
AN EXTREMAL PROBLEM FOR QUASICONFORMAL 
MAPPINGS AND A THEOREM BY THURSTON 

BY 

LIPMAN BERS (1) 

Columbia University, New York 

To Lars V. Ahlfors, on his 70th birthday 

w 1. Statement of the problem 

The new extremal problem considered in this paper, and the form of the solution are 

suggested by  Thurston's  beautiful theorem on the structure of topological self-mappings 

of a surface (Theorem 4 in [21]). In  treating this problem, however, we use none of Thurs- 

fort's results and thus obtain also a new proof of his theorem. 

Unless otherwise stated all surfaces considered in this paper will be assumed to be 

oriented and of finite type (p, m), tha t  is homeomorphic to a sphere with p >/0 handles 

from which one has removed m ~>0 disjoint continua. To avoid uninteresting special cases 

we assume tha t  
2 p - 2 + m  >0 .  (1.1) 

All mappings between surfaces (or between finite disjoint unions of surfaces) will be assumed 

bijective, topological and orientation preserving. We recall (see Mangler [15]) that  two 

mappings of a surface are isotopic if and only if they are homotopic. 

A con/ormal structure on a surface S is a mapping a of S onto a Riemann surface. I f  

/: SI-~S 2 is a mapping, and al, a~ are eonformal structures on S 1 and $2, respectively, then 

the deviation of ~ 2 o [ 0 ~  1 from conformahty is measured by  the dilatation 

g = K ( c r 2 o / o ( ~  -1) = g .  .... ([). 

We recall tha t  1 ~<K~< + ~ ,  with K = I  signifying t h a t  a~o/oa~ 1 is conformal, and K =  + co 

signifying tha t  this mapping is not  even quasiconformal. I f  S t = S  2 and a l=a2,  we write 

K~(/) instead of K~, ~(/). 

(1) This work has boon partial ly supported by  the National  Science Foundat ion  under  grant  
number  NSF MCS76-08478. 
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Now let / be a given self-mapping of a surface S. We pose the extremal problem of 

minimizing K~,(/') by varying the conformal structure a '  and by va ry ing / '  over the isotopy 

class of/ .  A solution, if it exists, is a pair (a0,/0), with/0 isotopic to / and such tha t  Kr ~< 

K~,(/') for all conformal structures a '  on S and a l l / '  isotopic to ]. I f  so, we call g0 a n / -  

minimal con/ormal structure, and we call ~oofoo~ I an absolutely extremai self-mapping of 

the Ricmann surface a0(S). 

We shall give necessary and sufficient conditions for the existence of an /-minimal 

conformal structure, shall characterize absolutely extremal mappings, and shall construct 

a generalized solution of our problem for the cases in which it is unsolvable as stated. An 

essential tool in obtaining these results is Teichmfiller's theorem which we proceed to 

recall. 

w 2. Teichmiiller mappings 

Let X be a Riemann surface, not necessarily of finite type. A Beltrami di//erential 

M on X is a rule which assigns to every local parameter  z defined in a domain D c X an 

essentially bounded complex-valued measurable function/~(z), z E z(D),- such tha t  #(z) dS/dz 

is invariant under parameter  changes. (By abuse of language we write M =ju(z)dS/dz in D.) 

I f  so, I M I is a real-valued function defined on X; it is required tha t  it be essentially bounded 

and tha t  its essential supremum k = HM]]~o satisfy k < 1. 

A meromorphic quadratic di//erential �9 on X is a rule which assigns to every local para- 

meter  z defined in a domain D c X a meromorphic function ~(z), z E z(D), such tha t  T(z)dz 2 

is invariaut under parameter  changes. (By abuse of language we write: (I)=q~(z)dz 2 in D.) 

If, so, Iq~(z) ldxdy (where z = x § iy, x and y real) is also invariant under parameter  changes 

and one can compute the in te~a l  ~ x  [(I) l. If  it is finite, (I) is called integrable. We call (I) 

admissible if its poles, if any, are simple. An integrable meromorphic quadratic differential 

is admissible, the converse is true if X is compact. 

I f  (I) is an admissible quadratic differential on X, P E X, and r the order of (I) at  P,  

then there exists a local parameter  z defined near and vanishing at  P, such tha t  

if r = 0, then 

�9 = zrdz ~ near P; (2.1) 

~P = dz 2 near P. (2.2) 

The parameter  z is called a natural parameter belonging to (I) at P. I t  may  be multiplied 

by an (r §  root of unity bu~ is otherwise uniquely determined. 

Now let H be a quasiconformal mapping of X onto another Riemann surface Y. The 
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Beltrami differential M of H is defined as follows. Let  z be a local parameter defined on a 

domain D c X ,  ~ a local parameter defined on H ( D ) c  Y, and set h: ~oHoz -1 (that is, let 

zv-+$ =h(z) represent the mapping H]D). Then M =#(z)dS/dz in D, where # is the Beltrami 

coe/]icient of the quasiconformal mapping ~=h(z), that  is, #(z)=h~(z)/h~(z). (The partial 

derivatives h~, h~ are taken in the distribution sense; they are locally square integrable 

measurable functions.) The dilatation K of H is given by the formula 

K = + IIMII oo)/(1 -IIMII 

We call H a/ormal  Teichmiiller mapping if its Beltrami differential M is the form 

M = k l r 1 6 2  

where 0 < k < l  and (I)#0 is an admissible quadratic differential called the initial di/- 

/erential of H. I t  is determined by H uniquely, except for a multiplicative positive constant. 

If H: X-+ Y is a formal Tcichmfiller mapping with initial differential (I) and dilatation 

K = ( l + k ) / ( 1 - k ) ,  then there exists a unique admissible quadratic differential aF on Y, 

called the terminal di]/erential of H, having the following prbperties. 

(i) The order r of (I) at a point P E X  equals the order of xF at H(P). 

(ii) If z = x + iy is a natural parameter belonging to (I) at P, there exists a natural 

parameter ~ =~ + i T belonging to ~F at H(P) such that  near P the mapping H is represented 

by 

= I ~Z_ ~ ] , (2.3) 

with ~ > 0 for z > 0. In particular, if r = 0, then H is represented by 

(iii) We have 
= Kl/2x, ~1 = K-1/2Y �9 (2.4) 

(iv) The mapping H-X is a formal Teiehmiiller mapping with dilation K, initial diL 

ferential (-~F) and terminal differential ( - ~ ) .  

The easy proof of these assertions is a slight modification Of the argument in w 8 of 

[3]. Observe that  (hi) follows at once from (2.2) and (2.4). 

A formal Teichmfiller mapping H: X-+ Y will be called a Teichmiiller mapping if its 

initial differential is integrable, holomorphic (which does not prohibit simple poles at the 

punctures of X), and real on the ideal boundary curves of X, if any. 
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The Teichmiiller theorem (cf. Teichmfiller [19; 20], Ahlfors [1], Bers [3]) asserts tha t  

if X and Y are Riemann surfaces of finite topological type (p, m), with 2p - 2  + m > 0 ,  then 

every quasicon/ormal mapping of X onto Y is isotopic to a unique extremal mapping, and tha t  

a mapping X---> Y is extremal i / a n d  only if  it is either con[ormal or a Teiehmiiller mapping. 

w 3. Periodic and non-periodlc mappings 

There is a case in which the solution of the extremal problem stated in w 1 is well 

known and evident. 

THrOR~M 1. A self .mapping / of a sur/ace S is isotopic to a periodic self-mapping i/  

and only i/ there is a con/ormal structure a on S and a mapp ing / '  isotopic to f such that a o /'  o(~ -1 

is con/ormal. 

Proot. The group of all conformal self-mappings of a l~iemann surface X is finite except 

if X is of finite type (p, m) = (0, 0), (0, 1), (0, 2) or (1, 0). In  view of assumption (1.1) this 

implies the necessity of the condition. 

To prove the sufficiency, let f0 be a mapping of a period n + 1 isotopic t o / ,  and let ds 

be a Riemannian metric on S (for some differentiable structure). Then 

ds o = ds + f~(ds) + . . .  + (f~)n (ds) 

is a Riemannian metric invariant  under /0, so that  )t o is a conformal self-mapping of S 

equipped with the conformal structure induced by ds o. 

The argument implies the validity of the following 

ADD I T I 0 N T 0 T H E 0 R ~ ~ 1. I /  the sel/mapping / o / S  is isotopic to a periodic one, and 

i / S  has m > 0  (ideal) boundary continua, then there is an / -m in ima l  con]ormal structure a such 

that r >~ 0 arbitrarily prescribed boundary continua o / S ,  as well as all their images under 

Towers of f, become punctures of (r(S), while all other boundary continua o / S  become ideal 

boundary curves of a(S). 

We proceed to show tha t  in treating the extremal  problem stated in w 1 in the case 

when f is not isotopic to a periodic mapping, we may  restrict ourselves to conformal struc- 

tures a on S for which a(S) has no ideal boundary curves. Such eonformal structures will 

be called of the first kind, all others will be called of the second kind. 

Two conformal structures, a 1 and as, on S will be called similar if every boundary 

continuum of S is either a puncture of both Riemann surfaces ax(S) and as(S) or an ideal 

boundary curve of these two Riemann surfaces. 
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THEOREM 2. Let cr be a con/ormal structure o/the second kind on a sur/ace S and / a 

sell-mapping o] S with K~(]) < + oo. I] ] is not isotopic to a periodic mapping, then 

(i) there is a con/ormal structure ci' on S similar to a and a mapping/ '  isotopic to 1, with 

g,,,(l') < KAI),  and 

(ii) there is a conlormal structure a 1 o/the/irst  kind on S and a mapping 11 isotopic to/ ,  

with K~,,(/) <K~(/). 

Proo/. Wo shall use Teichmfiller's theorem and properties of the so-called Nielsen 

extension described in [7]. In  view of Theorem 1 and of Teichmiiller's theorem, we may  

assume tha t  ao/oa -1 is a Tcichmiiller mapping. We define the number k by  the condition 

KA/)  = (1 + k ) / ( 1  - k ) .  

Since a(S) has at  least one ideal boundary curve, we can embed a(S) canonically into 

its Schottky double a(S) d. This is a Riemann surface equipped with a canonical anti-con- 

fo rmal  involution j such tha t  the complement of the fixed point set of j has two com- 

ponents: a(S) and another Riemami surface ?'on(S), called the mirror image of a(S). The 

components of the fixed point set of 7" are the ideal boundary curves of a(S). Suppose 

there are n of those, and assume tha t  a(S) has r punctures. Then a(S) d has genus 2p + n -  1, 

where p is the genus of S, and is compact except for 2r punctures. Since n > 0 by hypothesis, 

and n + r  =m,  we conclude from (1.1) that  a(S) ~ can be represented as U/G where U is the 

upper half-plane and G a torsion-free Fuchsian group. Since (r(S) d is compact, except for 

finitely many  punctures, G is of the first kind, i.e., its limit set is R U (oo~. 

Now let D be a component of the preimage of a(S) under the natural  projection 

~: U ~  U/G =a(S)  d, and G' the stabilizer of D in G. Then D/G' =a(S),  and a(S) is canonically 

embedded in the RiemaIm surface a(S)'= U/G', called the Nielsen extension of a(S) (cf. 

[7], Theorem 1 and Lemma 3). The Nielsen extension is again a Riemann surface of genus 

p with r punctures and n boundary curves, and the complement of the closure of a(S) in 

a(S)' consists of n components, each conformally equivalent to an annulus. 

According to Theorem 2 of [7] every quasiconformal self-mapping of a(S), in particular 

the Teichmfiller mapping no /on  -1, admits a canonical extension to a(S)', with the same 

dilatation. This extension is constructed as follows. First we extend no /on  -1 to a mapping 

w of a(S) d onto itself which commutes with j. I t  is known, and easy to check, tha t  w is a 

Teiehmiiller mapping of dilatation Ka(/). Since ~(S) d= U/G, there is a quasiconformal 

mapping W of U onto itself inducing w, tha t  is satisfying won  = z o  W. This W also induces 

a mapping F of a(S)' onto itself which is the desired extension. 

The Teiehmfiller mapping w has (s00 w 2) a holomorphie integrable initial quadratic 
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differential 0 # 0  on a(S) a which, lifted to U via z,  can be written as cf(z)dz 2, with q(z), 

z E U, a holomorphic function satisfying r 2 =g(z) for all g E G, and 

O< I ~  I c f ( z ) l d x d y < + ~ .  (3.1) 
J J r  /G 

The mapping W: U ~ U satisfies the Beltrami equation 

k 
~ ~(z) ~z 

Now G' is of the second kind (its limit set is nowhere dense in tt  U {o~}), so that  it is of 

infinite index in G, and by  (3.1) 

f i e  ]q~(z)]dxdy= + ~ .  (3.2) 
/G" 

The mapping F: (~(S)'-+(I(S)' is a formal Teichmtiller mapping with dilatation K~(/) and 

initial differential (I)* which is induced by  the function ~(z). In  view of (3.2), (I)* is not 

intcgrable. Hence F is not a Teichmiiller mapping and not extremal. Therefore there 

exists a self-mapping F '  of a(S)' which is homotopic to F and whose dilatation is smaller 

than  tha t  of F. 

I t  is easy to construct a mapping a': S~(r(S) '  and a m a p p i n g / '  isotopic to / such tha t  

F '  = a ' o / ' o ( a ' )  -1. By construction a '  is similar to (r and K~,( / ' )=K(F ' )<Kr  This prove 

statement  (i). 

Now set X (1) =(r(S)' and let X (i+1) be the Nielsen extension of X (i), i = 1, 2, .... I n  view 

of the canonical embeddings a (S )c  X(1), X(0 c X(~+xl, we can embed a(S) into its infinite 

Nielsen extension X = X  (1) U X (2) U .... According to Theorem 3 in [7], the complement of 

the closure of (r(S) in X consists of n domains each of which is conformally equivalent to a 

punctured disc. The mapping F ' :  Xr II~ constructed above can be extended, without 

increasing its dilatation to a mapping FI: X ~ X .  

I t  is easy to construct a mapping (q: S-+X and a mapping/1  isotopic to / such tha t  

F 1 =alO/lCa~ 1. By construction al is of the first kind and Kr  

This proves (ii). 

COROLLARY TO THEOREM 2. Let / be a sell-mapping o/ a sur/ace S and a a con/ ormal 

structure on S such that K~(/) < + ~ and K~(/)<~K~,(/') /or all (r' similar to (r and all /' 

isotopic to/ .  Then 

(i) either ao /oa  -1 is con/ormal or (r is o / the / i rs t  kind, and 

(ii) a i s / -minimal  and (~o]o(r -1 is absolutely extremal. 
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Proo/. If  ~o /o~  -~ is not conformal, then it is a Teichmfiller mapping, and hence not 

isotopic to a periodic mapping. Therefore, by Theorem 2(i), (r cannot be of the second kind. 

If  o'o/oo "-1 is conformal, s tatement  (fi) is trivial. If  O"O]O(Y -1 is not conformal and 

hence not isotopic to a periodic mapping, ~ is of the first kind, by (i), and (ii) follows from 

Theorem 2(ii). 

The corollary permits us to restate the extremal problem of w 1 as a problem concerning 

the modular group acting in a Teichmiiller space. 

w 4. Restatement of the problem 

We first recall the definition and main properties of the Teichmi~ller space T(p, ,2) of 

Riemann surfaces of finite type (p,m) with 2 p - 2 + m > 0 ,  cf. Ahlfors [1], Bers [4, 6], 

Earle [9]. We s tar t  with a surface S of type (p, m) and define two conformal structures 

al  and a S on S to be strongly equivalent if there is a conformal map c of ~1(S) onto (r~(S) 

such tha t  (rfflo COal is isotopic to the identity. The strong equivalence classes [(~] of structures 

of the first kind are the points of T(p, m) and the distance (Teichmiiller distance) between 

two points [al] and [(r2] is defined as 

([al], [a2]) = �89 log inf K(g), g isotopic to  (T2OO'l 1, (4.1) 

o r  

(In1], [a2]} = �89 log K(h), h extremal and isotopic to a2oa~ 1. (4.1') 

With this metric T(p, n) is a complete metric space homeomorphic to R 6"-6+2m. (That 

T(p, m) also has a natural  complex structure which can be realized by embedding T(p, re) 
as a bounded domain of holomorphy in C 3~-a+m, and that ,  according to a theorem by  

Royden, the Teiehmfitler metric is the Kobayashi  metric need not concern us here.) 

Kravetz  [13] showed tha t  the Teiehmfiller space T(p, m) is a straight line space in 

the sense of Busemann [8]; see Linch [14] concerning this proof. This means, in particular, 

tha t  any  two distinct points Zl, T2 E T(p, n) lie on a unique line, i.e. an isometric image of 

R, and tha t  a line l through two points ~1 and z2 also contains all points ~ with (zl, z} + 

The modular group Mod (p, m) is the  group of self-mappings of T(p, m) of the form 

[~] ~1"([~]) = [ G o / ]  

where l is a self-mapping of S. I t  is clear that  the modular trans/ormation 1" depends only 

on the isotopy class of f, and tha t  every l* is an isometry of T(p, m) and hence maps lines 

into lines. (Moreover, Mod (p, m) is a group of holomorphic automorphisms of T(p, m), 
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indeed, according to a theorem by Royden, the full group of holomorphic self-mappings 

of this space, provided that  3 p -  3 + m > 1.) 

The definition implies that  two Riemann surfaces al(S) and (~2(S) are conformally 

equivalent if and only if [*([al])= [a2] for some/* eMod (p, m). 

We introduce a classification of elements of the modular group, similar to the classi- 

fication of elements of the elliptic modular group SL(2, Z)]_+ I. (The elliptic modular group 

may be identified with Mod (1, 1), and the principal congruence subgroup modulo 2 of the 

elliptic modular group may bo identified with Mod (0, 4).) 

For ;~eMod (p, m), let a{i~) denote the infimum of <r, X(r)> for r e  T(p, m). We shall 

say that  Z is elliptic if it has a fixed point in T(p, m), parabolic if there is no fixed point 

but a(z)=0,  hyperbolic if a(z ) >0 and there is a re  T(p, m) with <% Z@)>=a(z), pseudo- 

hyperbolic if a(z ) >0 and <Z, r(Z)> >a(g) for all r e  T(p, m). The property of being elliptic, 

parabolic, hyperbolic or pseudohyperbolic is preserved by inner automorphisms of the 

modular group. 

A point r e  T(p, m) will be called z-minimal if <r, Z@)> =a@). 

PROPOSITIO~ 1. A con/ormal structure a o/ the /irst kind, on a sur/ace S, is/-minimal 

i /and only i/ [a] is/*-minimal. 

Proo/. Let h denote the unique extremal mapping in the isotopy class of no /on  -1. If 

a is/-minimal and/1 is isotopic t o / ,  then, for every conformal structure al of the first kind 

K((r lo[ lo~ 1) >/K(aohoa -1) 
so that,  by definition (4.1'), 

<[~d,/*([ad)> > <[~], 1"@])>; 

hence [~] is/*-minimal. The converse statement is verified in the same way, taking into 

account the Corollary to Theorem 2. 

THV.OR]mM 3. An element o/the modular group is elliptic i /and only i / i t  is periodic. 

This is a well-known result. The necessity is, of course, trivial. I f /*  has a fixed point, 

there is a conformal structure (r on the surface considered and a n / t  isotopic to / such that  

no/ ton  -1 is conformal. Hence there is an integer n > 0  with (ao/lo(r-1)n=id, and (/*)n= 

(/~)n = ( i d ) *  = id. 

The sufficiency statement is a rather deep result going back to Nielsen. A brief proof, 

based on the Paul Smith periodicity theorem and on the fact that  the Teiehmiiller space 

is a cell, is due to Fenchel [12], see also Kravetz [13]. A new proof is contained in Thurston's 

theory. 
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Theorem 3 deepens Theorem 1. The two theorems, together with the Corollary to 

Theorem 2 and with Proposition 1 imply 

PRO POSITI O ~ 2. Let / be a sell-mapping el a sur/ace. An f-minimal con/ormal structure 

exists i/ and only i/ the modular trans/ormation 1" is elliptic or hyperbolic. 

Propositions 1 and 2 constitute the desired restatement of the extremal problem of w 1. 

w 5. Irreducible mappings 

A finite non-empty set of disjoint Jordan c u r v e s  { C  1 . . . .  , Cr} on a surface Swi ] l  be 

called admissible if no C~ can be continuously deformed into a point, a boundary continuum 

of S, or into a C a with jd=i. Following Thurston we say tha t  a mapping 1': S ~ S  is reduced 

by {C 1 ..... Cr} if this set is admissible and 

l'(ClU ... u v,)= c~ u ... uc,. 

A self-mapping / of S will be called reducible if it is isotopic to a reduced mapping, ir. 

reducible if it is not. 

THEORI~M 4. 11 I is an irreducible sell-mapping of a sur]ace S, the modular trans]orma- 

tion 1" induced by ] is either elliptic or hyperbolic. 

The proof will be preceded by  several lemmas. In  these all Riemann surfaces X are 

assumed to have U as the universal covering surface, and all geometric concepts refer to 

the Poincard metric. We recall, tha t  every free homotopy class of closed curves on X 

contains a unique geodesic, tha t  a geodesic freely homotopic to a Jordan curve is itself 

a Jordan curve, and tha t  no closed geodesic on X can be deformed into a point m a puncture 

on X. 

LEM~A 1 (Wolpert [22]). Let / be a quasicon/ormal mapping o /a  Riemann sur/ace X 

onto a Riemann sur]ace ](X) and C a closed geodesic on X ol length 1. Then 1(C) is ]reely homo- 

topic to a closed geodesic on/(X)  o/length l' with 

l' < K ( l ) l .  (5.1) 

This sharp inequality replaces a cruder one, based on Mori's theorem [17], which I 

used originally. Wolpert 's  elegant proof is reproduced for the convenience of tl~e reader. 

Represent X and / (X)  as X = U/G, I(X) = U/G', G and G' torsion free Fuchsian groups, 

and lift the mapping 1: X ~ / ( X )  to a mapping F: U ~  U. Then FGF -1 =G' and K(F) =K(/) .  

Let  g E G be a hyperbolic element whose axis projects onto C under the natural  map- 

6 -  782901 Acta mathernatica 141. Impr im6  le 1 Septembre  1978 
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ping U-+ U/G =X.  Then the axis of g'= Fogo F -1 projects onto the geodesic freely homo- 

topic to/(C).  Let G 6 and G~ be the cyclic groups generated by  g and g', respectively. Then 

FGoF -~= G~ and F induces a mapping /0 of the annulus U/G o onto the annulus U/G~, 

with K(/o)=K(F)=K(/) .  Hence the module of the annulus U/G o is at  most K(/) times the 

module of U/Go. But the module of U/G o is 2r~/l, tha t  of U/G~ is 2~2/I '. Inequali ty (5.1) 

follows. 

L~MMA 2. There is a number ~o > 0 such that any two distinct geodesic Jordan curves o/ 

length not exceeding 80, on some Riemann surface X,  are dis/oint. 

This is a known result; we include a proof for the sake of completeness. 

Let  C be a geodesic Jordan curve on X of length l. A collar D about C of width 2b 

is a domain homeomorphic to an annulus, with C c  D c  X, bounded by  two Jordan curves 

C' and C", freely homotopic to C, such that  every point on C' or on C" has distance b from 

C. If  C 1 is a geodesic Jordan curve intersecting C, then C 1 must  contain an arc in D 

joining a point on C' to a point on C". Hence the length ll of C 1 satisfies l~ > 2b. 

According to the Keen-Halpern collar lemma, in the sharp form due to Matelski [16], 

there always is a collar about  C of width 2b, with 

sinh b = [2 sinh (l/2)] -~. 

Let  ~0 >0  be so small tha t  2b >~0 for l <80. This 80 has the required property. 

L~MMA 3. Let X be a Riemann sur/ace o/type (p, m), and assume that there is a geodesic 

Jordan curve C on X of length I. Then every irreducible sell-mapping ] of X satis/ies 

K(/) >i (80/l) 1/<~-3+~ (5.2) 

where 8 o is the number/rom Lemma 2. 

Proo]. Assume that  (5.2) does not hold, so that  

K (/)sP-8+m l <80. (5.3) 

Set CI=C and let C~.1 be the geodesic Jordan curve freely homotopic to f(C1). By (5.3) 

and Lemma 1, the lengths of the curves C 1 ... .  , Cs~_~+ ~ do not exceed 80. Not all of them 

can be disjoint, and we conclude, by  Lemma 2, tha t  there is an r > 0  such tha t  the curves 

C1, C2 ..... Cr are disjoint and Cr+l = C1. 

By construction ](Cj) is freely homotopic to Cj+ 1, j =  1 ..... r - l ,  and ](Cr) is freely 

homotopic to C1. Therefore (cf. Epstein [11]) there is a mapping ]' isotopic to ] such tha t  
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/'(Cj)=Cj+ 1, ] = 1  ..... r - I , / ' ( C , ) = C  r This l' is reduced by {C 1, ..., Cr}, so that  / is re- 

ducible. 

LEMMA 4. Let {[o'j]}~ T(m, p) be a sequence such that the lengths of all geodesic Jordan 

curves on the Riemann surfaces aj(S) have a positive lower bound. Then there is a subsequence 

{[(rsn]} and a sequence {Zn}c Mod (p, m) such that the sequence {Zn([•])} converges. 

Proof. A theorem, going back to Frieke, asserts that  Mod (p, m) acts properly discon- 

tinuously on T(T, m), so that  the quotient R(p, m) = T(p, m)/Mod (p, m) is a Hausdorff 

space (see, for instance, [4], p. 100, for a proof). The Riemann space R(p, m) is the space of 

conformal equivalence classes of Riemann surfaces X of genus p with m punctures, it can 

be identified with the space of conjugacy classes of torsion free Fuchsian groups F, acting 

on U, which represent such surfaces (such F are all of the first kind). This latter space 

has a natural topology, equivalent to the quotient topology in R(p, m), and the set of 

groups F for which the absolute values of the traces of hyperbolic elements are bounded 

away from 2 is compact. This is a theorem by Mumford [18] as extended in [5] (see Mate]ski 

[16] for an extension to groups of the second kind). I t  follows that  the set of points in 

R(p, m) corresponding to all Riemann surfaces on which the lengths of all geodesic Jordan 

curves are not less than an e > 0 is compact. This implies the desired statement. 

Proof o/Theorem 4. Let (p, m) be the type of S. We recall the notation, introduced in 

w 
a(/*) = inf ([a], f*([a])), [a] e T(p, m), 

and consider a sequence {[as]}~ T(p, m) with 

lim <[as],/*[as] ) = a(]*). (5.4) 
1--~oo 

Let hj be the extremal mapping in the isotopy class of aso/oa71. Then 

lira �89 log K(hj) = a(/*) (5.5) 
t--~o 

and, on the other hand, 
h i  = n ie lsen;  ~ 

where f~ is isotopic to f. By (5.4), there is a number A ~ 1 such that  

K(hj) = K~j(/j) ~< A, ] = 1, 2 . . . . .  (5.6) 

Since / is irreducible, by hypothesis, so a r e / j  and h r By (5.6) and Lemma 3, we conclude 

that  no geodesic Jordan curve on any Riemann surface qj(S) has a length less than l o = 

OoAa-av -m. 
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By Lemma 4 we may assume, ~electing if need be a subsequence, that  there is a 

sequence (ZJ} of elements of Mod (p, m) such that  the sequence {~}, where ~j =Zj([aj]), 

converges. We set 

= lim %.. (5.7) 
j->c~ 

Since each Z~ is an isometry, 

so that  by (5.1) 

(*j ,  Zjo/*ozf~(*j)> = (['~j], I*(Dj]))  

lira (vj, Zjol*ozj-l(~j)) = a(/*). (5.8) 
)-->oo 

Together with (5.7) this implies that  we may assume, selecting if need be a subsequence, 

tha t  the sequence {gjo]*ox71 (Tj)} converges to some t E T(p, m). Since each Z~o/*og/1 is an 

isometry, we conclude that  

lim Zjo/*oZ/l(~) = t. 
J --).oo 

This implies that,  for any e > 0, 

if j and i are large enough. Since Mod (1o, m) acts properly discontinuously we may assume, 

selecting if need be a subsequence, that  gjo/*og~ I is constant for large enough ], say for 

J~>]0- Setting ZJ. =Z we now conclude from (5.8) that  (v, Z o / * o z - i ( $ ) >  =a(/*) and therefore 

<[a], l*([a])) = a(l*) 

where [a] =~--I(T). Hence/*  is hyperbolic or elliptic. 

w 6. Absolutely extremal mappings 

In this section we characterize absolutely extremal self-mappings of a Riemann surface. 

We recall (cf. w 1) that  these are quasiconformal mappings whose dilatation cannot be 

decreased by varying the mapping within its homotopy class and by  varying the conformal 

structure of the underlying surface. 

We begin with an elementary result. 

T~EOREM 5. I / g E M o d  (p, m) is el infinite order, then a TET(p, m) is z-minimal q 

and only i/ X leaves a line through ~ invariant. 
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Proo]. Assume that  ~ is z-minimal. Since Z is of infinite order, neither X nor Z ~ are 

elliptic, so that  v, Z(~) and Z2(Z) are distinct points. Let  v 1 be the mid-point of the segment 

('r, Z('c)), "r 2 tha t  of the segment (Z('r), Z~('r)). Then 

(T, 7:1) = (~:1, Z(~)) = �89 Z(v)) = �89 (6.1) 

where a(z ) is the infimum of all distances (~', Z(~')). Similarly 

(Z(T), T2) = (T2, Z2(T)) = I(Z('E), Z2(T)) 

and, since Z is an isometry, 

and 

By the triangle inequality, 

and by the definition of a(z ) 

Z('q) = ~2. 

(~1' r2)~<a(z), 

(vl, T2) >1 a(x). 

Hence Z(V) is the midpoint of the segment (vl, v2). Therefore vl, g(~) and r2 lie on a line l. 

This line also contains ~ and Z2(~) and is therefore invariant under Z. 

Suppose next  that  a line 1 through ~ is invariant under Z. This line contains the points 

Z(~), X2(v), ..., gn(v). Now let ~' be any point in T(p,  m). Using the fact that  Z is an isometry, 

and the triangle inequality, we have 

n(T, Z(T)) = (T, Z(T)) + (Z(T), Z2(T)) -~- ... + (Xn-l(T), Zn(T)) 

= (~, z"(z)) < (z, ~') + (~', z"(~')) + (z"(~'), z"Cr)) 

< (r, ~') + (~', z(v'))  + (z(v'), z~(r')) + . . .  + (z"-l(~'), Zn(r')) + (Z"(r'), Z"(v)) 
= 2(~, ~:') +n(~ ' ,  Z(r')). 

Since n is arbitrary, (~, Z(~)) ~< (z', Z(v')) and since v' is arbitrary, v is z-minimal. 

COROLLARY 1 TO T H ~ O R ~ I  5. A non-periodic element o/1YIod (p, m) is hyperbolic i/ 

and only i / i t  leaves a line invariant. 

C o R 0 L L A R Y 2 T 0 T H ~ 0 R E M 5. 1 / / i s  a sol]-mapping o /a  sur]ace S and/* is hyperbolic, 

then ] has infinitely many essentially distinct ]-minimal con/ormal structures. 

Proo/. I f  a is/-minimal, in] lies on a line l invariant under/*. Every  al such that  in1] e l 

is/-minimal, and a eonformal mapping a(S) ~(r1(S ) exists only ff there is a modular transfor- 

mation Z with X([a])=[aa]. 
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Remarks. I t  follows from Thurston's  theory tha t  a modular transformation has at  

most one invariant  line. I t  would be desirable to prove this using quasiconformal mappings. 

Earle [10] showed that  the function <~,/*(~)> is differentiable at  all points of T(p, m) at  

which it does not vanish, and that  every critical point of this function is an absolute 

maximum point. 

T~]~OR~M 6. Let X be a Riemann sur/ace o/ /inite type (p, m), with 2 p - 2 + m > O ,  

compact except/or m punctures. A mapping w: X ~ X  is absolutely extremal i /and only i / i t  

is either con/ormal or a Teichmiiller mapping satis/ying the/ollowing two equivalent condi- 

tions: 

(a) the mapping w 2 =wow is also a Teichmiiller mapping and 

K(w 2) = K(w) 2, (6.1) 

(b) the initial and terminal quadratic di//erential o /w  coincide. 

Proo/. We may  assume tha t  w is not conformal and is a Teichmfiller mapping. To 

conform to our previous notations we set X = a ( S ) ,  w=ao/oq.  Since w is a Teichmiiller 

mapping, /*  is of infinite order, and w is absolutely extremal if and only if a is / -minimal ,  

tha t  is, if and only if [a] is/*-minimal, that  is, if and only if the line through [a] and/*([a]) = 

[ao/] coincides with the line through/*([(r]) and (/*)2 ([0])= [ao/2], tha t  is, if and only if 

<[(~], [(~o/]> + <[ao/ ] ,  [(~o]2]> = <[o'], [ao/2]>. (6.2) 

Since w is a Teichmfiller mapping, hence extremal, the extremal mapping in the isotopy 

classes of a o / o q  -1 and of ((~o/2)o(ao/) -1 is w, and condition (6.2) becomes 2<[~], [~o/]> = 

<[~], [~op]> or 

K(w) 2 = K(h), h the Teichmiiller mapping isotopic to w 2. (6.3) 

Assume now tha t  w is absolutely extremal, so tha t  (6.3) holds. Since K(w 2) <~K(w) 2 

and K(h)<~K(w 2) for all mappings w: X ~ X ,  (6.3) implies tha t  K ( h ) = K ( w  ~) so that,  by  

Teiehmiiller's theorem, w e = h  and (a) holds. 

On the other hand, if (a) holds, h =w 2 and (6.1) implies (6.3), so tha t  w is absolutely 

extremal. 

Next  we represent X as U/G, G Fuchsian and torsion free, and, using the canonical 

mapping 7i: U-+U/G=X, we lift w to a mapping W: U ~ U .  Then w2=wow lifts to W~= 

Wo W. Since w is a Teichmfiller mapping, W is a formal Teiehmfiller mapping; it satisfies 

the Beltrami equation W~ (z) =ju(z) W~(z) with the Beltrami coefficient 

k I~(z)[ (6.4) 
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where 
l + k  
1 - k -  K ( W )  =K(w) 

and q0(z), z E U, is holomorphie, and satisfies 

~f(g(z))g'(z)~=~(z), geG, 

f f u/alcf(z)[ dxdy = 1. (6.5) 

Under ~ the quadratic differential q~(z)dz 2 projects onto the initial quadratic differential 

ofw.  

The inverse mapping W -1 is, according to w 2, also a formal Teichmiiller mapping, 

with Beltrami coefficient 

~(z) = -- k I~(z)[ (6.6) 
v(z) 

where ~v(z), z E U, is a holomorphic function. Since W -1 is a lift of w -1, ~f(z)dz* projects onto 

the terminal differential ~F of w, so tha t  

and 

~p(g(z))g'(z)2=~v(z), 9ea, 

f fv/a Iv2(z) I gY = dx 1. (6.7) 

Computing the Beltrami coefficients of both sides of the identity W-l(W(z))=z we 

obtain 
~(z) + ~ ( z )  = 0 (6.s) 

where 

~(z) = e(w(z))  W~(z)/W~(z). 

On the other hand, the Beltrami coefficient ~(z) of W~= W(W(z)) is easily computed to be 

v(z) ft(z) +/x(z) (6.9) 
1 +fi(z)/~(z) 

where 

Since [ft(z)[ = [#(z)l = k  a.e., 

ft(z) = g( W(z)) W~(z)/W~(z). 

2k 2 + 2 Re/2(z) #(z) 
I~(z) l~= - -  1 + k4+ 2 Re/t(z)/x(z) 
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Assume tha t  (a) holds. Then w s is a Teichmiiller mapping,  W s a formal  Teiehmfiller 

mapping,  and  [v(z)[ is cons tant  a.e. Condition (6.1) becomes 

1 + (1 + k] s 

\i-:-%/ 

or Re/2fi = k s. Since ]/21 = ]#l = k, this implies that/2(z)la(z) = k s or 

/2(z) = #(z). (6.10) 

Together  with (6.8) this yields ~(z)+/2(z)=0,  t h a t  is, ~ ( z ) + # ( z ) = 0 ,  and,  b y  (6.4) and (6.6), 

~(z) v;(z) ' 

so t h a t  the  meromorphic  funct ion ~v(z)/y~(z) is posit ive a.e. and  thus  a posit ive constant .  

B y  (6.5) and  (6.7) this constant  is 1, hence ~ =~0 and (I)=~F. Condition (b) holds. 

Now we assume (b). Then ~0 = %  hence ~ + / t  = 0 and ~ +12 = 0, and  b y  (6.8) we see t h a t  

/2 =/~. Subst i tu t ion into (6.9) yields 

1 + k S ~(z) 

Hence W 2 is a formal  TeichmfiUer mapp ing  with di la ta t ion ( l + k ) 2 / ( 1 - k ) 2 = K ( w )  2 and 

initial quadrat ic  differential cp(z)dz s, and w 2 a Teiehmfiller mapp ing  with  K(w s) = K ( w )  s. 

Condition (a) holds. 

w 7. Reducible mappings 

I n  this section we shall establish 

T H E O g ] ~  7. I /  / is a reducible sel/-mapping o/a  sur/ace S, not isotopic to aperiodic 

mapping, then the modular trans/ormation /* induced by / is either parabolic or pseudohyper- 

bolic. 

We note  the  

COROLLARY TO THEOREM 7, Let/:  S-+S be given. An/-minimal eon/ormal structure 

exists on S i /and  only i/ ] is either isotopic to a periodic mapping or irreducible. 

Proo/o/the Corollary. Compare  Proposi t ion 2, Theorem 1, Theorem 4 and  Theorem 7. 

We  shall need some technical  l~mmas. 
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L e t / :  S ~ S  be reduced by  the r curves (C1, ..., C~}. We shall say tha t  / is completely 

reduced by  (C~ ... . .  C~} if, for every component  S 1 of S -  (C~ U ... U C~}, and  for the smallest 

positive integer n with/~(S1) = Si, the m a p / ~ ] S  i is irreducible. 

LEMMA 5. A reducible mapping/:  S ~ S  is isotopic to a completely reduced mapping. 

Proo/. Let  S be of type  (p, m). A set of Jo rdan  curves {Ci, ..., Cr} can be admissible 

only if r < ~ 3 p - 3 + m .  Hence, if / is reducible, there are r, O < r < 3 p - 2 + m ,  curves {C i . . . . .  

C~} such tha t  there is a m a p p i n g / '  isotopic to  / which is reduced by  {C 1, ..., C~}, and  there 

is no mapping isotopic to / which is reduced by  r '  > r curves. We claim t h a t / '  is completely 

reduced by  (C i . . . . .  C~}. 

Indeed,  assume tha t  S i is a component  of S -  {C i (J ... 0 C~}, t ha t  the  components  Si, 

S~=/ ' (S i )  . . . .  , Sn.=/'(S~_i) are all distinct, t ha t  ]'(S~)=Si, and tha t  (/ ')~]S i is reducible. 

Then there are q > 0  curves Fi, ..., Fq on S 1 and a mapping h: SI---~S D isotopic to the identity,  

such t h a t  ho (/')~ is reduced by  {F i .... , rq}. We m a y  choose h so tha t  it is the restriction of 

a mapping  H: S-+ S with H I S - S i = id. Se t / "  = H o/ ' .  T h e n / "  is isotopic to / and is reduced 

by  the r+nq curves C 1 ..... C ,  1~1, ..., Fq, /'(I~1) .. . . .  /'(I~q), ..., (/')n-l(I~q). This contradicts  

the  definition of r. 

L v.MMA 6. Let X be a Riemann sur/ace o//inite type, Ci . . . . .  Cr disjoint geodesic Jordan 

curves on X ,  Y a component o/ X - {C i (J ... (J Cr}, G a torsion/ree Fuchsian group such that 

U/G = X .  Let A be a component o/ the preimage o/ Y under the canonical mapping U-> U/G = 

X,  and let G 1 be the stabilizer o/ A in G. Then U/G i is the Nielsen extension o/ Y. 

The proof is an easy modification of the  proof of Lemma 3 in [7]. 

L E M M i  7. Let X 1 ..... X N be Riemann sur/aces, g~: X~---~ Xj+ i (where XN+i= XI) map- 

pings, p1 .... , P~ distinct points on X1, and set p~+l =gj(p~), i = 1 ..... k, j = 1 .... , N -  1. As- 

sume that gN(P N) =P~(~) where 7e is a permutation o/(1 . . . . .  k). 

Assume also that either 

(I) all gj are con/ormal or, 

(II)  all gj are /ormal Teichmiiller mappings with the same dilatation, and the initial 

quadratic di//erential o/gj  is the terminal quadratic di/[erential o/gJ-i (o/g~ i / ]  = 1). 

Let ~ > 0 be a given number. 

Then there are (]or ~ = 1, ..., N,  i = 1 .. . . .  k) quasicon]ormal mappings g'j, isotopic to gj 

and satis/ying 

g(g;) < K(gi) + ~, (7.1) 

, j 
g~ (P~) = gj(P~), (7.2) 
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and, on each Xj, k disjoint Jordan arcs a~ emanating/rom the points P~, with g~(~)=a~+l, 

g, (s = ~(~),1 and local parameters z~ defined near and vanishing at P~, such that, in terms o/ 

z~ the arc a~ is given by 0~<Re z~<l, Im z~=0, and the mapping g~[~ is given by Re z~+~= 

Re ~, or ~ e  ~ = R e  ~ i /  ] = N .  

Proo/. Without loss of generality we assume that  ~ is a cyclic permutation, for other- 

wise we could have considered separately each cycIe entering into ~. Let  7 =gN~ ~ "'" ~ 

We may assume that  

~(p1) =pl+i  ' i =  1, ..., k -  1; 7 (P~)=P]  (7.3) 

so that  yk(p~) =p~, i = 1 .. . .  , k. 

Suppose first that  (I) holds. Then 7 : X I ~ X 1  is conformal, so is 7k, and hence there is 

an integer a >0  with 7 ~ =id. I t  follows that  there is a local parameter ~ defined in a domain 

A c X  1 containing the point p1, such that  yk(A)=A, the k domains A, 7(A) .... ,7k-l(A) arc 

disjoint, ~(P])=0, ~(A) contains the disc I~1 <2, and in A the mapping 7 k is represented 

by the rotation ~-> 0~ where 0 ~= 1. 

Let  0 < 8 < 1  and define a quasiconformal mapping h: X~-~X 1 such that  h is the 

identity outside the disc I~]< 1, coincides with the rotation $~->0-~ in the disc I$1 <8, 

and is affine in the variables log I~1 and arg $ in the annulus 8 < I~] < 1. If 8 is chosen 

small enough, 

K(h) < 1 +e. 

Also, h o ~  coincides with the identity along the arc 0 < Re $ < 8, Im ~ = 0. 
t ! Now we define the mappings gl ..... g~ by 

the parameter z~ by 

! t gj =gj, j = l  ..... IV--l; gN=hOg~, (7.4) 

z~=$/8 (7.5) 

and determine the arcs ~ and the parameters zi, ] = 1  ..... N, i = 1  ..... k, (i, j):~(1, 1), by 

the requirements of the lemma. 

Assume next that  (II) holds. We denote the common dilatation of the mappings gj 

by A. Let  (I)j denote the initial quadratic differential of the mapping gs- By hypothesis (II) 

and by (7.3) all (I)j have at all points P~ the same order r ~> - 1 .  Let Z~ denote a natural 

parameter belonging to (I)~ at P~. We choose a domain A c X 1 containing P~ and so small 

that  ~ =Z~ is defined in A U 7k(A), and all k domains 7(A), 7~(A) ..... ~- I (A)  and 7k(A) U A 

are disjoint. The mapping 7 k is easily seen to be a formal TeichmiiUer mapping with dilata- 

tion A m and having (I) 1 as its initial and terminal quadratic differential. 



AN EXTREMAL PROBLEM FOR QUASICONFORMAL MAPPINGS 91 

Set ~ = Z  1 and let the numbers 6 and 6' be such that  0 <6 <6'  and the disc l~l <'~ANk6' 

is contained in A. Along the segment 0 ~<Re ~ <~6', Im ~ =0,  the mapping 7k coincides with 

the similarity ~-->OANk~ where Or+~=l. We define a quasiconformal mapping h: X I ~ X  1 

such that  h coincides with the identity outside the disc l~] <6', coincides with the similarity 

~t--->O-1A-Nk~ in the disc [~[ <6, and is affine in the variables log [~[ and arg ~ in the an- 

nulus 6 < [~l <6'. If the ratio 6/6' is small enough, K(h) < 1 + (e/A), so that  

K(hog~.) < A +e. 

Also, he?  ~ coincides with the identity along the are 0 < R e  ~<6, Im ~=0.  

Next we define the mappings g'l .... , g~ by (7.4), the parameter z~ by (7.5) and proceed 

as before. Of course, we will have z~ = c~Z~ where the c~ are constants with (c~y > 0. 

Proo/ o/ Theorem 7. In  view of Lemma 5 we may assume that  / is completely reduced 

by r >~ 1 Jordan curves C1 ..... C,. The components of S - {Cx U ... U C~} can be denoted by 

S~, k = 1, ..., q, j = 1 . . . . .  2V k in such a way that  

where we agree, once and for all, that  

We observe that  the type (p~, m~j) of Ski satisfies 2 p ~ - 2  +mkj > 0. Since/Nk(skl ) =S~1 

and fvk]Sk~ is irreducible, there is on Ski an (fv~]sk~)-minimal conformal structure of the 

first kind ak and a mapping _Fk: Skl-~Skl, isotopic to /Nk, such that  ffko_F~off~ 1 i s  absolutely 

extremal. We set 
A~ = Koz(_Fk) lINk = K(a~o _Fko(~ l )  i/Nk (7.6) 

and assume, without loss of generahty, that  

A~ >/A a >~ ... >~ A a. (7.7) 

Theorem 6 will follow from the following two assertions: 

(A) I / a  is any con/ormal structure on S and [' is isotopic to [, then 

(B) 

K~(/') > A1. (7.8) 

_For every e > 0 there is a con/ormal structure a on S and a n / '  isotopic to ], such that 

Ko.(]' ) < A 1 +8. (7.9) 

(Note that  ]* is parabohc if A 1 = 1, pseudohyperbohe if A 1 > 1.) 
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Proo/el (A). Since / is not  isotopic to a periodic mapping,  (7.8) cer ta inly holds if A 1 = 1. 

We  assume now tha t  A 1 > 1. 

Wi thou t  loss of general i ty  we m a y  assume t h a t  

each (~(Cj) is a geodesic on (r(S). (7.10) 

Indeed,  for each j = 1 ..... r there is a geodesic J o r d a n  curve Fj on a(S) freely homo- 

topic to a(Cj). The r J o r d a n  curves Oj = a - l ( F j )  are disjoint and  each Cr is freely homotopic  

to Cr There is a mapp ing  h: S ~ S ,  isotopic to the ident i ty,  with h(Cr162 j = l  . . . . .  r. The  

mapp ing  f = h o / o h  -1 is isotopic to / and  is complete ly  reduced b y  {C1 . . . . .  Cr}. E v e r y  

component  of S -  (r U . ,  U C,} is of the form ~kj = h(Skr and [(~kj) = &.  r Since/Nk I ~k~ = 

ho]Nkoh-ll~kl, we conclude t ha t  we could have  ar r ived to the same numbers  (7.7) b y  

s tar t ing  with  [ and  {C 1 . . . .  , Cr). 

Now we assume (7.10) and  represent  the  R iemann  surface a(S) as U/G, G a torsion- 

free Fuchsian  group. Let  A be a component  of the  preimage of (r(Sll) under  the canonical 

mapp ing  ~r: U---> U/G =a(S)  and  let G 1 be the stabihzer of A in G. The mapp ing  ff ' :  S ~ S  can 

be lifted, via ~, to a mapp ing  W: U-+ U with W(A) = A .  Clearly WGW -1 =G, WG 1W -I =G1. 

Let  / '  be isotopic t o / .  Then  (/,)N, is isotopic to fv, and  hence can be lifted, via 7~, to  

a mapp ing  W': U-+ U such t h a t  W'ogo(W') -1= Wogo W -1 for all gEG. I t  follows tha t  W' 

is the  lift of a mapp ing  FI:  Z - > Z  where ~ = U/G 1, t h a t  is, b y  L e m m a  6, the  Nielsen exten- 

sion of A/G 1 =(r(Sll  ). 

Bu t  W is also a lift of a mapp ing  w: Z ~ Z  with the  proper ty:  win(S11)= 

a o ff 'o a-l[ a(Sll ). We conclude t h a t  F~ can be wri t ten  as F'I = a ' o  w'o  (a') -1 where the  map-  

ping a ' :  S l l -+Z  is a conformal  s t ructure  on $11 and  w' is isotopic to/n ' [S11.  Since A 1 > 0, 

the  mapp ing  /N,[ $11 is not  isotopic to a periodic one and  nei ther  is F'I. Since the  R iemarm 

surface Z has boundary  curves, F~ cannot  be absolutely ex t remal  (cf. Theorem 2) so t ha t  

K(F'~)>K(F~)=A~ ~. But  K(F'~)=K(W')=K((/')N'), and the  inequah ty  K((/ ' )~)>A~ ~ 

imphes  (7.8). 

Proo] o] (B). Using the  conformal  s t ructures  al  ..... aq and  the  mappings  F 1 . . . . .  F a 

constructed above,  we define conformal  s t ructures  akj on S~j and  mappings  ~k;: Ski -+ Sk. J+l 

as follows. 

I n  all cases akl = (lk. 

I f  Nk = 1, t h e n / k l  = Fk" Note  t h a t  in this case [kl is isotopic t o / I  Ski, and aklo~o~Z~ is 

ei ther conformal  (if A ~ =  1) or a Teichmiiller mapp ing  of di la tat ion A k > l  whose initial 

and  terminal  quadrat ic  differentials coincide. 
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If Nz > 1, we set [~ = / [ S~ for ] = 1, ..., N ~ -  1 and 

/~= F~o/~-'~]S~.~. (7.]~) 

Then ~ is isotopic to [IS~. 

If A~=I ,  then we define the eonformal structures a~2, ..., a~.~ by the requirement 

that  the mappings a~.~+~o/~jo(r~ ~ be conformal for ]=1 ,  ..., N ~ - I .  I t  follows that  the 

mapping 

(TklOfk,Nk O(Tk-lNk = ((~klO FkO(~kl)O((~k2OfklO(~kl)-lo . . .  O(C;]c, Nk O/k, Nte_lO(~k-lk_l) -1 (7.12)  

is also conformal. 

If Ak> 1, then Fk is a Teichmfiller mapping of dilatation A~k whose initial quadratic 

differential dPkl, defined on Ski , is also its terminal differential. In this case we determine 

the conformal structures ak~ .... , ak.Nk and quadratic differentials q)k~ ..... dPk. Nk by re- 

quiring that  each mapping ak.j+lo]kjoa~j I be a Teichmfiller mapping of dilatation A~, 

with initial quadratic differential (I)kj and terminal quadratic differential qbk.j+i, ?'= 

1 ..... Nk--1. A simple calculation, utilizing natural parameters, Shows tha t  the mapping 

(7.12) is a Teichmfiller mapping of dilatation Ak, with initial and terminal quadratic 

differentials (I)k.Nk and dP~l, respectively. 

One verifies easily that  all conformal structures akt are of the first kind. We set 

X~=a~(S~) ,  X~.N~+i = X~. Let  us call those punctures on X~ which correspond to 

curves C~ inner punctures, and let us note that  to each of the r curves C~ there belong 

exactly two inner punctures. We also set 

~kj : O'k, J+lO fk:lO(Tkj 1" 

Applying to each of the q sequences of mappings g~l ..... gk.Nk Lemma 7 we obtain 

mappings g~j isotopic to gkj and satisfying 

-K(g'ki) < K(gkl) + ~ = Ak + e <~ A1 + e (7.13) 

and for each inner puncture P,  a Jordan arc ~p emanating from P and a local parameter 

$p=xp+iyp defined near and vanishing at P such that  the following conditions hold. 

The domain of definition of zp contains ~p, and in terms of zp the arc ~e is given by 

0~<xp~<l, yp=O. If P and Q are two inner punctures, then ~p and aQ intersect only if 

P=Q, and if gkj(P)=Q, then g'kj(P)=Q, g~j(ap)=~Q, and mapping g~s]a~ is given by 

xQ=xp. 

We denote by X~j the complement in Xkj of the ares ~e emanating from the inner 
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I t i �9 i ~T  r X I punctures  PEXkj, and we note  tha t  gks(X~j) : X k ,  j+l, ~'ltn .A-k. Nk_bl: kl" The two banks of 

each ap, P E Xks , form an ideal boundary  curve of X~j. 

Now we construct  a Riemann surface X 0 by  identifying, for each curve C z on S, the 

upper  bank  of one of the  two arcs ap belonging to C~ with the  lower bank of the other 

such arc aQ, and vice versa, taking care tha t  a point  with xe=t is identified with a point  

with xQ=t, 0 ~ t ~ l .  

There is a mapping go: Xo~Xo such tha t  golX'~j=g'ks for all k, j. The 2r segments 

ap give rise to r Jo rdan  curves A1 ..... A~ on X 0 such tha t  g0(As) =A~<j), ~ being a permuta-  

t ion of (1 .. . . .  r). Furthermore,  for every Aj, there is a local parameter  ~j defined in a 

domain containing A j, such tha t  ~j(Aj) is the unit  circle, and the mapping  g01Aj is given 

by  ~j = ~=(j) = e i~ 0 ~< 0 ~< 2~. Clearly, 

K(go) < A~ +e, (7.14) 

in view of (7.13). 

Let  R > 0 ,  and let Z denote the product  of the uni t  circle $ = e  ~~ 0 real, with the 

segment - R < t < R .  This is a Riemann surface of type  (0, 2) with two ideal boundary  

curves, on which t +iO is a (multiple-valued) holomorphic function. Let  XR denote tha t  

Riemann surface obtained by  cutt ing X 0 along each curve Aj and inserting into each cut 

a copy Zz of Z; the ideal boundary  curves of Z l are a t tached to the banks of each cut by  

identifying the  points S z : e  ~~ with the points ( + R ,  0). There is a mapping g~: XR~XR 

such tha t  gR]X'kj=g'kj, gR(Zi)=Z~(i), and  ga[Z~ respects the coordinates (t, 0). Clearly, 

ga being conformal on each Z j, 

K(ga) < Az + e. (7.15) 

Let  Fj  denote the Jo rdan  curve on Zj given by  t = 0, 0 ~< 0 ~< 2z. By  a Dehn twist 8j 

about  F s we shall mean the mapping  ~j: XR~Xn  such tha t  ~ j IXR- -Z j= id ,  and on Z~ 

the mapping (hi is given by  

(t, 0) for - R < t <  0 

(t,O)~-> (t,O+27~t/R) for 0 ~ < t < R .  

Note  tha t  K((~j) depends only on R and 

lira K((~j)= 1. {7.16) 
R,--~+oo 

Now our construct ion shows tha t  there is a mapping (r: S ~ X R  with ~(Cz)=Fz, 

l = 1 .. . . .  r, and such tha t  for the mapping  

/0  ~ O ' - - Io~R 00" 
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we have that  /~[Skj is isotopic to /I Ski for /c = 1 ... .  , q, ~" = 1,..., Nk. A simple topological 

argument shows tha t  there is a product of Dehn twists 

nl n~ ~=~1 o(~ o...o~ 7, 
such tha t  

/ '  = o ' - - l o ~ o g R o 0  " 

is isotopic to /. Now, by (7.15) and (7.16), 

K~(/') = K((~og) <. K((~) K(gR) < K((~l)n'+'"+n'K(gR) < A 1 + 

if R is large enough. Thus (7.8) holds. 

Re~narIc. The collection of conformal structures (~kj and mappings fkj, /c=l  ..... q, 

] = 1  ..... Nk, constructed during the proof, is the generalized solution of our extremal 

problem alluded to in w 1. This will become clearer from a reinterpretation of our results 

in the next  section. 

w 8. Restatement of the results 

I t  is instructive to restate the results obtained above using the concept of a l%iemann 

surface with nodes. 

A Riemann sur/ace with nodes X is a connected one-dimensional complex space such 

tha t  every point P E X has a fundamental  system of neighborhoods each of which is 

isomorphic either to the disc Izl <1 in C or to the set ZlZ2-O, Izll <1,  ]z21 <1 in C2; 

in the second case P is called a node. Let N be the set of nodes of X. Every  component 

of X - N  is called a part of X; it is an ordinary (non-singular) Riemann surface. Note that  

we do not require N to be non-empty.  Hence a non-singular Riemann surface is a special 

case of a Riemann surface with nodes. 

We assume that  all Riemann surfaces with nodes X occurring below are of/ inite type 

and stable. This means that  X has finitely many  par~s, and each part  X 0 is of some finite 

type (P0, m0) with 2 p 0 - 2 + m 0 > 0 .  We call X o/ the first kind if no part  of X has ideal 

boundary curves. 

Let X and Y be Riemann surfaces with nodes. A topological bi ject ion/:  X-~ Y will 

be called orientation preserving if the restriction of / to every part  of X is. The dilatation 

K(/) of such a map is defined as the largest of the numbers K(/[Xo), where X 0 runs over 

all parts  of X. 

An orientation preserving topological biiection ]: X - > X  will be called absolutely 

extremal if, for every mapping /': X - ~ X  isotopic to /, for every orientation preserving 
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topological bijeetion a: X-+ Y onto another Riemann surface with nodes, and for every 

part X0 of X, the following condition is satisfied. Let  n be smallest positive integer with 

l'~(Xo)=Xo, and set ln(Xo)=Xj, j = l  . . . .  , n - 1 .  Then 

max (K(IIX~)< max K(aol'o~-ll~(Xj)). (8.1) 
O~<~n-1 O<~j<~n-1 

This condition implies, but  is not implied by, the inequality K(/)~<K(ao/'oo~-l). If X is 

nonsingular, however, the present definition coincides with the one given in w 1. 

T ~  E o ~ ~ ~ 8. Let X be a Riemann surlace with nodes. A topological orientation preserving 

bijection / ol X onto itsel/ is absolutely extremal i I and only i/, /or every part X o of X,  either 

l lXo and 111(X0) are conformal or l lXo and ]l](Xo) are Teichmi~ller mappings with the same 

dilatation and the terminal quadratic diHerential o I 11Xo coincides with the initial quadratic 

di/terential ~ t l/(Xo). 

This follows from Theorem 6 and from the proof of Theorem 7. 

THEO~E~ 9. Given a sell-mapping / of a surface S, there exists amapping f  isotopic to 

f, a continuous surjection a o] S onto a Riemann sur/ace a(S) with nodes and ol the ]irst 

kind and an absolutely extremal sell-mapping g o I a(S) such that 

(i) the inverse image under a o1 the set o/nodes o/a(S) is a set o/disjoint Jordan curves, 

and the restriction o] a to the complement o1 these curves is an orientation preserving homeo- 

morphism, 

(ii) we have that 

a o ] '  = goa, 

and 

(iii) i/ /" is any map isotopic to 1, a 1 any continuous surjection of S onto a Riemann 

sur/ace with nodes, having property (i), and such that 

(~ io /"  = gzoo'l  

/or some orientation preserving topological sell-mapping gl o/al(S),  then 

KCg) ~< K(gz). 

Furthermore, a(S) may be chosen as nonsingular i / / i s  isotopic to a periodic mapping, 

must be so chosen i/ / is irreducible, and must have at least one node if / is reducible and not 

isotopic to a periodic mapping. 
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The proof follows from Theorem 1, Theorem 4, Theorem 6 and the s tatement  and 

proof of Theorem 7. In  the case where / is reducible the map  a is obtained by  combining 

the structures aej used in tha t  proof. The details are left to the reader. 

w 9. Thurston's theorem 

In  order to state the theorem one needs the concept of a pseudo-Anosov di//eomorphism. 

For our purposes the following definition is convenient. A pseudo-Anosov diffeomorphism 

of a surface S of finite type is a mapping which can be written as a - l o g o a  where a is a 

mapping of S onto a Riemarm surface X, without boundary curves, and g: X - > X  is a 

Teichmiillor mapping whose initial and terminal quadratic differentials coincide. 

The equivalence of this definition with tha t  by  Thurston follows from the following 

observations. 

Let X be a compact Riemann surface of genus p and P1 ..... Pm distinct points on X. 

Let  (I) be an integrable meromorphic quadratic differential on X, whose only singularities 

are at  P1 ..... Pro; these singularities can be only simple poles. Then the horizontal and 

vertical trajectories of (I), tha t  is, the curves along which (I)>0 or (I)<0, are the leaves of 

two transversal foliations on X - ( P 1  ....  , Pro}, with only n-pronged singularities, n >2.  

These foliations are made into measured [oliations by using the metric ds = I eP]I/~ to 

measure the distance between leaves. A Teichmiiller mapping g: X ~ X  takes the two 

foliations into themselves, but it multiplies the distance between horizontal trajectories 

by  K 1/2 and tha t  between vertical ones by  K -1/2, where K=K(g)  is the dilatation. 

Conversely, if we are given two transversal measured foliations on a surface S, of 

type (p, m), satisfying certain conditions at  the boundary continua, there is a mapping 

a: S ~ X  onto a Riemann surface X of genus p, compact but for m punctures, which takes 

the leaves of the foliations into the horizontal and vertical trajectories of an in te~able  

holomorphic quadratic differential. 

THEOREM 10 (Thurston [21]). A sell.mapping o / a  SUE/ace which is not isotopic to a 

periodic one is either isotopic to a pseudo-Anosov di//eomorphism or is reducible, but not both. 

Proo[. Let [ be the map in question and ]* the induced modular transformation. Then 

[* is not elliptic, since it must  be of infinite order, hence it is either hyperbolic (if and 

only if [ is irreducible, see Theorem 4 and 7) or not. But  Proposition 2 and Theorem 6 

show tha t  [ is isotopic to a pseudo-Anosov diffeomorphism if and only i f /*  is hyperbolic. 
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