SPIRALS AND THE UNIVERSAL TEICHMÜLLER SPACE

BY
F. W. GEHRING $\left({ }^{1}\right)$
University of Michigan, Ann Arbor, Michigan, U.S.A.
Dedicated to Professor L. V. Ahlfors on his seventieth birthday

1. Introduction

Suppose that D is a simply connected domain of hyperbolic type in the extended complex plane $\overline{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$. Then the hyperbolic or noneuclidean metric ϱ_{D} in D is given by

$$
\varrho_{D}(z)=\left(1-|g(z)|^{2}\right)^{-1}\left|g^{\prime}(z)\right|,
$$

where g is any conformal mapping of D onto the unit disk $\{z:|z|<1\}$. For each function φ defined in D we introduce the norm

$$
\|\varphi\|_{D}=\sup _{z \in D}|\varphi(z)| \varrho_{D}(z)^{-2} .
$$

Next for each function f which is locally univalent and meromorphic in D we let S_{f} denote the Schwarzian derivative of f. At finite points of D which are not poles of f, S_{f} is given by

$$
\begin{equation*}
S_{f}=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2} \tag{1}
\end{equation*}
$$

and the definition is extended to ∞ and the poles of f by means of inversion.
Now let L denote the lower half plane, $L=\{z=x+i y: y<0\}$, and let $B_{2}=B_{2}(L, 1)$ denote the complex Banach space of functions φ analytic in L with the norm

$$
\|\varphi\|=\|\varphi\|_{L}=\sup _{z \in L} 4 y^{2}|\varphi(z)|<\infty .
$$

Next let S denote the family of functions $\varphi=S_{g}$ where g is conformal in L, and let $T=T(1)$ denote the subfamily of those $\varphi=S_{g}$ where g has a quasiconformal extension to $\overline{\mathbf{C}}$. Then
${ }^{(1)}$ This research was supported in part by a grant from the U.S. National Science Foundation, Grant MCS-77-02842.
$\|\varphi\| \leqslant 6$ for all $\varphi \in S$ by [11], and hence $T \subset S \subset B_{2}$. The set T is called the universal Teichmüller space. See [4], [5], [6], [7].

In a recent paper [8], the author established a result, which when combined with an extension theorem of Ahlfors [1], yields the following characterization of T.

Theorem 1. T is the interior of S.
Theorem 1 is closely related to the following interesting open problem raised by Bers in [4], [5], [6], [7].

Question. Is S the closure of T ?
The purpose of this paper is to answer this question in the negative by establishing the following result.

Theorem 2. There exists a simply connected domain D of hyperbolic type and a positive constant δ with the following property. If f is conformal in D and if $\left\|S_{f}\right\|_{D} \leqslant \delta$, then $f(D)$ is not a Jordan domain.

Corollary. There exists a φ in S which does not lie in the closure of T.
Proof of Corollary. Let D and δ be as in Theorem 2, and let g be any conformal mapping of L onto D. Then $\varphi=S_{g} \in S$. Choose $\psi \in S$ with $\|\psi-\varphi\| \leqslant \delta$. Then $\psi=S_{h}$, where h is conformal in L. Set $t=h \circ g^{-1}$. Then from the composition law

$$
S_{h}(z)=S_{f}(g(z)) g^{\prime}(z)^{2}+S_{g}(z)
$$

it follows that

$$
\left\|S_{f}\right\|_{D}=\left\|S_{h}-S_{g}\right\|_{L}=\|\psi-\varphi\| \leqslant \delta .
$$

Hence $h(L)=f(D)$ is not a Jordan domain, h does not have even a homeomorphic extension to \bar{L} and $\psi \notin T$. We conclude that φ is a point of S which does not lie in the closure of T.

The domain D in Theorem 2 can be described in a very explicit manner. Namely, $D=\overline{\mathbf{C}}-\gamma$, where γ is the are

$$
\gamma=\left\{z= \pm i e^{(-a+i) t}: t \in[0, \infty)\right\} \cup\{0\}
$$

and $a \in(0,1 / 8 \pi)$. Hence it is not difficult to derive an analytic expression for the conformal mapping g of L onto D, and $\varphi=S_{g}$ turns out to be a rational function.

The idea behind the proof of Theorem 2 is quite simple. For $a \in(0, \infty)$ let

$$
\alpha_{1}=\left\{z=e^{(-a+i) t}: t \in(0, \infty)\right\}, \quad \alpha_{2}=\left\{z:-z \in \alpha_{1}\right\} .
$$

Then α_{1} and α_{2} are logarithmic spirals in D which converge onto the point 0 from opposite sides of ∂D. Next suppose that f is conformal in D and fixes the points $1,-1, \infty$. As $\left\|S_{f}\right\|_{D}$ approaches $0, f$ converges to the identity mapping in D. Hence for $\left\|S_{f}\right\|_{D}$ small, f maps α_{1}, α_{2} onto a pair of disjoint open arcs $\alpha_{1}^{*}, \alpha_{2}^{*}$ which spiral onto $f_{1}(0), f_{2}(0)$, the points which $f(z)$ approaches as $z \rightarrow 0$ from the two sides of ∂D. This assertion follows from Lemmas 3, 5, 6 and 8.

Now the rate at which α_{1} and α_{2}, and hence α_{1}^{*} and α_{2}^{*}, spiral depends on a. If a is sufficiently small, then $\alpha_{1}^{*}, \alpha_{2}^{*}$ will spiral very slowly onto $f_{1}(0), f_{2}(0)$. Since $\alpha_{1}^{*}, \alpha_{2}^{*}$ are disjoint, the points $f_{1}(0), f_{2}(0)$ will either coincide or be separated by a distance greater than a positive constant d. This is a consequence of Lemma 1.

Finally if we make $\left\|S_{f}\right\|_{D}$ still smaller, we can arrange by Lemma 9 that $f_{1}(0), f_{2}(0)$ lie near 0 and hence within distance d of each other. Then $f_{1}(0)$ and $f_{2}(0)$ will coincide and $f(D)$ will not be a Jordan domain.

The complete proof for Theorem 2 is given in section 3. As indicated above, it depends on a number of results for a class of spirals. These are established in section 2.

2. Spirals

We derive here the results on spirals which will be needed in the proof of Theorem 2.
Definition. Suppose that α is an open arc in \mathbf{C}, that $z_{1}, z_{2} \in \mathbb{C}$ and that $b \in(1, \infty)$. We say that α is a spiral from z_{1} onto z_{2} if α has the representation

$$
\begin{equation*}
z=z(t)=\left(z_{1}-z_{2}\right) r(t) e^{i t}+z_{2}, \quad t \in(0, \infty) \tag{2}
\end{equation*}
$$

where $r(t)$ is positive and continuous with

$$
\begin{equation*}
\lim _{t \rightarrow 0} r(t)=1, \quad \lim _{t \rightarrow \infty} r(t)=0 . \tag{3}
\end{equation*}
$$

We say that α is a b-spiral if, in addition,

$$
\begin{equation*}
\left|z\left(t_{1}\right)-z_{2}\right| \leqslant b\left|z\left(t_{2}\right)-z_{2}\right| \tag{4}
\end{equation*}
$$

for all $t_{1}, t_{2} \in(0, \infty)$ with $\left|t_{1}-t_{2}\right| \leqslant 2 \pi$.
Example. Suppose that $a>0$ and that α is the analytic open arc

$$
z=e^{(-a+i) t}, \quad t \in(0, \infty)
$$

Then α is an $e^{2 \pi a}$-spiral from 1 onto 0 and

$$
\begin{equation*}
k(z)|z|=\left(a^{2}+1\right)^{-\frac{1}{2}}, \quad \frac{d k}{d s}(z)|z|^{2}=a\left(a^{2}+1\right)^{-1} \tag{5}
\end{equation*}
$$

for all $z \in \alpha$, where k denotes the curvature and s the arclength of α taken in the direction from 1 to 0 .

Proposition 1. If α is a spiral from z_{1} onto z_{2} with the representation (2), then

$$
\begin{equation*}
\left|z(t+2 \pi)-z_{2}\right|<\left|z(t)-z_{2}\right| \tag{6}
\end{equation*}
$$

for $t \in(0, \infty)$.

Proof. Let A denote the set of $t \in(0, \infty)$ for which (6) holds and let $B=(0, \infty)-A$. Since α is an open arc, B is the set of $t \in(0, \infty)$ for which the inequality in (6) is reversed. Hence A and B are both open. If $B \neq \varnothing$, then $B=(0 . \infty)$ and

$$
\left|z(2 n \pi)-z_{2}\right| \geqslant\left|z(2 \pi)-z_{2}\right|>0
$$

for all integers $n \geqslant 1$ contradicting (3). Thus $A=(0, \infty)$.
Proposition 2. If α is a b-spiral from z_{1} onto z_{2} and if f is a conformal similarity mapping, then $f(\alpha)$ is a b-spiral from $f\left(z_{1}\right)$ onto $f\left(z_{2}\right)$.

Proof. This is an immediate consequence of the above definition.
The proof of Theorem 2 is based on a simple geometric fact. Namely that when $b \in(1,2)$, the two points, onto which a pair of disjoint b-spirals converge, must either coincide or be separated by a distance greater than $\frac{1}{2} b^{-2}$ times the diameter of the smaller spiral. This observation is an immediate consequence of the following result.

Lemma 1. Suppose that α is a b-spiral from z_{1} onto z_{2}, that β is a b-spiral from w_{1} onto w_{2} and that $\alpha \cap \beta=\varnothing$. If $b \in(1,2)$, then either $z_{2}=w_{2}$ or

$$
\left|z_{2}-w_{2}\right|>\frac{1}{b} \min \left(\left|z_{1}-z_{2}\right|,\left|w_{1}-w_{2}\right|\right)
$$

Proof. Suppose otherwise. Then

$$
\begin{equation*}
0<\left|z_{2}-w_{2}\right| \leqslant \frac{1}{b} \min \left(\left|z_{1}-z_{2}\right|,\left|w_{1}-w_{2}\right|\right) \tag{7}
\end{equation*}
$$

If α has the representation (2), then $\arg \left(z\left(t_{0}\right)-z_{2}\right)=\arg \left(w_{2}-z_{2}\right)$ for some $t_{0} \in(0,2 \pi]$, and we obtain

$$
\left|z\left(t_{0}\right)-z_{2}\right| \geqslant \frac{1}{b} \lim _{t \rightarrow 0}\left|z(t)-z_{2}\right|=\frac{1}{b}\left|z_{1}-z_{2}\right| \geqslant\left|w_{2}-z_{2}\right|
$$

from (3), (4) and (7). For each integer $m \geqslant 0$ let $t_{1}=t_{0}+2 m \pi$. Then $\left|z\left(t_{1}\right)-z_{2}\right|$ decreases to 0 as $m \rightarrow \infty$, and we can fix m so that

$$
\left\{\begin{array}{l}
\arg \left(z\left(t_{1}\right)-z_{2}\right)=\arg \left(w_{2}-z_{2}\right)=\arg \left(z\left(t_{1}+2 \pi\right)-z_{2}\right), \tag{8}\\
\left|z\left(t_{1}\right)-z_{2}\right| \geqslant\left|w_{2}-z_{2}\right|>\left|z\left(t_{1}+2 \pi\right)-z_{2}\right|
\end{array}\right.
$$

Similarly if β has the representation $w=w(u), u \in(0, \infty)$, then we can choose $u_{1} \in(0, \infty)$ so that

$$
\left\{\begin{array}{l}
\arg \left(w\left(u_{1}\right)-w_{2}\right)=\arg \left(z_{2}-w_{2}\right)=\arg \left(w\left(u_{1}+2 \pi\right)-w_{2}\right) \tag{9}\\
\left|w\left(u_{1}\right)-w_{2}\right| \geqslant\left|z_{2}-w_{2}\right|>\left|w\left(u_{1}+2 \pi\right)-w_{2}\right|
\end{array}\right.
$$

Now let λ denote the line through z_{2} and w_{2} directed from z_{2} to w_{2}. Then (8) and (9) imply that $z\left(t_{1}\right), z\left(t_{1}+2 \pi\right), w\left(u_{1}\right), w\left(u_{1}+2 \pi\right)$ lie on λ, that $w\left(u_{1}\right)$ precedes or coincides with z_{2}, that $z\left(t_{1}\right)$ coincides with or follows w_{2}, and that $z\left(t_{1}+2 \pi\right)$ and $w\left(u_{1}+2 \pi\right)$ lie between z_{2} and w_{2}. We claim that

$$
\begin{equation*}
\left|z\left(t_{1}+2 \pi\right)-z_{2}\right| \leqslant\left|w\left(u_{1}+2 \pi\right)-z_{2}\right| \tag{10}
\end{equation*}
$$

To see this set

$$
\begin{aligned}
& A=\left\{z=s\left(z(t)-z_{2}\right)+z_{2}: s \in(0,1), t \in\left(t_{1}+\pi, t_{1}+3 \pi\right)\right\}, \\
& B=\left\{z=s\left(z(t)-z_{2}\right)+z_{2}: s \in(1, \infty), t \in\left(t_{1}+\pi, t_{1}+3 \pi\right)\right\}, \\
& \alpha_{1}=\left\{z=z(t): t \in\left(t_{1}+\pi, t_{1}+3 \pi\right)\right\} \subset \alpha, \\
& \beta_{1}=\left\{z=w(u): u \in\left(u_{1}+2 \pi, \infty\right)\right\} \subset \beta, \\
& \lambda_{1}=\left\{z=s\left(z\left(t_{1}+\pi\right)-z_{2}\right)+z_{2}: s \in[0, \infty)\right\} \subset \lambda .
\end{aligned}
$$

Then A and B are open and disjoint, β_{1} joins $w\left(u_{1}+2 \pi\right)$ to $w_{2} \in B$ in \mathbf{C}, and

$$
\mathbf{C}=A \cup B \cup \alpha_{1} \cup \lambda_{1} .
$$

From Proposition 1 it follows that

$$
\beta_{1} \cap\left(\alpha_{1} \cup \lambda_{1}\right)=\beta_{1} \cap \lambda_{1}=\varnothing
$$

and hence that $\beta_{1} \subset B$. Thus $w\left(u_{1}+2 \pi\right) \notin A$ and we obtain (10).
Finally since α and β are b-spirals, Proposition 1 and (10) yield

$$
\begin{aligned}
\left|z\left(t_{1}\right)-z_{2}\right| & \leqslant b\left|z\left(t_{1}+2 \pi\right)-z_{2}\right| \leqslant b\left|w\left(u_{1}+2 \pi\right)-z_{2}\right| \\
& \leqslant b\left|w\left(u_{1}\right)-w\left(u_{1}+2 \pi\right)\right| \\
& =b\left(\left|w\left(u_{1}\right)-w_{2}\right|-\left|w\left(u_{1}+2 \pi\right)-w_{2}\right|\right) \\
& \leqslant(b-1)\left|w\left(u_{1}\right)-w_{2}\right|<\left|w\left(u_{1}\right)-w_{2}\right| .
\end{aligned}
$$

Next we can reverse the roles of α and β in the above argument to obtain

$$
\left|w\left(u_{1}\right)-w_{2}\right|<\left|z\left(t_{1}\right)-z_{2}\right| .
$$

This contradiction shows that (7) cannot hold, completing the proof of Lemma 1.
We derive next in Lemmas 2 and 3 conditions, similar to (5), which guarantee that an analytic open arc is a spiral or a b-spiral, respectively. By Proposition 2, we may restrict our attention to the case where the arc has 1 and 0 as its endpoints.

Lemma 2. Suppose that $c, d \in(0, \infty)$, that α is an analytic open arc with 1 and 0 as endpoints, and that

$$
k(z)|z| \geqslant c, \quad \frac{d k}{d s}(z)|z|^{2} \geqslant d
$$

for $z \in \alpha$, where s is taken in the direction from 1 to 0 . Then α is a rectifiable spiral from 1 onto 0 .
Proof. For each $z \in \alpha$ let $\varrho(z)$ and $C(z)$ denote the radius and circle of curvature for α at z. Since k is positive and increasing in s, the part of α from z to 0 must lie inside $C(z)$ by a theorem due to A. Kneser. (See p. 48 in [9].) Hence

$$
|z| \leqslant 2 \varrho(z)=\frac{2}{k(z)}, \quad-\frac{d \varrho}{d s}(z)=\frac{\frac{d k}{d s}(z)}{k(z)^{2}} \geqslant \frac{d}{4}
$$

for $z \in \alpha$. If β is any closed subarc of α from w_{1} to w_{2}, then

$$
l(\beta)=\int_{\beta} d s \leqslant \frac{4}{d} \int_{\beta}\left(-\frac{d \varrho}{d s}\right) d s<\frac{4}{d} \varrho\left(w_{1}\right) \leqslant \frac{4}{c d}\left|w_{1}\right|,
$$

and hence α is rectifiable with length

$$
l=l(\alpha)=\sup _{\beta \subset \alpha} l(\beta) \leqslant \frac{4}{c d} .
$$

Let s denote the arclength of α from 1 to z, let $z=z(s), s \in(0, l)$, denote the corresponding parametrization for α, and choose a continuous branch of $\log z(s)$ so that $\log z(s) \rightarrow 0$ as $s \rightarrow 0$. Then $t(s)=\operatorname{Im}(\log z(s))$ is continuously differentiable with

$$
t^{\prime}(s)=\operatorname{Im}\left(\frac{z^{\prime}(s)}{z(s)}\right) .
$$

Suppose that $t^{\prime}\left(s_{0}\right)=0$ for some $s_{0} \epsilon(0, l)$. Then $z^{\prime}\left(s_{0}\right)=a z\left(s_{0}\right)$ where a is a real constant. This implies that the circle of curvature $C\left(z\left(s_{0}\right)\right)$ is tangent to the ray from 0 through
$z\left(s_{0}\right)$ and hence that $C\left(z\left(s_{0}\right)\right)$ cannot contain the point 0 , thus contradicting the above mentioned theorem of Kneser. We conclude that

$$
\begin{equation*}
t^{\prime}(s)=\operatorname{Im}\left(\frac{z^{\prime}(s)}{z(s)}\right) \neq 0 \tag{11}
\end{equation*}
$$

for $s \in(0, l)$ and hence that $t(s)$ is a strictly monotone function of s in $(0, l)$.
By (ll) we can choose a continuous branch of $\log \left(z^{\prime}(s) / z(s)\right)$ such that

$$
\begin{equation*}
|\theta(s)|<\pi, \quad \theta(s)=\operatorname{Im}\left(\log \frac{z^{\prime}(s)}{z(s)}\right) \tag{12}
\end{equation*}
$$

in $(0, l)$. Then

$$
\begin{equation*}
\varphi(s)=t(s)+\theta(s)=\operatorname{Im}\left(\log z^{\prime}(s)\right) \tag{13}
\end{equation*}
$$

determines the angle of inclination for the tangent vector $z^{\prime}(s)$ and

$$
\varphi^{\prime}(s)=k(z(s)) \geqslant c|z(s)|^{-1} \geqslant c(l-s)^{-1}
$$

for $s \in(0, l)$. If $s_{0} \in(0, l)$, then

$$
\varphi(s)-\varphi\left(s_{0}\right) \geqslant \int_{s_{0}}^{s} c(l-s)^{-1} d s=c \log \frac{l-s_{0}}{l-s}
$$

for $s \in\left(s_{0}, l\right)$, and $\varphi(s) \rightarrow \infty$ as $s \rightarrow l$. Thus $t(s) \rightarrow \infty$ as $s \rightarrow l$ by (12) and (13). Since $t(s) \rightarrow 0$ as $s \rightarrow 0$, we conclude that s is a strictly increasing function of $t, s=s(t)$, in ($0, \infty$). Set $r(t)=$ $|z(s(t))|$. Then

$$
z=r(t) e^{i t}, \quad t \in(0, \infty)
$$

is a representation for α which shows that α is a spiral from 1 onto 0 .
Lemma 3. Suppose that $c_{1}, c_{2}, d_{1}, d_{2} \in(0, \infty)$ and that $4 \pi d_{2}<c_{1}^{2}$. Suppose also that α is an analytic open arc with 1 and 0 as endpoints and that

$$
c_{1} \leqslant k(z)|z| \leqslant c_{2}, \quad d_{1} \leqslant \frac{d k}{d s}(z)|z|^{2} \leqslant d_{2}
$$

for $z \in \alpha$, where s is taken in the direction from $\mathbf{1}$ to 0 . Then α is a rectifiable b-spiral from $\mathbf{1}$ onto 0 , where

$$
b=\frac{c_{1} c_{2}}{c_{1}^{2}-4 \pi d_{2}}>1 .
$$

Proof. Lemma 2 implies that α is a rectifiable spiral from 1 onto 0 with the representation

$$
z=z(t)=r(t) e^{i t}, \quad t \in(0, \infty) .
$$

It remains only to prove that $\left|z\left(t_{1}\right)\right| \leqslant b\left|z\left(t_{2}\right)\right|$ for all $t_{1}, t_{2} \in(0, \infty)$ with $\left|t_{1}-t_{2}\right| \leqslant 2 \pi$. Let $\varrho(z)$ denote the radius of curvature for α at z. Then since

$$
|z| \leqslant c_{2} \varrho(z) \leqslant \frac{c_{2}}{c_{1}}|z|,
$$

it suffices to show that

$$
\begin{equation*}
\varrho\left(z\left(t_{1}\right)\right) \leqslant \frac{c_{1}}{c_{2}} b \varrho\left(z\left(t_{2}\right)\right) \tag{14}
\end{equation*}
$$

for all such t_{1}, t_{2}.
Fix $t_{1}, t_{2} \in(0, \infty)$ with $\left|t_{1}-t_{2}\right| \leqslant 2 \pi$ and for $j=1,2$ let $z_{j}=z\left(t_{j}\right), s_{j}=s\left(t_{j}\right), \theta_{j}=\theta\left(s_{j}\right)$ and $\varphi_{j}=\varphi\left(s_{j}\right)$ where $\theta(s)$ and $\varphi(s)$ are as in the proof of Lemma 3. Since

$$
0<-\frac{d \varrho}{d s}(z)=\frac{\frac{d k}{d s}(z)}{k(z)^{2}} \leqslant \frac{d_{2}}{c_{1}^{2}}
$$

for $z \in \alpha, \varrho(z)$ is decreasing as a function of s. Suppose that $s_{2} \leqslant s_{1}$. Then

$$
\varrho\left(z_{1}\right) \leqslant \varrho\left(z_{2}\right)<\frac{c_{1}}{c_{2}} b \varrho\left(z_{2}\right)
$$

and (14) holds. Suppose next that $s_{1}<s_{2}$. Then

$$
\varrho\left(z_{1}\right)-\varrho\left(z_{2}\right)=\int_{s_{1}}^{s_{2}}\left(-\frac{d \varrho}{d s}\right) d s \leqslant \frac{d_{2}}{c_{1}^{2}}\left(s_{2}-s_{1}\right),
$$

while

$$
s_{2}-s_{1}=\int_{\varphi_{1}}^{\varphi_{2}}\left(\frac{d s}{d \varphi}\right) d \varphi=\int_{\varphi_{2}}^{\varphi_{2}} \varrho d \varphi \leqslant \varrho\left(z_{1}\right)\left|\varphi_{2}-\varphi_{1}\right| .
$$

Then (12) and (13) imply that

$$
\left|\varphi_{2}-\varphi_{1}\right| \leqslant\left|t_{2}-t_{1}\right|+\left|\theta_{2}-\theta_{1}\right| \leqslant 4 \pi
$$

and we obtain

$$
\varrho\left(z_{1}\right)-\varrho\left(z_{2}\right) \leqslant \frac{4 \pi d_{2}}{c_{1}^{2}} \varrho\left(z_{1}\right),
$$

from which (14) again follows. Hence the proof is complete.
We conclude this section with a result similar to Proposition 2. It implies that the image of a logarithmic spiral under a conformal mapping, which is nearly a similarity, is again a spiral. We require first the following result.

Lemma 4. Suppose that α is an analytic arc with the representation $z=z(t)$ where $z^{\prime}(t) \neq 0$, and suppose that f maps a neighborhood of α conformally into \mathbf{C}. Then $\alpha^{*}=f(\alpha)$ is an analytic arc with the representation $w=f \circ z(t)$ and

$$
\begin{gathered}
k^{*}(f(z))\left|f^{\prime}(z)\right|-k(z)=\operatorname{Im}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{z^{\prime}(t)}{\left|z^{\prime}(t)\right|}\right), \\
\frac{d k^{*}}{d s^{*}}(f(z))\left|f^{\prime}(z)\right|^{2}-\frac{d k}{d s}(z)=\operatorname{Im}\left(S_{f}(z) \frac{z^{\prime}(t)^{2}}{\left|z^{\prime}(t)\right|^{2}}\right),
\end{gathered}
$$

where k, k^{*} denote the curvatures and s, s^{*} the arclengths of α, α^{*} in the direction of increasing t.
Proof. If $w(t)=f \circ z(t)$, then $w^{\prime}(t)=f^{\prime}(z) z^{\prime}(t) \neq 0$ and

$$
\begin{equation*}
\frac{w^{\prime \prime}(t)}{w^{\prime}(t)}-\frac{z^{\prime \prime}(t)}{z^{\prime}(t)}=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} z^{\prime}(t), \quad S_{w}(t)-S_{z}(t)=S_{f}(z) z^{\prime}(t)^{2} \tag{15}
\end{equation*}
$$

where $z=z(t)$ and where S_{w} and S_{z} are defined exactly as in (1) with the differentiation now taken with respect to the real variable t. Then

$$
\begin{equation*}
k^{*}(w)\left|f^{\prime}(z)\right|-k(z)=\operatorname{Im}\left(\frac{w^{\prime \prime}(t)}{w^{\prime}(t)}-\frac{z^{\prime \prime}(t)}{z^{\prime}(t)}\right)\left|z^{\prime}(t)\right|^{-1} \tag{16}
\end{equation*}
$$

by elementary differential geometry and

$$
\begin{equation*}
\frac{d k^{*}}{d s^{*}}(w)\left|f^{\prime}(z)\right|^{2}-\frac{d k}{d s}(z)=\operatorname{Im}\left(S_{w}(t)-S_{z}(t)\right)\left|z^{\prime}(t)\right|^{-2} \tag{17}
\end{equation*}
$$

by Exercise 3 on p. 21 of [3]. The desired conclusion now follows from (15), (16) and (17).
Lemma 5. Suppose that b, $c_{1}, c_{2}, d_{1}, d_{2}$ and α are as in Lemma 3 and that $b^{*} \in(b, \infty)$. Then there exists an $\varepsilon>0$, depending only on $b^{*}, c_{1}, c_{2}, d_{1}, d_{2}$, with the following property. If f maps a neighborhood of α conformally into \mathbf{C}, if $f(z) \rightarrow \mathbf{1}$ and 0 as $z \rightarrow \mathbf{1}$ and 0 on α, and if

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leqslant \varepsilon, \quad\left|\frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right| \leqslant \varepsilon, \quad\left|\frac{z^{3} f^{\prime \prime \prime}(z)}{f(z)}\right| \leqslant \varepsilon \tag{18}
\end{equation*}
$$

for $z \in \alpha$, then $\alpha^{*}=f(\alpha)$ is a b^{*}-spiral from I onto 0 .
Proof. By hypothesis we can choose $\eta \in\left(0, \min \left(c_{1}, d_{1}\right)\right)$ so that

$$
4 \pi\left(d_{2}+\eta\right)<\left(c_{1}-\eta\right)^{2}, \quad \frac{\left(c_{1}-\eta\right)\left(c_{2}+\eta\right)}{\left(c_{1}-\eta\right)^{2}-4 \pi\left(d_{2}+\eta\right)} \leqslant b^{*}
$$

Fix $\varepsilon \in\left(0, \frac{1}{2}\right)$ so that $\left(4+2 c_{2}\right) \varepsilon \leqslant \eta$ and $\left(20+6 d_{2}\right) \varepsilon \leqslant \eta$, and suppose that f satisfies the hypotheses of Lemma 5. Then $\alpha^{*}=f(\alpha)$ is an analytic open are with 1 and 0 as endpoints. If $w \in \alpha^{*}$, then $z=f^{-1}(w) \in \alpha$ and (18) implies that

$$
\left|\left|\frac{f(z)}{f^{\prime}(z)}\right|-|z|\right| \leqslant 2 \varepsilon|z|, \quad\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqslant 2 \varepsilon, \quad\left|z^{2} S_{f}(z)\right| \leqslant 5 \varepsilon
$$

Hence we obtain the inequalities

$$
\begin{aligned}
\left|k^{*}(w)\right| w|-k(z)| z|\mid & \leqslant\left|\frac{f(z)}{f^{\prime}(z)}\right|\left|k^{*}(f(z))\right| f^{\prime}(z)|-k(z)|+\left|\left|\frac{f(z)}{f^{\prime}(z)}\right|-|z|\right| k(z) \\
& \left.\leqslant 2|z| \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}|+2 \varepsilon| z \right\rvert\, k(z) \leqslant \eta
\end{aligned}
$$

and

$$
\begin{aligned}
\left.\left.\left|\frac{d k^{*}}{d s^{*}}(w)\right| w\right|^{2}-\frac{d k}{d s}(z)|z|^{2} \right\rvert\, & \leqslant\left.\left|\frac{f(z)}{f^{\prime}(z)}\right|^{2}\left|\frac{d k^{*}}{d s^{*}}(f(z))\right| f^{\prime}(z)\right|^{2}-\frac{d k}{d s}(z)\left|+\left|\left|\frac{f(z)}{f^{\prime}(z)}\right|^{2}-|z|^{2}\right| \frac{d k}{d s}(z)\right. \\
& \leqslant 4|z|^{2}\left|S_{f}(z)\right|+6 \varepsilon|z|^{2} \frac{d k}{d s}(z) \leqslant \eta
\end{aligned}
$$

from Lemma 4, where k^{*} and s^{*} denote the curvature and arclength of α^{*}. Thus

$$
c_{1}-\eta \leqslant k^{*}(w)|w| \leqslant c_{2}+\eta, \quad d_{1}-\eta \leqslant \frac{d k^{*}}{d s^{*}}(w)|w|^{2} \leqslant d_{2}+\eta
$$

for $w \in \alpha^{*}$, and the desired conclusion follows from Lemma 3.

3. Proof of Theorem 2

For each $a \in(0, \infty)$ let

$$
\begin{aligned}
\alpha_{1} & =\left\{z=e^{(-a+t) t}: t \in(0, \infty)\right\}, \quad \alpha_{2}=\left\{z:-z \in \alpha_{1}\right\}, \\
\beta & =\left\{z= \pm i e^{(-a+i) t}: t \in(-\infty, \infty)\right\} \cup\{0, \infty\} \\
\gamma & =\{z: z \in \beta,|z| \leqslant 1\} .
\end{aligned}
$$

Then β is a Jordan curve which separates α_{1} and α_{2}. Let D_{j} denote the component of $\overline{\mathbf{C}}-\beta$ which contains α_{j} and set $D=\overline{\mathbf{C}}-\gamma$. Then D is a simply connected domain of hyperbolic type which contains $D_{1} \cup D_{2}$ and hence $\alpha_{1} \cup \alpha_{2}$.

Now suppose that $a \in(0,1 / 8 \pi)$ and that f is conformal in D. We shall show that there exists a $\delta=\delta(a)>0$ such that $f(D)$ is not a Jordan domain whenever $\left\|S_{f}\right\|_{D} \leqslant \delta$; for this we may clearly assume that f is normalized so that it fixes the points $1,-1, \infty$. The argument
then consists of three steps. First in Lemma 8 we show there exists a $\delta_{2}>0$ such that $f\left(\alpha_{1}\right)$ and $f\left(\alpha_{2}\right)$ are b^{*}-spirals with $b^{*} \in(1,2)$ whenever $\left\|S_{f}\right\|_{D} \leqslant \delta_{2}$. Next in Lemma 9 we show there exists a $\delta_{3}>0$ such that the points onto which $f\left(\alpha_{1}\right)$ and $f\left(\alpha_{2}\right)$ converge must lie in $\left\{z:|z| \leqslant \frac{1}{b}\right\}$ whenever $\left\|S_{f}\right\|_{D} \leqslant \delta_{3}$. Finally set $\delta=\min \left(\delta_{2}, \delta_{3}\right)$. Then Lemma 1 implies that $f\left(\alpha_{1}\right)$ and $f\left(\alpha_{2}\right)$ converge onto the same point and hence that $f(D)$ is not a Jordan domain whenever $\left\|S_{f}\right\|_{D} \leqslant \delta$.

We begin with an application of Ahlfors' extension theorem [1] to the domains D_{1} and D_{2}.

Lemma 6. There exists a $\delta_{1}=\delta_{1}(a)>0$ with the following property. If f is conformal in D and if $\left\|S_{f}\right\|_{D} \leqslant \delta_{1}$, then for $j=1,2$ the mapping $f_{j}=f \mid D_{j}$ has a quasiconformal extension g_{j} to $\overline{\mathbf{C}}$ and

$$
\begin{equation*}
K\left(g_{j}\right) \leqslant\left(1-c\left\|S_{f}\right\|_{D}\right)^{-1} \tag{19}
\end{equation*}
$$

where $c=c(a)$ and $K\left(g_{j}\right)$ denotes the maximal dilatation of g_{j}.
Proof. Let

$$
\begin{equation*}
h\left(r e^{i \theta}\right)=r^{a} e^{i(\theta-\log r)} \tag{20}
\end{equation*}
$$

for $r \in(0, \infty)$, and set $h(0)=0$ and $h(\infty)=\infty$. Then it is easy to verify that h is a K quasiconformal mapping of $\overline{\mathbf{C}}$, where $K=a+(2 / a)$, and that h maps the imaginary axis onto β. Thus $\partial D_{j}=\beta$ is a K-quasiconformal circle. By the above mentioned theorem of Ahlfors, there exists a $\delta_{1}=\delta_{1}(a)$ such that each f_{j} conformal in D_{j} with $\left\|S_{f_{j}}\right\|_{D_{j}} \leqslant \delta_{1}$ has a quasiconformal extension g_{j} to $\overline{\mathbf{C}}$, where

$$
\begin{equation*}
\left\|\mu_{g_{j}}\right\|_{\infty} \leqslant c\left\|S_{f_{j}}\right\|_{D_{j}}\left(2-c\left\|S_{f_{j}}\right\|_{D_{j}}\right)^{-1} \tag{21}
\end{equation*}
$$

and $c=c(a)$. (For this last estimate see p. 22 in [10] or p. 132 in [2].)
Now suppose that f satisfies the hypotheses of Lemma 6 and let $f_{j}=f \mid D_{j}$. Then since $\varrho_{D} \leqslant \varrho_{D_{j}}$ in D_{j},

$$
\left\|S_{f_{j}}\right\|_{D_{j}} \leqslant\left\|S_{j}\right\|_{D} \leqslant \delta_{1}
$$

Thus f_{j}, has a quasiconformal extension g_{j} to $\overline{\mathbf{C}}$ satisfying (21), and (19) follows directly.
Remark. If f is conformal in D with $\left\|S_{f}\right\|_{D} \leqslant \delta_{1}$, then Lemma 6 implies that $f_{j}=f \mid D_{j}$ has a homeomorphic extension to $D_{j} \cup\{0\}$ and hence that $f(z)$ has limits as $z \rightarrow 0$ in D_{1} and as $z \rightarrow 0$ in D_{2}. We shall denote these limits by $f_{1}(0)$ and $f_{2}(0)$, respectively.

We require next the following consequence of a distortion theorem due to Teichmüller [13].

Lemma 7. For each $\eta>0$ there exists a $K_{1}=K_{1}(\eta) \in(1, \infty)$ with the following property. If g is a sense preserving quasiconformal mapping of $\overline{\mathbf{C}}$ with $K(g) \leqslant K_{1}$ and if g fixes three points z_{1}, z_{2}, ∞, then

$$
\begin{equation*}
|g(z)-z| \leqslant \eta\left|z_{1}-z_{2}\right| \tag{22}
\end{equation*}
$$

for z with $\left|z-z_{1}\right|<\left|z_{1}-z_{2}\right|$.
Proof. Let ϱ and σ denote respectively the hyperbolic metric and distance in $G=\overline{\mathbf{c}}$ $\{0,1, \infty\}$ and set

$$
\begin{equation*}
b=\inf \{\varrho(z): z \in G \cap B\}, \quad B=\{z:|z| \leqslant 2\} . \tag{23}
\end{equation*}
$$

Then ϱ is positive and infinitely differentiable in G and $\varrho(z) \rightarrow \infty$ as $z \rightarrow 0$ or 1 . (See, for example, p. 51 and p. 246 in [12].) Hence $b \in(0, \infty)$. Set

$$
K_{1}=\exp (2 b \min (\eta, 1)) \in(1, \infty)
$$

Now suppose that g is a sense preserving quasiconformal mapping of $\overline{\mathbf{C}}$ with $K(g) \leqslant K_{1}$, and suppose that g fixes the points $0,1, \infty$. Then by the above mentioned theorem of Teichmüller,

$$
\sigma(g(z), z) \leqslant \frac{1}{2} \log K(g) \leqslant b \min (\eta, 1) \leqslant b
$$

for $z \in G$. (See pp. 29-31 in [13].) If $|z|<1$, then (23) implies that

$$
\sigma(g(z), z)=\inf \int_{\omega} \varrho d s \geqslant \inf \int_{\omega \cap B} b d s \geqslant b \min (|g(z)-z|, 2-|z|),
$$

where the infima are taken over all rectifiable ares ω joining z to $g(z)$ in G. Hence

$$
|g(z)-z|=\min (|g(z)-z|, 2-|z|) \leqslant \min (\eta, 1) \leqslant \eta
$$

for $|z|<1$ and we obtain (22) for the special case where $z_{1}=0$ and $z_{2}=1$. The general case then follows by applying what was proved above to the mapping

$$
h(z)=\frac{g\left(z\left(z_{2}-z_{1}\right)+z_{1}\right)-z_{1}}{z_{2}-z_{1}}
$$

Remark. Lemma 7 also follows from a more elementary contra-positive normal family type argument. However this second method does not yield an explicit estimate for K_{1} in terms of η.

Lemma 8. For each $a \in(0,1 / 8 \pi)$ there exists a $\delta_{2}=\delta_{2}(a) \in\left(0, \delta_{1}\right]$ with the following property. If f is conformal in D with $\left\|S_{f}\right\|_{D} \leqslant \delta_{2}$ and if fixes ∞, then for $j=1,2, \alpha_{j}^{*}=f\left(\alpha_{j}\right)$ is a b^{*}-spiral onto $f_{j}(0)$ where $b^{*} \in(1,2)$.

Proof. Set $c_{1}=c_{2}=\left(a^{2}+1\right)^{-\frac{1}{2}}, \quad d_{1}=d_{2}=a\left(a^{2}+1\right)^{-1}$,

$$
b=\frac{c_{1} c_{2}}{c_{1}^{2}-4 \pi d_{2}}=(1-4 \pi a)^{-1} \in(1,2)
$$

and fix $b^{*} \in(b, 2)$. Next let ε be as in Lemma 5, set

$$
\eta=\frac{1}{6} \varepsilon r^{3}, \quad r=\frac{1}{2} \text { dist }\left(1, \partial D_{1}\right)<\frac{1}{2},
$$

and choose $\delta_{2} \epsilon\left(0, \delta_{1}\right]$ so that $\left(1-c \delta_{2}\right)^{-1} \leqslant K_{1}$, where $c=c(a)$ and $K_{1}=K_{1}(\eta)$ are as in Lemmas 6 and 7. Then δ_{2} depends only on a.

Now suppose that f satisfies the hypotheses of Lemma 8. Then $\alpha_{1}^{*}=f\left(\alpha_{1}\right)_{1}$ and $\alpha_{2}^{*}=f\left(\alpha_{2}\right)$ are analytic open arcs with endpoints $f(1), f_{1}(0)$ and $f(-1), f_{2}(0)$ respectively. We shall show first that α_{1}^{*} is a b^{*}-spiral from $f(1)$ onto $f_{1}(0)$. By Proposition 2 we may assume without loss of generality that $f(1)=1$ and $f_{1}(0)=0$.

Let g_{1} denote the quasiconformal extension of $f_{1}=f \mid D_{1}$ to $\overline{\mathbf{C}}$ given by Lemma 6 , fix $z_{1} \in \alpha_{1}$ and set

$$
h(z)=\frac{g_{1}\left(z_{1} z\right)}{g_{1}\left(z_{1}\right)}
$$

Then h is a sense preserving quasiconformal mapping of $\overline{\mathbf{c}}, K(h) \leqslant K_{1}$ and h fixes the points $0,1, \infty$. Hence

$$
\begin{equation*}
|h(z)-z| \leqslant \eta \tag{24}
\end{equation*}
$$

for $|z-1|<1$ by Lemma 7 . Since $\varphi(z)=z_{1}, z$ maps D_{1} onto $D_{1}, f\left(z_{1} z\right)=g_{1}\left(z_{1} z\right)$ for $z \in D_{1}$. Hence h is analytic in D_{1} and

$$
\left|\frac{z_{1} f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-1\right|=\left|h^{\prime}(1)-1\right| \leqslant \frac{1}{2 \pi} \int_{\omega} \frac{|h(z)-z|}{|z-1|^{2}}|d z| \leqslant \frac{\eta}{r}<\varepsilon
$$

by (24), where ω is the positively oriented circle $\{z:|z-1|=r\}$. Similarly we obtain

$$
\left|\frac{z_{1}^{2} f^{\prime \prime}\left(z_{1}\right)}{f\left(z_{1}\right)}\right| \leqslant \frac{2 \eta}{r^{2}}<\varepsilon, \quad\left|\frac{z_{1}^{3} f^{\prime \prime \prime}\left(z_{1}\right)}{f\left(z_{1}\right)}\right| \leqslant \frac{6 \eta}{r^{3}}=\varepsilon .
$$

Then (5) and Lemma 5 imply that α_{1}^{*} is a b^{*}-spiral from 1 onto 0 .
Next let $g(z)=f(-z)$. Then g is conformal in D with $\left\|S_{g}\right\|_{D} \leqslant \delta_{2}$ and $g(\infty)=\infty$. Hence $\alpha_{2}^{*}=g\left(\alpha_{1}\right)$ is a b^{*}-spiral by what was shown above and the proof is complete.

Lemma 9. For each $\varepsilon>0$ there exists a $\delta_{3}=\delta_{3}(a, \varepsilon) \in\left(0, \delta_{1}\right]$ with the following property. If f is conformal in D with $\left\|S_{f}\right\|_{D} \leqslant \delta_{3}$ and if fixes $1,-1, \infty$, then $\left|f_{1}(0)\right| \leqslant \varepsilon$ and $\left|f_{2}(0)\right| \leqslant \varepsilon$.

Proof. Set $\eta=\min \left(\varepsilon / 4, \frac{1}{2}\right)$ and choose $\delta_{3} \in\left(0, \delta_{1}\right]$ so that $\left(1-c \delta_{3}\right)^{-2} \leqslant K_{1}$, where c and K_{1} are as in Lemmas 6 and 7. Then δ_{3} depends only on a and ε.

Now suppose that f satisfies the hypotheses of Lemma 9 and for $j=1,2$ let g_{j} denote the quasiconformal extension of $f_{j}=f \mid D_{j}$ to $\overline{\mathbf{C}}$ given by Lemma 6. Then $g=g_{2} \circ g_{1}^{-1}$ is a sense preserving quasiconformal mapping of $\overline{\mathbf{C}}$ with $K(g) \leqslant K_{1}$. If $z_{0} \in \beta-\gamma$, then for $j=1,2$, $z_{0} \in D_{j}$ and

$$
g_{j}\left(z_{0}\right)=\lim g_{j}(z)=\lim f_{j}(z)=f\left(z_{0}\right),
$$

where the limits are taken as $z \rightarrow z_{0}$ in D_{j}. Thus g fixes points in $\beta-\gamma$ and hence, by continuity, the points $i,-i, \infty$. Thus

$$
\left|g_{2}(1)-1\right|=|g(1)-1| \leqslant 2 \eta, \quad 0<\left|g_{2}(1)+1\right| \leqslant 3
$$

by Lemma 7. Set

$$
h(z)=\frac{2}{g_{2}(1)+1} g_{2}(z)-\frac{g_{2}(1)-1}{g_{2}(1)+1} .
$$

Again h is a sense preserving quasiconformal mapping of $\overline{\mathbf{C}}, K(h) \leqslant K_{1}$ and h fixes $1,-1, \infty$. Thus $|h(0)| \leqslant 2 \eta$ by Lemma 7 and

$$
\left|f_{2}(0)\right|=\left|g_{2}(0)\right| \leqslant \frac{1}{2}\left|g_{2}(1)+1\right||h(0)|+\frac{1}{2}\left|g_{2}(1)-1\right| \leqslant \varepsilon .
$$

Finally applying what was proved above to the mapping $-f(-z)$ yields the inequality $\left|f_{1}(0)\right| \leqslant \varepsilon$.

Proof of Theorem 2. Suppose that $a \in(0,1 / 8 \pi)$ and set

$$
\delta=\min \left(\delta_{2}(a), \delta_{3}\left(a, \frac{1}{5}\right)\right) \leqslant \delta_{1},
$$

where δ_{2} and δ_{3} are as in Lemmas 8 and 9 . Next suppose that f is conformal in D with $\left\|S_{f}\right\|_{D} \leqslant \delta$. We shall show that $f(D)$ is not a Jordan domain. By following f by a Möbius transformation, we may assume without loss of generality that f fixes the points $1,-1, \infty$.

Now Lemma 8 implies that $\alpha_{1}^{*}=f\left(\alpha_{1}\right)$ and $\alpha_{2}^{*}=f\left(\alpha_{2}\right)$ are disjoint b^{*}-spirals from 1 onto $f_{1}(0)$ and from -1 onto $f_{2}(0)$, respectively, where $b^{*} \in(1,2)$. Next Lemma 9 implies that $\left|f_{1}(0)\right| \leqslant \frac{1}{5}$ and $\left|f_{2}(0)\right| \leqslant \frac{1}{5}$. Thus

$$
\left|f_{1}(0)-f_{2}(0)\right| \leqslant \frac{2}{5}<\frac{1}{b^{*}} \min \left(\left|1-f_{1}(0)\right|,\left|-1-f_{2}(0)\right|\right)
$$

and we conclude from Lemma 1 that $f_{1}(0)=f_{2}(0)$.
Next let $B=\{z:|z|<\mathrm{l}\}$ and for $z \in B$ set $g(z)=h\left(\frac{i}{2}\left(z+\frac{1}{z}\right)\right)$, where h is the quasiconformal mapping of $\overline{\mathbf{C}}$ defined in (20) in the proof of Lemma 6. Then $f \circ g$ is a quasicon-
formal mapping of B onto $f(D)$ and $f \circ g(z) \rightarrow f_{1}(0), f_{2}(0)$ as $z \rightarrow i,-i$ respectively in B. Hence $f(D)$ cannot be a Jordan domain, since otherwise $f \circ g$ would have a homeomorphic extension to \bar{B} and $f_{1}(0) \neq f_{2}(0)$.

References

[1]. Ahlfors, L. V., Quasiconformal reflections. Acta Math., 109 (1963), 291-301.
[2]. - Lectures on quasiconformal mappings. Van Nostrand Math. Studies 10, Princeton 1966.
[3]. -Conformal invariants: topics in geometric function theory. McGraw-Hill, New York 1973.
[4]. Bers, L., On boundaries of Teichmüller spaces and on kleinian groups I. Ann. of Math., 91 (1970), 570-600.
[5]. -Universal Teichmüller space. Analytic methods in mathematical physics. Gordon and Breach (1970), 65-83.
[6]. - Uniformization, moduli, and kleinian groups. Bull. London Math. Soc., 4 (1972), 257-300.
[7]. -— Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Amer. Math. Soc., 83 (1977), 1083-1100.
[8]. Gehring, F. W., Univalent functions and the Schwarzian derivative. Comm. Math. Helv., 52 (1977), 561-572.
[9]. Guggenheimer, H. W., Differential geometry. McGraw-Hill, New York 1963.
[10]. Lehto, O., Quasiconformal mappings in the plane. Lecture Notes 14, Univ. of Maryland 1975.
[11]. Nehari, Z., The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc., 55 (1949), 545-551.
[12]. Nevanlinna, R., Eindeutige analytische Funktionen. Springer-Verlag, Berlin-GöttingenHeidelberg 1953.
[13]. Teichmüller, O., Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Alkad. Wiss., 22 (1940), 1-197.

Received December 20, 197\%

