THE RATIONAL HOMOTOPY THEORY OF CERTAIN PATH SPACES WITH APPLICATIONS TO GEODESICS

BY
\title{ KARSTEN GROVE(1), STEPHEN HALPERIN and MICHELINE VIGUE-POIRRIER }
University of Copenhagen, Denmark University of Toronto, Canada
Université de Paris-Sud, Orsay, France

It is well known that the topology of various path spaces on a complete riemannian manifold M is closely related to the existence of various kinds of geodesics on M. Classical Morse theory and the theory of closed geodesics are beautiful examples of this sort.

The motivation for the present paper is the study of geodesics satisfying a very general boundary condition of which the above examples and the example of isometryinvariant geodesics are particular cases. In particular, we generalize a result of SullivanVigué [16].

Let $N \subset M \times M$ be a submanifold of the riemannian product $M \times M$. An N-geodesic on M is a geodesic $c:[0,1] \rightarrow M$ which satisfies the boundary condition

$$
\begin{equation*}
(c(0), c(1)) \in N \quad \text { and } \quad(\dot{c}(0),-\dot{c}(1)) \in T N^{\perp} \tag{N}
\end{equation*}
$$

where $T^{\prime} N^{\perp}$ is the normal bundle of N in $M \times M$. If $N=V_{1} \times V_{2}$, where $V_{i} \subset M, i=1,2$ are submanifolds of M then an N-geodesic is simply a $V_{1}-V_{2}$ connecting geodesic (orthogonal to each V_{i}). If N is the graph of an isometry, A, of M then an N-geodesic is a geodesic which extends uniquely to an A-invariant geodesic $c: \mathbf{R} \rightarrow M$; i.e.

$$
c(t+1)=A(c(t)), \quad t \in \mathbf{R}
$$

When A has finite order ($A^{k}=\mathrm{id}$) then c is in fact closed $(c(t+k)=c(t), t \in \mathbf{R})$.
The study of N-geodesics on M proceeds via critical point theory for the energy integral on a suitable Hilbert manifold of curves with endpoints in N. This Hilbert manifold is homotopy equivalent to the space M_{N}^{I} of continuous curves $f:[0,1] \rightarrow M$ satisfying $(f(0)$, $f(1)) \in N$, with the compact open topology (cf. Grove [4], [6]).
(1) Part of this work was done while the first named author visited the IHES at Bures-surYvette during May 1976.

In this paper we apply Sullivan's theory of minimal models to study the rational homotopy type of M_{N}^{I}, and hence to obtain information about N-geodesics.

Sullivan's theory (cf. [14], [15] and [8]) associates with each path connected space S a certain differential algebra ($\Lambda X_{S}, d_{S}$) over \mathbf{Q} which describes its rational homotopy type. ($\Lambda X_{S}, d_{S}$) is called the minimal model of S and $H\left(\Lambda X_{S}\right)$ is the rational (singular) cohomology of S. As an algebra ΛX_{S} is the free graded commutative algebra over the graded space X_{S}. If S is nilpotent and its rational cohomology has finite type then X_{S} is the (rational) dual of the graded space $\pi_{*}(S) \otimes \mathbb{Q}$. (See section 1 for more details.)

Our main result is an explicit construction of the minimal model for the space $M_{G(g)}^{t}$, where $G(g)$ is the graph of a so called I-rigid map and M is any l-connected topological space whose rational cohomology has finite type (Theorem 3.17). This gives in particular a new proof of Sullivan's theorem for the space of closed curves $M^{S^{1}}$ [14]. Surprisingly enough the minimal model for $M_{G(g)}^{I}$ has exactly the same form as the minimal model for the space of closed curves on a space M^{\prime}. This space, however, is not obviously related to M and it can be much bigger than M. For this reason the results of Sullivan-Vigué [16] do not carry over to our more general case in a completely satisfactory manner although some of the methods from [16] are important for us.

The minimal model for $M_{G(g)}^{I}$ contains all information about the rational homotopy theory of $M_{G(g)}^{I}$, in particular about the cohomology. An immediate consequence of the model is the following (Theorem 4.1).

Theorem. If the rational cohomology of $M_{G(g)}^{I}$ is non trivial and g is rigid at 1 then $M_{G(g)}^{I}$ has non-zero cohomology in an infinite arithmetic sequence of dimensions.

The main application of the model is however (cf. Theorem 4.5).
Theorem. If M is 1 -connected, $H^{*}(M)$ finite dimensional and $g: M \rightarrow M$ rigid at 1 , then $M_{G(g)}^{I}$ has a bounded sequence of Betti numbers if and only if

$$
\operatorname{dim} \pi_{*}^{\text {even }}(M)^{g_{*}} \otimes \mathbf{Q} \leqslant \operatorname{dim} \pi_{*}^{\text {odd }}(M)^{g_{*}} \otimes \mathbf{Q} \leqslant 1
$$

where $\pi_{*}(M)^{\sigma_{*}}$ is the homotopy of M fixed by the induced map g_{*}.
When $g=$ id this specializes to the main theorem of Sullivan-Vigué [16]. If we combine this result with the main theorem of Grove-Tanaka [7] we obtain (generalizing the application by Sullivan-Vigué of Gromoll-Meyer [3]).

Theorem. Let M be a compact 1-connected riemannian manifold and let g be a finite order isometry of M. If g has at most finitely many invariant geodesics then

$$
\operatorname{dim} \pi_{*}^{\text {even }}(M)^{g *} \otimes \mathbf{Q} \leqslant \operatorname{dim} \pi_{*}^{\text {odd }}(M)^{\sigma^{*}} \otimes \mathbf{Q} \leqslant 1 .
$$

As a consequence we obtain (cf. Cor. 4.10).
Corollary. Let M be a l-connected, compact riemannian manifold whose cohomology is spherically generated (e.g. M formal) and let g be a finite order isometry of M. If the induced map g^{*} on cohomology fixes at least two generators then g has infinitely many invariant geodesics.

The paper is divided into 4 sections. In section 1 we recall briefly the main results in the theory of (minimal) models and explain how they generalize when an action of a finite group is involved. Besides being of interest in itself we use these results in section 3 . In section 2 we translate the fibration

$$
\Omega M \longrightarrow M_{N}^{I} \xrightarrow{\pi_{N}} N
$$

to models. Here M is any 1 -connected space, and N a path connected subspace of $M \times M$. Furthermore, $\pi_{N}(f)=(f(0), f(1)), \Omega M$ is the ordinary loop space of M and M_{N}^{I} is defined as above. We exhibit a (not necessarily minimal) model for M_{N}^{I} (Theorem 2.8). In particular (Cor. 2.11) we obtain explicitly the space of generators for the minimal model of M_{N}^{I}. We also apply results from the theory of models to our model of M_{N}^{I} (Theorem 2.15 and Cor. 2.16).

In particular, suppose N is a closed submanifold of $M \times M$ and M is a complete riemannian manifold. Let $p_{i}: N \rightarrow M, i=0,1$ be the left and right projections and assume that either $p_{0}(N)$ or $p_{1}(N)$ is compact and that $V=N \cap \triangle(M)$ is a closed submanifold of N. Then according to Grove [5] if there are no N-geodesics on M the inclusion $V \rightarrow M_{N}^{I}$ is a homotopy equivalence. Thus Theorem 2.15 yields:

Theorem. Suppose in addition to the above conditions N is 1-connected and let

$$
\left(p_{i}\right)_{*}: \pi_{*}(N) \otimes \mathbf{Q} \rightarrow \pi_{*}(M) \otimes \mathbf{Q}, \quad i=0,1
$$

be the linear maps induced by $p_{i}, i=0,1$. If for some complete metric on M there are no N geodesics, then coker $\left(\left(p_{0}\right)_{*}-\left(p_{1}\right)_{*}\right)$ is spanned by elements of even degree and

$$
\operatorname{dim} \operatorname{coker}\left(\left(p_{0}\right)_{*}-\left(p_{1}\right)_{*}\right) \leqslant \operatorname{dim} V .
$$

As a second application we get from Example 2.21 the
Theorem. Let Σ, Σ_{1} and Σ_{2} be spheres (possibly exotic) and suppose Σ_{1} and Σ_{2} are imbedded in Σ so that $\Sigma_{1} \cap \Sigma_{2}$ is a (collection of) closed submanifold(s) of Σ. Then for any riemannian metric on Σ there are $\Sigma_{\mathbf{1}}-\Sigma_{\mathbf{2}}$ connecting geodesics.

Finally in section 3 and section 4 we specialize to the case $N=G(g)$ and get the results on isometry invariant geodesics.

1. Equivariant minimal models

Throughout the paper all vector spaces are defined over the rationals \mathbf{Q} unless otherwise said. We begin by recalling some facts from Sullivan's theory of minimal models (see Sullivan [14], [15] and Halperin [8]).

A commutative graded differential algebra (c.g.d.a.) is a pair $\left(A, d_{A}\right)$ where $A=\oplus_{p=0}^{\infty} A^{p}$ is a non-negatively graded algebra (over \mathbb{Q}) with identity, such that $a b=(-1)^{p q} b a$ for $a \in A^{p}, b \in A^{q}$ and $d_{A}: A \rightarrow A$ is a derivation of degree 1 with $d_{A}^{2}=0$.
ΛX will denote the free graded commutative algebra over a graded space X i.e.

$$
\Lambda X=\text { exterior }\left(X^{\text {odd }}\right) \otimes \text { symmetric }\left(X^{\text {even }}\right)
$$

$\Lambda+X$ is the ideal of polynomials with no constant term i.e. $\Lambda^{+} X=\sum_{j>1} \Lambda^{j} X$.
A $K S$-complex is a c.g.d.a. $(\Lambda X, d)$ which satisfies:
$\left(\mathbf{k s}_{1}\right)$ There is a homogeneous basis $\left\{x_{\alpha}\right\}_{\alpha \in J}$ for X indexed by a well ordered set J such that $d x_{\alpha}$ is a polynomial in the x_{β} with $\beta<\alpha$.

If ($\Lambda X, d)$ in addition to $\left(\mathrm{ks}_{1}\right)$ satisfies
$\left(\mathrm{ks}_{2}\right) d X \subset \Lambda^{+} X \cdot \Lambda^{+} X$
then $(\Lambda X, d)$ is said to be minimal.
In the rest of the paper ($\Lambda X, d$) is always assumed to be a connected KS-complex. Let $Q(\Lambda X)=\Lambda+X / \Lambda+X \cdot \Lambda+X$ be the indecomposables of ΛX and $\zeta: \Lambda+X \rightarrow Q(\Lambda X)$ the projection. Define a differential $Q(d)$ on $Q(\Lambda X)$ by $Q(d) \zeta=\zeta d$. Then $(\Lambda X, d)$ is minimal if and only if $Q(d)=0$. If $\psi:(\Lambda X, d) \rightarrow\left(\Lambda X^{\prime}, d^{\prime}\right)$ is a c.g.d.a. map, we define $Q(\psi): Q(\Lambda X) \rightarrow Q\left(\Lambda X^{\prime}\right)$ by $Q(\psi) \zeta=\zeta^{\prime} \psi$. Note that ζ restricts to an isomorphism $X \rightarrow Q(\Lambda X)$ which allows us to identify these spaces.

We shall now recall the notation of homotopy due to Sullivan [15, §3] (see also [8; chap. 5]). Let ($\Lambda X, d$) be a KS-complex with X strictly positively graded (i.e. ΛX is connected.)
$\left(\Lambda X^{I}, D\right)$ is the c.g.d.a. obtained by tensoring $(\Lambda X, d)$ with the "contractible" c.g.d.a. $(\Lambda \bar{X} \otimes \wedge D \bar{X}, D)$, where
$\left(c_{1}\right) \bar{X}$ is the suspension of X i.e. $\bar{X}^{p}=X^{p+1}$
and
$\left(\mathrm{c}_{2}\right) D: \bar{X} \rightarrow D \bar{X}$ is an isomorphism.

The degree -1 isomorphism $\bar{X}=\bar{X}$ is written $x \mapsto \bar{x}$.
A derivation i of degree -1 and a derivation θ of degree zero in ΛX^{I} are defined by

$$
i x=\bar{x}, i \bar{x}=i D \bar{x}=0 \quad \text { for all } x \in X
$$

and

$$
\theta=D i+i D
$$

Let $\lambda_{0}: \Lambda X \rightarrow \Lambda X^{I}$ denote the standard inclusion and set $\lambda_{1}=e^{\theta}{ }^{\circ} \lambda_{0}$. Here e^{θ} is well defined because for any $\Phi \in \Lambda X^{I}$ there is an integer n such that $\theta^{n} \Phi=0$ [8]. Note that if $\Pi: \Lambda X^{I} \rightarrow \Lambda X$ is the projection defined by

$$
\Pi x=x, \Pi \bar{x}=\Pi D \bar{x}=0 \quad \text { for all } x \in X
$$

then λ_{0} and Π induce inverse cohomology isomorphisms because $(\Lambda \bar{X} \otimes \Lambda D \bar{X}, D)$ is acyclic.
Definition 1.1. Two homomorphisms $\gamma_{0}, \gamma_{1}:(\Lambda X, d) \rightarrow\left(A, d_{A}\right)$ of c.g.d.a.'s are called homotopic (written $\gamma_{0} \sim \gamma_{1}$) if there is a c.g.d.a. map $\Gamma:\left(\Lambda X^{I}, D\right) \rightarrow\left(A, d_{A}\right)$ such that $\Gamma \circ \lambda_{i}=\gamma_{i}$ $i=0,1$.

If the c.g.d.a. $\left(A, d_{A}\right)$ is homology connected i.e. $H^{0}(A)=\mathbf{Q}$ a model for $\left(A, D_{A}\right)$ is a KS-complex $(\Lambda X, d)$ together with a homomorphism of c.g.d.a.'s

$$
\varphi:(\Lambda X, d) \rightarrow\left(A, d_{A}\right)
$$

which satisfies
(m) φ induces an isomorphism φ^{*} on cohomology.

If the KS-complex $(\Lambda X, d)$ is minimal we speak of the minimal model $\varphi:(\Lambda X, d) \rightarrow$ (A, d_{A}).

We can now state the following important result (see [15, §5] and [8, chap. 6]).
Theorem 1.2. Let $\left(A, d_{A}\right)$ be a c.g.d.a. with $H^{0}(A)=\mathbf{Q}$. Then there is a minimal model

$$
\varphi:(\Lambda X, d) \rightarrow\left(A, d_{A}\right) .
$$

If $\varphi^{\prime}:\left(\Lambda X^{\prime}, d^{\prime}\right) \rightarrow\left(A, d_{A}\right)$ is another minimal model, then there is an isomorphism of c.g.d.a.'s $\alpha:(\Lambda X, d) \rightarrow\left(\Lambda X^{\prime}, d^{\prime}\right)$ such that $\varphi \sim \varphi^{\prime} \circ \alpha$. Finally, α is unique up to homotopy.

A number of choices are involved in the construction of $\varphi:(\Lambda X, d) \rightarrow\left(A, d_{A}\right)$. If a finite group G acts on (A, d_{A}), the flexibility in the construction enables us to obtain an induced action of G on ($\Lambda X, d)$ and to make φ equivariant. In fact, one can carry out Sullivan's proof of Theorem 1.2 equivariantly using that any G-invariant subspace of a vector space has a G-invariant complement. Hence

Theorem 1.3. Let $\left(A, d_{A}\right)$ be a c.g.d.a. with $H^{0}(A)=\mathbf{Q}$ and let G be a finite group acting on A by c.g.d.a. maps. Then there is a minimal model

$$
\varphi:(\wedge X, d) \rightarrow\left(A, d_{A}\right)
$$

such that G acts on $(\Lambda X, d)$ and φ is equivariant. If $\varphi^{\prime}:\left(\Lambda X^{\prime}, d^{\prime}\right) \rightarrow\left(A, d_{A}\right)$ is another G equivariant minimal model, then there is a G-isomorphism $\alpha:(\Lambda X, d) \rightarrow\left(\Lambda X^{\prime}, d^{\prime}\right)$ such that $\varphi \sim \varphi^{\prime} \circ \alpha$ and α is unique up to homotopy.

There is also an equivariant theorem for maps which again can be proved by making the corresponding non-equivariant proof (cf. e.g. [8, Theorem 5.19]) equivariant.

Theorem 1.4. Let $\left(A, d_{A}\right)$ and $\left(A^{\prime}, d_{A^{\prime}}\right)$ be a c.g.d.a.'s with $H^{0}(A)=H^{0}\left(A^{\prime}\right)=\mathbf{Q}$ and with actions of a finite group G. Furthermore, let

$$
\varphi:(\Lambda X, d) \rightarrow\left(A, d_{A}\right) \quad \text { and } \varphi^{\prime}:\left(\Lambda X^{\prime}, d^{\prime}\right) \rightarrow\left(A^{\prime}, d_{A}\right)
$$

be equivariant minimal models as in Theorem 1.3. Then for any equivariant c.g.d.a. map Ω : $\left(A, d_{A}\right) \rightarrow\left(A^{\prime}, d_{A^{\prime}}\right)$ there is an equivariant c.g.d.a. map $\omega:(\Lambda X, d) \rightarrow\left(\Lambda X^{\prime}, d^{\prime}\right)$ such that $\varphi^{\prime} \circ \omega \sim \Omega \circ \varphi$.

Now suppose M is a topological space. Denote by $(A(M), d)$ the c.g.d.a. of rational differential (PL) forms on M.

A rational p-form $\Phi \in A^{p}(M)$ on M is a function which assigns to each singular q simplex $\sigma: \Delta^{q} \rightarrow M$ a C^{∞} differential p-form Φ_{σ} on the standard q-simplex Δ^{q} such that
$\left(d_{1}\right) \Phi_{\sigma}$ is in the c.g.d.a. generated (over $\left.\mathbf{Q}\right)$ by the barycentric coordinate functions. and
$\left(\mathrm{d}_{2}\right)$ The map $\sigma \mapsto \Phi_{\sigma}$ is compatible with face and degeneracy operations.
Multiplication and differentiation are defined in $A(M)$ by $(\Phi \wedge \Psi)_{\sigma}=\Phi_{\sigma} \wedge \Psi_{\sigma}$ and $(d \Phi)_{\sigma}=$ $d\left(\Phi_{\sigma}\right)$.

If $g: M \rightarrow M^{\prime}$ is a continuous map, there is an induced map $A(g): A\left(M^{\prime}\right) \rightarrow A(M)$ of c.g.d.a.'s given by $(A(g) \Phi)_{\sigma}=\Phi_{g o \sigma}$. One has the following important result.

Theorem 1.5. (Sullivan-Whitney-Thom). Integration yields a natural isomorphism of graded algebras

$$
\int^{*}: H^{*}(A(M)) \rightarrow H^{*}(M)
$$

where $H^{*}(M)$ denotes singular cohomology with coefficients in \mathbf{Q}.

When M is path connected a (minimal) model for $(A(M), d)$ is called simply a (minimal) model for M. The minimal model for M will be denoted by

$$
\varphi_{M}:\left(\Lambda X_{M}, d_{M}\right) \rightarrow(A(M), d) .
$$

The space of indecomposable elements:

$$
\pi_{y}^{*}(M)=Q\left(\Lambda X_{M}\right) \cong X_{M}
$$

is called the pseudo dual homotopy of M. If $H^{*}(M)$ has finite type (i.e. finite dimensional in each degree) and M is nilpotent then there is a natural isomorphism

$$
\pi_{\psi}^{*}(M) \rightarrow \operatorname{Hom}_{\mathbf{Z}}\left(\pi_{*}(M), \mathbf{Q}\right)
$$

(cf. [15] and [8]).

2. A model for the space M_{N}^{I}

Let M be a simply connected space whose rational cohomology has finite type, and fix a path connected subspace $N \subset M \times M$.

Let M^{I} be the space of continuous maps $f:[0,1] \rightarrow M$ with the compact open topology. In this section we shall determine a model for the subspace $M_{N}^{I} \subset M^{I}$ given by

$$
M_{N}^{I}=\left\{f \in M^{I} \mid(f(0), f(\mathbf{1})) \in N\right\} .
$$

We have the commutative diagram

where $\pi(f)=(f(0), f(1)), \pi_{N}$ is the restriction of π and $\Omega M=\pi_{N}^{-1}\left(m_{0}, m_{\mathbf{1}}\right)=\left\{f \in M^{I} \mid f(0)=m_{0}\right.$ and $\left.f(1)=m_{1}\right\}$ for a chosen base point $\left(m_{0}, m_{1}\right) \in N$.

Both rows in (2.1) are Hurewicz fibrations which we denote respectively by \mathcal{F} and \mathcal{F}_{N}. Note that $\mathfrak{F}_{N}=i_{N}^{*}(\mathcal{F})$.

We also have a homotopy equivalence $\eta: M \rightarrow M^{I}$ given by: $\eta(m)$ is the constant map $I \rightarrow m$. Clearly

$$
\begin{equation*}
\pi \circ \eta=\Delta: M \rightarrow M \times M \tag{2.2}
\end{equation*}
$$

is the diagonal of M.
18†-782908 Acta mathematica 140. Imprimé le 9 Juin 1978

Now we begin the translation of (2.1) to models. Since M is 1-connected and $H^{*}(M)$ has finite type it follows that $\wedge X_{M}$ is 1-connected; i.e. $X_{M}^{0}=X_{M}^{1}=0$, and has finite type (see [8; Cor. 3.11 and Cor. 3.15]).

Consider the diagram

where λ_{0} and λ_{1} are defined on page 281 and
and

$$
\begin{aligned}
& \lambda_{0} \otimes \lambda_{1}(\Phi \otimes \Psi)=\lambda_{0} \Phi \cdot \lambda_{1} \Psi \\
& \bar{\varrho} x=\bar{\varrho} D \bar{x}=0 \quad \text { and } \bar{\varrho} \bar{x}=\bar{x}
\end{aligned}
$$

$$
h\left(\Phi \otimes \Psi^{*} \otimes \bar{x}\right)=\lambda_{0} \Phi \cdot \lambda_{1} \Psi \cdot(\mathbf{l} \otimes \bar{x} \otimes \mathbf{1})
$$

By [8, Lemma 5.28] h is an isomorphism of graded algebras (because ΛX_{M} is minimal.) Since ΛX_{M} is 1-connected, $d_{M} X_{M}^{p} \subset \Lambda\left(\oplus_{j=2}^{p-1} X_{M}^{j}\right)$. Hence (5.5) and (5.6) of [8] yield

$$
\begin{equation*}
\lambda_{1} x-\lambda_{0} x=D \bar{x}+\Omega(x), \quad x \in X_{M}^{p} \tag{2.4}
\end{equation*}
$$

where

$$
\Omega(x)=\sum_{n=1}^{\infty} \frac{(i D)^{n}}{n!} x \in\left\{\Lambda\left(X_{M}^{<p}\right) \otimes \Lambda\left(\bar{X}_{M}^{<p-1}\right) \otimes \Lambda\left(D \bar{X}_{M}^{<p}\right)\right\} \cap \text { ker } \Pi
$$

and Π is defined on p. 281.
An easy calculation shows that $\bar{\varrho} D=\bar{\varrho} i D=0$, and it follows from (2.4) that (2.3) is commutative. Thus (cf. [8, chapers 1 and 5]) (2.3) exhibits $\Lambda X_{M} \otimes \Lambda X_{M} \rightarrow \Lambda X_{M}^{I} \rightarrow \Lambda \bar{X}_{M}$ as a minimal KS-extension.

We shall now define a commutative diagram of c.g.d.a.'s

in which all the vertical maps induce isomorphisms on cohomology.
First let $P_{L}, P_{R}: M \times M \rightarrow M$ be the left and right projections, and define

$$
\varphi_{M \times M}(\Phi \otimes \Psi)=A\left(P_{L}\right) \circ \varphi_{M} \Phi \cdot A\left(P_{R}\right) \circ \varphi_{M} \Psi
$$

Since $H^{*}(M)$ has finite type, the Künneth theorem holds and $\varphi_{M \times M}$ induces an isomorphism $\varphi_{M \times M}^{*}$ on cohomology. In particular $\varphi_{M \times M}: \wedge X_{M} \otimes \wedge X_{M} \rightarrow A(M \times M)$ is a minimal model for $M \times M$.

Next, note that the projection Π : $\Lambda X_{M}^{I} \rightarrow \Lambda X_{M}$ satisfies $\Pi \circ \lambda_{0}=\Pi \circ \lambda_{1}=$ id. Hence $\Pi \circ\left(\lambda_{0} \otimes \lambda_{1}\right)=\mu$ is the multiplication homomorphism

$$
\mu: \wedge X_{M} \otimes \wedge X_{M} \rightarrow \Lambda X_{M}
$$

From this and (2.2) we see that the following diagram is commutative.

Since η is a homotopy equivalence it induces an isomorphism $A(\eta)^{*}$ on cohomology. Therefore by Sullivan [15, §3] or Theorem 5.19 of [8] there is a homomorphism of c.g.d.a.'s

$$
\psi:\left(\Lambda X_{M}^{I}, D\right) \rightarrow\left(A\left(M^{l}\right), d\right)
$$

such that $\psi \circ\left(\lambda_{0} \otimes \lambda_{1}\right)=A(\pi) \circ \varphi_{M \times M}$ and $A(\eta) \circ \psi \sim \varphi_{M} \circ \Pi$. Because $A(\eta)^{*}, \varphi_{M}^{*}$ and Π^{*} are all cohomology isomorphisms, so is ψ^{*}.

Finally (2.3) shows that ker ϱ is generated by $\lambda_{0} \otimes \lambda_{1}\left(X_{M} \oplus X_{M}\right)$ and hence $\psi(\operatorname{ker} \bar{\varrho})$ is generated by $A(\pi) \circ \varphi_{M \times M}\left(X_{M} \oplus X_{M}\right)$. Since $A(j) \circ A(\pi)=0$ on elements of degree >0 it follows that ψ factors to give a c.g.d.a. homomorphism

$$
\varphi_{\Omega}:\left(\Lambda \bar{X}_{M}, 0\right) \rightarrow(A(\Omega M), d)
$$

such that (2.5) commutes.
Now since \mathcal{F} is a Hurewicz fibration, M is 1 -connected and $H^{*}(M)$ has finite type, a theorem of Grivel [2] or [8, Th. 20.3] asserts that because $\varphi_{M \times M}^{*}$ and ψ^{*} are isomorphisms so is φ_{Ω}^{*}. In particular $\varphi_{\Omega}:\left(\Lambda \bar{X}_{M}, 0\right) \rightarrow A(\Omega M)$ is a minimal model for the loop space of M.

We now turn our attention to the fibration \mathcal{F}_{N}. Recall that $\varphi_{N}:\left(\Lambda X_{N}, d_{N}\right) \rightarrow(A(N), d)$ is a minimal model for the path connected space N.

Use (2.1) to obtain from (2.5) the commutative diagram

Using again Sullivan $[15, \S 5]$ or [8, Th. 5.19] we obtain unique (up to homotopy) c.g.d.a. maps
and

$$
\varphi_{0}:\left(\Lambda X_{M}, d_{M}\right) \rightarrow\left(\Lambda X_{N}, d_{N}\right)
$$

$$
\varphi_{1}:\left(\Lambda X_{M}, d_{M}\right) \rightarrow\left(\Lambda X_{N}, d_{N}\right)
$$

such that $\varphi_{N} \circ \varphi_{0} \sim A\left(P_{L} \circ i_{N}\right) \circ \varphi_{M}$ and $\varphi_{N} \circ \varphi_{1} \sim A\left(P_{R} \circ i_{N}\right) \circ \varphi_{M}$. Define a homomorphism of c.g.d.a.'s

$$
\mu_{N}: \wedge X_{M} \otimes \wedge X_{M} \rightarrow \wedge X_{N}
$$

by

$$
\mu_{N}(\Phi \otimes \Psi)=\varphi_{0}(\Phi) \cdot \varphi_{1}(\Psi) .
$$

Then

$$
\varphi_{N} \circ \mu_{N} \sim A\left(i_{N}\right) \circ \varphi_{M \times M}
$$

Therefore we can apply (9.15.4) of [8] to obtain from (2.6) another commutative diagram of c.g.d.a.'s

in which $\varphi_{\Omega}^{\prime} \sim \varphi_{\Omega}$. In particular φ_{Ω}^{*} is an isomorphism.
Finally, write $\Lambda X_{M}^{I}=\Lambda X_{M} \otimes \Lambda X_{M} \otimes \Lambda \bar{X}_{M}$ using the isomorphism h of (2.3). The ideal ker $\mu_{N} \otimes \Lambda \bar{X}_{M}$ is D-stable, and so a c.g.d.a.

$$
\left(\Lambda X_{N} \otimes \wedge \bar{X}_{M}, D_{N}\right)
$$

is defined by

$$
D_{N}(\Phi \otimes \mathbf{1})=d_{N} \Phi \otimes \mathbf{1} \quad \text { and } \quad D_{N} \circ\left(\mu_{N} \otimes \mathbf{i d}\right)=\left(\mu_{N} \otimes \mathrm{id}\right) \circ D .
$$

Clearly ψ_{N} factors through $\left(\Lambda X_{N} \otimes \Lambda \bar{X}_{M}, D_{N}\right)$ to produce the commutative diagram of c.g.d.a.'s

Because φ_{N}^{*} and $\varphi_{\Omega}^{\prime *}$ are isomorphisms the comparison theorem, applied to the spectral
sequence of Grivel [2] or [8, Th. 20.5] for the fibration \mathcal{F}_{N}, shows that $\psi_{N}^{* *}$ is an isomorphism. Thus we have established

Theorem 2.8. A model for the space M_{N}^{I} is given by

$$
\psi_{N}^{\prime}:\left(\Lambda X_{N} \otimes \wedge \bar{X}_{M}, D_{N}\right) \rightarrow\left(A\left(M_{N}^{I}\right), d\right)
$$

In particular (cf. Sullivan [15] or [8, Cor. 2.4]) the minimal model of M_{N}^{I} is generated by $H\left(X_{N} \oplus \bar{X}_{M}, Q\left(D_{N}\right)\right)$, i.e.

$$
\pi_{\psi}^{*}\left(M_{N}^{I}\right)=H\left(X_{N} \oplus \bar{X}_{M}, Q\left(D_{N}\right)\right)
$$

Next recall that ΛX_{N} is minimal and (cf. sec. 1) project the top row of (2.7) to the short exact sequence

$$
0 \rightarrow\left(X_{N}, 0\right) \rightarrow\left(X_{N} \oplus \bar{X}_{M}, Q\left(D_{N}\right)\right) \rightarrow\left(\bar{X}_{M}, 0\right) \rightarrow 0
$$

This leads to a long exact sequence

$$
\begin{equation*}
\ldots \xrightarrow{\partial^{*}} X_{N}^{p} \longrightarrow H^{p}\left(X_{N} \oplus \bar{X}_{M}, Q\left(D_{N}\right)\right) \longrightarrow \bar{X}_{N}^{p} \xrightarrow{\partial^{*}} X_{N}^{p+1} \longrightarrow \ldots \tag{2.9}
\end{equation*}
$$

in which clearly $\partial^{*}=Q\left(D_{N}\right)$.
A straightforward calculation using (2.4) shows that

$$
D_{N}(1 \otimes \bar{x})=\left(\varphi_{1}-\varphi_{0}\right) x-\left(\mu_{N} \otimes \mathrm{id}\right) \Omega(x), \quad x \in X_{M}
$$

Since $\Omega(x)$ is decomposable we conclude

$$
\partial^{*} \bar{x}=\left(Q\left(\varphi_{1}\right)-Q\left(\varphi_{0}\right)\right) x
$$

If $\partial_{M}^{*}: \bar{X}_{M} \rightarrow X_{M}$ is the canonical isomorphism we can write this as

$$
\begin{equation*}
\partial^{*}=\left[Q\left(\varphi_{1}\right)-Q\left(\varphi_{0}\right)\right] \circ \partial_{M}^{*} \tag{2.10}
\end{equation*}
$$

Now the sequence (2.9) allows us to identify $H\left(X_{N} \oplus \bar{X}_{M}, Q\left(D_{N}\right)\right)$ with coker $\partial^{*} \oplus \overline{\mathrm{ker} \partial^{*}}$, and so Theorem 2.8 has the following

Corollary 2.11. The space of generators for the minimal model of M_{N}^{I} is given by

$$
\pi_{\psi}^{*}\left(M_{N}^{I}\right)=H\left(X_{N} \oplus \bar{X}_{M}, Q\left(D_{N}\right)\right)=\operatorname{coker}\left(Q\left(\varphi_{1}\right)-Q\left(\varphi_{0}\right)\right) \oplus \overline{\operatorname{ker}\left(Q\left(\varphi_{1}\right)-Q\left(\varphi_{0}\right)\right)}
$$

Next recall that we identify $X_{N}=\pi_{p}^{*}(N)$ etc. Since φ_{0} and φ_{1} correspond respectively to $p_{0}=P_{L} \circ i_{N}: N \rightarrow M$ and $p_{1}=P_{R} \circ i_{N}: N \rightarrow M$ we have $Q\left(\varphi_{i}\right)=p_{i}^{*}$, and (2.9) can be written in the form (cf. [10, sec. 4])

$$
\begin{equation*}
\ldots \longrightarrow \pi_{\psi}^{p}(N) \xrightarrow{\pi_{N}^{*}} \pi_{\psi}^{p}\left(M_{N}^{I}\right) \xrightarrow{j_{N}^{*}} \pi_{\psi}^{p}(\Omega M) \xrightarrow{\left(p_{1}^{*}-p_{0}^{*}\right) \partial_{M}^{*}} \pi_{\psi}^{p+1}(N) \longrightarrow \ldots \tag{2.12}
\end{equation*}
$$

Observe that (2.10) is analogous to a result of Grove [6] and that (2.12) is the ψ-analogue of a sequence in [6, Theorem 1.3]. However, unless N is assumed nilpotent (2.12) cannot be obtained from [6] by dualizing; it may be a different sequence entirely!

Now let $V=N \cap \Delta(M)$ and let $\sigma: V \rightarrow M_{N}^{I}$ be the inclusion defined by

$$
\sigma(x, x): I \rightarrow x, \quad(x, x) \in N \cap \Delta(M)
$$

Because of applications to geodesics we consider the following conditions:

$$
\begin{equation*}
\sigma \text { is a homotopy equivalence } \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
H^{p}(V)=0, \quad p>r \tag{2.14}
\end{equation*}
$$

Note that (2.13) implies that V is path connected, and that σ induces an isomorphism $\pi_{\psi}^{*}\left(M_{N}^{I}\right) \rightarrow \pi_{\psi}^{*}(V)$. Moreover if $\gamma: V \rightarrow N$ is the inclusion then $\pi_{N} \circ \sigma=\gamma$, and so we can identify π_{N}^{*} with γ^{*} 。

Theorem 2.15. Suppose (2.13) and (2.14) hold. Then
(i) $\operatorname{ker}\left(p_{1}^{*}-p_{0}^{*}\right)$ has finite dimension $\leqslant r$, and is spanned by elements of even degree.
(ii) The sequence
$0 \longrightarrow \pi_{\psi}^{\text {odd }}(M) \xrightarrow{p_{1}^{*}-p_{0}^{*}} \pi_{\psi}^{\text {odd }}(N) \xrightarrow{\gamma^{*}} \pi_{\psi}^{\text {odd }}(V)$

$$
\mathcal{\pi}_{\psi}^{\text {even }}(M) \underset{p_{1}^{*}-p_{0}^{*}}{\partial_{M}^{*} \circ j_{N}^{*} \circ\left(\sigma^{*}\right)^{-1}} \pi_{\psi}^{\text {even }}(N) \xrightarrow[\gamma^{*}]{\longrightarrow} \pi_{\psi}^{\text {even }}(V) \longrightarrow 0
$$

is exact.
Proof. (i) follows from Lemma 2.18 below, applied to ($\wedge X_{N} \otimes \Lambda \bar{X}_{M}, D_{N}$). (ii) follows from (i) and the exactness of (2.12).

Corollary 2.16. The following are equivalent when (2.13) and (2.14) hold
(i) $\operatorname{dim} \pi_{\psi}^{*}(N)<\infty$
and
(ii) $\operatorname{dim} \pi_{\varphi}^{*}(V)<\infty$ and $\operatorname{dim} \pi_{\varphi}^{*}(M)<\infty$.

Furthermore, if (i) and (ii) hold then

$$
\chi_{\pi}(N)=\chi_{\pi}(M)+\chi_{\pi}(V)
$$

where $\chi_{\pi}=\operatorname{dim} \pi_{\psi}^{\text {even }}-\operatorname{dim} \pi_{\psi}^{\text {odd }}$ is the homotopy Euler characteristic.

Proof. If (i) holds then $\operatorname{dim} \pi_{\varphi}^{\text {odd }}(M)<\infty$; then $\pi_{\psi}^{2 p-1}(M)=0$, if $2 p-1 \geqslant m$, some m. Apply Theorem 5.9 of [10] to the projection $\left.\left(\Lambda X_{M}, d\right) \rightarrow \Lambda\left(\sum_{j>m} X_{M}^{j}\right), 0\right)$ to obtain $X_{M}^{j}=0$, $j>m$. Hence $\operatorname{dim} \pi_{\psi}^{*}(M)<\infty$ and so (i) implies (ii).

Consider in general (cf. top row of (2.7)) a sequence of connected KS complexes of the form

$$
(\Lambda Y, d) \xrightarrow{i}(\Lambda Y \otimes \Lambda X, D) \xrightarrow{\varrho}(\Lambda X, 0)
$$

in which $(\Lambda Y, d)$ is minimal. As above we obtain a long exact sequence

$$
\begin{equation*}
\ldots \longrightarrow Y^{p} \xrightarrow{Q(i)^{*}} H^{p}(Y \oplus X, Q(D)) \xrightarrow{Q(\varrho)^{*}} X^{p} \xrightarrow{\partial^{*}} Y^{p+1} \longrightarrow \ldots \tag{2.17}
\end{equation*}
$$

Lemma 2.18. If $H^{i}(\Lambda Y \otimes \Lambda X, D)=0$ for $i>r$ then every homogeneous element in ker ∂^{*} has odd degree and dim ker $\partial^{*} \leqslant r$.

Proof. Choose a graded subspace $X_{1} \subset X$ so that

$$
X=X_{1} \oplus \operatorname{ker} \partial^{*}
$$

This decomposition defines a linear projection $X \rightarrow$ ker ∂^{*} which extends to a homorphism

$$
\varrho_{1}: \Lambda X \rightarrow \Lambda \operatorname{ker} \partial^{*}
$$

Composing with ϱ we obtain

$$
\varrho_{2}=\varrho_{1} \circ \varrho:(\wedge Y \otimes \wedge X, D) \rightarrow\left(\Lambda \operatorname{ker} \partial^{*}, 0\right)
$$

Moreover, by exactness $\operatorname{ker} \partial^{*}=\operatorname{im} Q(\varrho)^{*}$ and since $Q\left(\varrho_{1}\right)$ is the identity in ker ∂^{*} we obtain that $Q\left(\varrho_{2}\right)^{*}$ is surjective. Thus Theorem 5.9 of [10] applies and shows that the product of any $r+1$ elements of positive degree in $H\left(\Lambda \operatorname{ker} \partial^{*}\right)$ is zero. Since $H\left(\Lambda \operatorname{ker} \partial^{*}\right)=\Lambda$ ker ∂^{*} this implies the lemma.

We close this section with two examples in which $N=V_{0} \times V_{1}$ and $V_{i} \subset M, i=0,1$. Note by the way that it would be no real restriction to consider only the case $N=V_{0} \times V_{1}$ since in fact $M_{N}^{I}=M \times M_{N \times \Delta(M)}^{I}$.

If $N=V_{0} \times V_{1}$ and $i_{j}: V_{j} \rightarrow M, j=0,1$ are the inclusions then $p_{1}^{* *}-p_{0}^{*}: \pi_{\psi}^{*}(M) \rightarrow \pi_{\psi}^{*}(N)$ can be written as

$$
\begin{equation*}
i_{1}^{*}-i_{0}^{*}: \pi_{\psi}^{*}(M) \rightarrow \pi_{\psi}^{*}\left(V_{0}\right) \oplus \pi_{\psi}^{*}\left(V_{1}\right) \tag{2.19}
\end{equation*}
$$

and if (2.13) and (2.14) hold this can be substituted in the sequence of Theorem 2.15 (ii).
Example 2.20. Suppose V_{0} and V_{1} are even spheres of dimensions $2 l$ and $2 m$, and $V=V_{0} \cap V_{1}$ is properly contained in each. Assume (2.13) and (2.14) hold and $\operatorname{dim} H^{*}(M)<\infty$. Then

$$
H^{*}(V)=H^{*}(p t)
$$

and

$$
\begin{equation*}
\sum_{p} \operatorname{dim} H^{p}(M) t^{p}=\left(1+t^{2 l}\right)\left(1+t^{2 m}\right) \tag{2.21}
\end{equation*}
$$

Indeed, since V is contractible in each of V_{0} and $V_{1}, \gamma^{*}=0$. From (ii) of Theorem 2.15 we then deduce that

$$
i_{1}^{*}-i_{0}^{\nRightarrow}: \pi_{\psi}^{\text {odd }}(M) \rightarrow \pi_{\psi}^{\text {odd }}\left(V_{0} \times V_{1}\right)
$$

is an isomorphism and

$$
i_{1}^{\neq}-i_{0}^{*}: \pi_{\psi}^{\text {even }}(M) \rightarrow \pi_{\psi}^{\text {even }}\left(V_{0} \times V_{1}\right)
$$

is surjective. Since $\operatorname{dim} \pi_{\psi}^{\text {odd }}\left(V_{0} \times V_{1}\right)=\operatorname{dim} \pi_{\varphi}^{\text {even }}\left(V_{0} \times V_{1}\right)=2$ on the one hand, and since by Theorem 1' of [9]

$$
\operatorname{dim} \pi_{\psi}^{\text {odd }}(M) \geqslant \operatorname{dim} \pi_{\psi}^{\text {even }}(M)
$$

on the other, we must have equality above and hence

$$
i_{1}^{*}-i_{0}^{*}: \pi_{\psi}^{*}(M) \rightarrow \pi_{\varphi}^{*}\left(V_{0} \times V_{1}\right)
$$

is an isomorphism. Again by Theorem 2.15 (ii), this implies $\pi_{\psi}^{*}(V)=0$ and so $H^{*}(V)=H^{*}(p t)$. It also allows us to apply Corollary 2 to Theorem 5 of [9] which gives (2.21).

Example 2.22. Let M, V_{0} and V_{1} all be spheres and suppose $V_{0} \cap V_{1}$ is properly contained in each $V_{i}, i=0,1$. Then (2.13) and (2.14) cannot hold. Otherwise as in the above example

$$
i_{1}^{*}-i_{0}^{*}: \pi_{\psi}^{\text {odd }}(M) \rightarrow \pi_{\psi}^{\text {odd }}\left(V_{0} \times V_{1}\right)
$$

would be an isomorphism, but $\operatorname{dim} \pi_{\psi}^{\text {odd }}(M)=1$ and $\operatorname{dim} \pi_{\psi}^{\text {odd }}\left(V_{0} \times V_{1}\right)=2$.

3. The minimal model for the space of \boldsymbol{g}-invariant curves

Let M continue to denote a l-connected space whose rational cohomology has finite type, and fix a continuous map $g: M \rightarrow M$. We shall apply the results of section 2 to the case N is the graph of g :

$$
N=G(g)=\{(x, g(x)) \mid x \in M\} .
$$

When g satisfies a condition we call rigidity at 1 (this is always true if $g^{t}=i d$, some k) then we give an explicit form of the minimal model of $M_{G(g)}^{I}$.

Since $M_{G(g)}^{I}$ consists of paths $f: I \rightarrow M$ such that $f(1)=g(f(0))$ we can identify it with the space of paths

$$
f: \mathbf{R} \rightarrow M \quad \text { satisfying } f(t+1)=g(f(t))
$$

i.e. the space of g-invariant curves. Similarly if $g^{k}=$ id we can identify $M_{G(g)}^{I}$ with the space of continuous maps

$$
f: S^{1} \rightarrow M \quad \text { such that } f\left(e^{2 \pi I / k} e^{i \theta}\right)=g\left(f\left(e^{i \theta}\right)\right)
$$

i.e. $M_{G(g)}^{I}$ is then the space of g-invariant circles on M.

For the moment let $g: M \rightarrow M$ be any continuous map. We translate from section 2 with $N=G(g)$. Note that $p_{0}: G(g) \rightarrow M$ is a homeomorphism, and so φ_{0} (which represents it) is an isomorphism. Moreover if

$$
\psi_{g}:\left(\Lambda X_{M}, d_{M}\right) \rightarrow\left(\Lambda X_{M}, d_{M}\right)
$$

represents $g\left(\varphi_{M} \circ \psi_{g} \sim A(g) \circ \varphi_{M}\right)$ then p_{1} is represented by $\varphi_{1}=\varphi_{0} \circ \psi_{g}$.
Next recall (Theorem 2.8) the model $\left(\Lambda X_{G(g)} \otimes \Lambda \bar{X}_{M}, D_{G(g)}\right)$ for $M_{G(g)}^{I}$. Define a c.g.d.a. $\left(\Lambda X_{M} \otimes \Lambda \bar{X}_{M}, D_{g}\right)$ by requiring that

$$
\varphi_{0} \otimes \mathrm{id}:\left(\Lambda X_{M} \otimes \wedge \bar{X}_{M}, D_{g}\right) \rightarrow\left(\Lambda X_{G(g)} \otimes \wedge \bar{X}_{M}, D_{G(g)}\right)
$$

be an isomorphism. Set $\varphi_{g}^{\prime}=\boldsymbol{\psi}_{G(g)}^{\prime} \circ\left(\varphi_{0} \otimes \mathrm{id}\right)$, then Theorem 2.8 reads:
Corollary 3.1. A model for $M_{G(g)}^{I}$ is given by

$$
\varphi_{g}^{\prime}:\left(\Lambda X_{M} \otimes \Lambda \bar{X}_{M}, D_{g}\right) \rightarrow\left(A\left(M_{G(g)}^{I}\right), d\right)
$$

where D_{g} is determined by

$$
D_{g} \circ\left(\mu_{g} \otimes \mathrm{id}\right)=\left(\mu_{g} \otimes \mathrm{id}\right) \circ D
$$

and $\mu_{g}: \wedge X_{M} \otimes \Lambda X_{M} \rightarrow \Lambda X_{M}$ is given by

$$
\mu_{g}(\Phi \otimes \Psi)=\Phi \cdot \psi_{g}\left(\Psi^{\prime}\right)
$$

For the induced differential $Q\left(D_{g}\right)$ we have

$$
\begin{gather*}
Q\left(D_{g}\right) X_{M}=0 \quad \text { and via }(2.10) \\
Q\left(D_{g}\right) \bar{x}=\left(Q\left(\psi_{g}\right)-i d\right) x, \quad \bar{x} \in \bar{X}_{M} \tag{3.2}
\end{gather*}
$$

which translates Lemma 1.5 of [6].
Remark 3.3. In view of our hypotheses on M there is a canonical isomorphism as mentioned at the end of section 1 ,

$$
Q\left(\Lambda X_{M}\right) \xrightarrow{\cong} \operatorname{Hom}_{\mathbf{Z}}\left(\pi_{*}(M) ; \mathbf{Q}\right) .
$$

Because M is simply connected g induces a well defined homomorphism of homotopy groups

$$
g_{*}: \pi_{*}(M) \rightarrow \pi_{*}(M)
$$

even though g may not preserve base points. Moreover if

$$
g^{*}: \operatorname{Hom}\left(\pi_{*}(M) ; \mathbf{Q}\right) \rightarrow \operatorname{Hom}\left(\pi_{*}(M) ; \mathbf{Q}\right)
$$

is the dual of g_{*}, then the isomorphism above identifies $Q\left(\psi_{g}\right)$ with g^{*}. In particular the generators for the minimal model of $M_{G(g)}^{I}$ are determined by g_{\neq}.

Now let $\left(\Lambda X_{M}\right)_{0}$ be the subalgebra of ΛX_{M} of elements Φ satisfying

$$
\psi_{s} \Phi=\Phi
$$

and let $Q\left(\Lambda X_{M}\right)_{0}$ be the subspace of elements $a \in Q\left(\Lambda X_{M}\right)$ satisfying

$$
Q\left(\psi_{g}\right) a=a
$$

Definition 3.4. A map $g: M \rightarrow M$ will be called rigid at 1 if

$$
\begin{equation*}
Q\left(\Lambda X_{M}\right)=Q\left(\Lambda X_{M}\right)_{0} \oplus \operatorname{im}\left(Q\left(\psi_{g}\right)-\mathrm{id}\right) \tag{3.5}
\end{equation*}
$$

and if for a suitable choice of ψ_{g} the projection

$$
\begin{equation*}
\zeta:\left(\Lambda+X_{M}\right)_{0} \rightarrow Q\left(\Lambda X_{M}\right)_{0} \tag{3.6}
\end{equation*}
$$

is surjective.
Remark 3.7. Since $Q\left(\Lambda X_{M}\right) \cong X_{M}$ is a graded space of finite type, condition (3.5) simply says that if $\left(Q\left(\psi_{g}\right)-\mathrm{id}\right)^{n} a=0$ then $Q\left(\psi_{g}\right) a=a$. Equivalently, $Q\left(\psi_{g}\right)$-id restricts to an isomorphism of the subspace im $\left(Q\left(\psi_{g}\right)-\mathrm{id}\right)$.

Condition (3.6) says that any $Q\left(\psi_{g}\right)$-invariant vector can be represented by a ψ_{g} invariant element in ΛX_{M}.

Thus while (3.5) can be interpreted as a condition on $g_{\#},(3.6)$ is more subtle. Note that if ψ_{g} and X_{M} can be chosen so that X_{M} is stable under ψ_{g} then (3.6) is automatic.

Example 3.8. Suppose $g: M \rightarrow M$ is a continuous map such that $g^{k}=$ id for some $k \in \mathbf{Z}$. Thus g makes M into a G-space, where $G=\mathbf{Z}_{k}$. In this case by Theorem 1.3 we can choose ψ_{g} so that $\psi_{g}^{k}=$ id, which allows us to choose X_{M} to be stable under ψ_{g}. (In fact the constructions in the proof of 1.3 already make ψ_{g} act on X_{M} with order k.) According to the remark above g is rigid at 1 .

Using another approach we have more generally

Theorem 3.9. Let M be 1-connected and suppose g : $M \rightarrow M$ satisfies

$$
g^{k} \sim \mathrm{jd}
$$

Then g is rigid at 1 .

Proof. Let $\varphi_{M}: \Lambda X \rightarrow A(M)$ be the minimal model and choose $\psi_{1}: \Lambda X \rightarrow \Lambda X$ so that

$$
\varphi_{M} \psi_{1} \sim A(g) \varphi_{M}
$$

Then $\psi_{1}^{k} \sim$ id.
By a result of Sullivan [15; Prop. 6.5] or [8, Th. 11.21], this implies

$$
\psi_{1}^{k}=e^{\theta}=\sum_{0}^{\infty} \frac{\theta^{m}}{m!}
$$

where $\theta=s d+d s$ and s is a derivation of degree -1 in ΛX. Moreover

$$
\theta=\ln \left(\psi_{1}^{k}\right)=\sum_{n \geqslant 1}(-1)^{n-1} \frac{\left(\psi_{1}^{k}-\mathrm{id}\right)^{n}}{n}
$$

In particular

$$
\theta \psi_{1}=\psi_{1} \theta
$$

Set $\theta_{1}=-\theta / k=-\left(\frac{s}{k} d+d \frac{s}{k}\right)$; then $e^{\theta_{1}} \sim$ id (cf. Sullivan [15, Prop. A.3]) or [8,
Th. 11.21]. Also $\theta_{1} \psi_{1}=\psi_{1} \theta_{1}$, whence

$$
e^{\theta_{1}} \psi_{1}=\psi_{1} e^{\theta_{1}}
$$

Hence

$$
\left(e^{\theta_{1}} \psi_{1}\right)^{k}=e^{k \theta_{3}} \psi_{1}^{k}=e^{-\theta} \psi_{1}^{k}=\mathrm{id}
$$

and

$$
e^{\theta_{1}} \psi_{1} \sim \psi_{1} .
$$

Put $\psi=e^{\theta_{1}} \psi_{1}$. Then

$$
\psi \sim \psi_{1} \Rightarrow \varphi_{M} \psi \sim A(g) \varphi_{M}
$$

and so ψ represents g. On the other hand

$$
\psi^{k}=\mathrm{id} \quad \text { in } \Lambda X
$$

and so by the argument above ψ is rigid at l.
Remark 3.10. Without proof we mention that there are many more 1 -rigid maps e.g. retractions and more generally maps g satisfying $g^{k+s}=g^{k}$ for some k and s.

Henceforth we assume g to be rigid at 1 and determine the minimal model of $M_{G(g)}^{I}$.
It is immediate from definition 3.4 that we can choose X_{M} and ψ_{g} so that $X_{M}=Y \oplus U$, where

$$
\psi_{g} y=y, \quad y \in Y
$$

and

$$
U \subset \mathrm{im}\left(\psi_{g}-\mathrm{id}\right)
$$

Lemma 3.11. With the choices above
(i) $\operatorname{im}\left(\psi_{g}-\mathrm{id}\right) \subset \Lambda Y \otimes \Lambda+U$, and
(ii) $\Lambda Y \otimes \Lambda+U$ is d_{M}-stable.

Proof. (i): Choose a graded subspace $V \subset \Lambda^{+} X_{M}$ so that $\zeta(V) \subset U$ and $\left(\psi_{g}-\mathrm{id}\right): V \rightarrow U$ is an isomorphism. If we regard U as a subspace of $Q\left(\Lambda X_{M}\right)$, then clearly

$$
\left(\psi_{g}-\mathrm{id}\right)=\left(Q\left(\psi_{o}\right)-\mathrm{id}\right) \circ \zeta: V \rightarrow U
$$

Since $\psi_{g}-\mathrm{id}: V \rightarrow U$ is an isomorphism it follows that $\zeta: V \rightarrow U$ is an isomorphism. Therefore

$$
\Lambda+X_{M}=\Lambda+X_{M} \cdot \Lambda+X_{M} \oplus Y \oplus V
$$

and so

$$
\left(\psi_{g}-\mathrm{id}\right) \Lambda+X_{M}=\left(\psi_{g}-\mathrm{id}\right)\left(\Lambda+X_{M} \cdot \Lambda+X_{M}\right)+U \subset\left[\left(\psi_{g}-\mathrm{id}\right) \Lambda^{+} X_{M}\right] \cdot \Lambda+X_{M}+\Lambda Y \otimes \Lambda+U
$$

An easy degree argument completes the proof.
(ii): Since $\Lambda Y \otimes \Lambda+U$ is the ideal generated by U, (ii) follows from the relation

$$
d_{M} U \subset d_{M} \operatorname{im}\left(\psi_{g}-\mathrm{id}\right) \subset \operatorname{im}\left(\psi_{g}-\mathrm{id}\right) \subset \Lambda Y \otimes \Lambda+U
$$

Since the ideal $\Lambda Y \otimes \Lambda^{+} U$ is $d_{M^{-}}$-stable we may divide out by it to obtain a c.g.d.a. $(\Lambda Y, \delta)$ such that the projection

$$
\begin{equation*}
P: \wedge X_{M} \rightarrow \wedge Y \tag{3.12}
\end{equation*}
$$

is a homomorphism of c.g.d.a.'s.
We now associate to ($\Lambda Y, \delta$) the corresponding c.g.d.a. $\left(\Lambda Y^{I}, D\right)(p .280)$, with $\Lambda Y^{I}=$ $\Lambda Y \otimes \Lambda \bar{Y} \otimes \Lambda D \bar{Y}$, and derivations i and θ in ΛY^{I}, and c.g.d.a. maps $\lambda_{0}, \lambda_{1}: \Lambda Y \rightarrow \Lambda Y^{I}$. Moreover λ_{0} and λ_{1} determine an isomorphism

$$
\lambda_{0} \otimes \lambda_{1} \otimes \mathrm{id}: \Lambda Y \otimes \Lambda Y \otimes \Lambda \bar{Y} \rightarrow \Lambda Y^{1}
$$

(compare (2.3)). Thus a homomorphism of graded algebras

$$
\mu \otimes \operatorname{id}: \Lambda Y^{\prime} \rightarrow \Lambda Y \otimes \Lambda \bar{Y}
$$

is defined by

$$
(\mu \otimes \mathrm{id}) \lambda_{0} \Phi=(\mu \otimes \mathrm{id}) \lambda_{1} \Phi=\Phi \quad \text { and }(\mu \otimes \mathrm{id}) \bar{y}=\bar{y}
$$

for all $\Phi \in \Lambda Y$ and $\bar{y} \in \bar{Y}$. As in section 2 a differential \bar{D} in $\Lambda Y \otimes \Lambda \bar{Y}$ is defined by requiring $\mu \otimes i d$ to be a map of c.g.d.a.'s.

In order to identify \bar{D}, we define a degree -1 derivation i_{Y} in $\Lambda Y \otimes \Lambda \bar{Y}$ by

$$
i_{Y} y=\bar{y} \quad \text { and } \quad i_{Y} \bar{y}=0
$$

and a degree +1 derivation d_{g} in $\Lambda Y \otimes \Lambda \bar{Y}$ by

$$
d_{g} y=\delta y \quad \text { and } \quad d_{g} \bar{y}=-i_{Y} \delta y, \quad y \in Y
$$

Since obviously $i_{Y}^{2}=0$ we get

$$
\begin{equation*}
d_{g} \circ i_{Y}+i_{Y} \circ d_{g}=0 \tag{3.13}
\end{equation*}
$$

and therefore $d_{g}^{2}=0$; i.e. $\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ is a c.g.d.a.
Remark. $\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ is obviously a minimal KS complex. If Y is the minimal model for a space S, then $\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ is Sullivan's model for the space of maps $S^{1} \rightarrow S([14],[16])$.

Lemma 3.14. The differentials \bar{D} and d_{g} agree, i.e.

$$
\mu \otimes \mathrm{id}:\left(\Lambda Y^{I}, D\right) \rightarrow\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)
$$

is a homomorphism of c.g.d.a.'s.
Proof. Note that $\bar{D}=\delta$ in ΛY. Hence we need only show

$$
\bar{D} \bar{y}=-i_{Y} \delta y, \quad y \in Y .
$$

which we do by induction on the degree of y.
First recall that the derivation i in ΛY^{I} (p.281) satisfies $i^{2}=0$, whence by (2.4) $i\left(\lambda_{1} y\right)=i\left(\lambda_{0} y\right)=\bar{y}$ for all $y \in Y$. If follows that

$$
(\mu \otimes \mathrm{id}) \circ i=i_{Y} \circ(\mu \otimes \mathrm{id})
$$

and using (2.4) we conclude

$$
\begin{aligned}
\bar{D} \bar{y} & =-\sum_{n=1}^{\infty} \frac{\left(i_{Y} \bar{D}\right)^{n}}{n!} y=-\sum_{n=0}^{\infty} \frac{\left(i_{Y} \bar{D}\right)^{n}}{(n+1)!} i_{Y} \delta y \\
& =-i_{Y} \delta y-\sum_{n=1}^{\infty} \frac{\left(i_{Y} \bar{D}\right)^{n}}{(n+1)!} i_{Y} \delta y
\end{aligned}
$$

If $\operatorname{deg} y=p$ then δy is a polynomial in the y_{j} 's with $\operatorname{deg} y_{j}<p((\Lambda Y, \delta)$ is a 1-connected KS-complex) and it follows from (3.13) and our induction hypothesis that

$$
\bar{D} i_{\mathrm{Y}} \delta y=d_{g} i_{\mathrm{Y}} \delta y=i_{\mathrm{Y}} \delta^{2} y=0 .
$$

Hence the equation above reads $\bar{D} \bar{y}=-i_{Y} \delta y$ and we are done.
Now extend the c.g.d.a. map P of (3.12) to a c.g.d.a. map $P^{I}:\left(\Lambda X_{M}^{I}, D\right) \rightarrow\left(\Lambda Y^{l}, D\right)$ by setting

$$
P^{I} \bar{x}=\widehat{P x} \quad \text { and } \quad P^{I} D \bar{x}=D \overline{P x}, \quad x \in Y
$$

and

$$
P^{I} \bar{x}=P^{I} D \bar{x}=0, \quad x \in U
$$

Then P^{I} commutes with i and θ so that

$$
\begin{equation*}
P^{I} \circ \lambda_{0}=\lambda_{0} \circ P \quad \text { and } \quad P^{I} \circ \lambda_{1}=\lambda_{1} \circ P \tag{3.15}
\end{equation*}
$$

Also, extend P to an algebra homomorphism

$$
P_{g}: \wedge X_{M} \otimes \Lambda \bar{X}_{M} \rightarrow \Lambda Y \otimes \wedge \bar{Y}
$$

by setting $P_{g} \bar{x}=\overline{P x}$ for all $x \in X_{M}$ (i.e. $P_{g} \bar{x}=0, x \in U$).
For these extensions we have
Lemma 3.16. The diagram

commutes. In particular $P_{g} \circ D_{g}=d_{g} \circ P_{g}$, i.e. P_{g} is a homomorphism of c.g.d.a.'s.
Proof. If $x \in X_{M}$ then $(\mu \otimes \mathrm{id}) \circ P^{I} \bar{x}=P_{g} \circ\left(\mu_{g} \otimes \mathrm{id}\right) \bar{x}$ is immediate from the definitions. Moreover by (3.15)

$$
(\mu \otimes \mathrm{id}) \circ P^{I} \lambda_{0} x=(\mu \otimes \mathrm{id}) \circ \lambda_{0} \circ P x=P x=P_{g} \circ\left(\mu_{g} \otimes \mathrm{id}\right) \lambda_{0} x .
$$

Finally recall that $\operatorname{im}\left(\psi_{q}-\mathrm{id}\right) \subset \Lambda Y \otimes \Lambda+U$ by Lemma 3.11. It follows that
and hence by (3.15)

$$
(\mu \otimes \mathrm{id}) \circ P^{I} \circ \lambda_{1} x=(\mu \otimes \mathrm{id}) \circ \lambda_{1} \circ P x=P x=P \circ \psi_{g} x=P_{g} \circ \psi_{g} x=P_{g} \circ\left(\mu_{g} \otimes \mathrm{id}\right) \circ \lambda_{1} x
$$

i.e. the diagram commutes. Since $\mu_{g} \otimes i d, P^{I}$ and $\mu \otimes i d$ are all morphisms of c.g.d.a.'s and $\mu_{g} \otimes$ id is surjective, it follows that P_{g} is also a c.g.d.a. homomorphism.

Theorem 3.17. The homomorphism P_{g} induces an isomorphism

$$
H\left(\Lambda X_{M} \otimes \wedge \bar{X}_{M}, D_{g}\right) \rightarrow H\left(\Lambda Y \otimes \wedge \bar{Y}, d_{g}\right)
$$

of cohomology. In particular $\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ is the minimal model of $M_{G(g)}^{\prime}$.
Proof. According to Theorem 7.1 in [8] we need only check that

$$
Q\left(P_{\jmath}\right)^{*}: H\left(X_{M} \oplus \bar{X}_{M}, Q\left(D_{g}\right)\right) \rightarrow Y \oplus \bar{Y}
$$

is an isomorphism. But it follows from 3.2 that $Q\left(D_{g}\right)$ is zero on X_{M} and on \bar{Y} and restricts to an isomorphism $\bar{U} \rightarrow U$. Hence $Q\left(P_{g}\right)^{*}$ identifies $H\left(X_{M} \oplus \bar{X}_{M}, Q\left(D_{g}\right)\right)$ with $Y \oplus \bar{Y}$.

Finally, consider the commutative diagram

Since P_{g}^{*} is an isomorphism Sullivan [15] or Theorem 5.19 of [8] implies there is a homomorphism $\varphi:\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right) \rightarrow\left(\Lambda X_{M} \otimes \Lambda \bar{X}_{M}, D_{g}\right)$ of c.g.d.a.'s such that φ^{*} is the isomorphism inverse to P_{g}.

Thus

$$
\varphi_{g}:\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right) \rightarrow\left(A\left(M_{G(g)}^{I}\right), d\right)
$$

is a minimal model for $A\left(M_{G(g)}^{I}\right)$, where $\varphi_{\theta}=\varphi_{g}^{\prime} \circ \varphi$.
Remark. As mentioned earlier the c.g.d.a. $\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ is exactly Sullivan's construction applied to ($\Lambda Y, \delta$). Moreover if $g=\mathrm{id}_{M}$ then $\psi_{g}=\mathrm{id}, X_{M}=Y$ and $P_{g}=\mathrm{id}$. Hence we recover Sullivan's theorem [14] (with a different proof) as a special case of Theorem 3.15.

Remark 3.18. The fact that the minimal model of $M_{G(g)}^{I}$ appears to be the minimal model for a space of closed curves can be explained as follows:

Let $A(p)$ be the rational c.g.d.a. $\subset A\left(\Delta^{p}\right)$ generated by the barycentric coordinate functions. In [15, §8] Sullivan constructs the function adjoint to "differential forms" which associates with each c.g.d.a. $\left(R, d_{R}\right)$ the simplicial set $\langle R\rangle$ given by

$$
\left.\langle R\rangle_{p}=\left\{\text { all homomorphisms }\left(R, d_{R}\right) \rightarrow(A(p), d)\right)\right\} .
$$

Now suppose g is rigid at 1 . The homomorphism ψ_{g} yields a map of simplicial sets

$$
\left\langle\psi_{g}\right\rangle:\left\langle\Lambda X_{M}\right\rangle \rightarrow\left\langle\Lambda X_{M}\right\rangle
$$

The fixed point set of $\left\langle\psi_{g}\right\rangle$ is the sub-simplicial set $\left\langle\Lambda X_{M}\right\rangle^{g}$ defined by

$$
\left\langle\Lambda X_{M}\right\rangle_{p}^{g}=\left\{\text { all homomorphisms }\left(\Lambda X_{M}, d_{M}\right) \xrightarrow{\eta}(A(p), d) \quad \text { such that } \eta \circ \psi_{g}=\eta\right\} \text {. }
$$

On the other hand, since g is rigid at 1 we have that the ideal generated by im ($\psi_{g}-\mathrm{id}$) is exactly $\Lambda Y_{\otimes} \Lambda+U$. Hence we obtain $\left\langle\Lambda X_{M}\right\rangle_{p}^{g}=\langle\Lambda Y\rangle_{p}$ i.e.

$$
\left\langle\Lambda X_{M}\right\rangle^{g}=\langle\Lambda Y\rangle
$$

Let $\left|\left\langle\Lambda X_{M}\right\rangle\right|$ and $|\langle\Lambda Y\rangle|$ be the geometric realizations (cf. Milnor [13]). $\left\langle\psi_{g}\right\rangle$ defines a continuous map \bar{g} of $\left|\left\langle\Lambda X_{M}\right\rangle\right|$ and we have that the fixed point set of \bar{g} is given by

$$
\left|\left\langle\Lambda X_{\mu}\right\rangle\right\rangle^{\bar{\sigma}}=|\langle\Lambda Y\rangle| .
$$

Finally note that $\left|\left\langle\Lambda X_{M}\right\rangle\right|$ is the "rationalization of M " and \bar{g} is the rationalization of g; thus ΛY is the minimal model of the fixed point set of the rationalization of g. Moreover the model of the g-invariant paths on M coincides with the model of the space of all closed paths in the fixed point set of the rationalization of g, \bar{g}.

Remark 3.19. Note that if $g: M \rightarrow M$ is periodic i.e. $g^{k}=\mathrm{id}_{M}$ then we can prove Theorem 3.17 directly via Sullivan's theorem by studying the inclusion of $M_{G(g)}^{I}$ into the space of all circles on M (cf. the beginning of sec. 3) and using (3.3) and the remarks concluding section 1.

4. On the cohomology of $M_{G(\mathrm{~s})}^{(}$

Throughout this section M is a l-connected space whose rational cohomology has finite type and $g: M \rightarrow M$ is a l-rigid map. In particular we have a minimal model for the space $M_{G(g)}^{I}$ of g-invariant curves as in Theorem 3.17.

We show how one can use the minimal model for $M_{G(g)}^{I}$ in order to obtain information about the cohomology $H^{*}\left(M_{G(g)}^{I}\right)$. In particular we are interested in the Betti-numbers of $M_{G(g)}^{I}$, because of their significance in applications to geodesics.

As a first application we have the following immediate generalization of a theorem due to Sullivan [14].

Theorem 4.1. If the rational cohomology of $M_{G(g)}^{I}$ is not trivial, then $M_{G(g)}^{I}$ has nonzero Betti numbers in an infinite arithmetic sequence of dimensions.

Proof. First suppose ($\wedge Y, \delta)((3.12))$ has no odd dimensional generators; i.e. ΛY is a polynomial algebra in even dimensional generators (which exist for otherwise $Y=\bar{Y}=\{0\}$ and consequently $H^{*}\left(M_{G(g)}^{I}\right)$ would be trivial) and $\delta=0$. Then $d_{g}=0$ and the d_{g}-closed elements $\left\{x^{\prime}\right\}_{j \in \mathbb{N}}$ in $\Lambda Y \otimes \Lambda \bar{Y}$ provides us with an infinite sequence of non-zero cohomology classes.

Secondly, if ΛY has odd dimensional generators we proceed exactly as in Sullivan [14, p. 46].

We are now interested in finding necessary and sufficient conditions in order for $M_{G(g)}^{I}$ to have an unbounded sequence of Betti numbers. Note that as a consequence of Theorem 4.1 we have

Corollary 4.2. Suppose the rational cohomology of the spaces $\left(M_{i}\right)_{G\left(g_{i}\right)}^{I}, i=1,2$ is nontrivial. Then $\left(M_{1} \times M_{2}\right)_{G\left(\theta_{1} \times g_{2}\right)}^{I}$ has an unbounded sequence Betti numbers.

We return to the general case corresponding to the direct sum decomposition $Y=$ $Y^{\text {odd }} \oplus Y^{\text {even }}$

$$
\chi_{0}=\operatorname{dim} Y^{\mathrm{odd}}
$$

and

$$
\chi_{e}=\operatorname{dim} Y^{\text {even }}
$$

if both χ_{0} and χ_{e} are finite

$$
\chi_{\pi}=\chi_{e}-\chi_{0}
$$

is the homotopy Euler characteristic of ($\Lambda Y, \delta$).
Proposition 4.3. The sequence of Betti numbers for $M_{G(g)}^{I}$ is unbounded if and only if one of the following conditions is fulfilled:
(i) $\chi_{0} \geqslant 2$
(ii) $\chi_{0}=0$ and $\chi_{e} \geqslant 2$
(iii) $\chi_{0}=1, \delta Y^{\text {odd }}=\{0\}$ and $\chi_{e} \geqslant 1$
(iv) $\chi_{0}=1, \delta Y^{\text {odd }} \neq\{0\}$ and $\chi_{e} \geqslant 3$
(v) $\chi_{0}=1, \delta Y^{\text {odd }} \neq\{0\}, \chi_{e}=2$ and $\operatorname{dim} \mathbf{Q}\left[x_{1}, x_{2}\right] /\left(\partial P / \partial x_{1}, \partial P / \partial x_{2}\right)=\infty$, where $Y^{\text {even }}=$ $\operatorname{span}\left\{x_{1} ; x_{2}\right\}$ and $\delta y=P\left(x_{1}, x_{2}\right), y \in Y^{\text {odd }}$.

Proof. In [16] it has in particular been proved that $\chi_{0} \geqslant 2$ implies that $H\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ has an unbounded sequence $\left\{b_{i}\right\}_{i \in \mathbf{N}}$ of Betti numbers.

If $\chi_{0}=0$ then $d_{g}=0$ and $\left\{b_{i}\right\}_{i \in \mathbb{N}}$ is clearly unbounded if and only if $\chi_{e} \geqslant 2$.
Assume in the following that $\chi_{0}=1$. First let $\delta Y^{\text {odd }}=\{0\}$. If $\chi_{e}=0$ then $\Lambda Y=\mathbf{Q}(y, \tilde{y})$ and $d_{g}=0$. Thus $\left\{b_{i}\right\}$ is bounded. Suppose now on the other hand that $\chi_{e} \geqslant 1$. Then clearly the ideal im d_{g} in ker d_{g} is contained in the ideal generated by y and \bar{y}, where $y \in Y^{\text {oda }}$. Hence $\operatorname{dim} \operatorname{ker} \delta \cap Y^{\text {even }} \geqslant 2$ implies that $\left\{b_{i}\right\}_{t \in N}$ is unbounded. If there are not two even closed generators of Y we range the generators of $Y^{\text {even }}$ by increasing degrees $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ so that $\delta x_{1}=0, \delta x_{2}=x_{1}^{\alpha} y, \ldots, \delta x_{n}=P_{n}\left(x_{1}, \ldots, x_{n-1}\right) y, \ldots$ and $P_{n}, n \geqslant 3$, belongs to the ideal generated by x_{2}, \ldots, x_{n-1}. Then we have
and

$$
\begin{gathered}
d_{g} \bar{x}_{2}=\alpha x_{1}^{\alpha-1} \bar{x}_{1} y+x_{1}^{\alpha} \bar{y} \\
d_{g} \bar{x}_{n}=\sum_{k=1}^{n-1} \frac{\partial P_{n}}{\partial x_{k}} \bar{x}_{k} y+P_{n} \cdot \bar{y}
\end{gathered}
$$

for $n \geqslant 3$. Hence in $\Lambda Y \otimes \Lambda \bar{Y}$, im d_{g} is contained in the ideal

$$
\left(d_{g} x_{2}, d_{g} \bar{x}_{2}, x_{2} \bar{y}, \ldots, x_{n} \bar{y}, \ldots, \bar{x}_{2} y, \ldots, \bar{x}_{n} y, \ldots, x_{2} y, \ldots, x_{n} y, \ldots\right)
$$

so the family of closed elements $\left\{x_{1}^{a} \bar{y}^{b}\right\},(a, b) \in \mathbf{N} \times \mathbf{N}$ are homologically independent, in particular $\left\{b_{i}\right\}_{i \in \mathrm{~N}}$ is unbounded.

In the rest of the proof we assume besides $\chi_{0}=1$ that $\delta Y^{\text {odd }} \neq\{0\}$. Then $\delta Y^{\text {even }}=0$ since $\delta^{2}=0$.

If $\chi_{e}=1$ we have $\Lambda Y=\boldsymbol{Q}(x, y)$ with $\delta x=0$ and $\delta y=x^{h}$. It is then easy to prove that $\left\{b_{i}\right\}_{i \in \mathbf{N}}$ are bounded (see Addendum in [16]). If $\chi_{e}=\infty$ we obviously have $\left\{b_{i}\right\}_{i \in \mathbf{N}}$ unbounded.

We shall now show that $3 \leqslant \chi_{e}<\infty$ implies $\left\{b_{i}\right\}_{i \in \mathrm{~N}}$ unbounded. Let $x_{1}, \ldots, x_{p}, p \geqslant 3$, be a basis for $Y^{\text {even }}$. An element of the polynomial ring $\mathbf{Q}\left[x_{1}, \ldots, x_{p}\right]$ is easily seen to be a boundary in $\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ if and only if it is in the ideal generated by $d_{g} y, y \in Y^{\text {oda }}$. Now, consider the graded ring $A=\mathbf{Q}\left[x_{1}, \ldots, x_{p}\right] /\left(d_{g} y\right)$ of Krull dimension $q=p-1 \geqslant 2$. By lemme 1 of [12] there are positive integers N and α and a polynomial P with $\operatorname{deg} P=$ $q-1 \geqslant 1$, such that for all $n \geqslant N$ and $n \equiv 0(\bmod \alpha)$ we have $\operatorname{dim} A_{n}=P(n)$, where A_{n} is the subspace of A of elements of degree n.

Finally assume $\chi_{e}=2$ and let x_{1}, x_{2} be a basis for $Y^{\text {even }}$. If $y \in Y^{\text {odd }} \delta y=P\left(x_{1}, x_{2}\right)$ and hence im d_{g} is contained in the ideal generated by $\partial P / \partial x_{1}$ and $\partial P / \partial x_{2}$. If $A=\mathbf{Q}\left[x_{1}, x_{2}\right] /$ $\left(\partial P / \partial x_{1}, \partial P / \partial x_{2}\right)$ is not finite dimensional, then A has Krull dimension $\geqslant 1$ and the ring $B=A \otimes \mathbf{Q}(\bar{y})$ has therefore Krull dimension $\geqslant 2$. Again by Lemma 1 of [12] we conclude that $\left\{\operatorname{dim} B_{n}\right\}_{n \in \mathbb{N}}$ is unbounded. But for any non-zero element $\bar{\beta} \in B$ the element $\bar{x}_{1} \bar{x}_{2} \bar{\beta}$ is a cocycle in $\left(\Lambda Y \otimes \Lambda \bar{Y}, d_{g}\right)$ and not a boundary i.e. $\left\{b_{i}\right\}_{i \in \mathrm{~N}}$ is unbounded. If $\operatorname{dim} A<\infty$ a direct but lengthy computation of $H\left(\Lambda Y \otimes \wedge \bar{Y}, d_{g}\right)$ in even and odd degrees shows that $\left\{b_{i}\right\}_{i \in \mathbf{N}}$ is bounded.

From Proposition 1 in [16] and the above proposition we get
Corollary 4.4. The sequence of Betti numbers for $M_{G(g)}^{I}$ is bounded if and only if the cohomology ring $H(\Lambda Y, \delta)$ has one of the following types:
(i) $H(\Lambda Y, \delta)=\mathbf{Q}$
(ii) $H(\Lambda Y, \delta)$ is generated by one element
(iii) $H(\Lambda Y, \delta)$ is a polynomial algebra in two variables x_{1}, x_{2} truncated by an ideal generated by one element P such that $\operatorname{dim} \mathbf{Q}\left[x_{1}, x_{2}\right] /\left(\partial P / \partial x_{1}, \partial P / \partial x_{2}\right)<\infty$.

In Proposition 4.3 and Corollary 4.4 the cohomology of M was only supposed to be of finite type. If we assume $H^{*}(M)$ to be finite dimensional (e.g. M a finite complex) we can apply some recent results of Halperin [9] and [10] to obtain:

Theorem 4.5. Let M be a l-connected space with finite dimensional cohomology $H^{*}(M)$ and let $g: M \rightarrow M$ be a 1-rigid map. Then exactly one of the following holds:
(I) $\chi_{0}=\chi_{e}=0$. In this case $\Lambda Y=\mathbf{Q}$ and $H^{*}\left(M_{G}^{I}(g)\right)=\mathbf{Q}$.
(II) $\chi_{0}=1, \chi_{e}=0$. In this case $\Lambda Y=\Lambda(y)$ and $H^{*}\left(M_{G(g)}^{I}\right)=\Lambda(y, \bar{y})$ is the exterior algebra on y tensor the polynomial algebra on \bar{y}.
(III) $\chi_{0}=\chi_{e}=1$. In this case $\Lambda Y=\Lambda(y, x)$ with $\delta x=0, \delta y=x^{n+1}$ and $H^{*}\left(M_{G(O)}^{I}\right)=$ $\Lambda^{+}(x, \bar{x}) /\left(x^{n+1}, x^{n} \bar{x}\right) \otimes \Lambda(\bar{y})$. In particular $\left\{b_{i}\left(M_{G(\theta)}^{I}\right)\right\}$ is bounded.
(IV) $\left\{b_{i}\left(M_{G(g)}^{I}\right)\right\}_{i \in \mathbf{N}}$ is unbounded.

In particular $\left\{b_{i}\right\}$ is bounded if and only if $\chi_{e} \leqslant \chi_{0} \leqslant 1$.

Proof. If $\operatorname{dim} Y=\infty$ we see from Proposition 4.3 that $\left\{b_{i}\right\}_{i \in \mathbb{N}}$ is unbounded.
Suppose now that $\operatorname{dim} Y<\infty$. Since $\operatorname{dim} H^{*}(M)=\operatorname{dim} H\left(\Lambda X_{M}, d_{m}\right)<\infty$ Corollary 5.13 of Halperin [10] implies that $\operatorname{dim} H(\Lambda Y, \delta)<\infty$. We can therefore apply the finiteness results of Halperin [9]. In particular $\chi_{\pi}=\chi_{e}-\chi_{0} \leqslant 0$ by Theorem 1 in [9].

If $\chi_{0} \geqslant 2$ we know from Proposition 4.3 that $\left\{b_{i}\right\}_{i \in \mathbf{N}}$ is unbounded.
If $\chi_{0}=1$ we must have $\chi_{e} \leqslant 1$. Suppose $\chi_{e}=1$. Then $\delta x=0$ and $\delta y=x^{n+1}$ for some n because $H(\Lambda Y, \delta)$ is finite dimensional. The actual computation of $H^{*}\left(M_{G(g)}^{I}\right)$ is then contained in the Addendum of [16].

The case $\chi_{0}=1$ and $\chi_{e}=0$ is clear.
Finally $\chi_{0}=\chi_{e}=0$ if and only if $H^{*}\left(M_{G(g)}^{I}\right)$ is trivial.
Note that if $\operatorname{dim} H^{*}(M)<\infty$ then (iii) in Corollary 4.4 is impossible. If $g=\mathrm{id}_{M}$ then $Y=X_{M}$; i.e. (i) is also impossible and Corollary 4.4 is nothing but the main theorem of Sullivan and Vigué [16].

Theorem 4.5 gives a necessary and sufficient condition on the action of g on $\pi_{*}(M) \otimes \mathbf{Q}$ in order for $H^{*}\left(M_{G(g)}^{I}\right)$ to have an unbounded sequence of Betti numbers. As in the case $g=\mathrm{id}_{M}$ it would be interesting also to have a (necessary and sufficient) condition on the action of g on $H^{*}(M)$ in order for $H^{*}\left(M_{G(g)}^{I}\right)$ to have an unbounded sequence of Betti numbers. We can illustrate the subtlety of this problem with the following examples.

Example 4.6. Let $M=S^{2 p} \times S^{2 q}$ with $p \neq q$ and $p, q \geqslant 1$. Then $\Lambda X_{S^{2 p}}=\Lambda\left(x_{1}, y_{1}\right)$ with $\operatorname{deg} x_{1}=2 p$, deg $y_{1}=4 p-1, d x_{1}=0$ and $d y_{1}=x_{1}^{2}$ and similarly for $\Lambda X_{S^{2 q}}=\Lambda\left(x_{2}, y_{2}\right)$. Thus any 1 -rigid homotopy equivalence g of M will fix at least the generators $y_{i}, i=1,2$ and by Theorem 4.5 $M_{G(g)}^{T}$ will have an unbounded sequence of Betti numbers. However, g may $\operatorname{map} x_{i}$ to $-x_{i}, i=1,2$ and hence not fix any generators in the cohomology $H^{*}(M)$.

Example 4.7. Take $M=\mathbf{C} P^{2 p+1} \times \mathbf{C} P^{2 q+1}$ with $p \neq q$ and $p, q \geqslant 0$. Then $\Lambda X_{C^{p 2 p+1}}=$ $\Lambda\left(x_{1}, y_{1}\right)$ with $\operatorname{deg} x_{1}=2, \operatorname{deg} y_{1}=2(2 p+1)+1, d x_{1}=0$ and $d y_{1}=x_{1}^{2 p+2}$ and similarly for $\Lambda X_{\mathbf{C P}^{2 q+1}}=\Lambda\left(x_{2}, y_{2}\right)$. We can therefore draw exactly the same conclusions as above.

Example 4.8. Endow $S^{2 p}$ and $\mathbf{C} P^{2 q}$ with their standard riemannian metrics and $S^{2 p} \times$ C $P^{2 q}$ with the product metric. Let $q_{1}=-\mathrm{id}_{S^{2 p}}$ be the antipodal map on $S^{2 p}$ and g_{2} the conjugate map on $\mathbf{C} P^{2 q}$ i.e. in homogeneous coordinates $g_{2}\left(z_{1}, \ldots, z_{2 q+1}\right)=\left(\bar{z}_{1}, \ldots, \bar{z}_{2 q+1}\right)$. If $M=T_{1}\left(S^{2 p} \times \mathbf{C} P^{2 q}\right)$ is the unit tangent bundle of $S^{2 p} \times \mathbf{C} P^{2 q}$ then the differential of the involutive isometry $g_{1} \times g_{2}$ restricts to an involution g on M.

Note that M is the total space of the fibre bundle $M \rightarrow S^{2 p} \times \mathbf{C} P^{2 q}$ with fiber $S^{2 p+4 q-1}$. Therefore $\Lambda X_{M}=\Lambda X_{S^{2 p}} \otimes \Lambda X_{\mathbf{C P}^{2 q}} \otimes \Lambda X_{S^{2 p+4 q-1}}=\Lambda\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\right)$ with $\operatorname{deg} x_{1}=2 p$, $\operatorname{deg} x_{2}=2, \operatorname{deg} y_{1}=4 p-1, \operatorname{deg} y_{2}=4 q+1, \operatorname{deg} y_{3}=2 p+4 q-1$ and $d x_{1}=d x_{2}=0, d y_{1}=x_{1}^{2}, d y_{2}=$ $x_{2}^{2 q+1}$ and $d y_{3}=(4 q+2) x_{1} x_{2}^{2 q}\left(x_{1} x_{2}^{2 q}=\right.$ orientation class of $S^{2 p} \times \mathbf{C} P^{2 q}$ and Euler class of bundle $=(4 q+2) \cdot$ orientation class). Furthermore g induces an involution on ΛX_{M} which is given on generators by $x_{1} \rightarrow-x_{1}, x_{2} \rightarrow-x_{2}$ and hence $y_{1} \rightarrow y_{1}, y_{2} \rightarrow-y_{2}$ and $y_{3} \rightarrow-y_{3}$; i.e. $\chi_{0}=1$ and $\chi_{e}=0$. According to Theorem 4.5 the Betti numbers for $M_{G(g)}^{T}$ are uniformly bounded, in fact $H^{*}\left(M_{G(\theta)}^{I}\right)=\Lambda\left(y_{1}, \bar{y}_{1}\right)$.

On the other hand, let $u_{1}=(4 q+2) x_{2}^{2 q} y_{1}-x_{1} y_{3}$ and $u_{2}=(4 q+2) x_{1} y_{2}-x_{2} y_{3}$. Then a family of generators for $H\left(\Lambda X_{M}, d\right)$ contains x_{1}, x_{2}, u_{1} and u_{2} (or linear combinations of these), and on cohomology $g^{*}\left(u_{i}\right)=u_{i}, i=1,2$ i.e. g fixes two generators of $H^{*}(M)$ but the sequence of Betti numbers for $M_{G(g)}^{I}$ is bounded.

We finally restrict our attention to spaces whose cohomology (over \mathbf{Q}) is spherically generated.

Definition 4.9. Let M be a 1 -connected space whose cohomology is of finite type. We say that $H^{*}(M)$ is spherically generated if

$$
\operatorname{ker} \zeta^{*}=H^{+}\left(\Lambda X_{M}\right) \cdot H^{+}\left(\Lambda X_{M}\right)
$$

where ζ^{*} is the induced map on cohomology by the projection $\zeta: \Lambda+X_{M} \rightarrow Q\left(\Lambda X_{M}\right)(p .280)$.
Note that ζ^{*} is the dual of the Hurewicz map. The above definition is therefore equivalent to saying that ζ^{*} imbeds the generators of $H^{*}(M)$ into Hom ($\left.\pi^{*}(M), \mathbf{Q}\right)$.

Corollary 4.10. Let M be a 1-connected space whose cohomology is finite dimensional and spherically generated, and let g be a 1 -rigid map of M. Then $M_{G(g)}^{I}$ has an unbounded sequence of Betti numbers if the induced map g^{*} on cohomology $H^{*}(M)$ fixes at least two generators. (1)

Proof. By hypothesis, $H^{*}(M)$ is spherically generated, so ζ^{*} induces an embedding

$$
H^{+}(M) / H^{+}(M) \cdot H^{+}(M) \rightarrow Q\left(\Lambda X_{M}\right)
$$

${ }^{(1)}$ i.e. the subspace fixed by the linear map induced by g^{*} on $H^{+}(M) / H^{+}(M) \cdot H^{+}(M)$ has dimension $\geqslant 2$.
commuting with the induced actions by g. Hence we can choose the generators of ΛX_{M} so that we have two closed generators fixed by ψ_{g}. They give two closed generators of ΛY, and we conclude using Theorem 4.5.

Remark 4.11. According to example 8.13 of [11] any formal space (its minimal model is a formal consequence of its cohomology) has spherically generated cohomology. Thus Corollary 4.10 applies in particular to formal spaces. Among formal spaces are riemannian symmetric spaces [14] and Kähler manifolds [1] (and [11, Cor. 6.9]).

References

[1]. Deligne, P., Griffiti, P., Morgen, J. \& Sullivan, D., The real homotopy theory of Kähler manifolds. Invent. Math., 29 (1975), 245-274.
[2]. Grivel, P., Thèse, Université de Geneve, 1977.
[3]. Gromoll, D. \& Meyer, W., Periodic geodesics on compact riemannian manifolds. J. Differential Geometry, 3 (1969), 493-510.
[4]. Grove, K., Conditions (C) for the energy integral on certain path spaces and applications to the theory of geodesics. J. Differential Geometry, 8 (1973), 207-223.
[5]. -- Isometry-invariant geodesics. Topology, 13 (1974), 281-292.
[6]. - Geodesics satisfying general boundary conditions. Comment. Math. Helv., 48 (1973), 376-381.
[7]. Grove, K. \& Tanaka, M., On the number of invariant closed geodesics. Bull. Amer. Math. Soc., 82 (1976), 497-498; Acta Math., 140 (1978), 33-48.
[8]. Halperin, S., Lecture notes on minimal models. Publ. internes de l'U.E.R. de Math. Université de Lille 1, No. 111 (1977).
[9]. -- Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc., 230 (1977), 173-199.
[10]. - Rational fibrations, minimal models, and fibrings of homogeneous spaces. Trans. Amer. Math. Soc., to appear.
[11]. Halperin, S. \& Stasheff, J., Obstructions to homotopy equivalences. Advances in Math., to appear.
[12]. Heydemann, M. C. \& Vigut, M., Application de la théorie des polynômes de HilbertSamuel à l'étude de certaines algèbres différentielles. C.R. Acad. Sci Paris Sér A-B, 278 (1974), 1607-1610.
[13]. Milnor, J., The geometric realisation of a semi-simplicial complex. Ann. of Math., 65 (1965), 357-362.
[14]. Sullivan, D., Differential forms and topology of manifolds. Proceedings Japan conference on manifolds, 1973.
[15]. - Infinitesimal computations in topology. Vol. 47, publications I.H.E.S.
[16]. Vigue-Poirrier, M. \& Sullivan, D., The homology theory of the closed geodesic problem. J. Differential Geometry, 11 (1976), 633-644.

Received March 20, 1977

