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There are a number of fixed point theorems pecuhar to symplectic geometry. A 

particularly simple example is the theorem tha t  any area-preserving mapping yJ of the 

two-dimensional sphere into itself possesses at  least two distinct fixed points (see [6, 8]) 

although an arbi trary orientation-preserving mapping may  have only one single fixed 

point. In  higher dimensions such global theorems are not available, but it is known 

(see [11]) tha t  any  symplectic map yJ which is Cl-close to the identi ty map of a simply 

connected, compact symplectic manifold into itself has at least two fixed points. These 

fixed points are found as critical points of appropriate functions on the manifold. In  t h i s  

note we will derive a generalization of such a perturbation theorem which has various 

applications in mechanics. 

To formulate our result we need some concepts of symplectic geometry: A smooth 

manifold Z is called symplectic if there exists a non-degenerate closed 2-form ~o on Z; the 

symplectic manifold consists in fact of the pair (Z, co). I f  eo is even exact and given by  

o~ = d~, a being a 1-form we call (Z, cr an exact symplcctic manifold. The most familiar 

example of an exact symplectic manifold is the cotangent bundle of any manifold with 

its natural  1-form. 

A differentiable mapping ~ of Z into itself is called symplectic if it preserves the 

two-form co, i.e. if ~0*eo =~o. Similarly, we call a mapping yJ exact symplectic if (Z, ~) is 

exact and ~f*~-~ is exact, i . e . = d F  where F is a function of Z. We apply the same 

terminology for mappings ~ of an open set D I ~ Z  into another D 2 c  Z. 

Of course, every exact symplectic mapping is also symplectic since ~ o * a = ~ + d F  

implies 
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The converse, however, is not true in general. Indeed from ~*to =to we conclude that  

d(~0*a- a) = 0 

i.e. y J*~-a  is a closed 1-form which need not be exact. But  for simply connected, exact 

symplectic manifolds the two concepts coincide. 

We illustrate the difference of the two concepts with a simple example in the plane. 

The x-y-plane with 1-form ydx = ~ is exact symplectic and the corresponding two-form 

to=do~=dy A dx is the area element. Any mapping whose Jacobian is ident ica l ly=l  is 

symplectic. But  in the non simply connected domain R ~ { 0 }  the mapping v2: (x, y)--> (X, Y) 

given by  

�9 ] , r =  

is symplectic, but not exact symplectie for any e~=0, as one easily verifies. 

In  geometrical terms an exact symplectie mapping in the plane does not only preserve 

the area elment to but also the line integral ~ over any closed curve. 

The next  concept we need is that  of a coisotropie submanifold of Z. For this purpose 

we first define the concept of a eoisotropic subspace V of a symplectic vector space (S, to), 

where to defines an alternating non-degenerate bilinear form. We denote by  V ~ the sub- 

space of all w E S  for which to(w, v) = 0  for all vE V. In  other words, V ~ is "orthogonal with 

respect to to" to V. 

One calls a subspace V c  S "isotropic" if V~ V ~, i.e. if to vanishes in V. Similarly, a 

space V is called "coisotropie" if V~c V, which is the same as saying tha t  itsto-orthogonal 

complement V ~ is isotropic. (See [11].) Since to is nondegenerate dim S =2n is even and 

dim V + d i m  V ~ = dim S = 2n. 

Hence for a eoisotropie subspaee we have 2 dim V ~' <~2n, i.e. dim V ~>n = �89 dim S. Inci- 

dentally, every subspace V with dim V = 2 n - 1  is clearly coisotropic. 

Let  M be a smooth manifold and ?': M-~F~ an embedding of M in •. Then d](T~M) 

is a subspaee of T~c~)Z and we call M coisotropie if dj(T~M) is a eoisotropie subspace of 

T~(~)~ for every p E M .  We will denote the dimensions of ]~, M by  2n, 2 n - r  so tha t  

O<~r~n. 

For a coisotropie manifold M the space (dj(T~M)) ~ is, by definition, an r-dimensional 

subspace of Tj(~)~, and therefore has a preimage in T M  under ?'. We denote this preimage 

simply by (TM) ~, defining an r-dimensional distribution in M. I t  turns out tha t  this 

distribution is integrable so that ,  b y  Frobenius' theorem, one has an r-dimensional foliation 
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of M. We denote the r-dimensional leaf through p EM by L~; so tha t  L~ is tangential to 

the given distribution. 

We illustrate these concepts ~4th a simple example: Let  Z = R  2n with coordinates 

xl ..... xn, Yl ... .  , yn and at = ~=lykdxk which makes R 2n into an exact symplectic manifold. 

We consider a submanifold of codimension 1 which is always coisotropic. We describe this 

submanifold M by  a function H =H(x, y) as 

H =O, 

where we assume that  dH:~O on M. The one-dimensional space (T~M)~, is, in this case, 

spanned by  the tangent vector 

~H aH 

which is clearly tangent to the "energy surface" M. The leaves Lv of M are in this case 

simply the orbits of the above systems on H = 0 .  Clearly these leaves need not be 

compact, in general, and may  even be dense on M. 

In  the following we frequently will identify ](M) and M as well as y'(Lp) and Lr, and 

set ~[M=~Oj; ?'=idM. This is, of course justified for embeddings ], but  we point out 

tha t  the result holds for immersions ~ also. 

THEOREM. Let (Y,, at) be a simply connected exact symplectic mani/old and let 

j: M-~Z  

de/ine a smooth embedding o/ a s smooth, compact coisotropic mani/old into ~,. Finally, 

let yJ be a differentiable, exact symplectic mapping o /a  neighborhood U(](M)) o/](M) into Y, 

such that 

{v, oj- j [o,  
is sufficiently small. 

Then there exist at least two points p E M such that 

~i(p) c j(Lp, 

i.e. p and y~](p) lie on the same lea/ in ~,. 

We discuss some consequences of this theorem: 

1. For r=O we can take M = E ,  j =ident i ty  if Z is also compact. In  this case the leaves 

L~ = (p) are points and the above theorem asserts: Every  symplectie mapping ~o, Cl-close 

to the identity, on a simply connected compact, symplectic manifold has at least two 
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fixed points. Here one can drop the requirement that ~0 or M be exact symplectic, since ~0 

is defined on a simply connected manifold; see [11], p. 29. 

2. For r = n  one has Lv =M,  ff M is connected. In  this case M is called a Lagrange 

manifold. In this case the theorem asserts that  the image ~o](M) of any Lagrange mani- 

fold j(M) intersects ](M). This follows from Weinstein's results [10] on intersection of 

nearby Lagrange manifold and our case can be viewed as an extension of this statement. 

3. For the intermediate case, r = l, we have a submanifold of codimension 1 with a 

1-dimensional foliation. For example, if Z = R  2~, o~=~_lykdx~ (notation as above) and 

M is given by 

H = 0  

where H=H(x,  y) is a Ce-funetion with dH=4=O on M. Then the foliation on M is given by 

~H ~H 

To apply our theorem to this situation we assume M to be compact, and assume that  y~ 

is any exact sympIeetic mapping in U(M) such that  YJIM is close to idlM. In  particular, 

~0 need not map M into itself. In  this case the theorem asserts the existence of a point 

p E M  such that  y~(p) lies on the orbit of the above systems through p; for this point 

~p(p) EM, thus M and ~(M) intersect at ~fl(p). 

For n = 1 this result just states that  a closed curve M in It 2 and its image under ~0 

intersect, which follows simply from the preservation of the area ~ ~ enclosed by such a 

c u r v e .  

For the higher dimensional case consider the example 

H =  z~ + Yk) -- 1 

where M is the unit sphere and the leaves are circles xk+iyk=cke -~t, ~=1  Ick] ~=1. If  ~0 

is the translation, say, xk--.'-xk+eak; yk-->ye then there is at least one circle intersecting its 

image circle. Incidentally, this example shows also the necessity for the smallness condition: 

If  e is sufficiently large no such intersection exists. 

4. Poincar6's perturbation theory of periodic orbits. We consider a system (1) in 

R ~n and assume that  the energy surface M = {(x, y)]H =0)  is a regular compact manifold 

such that all orbits on M are periodic of a constant period = T. We claim that for any 

system with a Hamiltonian /~ for which ] / ~ - H  l c, is small, there exists at least one 

periodic orbit on / : /=0  whose period is close to T. 
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To show how this result follows from the theorem we denote by ~0 ~ the flow associated 

with the system (1) and ~ tha t  for the perturbed system, so that  ]~-~0~1ci small for 

O<.t<~T. Moreover, let j be a mapping taking M={(x ,  y ) l H = 0 }  into / ~ = { / ~ = 0 } ,  e.g. 

along normals of M. Since ~0TiM=id we set ~0 =@r so that  ~0o] is close to ~. Moreover, ~0 is 

exact symplectic as is well known. The foliation j(L~) on ]V'/=j(M) is given by  the flow 

@~. Thus the theorem asserts the existence of a point ](p)=q E M such that  

o r  

for some small s. Hence 

v,(q) = v, o i (p)  e j (L, )  

~(q) =~)s(q) 

~*-S(q) =q 

and the orbit through q has period T - s - ~  T. We did not assert the existence of two 

orbits since the two points of the theorem may  lie on the same periodic orbit. 

Arguments proving similar results go back to Poincard [7] and our proof can be viewed 

as a generahzation of his. The basic idea is to construct an auxiliary function on M whose 

critical points are the desired points which are mapped along the foliation. 

We recall Poincar6's idea for a mapping 

X = / ( x , y ) ,  Y=g(x , y )  

in R 2n which is assumed to be exact symplectic, hence 

( Yk dxk - Y~ dxk)  = d /  
k=l  

is exact. Poincar6 constructed in place of this the differential 

fl = ~ {(Yk- Yk) dXk - ( X k  - xk) dyk} 
k ~ l  

= (Y~ dXk + xk dyk) -- d Yk Xk 
k ~ l  

(2) 

which is also exact. I t  has the added advantage tha t  at  critical points of g, i.e. at  a point 

where dg =fl =0 one has 

Yk=Yk, X k = x ~  
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i.e. a fixed point, provided tha t  the differentials dXk, dyk are linearly independent there. 

This is certainly the case if the given mapping is close to the identity. 

Before giving the proof in w 3 and w 4 we describe a simple application of our theorem 

to a t ime dependent nonlinear perturbation of a system of oscillators. The theorem can 

also be used to show the preservation of homoclinic orbits of Hamiltonian systems, even 

if these homoclinic orbits are degenerate. For systems of two degrees of freedom such 

results were known (see, for example, [4]) but for higher degrees of freedom they seem to 

be new. Apphcation of this nature giving the existence of homochnic orbits can be found 

i n  the work by  Easton and McGehee [1]. In  fact, this investigation was prompted by 

discussion with 1~. McGehee on this topic. 

For helpful comments and encouragement I am indebted to R. McGeheo and C. 

Coniey in whose seminar this work was discussed as well as to E. Zehnder. Furthermore I 

want  to express m y  gratitude to the University of Wisconsin, [Madison and the Mittag 

Leffler Insti tute where this work was carried out. 

w 2. An application 

We consider a system of n harmonic oscillators given by  the Hamiltonian 

Ho--�89 ~ a~(x~+y~) 
k = l  

in R 2~, where the frequencies zck are positive numbers, so that  the energy surface H =c  

for c > 0 is compact. In  the special case where all a~ are integer multiples of a positive 

number a all solutions are periodic of period 2zt/a; we refer to this case as the periodic case. 

We perturb this system by  a t ime dependent perturbation Hamiltonian P =P(x, y, t) 

where we assume that  PEC ~ and S~_oo]lPllc, dt is small. Here II IIc' refers to the space 

variables x, y only. Moreover, we assume tha t  P(x, y, t) = 0 for I t I ~> T where T is a fixed 

positive number. 

The perturbed system is governed by  the Hamiltonian H=Ho+P.  I t  describes a 

slightly coupled time dependent system and, of course, the energy is not any more con- 

served for the system. 

We study the connection between the solutions for t < -  T and for t > T and will 

show tha t  on any energy surface there exists at  least one orbit which for t > T agrees 

up to a phase shift with the continuation of the unperturbed orbit coinciding for t < - T .  

In  particular, for this orbit the energy is strictly preserved from t < -  T to t > T. 

To describe the mapping in question more precisely we introduce eocordinates 
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z~ =xk, zk+, =Yk (k = 1, 2, ..., n) in R 2~ and set z = (zj). Denote by z =~0 t' ~'(~) the solution of the 

t-dependent system 

~H ~H 
x~ ~ y ,  ~xk 

which for t = t  o takes on the value z =~. Then 

ff these mappings are defined. For the unperturbed system, given by H 0, we denote this 

mapping by +~"~:=~'-t ' ;  it depends on the difference tx-t~ on account of the auto- 

nomous character. 

We choose numbers a, b in a < -  T, b > T and define 

which is the mapping in question. Consider a solution 

so that  

z~T~-a(~) f o r t < - T .  

On the other hand, for t > T this solution agrees with 

z = ~ .  ~ o ~ .  o(~) = ~ - ~ o ~ .  o(~) = ~ - O o ~ - b o ~  ~, ~(~) = ~ -~  

Thus the initial value $ for t = a  is replaced by  y~(~). 

I t  is good to notice tha t  an orbit of the unperturbed system need not go into an 

orbit again, since the mapping depends on the phase. Otherwise ~0 would have to commute 

with ~ which need not be the case in general. 

As is well known, the mapping q~b.~ and ~ - ~  and ~f =~g-b~b'~ are exac~ sympleetie with 

respect to ~=X?~.,ykdz~. Moreover, V is ~ '  close to the identity map since ~_~ II~ll~dt is 
small. Thus our theorem applied to this mapping ~p and an energy surface He=c, c > 0  as 

coisotropic manifold guarantees the existence of a point ~* on H0(~*)=c such that,  

~v(~*) =qog(r for some small s. In  other words the solution 

z = ~.~(~*) 

which for t < - T  agrees with ~o-~(~ *) is for t > T equal to 

z = ~ -~o~(~* )  = ~ ~  

i.e. agrees with the unperturbed solution up to a phase shift e. This is what we wanted to 

show. 
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W e  i l lus t ra te  the  case of a coisotropic manifo ld  of codimension r > 1. W e  note  t h a t  

the  funct ions 

Go=x~+y~, ~ = 1 ,  2, . . . , r - 1  

G,=H0=I ~ ~(x~+y~) 
k ~ l  

are  in tegrals  of the  mot ion  for the  u n p e r t u r b e d  problem.  Moreover  the  Poisson bracke ts  

{G 0, G,} = 0, which implies  t h a t  the  manifolds  

r - 1  

G 0 = g Q , % > 0 ,  c r > ~ % % ,  ~ = 1 , 2  . . . . .  r (3) 
0 = I  

are  coisotropic,  as will be shown in w 3. We inc luded H 0 as one in tegra l  to  ensure 

compactness  of these manifolds.  We  use such a manifo ld  as M in our theorem.  I t  is of the  

topological  t ype  of T ~-1 • S 2(~-~)+1 where T ~-~ is an  ( r -  1)-dimensional  torus,  and  S m an  m 

dimensional  sphere.  Indeed ,  wi th  polar  coordinates  

xk + iyk = rke ~~ 

2 n r r - 1  one has r e = %  for ~ = 1  . . . . .  r - 1  and  ~.k=~k k=cr--~=o%cq>O. The flow genera ted  b y  

G o is given b y  0~-+0k +~ko ~o; rk-->rk, where 6ko is the  Kronecker  symbol .  The  leaves th rough  

a po in t  (r*, 0") are  given b y  

rk=r~; 0 k = 0 * +  ~ k o T o + ~ k ~ ,  k = l ,  2 . . . . .  n 
5=1 

where  1:1, v 2 . . . . .  Tr are r pa rame te r s  on the  leaf. 

B y  the  above  theorem,  on every  manifo ld  of the  form (3) there  exists  a solut ion 

~ -a ($ )  for t < - T which aside from phase  shifts ~1, v~ . . . . .  ~r-1, vr of 01, 03 . . . . .  0r_l, t r e tu rns  

to  t he  con t inua t ion  of the  u n p e r t u r b e d  orbi t .  I n  par t icu lar ,  for th is  orbi t  all in tegrals  

G 1, G2, . . . ,  G r have  the  same value  for t < - T  and  t > T. Of course, for o ther  solut ions the  

in tegra ls  G 1 . . . . .  Gr of the  u n p e r t u r b e d  sys tem are  genera l ly  no t  preserved.  

I n  th is  example  one could al low funct ions  P(x, y, t) which decay  suff icient ly r a p id ly  

as I t ] -+ ~ .  Then we would have  to describe the  a sympto t i c  behav ior  of t he  orbi ts  for 

t-+ ___ ~ and  s t u d y  the  sca t te r ing  mapp ing  re la t ing  these a sympto t i c  d a t a  for t = - ~ and  

t = + ~ .  The above  theorem yields  orbi ts  for which this  mapp ing  is the  same as for the  

u n p e r t u r b e d  flow aside f rom phase shifts. 

S imi la r ly  the  above  theorem can be used to show t h a t  homoclinic  orbi ts  are  con- 

served under  small  p e r t u r b a t i o n  of the  Hami l t on i an  vec tor  field, even in degenera te  
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s i tuat ions.  This can be found in Eas ton  and  McGehee [1], and  we indica te  a s imple example  

only: 

Consider the  H a m i l t o n i a n  

He = ~ (x~ + y~) + xoy o + (x~ + y~)~. 
k=l 

Here  we have  d im E = 2n = 2m + 2. 

The  manifo ld  N: x 0 =Y0 =0 ,  H 0 = 1 is a 2m - 1 d imensional  sphere on which al l  orbi ts  are 

periodic.  Due to  the  t e rm xoy o t h e y  are  uns tab le  and  each periodic  orb i t  S 1 possesses an  

uns tab le  mani fo ld  W+(S 1) and  a s table  manifo ld  W - ( S  1) of d imension 2. I n  fac t  bo th  

these manifolds  agree for this  example  and  are  given b y  

xoy o + (x~) + y~))~ = 0 

and  (x 1 . . . . .  xm, Yl . . . . .  Ym) on the  periodic orbi t .  However ,  if we subjec t  H 0 to  a pe r tu rba-  

t ion,  t hen  these two manifolds  need no t  agree a n y  more.  

I n  th is  s i tua t ion  the  theorem of w 1 applies  and  shows if P =P(x,  y, xo, Yo) is a smooth  

func t ion  of suppor t  outs ide of N a n d  IlPllc~ suff iciently smal l  t hen  there  exists  a per iodic  

orb i t  S~, on iV such t h a t  

w+(s~,) n w-(s~,) + o .  

A n  orbi t  on this  i n t e r s e c t i o n - - a  homoclinic  o r b i t - - a p p r o a c h e s  the  same circle S~ for 

t--> + ~ and  t - ~ -  ~ .  I n  this  respect  this  resul t  is analogous to  the  earl ier  one of th is  

section. F o r  t he  deta i l s  we refer to  [1]. 

w 3. Outline of proof for Y-= R 2n 

W e  first  out l ine the  proof in the  special case when Z = R  2n. Using the  coordinates  

zk=xk, Zk+n=y~ for k = l ,  ..., n we in t roduce  the  exac t  symplec t ic  s t ruc ture  b y  

o: ~ �89 ~ (ykdx k -- xkdy~) = �89 dz) 
k = l  

where 

J = ( - I  

and  ( , )  denotes  the  Euc l idean  inner  produc t .  Thus  

eo = d~ = ~ dy k A dxk 
k = l  
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and for two tangent vectors 

an 
v =  v a- 

k=l kozl~ ' k=l 

we can represent w(V, W) in terms of the inner product by 

co(V, W)=�89 W) 

where we identified V, W with the vectors with the components Vk, Wk. 
To describe the idea of the proof we make the direct product Z • Z = R  an into an 

exact symplectie space (sympleetie space) by introducing the forms 

= {(JZl,  dZl) -�89 dZz), (<7o =dx) 

where (Z1, Z2)~X • Z. The 1-form which is basic for the following is 

= � 8 9  1 - Z2) , ( d Z 1  + d Z 2 ) )  (3.1) 

which differs from & by the exact form 

�89 Z,~), 

and vanishes on the diagonal A: Z 1 = Z 2. These two properties will be essential for the 

following: 

(i) /5 vanishes on the diagonal A=]~ •  

(ii) / 5 - ~  is exact. 

To describe the outhne of the proof we consider the embedding ?': M - ~  of the 

coisotropie manifold and the given exact symplectic mapping % so that  ~vo?" takes 

M ~ Z .  Moreover, we will construct a mapping ~0: M-)-M which preserves the leaves in M 

and is chosen so that  j~(p) is the point on ](Lp) closest to y~o?'(p). We then look for points 

/5 for which ~o](25)=jo~(15), or ~0(q)ELq for q=j(~). 

These points are found as critical points of a function which is constructed as 

follows: Let 

/~: M-~Z x Z 

be the mapping given by 

/~(p) = (j~(p),  ~ ' (p) )  (3.2) 

and consider the 1-form/**/5 on M. We will show that  it is exact, i.e. equal d.F with a 

function F on M, and the critical points o f / 7  turn out to be the desired points. In  the 
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special case when M = ~, j =id,  ~0 = id  this argument is precisely the one given at the 

end of w 1. 

Before proceeding with the proof we characterize coisotropic submanifolds M in Z 

locally and show that  the distribution (TM)  '~ is integrable. Here we identify j(M) and M 

and describe M fl U in a sufficiently small neighborhood U of a point of M by the equa- 

tions 
Gq(z)=O, Q=I ..... r, 

where dGQ are linearly independent in U. 

PROPOSITIOS; 1. M n U is coisotropic in Y, i/ and only i/ the Poisson brackets 

{(To, (Ta} = <Jr(70, VG~> 

vanish on M fl U. 

To prove this we associate with a function (7 the Hamiltonian vector field Va = j - x  V(7, 

whose Hamiltonian (7 is. For two such functions (7, H we form the bilinear form 

2w(Va, V~) = <JVa, VH> = <JJ-1V(7, J-xVH> = <JVG, VH> = {G, H} (3.3) 

which is the Poisson bracket of (7 and H. In particular, Va, VH are orthogonal with 

respect to r if and only if {(7, H} =0. 

There is another way in which the Poisson bracket is related to (7, H: The commutator 

[Vv, V~] is a Hamiltonian vector field with the Hamiltonian-{(7,  H} i.e. 

[Va, VH] = -- V~, m. (3.4) 

To prove the proposition we note tha t  T M  consists of those vectors ~ for which 

<v(TQ, ~> = 0 

or equivalently, with VQ=J-1V(TQ, 

o~(V o, ~) = O. 

Hence V o E (TM)*' and since they are linearly independent they span (TM) ~ Therefore the 

condition ( T M ) ~ c  T M  is equivalent to 

eo(Vo, Vo) = 0 o n M f )  U 

which, by (3.3), proves the proposition. 

Incidentally this proposition does not imply that  the vector fields V 0 = J - 1 ~ 7 ( 7  0 c o r n .  

mute as one may expect from (3.4). Since the Poisson brackets {G 0, (7~} vanish only on 



2 8  J. MOSER 

MN U one cannot conclude tha t  the corresponding vector field vanishes. However, we 

have 

PROPOSITION 2. I /  MN U is coisotropic then the distribution (TM) ~ is integrable. 

Proo/. By Frobenius'  theorem it suffices to show tha t  [V 0, V~] belong to (TM)% We 

note tha t  by Proposition 1 the function H = {G 0, Gr vanishes on M N U, and since the 

dG, are linearly independent we have 

V H =  ~ V G  o n M N  U. 

Hence 

and by  (3.4) 

V . = ~ 2 v V .  
v = l  

EV e, V,,] = - VH= - ~ 2~ VvE(TM)% 
v = l  

We note tha t  Proposition 2 holds for general symplectic manifolds: Indeed, by a 

theorem of Darboux, locally one can introduce coordinates xk, Yk such that  the symplectic 

form has the standard form so tha t  Proposition 2 becomes applicable in the general case. 

By  Proposition 1 one can construct examples of coisotropic manifolds by  considering 

sets of the form GQ =% for functions which are "in involution" in a domain. These are in 

two respects very special coisotropie manifolds. First, the corresponding vector fields 

V 0 commute by  (3.4) which is a strong restriction. Secondly, these manifolds are given 

by  global functions G 0, which may  not exist in general. I t  is one of the purposes of the 

proof of w 4 to be free from these restrictions. 

More generally coisotropic manifolds are related to symplectic group actions also for 

noneommuting groups. In  this connection we refer to [2], [3] and [5]. 

w 4. ProoI  of Theorem 

(a) In  the exact symplectic manifold (Z, ~), which is also symplectic with respect to 

co=da  we introduce the standard notations: With any  function H on Z we associate a 

vector field VH by 
dH = co _._1V, (1). 

Then the Poisson bracket of two functions G, H is defined by  

(G, H} = ~o(Va, V.). 

(1) For notation, see [9]. The notation matches that of w 3 only up to irrelevant factors. 
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Moreover, one has 

[ V~, V.]  = - V(o..~. 

Let ~: M-->E be the embedding of a coisotropic manifold of codimension r, O<~r~n. 

Then :r162 is a one-form on M and the corresponding two-form dO~M=~*O):O) M has 

an r-dimensional nullspace (TM) ̀ ~ in T M  which, by the remarks of the previous section, 

defines an integrable distribution. We denote by L~ the leaf through a point/o E M. 

We need the following 

PROPOSITION 3. Let cf be a C~-mapping o/ M into itsel], Cl-close to the identity and 

qJ(p)EL~ /or all pEM.  Then the 1-/orm 

is exact. 

Proo/. We interpolate ~ by a family of such leaf-preserving mappings ~8 (0~<s<~l) 

such that  ~0=id, ~01=~, for example as follows: We introduce a metric in Z and define 

the exponential map expq: Tq~.-->~. 
Since ~ is close to the identity the points ](p) and ]~(p) are close in F~ and can be 

represented by 

]~(p)  =2  expq (sA(q)), q=j(p), 

where ~t is the projection of a neighborhood of j(L~) onto j(L~). I t  assigns to a point r near 

j(L~) the closest point 2(r) to r on ?'(L~). This mapping 2 is well defined and smooth in a 

sufficiently small neighborhood of ](L~). 

Since ~8(P)EL~ the vector field Ws = ((d/ds)~s)o~ 1 is tangential to L~ and hence W8 G 

(TM) ~ or 

O~M ~ W~ = 0. 

We have to show that  

~*aM--aM= f 2 d  (q~*a)ds 

is exact. Denoting the Lie-derivative along W by Ew we have 

d 
(~* ~ )  = ~*s ~ .  

and, by a general identity, we have 

s a~ = (da . )  _JW, +d(a~ ~ W  s) 
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The first term is equal w M__j W s and vanishes, the second is exact. Thus we have 

q~*aM-- O~M= d ( f ~ qv* (O~M_A W,) ds) 

proving the proposition. 

(b) Next we use a theorem of A. Weinstein who constructed a 1-form fl, analogous to 

that  of the previous section, for general exact sympleetic manifolds. For this purpose we 

define the product manifold Y~ • Z and the projections ~r~: Z • X-~X in v = 1, 2 into the first 

and second component. Then 

5 = ~ * ~ - ~ ;  cS=dd  

defines an exact symplectic structure on Z • •. The diagonal A of • • Z is the manifold 

of points q satisfying 7~l(q)=7Q(q). 

PROPOSITION 4. I/  (Z, ~) is a simply connected, exact symplectic mani/old then there 

exists a one-lotto fl on a neighborhood 2Y(A) o/ the diagonal in Z x Z such that 

(i) ~ =0 on the diagonal A c Z • Z. 

(ii) fl - 5 = d/is  exact. 

We outline the idea of the proof: A tubular neighborhood N(A) is differentiably 

equivalent to the cotangent bundle T'Y, of Y~ and one constructs a diffeomorphism 

k: .N(A) ~ T'Y, 

which takes the diagonal A into the zero section of T*Z. If  v is the natural 1-form of T'Y, 

(which vanishes on the zero section and for which dv is nondegenerate) then k*v is a 1-form 

on N(A) vanishing on the diagonal. Moreover, the diagonal A is a Lagrange manifold 

for the symplectie form k*(dv). By a deformation argument one shows that  any two 

symplectic forms near a manifold which is a Lagrange manifold with respect to both 

forms are diffeomorphically equivalent. Applying this to e5 =d5 and k*(dv) one sees that k 

can be so chosen that  

d5 = k*(dv) 

hence 

d(d - k'v) = 0. 

Since Z is simply connected 5 -k*v  is exact and we can take fi=k*v to prove the 

proposition. 

(e) Let ~v be the exact sympleetic mapping of the theorem, so that  

~*o~-o~=dh in U(]M). (4.1) 
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Hence with aM=~$a 
(~Pi)* a - aN = j* dh = d(hoj).  

With this mapping ~ we associate a leaf-preserving mapping ~: M - + M  which will be 

specified later. At this point we leave q unspecified except to assume that  ~v is CX-close to the 

identity and ~(p) ELp. 

(d) With these mappings ~, y~ we define 

by 

o r  

#: M-~Z x Z 

~(p) = (jo~(p), woj(p)), 

=1~ = jo~, :W~ = ~ o j .  

Then #*fl is a one-form on M. The proof of the theorem will follow from 

PROPOSITION 5. T h e / o r m  #*fl is exact. Moreover, q~ can be chosen in such a way that 

#*fl vanishes only at points ~ ]or which ?'oq(~)=y~o](lb ). Thus  i /#*fi  = dF,  the critical points, 

say the max imum and the min imum,  o / t z  give the desired two solutions. As  a matter o//act 

the number o/ the solutions is at least equal to the category (in the sense o/ Liusternik- 

Schnirelman) o / M .  

Proo/. To show that/s*fi is exact we use Proposition 4 to write 

#*~ =/~*~ a -#*g~ a +d(/o/~) = (iq0)* a -  (Voi)* a +d(/o/x) = ~0*a~- (Voi)* a +d(/o/~) 

= (of*aM-- aM) -- ((~VO j)* a -- aM) +d(/ola). 

By Proposition 3 and (4.1) we have 

#*fl = d ( g - h o j  +/o#)  = dF.  

To study the zeroes of the form/~*fl we represent j o e  and ~oj  by  vector fields on 

](M), defined by 
]~(p) = expq A(q); ~(q) = expq B(q). 

where q=](p). Because of the smallness condition IAIo ,  I B[o, are small and we will 

approximate #*fl by the linear approximation in A, B. To formalize this we define the 

mapping #~: M-+Z • Z by ~'x#~ =expq (cA(q)), ~u~=expq  (eB(q)); q =j(p) and approximate 

/~*fl by 
d 

d-~ (~*fi) l~'~ = s  
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where W = (A, B) is a vector field in T(Z x Z) on j(M). We need the following formula: 

For v E T M  and V=(d~)v one has 

�9 Cwfl _1 v = w(A - B, V). (4.2) 

To prove (4.2) we use the identity 

Cwfl = ~ {(dfl) A W + d(fl ~ W)} 

and note tha t  the second term vanishes, since fl vanishes on the diagonal and the image 

of ju 0 = (j, j) lies on the diagonal. Hence 

o r  

s Av =~(w, d/~oV). 

Since (5 = ~ w  -ze~o and ~1#0 =~2ju0 = J, d~x W =A,  d ~  W = B we have 

s v = ~o(A, (dj)v) -co(B, (d])v) = eo(A - B, V), 

where V=(dj)v ,  as we wanted to show. 

Now we fix the mapping ~ defined in terms of A by  requiring tha t  ( A -  B)(q)_L 

(dj(TvM))% for q=j(p) ,  i.e. that  A - B  is orthogonal to the tangent space of the leaf. 

Since ~ is assumed to be leaf-preserving this fixes A and hence ~0 uniquely. (One could 

have fixed by other choices, e.g. pick jo~0(p) as the point on tile leaf j(Lr) closest to ~foj(p).) 

Since SUpv~o(X, V)=O where VE(d] )TM imphes tha t  XE(d](TM))  ~~ we conclude 

tha t  for X = A - B  

sup ~o(X, V)>~cIA-B [ 
Ivl=l  

where the norm is with respect to the chosen metric and c is a positive constant. 

We recall tha t  for a point p at  which ( A - B ) o j = 0  one has #(p)CA, hence ~u*fl=0. 

Therefore given 7 > 0  we can choose ~0oj so close to j tha t  

Hence 

I#*fl_lv-co(A-B, V)l <~ [A  - B I I V  I. 

II~*flll = sup ~*fl2v~ sup ~o(a-B, V)-BIA-B] 
Iv l~l  IVl=l 

> ~ ( c - ~ ) I A - B [ .  

Hence, for 0 <U <c  we conclude that  #*fl=O at  a point 15 implies A = B at  q =j(@) and 

hence v(q) = jo~(@) 6j(L~) which concludes the proof of Proposition 5, and of the theorem. 
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We conclude with a remark which we owe to A. Weinstein: He observed tha t  our 

result can be derived from Theorem 4.4 of his paper [10] about the intersection of 

Lagrange manifolds. We indicate his argument pointing out the connection to the above 

proof: Let  

'lfl = (p, qEM, qEL~; d(p, q)<~} 

where d is an appropriate distance and 6 a positive constant. We imposed the smallness 

restriction on the distance so tha t  ~ is a manifold which is embedded in • • ~. Clearly 

dim M = 2n. The main observation is tha t  ~ is a Lagrange manifold with respect to the 

symplectic structure e5 in Z • •. For this purpose we construct for given (p, q)E ~ a 

leaf preserving diffeomorphism 9 taking p into q=~(p) .  Such a map can be constructed 

by  modifying an arbitrary Cl-map near the identity taking p into q to one which preserves 

the leaves, as it was indicated in the proof of Proposition 3. 

To show tha t  ~/~ is a Lagrange manifold it suffices to show for fixed (p, q) E ~ tha t  

tS(~, ~') = 0  for (, ~ ' 6 T ~ . q ~ .  (4.3) 

Clearly, ~ = (~, U) 6 T~q ~ if and only if 

~-O~E(TqM)~ with (I)=d~ 

Now we note tha t  eo(~], v/')=co(4, 4') if V - 4 ,  ~ ' - ~ '  E(TaM)~ hence 

By Proposition 3 this expression agrees with eo(~, 2') hence ~o(~, ~ ' ) - o ) ( ~ , ~ ' ) = 0 .  This 

proves the assertion (4.3). 

Finally, the fact tha t  :/~ and A intersect "cleanly" in the terminology of [10] along 

;1 A = (p, q E M, p = q} lollows from Proposition 5. 

Now the Lagrange manifold A=(p ,  q e M •  q=~(p)} is C' close to A and by 

Theorem 4.4 of [10] A N ~ is given by  the zeros of a closed 1-form on A ;1 ~ which is diffeo- 

morphic to M. If  ~ is exact symplectic this form is exact, and the set 7~ N ~ given by the 

critical points of a function on M. Since /~N ~/  consists of the points (p,q)EM• 

with q =~(p)EL~, the proof is finished. 
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