

transformation group, the union of the translates of a given closed subset of the space by  

the elements of a given compact subset of the group is always closed. I t  follows that  the 

closure of e{p} is precisely a({p}-). Suppose there exists P '  EQ not lying in the orbit of 

P;  then P'E~{P}-={~P} - for some sE(7. As P r i m A  is T 0, {P'}- is a subset of {~P}- not 

containing ~P. Since c(p) ,  being homeomorphic to (7/(7e, is T 1, 8(P}-N e(p} =(~p}, so 

{P'}-, and hence also a(p,}-  does not  intersect a(p}. I t  follows tha t  P and P '  have distinct 

orbit closures and so lie in distinct quasi-orbits. Thus Q = a(p}, as was to be shown. 

To prove (ii) we observe that  if ( P } - ~ { P }  is closed in {P}-, then a((p}-)~a(p} = 

a((p}-~{p})  is closed in ~{P}-, i.e. a{p} is locally closed. //[ 

We say ((7, A, 7) is separable if both (7 and A are; this implies that  C*((7, A) and 

hence also C*(G, A, if) are separable C*-algebras. Note that  separable systems are always 

quasi-regular, by Corollary 19. 

I~ 23. Suppose ((7, A, 7) is separable, and let Q be a quasi-orbit aU points 

o/which have the same stabilizer K. (K is then equal to its conjugates in (7, hence normal.) 

Suppose that (7/K is amenable, and that either 

(i) G/K has a compact open subgroup, and every point o~ Prim (K, A, 7) which lives on 

(a K-quasi-orbit contained in) Q is locally closed; or (ii) (7/K is discrete. 

Then Q is EH-regular. 

Proo/. Let J be a primitive ideal of ((7, A, 7) living on Q. Since the iterated system 

((7, C*(K, A, ~), ~K) is separable, J also lives on a (7-quasi-orbit Q' in Prim C*(K, A, 7). 

I claim that  it suffices to show that  Q' is EH-regular: Let J' E Q', so that  Res~ J = • 8 �9 a ~J'. 

By quasi-regularity of (K, A, 7) we may choose P EP r im  A such that  r l~KtP=Res~z  J ' .  

sp ~ J') (17 s~CJ') J. are Then N,~ ~ = fl  aS(Res~ =ReSNK~ = Res~ z (We using the facts that 
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Res~  is intersection preserving (Proposition 9) and G-equivariant.) Thus PEQ, so K sta- 

bilizes P,  and P = Res~z J ' .  As sp = ReSNK s j , ,  the stabilizer in G of J '  is precisely K. Since 

J '  is an arbitrary element of Q' we see (using the fact tha t  all elements of a quasi-orbit 

induce to the same ideal of C*(G, A, if), by  Proposition 11) that  EH-regularity of Q' will 

imply Ind~ J' = J, yielding EH-regularity of Q. 

Thus, passing to the iterated system (G, C*(K, A, if), f/), we may replace A by 

C*(K, A, fl) and Q by Q'. Let H be an open subgroup of G, containing K, and such that  H/K 

is compact (when K is itself open, we take H = K). Let  L 1 be an irreducible *-representa- 

tion of C*(G, A, if) with kernel J .  By [19], we may decompose ResH a L 1 as a direct integral 

S Led#(P) of homogeneous representations over Prim (H, A, if), with k e r L e = P  for all 

P E P r i m  (H, A, if). Let  O = ( P e P r i m  (H, A, ~/)]P_~ReSH ~ J}; the complemen~ of O then 

has/~-measure 0. Assume that  no point of O lives on Q, or in other words that  for all P E 0 

the G-kernel of Res~ P properly contains ker Q. Then since Q is second countable, we can 

find a sequence (I~}~~ of G-invariant ideals, each properly containing ker Q, and such that  

for each P e O, Res H P-~ I~ for some i. We may thus find an n such that  (P  e 01 ResH P--- In } 

(which is closed in Prim (H, A, ~/), by continuity of Rest)  has positive/~-measure. But  

then the subspace of ~4L, annihilated by  (Res~ L1)(Is) is non-zero; since this subspaco is 

G- and A-invariant, it must be all of ~4L, by  irreducibility of L 1. Thus ker (Res~ L1) _ I ,  

ker Q, contradicting the fact that  J lives on Q. Therefore we may  choose J' E Prim (H, A, if) 

containing ReSH G J = J  N C*(H, A, if) and living on Q. 

Now let L 2 be an irreducible *-representation of C*(H, A, if) with kernel J'. Applying 

[15, 2.10.2] to the subalgebra C*(H, A, ~l)/(J fl C*(H, A, ~/)) of C*(G, A, ~l)/J, we may 

find an irreducible *-representation L of C*(G, A, ~/) on a Hflber~ space ~4 containing 

~ 2 =  ~4~, such that  ker L~_J and ReSH~L contains L 2 as a subrepresentation. Covariance 

of (VT., ML) implies tha t  V~(s)~ 2 is A,invariant for each sEG, and that  the corresponding 

subrepresentation of ML is unitarily equivalent to ~ML~. 

I claim that  for sl, s~ E G, ~'ML~ and S~Mz, are disjoint representations unless s i and s 2 

are in the same element of G[H: When H = K ,  this is clear, since then ML~ =L~ is irreducible, 

and K is the stabilizer in G of J '  =ker  L 2. When H properly contains K, then by our hypo- 

theses and Lemma 22, J '  lives on a locally closed H-orbit  Q0 contained in Q. Let  I = 

ker (Qg ~Q0)- Then I is an H-invariant ideal of A, so the subspace of ~2 annihilated by  ML~(I) 

is C*(H, A, ff)-invariant and is thus either (0) or all of ~42; but  if it were 7/2, then ker ML~ 

would contain I ,  contradicting the fact tha t  ker ML~ =Res~ J" =ker  Q0. I t  follows that  the 

Glimm projection valued measure [26] on Prim A associated to ML, is concentrated on Q0. 

But  then the measure associated to ~Mz, is concentrated on ~Q0, for i = 1, 2, which (since 

Q0 is an H orbit, and K is the stabilizer of points in Q) are disjoint Betel subsets of Prim A 
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unless s 1 and s~lie in the same H-coset. The claim follows; and so VL(sl):H2 is orthogonal to 

VL(s~):H~ when slH #s2H. 
Therefore, as L is irreducible, :H decomposes as a t t i lbert space direct sum 

| VL(s~)~2, where s~E~ for each ~EG/H. We can thus define a *-representation M'  

of Coo(G/H, A) on :H by letting M'(/)~=ML(/(~))~ for ~EVL(s~)~2 and /ECoo(G/H, A). 
One checks easily tha t  (Vz, M') defines a *-representation of the imprimitivity algebra 

C*(G, Coo(G/H, A), 7^), hence L is induced from some representation of C*(H, A, 7). Now 

from the observation made in the proof of Lemma 21, tha t  (in the notation of tha t  proof) 

the submodule Y0 is just the module for the C~(H, A, 7) -C~(H, A, 7) induction process, 

we see that  for any representation L' of C*(H, A,  7) the restriction of Ind~ L'  to the range 

space of the characteristic function Z(~ (regarded as an element of Co~(G/H)) is equivalent 

to L'. Thus in particular our representation L is induced from L 2, so Ind~ J '  =ker  L ~  J.  

But  by Lemma 22 and Proposition 20, Q0 is EI-I-regular, so J '  = Indg P for some P E Q0--- Q. 

Thus I n d ~ P ~ J .  On the other hand from Propositions 11 and 13 we have I n d ~ P =  

Ind~:(c~)=Ex~aP=Ex~Res~:J~J. So I n d ~ P = J ,  and it follows that  Q is EH- 

regular. /// 

Remarks. Gootman, extending earlier work of Effros and Hahn, has obtained in [27, 

Cor., p. 102] and [28] the above result under quite restrictive additional hypotheses; namely, 

that  A is commutative, 7 is trivial, K is central in G, and the connected component of G 

is compact and abelian. (He has also however obtained in [27] another positive result on 

the Effros-Hahn conjecture not subsumed by  our proposition.) These hypotheses imply 

in particular tha t  points in Prim (K, A, 7) which live on Q are in fact kernels of one- 

dimensional representations, and so are actually closed. The methods of [27] are quite 

different (and more complicated) than ours, and do not appear to extend to the more 

general situation of twisted covariance algebras. 

I t  should be noted that  when A has Hausdorff primitive ideal space the hypothesis 

that  all points in Q have the same stabilizer is equivalent to the weaker hypothesis that  

their stabilizers all be normal; this follows easily from the fact tha t  the set of points sta- 

bilized by a normal subgroup of G is closed and G-invariant (provided Prim A is Hausdorff). 

Thus in particular when G/N~ and A are abelian this hypothesis is automatic. 

Finally, we note that  by making use of Fell's Mackey machine for Banach *-algebraic 

bundles [24] it is possible to prove Proposition 23 under the hypothesis (i), without assum, 

ing that  points in Prim (K, A, 7) which live on Q be locally closed. We plan to discuss this 

and other partial results on the Effros-Hahn conjecture in a future paper. /// 

We say (G, A, 7) is essentially/tee if the stabilizer of each point in Prim A is Nz. 
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T H E O R ~  24. Let (G, A, if) be essentially/ree and separable. I/also either 

(i) (G, A, if) is regular; or 

(ii) G/N~ is amenable and has a compact open subgroup, and points in Prim A are locally 

closed; or 

(iii) G/Nz is discrete and amenable, then Q~->Ind~z (ker Q) is a homeomorphism o/ 0 

onto Prim (G, A, if), and I~--~Ind~ I is a homeomorphism o/ aY(A) onto Y(C*(G, A, if)) 

(with inverse ResNa ). 

Proo/. By Propositions 20 and 23 and Corollary 19, (G, A, ~1) is EH-regular (under 

any of the hypotheses (i), (ii), (iii)). Thus IndNe (3(A)) contains Prim (G, A, if), hence 

(since, by Proposition 9, Ind is intersection preserving, and all ideals are intersections of 

primitive ones) all of :I(C*(G, A, •)). From Propositions 9 and 11 we thus see that  I n d ~  

is a homeomorphism of C3(A) onto Y(C*(G, A, if)), with inverse Res~z. 

We now show that  IndNa (ker Q) is primitive, for every Q E O- Observe first that  for 

11 ..... In Ea~J(A) properly containing ker Q, the intersection 11 N ... f3 I n properly contains 

kerQ: otherwise, given PEQ we must have Ij~_P for some j (since P is prime), hence 

Ij~_eP=kerQ, a contradiction. Thus kerQ is "irreducible" in ay(A), hence as Ind~N~ 

preserves intersections, I n d ~  (ker Q) is irreducible in :I(C*(G, A, ~/)), and so by [15, 3.9.1] 

is primitive, as claimed. On the other hand by EH-regularity all primitive ideals of C*(G, 

A, if) are of the form IndNa (ker Q) for some Q. Thus the restriction of IndNa to the set of 

kernels of quasi-orbits is a homeomorphism onto Prim (G, A, ~). /// 

The above result, under the hypothesis that  G be discrete, was essentially proved by 

Zeller-Meier [57, 5.15], using different methods. We remark that  with somewhat more work 

one can prove Theorem 24 with the hypothesis of separability weakened to quasi-regularity. 

6. Traces 

In this section we investigate (semi-finite, lower semi-continuous) traces on twisted 

covariance algebras. The reader may consult [15, Chap. 6] for the basic properties of traces 

used in the following. 

For any trace v on a C*-algebra D, we let m~ denote the "ideal of definition" of v, 

the canonical extension of ~ to a positive linear functional on m~, and L~ the traced 

*-representation of D associated to ~. We will make frequent use of the fact that,  for any 

c Em~, the functional d~-~(cd) is continuous on D. (This is most easily proved as follows: 

We can assume c is positive, since any element of m~ is a linear combination of positive 
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elements of m,. Then ~(e-)=F(c�89 which, as a positive functional on D, must be con- 

tinuous.) 

Part  (i) of the following result was proved, using quite different methods, by Dang- 

Ngoe [12, Section 6] under the additional hypothesis that  (G, A, if) be separable. 

PROPOSITIO~ 25. (i) Let v be a trace on A such that v(~a) - - G~lN~(sNz)v(a) for all 

aeA+ (where A + denotes the set of positive elements o/ A). Then there is a canonical trace 

I n d v = I n d ~ v  on C*(G, A, if), u~ith Ind v(/* ~/)=v((/* ~])(e)) /or suitable/EGo(G, A, if), 

and such that Lind, = I n d ~  L~. 

(ii) Let v x and v 2 be traces on A satisfying the Condition el (i). Then Ind v 1 = I n d  v~ ill 
~1 =~"  

Proo]. (i) Assume first that  v is "densely defined", in the sense that  m, is dense in A. 

Then m~ contains the Pedersen ideal [47] ~(A) of A. Let C denote the linear span in Co(G, 

A, if) of 
O' = {rECk(G, A, ff)l 3a, bE~(A) such that  a / = ]  =]b}. 

(Here a[ and [b denote products in the multiplier algebra of C*(G, A, if), of which we 

regard Co(G, A, if) as a subalgobra.) I t  is easy to see that  C is a *-subalgebra of Co(G, A, if). 

Furthermore C is dense in Cc(G, A,  if), in the inductive limit topology: Given aeA+ and 

e>0,  we may choose ~, ~IEC(0, ~ ] )  with values in the non negative reals, such that  ~o 

vanishes on [0, 8], ~ vanishes on [0, e/2], ~l~p=~p, and ][~v(a)-a H <e; then ~(a)E~(A) and 

v21(a)~p(a ) =~o(a) =F(a)~l(a ). Choosing a from among the elements of an approximate identity 

for A, and taking e arbitrarily small, we may approximate any ]EC~(G, A, if) as closely 

as desired by elements of the form ~(a)f~o(a), which then clearly he in C. 

Let X~0=G(X~0)N~. Via the canonical identification of A with C~(N~, A, if), the 

C~(N~, A, ff)-valued inner product on X~ becomes an A-valued inner product, given by 

<x, y),~=(x*~y)(e). We regard C as a subspace of X~; then for x, yEC' we have, for some 

bE~(A), <x,y>.4=<x, yb>~=(x,y>,4bE~(A), so (C, C>A_~(A). We may thus define a 

sesquilinear form ]~ on C by/~(x, y)=F((y,  x>~). 

We wish to show that  fl extends to a maximal bitraee on C*(G, A, if) by verifying that  

it  satisfies the properties (i)-(v) of [15, 17.2.1]. Properties (i), (iii), and (iv) are immediate 

consequences of the properties of an imprimitivity bimodule. To verify (ii), let x, yEC', 

and let a, bEx(A) be such that  yb=y and ax=x.  Then (with # denoting rN~) 

y) = ~(b* fGINIl y*(r) rx(r-X) d2(~)) 

J~/N~(Y*(r)~x(r-~))d2(~) (we use the fact that  ~(b*. ) 
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is continuous to bring it inside the integral) 

-- f ~  ~('(~-~y*(r) x(r-~))) d2(~) 

-~ f~l~ A~L(i" ) ~(ax(r -~) r-~y*(r))d~(~) 

=~ (a fv,N x(r)~y*(r-~)d~(')) ~- fl(Y*, X*), 

from which (ii) follows. To verify (v) it  is enough to show that  for each xEC', there is a 

net  y~ in C such that  fl(x-xy~, x-xy~) -70 .  Choose b e~(A) such that  xb =x, and let ya = 

by'~b, where (y~) is an approximate identity for the inductive limit topology on C~(G, A, 3.). 
Then (x-xy:,  x-xy'~)~ tends to 0 in A (in the norm topology). But (x-xy~, x-xy~)a ~- 
b (x-xy~, x -xy~a  b. Since the functional f(b*. b) is continuous on A, we see that  fl(x-xy~, 
x-xya) =~(b~ *(x-xy~; x-xylem' b) tends to 0, as desired. 

By  [15, 17.2.1] there is a unique maximal bitraee on C*(G, A, 3") extending fl; let 

Ind  v denote the trace on C*(G, A, 3.) corresponding to it. We must show that  Ind~az L~ = 

L~n~,. Let  A'~,~(A) be the linear span of 

{a E A [ 3 b, c E u(A) such that  ab = a ~ ca), 

~ a  * By [15, 6,3.6] A' endowed with the inner product (al, a ~ ) = ~ ( l a 2 )  is dense in the Hilbert 

space ~4~ ~ ~z, of L~, so (as C is dense in X ~) U| is dense in ~4I, aL,. Let  C~ denote 

U endowed with the inner product/~; then T: U| x| is easily seen to have 

dense image, and to preserve inner products. Furthermore T intertwines the left C-actions 

on the two spaces. Since C is dense in C*(G, A, if), and since by  [15, 6.3.6] Cz is dense in 

~Ind,, it follows that  T extends to a unitary intertwining operator for/~nd ~ and Ind~y L~. 

When v is not densely defined, observe that  in any case mr is G-invariant. We thus 

may apply the preceding to the system (G,J ,  ffj), where J = ( m , ) -  has trace v~=vlj+ , to 

get a trace Ind u s on C*(G, J, 3.3)~Ex~ J .  Then Indv j  extends canonically to a trace 

Ind v on C*(G, A, 3.) such tha t  /~nd,j= (L~nd~)l C*(G, J ,  3.z); by  [52, 3.6] and the fact tha t  

L~ is the canonical extension to A of L,j, the canonical extension of I n d ~  L,j to C*(G, A, 3.) 

is equivalent to I n d ~  L~, so that  I n d ~  L~ is equivalent to L~d, as desired. 

(il) Let  vl and r~ be distinct traces on A, satisfying the condition in (i). We must show 

Ind  ~1 =~Ind v,. Suppose first tha t  both vl and v2 are densely defined. T h e n  it is easy to 

show, using the properties of imprimitivity bimodules, that  (in the notation of (i)) (C, C)A 

is a dense *-subalgebra of A, which by  [15, 6.5.3] implies tha t  the restrictions of ~1 and ~, 
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to (C, C~a must still be distinct. I t  follows that  the bitraces on C constructed from ~l and 

~ are distinct, so Ind  vl and Ind v, are. 

Now drop the assumption that  vl and v~ are densely defined. The above argument 

shows more generally tha t  if the restrictions of v 1 and V, to J = (m,,)- A (m~,)- are distinct, 

then I n ~ ,  and Ind., diffor on Ex~, d. Thus we may assume vl ] j=v, ] j .  Since vl and vg. 

are distinct, at  least one of them--say  v l~ is  not the canonical extension to A of ~11 J" This 

implies tha t  Z~,(J)~ is a proper subspace of ~ ,  where ~ denotes the underlying Hil- 

bert space of L~,. But  since L,,(m~,) acts non-degenerately on 74, we have L~,(m~)~= 

i , , (m~)L~ , (m~)~L , , , ( J )~ .  I t  follows that  there is a non-zero subrepresentation of L~, 

which kills mT~. This subrepresentation induces to a non-zero subrepresentation of Ind~z L~, 

which kills E x G  (m:~), but  then since E x ~  (mT~) acts non-degenerately on the space of 

Ind v~, and hence of I n d ~  L,,, we see that  I n d ~  L . , . I n d ~  L,,, implying Ind v~ 4: 

Ind  v s. III 

The following special case (of (i)) was essentially proved by Pukanszky in [49, Section 

2]. (Cf. the remarks in [58, 2.6].) 

COROLT.ARY. Let N be a closed normal subgroup o /G such that GIN is unimodular, and 

a G-invariant trace on C*(N). Then there is a canonical trace Ind  ~ on C*(G), with the pro- 

perty that L~a~ is unitarily equivalent to IndN a L~. /// 

In  order to classify the the traces on twisted covariance algebras one would like to 

have a "Maekey machine" for relating traces on C*(G, A, if) to those on C*(H, A, if), 

where H is a stability subgroup for the action of G on Prim A. In  particular, it would be 

interesting to know whether the following analogue of the Effros-Hahn conjecture (in 

the case of essentially free action) holds: 

Conjecture. Suppose that  (G, A, if) is essentially free, and that  G]J~ is amenable. 

Then every trace # on C*(G, A, if) is induced from A, in the sense that  there is a trace 

on A such that  v(Sa)= ~N(S2~)v(a) for all a e A  + and s in G, and f f = I n d  v. //[ 

Extending ideas of Guichardet [33], Zeller-Meier showed [57, Section 9] that  this 

conjecture holds for the case G/N~ discrete, provided one restricts attention to those ff 

satisfying a certain technical condition (namely, that  the image in L~,(C*(G, A, if)) of 

those elements in Co(G, A, if) of finite trace be dense in the weak closure of L~(C*(G, A, 7))). 

In  the result below we show that  it is unnecessary to assume this technical condition. 

PROPOSITION 26. Suppose (G, A,  •) is essentially/ree and separable, and that G/Nz 

is discrete. Let ff be a trace on C*(G, A, if). I/either 
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(i) p is densely defined; or 

(if) G/N~ is amenable, 

then # is induced/tom A. In  particular, when G/N~ is amenable there is a i - 1 correspondence 

(given by Ind) between G.invariant traces on A and traces on C*(Q, A,  7). 

Proo/. Assume first tha t  # is densely defined. I t  is easy to see from Pedersen's construc- 

t ion in [47] tha t  the Pedersen ideal of a C*-algebra contains the Pedersen ideal of any  C*- 

subalgebra; applied to the C*-subalgebra A of C*(G, A, 7), this shows tha t  the restriction 

of # to A+ is a densely defined trace ~ on A. We proceed to show, using arguments of [33] 

and [57], tha t  p = I n d  v. 

I t  is sufficient to show tha t  the maximal bitraces corresponding to # and I n d  v are 

the same, and thus by  [15, 6.5.3] tha t  the restrictions of these bitraces to the subalgebra C 

are the same (with C defined as in the proof of the preceding proposition). Choose a family 

(s~)~Gmz of representatives for the Nz cosets. By  discreteness of G/N~ every element of 

C can be written as a finite sum of elements of the form s~ a~, where a~ lies in the dense sub- 

algebra A'  of A constructed in the proof of the preceding proposition. I t  is thus sufficient 

to show tha t  for elements s~a~, s~aj of this form we have 

/2( (ssaj)* (8,a,) ) =~( <sjaj, 8,ai>a). (4) 

But  it is easily computed tha t  
0 s~=~sj 

(sJat'sta')A= aTa ~ s~=s~" 

When s~=s~ we have p((sjaj)*(s~a3)=~2(a'a,)=~(a*a3 (by definition of v), so tha t  in this 

case (4) does hold. We must  therefore show tha t  when s~ =~sj we have #(aTs[as~a~) =0. Let 

s = sy~s~. Since Pr im A is second countable, there is a countable family (W'x)~ of Borel 

subsets of Pr im A such tha t  for any  two distinct elements P,  Q of Prim A there exists b 
, , . . .  W ' \ t s - ~ t W  '~ with PEWk,  Q(~Wk. Define W0=O, and, inductively for k = l ,  Wk= k \ ~  ~ kj U 

W~_~); then ~W, f~ W~ = ~ ,  and since by  our assumptions s does not lie in N~, so tha t  s 

does not fix any  point of Prim A, we see tha t  the W ~ form a parti t ion of Pr im A. 

Consider now the representation Lu of C*(G, A, 7). The functional/2 "extends" to a 

functional/2~ on a weakly dense ideal ~ ,  of the weak closure ~ of L,(C*(G, A, 7)), such 

tha t  ~,~_L~,(m~) and /2~(L~(/))=/2(]) for all /era u, and such tha t  for any  T e ~ ,  the 

functional/2~(T. ) is normal on ~.  Let M denote the Glimm projection valued measure 

[26] on Prim A associated with Mz,; then ~ = ~  M(W~) - -~ I  in the weak topology, so tha t  

/2~ ( ~  M(W~)L~(a~ sa,)) ~ /2w(Lu(a* sa,))= /2(a~ sa,). 
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But  

~t~(M(Wk)L,(a* sa~)) =/2w(M(Wk)L~,(a* sa,) M(Wk)) 

= ~tw(M(Wk) ML~,(a*) ML,(Sa~) VL,(s) M(W~)) 

=~w(M%(a~)Mr.,(~a,)M(Wk)M('Wk)Lv~(s)) 

= ~ ( 0 )  (since M(Wk)M(~Wk) = O) = O. 

Hence [x(a~sa~)=0, so tha t  the two bitraces on C do coincide as claimed and Ind  v =ft. 

I f / ~  is not densely defined but  G/N~ is amenable, let J = (m~)-. By  Theorem 24 and 

Proposition 13, J = E x ~ z  I for some G-invariant ideal I of A. Thus/x~=/x[j+ is a densely 

defined trace on C*(G, I, ffz), and the preceding shows t h a t / x j = I n d  vz for some trace v z 

on I .  Then if v denotes the canonical extension of v1 to A, we see easily (since/~ is the 

canonical extension of/~z to C*(G, A, I/)) tha t  # = I n d  v. 

The statement  tha t  in the case G/N~ amenable there is a bijection between G-in- 

variant  traces on A and traces on C*(G, A, ~) follows from combining the above with the 

preceding proposition. /// 

The other case in which we can obtain positive results concerning our conjecture is 

tha t  of factor traces, or characters, on C*-algebras of regular systems. 

We begin with a lemma which, though surely known, does not seem to be accessible 

in the literature. A normal representation of a C*-algebra is a traceable factor representa- 

tion. 

LE~MA 27. Let L be a (non.zero) *-representation o/ a C*-alqebra D, such that the weak 

closure o/L(D) is a semi-finite/actor TI. Then L is normal ill L(D) has non-zero intersection 

with the (unique) minimal norm-closed ideal o/ ~l. 

Proo/. L is normal iff L(D) has non-trivial intersection with the ideal ~ of traceable 

operators of ~/. But  ~ ,  being a hereditary ideal of ~/, certainly contains the Pedersen ideal 

of ~/~- (the norm closure of ~/), and since u contains the Pedersen ideal of any sub- 

C*-algebra of ~ - ,  L(D) will intersect u non-trivially iff it intersects ~ -  non-trivially. 

Hence it  suffices to show tha t  ~ -  is the minimal norm closed ideal of ~.  Observe 

first tha t  for any finite projection e in ~/, e~/e is a finite factor, hence in particular [16, 

Cot. 3, p. 257] is a simple C*-algebra. By  [51, 6.7] e ~ e  is Morita equivalent to ~e~/, the 

norm closed ideal generated by e; so the latter ideal is also simple and hence minimal. But  

there can be at most  one minimal norm closed ideal in a factor, for if there were two such 

the supports of their weak closures would be orthogonal central projections. 
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Thus the minimal norm closed ideal is unique and contains all finite projections. Since 

every element of ~ -  can be approximated in norm by finite linear combinations of finite 

projections, this minimal ideal is ~ - ,  /// 

The following result is of some independent interest--see [30]. 

PgOPOS~T~O~ 28. :Let E and B be C*-algebras, Y an E - B  imprimitivity bimodule, 

L a *.representation o/B.  Then L is normal i[[ the representation Ind  L o] E induced via Y is 

normal. 

_Proo/. Suppose L is normal, and let ~1 and ~/9. denote the weak closures of L(B) and 

(Ind L)(E), respectively. Because Ind gives an equivalence between the categories of 

*-representations of B and E, there is a natural isomorphism between the eommutants ~/~ 

and ~ ,  arising from the action of ~ on Y| (regarded, by  abuse of notation, as a 

subspace of ~//IndL) defined by "U(yQ~)=y@ ~l~, for ~/E~/~. Thus we may regard both 

~/L and ~In~L as modules over the W*-algebra ~ = ~/~. Let  Y' denote the collection of all 

bounded linear maps from ~l/L to ~l/ind r. which intertwine the Z-actions. Then Y' is stable 

under left and right multiplication by elements of ~2 and ~/1, and is thus an ~ - ~ 1  

bimodule. Furthermore there are natural ~/1- and ~ -va lued  inner products on Y', defined 

respectively by (T1, T2) 1 = T~ T2, (T1, T~)~ = T 1T~. Let I~ denote the norm closure of 

(Y ' ,  Y')~, i= l ,  2. Then I t is a norm closed ideal of ~ ,  and it is easily verified that  with 

above inner products Y' becomes an I ~ -  11 imprimitivity bimodule. 

Now since L is normal, the ideal I of B consisting of elements whose images lie in the 

minimal (norm closed) ideal of 7//1 must properly contain ker L. Using [52, 3.3] we may 

find y E Y such that  (y, y > ~ E I ~ k e r  L. I t  is easily verified that  the operator T~: ~4L--> 

~4i~d~, ~->y |  lies in Y', and that  (T~, T~> 1 =L((y, y>s). Thus <Ty, T~> 1 is a non-zero 

element of the minimal norm closed ideal o f /1 ,  hence by [52, 3.2] <T~, T~>~ is a non-zero 

element of the minimal norm-closed ideal of 12. But  it is readily shown that  <T~, T~>~ = 

(Ind L)((y,  y)~), so by the lemma Ind L is normal. 

Conversely, since L is unitarily equivalent to the representation induced from Ind L 

via the dual bimodule Y (see [51, Section 6]) we see that  normality of Ind  L implies nor- 

reality of L. /// 

PROPOSITION 29. Let Q be a regular quasi.orbit in A, and let P6Q. There is a natural 

bijeetion, given by I n d ~ ,  between the (unitary equivalence classes o]) normal representations o] 

(Gp, A, •) whose kernels live on the Gp quasi-orbit {P}, and the normal representations o/ 

((7, A, ~Y) whose kernels live on Q. 
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Proo/. As in the proof of Proposition 20, we use Proposition 12 to reduce to the case 

in which Q is all of Prim A. The result now follows from the preceding proposition together 

with Theorem 17. /// 

Each normal representation of A determines a character, or factor trace, on A, unique 

up to a scalar multiple. Thus the above result implies (at least in the presence of a separa- 

bility assumption~ so as to ensure tha t  kernels of factor representations are primitive) 

that  when (G, A, ~) is essentially free and regular, every factor trace v on C*(G, A, ~/) 

arises from some factor trace/x on A. In  general ;u is not (relatively) G-invariant, so v is 

not induced f rom/x in the sense of Proposition 25; however it can be shown that  it  is 

possible to "smooth out" ;u under an appropriate averaging process so as to obtain a 

relatively invariant trace # '  for which v = I n d  #'.  Thus our conjecture may  be verified in 

this case as well�9 We do not give the details here since the above result is more convenient 

for applications, factor traces being in general easier to work with than the smoothed out 

invariant ones. 

7. Abelian systems 

We assume throughout this section that  (G, A, if) is abelian, meaning that  G[~  
(but not necessarily A) is abelian. ~ will denote the abelian group G/Nz. Such systems 

have a number of interesting properties, which we proceed now to investigate. 

Observe tha~ there is a natural action by *-automorphisms of (~^ on Cc(G , A, ~7), 

given by 
(v/) (s) = <lo, s>- f(s) for p e G ̂ . 

(Here the bar denotes complex conjugate, and <p, s)=p(s/V~).) I t  is easily verified that  

this action is isometric and strongly continuous with respect to the Ll-norm, and so by 

universality extends to a (strongly continuous) action on C*(G, A, if). 

We wish to relate the crossed product algebra C*(~ ̂ , C*(G, A, •)) to the imprimitivity 

algebra E~=-C*(G, Coo(G/Nz)| ~7^). Observe first tha t  there are natural homomor- 
1 

phisms R~-, R 1, and R~ of 0 ^, G, and A, respectively, into ~(D),  D = C*(~ ̂ , C*(G, A, if)). 
(The latter two arise from composing Ra and R A with the:natural  homomorphism of 

7/~(C*(G, A, if)) into ~ ( D ) ,  which exists because the action (by multipliers) of C*(G, A, ~7) 
�9 " 1 2 on C*(~^, C*(G, A, ~7)) is essential.) Similar y, there are natural homomorphisms R~., R~, and 

2 , 
R~ into 7/~(E~), where R~. is defined by composing the homomorphism of ~^ into C(G/1Vz) ~= 
711(C~(G/Nz)) given by  p~-->]~,/~(sNz)--p(s-lN~) (the integrated form of which is just 

the Fourier transform isomorphism of C*(~ ̂ ) onto C~(G/Nz)) with the natural homo: 

morphism of ~II(C~(G/N~)) into ~(E~) .  If we let R 2 denote the integrated form of (R~, R~),~ 

16- 772908 Acta mathematica 140. lmprim6 le 9 Juin 1978 



236 P. GREEN 

then it is easily seen that  the pair (R~., R ~) is a covariant homomorphism of (~^, C*(G, A, ~)) 

into ~(EJ) .  Let  R be its integrated form. Using the facts that  D is generated by 

C*((~ ̂ ) C*(G, A, if) (interpreted as a set of products in ~(D)) ,  and that  E ~ is gener- 

ated by C*(G, A, ~)Goo(G/N~), we see easily that  the image of R is exactly E J. 

On the other hand, if we let R 1 denote the homomorphism of Co~(G/N~)| into 
1 1 

~ ( D )  obtained from the pair (R~,  R~)--where we regard (the integrated form of) R~. as 

a homomorphism of Co~(G/N~) into ~ ( D )  by means of the inverse F6urier t ransform-- 

then the pair (R~, R 1) is easily seen to define a covariant homomorphism of (6/, Coo(G/H) | 

if^) into ~(D) ;  furthermore one may readily verify that  its integrated form inverts R. 

Thus: 

PROPOSITION 30. With the above notation, R i~ an isomorphism o/C*((J ̂ , G*(G, A, ~)) 

onto E ~. I I I  

In conjunction with the imprimitivity theorem, this yields 

COROLLARY 31. C*(~ ̂ , C*(G, A, ~)) is Morita equivalent to A. [[/ 

Remark. For the special case of trivial ff (so that  q=(~), the covariance algebra 

C*(G ̂ , C*(G, A)) is precisely the dual crossed product algebra considered by Takai in [54, 

Section 3]. His duality theorem states that  it is isomorphic to A | :K(L~(G)), which implies 

in particular that  it is Morita equivalent to A. Thus the above Corollary 31 may be regarded 

as a weak form of the duality theorem, valid for non-trivial ft. In  fact I have recently 

obtained, in the case of separable, not necessarily abelian, (G, A, if), a substantial generali- 

zation of Takai's theorem, which states that  (for arbitrary closed H containing N~) the 

algebra C*(G, C~(G/H)| ~^) is isomorphic to C*(H, A, ff)| Details and 

applications, as well as an analogous result for yon Neumann algebras which extends 

Takesaki's duality theorem, will appear in a subsequent paper. /// 

We tu rn  n o w t o  a consideration of reduced abelian systems (G, C, if), i.e. those for 

which ff is an isomorphism of Nz onto T. Note that  as Nz is then central and ~ is uni- 

modular, G is itself unimodular, so that  we can drop the modular functions from all our 

formulae. We begin by observing that  for any r, s EG, the commutator srs-lr -1 is in N~; 

centrality of Nz implies that  this commutator depends only on the cosets ~ (=rNz) and 

~, and we easily verify that  the resulting pairing 

p(~, ~) = ff(srs- l~-~)  

is a homomorphism in each variable when the other is held fixed. Hence there is a well- 

defined continuous homomorphism hz of ~ into ~^, gi.ven by h~(~) (~) --fl(~, ~). We readily 
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verify that  the dual map h~, regarded as a homomorphism of ~ into 0^ via the canonical 

identification of ~ with ~^^, is given by  h~(~)($)=fl(d, ~)=fl(~, ~))-1, so that  h~(~)= 

(h~(~))-~. 
The homomorphism ha allows us to relate the action of (~^ on C*(G, C, 7)  with the 

generalized inner action of (7 which arises from the homomorphism R a into the unitary 

group of ~(C*(G, C, 7)): For each/EGo(G, C, 7)  and sEG, we have (using the fact that  

G acts trivially on C) 

~/(r) = s(/(8-1rs) ) =/((8-1rsr -1) r) =/(r) II(rs-lr-ls) ~ hv(~ -1) (i') /(r) = hv(~)/(r). 

By density of Co(G, C, 7) in C*(G, C, 7)  we see that  the actions of 8 and h~($) on C*(G, C, 7) 

coincide. 

The reduced abelian system ((7, C, 7) is said to be totally skew if the cenimr of (7 is 

exactly iVz.~ This is equivalent to the condition that  h~ be 1 - 1 ,  which in turn (since 

h~(~) =(hz(~)) -1) is equivalent to 1-1-ness  of h~, and thus (by the Pontrjagin theory) 

to the condition that  hz have dense range. 

The following basic fact about totally skew systems is due to Kleppner [38]. Our proof 

is different, and relies on the observation that, by  Corollary 31, G*(~ ̂ , C*(G, C, 7)) is 

Morita equivalent to C, and so is isomorphic to the algebra of compact operators on some 

Hilbert space. We say that  a G*-algebra has unique trace if it has a non-zero trace which is 

unique to within a scalar multiple. 

PROPOSlTIO)I 32. Let (G, C, ~') be totally skew. Then C*(G, C, ~') is simple and has a 

unique trace. 

Proo/. From the preceding remarks, elements in the dense subgroup hz(~) of ~^ act 

on C*(G, C, 7) as conjugation by unitaries in ~(C*(G, C, if)), hence in particular they 

act trivially on the ideal space Y(C*(G, C, 7)). But  as the action of ~^ on Y(C*(G, C, 7)) 

is jointly continuous, and Y(C*(G, C, 7)) is T 0, stabilizers of points must be closed by  

[5, Lemma 1], so that  0 ^ fixes every point in Y(C*(G, C, if)), and ~" Y(C*(G, C, if)) coin- 

cides with Y(C*(G, C, 7)). If  there were two distinct non-zero ideals I and J of C*(G, C, if), 

then by  Proposition 11 Ex~z I and E x ~  J would be distinct non-zero ideals of C*(~, 

C*(G, C, if)), contradicting the fact that  the algebra of compact operators on any Hilbert 

space is simple. I t  follows that  C*((7, C, 7) is simple. 

Uniqueness of the trace follows from an argument which is formally quite similar. 

We show first (repeating the  calculation of [38, Lemma 1.1]) that  any trace v on C*(G, 

C, 7)  is (~^-invariant: Let la be an arbitrary element of (~^, and let (Pa) be a net in hz(O) 
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converging to p-1. Since the p~ act by unitaries in ~(C*(G, A, if)) we have v(~/) =~(/) for 

all /EC*(G, C, if)+. B y  lower semi-continuity of v, and the fact tha t  ~/__~.-1/, we have 

~(~-'/) ~<v(]). Applying this to /='g  for an arbitrary gEC*(G, A, if)+ we get v(g)~<v(~g); 

but  since "~'g-~g we have also r(~g) ~<r(g). Thus 0 ^ leaves ~ invariant. 

By Proposition 25 we may  induce up the canonical trace on C to get a non-zero trace 

v on C*(G, C, ~). Suppose there is another trace r 1 on C*(G, C, if), not a scalar multiple of 

~. As ~ and vl are ~^-invariant by the preceding paragraph, they induce by Proposition 25 

to traces on C*(~ ̂ , C*(G, C, if)) which are not scalar multiples of each other; but  this 

contradicts the fact that  the compact operators have a unique trace. 

Alternatively, one may argue that  since any trace ~ is ~^ invariant, there is a natural 

action V of 0 ^ on the underlying Hilbert space of L~. I t  is easily checked that  (V, L.) is 

a covariant representation of (~^, C*(G, C, if)), which implies (since C*(~ ̂ , C*(G, C, if)) 

is naturally isomorphic to the imprimitivity algebra for Ind~)  that  L~ is induced from C; 

the quasi-eqnivalence class of L~ is thus well-defined. This implies that  L~ is a factor 

representation, since any decomposition of L .  into a direct sum of disjoint subrepresenta- 

tions would give non-quasiequivalent traceable representations. But two traces giving 

the same factor representation (to within quasiequivalence) must be scalar multiples of 

each other. (This alternative argument avoids assuming the fact that  C*(~ ̂ , C*(G, C, ~)) 

is isomorphic to the algebra of compact operators.) /// 

Although we will not need the following proposition (which is the main result of [3]) 

we prove it here as an illustration of the usefulness of Theorem 18. The proof in [3] is quite 

complicated and relies heavily on structure theoretic arguments. 

PROPOSITION 33. ([3, Thm. 3.2 and 3.3].) Let (G,C, if) be totally skew, The/oUowing 

are equivalent: 

(i) C*(G, C, ~ is a type I C*-algebra. 

(ii) C*(G, C, if) is isomorphic to X(~),  /or some Hilbert space ~. 

(iii) ha is a homeomorphism onto 0 ^. 

Proo/. T h e  equivalence of (i) and (ii) follows from the simplicity of C*(G, C, if) (Pro- 

position 32) and the Glimm-Sakai theorem [53, 4.6.4]. 

(ii) ~ (iii): I t  is sufficient to prove that  ha is open onto its image in 0 ^. By the remark 

following Theorem 18 the action of 0 ^ on C*(G, C, if) ~ :~(~4) is generalized inner, and so 

induces a, continuous homomorphism R of 0 ^ into the projective unitary group ~ of 

~(C*(G, C, if)). The map Rohz is just the map R' of ~ into ~) arising from the (generalized 
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inner) action of G on C*(G, C, if); we show that  R' is open onto its image in ~,  which will 

imply that  h~ is open onto its image in 0 ^ as desired. 

Thus let () be any neighborhood of the identity of 0,  ()1 a symmetric open neigh- 

borhood of the identity with 0~ ~_ {), and let O, O1 be their inverse images in G. Let/~ be 

the trace on C*(G, (~, 7) induced from the canonical trace on (~. We may choose /E Cr 

C, if) such that  (supp/)2~_ O1, and such that  #(/~+/*)=1. (Note that  the space C' (cons- 

trueted in the proof of Proposition 25) is all of Go(G, C, 7).) For any s ~0  the support of 

s/~r does not contain the identity, so #(s/-)e/*)= 0 (by definition of #). Therefore, regard- 

ing ] as an element of the underlying Hilbert space of L~, we see that  s~-+ [<VL~(s)/,/>] 

vanishes off 0 and is 1 at s =e. Since the function UF-> [<U/, ~>[ is continuous on p~(74), 

it  follows easily that  the natural homomorphism of ~ into ~ ~(~Lg) is open onto its image: 

As this homomorphism factors continuously through the map R' of ~ into ~,  the latter 

map is open onto its image. 

(iii) ~ (i): :If h~ is a homeomorphism, then R'oh~ 1 (with R' defined as above) is con- 

tinuous, so that  the action of 0 ^ on C*(G, C, if) is generalized inner. Thus as C*(G, C, f7) 

is simple Theorem 18 applies to the system (0 ̂ , C*(G, C, if)) and we deduce that  there is 

a reduced system (G', C, if') such that  C*(G ̂ , C*(G, C, 7))=C*(G, C, 7)| C, 7'). 

If  C*(G, C, if) had a non-type I representation L, we could construct a non-type I re~ 

presentation of C*(G, C, ff)@ma~:C*(G', C, ~") by taking the tensor product of/~ with an 

irreducible representation of C*(G', C, if'); but this would contradict the fact that  C*(G ̂ , 

C*(G, C, ~7)) is isomorphic to the compact operators on some Hilbert space. /// 

We conclude our discussion of reduced systems with a result on non-totally skew 

systems. Except for the statement about the topology of Prim C*(G, C, 7)  (which answers 

a question raised in [38]), this result is essentially contained in [3] and [38], but we give a 

complete proof anyway. 

PROPOSITION 34. Let (G, C, if) be a reduced abel:an system, and let z denote the center 

el G. 

(i) There is a totally skew system (G', C, fT') such that G'/~}~.~-G/Z, and such that/or 

any PEPrim C*(G, C, if), C*(G, C, 7) /P is isomorphic to C*(G', C, ~7'). 

(ii) For any P e P r i m  C*(G, (~, if), the stabilizer in 0"  of P is equal to the annihilator 

Z l o/Z/N~, and the map tZ%->tP is a homeomorphism of ~^ /Z  ~- onto Prim C*(G, C, f7). 

Proo/. Since Z is abel:an, C*(Z, C, if) is commutative; its dual C*(Z, C, 7 ) ^ ~  

Prim C*(Z, C, if) may be naturally identified (via the map L~-> VL) with the subset of Z ̂  

consisting of those characters whose restrictions to Nz equal ~7. 
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We consider the iterated system ((7, C*(Z, C, if), ~z). By Proposition 1 its C*-algebra 

is isomorphic to C*(G, C, if). Let I f iPr im C*(Z, C, if), say corresponding to the character 

of Z, and let J =Ex~ I. Since Z is central I is fixed by the action of G, so that  by Proposi- 

tion 12, C*(G, C*(Z, C, if), ~lz)/J is naturally isomorphic to B=C*(G, C*(Z, C, ff)/I, (~lz/). 
But C*(Z, C, ~)/I may be naturally identified with C in such a way that  (~/z)z becomes the 

character Z on Z; thus B is isomorphic to C*(G, C, Z). 
Let K denote the kernel of Z, let G' =G/K, and define if' on Z/K by ff'(sK) ==X(s) for 

all s 6Z. Elements of Co(G, C, ~) are constant on cosets of K, so that  (with suitable choice 

of Haar measure on G') there is a natural isometric *-isomorphism of Go(G, C, ;~) onto 

Cc(G', C, if'). Hence C*(G, C, Z) is naturally isomorphic to G*(G', C, if'). As if' is faithful, 

and also surjective (since Z[Nz=ff), we see that  (G', C, if') is reduced. Let rKEG'~(Z/K). 
As r tZ, there exists s with rsr-18-1#ea; then ~'(rKsK(rK)-l(sK)-l)=~(rsr-ls -1) #1, so 

in particular rK does not commute with sK and thus is not central. Therefore the center of 

G' is precisely Z/K, so (G', C, if') is totally skew. 

The preceding together with Proposition 32 shows that  C*(G, C, ff)/Ex~ I is a simple 

C*-algebra, i.e. that  Exz a I is maximal, for any IEPr im C*(Z, C, if). Let P be an arbitrary 

primitive ideal of C*(G, C, if). As G acts trivially on C*(Z, C, ~/), the quasi-orbit space is 

just Prim C*(Z, (J, f/), which is Hausdorff; by Corollary 19, P lives on a quasi-orbit, so in 

particular Resz c P is primitive. (One can also see this directly by using the centrality of Z.) 

Since Ex~Resz~PcP_ (Proposition 11) we see by the above that  P =Exz~ Resza p; and as 

P is thus maximal, P=Ind~z l~es~zP by Proposition 11. By continuity of Lad and Res 

the map P~->Resz G P is a homeomorphism of Prim C*(G, C, if) onto Prim C*(Z, C, if). 

There is a natural action of ~^ on C*(Z, C, if), obtained by composing the natural 

homomorphism of ~^ onto (Z/N~)" with the natural action of (Z/N~)" on C*(Z, C, if). 
One sees easily that  Resza: Prim C*(G, C, ff)-->prim C*(Z, C, if) is equivariant for the 

associated actions of ~^ on these two spaces. Now Prim C*(Z, C, if) may be identified 

with the coset of (Z/N~)" in Z" consisting of those characters which restrict to ~/on N~, 

and it is easy to see that  the action of (Z/Nz)" on Prim C*(Z, C, if) just corresponds to the 

action by translation on that  coset. Part  (ii) of the proposition now follows easily from the 

above equivariance of the action. 

Since the action of ~^ on Prim C*(G, C, if) is in particular transitive, all primitive 

quotients of C*(G, (J, if) are isomorphic, and (i) now follows from the facts proved earlier./// 

Our final result is motivated by the beautiful theorem of Pukanszky [49] that  for a 

connected Lie group G, every primitive ideal of C*(G) is the kernel of a unique quasi- 

equivalence class of normal representations. Roughly speaking, we prove that  the same 
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result holds for the C*-algebras of those abelian systems which arise as the "restrictions" 

of regular systems, from which we then deduce Pukanszky 's  result (for a more general 

class of locally compact groups) as a corollary. The crucial fact  about  such systems is tha t  

" local ly"  they can be broken up as a series of i terated systems, each of which is either 

regular, or discrete (in the sense tha t  the domain of the twisting map  is open); we are 

then in a position to apply the results of Sections 5 and 6. This idea (for the case G]IV:r 

a connected Lie group) can already be found, in considerably disguised form, in Pukanszky 's  

discussion of the primitive ideals of C*(G) in [49, Section 1]. By  making more systematic 

use of it than  he, and by  using it to investigate the trace structure, as well as the primitive 

ideal structure, we are able to considerably simplify, unify, and generalize his proof. (The 

"Maekey machine" results of Section 4, and Kleppner 's  result on totally skew systems 

(Proposition 32), also play crucial roles in our argument.) 

The lemma on which this decomposition into regular and discrete systems depends is 

the following: 

LEMMA 35. Let G and H be locally compact abelian groups, and ~ a continuous injective 

homomorphism el H into G. Then there are closed subgroups ( 1 H ) = H o ~ H I ~ H ~ . . .  ~_Hn=H 

o] H such that, with ~ denoting the natural homomorphism el HdHi_l into ~(H~)-/~(H~_I)-, 

either 

(i) z~ is a homeomorphism, or 

(ii) 7e~ is in]ective and H~/H~_I is discrete,/or each i = 1, ..., n. 

(Note that as :~ is in]ective in either case, ~-l(~(Hi)-  ) =Hi /or  all i.) 

Proo/. We argue by  induction on the dimension m = m ( H )  of the vector par t  of H. 

When m = 0 ,  H has a compact open subgroup which we take as //1, and the series (1) 

//1-~ / /  suffices. Hence assume m > 0, and tha t  the lemma holds for groups having vector 

par t  of dimension less than  m. Let  H '  be a closed subgroup of H isomorphic to It, let 

G' = ~ (H ' ) - ,  and let H" =~-I(G') .  Since m(H/H") <m we can construct a series of the desired 

form for the natural  injection of H/H" into GIG', so we m a y  as well assume tha t  H = H "  

and tha t  G = G'. When ~'  =~1~'  is a homeomorphism the result is obvious, so we assume 

it is not. Then G, being a "solenoid group", is compact. Thus G ̂  is discrete, and since 

(~')^ is injective we may  choose an infinite cyclic subgroup D of G ̂ . The dual map to 

(~')^[D iS a surjective map o f / / '  onto D ^ ~ T  which factors through G; let Hi denote its 

kernel. Then ~(H~)- does not contain ~(H')  since it is contained in the kernel of the natural  

surjection of q onto D ̂ . Thus if we let '" -1 ' - H =7~ (7~(//1)), then m(H'") and m(H/H'") are 
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both smaller than m. We now obtain the desired composition series for H by piecing 

together those for H'" and H/H '~ (which exist by the induction hypothesis). /// 

We say that  a C*-algebra B is locally simply traced if for each P E P r i m  B there exists 

P'<): B, containing P, such that  P'/P is simple and has a unique trace. As P is prime, the 

condition that  P'/P be simple implies that  P' is uniquely determined, and that  (P)  is 

locally closed in Prim B. Furthermore P'/P determines the local representation theory 

of B at  P,  in the sense that  the factor representations of B with kernel P are in natural 1 - 1 

correspondence with the factor representations of P'/P. In  particular for a separable 

locally simply traced algebra the map L~->ker L induces a bijection between the quasi- 

equivalence classes of normal representations and Prim B. (The separability hypothesis is 

needed to insure that  the kernel of any normal representation is primitive.) 

Given a system (G, A, if) with A locally simply traced, and given P EP r im  A, there 

is a natural action of Gp on the simple algebra P'/P. We say that  (G, A, ~) is locally gene- 

ralized inner if this action is generalized inner, and locally trace preserving if it  leaves in- 

variant the trace on P'/P, for all P E Prim A. Note that  locally generalized inner systems 

are always locally trace preserving, and that  (by the remark following Theorem 18) systems 

in which A is type I are always locally generalized inner. 

LEMMA 36. Let A be locally simply traced, and let (G, A, if) be abelian and locally trace 

preserving. Let P E P r i m  A and suppose that sGpe-,sP is a homeomorphism o/ G/Gp onto 

Prim A. Then there is a non-zero densely de/ined G.invariant trace on A. 

Proo/. As Prim A is Hausdorff, P is maximal; let g denote the canonical homomor- 

phism of A onto AlP, and v a non-zero trace on AlP. The hypothesis that  (G, A, ~) is 

locally trace preserving allows us to associate to each aEA + a function/a: G/Gp--->[O, ~ ] ,  

defined by  

l~(~) = v(g(Sa)). 

Lower semi-continuity of v implies that  14 is lower semi-continuous, so that  we can define 

a map if: A+->[O, co] by 

(a) = J.|o- la(~) d~ (~). 

Fatou's lemma together with the lower semi-continuity of v imply tha t  # is lower semi- 

continuous, and one easily checks that/~ satisfies the other criteria for a trace, and that  it 

is G-invariant. 

Since AlP is simple, �9 is densely defined and faithful (in the sense that  no non-zero 
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positive element has zero trace). For any positive element a of the Pedersen ideal u(A), 

~(~a) is in u(A/P) for all s E G, so tha t /~  is everywhere finite. Let  0 be an open subset of 

G/Gp with compact closure. A simple compactness argument shows that  we may find 

aEu(A)+ such that / , (9)  ~> 1 for all 5EO. By [15, B 18, p. 356] there exists a point of con- 

t inuity s0 for/~ in O, so that  in particular we can find an open subset O0 on which/~ is 

bounded. Let  g be a continuous, non-zero, non-negative function on G/Gp with support 

contained in 00. Then we may regard g as a function on Prim A via the canonical identi- 

fication of G]Ge with Prim A. Applying the multiplier corresponding to g to the element a, 

we obtain a positive element b of A with the property that  /~ is bounded, of compact 

support, and ~>g. Then #(b) is finite and non-zero. Thus # is non-zero; furthermore its 

ideal of definition m s is G-invariant and non-zero, and so (since G acts transitively on 

Prim A) is dense in A. Thus ~ is densely defined, and so has all the properties claimed in 

the lemma. /// 

THEORW~ 37. Assume A is locally simply traced, and that (G, A, if) is separable, 

regular, abelian, and locally generalized inner. Let H be a separable locally compact group, 

and ~ an in]ective continuous homomorphism o / H  into G whose image contains Nz. Then 

(H, A, ~ )  (the "pull-back" o] (G, A, ~) along ~) is EH-regular, and C*(H, A, 7H) is locally 

simply traced. 

Proo/. Let G' =G • (H/~-I(N~)) act on A by (~'~)a=Sa, and define ~': H-->G' b y ~ ' ( t ) =  

(g(t),tg-l(N~)). The image of g '  is easily seen to be closed, so by the open mapping theorem 

~' is a homeomorphism onto its image. Furthermore (G', A, 7) (we identify/Vz with/Vz • 

(1}) satisfies the same hypotheses as (G, A, 7), and the pull-back of (G', A, 7) along ~' 

is equal to (H, A, 7H)- Thus, replacing G by G' and H by z '(H),  we may assume that  H is 

actually a closed subgroup of G containing/Vz. 

Let PePrim C*(H, A, 7). As A is separable, ResNHp lives on an H-quasi-orbit, which 

in turn is contained in a unique G-quasi-orbit Q. Since (G, A, 7) is regular Q is locally 

closed and is the G-orbit of some IEPr im A. Let  11 =ker  (Q-), and 12 =ker  (Q-~Q). Then 

11 and I s are G-invariant. If  we let J~ = Ex~z I~, i = 1, 2, then by Proposition 11, P_~ J1 but  

P~.J~; thus P is contained in the locally closed subset (Hull J l ~ H u l l  J~) of Prim C*(H, 

A, 7). In  particular (P} is locally closed in Prim C*(H, A, 7) if and only if the correspond- 

ing primitive ideal (P N J2)/J1 of JJJ1 is locally closed in Prim J~/Jr Furthermore the 

normal representations of C*(H, A, ~) with kernel P are in 1 - 1  correspondence with the 

normal representations of J~/J1 with kernel (P N J~)/Jr Since, by Proposition 12, J~/J1 ~ 

C*(H, I2/I 1, (Tz~)s'), without loss of generality we may replace A by 1~/I 1, and thus 

assume that  G acts transitively on Prim A. Then as G]Nz is abelian all points in 
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Prim A have the same stabilizer Ka in G; let K-~K a N H denote the common stabilizer 

in H. 

We consider the system (K, A, if), and show that  its C*-algebra is locally sim- 

ply traced: The K-quasi-orbits in Prim A consist of single points. Thus for any P 6  

Prim C*(K, A, if), ResN~ P is a primitive ideal I~ of A. As Prim A is Hansdorff, Ip is ma.~imal 

and so Ap=A/I~, is simple, and hence (as A is locally simply traced) has a unique trace. 

Since, by Proposition 11, P___EXNK I~, it is sufficient to show that  the quotient algebra 

C*(K, A, ff)/EXNK Ip, which we may identify with C*(K, Ap, ~zp) by means of Proposi- 

tion 12, is locally simply traced. By Theorem 18 there is a reduced abelian system (K', •, if') 

such that  C*(K, Ap, ffx~,) ~Ap| C, if'). Since C*(K', fJ, 9") is nuclear by Proposi- 

tion 14, and since Ap is simple, with unique trace, results of Blackadar [4, Thm 3.3 and 3.8] 

imply that  Prim (K, A~, flip) is naturally homeomorphic to Prim (K', C, if') and that  

factor traces of C*(K, Ap, ~xp) with a given primitive ideal J as kernel (of the correspond- 

ing normal representation) are in 1 - 1  correspondence with factor traces of C*(K', C, ~Y') 

having the primitive ideal corresponding to J as kernel. (When A is type I, so that  Ap 

is isomorphic to the algebra of compact operators on some tiilbert space, it is easy to prove 

these facts directly without invoking [4]). Thus as C*(K', fJ, if') is locally simply traced by 

Propositions 34 and 32, the same is true of C*(K, Ap, ~7 x~') and hence (as remarked earlier) 

of C*(K, A, if). 

Let I be a primitive ideal of A. The argument of the preceding paragraph shows that  

there is a reduced system (K', C, if') and a natural homomorphism fll of C*(K, A, if) onto 

B =A/I| fJ, if'), with kernel E x ~  I. If we give B the action of (K/Nz) ̂  arising 

from the natural action of (K/N~)" ~ (K'/-Yz)" on the right hand factor, then it is straight- 

forward to show that  fix is equivariant for the (K/N:~)" actions, Thus the homeomorphism 

induced by fli of Prim B onto the hull of E x ~  I is (K/2Vz)^-equivariant. But  by the 

preceding paragraph, Prim B is naturally homeomorphic to Prim (K', (~, if'), and it then 

follows easily from Proposition 34 that  the  (K/.N'z) ̂  action on Prim B is transitive. On 

the other hand, using Proposition 11 and the fact that  I is maximal we see that  the hull 

of EXNG consists precisely of the primitive ideals of (K, A, if) which restrict to I.  )~ow it 

is readily computed that  the natural action of G on C*(K, A, ~Y) commutes with that  of 

(K/N:7) ̂ , so G permutes the (K/N~)" orbits on Prim C*(K, A, if); the fact that  G acts 

transitively on Prim A, together with G-eqnivariance of ResNKz and the fact observed in 

the preceding paragraph that  every PEPr im (K, A, if) restricts to some maximal ideal of 

A, now imply that  G'=G• (K/.N~) ̂  acts transitively on Prim (K, A, if). This idea of 

throwing in the action of (K/.N':T)" to produce a transitive action is due to Pukanszky; it  

is of great importance for the following. 
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Let  B=C*(K, A, ~'), and let K" denote the common stabilizer in G" of points in 

Prim B. Fixing I E P r i m  B, we see from the above, together with standard Baire category 

arguments (using separability of G") tha t  we may identify G"/K" with Prim B via the map 

s"K"~-->~I. Regarding now H as a subgroup of G" by identifying it with H x {1}, we see 

easily from the H-equivarianco of ResNK~ that  H f3 K" =K. In  particular the system (H, 

B, fK) is essentially free. Let  ~ denote the natural injection of H/K into G"/K", and choose 

a series Ho=K~_HIG ... ~_H~=H of closed subgroups of H such that  the HdK have the 

properties of Lemma 35 with respect to m 

By Proposition 1, C*(H, B, f~:) is naturally isomorphic to C*(H, A, f).  We prove, by 

induction on n, tha t  there is a unique factor trace at each primitive ideal of C*(H, B, fig), 

and that  Ind H gives a surjective map of Prim B onto Prim (H, B, f~).  The latter fact 

implies EH-regularity of (H,A, if); by  Propositions 9 and 11 it  also implies that  

Prim (H, B, fg)  is homeomorphic to the space 0 n  of H-quasi-orbits of B. Since it is easily seen 

that ,  via the above homeomorphism of Prim B with G"/K", Qn is identified with the coset 

space G"/(HK")-, this will show in particular tha t  every primitive ideal of (H, B, ffK) is 

maximal, implying that  C*(H, B, ffz) is locally simply traced and completing the proof of 

the theorem. 

The case n = 0  (i.e. H~K)  was proved above, so we assume n > 0  and that  the result 

holds for series of length <n.  Let  C=C*(H,,_I, B, fK). By the induction hypothesis, C 

is locally simply traced and Prim C is homeomorphic, via the map (by restriction) taking 

each primitive ideal to its Hn_l-quasi-orbit in B, to G"/(Hn_IK")-. Furthermore H- 

eqnivariance of l~esg ~-~ implies tha t  the action of H on Prim C corresponds to left transla- 

tion by (the image of) H in G"/(H~_IK")-. By our choice of the H,, (H,~_IK")- f) H -=H~_ z, 

so that  the stabilizer in H of any point in Prim C is just H~_ x. Thus the iterated system 

(H, C, fn~_~) (whose C*-algobra is isomorphic to tha t  of (H, A, f ) ,  by Proposition 1) is 

essentially free; furthermore it is either regular, or discrete (in the sense that  H/Hn_ 1 is 

discrete), according to the two possibilities of Lemma 35. In  either case we easily deduce 

from Theorem 24 that  Indg~_~ takes Prim C onto Prim (H, B, f~),  and thus by "Induction 

in Stages" that  Indg takes Prim B onto Prim (H, B, fK). 

I t  remains only to prove that  there is a unique factor trace at each primitive ideal of 

C*(H, C, ffn~-x). In  the case that  (H, C, fH~_~) is regular, this follows from Proposition 29 

and the induction hypothesis, so we may assume that  H/H=_I is discrete. By Lemma 36 

there is a G-invariant trace on A, so we may construct the induced trace v on C~"C*(H,~_I, 

A, if). Since H~_ 1 is a normal subgroup of G" whose action on B is the restriction of that  of 

G", there is a natural action of G" on C ~= C*(H=_ l, B, fK), and it can be readily verified 

that  this action preserves the bitrace corresponding to v (which was constructed in the 
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proof of Proposition 25)--this is most  easily done by  checking the (7 and (K/N~) ̂  actions 

separately. I t  follows tha t  u is (7"-invariant. 

l~ow let ~/denote  the space of quasi-equivalence classes of normal representations of 

C. Since by  [35] and [19] 7 / and  Prim C are both standard Borel spaces, and the natural  

map  ~ ->Pr im C taking any  normal representation to its kernel is Borel, the fact tha t  C 

is locally simply traced implies tha t  ~ and Prim C are isomorphic as Betel spaces. Thus 

by  [15, 8.8.2] there exist a measure # on Prim C, and traces vj lifted from the simple 

quotients C/J for each J E Prim C, such tha t  

?)((~) = ~Prlm C ?)J(c) d[~(J) 

for all cEC+. Since K ~ stabilizes each point in Prim C, the uniqueness par t  of [15, 8.8.2] 

is easily seen to imply that ,  for any  t EK", ~j is t-invariant for almost all J ,  and hence for 

at  least one J ;  but transit ivi ty of the (7~ action on Pr im C (which follows from G" equi- 

variance of Res H~-I) then implies tha t  all v~ are t-invariant. Now since any trace on C 

decomposes as a direct integral of scalar multiples of the ~ (because C is locally simply 

traced), it must  be K" invariant. Thus any  H-invariant  trace ~' is also HK"-invariant ,  but  

since the stabilizer of any  trace is closed (cf. the argument of Kleppner tha t  was given in 

the proof of Proposition 32) it follows tha t  v' is also (HK")-  invariant. Thus if v' lives on 

an H-quasi-orbit  which is just an (HK")-  orb i t - - the  measure # '  of its direct integral 

decomposition must  be (HK")-  quasi-invariant, and so we may  assume tha t  it is Haar  

measure on (HK")-/(H~_IKU)-; but  then the corresponding ~ are all translates of each 

other (i.e. v ' ~ = ~  for all t E(HK")-). I t  follows easily tha t  the H-invariant  traces on C 

living on H-quasi-orbits are unique (up to a scalar), hence as by  Proposition 26 every 

factor trace of C*(H, C, ~1H~-~) is induced from such a trace, they too are unique, provided 

they  exist. However we can mimic the argument used above in constructing ~ to produce a 

G"-invariant trace on C*(H, A, ~')-~C*(H, C, ~IH'-I), and then by  direct integral theory 

there exists a factor trace a t  some primitive ideal of C*(H, C, ~H~_~). Factor traces at  all 

primitive ideals are then obtained by  translation, under the transitive G" action on 

Prim(H, C, ff"-~). /// 

COROLLARY 38. Let G and H be separable locally compact groups, ~: H-->G a continuous 

in]ective homomorphism. Suppose g(H) contains a type I regularly embedded normal subgroup 

K o] (7 such that (7/K is abelian. Then G*(H) is locally simply traced. 

Proo/. This follows easily from the above theorem, once we use the corollary to Pro- 

position 1 to construct systems ((7, C*(K), ~ ) ,  (H, C*(K), ~.K) whose C*-algebras are iso- 



T H E  L O C A L  S T R U C T U R E  OF T W I S T E D  C O V A R I A N C E  ALG]~BRAS 247 

morphia to those of G and H. (Note that  since C*(K) is type I the system (G, C*(K), ~K) 

is automatically locally generalized inner.) /// 

COROLLARY 39. ([49, Thm. 1]; [46, Cor. 3].) Let H be a connected locally compact 

group. Then C*(H) is locally simply traced. 

Proo/. A result of Moore [45, Prop. 2.2], combined with the fact that  if H '  is a quotient 

group of H, then C*(H') is a quotient algebra of C*(H), allow us to reduce to the case that  

H is a simply connected Lie group. We now repeat an argument of Pukanszky [49, pp. 

84-86]: Represent the Lie algebra h of H faithfully on a finite dimensional vector space, 

let g be its algebraic hull on that  space, and let k = [g, g]. By [9, Thin. 15, p. 177 and Thm. 

13, p. 173] k is algebraic and contained in h. Furthermore, if G denotes the simply connected 

Lie group corresponding to g, then the subgroups H' -exp  h and K = e x p  k corresponding 

to h and k are closed and simply connected, so in particular H" is isomorphic to H. By 

[48, Thm., p. 379] K is regularly embedded in G, and by [14, Prop. 2.1, p. 425] it is type I, 

so Corollary 38 applies. /// 

We conclude with several remarks concerning topics related to the above, which will 

be pursued in subsequent papers. 

1. Theorem 37 can be generalized considerably. In particular one can replace the 

hypothesis that  G/N~ is abelian with the hypothesis tha t  it is amenable, provided that  

one assumes that  stabilizers of points in Prim A are abelian (mod 2Vz) and normal in G, 

and that  H is closed and normal in G. I t  appears that  yet more general results, with weak- 

ened hypotheses on the stabilizers, should hold. 

2. I t  would be of great interest to classify the simple subquotients (i.e. the simple 

algebras of the form P'/P, where P is a primitive ideal and P '  the minimal ideal properly 

containing it) of the algebras C*(H, A, ~) arising from systems which satisfy the hypotheses 

of Theorem 37, and for which in addition A is type I. By the theorem, these simple algebras 

always carry a unique trace. Furthermore it is easy to see from the proof of Theorem 37 

that  they can be described as ~he C*-algebras of essentially free systems (H', A', if') for 

which Prim A' is homeomorphic to some locally compact abelian group G', and such that  

H'/N~, can be regarded as a dense subgroup of G' in such a way that  the action of H'/N:r. 

on Prim A' corresponds to the action by translation on G'. The "canonical examples" of 

such algebras are covariance algebras C*(H, C~(G)), where H and G are locally compact 

abelian groups, and the action of H on C~(G) comes from an injective homomorphism of 

H onto a dense subgroup of G. There are several interesting examples of these algebras: 

In [56] Takesaki shows that  when H is taken to be a direct sum of a sequence of cyclic 
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groups, and G the corresponding direct product, one obtains Glimm's UHF algebras. I 

have been able to show that  the simple uniquely traced algebras constructed in [6] are 

also of the form C*(H, Coo(G)), where in this case one takes G=T, and H a dense torsion 

subgroup of T (with the discrete topology). (The classification of these algebras given in 

[6] then turns out to correspond to the classification of the dense torsion subgroups of the 

circle.) 

I have also been able to show that  any simple subquotient of the C*-algebra of a con- 

nected group is either finite dimensional (in which case of course the primitive ideal i s  

maximal), or else stable in the sense that  it  is isomorphic to its tensor product with the 

algebra of compact operators on a separable infinite dimensional Hilbert space. (This 

"explains" the fact that  connected groups never have I I  1 factor representations, since 

stable algebras never do.) In view of [59], this shows that  the problem of classifying these 

algebras reduces to the problem of classifying their Morita equivalence classes. 

3. In  the course of proving Theorem 37 we essentially obtained a description of 

Prim (H, A, if), which in the special case of the system associated to a simply connected Lie 

group turns out to be somewhat simpler and more natural than that  obtained by Pukanszky 

in [49, Section 1]. (It is fairly easy, using Proposition 34, to reconcile these two descrip- 

tions.) 

4. By refining the arguments of Proposition 25, it is possible to obtain a character 

formula for the systems of Theorem 37 which generahzes that  obtained by Pukanszky in 

[49, Thin. 2]. 

5. The deduction of Corollary 39 from Corollary 38 given above suggests that  it should 

be possible, using recent results on algebraic p-adic groups, to derive an analogue of Corol- 

lary 39 for the C*-algebras of (not necessarily algebraic) p-adic groups. I have been able 

to do this, but using a definition ofp-adie groups which is probably unnecessarily restrictive. 
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