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1. Introduction 

Suppose tha t  D is a simply connected domain of hyperbolic type in the extended 

complex piano C =(~ U {~}.  Then the hyperbolic or noneuclidean metric ~D in D is given by 

~D(Z) = (1 --ig(~)l~)-~lr 

where g is any  eonformal mapping of D onto the unit disk {z: ] z] < 1 }. For each function ~0 

defined in D we introduce the norm 

II q'[[~ = sup I ~(z)] ~ (z )  -~. 
z e D  

Next  for each function [ which is locally univalent and meromorphic in D we let Sf 

denote the Sehwarzian derivative of /. At finite points of D which are not poles of [, 

Sr is given by  

it"]'_ K] /" 3 
s , = \ / , /  ~ \ / , /  /' 2~t'/ ' (1) 

and the definition is extended to ~ and the poles of / by  means of inversion. 

Now let L denote the lower half plane, L={z=x+iy :  y<0} ,  and let B2=B~(L, 1) 

denote the complex Banach space of functions ~ analytic in L with the norm 

II~ll = II~lk = sup 4y~l~(~)[ < ~ .  
Z e L  

Next  let S denote the family of functions ~0 = Sg where g is conformal in L, and let T = T(1) 

denote the subfamily of those T = Sg where g has a quasiconformal extension to ~. Then 

(1) This research was supported in part by a grant from the U.S. National Science Foundation, 
Grant MCS-77-02842. 
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I[~0]] ~<6 for all ~0ES by [11], and hence T c S c B ~ .  The set T is called the universal 

Teichmiiller space. See [4], [5], [6], [7]. 

In a recent paper [8], the author established a result, which when combined with an 

extension theorem of Ahlfors [1], yields the following characterization of T. 

T H ~ o R ~ M 1. T is the interior o/ S. 

Theorem 1 is closely related to the following interesting open problem raised by 

Bers in [4], [5], [6], [7]. 

QUESTIOn. IS S the closure o/ T? 

The purpose of this paper is to answer this question in the negative by establishing 

the following result. 

T ~ o ~ M  2. There exists a simply connected domain D o] hyperbolic type and a 

positive constant ~ with the/ollowing property. I / / i s  con/ormal in D and i/ [ISrlID <O, then 

/(D) is not a Jordan domain. 

COROLLARY. There exists a q) in S which does not lie in the closure o/ T. 

Proo/ o/ Corollary. Let  D and ~ be as in Theorem 2, and let g be any conformal 

mapping of L onto D. Then q~=SoeS. Choose y e s  with ]]yJ-~0[[ ~<~. Then ~=Sh,  where h 

is conformal in L. S o t / = h o g - L  Then from the composition law 

& ( z )  = + 

it  follows that  

Hence h(L) =/(D) is not a Jordan domain, h does not have even a homeomorphic extension 

go ~ and ~ ~ T. We conclude that  ~ is a point of S which does not lie in the closure of T. 

The domain D in Theorem 2 can be described in a very explicit manner. Namely, 

D = C - ? ,  wh~re 7 is the are 

r = +ie(-~ t e l 0 ,  oo))u { 0 )  

and a e (0, 1/8~). Hence it is not difficult to derive an analytic expression for the eonformal 

mapping g of L onto D, and ~0 = S o turns out to be a rational function. 

The idea behind the proof of Theorem 2 is quite simple. For he(0,  ~o) let 

= r e ( 0 ,  = 
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Then 51 and :r are logarithmic spirals in D which converge onto the point 0 from 

opposite sides of ~D. Next suppose that  / is conformal in D and fixes the points 1, - 1 ,  cr 

As HSI]]D approaches 0, / converges to the identity mapping in D. Hence for lIS1][, small, 

/ maps ~1, ~2 onto a pair of disjoint open arcs ~ ,  53 which spiral onto/1(0), /3(0), the 

points which/(z) approaches as z-*0 from the two sides of OD. This assertion follows from 

Lemmas 3, 5, 6 and 8. 

Now the rate at  which 51 and as, and hence ~* and ~3, spiral depends on a. If a is 

sufficiently small, then a~, a*2 will spiral very slowly onto 11(0), ~(0). Since al ,  ~ are 

disjoint, the points/1(0),/3(0) will either coincide or be separated by a distance greater than 

a positive constant d. This is a consequence of Lemma 1. 

Finally if we make I]SII]D still smaller, we can arrange by Lemma 9 that/1(0),  /3(0) 

lie near 0 and hence within distance d of each other. Then /1(0) and /2(0) will coincide 

a n d / ( D )  will not  be a Jordan domain. 

The complete proof for Theorem 2 is given in section 3. As indicated above, it 

depends on a number of results for a class of spirals. These are established in section 2. 

2. spb  

We derive here the results on spirals which will be needed in the proof of Theorem 2. 

De/ in i t ion .  Suppose that  cr is an open are in C, tha t  Zl, z2EC and that  bE(I, co). We 

say that  ~ is a spiral from z I onto z2 if ~ has the representation 

z =z ( t )  = ( Z l - % ) r ( t ) e t t + z 2 ,  rE(O, cr (2) 

where r(t) is positive and continuous with 

lira r(t) = 1, lira r(t) = O. (3) 
t--M) t--~o 

We say that  a is a b-spiral if, in addition, 

] Z(tl) - z31 < b [ z(t~) - z~ [ (4) 

for all tl, t~E(0, ~ )  with Itl-t~[ <<.2:t. 

Example .  Suppose that  a > 0  and that  ~ is the analytic open arc 

z = e  (-a+m, t6(0, oo). 

Then ~ is an e3na-spiral from 1 onto 0 and 

dk   (z)l l = (a3+ 1) -�89 ~ (z)[zl3=a(a*+ 1) -1 (5) 
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for all z E a, where k denotes the curvature and s the arclength of a taken in the direction 

from 1 to 0. 

PROPOSITION 1. I[  ~ is a spiral / tom z I onto z 2 with the representation (2), then 

I~(t + 2~)  - ~ I < I~(t) - ~ I (6) 

/or re(O, ~). 

Proof. Let A denote the set of rE(0, ~ )  for which (6) holds and let B=(0 ,  ~ ) - A .  

Since cr is an open arc, B is the set of t E (0, ~ )  for which the inequality in (6) is reversed. 

Hence A and B are both open. I f  B ~ ,  then B=(O. co) and 

I z(2n~) - z~ 1/> I z(2~) - z~ I > 0 

for all integers n~>l contradicting (3). Thus A = ( 0 ,  ~ ) .  

PROPOSITION 2. 1[ ~ is a b-spiral/rom z 1 onto z 2 and if / is a con/ormal similarity 

mapping, then f(~) is a b-spiral from f(zl) onto/(z~). 

Proof. This is an immediate consequence of the above definition. 

The proof of Theorem 2 is based on a simple geometric fact. Namely tha t  when 

be ( l ,  2), the two points, onto which a pair of disjoint b-spirals converge, must  either 

coincide or be separated by a distance greater than �89 -2 times the diameter of the smaller 

spiral. This observation is an immediate consequence of the following result. 

L]~MMA 1. Suppose that ~ is a b-spiral/rom z 1 onto ze, that fl is a b-spiral/rom w 1 onto 

w~ and that ~ N f l = O .  1[ bE(l ,  2), then either z2=w 2 or 

1 

Proof. Suppose otherwise. Then 

1 . 
0 < ]z z - w~l <~ ~ mm (IZl - z~,], Iwx - w2]). (7) 

I f  :r has the representation (2), then arg (Z(to)-Z2)=arg (w~-z2) for some t0E(0, 2z], and 

we obtain 

1 I } = Iw - 
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from (3), (4) and (7). For  each integer m >7 0 let t i = t o + 2mTt. Then I z(ti) - z 21 decreases to 

0 as m ~  ~ ,  and we can fix m so tha t  

arg (z(ti)-z2) = arg (w 2 -z2)  = arg (z(t i + 2z ) - z2 ) ,  (8) 

]z(tl)-z~ I/> > I z ( t i+27 t ) - z2] .  

Similarly if fl has the  representat ion w = w(u), u E (0, ~ ) ,  then we can choose u i E (0, ~ )  so 

t h a t  

arg (w(ui) -- w2) = arg (z~-- w2) = arg (w(u i + 2~) -- w2), (9) 

IW(Ul)-W~] > / I ~ - w ~ l  > Iw( l+2 )-w21. 

Now let ~ denote the line th rough  z 2 and w 2 directed from z 2 to w 2. Then (8) and (9) 

imply  t h a t  z(ti), z(ti+27~ ), w(ui), w(ui+2~r ) lie on ~, t ha t  w(ui) precedes or coincides with 

z~, t ha t  z(ti) coincides with or follows w~, and  tha t  z ( t i+2~  ) and  w(ui+27~ ) lie between 

z~ and w~. We claim tha t  

Iz(tl + 2~)-zzl < lW(Ul +2:t)-z~[. (10) 
To see this set 

A = { z = s ( z ( t ) - z 2 ) + z 2 :  sE(O, 1), t E ( t i + ~ ,  t~+37t)}, 

B = ( z = s ( z ( t ) - z 2 ) + z 2 :  sE(1, ~ ) ,  tE(t~+zt,  t~+3~)}, 

~i = {z=z(t):  tE ( t i+~ ,  t i+3zt)} c ~, 

~ = {~ =w(~): ue(ul+2~,  ~)} ~ ~, 

Then A and B are open and disjoint, fli joins w ( u i + 2 ~  ) to  w s e B  in C, and 

C = A U B U ~ i U ~  r 

F r o m  Proposit ion 1 it follows tha t  

fli  n (a i  u Ai) = fli  N Ai = O 

and  hence tha t  f l l c  B. Thus w(ui+2zt  ) CA and we obtain (10). 

Final ly since ~ and fl are b-spirals, Proposit ion 1 and (10) yield 

I z(ti) - z21 <~ b lz(ti + 2~) - z 2 ] ~< b lw(u  i + 27t) - z 2 I 

<~ b lw(ui)  - w(u  i + 2re) I 

= b(I  w(u ) - I - I + - u s  I)  

<. (b-1) lw(ux)-w~l < Iw(u~)-w~l. 



104 F . w .  Gwm~sa  

Nex t  we can reverse the roles of ~ and fl in the  above a rgument  to obtain 

Iw(ul)-w l < Iz(tl)-z l. 

This contradict ion shows tha t  (7) cannot  hold, completing the proof of L e m m a  1. 

We derive next  in Lemmas  2 and 3 conditions, similar to  (5), which guarantee tha t  

an analytic open arc is a spiral or a b-spiral, respectively. B y  Proposi t ion 2, we m a y  

restrict our a t tent ion to  the case where the arc has 1 and 0 as its endpoints.  

L E • M a  2. Suppose that c, dE(O, ~ ) ,  that ~ is an analytic open arc with 1 and 0 as 

endpoints, and that 

dk (z z'3 

/or z E ~, where s is taken in the direction/tom 1 to O. Then ~ is a recti/iable spiral /rom 1 onto O. 

Proo/. For  each z Ea let e(z) and  C(z) denote the radius and  circle of curvature  for 

a at  z. Since k is positive and increasing in s, the par t  of ~ from z to 0 mus t  lie inside C(z) 

by  a theorem due to  A. Kneser.  (See p. 48 in [9].) Hence 

dk 
de d~ (z) 

for z E ~. I f  fl is a ny  closed subarc of a f rom w 1 to  w~, then 

and hence ~ is rectifiable with length 

4 
l = l(a) = sup l(fl) <. ~ .  

Let  s denote the  arclength of :~ from 1 to  z, let z =z(s), s e (0, l), denote the corresponding 

parametr izat ion for ~, and  choose a continuous branch of log z(s) so tha t  log z(s)~O 

as s->O. Then t (s)=Ira (log z(s)) is continuously differentiable with 

Suppose t ha t  t'(So)=O for some s0E(O, 1). Then z'(So)----az(so) where a is a real constant .  

This implies t ha t  the circle of curvature  C(z(so)) is tangent  to  the r ay  f rom 0 th rough  
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z(so) and hence that  C(z(so) ) cannot contain the point 0, thus contradicting the above 

mentioned theorem of Kneser. We conclude that  

t'(s) = lm [ z ~ )  * 0 (11) 

for s E (0, l) and hence that  t(s) is a strictly monotone function of s in (0, 1). 

By (11) we can choose a continuous branch of log (z'(s)/z(s)) such that  

in (0, l). Then 

[. z'(s)~ 
]0(s)l < ~  , 0(s) = Im flog z ~  ] (12) 

of(s) = t(s) +0(s) = Im (log z'(s)) (13) 

determines the angle of inclination for the tangent vector z'(s) and 

~'(s) = k(z(s)) >/c]z(s)[ -1/> c (1-s ) - I  

for se(0,  l). If  s06(0, l), then 

f2c(  q)(s) -~(So) >~ - s)-l d s=c  log l - s ~  
1 - s  

for sE(s o, l), and ~(s)-~ ~ as s~l .  Thus t ( s ) - ~  as s-~l by (12) and (13). Since t(s)~O as 

s-~0, we conclude that  s is a strictly increasing function of t, s=s(t), in (0, ~) .  Set r(t)= 

[z(s(t))]. Then 
z=r( t )e  ~t, tE(0, or 

is a representation for a which shows that  ~ is a spiral from 1 onto 0. 

LE~MA 3. Suppose that cl, c~, dl, d~E(0, ~ )  and that 4~d2<Cl ~. Suppose also that ~ is 

an analytic open arc with 1 and 0 as endpoints and that 

/or z E ~z, where s is taken in the direction/tom 1 to O. Then ~ is a recti/iable b-spiral/rom 1 

onto 0, where 

. G1 C 2 

b c~-4~d2 >1" 

Proo/. Lemma 2 implies that  a is a rectifiable spiral from 1 onto 0 with the representa- 

tion 
z = z ( t ) = r ( t ) e  it, te(O,c~). 
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It  remains only to prove that  Iz(t,)[ < bl=(t2) ] for all t,, t2E(O, oo) with I t l -Q[  ~<2z. Let  

O(z) denote the radius of curvature for ~ at z. Then since 

it suffices to show that  

C 2 

0(Z(tl)) • CA bo(z(t2) ) (14) 
c2 

for all such t~, t 2. 

Fix tl, t2E(0 , ~ )  with [h - t2 [  < 2z~ and for j = l ,  2 let zj=z(tj), sj=s(tj), Oj=O(sj)and 

%=~(sr where O(s) and ~(s) are as in the proof of Lemma 3. Since 

dk 
de ds (z) d2 

for zeta, O(z) is decreasing as a function of s. Suppose that  s2<--.s r Then 

q(z~) < dz2) < c~ c-~ bq(z2) 

and (14) holds. Suppose next that  8 1 < 8 3  . Then 

while 

O(z1)-O(z2)= fsi~ (-~8) d8<<- ~2 (82-81), 

s 2 - s l  = d~o= Q d~v~< 0(zl)]~2- ~1]. 
j~, \dq;/ 

Then (12) and (13) imply that  

+ IO,-O,I 
and we obtain 

q(z~) - 0(z2) -<< 4c~2 dzl) ,  

from which (14) again follows. Hence the proof is complete. 

We conclude this section with a result similar to Proposition 2. I t  implies tha t  the 

image of a logarithmic spiral under a conformal mapping, which is nearly a similarity, is 

again a spiral. We require first the following result. 
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L~M~A 4. Suppose that ~ is an analytic arc with the representation z=z(t) where 

z '( t) .O, and suppose that / maps a neighborhood o /~  con/ormally into C. Then ~* =/(a) is an 

analytic arc with the representation w=loz(t) and 

/I"(~) f (t) 
k*(l(z))[ l'(z) l - k(z) = Im ~ / ~  (t) I/' 

k 5 dk ( ~'(t) 2 ) (](~))ll'(z)l ~ -  ~ (z) = ~m Ss(~) ~ ,  

where k, Ic* denote the curvatures and s, s* the arclengths ol g, ~* in the direction o/increasing t. 

Proo 1. I] w(t)=/oz(t), then w'(t)=/'(z)z'(t)=~O and 

w"(t) z"(t)_/"(z) z'(t), sa t )  - sz(t) = ss(~)z'(t) ~, (15) 
w'(t) z'(t) l'(z) 

where z=z(t) and where Sw and Sz are defined exactly as in (1) with the differentiation 

now taken with respect to the real variable t. Then 

k*(w)[f '(z)[-~(z) = I m  \ - ~ i  z -~?  [z'(t)[-~ (16) 

by elementary differential geometry and 

~ .  (w)]f ( z ) ] 2 - ~  (z)-~ Im (S~(t)-  Sz(t))[z' (t)] -u (17) 

by Exercise 3 on p. 21 of [3]. The desired conclusion now follows from (15), (16) and (17). 

Lw~MA 5. Suppose that b, c~, c~, dl, d 2 and o~ are as in Lemma 3 and that b*E(b, co). 

Then there exists an s > O, depending only on b*, c 1, c 2, dl, d2, with the/ollowing property. 

I / I  maps a neighborhood o I o~ con/ormally into C, il l(z)-~l and 0 as z-+ l and 0 on a, and i 1 

zf(z) I z~/"(z) I z ' t"(z)  / ( z ) - I  <~, l(z) <s,  ~ <<.s (lS) 

/or zEo~, then o~*=/(~) is a b*-spiral /rom 1 onto O. 

Prool. By hypothesis we can choose ~ e (0, mLa (Cl, dl) ) so that  

4~(d2  + ~)  < (cl - ~)2, (c 1 - ~ )  (c~ + ~) 
(cl - ~)~ - 4~ (d2  + ~)  < b*. 
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Fix eE(0, �89 so that  (4+2c~)t~<~ and (20+6d~)~<~, and suppose tha t  / satisfies the 

hypotheses of Lemma 5. Then ~* =/(~) is an analytic open arc with 1 and 0 as endpoints. 

I f  w ~ * ,  then z=/-l(w)~o~ and (18) implies that  

zV(z) < 2~, 
l'(z) t'(z) 

Hence we obtain the inequalities 

and 

Ik*(~)l~l-k(z)Hl<l/(~) Ik*(/(~))l/'(~)] - k(z)l § [[/(~) l'(z) 

<21~l ~)[+2~l~lk(~)<~ 
1 (z) 

I I ~(~) 

dk* <~ /(z) 2 ~ (/(z))lf(z)[ 2 dk (w) ~ ~k * / ~  _1~1 ~ )dk(~ 

from Lemma 4, where k* and s* denote the curvature and arclength of a*. Thus 

dk* (w)lwl2 <~ d2 + ~l Cl - ~l <. k*(w)lwl <. c2 + ~, d~-  ~l <~ ds- ~ 

for w E ~*, and the desired conclusion follows from Lemma 3. 

3. Proof  of Th eorem 2 

For each aE(O, ~ )  let 

~1 = { ~ = ~ - ~  re(0, co)}, ~2 = {~: -~e~l}, 
# = {z= +i~c-a+,),: t e ( - ~ ,  ~)}u {0, ~}, 

Then fl is a Jordan curve which separates ~1 and ~2. Let  Dj denote the component of 

-/~ which contains ~ and set D = ~ - 7 .  Then D is a simply connected domain of hyper- 

bolic type which contains D 1 U D~ and hence ~x [ ~ .  

Now suppose tha t  a 6 (0, 1/8~) and tha t  / is conformal in D. We shall show tha t  there 

exists a 0 =0 (a )>  0 such t h a t / ( D )  is not a Jordan domain whenever [[S~[[D ~<~; for this we 

may  clearly assume tha t  / is normalized so that  it fixes the points 1, - 1, ~ .  The argument  
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then consists of three steps. First in Lemma 8 we show there exists a ~2 >0 such that  

/(~1) and/(~2) are b*-spirals with b* E (1, 2) whenever IIS~IID ~(~2- Next in Lemma 9 we show 

there exists a (~a>0 such that  the points onto which /(~1) and/(~2) converge must lie 

in {z: ]z[ ~<~} whenever I[StlID<~6a. Finally set (~=rnin ((~, (~3). Then Lemma 1 implies 

that/(~r and/(~r converge onto the same point and hence that  /(D) is not a Jordan 

domain whenever II Sill. 
We begin with an application of Ahl~ors' extension theorem [1] to the domains 

D 1 and D~. 

LEMMA 6. There exists a (~1 =~x(a) >0 with the/oUowingloroperty. I / / i s  con/ormal in D 

a n d / /  J]Sf[[D<(~I, then/or j = l ,  2 the mapping/j=/]D~ has a quasicon/ormal extension gj to 

fJ and 

K(gj) ~< (1 --c]ISilID) -1, (19) 

where c =c(a) and K(g~) denotes the maximal dilatation o / g r  

Proo/. Lot 

h(re~O) = ra e ~(~176 ~) (20) 

for rE(0, ~) ,  and set h(0)=0 and h ( ~ ) = ~ .  Then it is easy to verify that  h is a K- 

quasiconformal mapping of C, where K = a +  (2/a), and that  h maps the imaginary axis 

onto ft. Thus ~Dj=fl is a K-quasicon~ormal circle. By the above mentioned theorem of 

Ahlfors, there exists a ~1=~1(a) such that  each b conformal in Dj with HSIjHD~<~ 1 has 

a quasiconformal extension gj to C, where 

and c=e(a). (For this last estimate see p. 22 in [10] or p. 132 in [2].) 

Now suppose that  / satisfies the hypotheses of Lemma 6 and let / J=/I  Dj. Then 

since ~, ~<QDj in D j, 

Thus / j  has a quasiconformal extension gj to C satisfying (21), and (19) follows directly. 

Remark. If t is con/ormal in D with [[SIIID~ 1, then Lemma 6 implies that  b=/ID  
has a homeomorphic extension to Dj (J {0} and hence tha t / (z )  has |fruits as z--~0 in D 1 

and as z-~0 in D~. We shall denote these limits by/1(0) and/~(0), respectively. 

We require next the following consequence of a distortion theorem due to Teichmiiller 

[13]. 
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L ~ M A  7. For each ~ > 0  there exists a KI=KI(~)E(1, ~ )  with the/ollowing property. 

I / g  is a sense preserving quasicon/ormal mapping o/C with K(g) ~ K 1 and i/ g /ixes three 

points Zl, z~, co, then 

Ig(z)- l (22) 
/or z with I z -  Zl ] < ]z 1 - z 2 l" 

Proo/. Let ~ and a denote respectively the hyperbohc metric and distance in G = C -  

{0, 1, ~ }  and set 

b = i n f { e ( z ) : z e G A B } ,  B = { z :  [ z l<2} .  (23) 

Then ~ is positive and infinitely differentiable in G and ~(z)->oo as z-+0 or 1. (See, for 

example, p. 51 and p. 246 in [12].) Hence bE(0, oo). Set 

K 1 = exp (2b min (~, 1))e (1, oo). 

Now suppose that  g is a sense preserving quasiconformal mapping of C with 

K(g) <~K1, and suppose tha t  g fixes the points 0, 1, ~ .  Then by  the above mentioned 

theorem of Teichmiiller, 

a(g(z), z) <~ �89 log K(g) ~< b min (~, 1) ~< b 

for zEG. (See pp. 29-31 in [13].) I f  [zl <1,  then (23) imphes tha t  

~(g(z), z') = inf f Qds ~ inf f ~,nBbds >~ b min ([g(z) - z[, 2 -1z]), 

where the infima are taken over all rectifiable arcs co joining z to g(z) in G. Hence 

Ig(z)-z I =mm 2-I 1) < min (~, 1) ~<~ 

for [ z [ < 1 and we obtain (22) for the specia ! case where z 1 = 0 and z 2 = 1. The general case then 

follows by  applying what was proved above to the mapping 

h( z )  = g(z(z~ - z l )  + Zl )  - Z l  

Z 2 - -  Z 1 

Remark. Lemma 7 also follows from a more elementary contra-positive normal family 

type argument. However this second method does not yield an exphcit estimate for K 1 in 

terms of U. 

LEMMA 8. For each a E(0, 1/8~) there exists a (~=~(a)E(0 ,  81] with the/oUowing pro. 

perry. I / / i s  con/ormal in D with HSSHD 45Z and i / / f i x e s  co, then/or ]=1, 2, a* =/(at)is a 

b*-spiral onto/j(O) where b* 6(1, 2). 
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Proo/. Set cl=c~=(a~ + l) -~, dl=d2=a(a~+ l) -1, 

cIc2 - (1--4~a)- le(1 ,  2), 
b = c~ - 47ed~ 

and fix b* E (b, 2). Next let s be as in Lemma 5, set 

= ~er 3, r = �89 dist (1, ~D1) < �89 

and choose 62E(0,61] so that  (1-c6~)-1-~<K1, where c=c(a) and KI=KI(~)  are as in 

Lemmas 6 and 7. Then 62 depends only on a. 

Now suppose that  / satisfies the hypotheses of Lemma 8. Then ~ = / ( ~ i ) ~ a n d  

~ =](3) are analytic open arcs with endpoints/(1),  /1(0) and ] ( - 1 ) ,  ]~(0) respectively. 

We shall show first that  a~ is a b*-spiral f rom/(1)  onto/1(0). By Proposition 2 we may 

assume without loss of generality that  /(1)=1 and/1(0)=0.  

Let gx denote the quasiconformal extension o f / 1 = l I D 1  to ~J given by Lemma 6, fix 

z~ E a~ and set 

h(Z) = gl  (zl z -  ) 
gl(Z1 ) " 

Then h is a sense preserving quasicolfformal mapping of C, K(h)<~K 1 and h fixes the 

points 0, 1, ~ .  Hence 

l h(~)-z  I < ~ (24) 

for Jz-11 <1 by Lemma 7. Since ~(z)=zl, z maps D 1 onto D 1,/(zlz)=gl(zlz ) for zCD 1. 

Hence h is analytic in D 1 and 

/(zl) = l h ' ( 1 ) - ]  2~J~ z - l L  ~ w - ~ r < s  

by (24), where eo is the positively oriented circle {z: [ z - l l  = r  }. Similarly we obtain 

[z~/"(zl) 2~ z~ fl#(zl) 6~] 
/ - ~  <~ r- ~ <s, /(Zl ) < .~  =e. 

Then (5) and Lemma 5 imply that  :r is a b*-spiral from 1 onto 0. 

Next let g(z)=/(-z) .  Then g is conformal in n with ]]Sa]JD ~62 and g(oo)= co. Hence 

o:~ =g(oh) is a b*-spiral by  what was shown above and the proof is complete. 

L ~ ~MA 9. For each ~ > 0 there exists a 6 3 ~ 63(a , ~)E (0, 61] with the/ollowing property. 

I / / i s  con/ormal in D with I]s, Ilo ~63 and q / fixes 1, - 1, r then I/l(0) [ <~ and [/2(0) I ~<e. 
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Proo 1. Set ~ = m i n  (e/4, �89 and choose ~aE(0, (~1] so that  (1-c~a)-2~<Kz, where c and 

K,  are as in Lemmas 6 and 7. Then (~a depends only on a and e. 

Now suppose that  I satisfies the hypotheses of Lemma 9 and for 1" = 1, 2 let gj denote the 

quasiconIormal extension of I~=IIDj to C given by Lemma 6. Then g=g2og~ 1 is a sense 

preserving quasiconformal mapping of C with K(g)<~K1. If zoEfl-  ~, then for j = l ,  2, 

zoED j and 

gj(Zo) = lim gj(z) = lim lj(z) = l(z0), 

where the limits are taken as z ~ z  o in Dj. Thus g fixes points in f l - 7  and hence, by 

continuity, the points i, - i ,  0% Thus 

by Lemma 7. Set 

[g (1)-11 = I g ( 1 ) - 1 1  < 2n, 

2 g2(1)-  1 
h(z) = g2(1) + ] 92(z) g2(1) + 1" 

Again h is a sense preserving quasiconformal mapping of C, K(h) <~ K 1 and h fixes 1, - 1, c~. 

Thus [h(0)[ ~<2# by  Lemma 7 and 

112(0) I = I g2(0) ] < �89 l g2(1) + 1 [ I h(0)] + �89 l g2(1) - 11 ~< e. 

Finally applying what was proved above to the mapping - 1 ( - z )  yields the inequality 

Prool o] Theorem 2. Suppose that  aft(O, 1/Sxe) and set 

(} = rain ((~2(a), ~a(a, ~)) ~< ~Z' 

where d2 and ~a are as in Lemmas 8 and 9. Next suppose that  ] is conformal in D with 

][SIIID<---d. We shall show that  ](D) is not a Jordan domain. By following [ by a M6bius 

transformation, we may assume without loss of generality that  / fixes the points 1, - 1, ~ .  

Now Lemma 8 implies that  ~ : / ( ~ i )  and ~2 * =1(~2) are disjoint b*-spirals from 1 onto 

]z(0) and from - 1  onto/2(0), respectively, where b*E (1, 2). Next Lemma 9 implies that  

]11(0)l ~<{; and [1~(0)1 <~. Thus 

[11(0) _ 13(0)[ ~< ~_ < 1. min (] 1 -/z(O) [, [ - 1 - 12(0) ]), 
O" 

and we conclude from Lemma 1 that /1(0) =/2(0). 

Next let B={z:  [z] <1} and for z e B  set g(z)=h ~ z+-s , where h is the quasicon- 

formal mapping of C defined in (20) in the proof of Lemma 6. T h e n / o g  is a quasieon- 
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formal mapping  of B onto /(D) and  ]og(z)>]l(O), ]2(0) as z-*i, - i  respectively in  B. 

Hence f(D) cannot  be a Jo rdan  domain,  since otherwise [og would have a homeomorphic 

extension to B and  f1(0)~2(0).  
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