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I .  Introduction 

Let  g ( n ) = a n 2 + b n + c  be a polynomial with integral coefficients (a>0)  and discri- 

minant D =b 2 - 4 a c  < - 4 .  We shall be concerned with the problem of showing that,  for 

a binary quadratic form satisfying certain natural conditions, the number of n ~<X for 

which g(n) is represented by q~ has the expected order of magnitude. The method involves 

an injection into the half dimensional sieve of a combination of ideas due largely to Chen 

[1] and Hooley [3]. A sketch of the proof is given in section 2. 

For m an integer let Q(m) denote the number of solutions of the congruence 

g(n) =- 0 (mod m). 

Let  P denote a set of primes satisfying: 

o <<. q(p) < p, (1.1) 

For some fixed K, and all z >/2, 

~(p) 
p~ P - ~(p) 
p e p  

log p - �89 log z ~< K. (l.2) 

For z>~2, we let P(z )=  l-[ T, A = { g ( n ) l n < ~ X }  and 
p < Z  
p e P  

S(A, P,  z) = ~. 1. 
r n e A  

( rn, P(z))  = 1 

T~v.OREM 1. There exists a positive ~, depending on a, b, c and K such that 

S ( A , P , z ) > ~ X  I-[ 

p e p  

(~.3) 
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Remark. The restriction D < - 4  is not essential but is included to simplify the proof. 

Since we do not assume D is a fundamental discriminant we may, for example, immediately 

get the result for g(n)= n~+ 1 by applying the theorem to the polynomial 4n2+ 1. In the 

case D > 0 the method of proof may again be applied but  is somewhat complicated by the 

existence of non-trivial units in Q(VD). 

Definition. We write m ln~176 if m divides some power of n. 

T~EOREM 2. Let a be a /undamental discriminant (such that Q ( ~ D ) ~ Q ( ~ ) )  and 

q) = A u  ~ +Buy  +Cv 2 a binary quadratic/orm, indefinite or positive definite, o/discriminant 

a = B ~ - 4 A C .  Suppose there exist integers no, x0, Yo and m with m I a~176 , such that 

g(no) =- ~(x0, Y0) (mod am) 
and 

(qJ(xo, Yo), am) = m. 

The number o/ n <~X such that g(n) is represented by ~v is then > X  (log X)  -1/2, the implied 

constant depending on the coe/ficients o] g and qJ. 

Remarks. 1. The stated congruence condition is clearly necessary. I t  obviously may 

be replaced by the simpler condition that,  for some n 0, g(no) is represented by ~v, but this 

latter condition may, in practice, be more difficult to verify. 

2. For all sufficiently large p, we have 

2 

e(p) = 
0 

Letting P ={p l  ( ~ - ) = - 1 } ,  we have 

o(P) ~<~ p ~ ( p )  logp  = �89 log z +  0(1). 

pEP 

Using the upper bound sieve (Lemma 1) one gets an upper bound ~ X  (log X)  -1/2. In 

the case Q(I/D)=Q(I/~) the product 1-Ip~v (1 -O(P)/P) has only finitely many factors and 

the sieve is of dimension zero, so we immediately get the lower bound >~X. Thus, in either 

case one gets upper and lower bounds of the same order of magnitude. 

3. Hooley's method (as pointed out in [3]) may be used to give asymptotic results if 

the representations of ~ are counted with multiplicity. 

4. We have not required the middle coefficient of q to be even. In the course of the 

proof of Theorem 1, we shall have need of some facts about quadratic forms, and there, in 
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order to take advantage of some references, we have used the Gaussian theory. Hopefully, 

this will not cause confusion. 

5. In a letter Professor Hooley has suggested that  an alternative approach to the above 

results may be obtained by combining the method of [3] with that  of another of his papers 

[5]. 

2. Sketch of the l~root 

The proof referred to is that  of Theorem 1, the latter result being in the nature of a 

corollary. We begin by collecting together some facts about the half dimensional sieve. 

See [6] for details. 

LEM~IA 1. Let X >~ 2 be/ixed. Let A be a finite sequence o/integers and P a set o/primes. 

Suppose that ~ is a multiplicative /unction such that (1.2) is satisfied. For diP(z)  define 

Ad = (me Aim -- 0 (mod d)}, 

mead 

and 

For all z >~2, y >~2 we have 

V(z)= 1-I (1 ~(P)I 
vw(z) - - P - !  " 

S (A ,  P ,  z) <~ XV(z){F(8)  + O((log y)-,,5)} + ~ JR(A, d)] (2.1) 
d<y 

diP(z) 

S (A ,  P,  z) >>- XV(z){ / ( s )  + O((log y)-a/5)} _ ~ JR(A, d)[ (2.2) 
d<y 

diP(z) 

where s =log y/log z and the/unct ions/(s) ,  $'(s) are the continuous solutions o/ the  system o/ 

di//erential-di//erenee equations 

/(s) = O, F(s) = 2(ev/ze8)�89 /or 0 < 8 < 1, (2.3) 

For s > 1 we have 

2st(s�89 = F(s - 1), 2s�89189 = 1(8 - 1) 

0 < ](s) < 1 < 2'(8) 

/or 8 > 1 .  (2.4) 

F'(8) <0</'(s). 

Applying (2.2) to the sequence A = { g ( n ) ] n < . X )  with y = X  (log X) -2, Theorem 1 

follows immediately for z <~Xi, which case we henceforth exclude. 
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Let  g > 0 be fixed, and X ~ < z,, < z 1 < X�89 < z and z 0 = �89 We have 

0(P) . . . .  F / log  X[p] (log X)  
z .<~-V~p~ t ~ o - - 7 ~ - ) = v ( ~ ) / ~  +~176 �9 

pep 

(2.5) 

This result follows by partial summation from (1.2), (2.3) and (2.4). 

Applying (2.1) to the sequence Ap with z~ ~<p <z 0 and y = (X/p) (log (X/p)) -~ we obtain 

( 1 _ 0 ~ )  [ X  [ X'~ -7/1~ 
+ot tlog ) 

and applying (2.2) to the sequence ~4 with y = X  (log X) -~ we obtain 

say, 

(2.6) 

f /1,~ x \  ] 
S(A, P,  z , )>  X V(z,) ~ ] / ~ 1  +O((log X)-l'5)~. 

t \rag z~j J 

In  the (possibly void) interval z 0 ~<p <z we have the trivial estimation 

Y S(Ap, P,p)< ~ [Arl<6~(z) 
Zo~p<z Ze~D'<z 

DC~P 

and in the interval z~<~:p<zo, by (2.5) and (2.6) we have 

f /log Xk } + (A,. , ) <  + 
pGP 

Substituting these in the Buehstab identity, 

we get 

S(A, P, z) > 

s(A, P, z) = S(A, P, ~) - ~ s(A., P, p), 

{S+(.4r, P,  p) - S(~4r, P,  p)} - 6z(z) + O(XV(zl) (log z,)-1'5). (2.7) 
z2<~p<zt p~P 

Remarks. 1. I t  is now possible to see where the method is headed. The "classical" 

estimate gives S ~< S + and we wish to save on this, at least on average. Moreover, an ar- 

bitrarily small but  fixed saving will be sufficient and this is rather crucial, since our improve- 

ments are not  large. 

A similar situation exists in the case of other dimensions. The constant 1/2 in (1.2) 

is by  no means essential and results analogous to Theorem 1 can be proved. These are, 

for the most part, of limited interest due to the special nature of the set ~4. In  the case, 

however, of the linear sieve, since the sieving limit is 1/2, one gets immediately the result 
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n~+ 1 =Pa  and "just  misses" improving this. The method of this paper, thus, gives a new 

proof of the result that  there are infinitely many  n such tha t  n ~ + 1 =Pa, without using a 

weighted sieve (at least in the usual sense). In  fact it was the suggestion of Professor 

Halbers tam tha t  a combination of the ideas of Chen and Hooley might be used to a t tack 

n~+ 1 =P~, which led to this work. (The method also can be used to prove Hoheisel type 

theorems for these problems.) 

2. Following Chen's idea we "keep"  the error term, reducing the problem to the 

estimation of exponential sums. In  our case, van der Corput estimates do not apply and 

we use Hooley's idea to transfer the problem to Kloosterman sums. In  contrast with [3], 

we shall be averaging over primes rather than  over all integers. This necessitates the use 

of the Cauchy-Schwarz inequality which leads to some complication of detail concerning 

the composition of quadratic forms. Let  

P* = { p e P I q ( p )  > O, z2 < p <zl} 

P' = P* [3 [Q, Q') where z 2 < Q 4 Q' < 2Q. 

Let  B denote the sequence of elements m of A, m repeated once for each prime divisor of 

m in P ' .  For dIP(Q), define R(B, el) by 

q(d) q(P) 
I~1---- Z X ~ , .  v +R(~'d)" 

The bulk of the work will be devoted to the proof of the following result. 

PROrOSITION. I/NQ1/2<X and Q<X x/5~176 then 

I R(B, d)[< (NQ 1'~ + X ~ (log X f .  (2.8) 

Note tha t  the trivial estimation is NQ. We conclude this section by  showing how (2.8) 

leads to the proof of Theorem 1. 

Applying (2.1) to the sequence B with z=Q and y =N=-XQ-~ (log X) -~ we get 

Q(p) log X/[/-Q l 
- -  F . . . .  O((log Q)-1/5)~. 

Choosing z 1 =z~ = X  vS~176 and summing over intervals of the type [Q, Q'), gives 

~ S (A , ,P , , )~<  ~ X~(P) V(p){F('~ 
PeP* peP* 
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From  (2.7) we get 

- 6:rr(z) + O(XV(z2) (log X)-l/5). 

B y  the mean value theorem 

and Theorem 1 follows since 

Filog X/el - F[ l~ X/r > 1, 
\ ]ogp  / \ logp / 

~ 
p E P  a 

3. Lemmata 

This section contains lemmata  to be used in the proof of the proposition. The first one 

embodies an idea of Vinogradov, al though we know of no reference to it  in this form. 

LEMYIA 2. Let 0 < A < 1, e(~) =e 2~ ,  and y~(x) = x  - Ix] - �89 Let 

(1 - - A - 1 ) x  /or 0 < x < �89 

a(x) = Ix  - �89 /or 1A <~ x < 1 - �89 

[ ( 1 - A - t ) ( z - 1 )  / o r l - � 8 9  

and 

We have 

(i) 

where 

b(x) =I10 - A - i x  

[ l  -~- A - I ( x  --  l )  

/ o r O ~ x < A  

/or A <~ x < 1 - A  

/or l - A  < ~ x < l .  

i sin zmA 
a(x) = ~ 2:gin ~ m A  e(mx) 

m * O  

�9 ~ /sin :~mA~ 2 

(ii) The m'th Fourier coe//ieients (m#=O) o / a ( x )  and b(x) are, in absolute value ~Zm 

Z,=Ii~l I i / I~I<A - ~  

t ~  i! I-q > A-~ 
(iii) I~0(x) -a(x) l < b(x). 

The nota t ion ~, used either as ~/s or in a congruence (rood s) means tha t  ~r =- 1 (rood s) .  
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Lv.~MA 3. Let x, y and ~ be pairwise coprime integers. We have 

x _ -  ~ _x-y t- 1 (mod 1). 
~y zex ~ ~xy 

Proo/. Multiply through by ~xy and check modulo each factor. 

The following result, due to Hooley, (Lemma 3 of [4]) is a consequence of Weil's 

estimate for Kloosterman sums. Using Hooley's method and the earlier estimate of Klooster- 

man, a weaker result could be derived which would still be sufficient for our purpose. 

LwMMA 4. I / h  and r are integers with r#O and i/ 0 < ~ - ~  <21r ] , then 

~1<~<~, ~ e ( -  r) .  l ~ < r (11~)+~(h,r) 1/2, 
s ~ v  (m0d 2) 

(s, r )~ l  

the implied constant depending on e. 

LEMMA 5. Select one/orm (A, B, C) / tom each class o/primitive positive definite/orms 

o/determinant D = B ~ - A C  < - 4 .  Let m be a positive integer. There is a one to one corre- 

spondence between the solutions r (mod m) o/ 

~o ~ ---- D (mod m) 

and pairs+_ (r, s) o/ proper representations by the given /orms. I /  m=Ar~ + 2Brs +Cs ~, 

(r, s)=1,  s=~0, then 

Ar  + Bs r - 
o~ = + (Ar ~ + 2Brs + Cs2). 

8 8 

Proo/. This result, due of course to Gauss, is to be found in Article 86 of [7]). 

By completing the square, we get 

COROLLARY. There exists a one to one correspondence between the roots o] 

g(~') ~ 0 (mod m) 

and pairs -+- (R, S) o/proper representations o] 4am (by the given/orms), such that 

A R  +(B  +b)S =- 0 (mod 2a). 

This correspondence is given by 

A R + ( B + b )  S R A R  2 + 2 B R S + C S  z 
v = 2aS ~- S 2a 

(3.1) 

(3.2) 
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We now choose a system of representatives (A~, B~, Ct), 1 <~i<h, of the classes of 

primitive forms of determinant D in a way convenient for composition. Note first that  the 

A t may be chosen to be pairwise eoprime and coprime with 2D. Having done this, since 

changing B~ by a multiple of A ~ does not change the class, the Chinese Remainder Theorem 

allows us to choose all the B~ equal (=  B say). We are still free to change B by multiples 

of A~A2 . . .A~  and, since B~=D (mod A~A2. . .Aa)  we can demand B~= D  (rood (A1A2. . .  

A~)~). Let  ~) denote a fixed set of representatives so chosen: 

D = {r = (A,, B, C,), i = 1 ..... h}. 

From Gaussian composition (see Article 111 of [7]) we immediately get: 

L v~ ~ M A 6. Let A j o~ 2 + 2B~fi + Cj f12 be a fixed proper representation o/1O E P'  by (A j, B, Cj ) 

in Z). Let dIP(Q ). As (r, s) runs once through the proper representations A~r~ + 2Brs +C~s 2 

o /4ad  by/orms o/ ~,  A R 2 + 2 B R S + C S  2 runs once through the proper representations o/ 

4adp, where 
B 2 -  D 

A=A~Aj ;  C= A~A--~' (3.3) 

R = ar-Cfls ,  and S =A~flr+2Bfls-l-Ajacs. (3.4) 

Notation. Let Pz (l = 1, 2) be distinct primes in P '  (represented by the same class) and 

Aja~+2Bo~,fil+C~fl~ fixed representations of them by (Aj, B, Cj). Let dIP(Q ) and let 

A t r*+ 2Brs + C,s 2 be a proper representation of 4ad. For l = 1, 2 let A R~ + 2 B R  zS1 + CS~ be 

the corresponding representations of 4adpz from Lemma 6. Let 

~5 = A t o~ 1.., + B(ohfl 2 + ~2fll) + Cjfllfi2 and V = fll a2 - f l ,  al. 

Since (A j, B, Cj) ~1 ~2 = (I~ 0, P2), comparing determinants, we get 

1OIP2 = d 2 - D V 2  

and hence V ~0 ,  (0, V)=  1, (Pxlo2, V)=  1. 

L~MIVlA 7. We have 

A ~7 r = (2Bf12 + A j ~ )  S1 - (2Bill + A j ~1) S2 

A V s  = -A~fl2SI + Ad~IS ~ 

A V R 1 = (O - B v  ) SI -1Ol S2 

A V R~ =1O2SI-(~ + B V  )S2 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Proo]. These are straight-forward consequences of Lemma 6. 

De/inition. Let ($1, S~) =U. We say the residue classes of $1, $2 (mod 2aAVu) form 

an admissible pair if the following three conditions hold: 

r and s are integers (3.9) 

A R z + ( B + b ) S  l --0 (mod 2a) for 1 = 1, 2, (3.10) 

(Rz, ~) = 1 for 1 = 1, 2. (3.11) 

Remark. Using Lemma 7 it is easily checked that  the above notion is well-defined. 

LEM•A 8. Assume z~>max~ A~. The conditions 

ARz+(B+b)Sz  =-0 (mod 2a), 1 = 1, 2, (3.12) 

r and s are integers such that (Rz, Sz) = 1, l = 1, 2, (3.13) 

are equivalent to the conditiows 

PzXSz 1 = 1 , 2  (3.14) 

there exists ~ [A V such that ($1, S2) =~ and S1, S 2 are an admissible pair (mod 2aA VU). 

(3.15) 

Proo/. Assume first that  we have (3.12) and (3.13). Let ~ = ($1, $2). Since (R1, $1) = 1, 

if pl]S1 we would have, from (3.7), p l ]AV .  But p l > A  and we cannot have Pll V for 

p1=~p~. Thus/oIXS 1. Similarly p~.XS~. (3.9) and (3.10) are immediate and (3.11) follows 

from (3.13). 

Conversely suppose (3.14) and (3.15) hold. We must show (Rl, Sz)=l .  Clearly 

] (A V ,$1) and, since Pl ~ $1, (3.7) implies that  (A V, S 1 ) divides $2 and hence ~. Thus, we have 

(AV, S~) =~  = (AV, $2). (3.16) 

From (3.7), (R 1, $1)]7 and dividing (3.7) through by ~ the result follows. 

Notation. Let (S1, S~)=~. We write Sz=rp?zTz ( l= l ,  2), where ~z]~ ~176 ~]z>0 and 

( A v ,  T,)  = ( T .  T~) = (W,W) = 1. 

LEMMA 9. Let ~ =~1~2. We have 

R 1__ A V  p~T2 ~E1 (modl)  (3.17) 
$1 ~ ~T 1 

R~_A V p~T 1 E2 
S~-- ~ gT~ ~- --g (modl)  (3.18) 

where E 1, E~ depend only on the residue classes o/ T~, T~ (rood A V ~  ~) .  
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Proo/. We prove only (3.17), the other being similar. (3.17) is equivalent to 

A~7 
?],~1~ 1 -  - -  (piT2) + E 1 T 1 (rood gT1), (3.19) 

where ~ means inverse (mod S1). Since (g, T1) = 1 it is sufficient to check (mod T1) and 

(mod 7~). Modulo T1, - and ~ coincide and from (3.7) it follows that  the congruence holds 

for any E 1. Since (g, T1)= 1, we can choose E 1 so that  the congruence holds (mod z). If 

T1, T 2 are changed by multiples of A V~]l~2, (3.7) implies that  R 1 is changed by a multiple 

of g and so (3.19) implies that  E 1 is changed by a multiple of ~. 

4. Proof of proposition 
For dIP(Q ) we have 

v O<n<~X 
g(v)~O rood d)  n ~ v  (rood 6) 

Hence, R(B, d)= - R(X, B, d)+ R(O, B, d), where 

By Lemma 2 

We consider 

X - - Y  

g(v)=--O (rood pd)  

( IR(x 'B 'd)] '<NQAI~ ~ Zm ~ ~e ~ e m (4.1) 
d < N  m~O d < h  r Io * v(pd)  

d I P(Q) d I P(Q) 

( Tin-- 5 E E , (4.2) 
N~<~d<Na p " v(pd) 

alP(Q) 

where hrl ~< min (N, 2N2}. By Lemma 5, Corollary and Lemma 6 

( "')1 r r  r  r 1 6 2  

where v is given by (3.2), and where the sum over ~, fl is restricted to those pairs for which 

R, S given by (3.4) satisfy (3.1) and (R, S ) = l .  
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By  the Cauchy Schwarz inequality 

Tm<~�88 Z Z Z e m  
,< r. 8 <4 

4aN~r  ant  ~j(~,fl)=paP" 

t [ Z - - V  1 X - - ~ )  \ ] 1 / 2  m -  - 2  < : - " 

(x i �9 

Ne now fix ~ ,  fl~, ~2, f12, i, i such that  r f l~)=pzeP' with P,:#P2, and consider 

Z - -  '~1 X - -  Yt~ v =  ,, 2;~ ~ V - ~ d  - ~ ) ,  (4.4) 
CaNz<~l(r, s) <4aNt 

where (r, s) are restricted to those pairs for which (in view of Lemma 5, Corollary) we have 

(3.12) and (3.13). Here we have, in the notation of (3.3), 

1 ) 4  AR~+(B+b)S1 AR~+(B+b)S~. "R~ x - v ,  x - v  2 x 1__~  2aSlpld d 

We now transform the variables of U from r, s to S 1, S 2. Since PI #P2, V # 0  and we can 

do this. We have AR~+2BR1SI+CS~=4apld. Multiplying through by AV 2, using (3.7) 

and 82 - DV ~ =PIP2, we see that  the condition N~ ~< d < N~ is equivalent to 

where 

4aA V*2V 2 <~ F(S1, S~) < 4aA V2N1, 

F(S1, S,) 2 = P 2  S 1  - -  2•$1 $2 +PLS2 

(4.6) 

(4.7) 

which is definite of determinant 2)V % From Lemma 8, we have 

U= E E E 
~IAv (kl, k2) (SI, S2)=~ 

Sl-~k l (rood 2aA v ~) 

X - -  Yl X - -  Y2~ 

where (ki, k.,) runs through admissible pairs (mod 2aAV~), and Si, S 2 satisfy (3.14) and 

(4.6). Defining 71, 72, T1, T~ as in section 3, 

, (kl. k , ) ( , . .  ~/.)=1 (p. T.. p . T . ) = '  e ~ w % - ~ l d - - o ' l ~ - ~ 2 d ) = U M ~ - U M '  
~l r12[~ "~ rjrq Tl=~k I (rood 2aA v ~) 

(4.s) 
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say, where ~ '  stands for summation over those T x and T 2 satisfying (4.6) and all other con- 

ditions written under the symbol ~' ;  the sum UM is restricted to those pairs (~, ~2) such 

that  U~]2 ~<M, and UM is the sum over the remaining pairs. For UM we trivially estimate 

the exponential sum. We have 

so [S~]<(QN1)t and 

<Q.NI/~]2~]I ~]2, SO 

2 1 QN1 UM<Z Z Z QN~(~/rh~]2)-'<~-i~ Z Z TJ-2(T]IT]2) -1/2 
7. ~ ] ~  

<QNI V2 ~-i~2 Z Z (UIU2)-~/2"<QN~ VaM-I'2<QSN1M-1/2, 
~[AV ~, ~ l ~  ~~ 

S~ < - DS~ < ( A R  z + BSz) 2 -  DS~ = 4aAp~d, 

]TI['<(QN1)II~(~h)-L Thus the sum over T~, T2 is trivially 

(4.9) 

since V 2 < ~ _ DV2 =plp2 <Q2. 

Next UM is estimated more carefully using Hooley's lemma. We have 

UM= Z Z Z Z Z' e (mO(T1, T2)) (4.10) 
~[Av (kl, k~) (~1,~]~)=1 (t,,t2) (p2T,,p,T~)=I 

~7. r~zlvl ~ T l~ t  I (rood A v~ ,  rl~) 

where (tl, t2) run through the pairs of classes (rood A V~I ~2), ~ '  has the same meaning as 

in (4.8) and O(T1, T2) =01(T1, TgJ +202(T1, T2), where, by (3.7), (3.8), and (4.5) 

x 1 1 [ ~ + b V + 6 - b v  

where, by (4.5) and Lemma 9 

A V ( p - ~ ,  P ~ l ~  , E ~ - E  1 

T , 
and 

d = F(~]~]I TI' ~]~]2 T2) 
4aAV 2 

We shall, in estimating UM, assume IS 2[ ~<[S 11. The other part of the sum, where IS, [ < 

[$2 [ ,  is done in similar fashion. We have, by Lemma 3, 

~1 T2 ~$ T1 Pl T2 P2 TI ( -- . Pl T2 + P~ T1 T2 + 1 (mod 1). 

Thus, 

+2 AV (ps-p1)~T~ (mod I), O(T1, T2) - ~(T1 ' T2) -~-  
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where 

v( Tz, T3)=Oz (T1, T3)-~ 2A ~7 2Av pztlt3 ~_ 2 E 3 -  E, 
T3~uT1 T 3 + U ~ 

A computation shows that  for T1, Tz in the range of summation (since I Sll ~> [S~ [), 

~V (T z, T ~<xM'n11~N -8/2 + M"~sI~.N -~3 + f~113~V-1/3 + MQ3N{ ~. 

Since we have either x =0 or x = X, choosing M =Q3O, N <X,  we have 

We have 

@T3 

I { , pT-~ ]I ~. , ~ .  ~ e m~(T1, T2)+m2Aq (pz-pz)z~T1; [ (4.11) 

Tsar2 (mod AVe, ~ )  
(Ts, gPa TI) =I 

where for each T1, in view of (4.6), the sum for T~ is actually in two intervals of the above 

type and, for each of these, 

4~-41<2.~1Tll <2~P3[Tll. 
"i3 

S(4) - Z 

(T~, =Ps T,) = 1 

Letting 

( Av 
e m ~ (P3 -- •1) 7~p2 T1 ] , 

Lemma 4 gives, for 4z ~< 4 ~< 43, after a little computation, 

Letting r 4) = e(mv(T1, 4)), 

S(4) < m1'3QnT(z113)+t 

~--~ (T1, 4)<mXQ3~Y{ a/2. ~4 

By partial summation, the sum over T~ in (4.11) satisfies 

22 8/2 812 35 8/4 Z <ml12Qi2T(~lle)+'{ 1 + (~2-4z)mXQ N{ }<m XQ N{ . 
T~ 

Since ]TI[<(QN1) lj~, 
~ .~XmSl2Qa~ 114. 

T,. Ta 
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Returning to (4.10), 

U'M < Q2 +~MI +~(QM)2 (Xm3/2Q361V1 TM ) ~ ma/2XQI~ 

Combining this with (4.9), 
U "< ma/~XQl~ 1~4 + N1Q-5. 

From (4.3), 
Tm ~ N~2{N1Q + m312XQlOaN ~ 114}1/3 .,~ N1 Q112 -t- ms14XlI2Q521~/8. 

Summing up over <log X intervals of the type [N2, N1) , returning to (4.1) and choosing 
A =Q-1/2 we have 

Z IR(B,d)I<(l~ ~ m-~4+ ~. Q'/2m-5/4)) 
d < N  m<~Q ll~ m > Q  11~ 

dIP(Q)  

<(NQ lj2 + 378/sxll~Q 53) (log x )  2. (4.12) 

Since NQ 112 < X and Q < X 1/5~176 NslsX112QS3 < QSaXTJS < X ~ , which completes the proof of the 

proposition and, in view of the arguments of section 2, completes the proof of Theorem 1. 

Remark. Aside from improvements of the exponent 53, (4.12) seems to be essentially 

the best estimate that  can be derived by this method. 

5. Proof of Theorem 2 

genus theory it follows that for q]~, (00(x, y), a ) = l ,  ( ~ ( z ~ ) d e p e n d s  only From 

on the genus of % Let D=D1D ~ where (D1, ~)=1, DI>0 ,  and D2[~~ By a corollary of 

Fogels [2] there exist infinitely many primes p for which \cf(x,y)] so that  

( p ) = l  and such that p is represented by ~. Thus we can choose an integer Q which is: 

(i) prime to 2aDO, 

(ii) divisible only by primes p satisfying (D) = 1, 

(iii) divisible by integers represented by forms of each class of discriminant a. 

Moreover, by properties (i) and (ii), we may take g(no) -~0 (rood Q2). Letting 

P ={P ~p) = - l}, G(n) -g(~mnQ~ + no), .,4 = {G(n)'n ~ X}, 

Theorem 1 gives, for large X, 

S(~4, P, X (log X) l/a) >~X (log X) -1/2 

and it suffices to prove that  S counts only n for which G(n) is represented by % 
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Le t  a* be an  in teger  so counted  and  so a*=ma' where (a', 8 ) E l .  F o r  q~(Xo, Yo)=b'm, 

we have ( ~ ) = l ,  so ( ~ , ) = l .  Thus, a* is divisible by an even number of primes i n P  and 

each is ~ X  (log X) 1/3. Thus, if X is large, there  are no such p r ime  factors  and  so a* is 

# # 2 represen ted  b y  some form of d i sc r iminan t  ~ (as are a,  a /Q , and  b*). Since (a', ~) = 1 and  

a ' - b *  (rood 8), forms represent ing  a ' ,  a'/@ 2, and  b* are  in the  same genus. Le t t i ng  yJ re- 

p resen t  a'/Q ~, A the  class of F, B = A C  ~ ano the r  class of the  same genus, and  q a d ivisor  

of Q represen ted  b y  forms of C, we have  a'q2/@ ~ =~*(x*, y*) for some yJ* in  B and  some 

integers  x*, y*. Thus  a' =qJ*((Q/q) x*, (Q/q) y*). Hence  eve ry  form represent ing  b*, represents  

a' and  so eve ry  form represent ing  b*m (~ in  par t icu lar )  represents  a*. This completes  the  

proof. 
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