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The present paper has several objectives. The first apparent  theme is an investigation 

of holomorphie functions/(u,  z) on Cs • ~ which generalize the classical theta function 

O(u, z )= ~ exp (~ i ( t x z x+2 . t xu ) )  (uEC~, z E ~ ) ,  
x E Z  n 

where ~n is the Siegel upper space of degree n, and C~ the vector space of all n • s complex 

matrices. As is well known, 0 satisfies a transformation formula under Sp(n, Z), and also 

another formula under a translation u~->u + za + b with a, b in Z n. Generalizations of these 

two formulas are the conditions we impose o n / .  Multiplying / by  a certain exponential 

factor, we associate with / a non-holomorphic function / . (u,  z) whose value at a point 

u = zp + q is a holomorphic modular form on ~n if p and q belong to Qn, the set of Q-rational 

elements of (~. In  the special case / =  0, we have 

O.(u, z) = exp (zei. t ( u -  ~) (z - 5)-lu)O(u, z). 

Now we consider the group G of similitudes of an alternating form and its restricted adeliza- 

tion GA+, the restriction to the identity component being made at the archimedean place. 

In  order to deal with the modular forms of half integral weight, we introduce a certain 

covering (~ of GA+, which is modelled on the metaplectie group of Weft [10]. Then we de- 

fine the action of every element of (~ both on modular forms on ~ and on the functions 

/(u, z) with cyclotomic Fourier coefficients so that  a reciprocity-law 

(1) /,(~v, z)y = (?),(~-txv, z) 

holds for all y E (~ and all v E Q~, where ~ ,  = (z 1~) and x is the projection of y to GA+; x 

can replace y if the forms are of integral weight (Theorem 3.10). The action of GA+ or (~ 
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on modular forms is consistent with the concept of canonical models in the sense of [4]. 

Formula (1) may  be considered a "generic form" of the main theorem of complex multipli- 

cation of abelian varieties or of Siegel modular functions, which was originally proved with- 

out there functions, and then formulated in terms of there functions in our recent paper 

[7]. In  fact, (1) enables us to give a simplified proof of the main theorem of [7]. 

The first two sections of the present paper are devoted to the action of GA+ and (~ 

on modular forms on ~ ,  which may  be of independent interest, though this par t  is preli- 

minary to the rest of the paper. Formula (1) and its "specializations" will be proved in 

w 3. The next two sections are of technical nature; the proofs of some statements of the 

previous sections will be completed there. In  w 6, we first observe tha t  if F is a modular 

form on ~n+8 and if a point Z of ~n+s is expressed in the form 

with u E C~, z E ~n, and w E ~ ,  then F has a Fourier expansion 

(2) F(Z) = ~ / ~ (u ,  z) exp (~i . t r  (~z)) 

whose Fourier coefficients/g belong to the functions of the above type, where ~ runs over 

non-negative rational symmetric matrices of degree n. We shall then prove another reci- 

procity-law concerning the action of (~ and its counterpart  ~ '  of degree n + s  on/g  'and F 

(Theorem 6.2). 

We shall present all these for holomorphic modular forms with a rather general auto- 

morphie factor det (cz + d )k/2 ~ (cz + d ), where k E Z and ~ is an arbi trary rational representa- 

tion of GLn. The "there functions" / will also be defined relative to a representation ~ of 

GLn+8. The consideration of an arbi trary ~ or v is made not merely for the sake of generality, 

but  because there are good reasons for believing that  such is natural  and even necessary 

for the future development of the arithmetic theory of modular forms and zeta functions. 

I t  should be pointed out, however, tha t  the nature of the reciprocity-laws is essentially 

revealed in the case of trivial ~ and trivial ~, and therefore if the reader wishes to have a 

quick grasp of the ideas, he m a y  be advised to assume throughout ~ and v to be trivial. In  

fact we have stated (1) in tha t  special case. 

While our theory m a y  be accepted on its own merits, it has one significant and hidden 

aspect. Expansion (2) is actually an example of Fourier-Jacobi series in the sense of 

Pyatetskii-Shapiro [3]. Such a series occurs naturally as a Fourier expansion of an auto- 

morphic form on a Siegel domain of the third kind. When the discontinuous group is 

arithmetically defined, one can ask whether there is a natural  class of "ari thmetic auto- 
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morphic forms" which is characterized by  some properties of Fourier coefficients and 

which plays the role similar to that  of the elliptic modular forms with algebraic or cyclo- 

tomie Fourier coefficients. Now our results, especially the above two laws of reciprocity, 

seem to suggest an affirmative answer to this question. A detailed explanation of the ideas 

about this is another of our main purposes of this paper, and will be given in the last 

section, to which the preceding sections may  serve as a long introduction. 

Notation. For a ring X with an identity element, the set of all r • s matrices with 

coefficients in X is denoted by  X~, and simply by  X ~ if s = 1; the identity element of X~ 

is denoted by  1~. Further X • denotes the group of all invertible elements of X. The diagonal 

matr ix  with diagonal elements dl .... , d~ is denoted by  

For T E C~, we put  

diag [d 1 ..... dn]. 

e~(T) = exp (2zd.tr (T)), 

and especially e (u )=e , (u )=e  2"~ for uEC. If  T is a hermitian matrix,  we write T>~0 or 

T > 0 according as T is non-negative or positive definite. The Siegel upper space of degree 

n is denoted by ~n, thus 

~,~ = {zeC~ltz = z, I m  (z)> 0}. 

We put  ~ = (z 1~) for z E ~ .  

I f  K is an algebraic number field, KA denotes the ring of adeles of K,  K~, the group 

of idcies of K, and Kab the maximal abehan extension of K. By class field theory, every 

element y of K~, acts on K~ b as an automorphism. We denote by  a y the image of a E Kab 

under y. In  particular, if K = Q ,  we put, as usual, QA=A and Q] =A• further, we denote 

by  At the non-archimedean part  of A, and by A~ the subgroup of A • consisting of the 

elements whose arehimedean components are positive. For 0 < N E  Z and x, y EA~, we 

write x = y (mod N) if % - yp E N(Zr)~ for all primes p, where x~ and Yv are the p-components 

of x and y, respectively. For b E A • we denote by  ]b] the positive rational number  such 

tha t  I b I Zv = b~ Z r for all p. We define a compact subgroup Z(  of A • by  Z~ =l-Iv Z~, where 

the product is taken over all primes p. 

1. The action of GA+ on modular forms of integral weight 

Throughout the first six sections, we let G denote the algebraic subgroup of GL2n 

defined over Q such tha t  

Go = {~eGL2~(Q)I~J~ = v(a ) J  with v(~)eQ}, 
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where 

(1.1) J = ( ~ ,  -I0n), 

and G~ its adelization. The map v: G~-~Q • can be naturally extended to a continuous 

map of Ga into A ~, which is still denoted by v. We denote by G~, G~o, and Go~+ the non- 

archimedean part of G~, the archimedean part of G~, and the identity component of G~o, 

respectively. We then put G~+ = G~ G~+ and 

~ +  = ~ +  ~ ~ = { ~ o  [~(~) > 0}. 

E v e r y e l e m e n t ~ = ( :  ~) of G(~+ acts on ~n by the rule ~(z)=(az § +d)-l f o r z ~ n  �9 

Now we take an arbitrary rational representation 

~: GLn(Q) -~ GLm(Q), 

and extend it to a holomorphie representation GLn(C ) -~ GLm(• ), which is again denoted by 

~. For ~= ( :  ~)EGo+andaCm-valuedfunetion/on~n, wedefineafunetion/Io~on~n 

by 

(1.2) (/[o~)(z) =q(cz § (ze~n). 

Given a congruence subgroup F of Go+, we denote by ~o(F) the vector space of all C m- 

valued holomorphic functions / on ~ ,  which satisfy /IoY=/ for all yEF and which are 

finite at cusps. Such / may be called modular/orms o/weight e. If / E ~o(F), / has a Fourier 

expansion 

(1.3) l(z) = ~ c(~) e,(~z) 

with c(~)E C m, where ~ runs over positive semi-definite symmetric elements of Q~. If n > 1, 

every holomorphic / sat isfying/[~ = / f o r  $ E F has such an expansion, and hence belongs 

to ~0(F) (see for example [1]). For a subfield ~ of C, we denote by ~Q(F, ~) the set of all 

/ in ~Q(F) with c(~) in ~ ,  and by ~Q(~) the union of ~0(F, ~) for all congruence sub- 

groups F. Further we denote by AQ(~) the set of all quotients g-lh with hE ~ ( ~ )  and 

0#gE ~ ( ~ ) ,  where w(X) =det  (X) k, ~=w~ with some integer k. Then we put 

A~(r, ~) = {/eA~(~)l l iar  =1 for a l l~er} .  

It  can easily be s h o ~  that ~o(F, ~) consists of all the holomorphic elements of ~4Q(F, ~) 

finite at cusps. If e(X)=det  (X) k with keZ, we write/[k~, ~ ,  ~4~ for/]0~, ~ ,  ~4~. 
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Let a be a field-automorphism of C. Define the action of a on C "~ component-wise. 

For ]E 7?/Q(C) with expansion (1.3), we define/r by 

(1.4) /~(z) = ~ c(~)~e~(~).  

If ~(X) =de t  (X) k,/~ is actually an element of ~k(C); moreover a can be naturally extended 

to an automorphism of .~k(C) (see [6, w 4]). We shall prove in w 5 that  these hold for ~n 

arbitrary ~. The notat ion/r  is meaningful if a is an isomorphism of a subfield ~ of C onto 

another subfield and ] E AQ(~); in particular ]* is meaningful for t EA • if /E A0(~ab ). 

Now we define an injection ,: A~-~GA+ by 

(1.5) t(t)=(lo~ t_Ol~) (tEA~_). 

In our treatment, we shall often need the strong approximation theorem in GA, which can 

be given as 

L E ~ M A 1.1. Let T be an open subgroup o/{x E GAI v(x) = 1} Gee+. Then GA+ is the product 

o/Go§ e(Z(), and T in an arbitrary order, i.e., GA+=GQ+t(Z~)T = Tt(Z()GQ+ . . . .  . 

Cf. [4, I, 3.4; II, (3.10.3)]. 

We are going to define the action of GA+ on AQ(QJ. First we recall that  GA+ acts on 

the field A0(Q~b) as a group of automorphisms, and for every tEA+, the action of t(t) on 

Qab is the same as that  of t (see [4], [5], [6]). 

T~OI~EM 1.2. There is an action of GA+ on AQ(Qab), written as (x, /)~_.+]z /or xEGA+ 

and /E AQ(Qab), with the/oUowing properties: 

(i) 7~Q(Qab) is stable under the action; 

(if) the action o/GA+ o n  A0(~ab) i8 the same as that mentioned above; 

(fii) the action is associative, i . e . , /~= (/x)~; 

(iv) (]| (/|174 where /Qg and / |  are naturally de/ined as ele- 

ments o/ AQ~(Qab) and A0| /or / E/4Q(~ab) and g E ~v(Qab); 
(v) l~=/lo~ q ~eG,~+; 
(vi) p(t)=l t/or t e Z[ ; 

(vii) lX=l i/x~Go~+; 
(viii) /or each/E Aq(Qab), the element x o/GA+ such that/x =/ /orm an open subset o/GA+. 

This extends the previous result [6, Theorem 5], which concerns the action of GA+ 

on Ak(Qab) with kE2Z. In the previous papers, we def ined/Ika  for aEGA+ with a scalar 
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factor v(~) ~/~, which is different from our present definition (1.2). This change is necessary 

to guarantee (iii) in the general case. Before proving our theorem, we first state the unique- 

ness of the action as 

PRO~OSITIO~ 1.3. The action o/ GA+ on ~4q(Qab) is uniquely determined by (iii), (v), 
(v~), (,~). 

Proo/. Let U={XEGA+[/x=]} with any given 1. By Lemma 1.1, if U is open, each 

element x of GA+ can be written as x=ue(t)a with u~U, t~Zp and a~GQ+. Therefore, 

assuming (iii), (v), (vi), we have/~ =/~]q a, which proves our assertion. 

In this section, we prove our theorem only for ~(Q~b) with k ~ Z. The general case 

will be discussed in w 5. First put  

(1.6) O(z)= ~ e(~vzv/2) 
v e Z  n 

and for each positive integer N, 

(1.7a) 

(1 .%) 

(1.7c) 

(1.7d) 

F~={yeG o N SL2~(Z)[~-- 12~(mod N)}, 

P 

s N =  {xeS l  - = l Amod N)}. 

Obviously it is sufficient to consider the case k > 0. Fix a positive integer k, and put  h(z) = 

O(z) 2~. As shown in [7], there is a positive integer M such that  h E ~k(FM). Take any such 

M that  is a multiple of 4, and put  T = SM. By Lemma 1.1, every element x of GA+ can be 

written as x=uo~ with u E T  and ~EGo+. Now we have Ak(Qab)=h'j40(Qab). Define the 

action of x on Ak(Q~b) by g~=(q/h)~(hlkc~) for gE~4k(Q~b)- By [6, Th. 4] or [7, Prop. 1.5], 

h[k~E ~/k(Qab), SO that  g~E Ak(Qab). We see easily that  this does not depend on the choice 

of u and ~. Also we have obviously ga= g lk g, g~P = (g~)P, gU~= (gU),, g ~ =  (g~)a for ~,/~ E Go+ 

and u, v E T. Assume that  

(1.8) (ga)y =g~y for gEAk(Qab), aEGo+, yEGA+ 

holds. Given x and y of GA+, put  x=u~ as above and ~y=vfl with v E T  and flEGo+. Then, 

by (1.8), (g~)y=(gU~)~=(g~)~=(gu)~p=(gU,)p=gU,Z=g~. Thus the proof of (iii) can be 

reduced to (1.8). Observe that  if (1.8) is true for some fixed a, y, and g~0 ,  then it is true 

for all g in Ak(Qab) and for the same a and y; if (1.8) is true for ~, then so is for a-1. There- 
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fore it is sufficient to  prove (1.8) for g = h  and for ~ belonging to a set of generators, say B, 

of G~+. Given a ~ B  and yeG~+, put  y=vfl with v e T  and fl~GQ+, and otv=uy with u~T 
and y ~ G~+. Suppose (h~) ~ = h ~'. Then (h~) ~ = ((h~)')Z = (h~r)Z = ((h~)v)Z = h ~r~ = h% Thus it 

is sufficient to prove 

(1.9) (h~) " = h  ~" for a ~ B  and v~T. 

Now by  [7, Lemma 2], we can take B to be the set consisting of J and the elements of the form 

Z~.  First  consider the ease ~ = J .  I f  v E T, we have v ~ 0 

with t~Zl~. Take (~ qs)~Si2(Z)sothats~O, (P qs)~--(to O1)(modM), and put ~ :  

rln sln] , ~v=wflo~. Then w--v (rood M), so that weT. Hence h~=h ~. By Prop. A.2 

of the Appendix, we have hP = h. On the other hand, h~ = ( -i)k~h by [7, (16')] and 

io= so that w ch proves (1.9) for Next 

Then w~-t(t)(rood N) with teZ(. Let s be a positive integer such that t - l - s  (mod N), 

(h~) ~= (h~)~ = (h~/h)~h~. Let h(z)= ~ c(})e~(}z) be the Fourier expansion of h. Then 

h~(z) = det (d)-k~ c(~) en(~bd -1) en(d-l~az), 

h~(z) = det  (d)-k~ c($) e~(s~bd -1) e~(d-l~az). 

Since 2~EZ], we see tha t  haE~k(F~,Q (e(1/N))), and hence (h~)t=h 7. B y  [6, Th. 2, (ii); 

Th. 3, (i)], we have (h~/h)~=(h~)t/h=hr/h. Therefore (h~)'=h~=h ~. Thus (1.9)is t rue for 

all ~ =  ( a 0 bd) and~=J'Thisc~176176176176176 

(viii) are obvious from our definition of the action and [6, Th. 2, (ii)]. I f  /E ~ ( Q a b )  and 

x E GA+, /x= (/t)~ with suitable t and ~ as shown in the proof of Prop.  1.3. This together  

with [6, Th. 2, Th. 4] proves (i). 

The above proper ty  (vi) can be generalized as follows: 

(1.10) (~  c(~)en($z)) ~(b) = ~(]b[ In) ~ c(~)~en(Ibl~z) 
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if b fiA~ and ~ c(~)en(~Z ) ~ ~o(Qa~)" This can be shown by decomposing b as b=stu with 

s= Ibl, teZ~, and uEQ~+. 

Let S o be an open compact subgroup of G~, and let S = So G~+, Fs ~ G(} = 8. Further 

let ks be the subfield of Qa~ corresponding to the subgroup Q• of A • Suppose that  the 

following condition is satisfied: 

(1.11) ~(t)~S i / t~Z~ and t gives the identity map on ks. 

For example, the above S~ and SN satisfy this. 

PROPOSITION 1.4. The notation being as above, i/ (1.11) is satis/ied, then ~ ( F s ,  Its)= 

(/~ A~(Q~b)I/~=//or all x~S~. 

Proo/. Given/e~40(Fs, ks) and xeS ,  put U={ye8]/~=/}  and z=u~(t)a with uEV, 

tEZ~ and :r Then ~(t)ES by (1.11), so that  a~Fs.  Therefore / is invariant under u, 

t(t), and a, and hence ]~=]. Conversely, i f / = = / f o r  all xE8, / is invariant under Fz and 

~(Z~) ~ S, so t h a t / e  Ao(Fz, ks), Q.E.D. 

2. The forms of half-integral weight 

The purpose of this section is to define a group (~ acting on the modular forms of half- 

integral weight in exactly the same fashion as GA+ on Ao(Qab)- Let Q be as in w 1. With 

kE2-1Z and a subfield ~ of C, we define Ao.k(~) to be the set of all functions of the form 

0 ek/with / E Ae(~), where 0 is defined by (1.6). Also we denote by ~Q.k(~) the set of all holo- 

morphic elements of A0.k(~) that  are finite at cusps. If k - l  E Z and ~(X)=det  (X)k-z~(X), 

then Ae.k=A~.:  and ~ o . k = ~ . l .  If ~ is trivial, we write Ao,k and ~Q,k simply as A~ 

and ~k.  The action of an isomorphism ~ of ~ onto a subfield of C can be defined on 

AQ.k(~) by /~  = (//0~)~02k for ] E A0,k(~)- We shall prove in w 5 that  ~Q, ~(C)= ~ . k ( Q ) |  o C 

so that  ~ maps ~o.k(C) into itself; its action is defined again by (1.4). 

Let ~ denote the group of all Q-linear automorphisms of the module Al.~2(Qab). For 

any finite subset F of Al/2(Qab), take 

{ve l/o =/  for all/eF} 

as a neighborhood of the identity element of ~. Then ~ becomes a topological group. Let 

W be the group of all roots of unity. Now we define a subgroup (~ of Ga+ • ~ with induced 

topology by 

(2.1) (~ = {(x, v)eG~+ • ~1 (/~)~ = ~(/~)~ for a l l / e  ~4~(Qa0 

with $ e W independent of/}.  
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The  root  of un i ty  ~ being determined by  (/~)z = ~(12)~, we shall write (x, v) also as (x, ~, v) 

to emphasize ~. If  (x, ~, v)E@ a n d / ,  gEA.~(q~), we have (( /+g)v)~=~((/+g)e)~,  so tha t  

/VgV = ~(/g)X, and hence 

(2.2) gV//" = (g//)* if (x, v)fi(~ and 1, gfiA~/2(qab). 

For  every ~ E W, we can define an element of ~ by  / ~-~ ~/, which is denoted again by  ~. 

Then  (1, ~2, ~) is an element of (~. Let  W 1 denote the set of all such elements. Then  we see 

easily tha t  

(2.3) 1 "> WI-+@-+G~+'--> 1 

is exact,  with a natural  projection map of ~ into GA+. In  fact,  to see the surjectivity,  let 

U={yEGA+I(Ou)Y=02 }. Given xEGA+, we  have x=yt ( t )o t  with y E U ,  t E Z ( ,  and a =  

]~ = (//O)~O(ot(z)) det (cz + d) -112 

with any  choice of det (cz+d)  -1t~. Then (x, 1, v) E(~. 

Now we define the action of (~ on AQ.k(Qab) aS follows. For  (x, v ) E ~  a n d / E  Aa.~(Q~b), 

we pu t  

(2.4) /r ~') = (//h2~) ~ (h') 2k 

with any  non-zero hE J4iI2(Qab). This is independent  of the  choice of h. Moreover f(x. ~)=/v 
if ~ is trivial and k = 1/2; further ,  if (x, ~, v) E (~ and k E Z, we have ](x. c. v) = ~k]~. As ment ioned 

above, AQ.k(qab)= A~. l(Qab) if ~ ( X ) = d e t  (X)~-IQ(X).  But  the  action of (x, v) on this same 

set depends on (0, k). To avoid a complicated notat ion,  we hereafter  unders tand tha t  if 

the set is denoted by  Ao.k(Qab), the action of (~ is defined with the same ~ and k. Notice 

tha t  the action of (x, 1, v) is independent  of 0 and k. 

Go+ and a holomorphic funct ion ~o on ~n such tha t  ~0(z) ~= ~. det  (ez +d)  with ~ E W. A law 

of composition 

(~, ~v(z))(~', ~'(z)) = ( ~ ' ,  ~(~'(z))~'(z)) 

makes (~o a group. For  a function / on ~ and fl = (~, ~v)E (~o, we define a funct ion/]0.k/5 

by  

(2.5) / I o.,~/5 = (/1~ ~)v ,-~k. 
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By [7, Prop. 1.5], we see easily that  Ao,~(Qa~) is stable under this action, and hence, in 

particular, it defines an element of ~. Then 

(~, W)~(a, (:~, W)) 

gives an embedding of (~o into (~. Identify @o with its image in (~. Then (~o is the inverse 

image of Go+, and thus 
1 ~ W~-+ @o ~ Go+-+ 1 

is exact. We see easily tha t /Z  =/[Qa, fl if fl E @o and / E A0.k(Q~b). 

Next, for tEZ(,  denote by t' the element of @ given by/~__~/t for/EA1/u(Qab). Then 

(t(t), t')E(~. We see easily that  the map t~+(t(t), t') can be extended to an injection q of 

A~ into (~ so that  

(2.6) (~ c(~)e~(~)) ~'(~) = l b['~e(lbl l~) ~ c(~)%,~([bl~z) 

if ~ c(~) en(~z) E ~o.k(Qab) and b EA~. 

Now we can state the properties of the action of (~ on Ae,~(Qab) in exactly the same 

fashion as in Theorem 1.2 with q60 and h in place of Go+ and t. In substance, this is already 

done in the above discussion. (See also Prop. 2.2 below.) We note that  if Fo is defined by 

(a.1) of the Appendix, then 

(2.7) y ~ ( r ,  (0o~)/0) 

defines an injection of F~ into @o. By a congruence subgroup of (~e, we understand a sub- 

group A of q6 o such that: 

(2.8a) the projection map o/ (~o to Go+ gives a one-to-one map o / A  onto a subgroup F o/ 

{0~ e GQIr(~z ) = 1} which has FN as a subgroup o/finite index/or some N; 

(2.8b) the inverse o/the projection map coincides with (2.7) on F~ /or su//iciently large N. 

For such a A and a subfield ~ of C, we define ~q.k(A, ~) (resp. AQ.k(A, ~)) to be the set 

of all elements / of ~Q,k(~) (resp. AQ,k(~)) such t h a t / B = / f o r  all flEA. If n > l ,  (2.8b) is 

always satisfied by virtue of the congruence subgroup property of Sp(n, Z). 

PROPOSITION 2.1. For every kE2-1Z, >0, we have ~/~k(C)=~/~k(Q)| Moreover, 

/or each even positive integer N, let A N be the image o/ FN under (2.7); then ~a(AN, C)= 

~(AN, q)| 

Proo/. As shown in [5] and [6, w 3], there is a model V defined over Q for the compacti- 

fication of ~n/l~N whose function field can be identified with •0(FN, Q); moreover, there 
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is a non-zero element g of •h(FN, Q), for some positive integer h, whose divisor on V is 

rational over Q. We can take h so that  02hE ?/la(F~, Q). Then OZh/gE A0(FN, Q). I t  follows 

tha t  the divisor of 0 on V is rational over q. Therefore, identifying ~ ( A N ,  Q) with a linear 

system on V rational over Q in the same manner as in the proof of [5, Th. 6], we obtain 

the second assertion, from which the first one follows immediately. 

PROPOSITION 2.2. The projection map el (~ onto GA+ is open and continuous. More. 

over, ~ is locally compact, and tl(Z()(~QGo~+ is dense in (~, where we embed G~+ in ~ by 

identi/ying x with (x, 1)/or  xEGoo+. 

Proo/. With an open compact subgroup S of Gt, a neighborhood Y of the identity in 

G~+, and a finite subset F of AlJ~(Qab) containing 0, we put  

(2.9) U(SY, F) = ((x, v)G(~IxESY , h v =h  for all hE17}. 

The sets of this type form a basis of neighborhoods of the identity element of (~. Given 

such a set, let 
T = { z e S l ( h / 0 )  �9 = h / 0 ,  (h2)~ =h~ for all he17}.  

Then T is an open compact subgroup of Gi, and U(SY,  17) ~ U(TY,  i7). For every xE T Y ,  

define an element v of @ by ]v = (//0)~0. Then (x, v) E U(TY,  17). Thus we see that  the projec- 

tion of (~ onto GA+ gives a one-to-one map of U(TZ,  17) onto TY .  Our assertions except 

the last one follow from this fact. Let  (y, w) be an arbitrary element of (~. Given S and F,  

define T as above, and put  y=xt(t)~ with xETG~+, tEZ~, and aEGo+ by Lemma 1.1. 

Define again v for x as above. Then (y, w) -1 (x, v)tl(t) is an element of (~ whose projection 

to Ga+ is zr -1, and hence it belongs to (~o. This proves the last assertion. 

Given F,  S, and T as above, take an even positive integer N so that  SN ~ TG~. Ob- 

viously 

C2.1o) UCSN, {0}) = uCSN, F ) ~  U(TGoo+, 17). 

Thus the sets U(Sz~, (0}) with O < N E Z  form a basis of neighborhoods of ~ modulo G~o+. 

P~o~osITIOZ~ 2.3. 17or every even positive integer N, we have 

(2.11) U(SN, {0}) fl (~o = AN, 

(2.12) /u = /  /] yeV(SN,  (0}) and ~EA~.k(A~, ~(e(1/N)). 

Proo/. Equality (2.11) is obvious. To show (2.12), let yEU(SN,{O}), /E~4Q.k(AN, 

Q(e(1/N))), and V={uEU(SN, {O})I(]/Ok)~=//Ok}. By Prop. 2.2, y=ut~(t)fl with u EV, 

tEZ~ and flE(~ o. We see that  t = l  (mod N), and hence h(t)EU(SN, {0}), so that  flEA~ by 

(2.11). Therefore/u = (]t)~ =]. 
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3. Generalization of theta functions 

In  this section, we consider a certain class of holomorphie functions on (~ • ~n which 

includes classical theta functions as special cases, where s and n are arbitrary positive 

i n t e g e r s ' F i r s t w e d e f i n e t h e a c t i ~ 1 7 6  ac ~) ~ 1 7 6 1 7 6  

(3.1) a(u, z) = (t(cz + d)-lu, a(z)) (u e C~, z e~,,). 

We also define the action of an element fl = (~, ~) of ~ o  on ~n and on (~ • ~ to be the 

same as that  of a, and put  v(fl) = v(a). Throughout this section, k will denote a non-negative 

element of 2-~Z, and ~ a non-negative symmetric element of q~. Also we fix a polynomial 

representation 

(3.2) z: GLn+,(Q) -+ GL~(Q), 

and use the same notation z for its natural extension to GLn+s(C ). For a (~-valued func- 

ti~ /(u'z) ~ C~ • ~ and fl=(~'~)E(~o with c~=( a ~) we define functions / [ ~.k fl and 
C 

(3.3) (/[~.k~)(u,z)=w(z)-2%(cz: d ~,(~)o1)-l/(~(u,z)), 

(3.4) (/k~'~)(u'z)=V'(z)-~%"(-�89 ~ ~'(~)L /(~(u,z)). 

When /ceZ and ~0(z)~=det (cz+d), we denote I1~.~ and/[~,~.~ also by [[~,~ and 

Let us now associate with a given / two Cm-valued functions P~" ~/and P~.J  defined by 

(3.5) (P*'~ /) (u, z) = eAl ~ . tu(z-  5)-lu) ~ (lo " 

1 /1~ 
(3.6) (P~.~/)(u,z)=es(l~.~(u-(e)(z-~)- u)T~O 

I t  can easily be verified that  for every/~ E ~o ,  

(3.7) P~" n(/[~, k. ~fl)= (P~'e/)[~.~fl, 

(3.s) .P~.,(/[~. ~. ~fl) = (P,.  ~/)[~. ~fl 

( z -  ~)-lu] 

is / /(u'z)'  
(z - ~)-1 ( u -  ~) ]  

/(u, Z). 
ls / 

(v =,(/~)-1~). 

From this and an obvious relation/[~.k(fl~) = (/1,.* fl) l,.kd, we obtain 

if v ,(/~)-1~. (3.9) ( / 1 ~ . ~ . ~ ) 1 ~ . ~ . ~  =/[~ .~ .~(f l~)  = 
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Let A be a congruence subgroup of (~o as defined in w 2, and A a lattice in Q~. Our 

main object of study in this section is a holomorphic C~-valued function / on C~ • ~n saris- 

lying the following two conditions: 

(3.10) 

(3.U) 

/ ]~ .k ,~?=/  fo ra l l~EA,  

for all (~) eA with p and q in QL 

Obviously such an / is periodic as a function in the real parts of u and z, so that  it has a 

Fourier expansion of the form 

(3.12) l(u, z)= ~ ~ c(~, ~)e~(~z+u,~) 
#EY t ~ L  

with c(~/, t )6C ~, where L is a lattice in Q~, and Y is a lattice in the vector ~space 

{~ 6Q~] t~ =U}. If n > 1, we denote by T~,k.~(A , A) the vector space oqall holomorphic / 

satisfying (3.10) and (3.11). In the case n = l ,  we define T~,k.~(A, A) under a certain addi- 

tional condition (3.23) below. For the moment, let us assume either n > l ,  or as if the 

definition for n = 1 is already given. 

For a subfield ~ of C, we denote by T~,k.~(A,A; ~)  the set of all /6T~.~.~(A, A) 

with expansion (3.12) whose coefficients c(u, i) have components in ~.  Further we denote 

by T~. k. ~(~) the union of T~, k. ~(A, A; 9~) for all possible A and A, and put  T~.k, ~ = T~. ~, ~(C). 

If k6Z,  T~.~.~(F, A) and Tz.~.~(F, A; ~) can be defined for a congruence:subgroup P of 

Go+ in a similar way. To simplify our notation, we write hereaf te r /* , / . ,  and/Z for P~" ~/, 

P~.J, and /[~.~.~fl, when /6T~.~,~ or more generally when / satisfies (3.10) and'(3.11); 

further, if ~ is trivial we write T~.~ for T~.~.~. 

For each z 6 ~ ,  define a hermitian form H~.~ and an alternating form E~. ~ by 

(3.13) 

(3.14) 

Put  ~ = (z 

(3.15) 

If/eT~.~.~(A,A) a n d l = z p + q w i t h ( q ) E A ,  wehave 

(3.16) /*(u+l,z)=e~(�89 u+�89 

(3.17) 

H~. ~(u, v) = 2i- tr  ($. tCt(z - 5)-lv), 

2i. E~.z(u, v)= H~,z(U, v ) -  H~.~(v, u) (u, vEC~). 

ln). Then 

E~.~(~za, ~b)=tr(~. taJb)  (a, berth). 

(z - 2)-lZ~ 
1~ ] /*(u, z) 

/,(u + l, z) = e~(�89 tpq) e(E~. ~(l, u)/2)/ ,(u,  z). 
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~ow, for ] E T~.k. ~ and elements r and r' of R~, we have 

, _ 1 ( In r ) / ( z r + r ' , z ) .  (3.18) /*(zr +r ' z ) - e s ( ~ ' t r ( z r  +r'))~ 0 I s 

This is obviously holomorphic in z. Now for fl=(a,~p)E(~ O with a = ( :  

we have 

~k /cz + d 0 ) 
(3.19) /.(~(~)v,a(z))=~f(z) ~ 0 v(zt)l~ (/~)*(~z'tav'z)" 

~) and 2~ vERs , 

This follows immediately from (3.8). Therefore, if we define a representation ~ of GL~ by 

(3.20) ~(X) = x  ( X ~ ) ,  

and put h , ( z )=/ . (~v ,  z) and h',(z)= (/B). ( ~ v ,  z), then 

In 0 )h~, wherew=t~v.  (3.21) h, Iq.kfl=T 0 v(~)l~ 

On the other hand, put g(v)=/ . (~v ,  z) for v E ~  ~ with a fixed z. Then (3.17) together with 

(3.15) shows that, given any lattice L in Q~=, we can find another lattice L' ~ L  so that  g 

defines a function on L/L'. Therefore, if Ar denotes the non-archimedean part of A, then 

/A ~= (Cf. [7, 683-4].) Thus g can be uniquely extended to a continuous function on ~ fl~ �9 PP. 

/.(g2zv, z) for v E (Af)~ ~ is meaningful. Coming back to the above h~, (3.21) implies 

(3.22) h v [Q.kY = h, i / v  E Q~n and ~ belongs to a su//iciently small congruence subgroup o/ Go 

depending on v. 

Therefore if n > 1, we see that  

(3 .23) / . (~v,  z) /or every ]ixed vEQ~ n belongs, as a /unction o/ z, to ~e.k(C), where ~ is 

defined by (3.20). 

Now in the case n = l ,  we define T~.k.~(A, A) to be the set of all holomorphic / satisfying 

(3.10), (3.11), and (3.23). Condition (3.23) is essentially a condition on the Fourier coef- 

ficients of ] (at all cusps) as shown by the following proposition and its proof. 

PROPOSITION 3.1. I /  / is an element o/ T~.k. ~ with expansion (3.12), then c(u, l )+O 

only when ~ >1 O, and moreover,/or a/ixed ~, there are only/initely many ~ such that c(u, t) +0.  
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Proo/. Observe that  if p, q E Q~, we have 

/,(zp+q, z)=~(~o = 
with 

(3.24) 

P)~a(~)en(~z) 

a(~) = e~(~.~pq/2) ~ e~(~q)c(7, ~), 

where the sum is taken under the condition 

(3.24') 2~ = 27 +p~.  ~p +p~ § t2. ~p. 

If ~ is not non-negative, (3.23) implies that  (3.24) must be 0 for all qEQ n. Therefore 

(3.25) c(w, ~) =~ 0 only i /2~ § tP +P~ + t2" ~P >7 0 /or all p ~ Q~. 

Taking p to be 0, we see that  c(~], ~ )=0  unless y ~>0. For a fixed 7, there are only finitely 

many 2 in a given lattice satisfying the inequality of (3.25) for all p E Q~. This completes 

the proof. 

Note that  the sum of (3.24) is a finite sum. In fact, if c(w, ~) :4:0, we have 2W + 4~@. tp + 

2p~+2.t2. tp~>0 by (3.25), so that  (3.24') shows 7~<2~+p~.~p. There are only finitely 

many such W ~> 0 in a lattice for fixed p and ~, which proves the desired finiteness. 

PROPOSITION 3.2. Let ~ be a sub/ield o/C containing Q~b, and let/ET~.~.~. Then (i) 

/E T~.k.~(~ ) i /and only i / / , ( ~ v ,  z)E ~q.k(~{) /or all v E Q~; (ii) i / /E  T~.k.~(~ ) and fl E (~o, 
then/PE Tz.k.r with $=v(fl)-l ~. 

Proo/. Consider expansion (3.12) for /. If /ET, .k . i (~) ,  then obviously [ , (~v ,  z)E 

~/o.k(~) for all v E Q~. Conversely suppose/ .(r ,  z) has Fourier coefficients in ~m for every 

r E Q~. This implies that  

~c(7,  ~)e~(2r)e~ m for all rEQ~, 

and hence c(7 , 2 )E~  m. To prove assertion (ii), first assume ~ =C. If n > 1, the desired 

conclusion follows easily from our definition of T,.k.~; if n = I, we need (3.21). This result 

together with assertion (i), (3.21), and the fact that  ~0.k(~)B= ~/~Q.k(~) proves assertion 

(ii) in the general case. 

Typical examples of functions of Tk. ~ with s = 1 are provided by 

(3.26) O(u,z;p,q)= ~ e(�89 
X--pEZ n 

(3.27) ~(u, z; p, q) = e( 1. tu(z-5)-lu)O(u, z; p, q), 

(3.28) T'(u, z; p, q) = e(�89 t(u -'5) (z --z)--lu)0(U, Z; p,  q), 

4-782901  A c t a  ma thema t i c a  141. Imprim~ 1r 1 SCptembre 1978 
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where uEC n and p, qER n. In fact, if /(u,z)=O(2u, ttz;p, q) with p, qEQ n and positive 

rational numbers 2,/t, then [ E T1/2, ,(Qab) with ~ =~2/tt, and 

/*(u, z) = ~(~u, #z; p, q), /,(u, z) = ~'(~u, #z; p, q) 

(cf. Appendix and [7, w 1]). To give an explicit example of (3.21) or (3.22), put 

(3.29) g(z; v, w;p, q) =qJ'(zv+w, z;p, q) (v, w,p,  qER~), 

~ = (0o~,)/0 (~, eFo). 

We obtain, from (a.3) of the Appendix, 

(3.30) X(y(z); v, w; p, q) = e((tpq-tp*q*)/2)~f~(z)z(z; v*, w*; p*, q*) 

for every y EFo, where 

Also we note that 

(3.31) Z(z; v, w; p, q) = e( - �89 t v w -  tvq)O(O, z; v +p, w +q). 

This follows from [7, (ll)] and was actually stated as [7, (27)]. 

For/ET~.k.~(A, A; ~) and sEGL~(Q), put 

g(u ,z )=~(1  O" O)/(us, z ) ,~=s~' t s .  

Then gET~.k.r As-1; ~). Therefore, to discuss the nature of f, we can simplify our 

discussion by assuming that  

(3.32) ~ = diag [~i .... , ~r, 0 ..... 0], r = rank (~), 

with positive integers ~, and also that  A D Z~ ~. 

PROPOSITIO~ 3.3. Suppose that ~ is given by (3.32), and write the variable u on @~ 

in the/orm u = (v, w) with v E @n and w E C~-r. De/ine a representation 09 o/ GLn+: by 

c0(X)=w(0X 10 ) (XEGLn+r). 

Then, /or each/ET~.k.~, there is an element g o/ T,~.k., such that /(v, w, z)=g(v, z), where 

~/=diag [~1 ..... ~r]. Moreover, [,(v, w, z)=g,(v, z) and 

0 
f (v ,  w, z )=v  (10n+r V(fl)_lls_~) g~(~' Z) /or every f lE~o. 
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Proo/. For  any  fixed v and z, let h(w) be a component  of the vec to r / . (v ,  w, z). Then 

(3.17) implies t ha t  

(3.33) h(w + zp + q) = h(w) for all p ,  q EL, 

where L is a lattice in Qs\r. Now (3.6) shows tha t  h is a finite sum Zv Av(w) By(x) with 

holomorphic functions A v and monomials B~ of the components,  say x~j, of x = I m  (w). 

Let  us consider this as a polynomial  in x~j, and prove, by  induct ion on the degree of the  

polynomial,  t ha t  it is a constant ,  involving neither w nor  x. First suppose tha t  it is of 

degree 0, i.e., h is holomorphic in w. Then (3.33) implies t h a t  h is a holomorphic funct ion 

on a complex torus, which must  be a constant.  I n  the general case, applying the induc- 

t ion assumption to  ~h/a(v~j, we see tha t  h(w)=A0(w ) + ~ . j  a~j~j with a holomorphic A 0 

and aijEC. Then (3.33) shows tha t  OAo/~wij is invariant  under  wF-~w+zp+q, and hence 

is a constant.  I t  follows tha t  h(w)=b+tr (Dw+E~)  with bEC and D, EEC~ -r. Again 

f rom (3.33), we obtain 

t r  (D(zp+q)+E(Sp+q)) = 0  for a l lp ,  qEL, 

so tha t  D = E =0.  Thus we have proved tha t  ].(v, w, z) does not  depend on w. This together  

with (3.6) shows tha t  ](v, w, z), for fixed v and z, is a polynomial  funct ion in w - f t .  Being 

holomorphic in w, it mus t  be a constant.  Thus we can p u t / ( v ,  w, z)=g(v, z). Then it is 

s t raightforward to verify all our assertions. 

Before proceeding further, we prove an easy 

Lv.MMA 3.4. Let A be an arbitrary set, and B a domain in C ~, and let/l(u, z) .. . . .  ]~(u, z), 

g(u, z) be complex valued ]unctions on A • B, holomorphic in z, where u E A and z E B. Suppose 

that the ]unctions/l(u, zo) ..... /re(u, %) on A are linearly independent over C/or every z o E B, 

and g(u, z) =~=1 hk(z) ]k(u, z) with ]unctions hk on B. Then hk is holomorphic on B/or  every k. 

Proo]. For  fixed u and z, pu t  

X(u,  z) = {(c 1 . . . . .  Cm) e elm] ~k Ck]k(U, Z) = 0}.  

For  any  fixed zoEB, we have ['lu~AX(u, %)={0},  so t h a t  there exist m points u 1 .. . . .  um 

of A such tha t  Nj~IX(uj, %)={0}. This means tha t  det  (]~(uj, z0))j.k~0. Solving the 

equations 

g(u.  z) = ~ h~(z)l~(u,, z) (i = 1 . . . . .  m ) ,  
k~l 

we see tha t  hk is holomorphie in a neighborhood of z 0, QED.  
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PROPOSITION 3.5. I /  n > l ,  every / o/ T~,~(~) has an expression 

(3.34) ](u,z)= ~ ca(z) ~ e~(~(�89 
h e H / K  x - h e K  

with c a E ~k-(~/u)(~), where H and K are lattices in the vector space 

Q~/{y e Q~]y~ = 0}, 

Conversely, any such expression de/ines an element o/ Tz.~(~); this is so and r = r a n k  (~). 

even i / n  = 1. 

Proo/. Suppose I e Tk. g(A, A). Take  ~ E GL,((~) so t ha t  Z~ = c As -1 and  e~- *e = diag [~1 . . . . .  

St, O . . . .  ,0J  with posit ive integers ~v. P u t  ~ = e~. t~ and  g(u, z)=/(ue, z). Then g E Tk. r Zs2~). 

Le t  u~ be the  v-th column of u. B y  Prop.  3.3, g depends only on ul, ..., ur, und if r ~ r ,  we 

have 

g( .... u~ + ~p +q ..... ~) = e ( - ~ ( � 8 9  ~p~p + ~pu~))g( .... u ,  ..., z) 

for  p ,  qEZ  n. Therefore,  as a funct ion of u~, it is a linear combinat ion  of O($vuv, r h, O) 

with h in a set  of representat ives  for ~ 1  zn/z  ~. Consequent ly  we obtain,  in view of L e m m a  

3.4, 

(3.35) g(u, z)~-Zca(z) ~] O(~,u~, $,z; h~, 0) ( h =  (hi . . . . .  hr)) 
h v = l  

~ c~(z) V e , C ( � 8 9  
h e M I L  x - h e L  

with holomorphic functions c a on ~ ,  where ~ ' =  diag [$1, -.., ~r], u'= (u 1 .... , u~), L = Z~r, 

and  M = Z~ ~,-1. Since g satisfies (3.10), we can easily ver ify t h a t  ca e ~k-(rl2)(~) if n > 1. 

Consider L and  M as submodules  of Q~ in an  obvious way,  and  let H and K be their  images 

under  ~. Then  we obtain  our first assertion. The converse p a r t  follows immedia te ly  f rom 

the  fact  t h a t  O(2u, #z; h, 0) defines an  element  of T1/e.~(Q) with v =2~/fl. 

(3.36) 

L~MMA 3.6. For/E Tk.~(~), put 

2~i ~ulA 

1 a/ 
d~/= 2~i ~un~ 

~ /  

(~ = 1 . . . . .  s ) .  
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Then d~/E T~,~,~(~) with T(X)=X,  and 

0 
ls) (d~/)~ /or every fl (3.36') da(/~)= (lon ~(fl) $o. 

This can be verified in a straightforward way, except the fact that  d~(/) satisfies 

(3.23) when n = 1, which can be shown as follows. Since/Z satisfies (3.25) for every fl ~ ~o ,  

we see easily that  d~.(/Z) satisfies the same condition. Therefore, by (3.36') and (3.21), 

(d~/). (~z v, z)~ is finite at ic~ for every v ~ Qs ~ and every fl ~ (~o Q.E.D. 

PROFOSITION 3.7. Suppose that ~ is non-degenerate. Then, /or an arbitrary point 

(u o, %) el @~ • ~n, there exists a/unction A on C~ • ~n with values in @~ such that 

(i) the columns o / A  belong to T~,j,~(~), where ] is a positive element o/ 2-1Z depending 

only on T; 

(ii) det (A(uo, z0)):~0. 

Proo/. If ~ is trivial, the function / defined by 

/(u~, z)=c(z) [I O(~vu~, ~vz; h,, O) 

with suitable cfi ~j-(sle)(Q) and h~ can be taken as A, where e and ~ are as in the proof of 

Prop. 3.5. In  this case ] may be arbitrarily chosen under the condition ] >~s/2. Next assume 

~(X) = X. Let k >~s/2 and take /E Tk, ~(Q) so that/(u0, z0)=~ 0. We are going to define A by 

1 e/ 1 e/ 
_ _ _ _  . . .  - - - -  b n . . .  b i , ~  

2~i Ou n 2~i OUls 

A(u ,  z) = 2~ i  Ou,~ "'" 2 ~  ~Un---~ bnl .. .  b,.~ 

~ 1  .. .  ~ , 1  o . . . o  

8 s l f  . . .  ~ss /  0 . . .  0 

with a suitable B = (b~(u, z)). Let ~ be the identity representation of GLn(C) onto itself. 

By [8, Prop. 1.2] and its proof, we can find an element P of Me, l/2(Q) such that  det (P(zo)) =~ 

0. Take gETk-(ll2).~(Q) so that  g(uo, zo)~O , and put B(u,z)=g(u, z)P(z). By virtue of 

Lemma 3.6, A has the required property. In this case, j must be >s/2. Let ~o(X) = X |  ... 

|  and C = A |  ... |  (both t copies). Then det (C(u0, z0))~0 , and the columns of C be- 

long to T~. ~k,~dQ). Since an arbitrary irreducible ~ is a q-rational component of such w, 

we obtain our assertion. 
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PROPOSITION 3.8. Tmk,~= Tmk,f(Q)| 

This will be proved in the next section. 

We arc going to define an action of (~ on TT.~.~(Qab). First, fo r /E  T~.k.~(~ ) with expan- 

sion (3.12) and an injection a of ~ into C, we define/~ by 

(3.37) /~(u, z) = ~ c(~, 2)~e~(,lz +u,~). 
~,R 

By virtue of Prop. 3.8, /~ actually defines an element of T~.~,~. In  particular, if 

] e  T~,k,~(Qab), /b is meaningful for bEA • 

As already s h o w n , / . ( ~ v ,  z) is meaningful for v e (Af)~ =, and defines, as a function of 

z, an element of ~q.~((~), where ~ is given by (3.20). Now we let GA act on (Al)~ = by left 

matrix multiplication, of course ignoring the archimedean part. 

P a o e o s i T i O ~  3.9. Let /ET~,~.i, vE(At)s 2~, r eZ~ ,  and let (~ be an automorphism o/ 

C that coincides with the action o / r  on Qab" Then 

/ .(~zv, z) ~ = (/~), (~ze(r)v, z), 

where the le/t-hand side is de/ined by the action el ~ on 7~.~(r 

Proo/ . I f v=(Pq)  w i t h p a n d q i n ( ~ , a n d i f / h a s e x p a n s i o n ( 3 . 1 2 ) , t h e n ,  a s shownin  

the proof of Prop. 3.1, we have 

with a(~') given by (3.24). Since the sum expressing a(~') is a finite sum, we have 

a(r ~ = es(~" tpq'/2) ~. e,(Xq')c(~, 2)% 

where q' is an element of Q~ sufficiently close to r-lq. This proves our proposition. 

We are now ready to state our first main result: 

THEOREM 3.10. Given/E T~.k.s and y E ~ ,  there is a unique element/Y o/Tv.k.,(Q~b) 

with ~ = I v(x)[-l~ such that 

0) 
(3.38) ] . (a,v ,  z) = T (/Y).(a z. txv, z) /or all v E (A~)~ ~, 

0 [ (x)rL 

where x is the projection o / y  to GA+, and/ . (~zv ,  z) y is the image o / / , ( ~ v ,  z) as an element of 

~e.~(Qab) under y as de]ined in w 2. I / k ~ Z ,  the assertion holds with GA+ and x in place o/ 

(~ and y. 
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Proo/. Define A N as in Prop. 2.1. In view of Prop. 3.8, we can find a positive integer 

N and a lattice A such that  fET~.k.g(A~, A; q(e(1/N))) for all tEZ~. Define U(SN, {0}) 

by (2.9). By Prop. 2.2, we have y=y't~(t)fl with y'EU(SN, {0}), tEZ(  and flE(~ o. Now 

we define/Y to be (/~)~. By out' choice of N, we see easily that  this is independent of the 

choice of y', t, fl, in view of Prop. 2.3. Moreover,/~ET~.~.n(Qa~) by Prop. 3.2, since v(fl)= 

�9 that  Mv E Zs and/ . (~zv,  z) I v(x)[ To show (3.38), given v ~ Q~n, take a multiple M of N so 2n 

~o.g(AM, ~(e(1/M))). Changing y', t, and fl if necessary, we may assume that  y'E U(SM, {0)). 

By Prop. 2.3, (2.5), (2.6), (3.19), and Prop. 3.9, we have 

/ , (~v,  z)~= ( / , (~v,  z)t) ~ = (/t),(~t(t)v, z) ~ 

=T(10" v(~)0is ) (/y),(~z.tat(t)v, z), 

where ~ is the projection of fl to Go+. This proves (3.38) and completes the proof, since it 

is obvious that/Y is uniquely determined by (3.38). 

PROPOSITION 3.11. The action o/ the elements o/ (~ o n  Tv,k,$(Qab) has the/oUowing 
properties: 

(i) (a/ +bg)~=a~/~ +b~g ~ /or a, beQab and/, ge T~.k.~(Qab); 
(ii) (/~)~=/~ /or x, ye~;  

( i i i ) /P=/[  ~.k.~fl i/flE~o; 
(iv)/~'(~) =1~ q reZ~ ; 
(v) I v =/ i / /~  T~.~.~(A~, A; q(e(1/N))) and ye U(S~, {0}). 

Proo/. The first four properties follow immediately from the above proof and (3.38). 

The last one can be proved in exactly the same fashion as Prop. 2.3, since {y E (~1/~ =/} 

is an open subset of (~, as our definition of/Y in the above proof shows. 

Notice that  Theorem 3.10, together with Proposition 3.11, gives an analogue of the 

main theorem of [7], which concerns the action of the idele group of an algebraic number 

field on the theta functions with complex multiplication. Let us now state a consequence 

of Theorem 3.10 as a theorem in which an abelian variety and its division points are more 

conspicuous. 

Let  ~ be a diagonal matrix whose diagonal elements are positive integers ~1 .... , ~n 

such tha t  3 ~< (~1, ~ 16~+1, and let L(z, (~)= zZn+ (~Z n for each z E ~ .  We define a projective 

embedding O~ of fP/L(z, (~) by 

(3.39) uF->| = (O(u, z; j, 0))jE3 (uEC"), 
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where ~ is a complete set of representatives for ~-~zn/z n. We denote by A(z, ~) the image 

variety. Put, for simplicity, ~ =  ~0(Qa~)- Fix any point $ of ~n, and let B~ be the ring 

consisting of all elements of ~ holomorphic at  $, and ~ the field generated over Q by the 

values F($) for all F~B~. The set of all F in B~ such that  F($)=0 form a unique maximal 

ideal P~ of B~, and F~->_F($) gives an isomorphism of BJP~ onto ~ .  Now let x be an 

element of GA+ such that  

(3.40) (B~) ~ = B~. 

Obviously (Ps)~=P~, so that  F(3)~-->FZ(~) (with F~B~) gives an automorphism of ~ .  

For example, if ~ is "generic" for the functions of ~, (3.40) is satisfied for all~x~GA+. 

Another extreme case is the points ~ with complex multiplication, which we shall discuss 

afterwards. Now we have the following theorem which generalizes [8, Th. 2.4]. 

THEOI~M 3.12. Given an element x o/ GA+ and a point 3 o / ~  satis/ying (3.40), let (r 

denote the automorphism o/ ~ obtained/rom x as above, and let R~ be the subgroup o/ GA 

defined by [8, (1.11)]. Put x=q~ with q~R~ and ce~Go+ as guaranteed by Lemraa 1.1. Put 

alsoo~=(: ~)and2=~(c~§ Then 

(i) A($, a)~=A(~($), 5), 

(ii) 0~(~2~v) r = 0~(~)(2~. txv) = 0~r tqv) /or all v E (A~) 2'~. 

Proo/. Put ]j(u, z)=O(u, z; ?', 0) for each i E~. As noted above,/jE Tx/2. ~(Q~b). Let y and 

r be elements of (~ lying above x and q, respectively. By Th. 3.10, we have 

(3.41) (/j),(O~v, z) ~ = ( / y ) , ( ~ . t x v ,  z) (ve(&) 2~, ]e~). 

Put Fo = / ~  N G o. This is the group defined in IS, (1.9)]. Let r =r'q(t)fl with r'E U(SN, {0}), 

teZ( ,  and fle(~ o as in the proof of Theorem 3.10 with a suitable N. Then/~=]~, andl/~ 

has an element T of F~ as its projection to Go+. Therefore, by (a.2) of the Appendix, we 

have fh//~=/~//~=(/h//s)r=h//j for h, j E~. Consequently (/~),/(/]),=/~/ff=(g/fs)oo~= 

(/no a)/(/jo a). Therefore the values of (3.41) are proportional to 

lj(~(Oz" ~xv, z)) =/~(2f2~. ~xv, ~(z)) =/j(f~(z)" tqv, ~(z)). 

This proves (ii). Since the points @~(O~v) with vE(Af) en are dense in A(3, ~), we obtain (i) 

from (ii). 
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Equahty  (ii) can also be expressed by the commutative diagram 

(3.42) 

Q~/L ~o , Aa 

Q2~/t~ L o~ , A~(,) 

where L = (10 ~)Z~,co(v)=O~(~v),andw'(v)=O,(~)(~(~).ta-~v).NoticethattxL=t~L;eo 

and w' are bijective maps onto the groups of all points of finite order on A~ and A~(~), 

respectively. 

We insert here a proposition concerning a non-vanishing of an element of A~(q~) 
at a point 3 of the above type, which generalizes [8, Lemma 2.5] and is similar to [5, Prop. 

10]. 

PROPOSITION 3.13. Suppose that a point 3 o/ ~n and an element x o/ GA+ satisfy 

(3.40). I f / e  Ak(Q~b), keZ ,  f is finite at 5, and/(~)#0, then/~ is finite at ~ and f~(~)~O. 

Proof. This is obvious if k = 0. The case of negative k can be reduced to positive k by 

taking /-1. Assuming k > 0, take any non-zero element g of ~k(Qab). Since Go+ is dense in 

GR+, we can find an element a of Go+ so that  g(a(3))=~0. Put  h=g ~x-1. Then hZ($)#O, 
h//eAo(Qab), and h//eB~. By (3.40), hX//X=(h//)~eB~, and hence /x(3)=~O. Applying this 

result to h ~ and x -1, we see that  h(5)#0. Thus f/hEB~, so that  fX/h~eB~, which proves that  

/x is finite at 3 and/x(3 ) =~0. 

Let  us now briefly show that~the main theorem of [7] can actually be derived from 

Th. 3.10. Let $ be a point of ~ such that  A(3, 5) has many complex multiplications in 

the sense of [7, w 2]. Define Y and K' as in [7, p. 684], and let (]): Y-+C~ be the anti- 

representation which gives the action of Y on A(], ~) as the ondomorphism algebra. Define 

an injection e of Y into q ~  by @(a)~=~z~.te(a) for a e Y ,  and a map ~: K'A• by 

[7, (25)]. Then so~ maps K~ • into GA+. Given any rEK'A • put x=e(~(r)) -1. By [4, I, 

(2.7.3); II ,  (6.2.3)], we have (B~)~= B,, and 

(3.43) F($)EK'~b and F(3) r = F*(3) for all FEB~. 

Now l e t / E  Tk.f(Qab ). Choose any h of 7~/k(Q~b) so that  h($)+0, and put  g(u)=/,(u, $)/h(3) 

for u E C~. Then 

g(~v) = / , ( ~ v ,  ~)/h(~) eK'ab 
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for all vEQ~ ~ by (3.43), s ince/ . (~zv,  z)e ~k(Qab). Take an element y of (~ lying above x, 

and put  g'(u)~-(/Y). (u, $)/h~(3 ). This is meaningful since h~($)~0 by Prop. 3.13. By (3.43) 

and Th. 3.10, we have 

g ( ~ v )  ~ = [ / , ( ~ v ,  z ) /h ( z ) ]~ [~  = (/~), (~.  ~xv, 3)/h~(~) 

= g'(~" txv) = g'(qb(~(r) -1) ~)~v), 
and thus 

(3.44) g(u) ~ = g'(r for all u e ~ Q s  ~ and all reK'~ • 

When s = 1 and k =  1/2, this is exactly the fundamental relation needed for the proof of 

the main theorem of [7]. Since the functions h($)-1] * span the space of "arithmetic theta 

functions" as shown by [7, Prop. 2.5], we obtain the theorem. 

4. Proof of Proposition 3.8 

Given a lattice Y and an element r in the vector space (~ e q~l~v =V} and a lattice L 

in Q~, consider all formal series of the form 

(4.1) p(u , z )= ~ ~ aO?,~)e~(vz+u2) ( u e C ~ , z e ~ )  

with complex coefficients a0?, 2) satisfying the following condition: 

(4.2) _For a/ixed 7, there are only/initely many 2 such that a(~, 2) ~0 .  

As proved in Prop. 3.1, the components of an element of T~.k.~ satisfy (4.2). Let  qb denote 

the set of all such formal series, with all choices of Y and L. Obviously (I) forms a ring. 

Take linearly independent positive definite symmetric elements ~ ..... ~M of Q~, where 

M = n ( n +  1)/2. To each (~7, 2) we can assign its "coordinates" 

(tr ($1~) ..... t r  (~M~), 211, 21~ ..... 2~). 

By means of these coordinates, we introduce a lexicographic order into the set of all (~, 2). 

Then, for 0:#p E (I), the "first" non-vanishing coefficient of p is meaningful. Therefore (I) 

is an integral domain. 

L~MMA 4.1. Suppose p, q, rE~P, pq=r, p:~O, p has coe//icients in a sub/ield F o/ C, 

and r has coe//icients in a vector space W over F. Then q has coe//icients in W. 

This can be easily proved by means of the above lexicographic order. 

Our proof of Prop. 3.8 needs special care when n = 1, since the holomorphy on ~1 does 

not guarantee the finiteness at  cusps. To avoid the difficulty, let S~,~(A, A) denote the 
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set of all holomorphic / satisfying (3.10) and (3.11) with trivial r such that/,(FtzV, z) be- 

longs, as a function of z, to ~4k(C) for all vEQ~ ~. Then we define S~.~(~) for a subfield 

of C to be the set of all such/ ,  with any possible A and A, and with Fourier coefficients 

(i.e., c(~], g) of (3.12)) in ~.  Obviously S = T  if n > l .  

LEMMA 4.2. Let s denote the set o/all elements of A~(~) holomorphic on ~1 (but not 
necessarily so at cusps). Then s = s |  C. 

Proo/. Given ] ~ s consider a cusp form 

r 

~(z) = e(z/24) YI (1 -e(nz)), 

and observe that  W2h/E ~k+h(C) for a suitable positive integer h. Therefore ~]2h/is a finite 

C-linear combination of elements of ~k+s.(Q), Dividing this by ~72h, we obtain our lemma. 

LEMMA 4.3. 1/n = 1 and/ESk.~(C), then 

N 

(4.3) ](u, z) = ~ cj(z) Fj(u, z) 

with c~E s and F~e Tr/2.~(Q), where r = r a n k  (~), and hence /has a Fourier expansion 
o/type (4.1). 

Proo/. The proof of Prop. 3.5 shows at  least an expression (4.3) for / with c s holo- 

morphic on ~1 and functions FjeTr~2.~(q) such that  Fj(u, Zo) for ]=1 ..... 5 /a re  linearly 

independent over C for every z 0. Put,  for each v E Q~ and for any fixed z0, 

X (v) -~ f (b~ . . . .  , bN, s C~ l ,~l b, Fj(~zov, zo, = O } . 

The intersection of all such X(v) is {0}, and hence we can find N elements v 1 ..... vN of Q~ 

such that  N ~=lX(v~) = {0}. This implies that  

det ((Fj) .(~v~, z))t.~ 4 0. 

Denote this determinant by D(z). The equations 

N 

/,(~v~, z)= ~ cj(z) ( F j ) , ( ~ v , ,  z) (i = 1 . . . . .  iV) 
tffil 

show that  DcjEA~(C) with l=k+( iV-1)r /2 .  Since DE~rN/2(C), we obtain the desired 

conclusion. 
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Now, to prove Prop. 3.8, we may  assume, in view of Prop. 3.3, tha t  ~ is non-degenerate. 

Obviously any  elements of T~.~.~(Q) linearly independent over Q are also linearly in- 

dependent over ~. Therefore our aim is to show that  T~.~.~ is spanned by T~.~.~(Q) over 

~. Let  /~ T~.~. ~, and let W~ be the vector space spanned over Q by  the Fourier coefficients 

of the components o f / .  Let us first prove 

(4.4) W~ is/inite-dimensional over Q; 

(4.5) I/{r~} is a basis o/ W~over Q and ~ is trivial, then / =~ r,g, with gv~S~.~(Q). 
v 

I f  ~ is trivial, we see, from Prop. 3.5 and Prop. 2.1 when n > 1 and from Lemmas 4.2 and 

4.3 when n = l ,  tha t  / is a finite sum Zt~/~ with t~EC and/~ESk.~(Q). Therefore Wiis con- 

tained in ~ Qt~ and hence finite-dimensional. Given a basis {rv} of Wr, take a basis of 
i I Qt~ of the form {r,} U {r,} and express each t~ as a Q-linear combination of r,  and r~. 

Then / =  ~ r,g v + ~ r'~g'~ with g, and g~ in Sk. f(Q). Since / has coefficients in WI, comparison 
t of coefficients shows that  g, must  be 0, and t h u s / = Z  r,g,, which proves (4.5). 

In  the general case with an arbi trary ~, take A as in Prop. 3.7 with any point (%, zo), 

and put  d = d e t  (A), B=d.  tA-1, and g=tB/ for  a g iven /E  T~.k.~. Then the components of 

g belong to Tz. ,,~ with some l, and Wg c W I. By Lemma 4.1, the relation d/= Ag shows 

tha t  W/~ Wg, so that  Wr= Wg. Since (4.4) is true for trivial T, we have (4.4) for an ar- 

bi trary T. Let {r,} be a basis of Wj over Q. By (4.5), g=~r~h,  with h, ESz. m~(Q) '~, so 

tha t  / = ~  r,d-lAh~. Note that  d(uo, Zo):#O. Given another point (u 1, zl), we take A1, B1, 

and d 1 similarly so that  dl(Ul, zl):~:0 , and obtain an expression /=~rvd~iAlhl, with  

hi ~ ffS~. ~(Q)m and with the same r~. Obviously 

r~(dAl hl, - d l  Ah~) = O. 

Now dAlhl~ and diAh ~ have Fourier expansions of type (4.1). Since the components of 

A, A1, d, and d 1 satisfy (4.2), each sum expressing a Fourier coefficient of dAlhlv or dlAh ~ 

in terms of those of d, d l, A, Ai, h,, and hl~ is a finite sum, so tha t  dAlhl~ and diAh, have 

coefficients in Qm. Since (r~} are linearly independent over Q, we have dA~hi~=d~Ah ~, 

and so d-lAh~=d{1Alhl~. This shows tha t  d-~Ah, is holomorphic on the whole C~ • an. 

Obviously it satisfies (3.10) and (3.11). For every automorphism a of C, define a holo- 

morphic func t ion / ,  b y / ,  = ~  r~d-lAhp. Both d/and Ah~ have Fourier expansions of type 

(3.12). Define the action of a on any such series by  (3.37), which, in general, is only a 

formal series. Since Ah~ has coefficients in Qm for the same reason as above, we have 

(d/)r and thus (d/) ~ is meaningful as a function. Let t be an element of 
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Z(  whose action on Qab coincides with a. Then the proof of Prop. 3.9 is applicable to both 

d and d], so that  for v E Q~n, we have 

d,(~zt(t)v, z) = d,(~zv, z)% 

(d/o), (~t( t )v ,  z) = ((d/)r (~t( t)v ,  z) = (d/), (~zv, z)~. 

Since (d[), = d , / ,  and (d/o), =d,(/ ,) , ,  we have 

(4.6) ([~), (~zt(t)v, z) = / , ( ~ v ,  z) ~ 

if d,(~zv, z):#O. For every vEQ~ n, we can take A so tha t  d,(~zV, z):#O, and so we have 

(4.6) for all VEQs 2~. (Note t h a t / ~  is independent of the choice of A.) This shows t h a t / ,  

satisfies (3.23), i.e.,/oET~.k.~. Now, by  Lemma 4.4 below, we can find a set of automor- 

phisms {a} such tha t  det (rg),. ~ :4:0. Then the relations/~ = ~ rgd-~Ahp show tha t  d-lAh~ E 

T~,k. g. By  Lemma 4.1, we obtain d-lAh~ E T~. k, ~(Q), which completes the proof. 

LEMMA 4.4. I /  r 1 .... , r N are N complex numbers linearly independent over Q, then there 

is a set {~} o/:V automorphisms o/C such that det (r~)~.~0. 

Proo/. Let H denote the linear subspace of C 1 consisting of all (x 1 ... .  , xN) of C 1 such 

tha t  N o ~=1 r~xv=O for all automorphisms a of C. Obviously H is stable under the map 

(x 1 ..... xN)~-> (x~, ..., x~) for all a. Therefore H is defined over Q. I f  H~{0} ,  H contains a 

non-zero vector of Q~N, which contradicts the linear independence of {r~}. Hence H = {0}, 

from which our assertion follows. 

5. Proot  of Theorem 1.2 

We shall now complete the proof of Theorem 1.2 in the case of non-trivial ~. Observe 

tha t  the theory of w 3 concerning Tk.~ is independent of Theorem 1.2 with non-trivial Q. 

Consider Tk, ~ with s = l  and 0<~EQ.  Given an element/(u,  z) of Tk,~, define a Cn-valued 

function D / o n  ~ by  ./(a//~u'): (o, z)) 
1 (5.1) (D/) (z)= ~ [  (z e~). 

\ (al/~u~) (o, z) 

We see easily that ,  for every fl=(a,~0)E(~Q w i t h a = (  ac db)' 

(5.2) (D])lk fl = (cz + d) D(/Z), 

and hence D / e  ~Q,~(C), where ~ (X)= X.  I f  a is an automorphism of C, we have obviously 

(5.3) (D/)r = D(/r 
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Given n elements/1 .... , /n of Tk.~, we consider a Cl-valued function ~ = (]1 .... ,/~) on (~ • ~n, 

and put  

(5.4) D~ = (D/1 ..... D/~). 

Formulas (5.2) and (5.3) hold also with [ in place o f / .  We call [ regular if det (D~) is not 

identically equal to 0. 

PROPOSITIOn 5.1. (i) .For every ZoE~n, there exists a regular ~=(/1 .... ,/n) with ]~ 

in TlI2, I(Q) such that det (D[) (z0) 4=0. 

(ii) Suppose that /veTk.~(Q) and [=(/~ ..... ]n) is regular. Then ~Y=(/~ ..... ]~) is regular 

/or every y E ~.  

(iii) I /~  is as in (ii) and ~ = (h 1 ..... hn) with hve Tk. ~(Qab), then D(~Y) -1D(~ ~) = ((D~)-ID~) y 

/or every y E ~J. 

(In the last relation, ( D[) -1D~ has components in A0(Qab), so that ( ( D~) -1D~) ~ is meaning- 

/ul.) 

Proo/. Assertion (i) follows immediately from [8, Prop. 1.2] and its proof. Assertion 

(ii) is obvious, since ~Y=~P for some f l e ~  o, as shown in the proof of Th. 3.10. To prove 

(iii), put  E=(D~)-ID~. We can find aEGal (Qab/Q) and flE(~ o such that  ~u=~p, ~ =(~)~,  

and E u= (E~) ~. Then 

((D~) -1D~) ~ = (((n~) -1D~)r = (((D~)r -1 ((n~)r B 

= D((~r -1D( (~ )B)  = D(~)-ID(~ y) 

by (5.2) and (5.3). Q.E.D. 

PROPOSITIOn 5.2..For every rational representation Q el GLn( Q ) and ]cE2-1Z, we have 

?fl~.k(C) = ?~0.k(q) |  C. 

Proo/. Let  m be the degree of ~. For every z o E ~n, there exist a positive integer j and 

a C~-valued function A on ~n such that: 

(i) the columns of A belong to 7tlqd(Q); 

(ii) det (A(zo)) :~0. 

This follows either from Prop. 3.7 or from (i) of Prop. 5.1. With any such A and given 

/E ~q,k(C), put  d = (let (A), B = d. tA-1, and g = tB/. Then the components of g belong to 

~t(C) for some t. Since ~ t (C)=  ~ t (Q) |  by Prop. 2.1, we obtain our assertion by the 

same type of reasoning as in the proof of Prop. 3.8. 
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This proposition shows tha t  the action of an automorphism a of (~ on ~q.k(C) defined 

by  (1.4) actually maps ~q.k(C) onto itself. 

To define the action of GA+ on -~(Qab), first assume ~ (X)=X.  Choose any regular 

= (]1 ..... /n) w i t h / ,  in T1/2. l(Q). Given g E AQ(Qab), observe tha t  the components of (D[)-lg 

belong to A,2(Qab), so tha t  ((D~)-lg) ~ is meaningful for yE(~. Now for XEGA+, define 

g~ by  g~= D(~ y) ((D~)-lg) y with any element y of (~ with projection x on GA+ of the form 

y = (x, 1, v). This is independent of the choice of y, and also of the choice of ~ because of 

(iii) of Prop. 5.1. If  ~(X) = X |  ... |  then considering D [ |  ... |  instead of D~, we can 

similarly define the action of GA+ on A~(Q~b)- Since every irreducible rational representa- 

tion of GLn(Q) is obtained as a suitable power of determinant times a Q-rational consti- 

tuent  of such a tensor representation, it is now easy to define the action of GA+ on Aq(Qa~) 

with an arbi trary ~. Then the properties (i-viii) of Theorem 1.2 can be verified in a straight- 

forward way. In  particular, to prove the associativity (iii), we need (iii) of Prop. 5.1. 

6. Partial Fourier expansions of modular forms 

Let n and s be positive integers. We shall now show tha t  a certain Fourier expansion 

of a modular form on ~n+8 yields naturally some elements of T~,k, ~. Fix.st we write the 

variable point Z of ~+8  in the form 

(6.1) Z =  tu 

We define the objects G, (~, ~4~.k, ~Q.k, FN, etc. with degree n +s  instead of n, and denote 
! / ] t 

them by  G', (~', .,4q. k, ~llq. k, F.~, etc. Let  us now consider the elements of G(~ of the form 

18 ~q E 
(6.2) ~'= 0 14 _ , pEQ~,q Qs,rEQ~. 

0 0 18 

Such a y belongs to G 0 if and only if *qp+r is symmetric. For Z as in (6.1), we have 

( z u + z p + q  r) 
(6.3) y(Z)= tu+tpz+t  q w+tpzp+tpu+~up+tqp + . 

Let "~ be a polynomial representation GLn+8(Q)-+ GLm(Q) as in w 3, and let F(Z) = F(z, u, w) 

be an element of ~ :  k(C) with 0 ~< k E 2-1Z. Then we have a Fourier expansion of the form 

(6.4) F(z, u, w) = ~ /du, ~)e,(�89 
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with holomorphic Cm-valued functions/~(u, z) on C~ • ~n, where } runs over non-negative 

elements of a lattice in {~ E Q~[t~ = ~}. Notice that /~ is defined on the whole C~ x ~n, though 

F(Z) is defined only for Im(Z)>0.  Given a = ( :  

(6.5) ~' = 
i ob 1, 0 

0 d 

0 0 

) E G, define an element zr of G' by 

~ 1 v(~) ls 

The map a ~--~a' is a Q-rational injection, so that  it can be extended to a continuous map of 

GA into G~. With aEGo+ and a' as in (6.5), we have 

a(~) 
(6.6) :r = ~tu(cz + d)_l 

t(cz + d ) - ~  

v ( a ) -  ~ w - ~(o:) -1 �9 tu(cz  + d)-  ~ cu]  ' 

cu 

(6.8) F(:c'(Z)) = ~/~(~(u,  z)) es( - �89 v(~) -1 ~* tu(cz + d) -1 cu) e~(�89 -1 ~w). 

t If t' is the map of A~ into GA+ corresponding to t, we see that  

(6.9) t ( t ) '=t ' ( t )  (t eA~). 

Let (~, ~ ) E ~ o  with cr ( :  ~) �9 Define a holomorphic function ~o' on ~n+s by 

From (6.7), we know that  (~', ~o') E ~ ,  and thus obtain an injection 

(6.11) (a, ~o)~->(a', ~') 

t 

of G o into G o. 

A good example of Fourier expansion (6.4) can be obtained from theta functions as 

follows. Let O' denote the function defined by (3.26) with n +s  instead of n, and put (I)(Z)-- 

0'(0, Z; p, q) with 

2 =  ' q =  q2 
Then 

~P(Z) = ~. e(tyq2) O(uy, z; Pl, ql) e(�89 tywy). 
Y - P 2  r i s 
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Thus the coefficients/~ for (I) are linear combinations of O(uy, z; T~, q~). In particular, if 

we put O'(Z) =0'(0, Z; O, 0), then 

(6.12) O'(Z) = ~ O(uy, z; O, O) e(�89 ~ywy). 
y ~ Z  ~ 

Define F0 and ~(7) for 7 ~F0 by (a.1) and (a.2) of the Appendix, and similarly a subgroup 

F~ of G 0 and ~t'(fl) for fler~. From (6.8), (6.12), and (a.2), we see easily that  2(7 ) =2'(7" ) 

for every ? ~ Fo, or more precisely, 

(6.13) O'(?'(Z))/O'(Z) = O(?(z))/O(z) for every ?~Fe. 

Therefore, if A N and A~ are the images of FN and FN under the map (2.7) (respectively 

with n and n+s) ,  then the map (6.11) of ( ~  into ( ~  sends AN into AN. 

PROPOSITION 6.1. Suppose Fe~.~(F~, ~) or F e  m,.~[ ~, ~) according as 2k is 

even or odd, where ~ is a sub/ield o /r  Then the Fourier coe/]ieient /~ o / F  de/ined by (6.4) 

belongs to T~.~.~(FN, A; ~) or T~.~,g(/k~, A; ~) accordingly, with a suitable A. 

Proo/. Let F e  ?~'~.~(A~, I)t). If ~=(?,  1)r o with ? defined by (6.2) and ~qp+r=O, 

formula (6.3) shows that 

(i, p) 5e~(~(~.~pzp+~pu))/~(u+zp+q, z)e~(Vw). F~(z, u, w ) ~  ~ 0 1~ 

If f l=(a,  ~f) E(~ o and fl' = ( s  yJ') E@~ with cr of (6.5) as above, we obtain, from (6.8), 

(6.14) FB" (z, u, w) = v(a) -kS ~ (/~)~ (u, z)es(�89 

Therefore /~ satisfies (3.10) and (3.11) with a suitable A and A = A  N. Obviously /~ has 

Fourier coefficients in ~,  and hence/~ET~.~.~(AN, A; ~) if n > l .  Suppose n = l .  By (3.18) 

and (3.19), we have 

ks [1• 0 ~ es ( _ �89 tpq)(.]~),(~2zv, z)i~es(�89 ) F~'~(z, O, w) =~(a)- �9 ~0 ~(fl) l 8 

where t~v=(P) .  Since F~'oE~'~.k, this shows that (/i), (~zv, z)Bis finite at ic~ for every 

fle(~(~ and every veQ~. Therefore/~E TT.~. ~. 

THEORE~ 6.2. There is a unique continuous in]ective homomorphism y~-~y' o/ (~ into 

(~' which coincides with tl(t)~->t~(t ) on tl(A~) and with (6.11) on (~o, and which makes the 

diagram 

--782901 Acta mathematica 141. Imprim$ le 1 Septembre 1978 
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1 l 
! 

GA+ " GA+ 

commutative. Moreover, i / F  is an element o/ 7Yl'~. k(Qab) with expansion (6.4), then,/or every 

y E q6, we have 

(6.15) FY'(z, u, w) = Iv(y) [ - k ~  (]~)Y(u, z) es(lIv(y)i-~w), 

where (/6)Y is defined as in Theorem 3.10. I / k E Z ,  (6.15) holds with yEGA+ and y' EGA+. 

Proo/. If y = ( ~ , ~ )  and y ' = ( ~ ' , ~ ' )  as in (6.11), we obtain (6.15) from (6.14). Next 

(6.15) is obvious if y = q(t) and y '= t'1(t) with t E Z~. Now, given y = (x, v)E (~, an element y' 

of q6' with projection x' on G~+ is uniquely determined by (6.15), if it exists. Let ~ be 

the subgroup of (~ generated by q(Z~), G~+, and (~o. Then we can define an injective 

homomorphism y~-+y' of ~ into (~' which satisfies (6.15) and makes the diagram 

! 
GA+ ) GA+ 

commutative. This homomorphism is continuous, since a basis of neighborhoods of the 

identity element of (~ can be given by (2.9). By Prop. 2.2, ~ is dense in (~, and (~' is locally 

compact, and hence the map can be extended to the whole (~ as desired. 

In the above, we assumed n >0, but the ordinary Fourier expansion F(w) =~J~e~(~w) 

of a modular form F on ~ with/~ E C may be regarded as the extreme case n = 0. Then 

(2.6) or (1.10) may be considered the extreme case of (6.15) with the map t of A • into G~, 

in place of the injection GA-+G'A. 

7. Concluding remarks 

A more informative title of this section may be "What  Theorems 3.10 and 6.2 suggest 

in the general theory of arithmetic automorphic forms". Let  G be a Q-simple algebraic 

group such that  GR modulo a maximal compact subgroup is a symmetric domain | and 

let F be a congruence subgroup of G o. Our main interest here is in the nature of the Fourier 

expansion of an automorphic form on | with respect to F, when ~ / F  is not compact. If 

| is a tube domain and G has a sufficiently large subgroup acting on | as a group 
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of translations, an automorphie form has a Fourier expansion similar ~o the expansion 

(1.3) of a Siegel modular form. In  general, however, | may  not be a tube domain; 

even if | is a tube domain, the group of translations may  not be large enough to guarantee 

such an expansion. In  order to study this point in detail, Pyatetskii-Shapiro introduced 

in [3] the notion of Siegel domains of the first, second, and third kinds, and discussed a 

certain Fourier expansion for an automorphie form, which he called a Fourier-Jacobi  

series. When ~ is represented as a domain of the third kind, the series has the form 

(7.1) ~ g~(u, z)e((~, w)), 
2 e L  

where (, ~ is a (~-bilinear form in a certain complex vector space, g~(u, z) is a theta function 

in uEC m with a parameter  z, and ~ runs over a lattice L. Expansion (6.4) is actually an 

example of (7.1). I f  ~ is of the first or second kind, g~(u, z) is just a constant, or a func- 

tion only in u without z. Now suppose tha t  we can construct canonical models with respect 

to G, or rather, with respect to a reductive group containing G, and therefore can speak of 

arithmetic automorphic functions with respect to F, Then we may  naturally ask the fol- 

lowing questions. 

(I) Can one de/ine "arithmetic automorphic /orms" consistent with the notion o/ canonical 

models and arithmetic automorphic /unctions? 

This question can be asked even in the case of compact quotient. 

(II) Assuming the quotient non-compact, can one characterize such arithmetic /orms in 

terms o/ the properties o/the _Fourier coe//icients g~ o/ (7.1)? 

(III)  Are holomorphic Eisenstein series, up to constant/actors, arithmetic? 

The answers to all these questions seem to be in the affirmative. For example, the 

results of our present and previous papers give affirmative answers to (I) and (II) for the 

symplectic groups. The works of Siegel, Klingen, Baily and others answer ( I I I )pos i -  

t ively for many  groups P when the Fourier coefficients are constants. In  general, if the 

Fourier coefficients are constants, it is reasonable to call (7.1) arithmetic when the g~ 

belong to Qab. 

Now, in the ease in which ~ is of the third kind, the answers to (I), (II) will probably 

be given in the following way. First, the parameter  z belongs to a symmetric domain ~o 

on which an algebraic group G 0 acts. There is an injection of G 0 into a symplectic group 

which induces a holomorphic embedding e of @o into ~n for some n. Then ga(u, z), pos- 

sibly modified by  a suitable factor, is a function on (?mx | whose behavior is similar to 

h(u, e(z)) with an element h of Tk.f of w 3. In  other words, if z is a "generic point"  of ~0 

and A is an abelian variety associated with the point e(z), then g~ as a function in u is a 

theta  function of A, behaving like O(u, e(z); r, s). Define (g~.). in the same manner as in 
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w 3. Then we call (7.1) arithmetic if the values (g~). (v, z) for all 2 and all v commensurable 

with the periods are arithmetic automorphie forms in z E | Thus question (II) for G can 

be reduced to question (I) for G 0, which is comparatively easy. The quotient of Go by a 

discontinuous subgroup of G o may  be compact. For example, let G be the uni tary group of 

a hermitian form over a totally indefinite quaternion algebra whose center is total ly real. 

Then a natural  choice of a parabohc subgroup yields Fourier expansions in a domain of 

the first or third kind according as the degree of the hermitian form is even or odd. A 

recent work of Garrett  [2] gives affirmative answers to questions (I) and (II) in either case, 

endorsing what we said above. 

In  general, it is expected tha t  A is a generic member  of a family of abelian varieties 

characterized by  their endomorphism algebras, or the product of several copies of such. 

Then the action of the adehzation of G o on g~ is essentially obtained as a specialization of 

Theorem 3.10, in a fashion similar to tha t  explained at  the end of w 3. Also, one should 

be able to prove an analogue of Theorem 6.2 with | and | in place of ~+~ and ~=. 

The domain | of the second kind may  be viewed as an extreme case where | consists 

of a single point; the behavior of g~ in this case is similar to h* with hETk,~. A typical 

example of G with such an ~ is provided by  the unitary group of a hermitian form over an 

imaginary quadratic field, which we treated in [9]. The answers to questions (I) and (II) 

can be given exactly in the above described fashion. The domain of the second kind occurs 

also when G is the unitary group of a skew-hermitian form over a definite quaternion alge- 

bra. As for question (III) ,  we indicated in the same article [9], if without details, tha t  the 

answer is affirmative at  least if | is a complex unit ball 

{(zl . . . . .  zn)EC~ ~1 [z~[S < 1}. 

I t  is very likely that  the same holds in a more general case. 

Appen41x 

Our purpose here is to determine the constant factor in the transformation formula 

of the function O(u, z; r, s) defined by  (3.26). To simplify our notation, for every symmetric 

matr ix  S, let {S} denote the column vector consisting of the diagonal elements of S; also 

put  SIX]  = t X S X  for a matr ix  X such tha t  S X  can be defined. Let  a subgroup F0 of F 1 be 

defined by  
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F ~  ac ~) EI~0'wehave 

(a.2) 

O(t(cz +d)-lu,  7(z); g, h)= ~(7)e((tgh-tg*h*)/2) det (ez +d)ll2 e(�89 �9 tu(cz +d)-lcu)O(u, z; g*, h*), 

where ~(?) is a constant depending only on y, and 

(::) :,,(:) 
This is classical; for a short proof, see [7]. Define ~ and ? '  by (3.27) and (3.28). Then formula 

(a.2) is equivalent with 

(a.3) ~'(t(ez +d)-lu,  y(z); g, h)= ~(?)e((tgh-tg*h*)/2) det (cz +d)i12qJ(u, z; g*, h*). 

This holds also with ~ instead of ~'. 

PROPOSITION A.1. 1/ ~ = ( :  ~)EFo, det(d)>O, anddet (ez+d) i le i schosensoas to  

become positive when z=iy  with real y tends to O, then ~(~)=det(d) -1/2 ~ v  e(bd-l[v][2), 

where V is a complete set o/representatives/or Zn/dZ n. 

Proo/. Put  O(z)=O(O, z; O, 0), w=td-lz(cz +d) -1 , /=bd  -1. Then 7(z)=w+/ ,  so that  

(a.4) ~(~) det (ez +d)l120(z) = O(~(z)) = O(w +/) = ~ e(�89 
x ~ Z  n 

With V as above, put x ~ v + ds with v E V and s E i n. Then 

O(w+/) = ~  Z e(�89 +�89 
V 8 

= ~ e(�89 z(cz +d)-ld;  d-iv, 0), 
v 

since/[v+ds]/2-/[v]/2 (rood Z). Now, from [7, 06')], we obtain 

det ( -iz)llUO(O, z; g, h) = e(tgh)O(O, - z - l ;  - h ,  g). 

Put  z = i~l n with 0 <~ E It, and observe that  

(a.5) lira T~I20(0, iTln; g, h) = e(~gh)~(h), 
~--)0 

where ~(h) = 1 or 0 according as h E Z" or h ~ Z ". Taking the limit of v~/~ times (a.4) when T 

tends to 0, we obtain the desired formula for ~(~). 
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Suppose that 0<s----1 (mod 2), r~-leZ~, r~=0, and {pr(~-~}-{qs(~}-O (mod 2Z~). Then 

where 8 s =1 or i according as s=-I or - 1  (rood4), and ( - )  is the quadratic residue symbol. 

Proo/. Substituting z+h for z in (a.2) with h=~hEZ~ such that  {h)E2Z ~, we find 

(a.6) ~ ( :  b + a h i =  

Since (2r, s) = 1, there is a prime l, not dividing det (a), of the form l = 8mr +s with 0 <m E Z. 

Put  k=8mp§ By (a.6) and Prop. A.1, we have 

(a.7) 2~ra_ i sln ~ra -i lln vEv ' 

where V is a complete set of representatives for zn/1Z n. Now we can find an element 

of GL~(Q) N Z~ such that  1 does not divide det (a) and tga~ is congruent to a diagonal matrix 

modulo 1. Let ~i, ..., ~n be the diagonal elements of ~aa~. Then (a.7) is equal to 

and ( ~ ) =  ( - ~ ) =  ( - U ~ ) .  Since r~ det(a)- '  is an integer, det(a) is a square times a 

divisor of r, and hence ( ~ )  = ( ~ ! ) ,  which completes the proof. 
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