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1. Introduction 

Suppose tha t  I is a nonconstant entire function. Then a classical theorem of Iversen 

[10] asserts tha t / (z )  has oo as an asymptotic  value. In  other words there exists a pa th  P 

going from a finite point z 0 to oo in the complex plane such tha t  

l ( z ) ~ ~  a s z ~ o o  a longF.  (1.1) 

I t  is natural  to ask whether this result still holds if / has few poles in a suitable sense. 

Suppose first tha t  / is meromorphic, transcendental and has only a finite number  of poles 

in the open plane. Then 

l(0 = F(z) + R(z), 

where R(z) is the sum of the principal parts  of l(z) at  the poles and F(z) is an entire func- 

tion which is also transcendental. Thus (1.1) holds for F(z) and so for/(z).  

I f  we ask for stronger results than this, positive theorems become scanty without extra 

hypotheses. The following theorem is due to Anderson & Clunie [1] 

THEOREM A. Suppose Sha~ l(z) i8 meromorphic and such that 

T(r, 1) -~ 0 (log 0 2 as r-~ 0% (1.2) 

and/urther that ~ is deficient in the sense o/Nevanlinna, i.e.Q) 

1 -(~(oo)= ]Jm N(r, ~ ) <  1, 
, ~  T(r,/) 

Then oo is an asymptotic value o//(z). 

(1.3) 

(1) We use the standard notation of Nevanlinna Theory. See e.g. [7, Chapter 1]. 



116 w.K.  HAYMAN 

More strongly Anderson & Clunie proved that  under the hypotheses of Theorem A 

(1.1) holds for almost all rays F through the origin. 

I t  is natural to ask whether the condition (1.2) can be weakened. Ter-Israelyan [14] 

has given examples to show that  the conclusion of Theorem A is false in general if we 

assume merely that / (z)  has order zero, instead of (1.2). Gol'dberg & Ostrovskii [5, p. 245] 

give examples of functions of/(z), such that  

and 

N(r, o~) = 0(r  k) (1.4) 

lim T(r,/) >0 ,  (1.5) 
r-*O0 r~ 

where �89  and such that  co is not asymptotic. 

2. Statement o |  results 

In  this paper we prove the following two theorems. 

THEORWM 1. Given any/unction v2(r), such that 

~p(r) -+ co, as r-~ 0% (2.1) 

there exists/(z) meromorphic and not constant in the plane, such that 

/or all su//iciently large r and 

T(r , / )  < ~v(r) (log r) ~, (2.2) 

~(co,/)  = 1, (2.3) 

but such that co is not an asymptotic value o//(z). 

Thus co is deficient, even with deficiency one and/(z)  only just exceeds the growth 

prescribed by (1.2), but the conclusion of Theorem A fails. Theorem 1 sharpens the examples 

of Ter-Israelyan [14] and shows that  Theorem A is essentially best possible. 

I t  turns out that  the behaviour of the functions of Theorem 1 is essentially associated 

with irregular growth. We can show that  functions satisfying (1.4) and (1.5) where 

k <inf  (4, �89 do indeed have oo as an asymptotic value. More precisely we prove 
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TH~,OR~,M 2. Suppose that !(z) is meromorphic and not constant in the plane and that 

/or some a in the closed plane 

lim ~T(r, !) - ~-r 11~ ~ o  N(t, a) dt~ 

Then a is an asymptotic value o/!(z). 

COROLLARY 1. Suppose that/or some K <  0% we have 

r112 ~o T(t, !) dt 
lim - -  K < oo 
r ~  2T(r, l)  Jr t 312 " 

(2.5) 

Then i/8(a, !)> 1 - K -1, a is an asymptotic value o/ / .  

COROLLAaV 2. I/ 
lim T(2r,/)  1, 
r -~  T(r,/)  

then any deficient value o / / i s  asymptotic. In  particular the conclusion holds under the hypo- 

thesis (1.2). 

We shall see tha t  under the hypothesis (1.2) a significantly weaker condition than  

deficiency suffices to make a asymptotic.  

C o R o L L A Ir Y 3. I / f  has very regular(1) growth of order ,~, where 0 <,~ < �89 and O(a,/) = 1, 

then a is asymptotic. I / / h a s  per/ectly regular(1) growth the conclusion holds/or 5(a, /) >22. 

COROLLAI~Y 4. I / / o r  some •, such that 0<~t< 1, we have 

0.<lira lim T h__ 
then a is asymptotic. 

The corollaries are all almost immediate deductions of the main theorem. Collingwood 

[4] and Novanlinna [12, p. 259] conjectured tha t  deficient values might be asymptotic.  

The first counterexample was given by  H. Laurent-Schwarz [11]. However, Theorem 1, 

Corollary 2, shows tha t  the result is true for functions of order zero and smooth growth. 

This result also contains Theorem A as a special case, except tha t  the asymptotic  pa th  F 

need no longer be a ray  in this case. An example of this will be given in Theorem 7. Corollary 

4 gives a positive answer to problem (2.8) of [8]. The question was asked whether (1.4) 

and (1.5) imply tha t  oo is asymptotic  if k<�89 and Corollary 4 shows tha t  this is so. 

(1) These concepts are due to Valiron [15]. 
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3. Some examples 

I n  order to  prove  Theorem 1, we shall construct  meromorphie  funct ions as products .  

I n  order to  discuss the  factors  we need the  following simple 

then 

LEM~A 1. I / k  is an integer, k > 2 0  and 

1 + {2(z+ 1)13) ~ 
Pk(z): {1 + (2/3) k) (z + 1)' 

(i) p , ( o )  = 1, 

(ii) N(r, c~,Pk)<. 2--~N(r,O,Pk), 

(iii) [P,(~)l<~, for I~+11=~. 

0 < r < ~  

The  first  result  is obvious. Nex t  we note  t ha t  Pk(z) has simple zeros where 

2(z + 1 ) _  e(2,+l)zd/~, v = O, ~ 1, ~ 2 , . . .  
3 

W e  write Or = (2v + 1)~t/k, so t ha t  the  zeros occur a t  

z, = ~e ~ - 1. 

We note  t h a t  

Iz,,I = 1 � 8 9 1 7 6  < �89 < 1 

10.1 < i  i.e. ~ 12,+11 <~/(3~). The interval Ixl <k/(3") contains at least ~ / (3 . ) -1  
dist inct  odd integers 2 v + 1 ,  i.e. a t  least  k/20, for k>~20. Thus  n(r,O)>~k/20 for r>~l.  

Since n(r, r162 = 0  for r<l ,  n(r, ~ )=1 for r>~l, we deduce t h a t  for Pk(z) 

n(t, ~)< ~n(t,O), O < t < ~ .  

On dividing b y  t and  in tegra t ing f rom t = 0 to  r, we deduce (ii). 

I t  remains  to prove  (iii). W e  no te  t h a t  for [ z + l ]  =~, we have,  since k~<20, 

1 + (t" 9" IP~(~:)l < .{1§ (~)"} (~) < ~{1 § (~;,o~. < ~(1 + ~)=  ~. 

This proves  (iii) and  completes  the  proof  of L e m m a  1. 
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We now choose sequences of positive numbers r r and of positive integers kr, and q .  

and set 
[ ~z qv 

P(z)=  ~[ Pk~[--| �9 (3.1) 
v~l \rv] 

We shall see that  if the above sequences are suitably defined the product P(z) converges 

to a meromorphic function for which oo is a deficient but  not an asymptotic value. We 

divide the proof into a number of steps. 

3.1 Subsidiary results 

Let  r v be positive numbers and qv, kv positive integers, for v >/1, which satisfy the 

follo~dng conditions 
q~ = r~ = 1, (3.2) 

and for v ~> 1 

r~+-'--!1 >/10 7, (3.3) 

< ( r~+ll 1 r~+l/ log (3.4) 
20<k~ 20000 r~ / -~-~/" 

100k~ log (rv+l~ < qv+_ 11< 200k~ log (r~+l I . 
\ r ~  l q~ \ r ~ l  

(3.5) 

In  view of (3.3) the last term in (3.4) is greater than 30. We assume that  qv, rv and kv_ 1 

have already been chosen. Then if r,+~ is chosen to satisfy (3.3) a choice of kv is possible to 

satisfy (3.4), and then a choice of qv+l is clearly possible to satisfy (3.5). Thus q .  rr and k v 

can be chosen inductively to satisfy the above conditions. We shall show that  in this case 

the product P(z) has the required properties. 

Before proceeding we need some inequalities. 

L~MMA 2. I /k~ ,  q .  r~ satis]y the above conditions then we have 

and 

q~rv < 100 q.+lrv < q. (3.6) 
~>. r, 99 r~+l 99' 

~ k~q~ log (r~) < g" (3.7) 
~<~ ~ 99" 

In fact we deduce from (3.5) and (3.4) that  

qv+l( 1 r,+l i .e .  q~+l< I q~ 
q~ 100 r~ ' r~+ 1 100 r~" 
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Thus 

v=/~+l rv rg+l v=g+l 
(100),-~+a = 

100 q,+x < 1 qu 

99 r~+ 1 99 ru' 

and this proves (3.6). 

To prove (3.7) we write 

Then  (3.5) shows tha t  

Thus for v </~ we have 

�9 [rv+l~ 

1 
k, qvO,< ~oq,+l. 

q,k,< (100),_ u 1 
q, (Or ~+1... ~0-1) (kv+l... kt,-1)" 

Also (~v > 2, in view of (3.3). Thus if 

we have 

= m a x  (~s, 

~t-1 

(~v (~v ~I . . .  ~ . -1  >/2"- ' -1  ~ ~> (~t -- v) (~ >~ ~ ~s = log (r./r~). 
$=y 

Since the  kv+ 1 a r e  all greater  than  one we deduce t h a t  

Thus  

q . k . <  (100) "-" 

qu log (r~/r,)" 

q,k, log (ru/r,)< ~ (100)'-"1%< q-" 
,<, ,=1 99" 

This proves (3.7) and completes the  proof of Lemma 2. 

We next  need some more inequalities for Pk(z) 

and 

L ~ M ~ A  3. We have 
(3.s) 

(3.9) 
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To prove  the  first  inequal i ty  we write 

so t h a t  

1 + (~)k+ (~)~{(z + 1) k -  1) 
Pk(z) = {1 + (])k} (z+  1) ' 

(w 1 { 2 k } 
Pk(z)--  1 = (1 + (~)~) ( z+  1 ) ( z + l )  ~ ~{(z+ 1 )~-  1 } - z  " 

Suppose now t h a t  ]z] = }. Then  

6 2k 7k 62k+17k 
ipk(z)_]l.<<~{(~) ((~) + 1 ) + 1 } <  5 3 ~ 6 k k~=~2_ . (~ )k+~< �88  

since k ~> 20. Thus 

co 

] log P~,(z)] = I log {1 + (Pk(z)- 1)}l < ZIP,,,(z) - 11~< ~ 4-,= ~. 
v=l  v= l  

Hence  in view of Schwarz ' s  L e m m a  we deduce (3.8). 

Nex t  if I zl >/6, we have  

6 6 
Thus  

2 / ~ l ~ + a l X  ~ 2 ~+1 2~+17kl - ~ ' , ~ ,  ,~, < l ~ l ~  . le,~(~)l< f ; ~ i k - - - ~ -  ] =-~- ~+ 11~-~< g~6~ 1 [zl ~-1-~ {7,k-l[,.~lk-1 

This  proves  the  r ight  hand  inequal i ty  in (3.9). Similarly 

1 
I p~(z)l > 2(l + (~)~) (~)~l~ + 11 ~-~ 

>413) \ 6 ] 4 \  9 ] 

~ o ( l ~ - ~ ) k - l ( ~ ) k - l ~ ( ~ )  k-1 ' 

since k > 2 0 .  This completes  the  proof of (3.9) and  of L e m m a  3. 
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3.2 Properties of P(z) 

We are  now able to  p rove  t h a t  P(z) satisfies the  desired conditions. Because of its 

general i ty  we s ta te  our result  as 
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THEOREM 3. Suppose that Icy, q~, r~ satis/y (3.2) to (3.5) /or v~ l. Then the product 

P(z), given by (3.1), converges locally uni/ormly in the plane to a meromorphic /unction with 

the/ollowing properties/or # >~ 1. 

log ]P(z)]< -q~ i/ ]z+r~,] -5r"  (3.10) 
30' 4 

log IP(z)l> 2oq,, i/ Iz[=6r,. (3.11) 

�89 q~/c, log r -<T(r ,P)<lOOk~%log r i/ 6r,<r<~r,+l. (3.12) 
r~ r~, 

Further 

5(r ~> 1 - 20 lim (k;1). (3.13) 

In particular P(z) has no/inite or in/inite asymptotic values, but c~ is a de/icient value/or P(z). 

Suppose first that  

Iz l  = r ( 3 . 1 4 )  

Then for v > #  we deduce from Lemma 3, (3.8) that  

p z r 

Thus in view of (3.6) we deduce that  if 

then the product Q(z) converges uniformly from ~< gr/~+ 1 1  to a regular function without 

zeros which satisfies 
oo 

ilogQ(z)l<2r ~ q~<200q ,+ l r<  2 q~r (3.15) 
~=,+1 r~ 99 r,+l 99 r ,  

Thus P(z) is meromorphic in the open plane. 

Next suppose that  

where b and Vo are taken as fixed. Then in view of Lemma 1, (ii) we have 

N(r, oo,Pk.)<<. 2---~N(r,O, Pv.), v>~v o. 
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Thus  we have  as r-~ 0% 

N(r, oo, P(z)) = ~ ~V(r, o~, p~.) 

~0 2 0  ~ 
<. ~ N(r, co, Pk,) + ~ ~ N(r, O, Pk,) 

v=l  ~ v=l  

<~ k N ( r ,  O, P(z)) + O(log r) 

<~ ~ T(r, P) + O(log r). 

123 

Ev iden t ly  P(z) has infinitely m a n y  poles and  zeros so t h a t  

We  deduce t h a t  

i.e. 

T(r,P) 
l o g r  +oo ,  a s r - ~ c o .  

l i ~  N(r ,  ~ , P )  < 2 0  

r--,oo T(r,P) k ' 

2O 
O(oo,p)>~ 1 -  ~ - .  

I f  kr-~ 0% we m a y  t ake  k as large as we please and  obta in  ~(co, P ) =  1. Otherwise we 

m a y  t ake  

1 1 
k = l i m  k~, 7 = 1 ~  - 

so t h a t  k is an  integer and  k >/21 in view of (3.4). Thus  we again  deduce (3.13). Thus  (3.13) 

holds in every  case and  since 

1 
a ( ~ , P ) > ~  2-2' 

P(z) has  oo as a deficient value. 

Suppose nex t  t h a t  

so t h a t  

]z+r~l = 5r~ 
4 '  

r--u ~< r < 9r--u (3.16) 
4 4 "  
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Thus (3.14) and so (3.15) holds. Using Lemma 1 (iii) we deduce that 

log lP(z ) [<%log9+ 2~,__+ L ~1 logFPk,(r~) " 
vv r~ ~= 1 

Using (3.9) and (3.16) we deduce 

1 r 

log IF(z)[ < qu{log ~0+~}+ ~ t q , ( k , -  l ) l o g ~ .  

Also in view of (3.3) and (3.16) 

Thus (3.7) yields 

log r <  log ru+ 1 < 11 1 r_u 
r~ r. ~ ~  

/~-1 1 r <  11 qu _q~ 
q.(k.- 1)  b'9-9: 90" 

We deduce that 

v<ju. 

1 _ _ 1 _ _ 1  log[P(z) l<q~{log~+l+~}<-q.{r6  ~ ~ } <  q~' 
30 

This proves (3.10). 

Next suppose that 

6r#<~r<~r~+ 1. 

Then (3.15) and (3.9) yield 

log [P(z)[>~ ~ q , (k , -1 ) log  ( r )  

Setting r = 6rg, we deduce 

which proves (3.11). 

2 q,r 
99 r~ 

r 2 r 

{ log ]P(z)] ~> qg 20 log 3 -  ~ > 20qg, 

(3.17) 

Since every path r going to r meets both the circles ]z ] = 6r~ and [z + r# I = ~r~ for 

large it, it follows from (3.10) and (3.11) that  log IP(z)[ is unbounded above and below on 

F, so that  P(z) cannot tend to any finite limit nor to oo as z-+ oo in F. Thus P(z) has no 

asymptotic values. 

I t  remains to prove (3.12). We obtain first a lower bound for T(r, P). We note that  

P(z) has q~/% zeros on the circle 
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Thus  

n(r, O,P) >~q.k., r >~ ~ ,  

f r  dt 2r r 
N(r, O, P) >~ qz kz %,)12 7 = q" ku log 5rr. > �89 qu ku log r.-' 

since (r/rg) ~>6 > (~)a/2. Fur ther  

r 
T(r,P) >~ N(r, O,P) > �89 log ~ ,  

and this proves the  left hand  inequal i ty  in (3.12). 

To obtain the right hand  inequali ty,  suppose tha t  (3.17) holds. Ther~ for v <~/x, Pk~(z/r~) 

has no zeros in [z[ < �89 and at  most  k v zeros altogether.  Thus 

Thus  

N r, O, ~< = k~ log - - .  
rv r~ 

{ N(r, O, e(z)) < ~ kv q. log 2r = ~1  k.q. log - 
~=1 r~ r~ r~j  

In  view of (3.7) we have 

Using also (3.5) we deduce tha t  

k. q~ log r .  < q_~. 
~<~ r~ 99" 

k~q~< q" k~,q~, 
lOOO < ~<~ 10 000" 

Thus  in the range (3.17) we have  

N(r, O, P(z)) < q~ k~ q,(1 + 10 -~) log 2r 
+ r~ 

r 
< 2k. q~ log - .  

r .  

Nex t  in view of (3.9) we have in the  range (3.17) 

p z 



126 w.K. HAYMAN 

Thus 

i1 log ~ ~< - q ,  log k~ ~ < 2  - -  
,=~+~ ~=~+i r~ 99 r~+~ 

in view of (3.8) and (3.6). Thus 

r 200 r 
T(r, P) = N(r, 0, P) + re(r, O, P) < 2k, qg log ~ + - ~  q,+x r,+l" 

Also in view of (3.17), (3.3) and (3.5) we have 

Thus 

(.) /{ r/log ~ ~<r/z+l 6log \ ~ r ~ / /  r,+l/{51og (r"+l/rg)}<40kuqur'41qg+1 

T(r,P)<2kgq,(log~)(1 4000~ r r +~-}<lOOk~,q, log(~).  

This proves the right hand inequahty of (3.12) if r hes in the range (3.17) and completes 

the proof of Theorem 3. 

3.3. Proof of Theorem 1 

To prove Theorem 1, we show that  we can choose the quantities kg, qg and rg in 

Theorem 3 so that  kg-+ ~ ,  with # and hence ~(oo, p ) =  1, while at the same time 

T(r, P) <~(r) (log r) ~, r >1 ~r a, (3.18) 

where ~(r) is any function satisfying (2.1). To do this we choose 

k1=21 , kg=20#,  #~>2, 

and suppose that  qg-1, rg-x have already been chosen for/~ ~> 2. We then choose rg so large 

that  (3.4) is satisfied, i.e. 

r~_l/  ~ > 20 000k,, 

and further such that  

~o(r) > 5. 106~u2qg_ 1, r ~> ~rg. (3.19) 

This choice is possible in view of (2.1). We then define 

q~,=[lOOk~q~-llogrff~- ] , (3.20) 



ON I V E R S E N ' S  T H E O R E M  ~'OR MEROYIORPHIC F U N C T I O N S  W I T H  F E W  POLES 1 2 7  

where [x] denotes the integral part of x. Then 

100kg-I qg -1 l~ (rr~-_l) ( ) < q~ < 200k~_1 qg-1 log r ,  
r/t _ 1 

so that  (3.5) is satisfied. Thus (3.2) to (3.5) are all satisfied and so P(z) satisfies the con- 

clusions of Theorem 3 with 6(~ ,  P) = 1. Further we have from (3.12) 

T(r, P) < 100kgqg log r, ~rg ~< r < ~rg+ r (3.21) 

If r ~> 6rg this follows immediately from (3.12). If 

~ r ~ < 6 r ~  
6 

we deduce from (3.12) that  

T(r, P) <~ T(6r~, P) < 100]r log 6 < 100/c~q/, log r, 

since r>~r3>6. Thus (3.21) holds in this case also and so generally. Further we deduce 

from (3.20), for {r~<r-< 1 -~ ~r#+ 1, #>~3, 

100k~,q~ < 10 k.q._~ log 

= 4" 10S#~q~-i log ( ~ )  

< ~0(r) log r 

in view of (3.19). Now (3.18) follows from (3.21) and the proof of Theorem 1 is complete. 

3.4. Some turther examples 

We can use Theorem 3 to construct some other examples which will serve to illustrate 

Theorem 2. 

T H E 0 R E M 4. Given e > 0 and 0 < • < 1, there exists a meromorphic/unction P(z) having 

very regular growth o/order 2 and no asymptotic values, while (5( oo, P) > 1 - e .  

Theorem 2, Corollary 3, shows that  for 2<�89 the conclusion is not possible with 

6(r P ) =  1, nor if very regular growth is replaced by perfectly regular growth (see [15]). 

We assume e < 1, and choose a positive integer k, such that  

2O 
k , = k > - - ,  v = l  . . . . .  ~ .  (3.22) 

8 
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Thus  if P(z) can be chosen in Theorem 3, so as to sat isfy the  other  conditions of Theorems 

3 and 4, we shall have  

20 
(~(oo,P)~> 1 -  ~ -  > 1 -  s. 

Hav ing  chosen k, we define q to be a large posit ive integer and  set 

where a is given by  

q~ = q,-1, r v = a ~-I (3.23) 

q = a ~. (3.24) 

We check t h a t  (3.2) to (3.5) are satisfied. This is obvious for (3.2). Also (3.3) is equivalent  to 

and  (3.4) to 

Final ly  (3.5) is equivalent  to 

ql/~ >~ 107, (3.25) 

~ql/~ > 20 000k. (3.26) 
log q 

100k< ~q < 200/c. (3.27) 
log q 

All these conditions are satisfied if q is large enough. For  we can then  choose k to 

sat isfy (3.22) and  (3.27) and  since 2 < 1, (3.26) is a consequence of (3.27) for large q. Also 

(3.25) holds for large q. 

We  now deduce f rom Theorem 3, (3.12), t ha t  

k /t 1 ~q-  log6<T(r,P)<lOOkq'-llog6, 6r~<~r<~ 1 

Since T(r, P) increases with r, the  r ight  hand  inequal i ty  is val id also for 

and  the  left hand  inequal i ty  for 6r~ ~< r ~< 6r~+ r We deduce t h a t  

~fl- log6<T(r,P)<100kq"log ~ , r~<~r<~r,,+l, 

i.e. 

cl ~.+~ < T(r, P) < c~ r~ 
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where el, c 2 are constants depending on k and q. Thus 

cx<~ lim T(r,P) ~ l ~  T(r~P) <~c~, 

so tha t  P(z) has very regular growth of order ~ ([15]). This proves Theorem 4. 
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3.4.1. We have next  

THE OR E M 5. Given 0 <it < 1, there exists P(z) having regular growth o/order ~ and no 

asymptotic values, while at the same time ~( oo, p)= 1. 

We choose 
q, = q(~-l)l, r, = q(~-l)./a, 

where q is a sufficiently large positive integer. Then (3.2) and (3.3) are satisfied if q is large 

enough and also 

The conditions (3.5), (3.4) become 

r~+l/rv --~c~. 

l O O k ( 2 ~ - l )  log 2 q<qe~ l < 2 0 0 k v  

and 

( 2 v - l )  log q 
2 

20 000k, (2v - 1) log q < q(2~-l)/a 

and these are again compatible if q is large enough. Further  now k~-~ ~ with r and so 

~ (~ ,  P) = 1 in Theorem 3. I t  remains to prove only tha t  P(z) has regular growth of order 2. 

In  fact we have from (3.12) 

Thus 

log T(r, P) = (# - 1) 2 log q + 0(#), r~ ~< r ~< r~+ 1 

= ~ log r + 0 (log r) 1/2. 

log T(r, P) -~2, as r-~ oo, 
log r 

so tha t  P(z) has regular growth of order ~ ([15]). This proves Theorem 5. 

4. Functions of slowly increasing growth 

In  this section we provide an example to show tha t  under the hypotheses of Theorem 

2, Corollary 2, unlike those of Theorem A, there need not be radial asymptot ic  values. 
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We consider entire funct ions/(z)  such tha t  

T(2r, / )  
- - - - ~  I, O~S ? "-> oo . 

T(r , / )  

We provide first the following characterization. 

(4.1) 

T ~ o ~ M  6. iT//(z) is an entire /unction then/(z)  satis/ies (4.1) i / a n d  only i/  /(z) has 

genus zero and /ur ther /or  some/ in i te  a and hence/or every a, we have 

n(r, a) = o{N(r, a)} as r-~ oo. (4.2) 

Suppose first tha t  (4.1) holds. Then it follows from a classical result of Nevanl inna 

[12, p. 264] tha t  for all a outside a set of capaci ty  zero we have 

N(r, a) ,,, T(r, /) as r-~ oo. (4.3) 

We fix a value of a satisfying (4.3) and such that/(O)~=a. Then we deduce from (4.1) and 

(4.3) tha t  

N(2r, a) -~ 1. (4.4) 
AT(r, a) 

Thus 

n(r,a) log 2~< 12T n(t ,a)dt  N(2r,  a ) - N ( r , a )  =o{1V(r,a)}, 
j r  t 

which yields (4.2). We deduce tha t  for r 2 > r  1 > r0(s , a) we have 

N(r  2, a) I_ ~ n(r, a) dr r 2 
- < s log --, 

l ogN( r l ,  a) ~,1 N(r ,a)  r r 1 

i.e. 

_/~(r2,~) ~ l~(r1,a) (~2t ~. (4.5) 
\ r l /  

Thus in part icular  we deduce, combining (4.3) and (4.5) t ha t  

T(r2,/)  = O(r~) as r 2-~ o% 

so tha t  / has order and so genus zero. Thus the conditions of Theorem 6 are necessary. 

We next  prove tha t  the conditions arc sufficient. Suppose then tha t  / satisfies (4.2) 

for some value a. We m a y  without  loss of generali ty suppose tha t  a = 0 ,  since otherwise 
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we consider/(z) - a  instead of/(z). This will not affect (4.1) nor the genus of / .  We also write 

n(r) instead of n(r, 0). Then since/(z) has genus zero 

l ( z )  = a z  ~ 1 + , (4 .6)  

where z, are the zeros of/(z). I f  there are only a finite number of zeros then/(z)  is a poly- 

nomial and so (4.1) holds trivially. Otherwise 

T(r, /) -+ o~, 
log r 

and so if [o(Z)=/(z)/(azP), we deduce that  

T(r, /) = T(r, /o) + 0 (log r) ~ T(r, /o). 

Thus we may  suppose that  a = 1 and p =0  in (4.6). We ~Tite 

A(r)= inf log II( )l,  (r)=sup 
Izl =r Izl =r 

and use a technique due to Barry [2]. We have 

B ( r ) - A ( r ) ~  ~ log 

We proceed to estimate 

~i~.r | fo.r 1 + t/r~ dt 
{B(r)-A(r)}dr~<r ~1 ~ log ~ ~ .  

We consider separately the ranges r~ < 4r, and r, ~> 4r and denote the corresponding sums 

by  X1, ~2 respectively. Then in X1 we have(i) 

; f: r l§ dr< l+t/r~ dr l + x  dx H 2 
log ~ r log 1-t/r~ r = log ~ x - 2 "  

Thus 

7~ 2 
~1 ~< ~ n(2r) = o{N(r)}, 

(1) See  B a r r y  [2].  
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since (4.2) and hence (4.4) holds with a=O. Also in 22 we have 

8 t  
log t ~ / { 1  + t/~,~ < 2~ (~ + (�89 + (I)2 + "" ") = ~ 77" 

Thus 

f~" (1 +tlr,~ d* 8 f2r 8r 3 r. 
log t l - t l r J  7 <~J, dt=3rr; < r, 

Thus 

22 <~ 3r 2 1 _  3r dn(t) 
rv>4r r v -  r 

1 "~176 dr 
= - ~n(4r) + 3r Jtr n(r) 

~r ~ N(t)dt~ 
= ~  t J, t ~ J 

in view of (4.2). Using also (4.5) with e=�89 we deduce .that 

~t~i/2dt~ 
~==o{rN(r) f ;  tr] ~j=o(N(r)}. 

On combining this with (4.7) we deduce that  

(B(r) o{N(r)), 

Evidently 

a s  r - +  ~ .  (4 .8)  

A(r) < N(r) < T(r) <~ B(r). 

Hence (4.8) shows that  for all sufficiently large ju, there exists r~, such that  2 u ~<r~ ~<2 ~+1, 

and 

A(r~) >~ B(r~)- eN(r~) > (1-e)N(r~).  (4.9) 

Thus for any finite a, we have for ~u >~u(a), A(r~) > 1 § ]a I and so 

m(r~, a) = O, N(r/,, a) = T(r~) +0(1),  N(r~) = T(ra) +0(1). (4.10) 

Also for r~<r<r~,+l, we deduce that  

_N(r~) ~ N(r) <~ _N(r~+l) <~ N(4r~) ~ N(ra). 

N(r) <~ T(r) <~ N(rs~+l ) +0(1) ,~  N(r). 



ON IVERSEN'S THEOREM FOB MEROMORPHIC FUNCTIONS WITH FEW POLES 133 

Thus 
T(r) ,,~ N(r) 

as r-+ c~, so tha t  (4.4) with a = 0 leads to (4.1). Again (4.10) yields for any  fixed a, r~ ~< r ~< r~+ 1 

T(r~) +0(1 )  ~< N(rp a) <~ N(r, a) <~ T(r)+0(1) ~< T(4r~)+0(1) ,  

and  in view of (4.1), we deduce tha t  

N(r, a) ,,, T(r) as r -+ ~ .  

Thus  (4.4) holds for every a and  so does (4.2). This completes the  proof of Theorem 6. For  

fu ture  reference we also note t ha t  (4.9) leads to 

(1-e)B(r)  < (l +o(1))N(r), as r -~  
i.e. 

B(r) ~ N(r) ,~ T(r) as r -~  ~ .  (4.11) 

4.1. 

We  can now construct  our  desired example. 

THEOREM 7. There exists an entire/unction/(z) satis/ying the hypotheses el Theorem 6, 

but such that 

li_m I1( o + r P )  l = 0 (4.12) 
r ,, '-;*'00 

/or every/ixed complex z o and real O. Thus/(z) cannot have any radial asymptotic values. 

We consider the  sequence of rationals 

1,�89 I, �89 ~ ~  

and denote the  r th  member  of this sequence b y  0~. We set 

z~ = r~ 22~~ �9 = 1, 2 . . . .  (4.13) 

w h e r e  t h e  p o s i t i v e  n u m b e r s  r v a n d  p o s i t i v e  integers  p~ are to  be  d e t e r m i n e d  as fo l lows .  W e  

assume 

r I = 4, r~+l >~ r~, (4.14) 

and  then  define p~ inductively b y  Px = 1, 

[p~_, log rv] 
p~ = [ ( i ~ ;~ ,~  j ,  ~,~>2 (4.15) 

where [x] denotes the  integral par t  of x. 
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We now define/(z)  to be the  entire function of genus zero with zeros of mult ipl ici ty 

pp at  z = z v, and such tha t  1(0) = 1. Then 

r~ > 2 ~, log r~/> 2 ~ log 2, 
so tha t  

P. - - - - - > o o  a S  ~ - - + c ~ .  

a S  ~,' --> o ~  

Thus 

n ( r ,  0 ) =  ~ p~,,~p~, 
I t =  1 

and so we have for rg ~< r < r~+~ 

(4.16) 

n(r ,  o) ~ p~, 

and 
r 

N(r, O) ~1 p~ log r r = - > p ~ - i  l o g  - -  > 1 ~p~_~ log r 
= r t t  T v  - 1 

in view of (4.14). Thus (4.14) shows tha t  

I N(r ,0)  / 
~(r, o) = 0 t ~ J  

so tha t  

v ~ 1 Z v ]  

satisfy the hypotheses of Theorem 6, with a = 0  in (4.2). 

We suppose tha t  0 <0  < 2 ~  in (4.12) and  note t h a t  for any  positive integer q, we can 

find 0~ =p/q, such tha t  

r2=0~-01-< E. 
q 

Also v ~< 1 + 1 + 2 + ... + ( q -  1) < q2, so tha t  q > vl/2. Thus 

7~ 
} 2~0,  - O] < ~,.,., 

for infinitely m a n y  v. Wo set z', =% + r~e ~o, and deduce tha t  

r~ 

for some arbitrari ly largo v. 



ON IVERSE~N~S THEOREM FOR MEROMORPHIC FUNCTIONS WITH FEW POLES 135 

We now note  t h a t  in [z-z , [  <r,, we have,  in view of (4.11), 

log I[(z)l < B(2r~) < (1 + o(1)) N(2r~) < {1 + o(1)} N(r~) 
v-1 v-1 

= (1 + 0 ( 1 ) ) ~  ~ig/z log ~ < (2 + 0(1)) ~ ]9/~ log r~ < 3pv_ 1 log ru, 
p,=l- "1/~ p ~ l  

when r is large. Thus  by  Schwarz 's  l emma  we deduce 

log lI(z;)l < 3p~ ~ l ~ 1 7 6  t r, j 

< 3p~_1 log r~ -p~  log u 
4 

< - {~ § o(1)}p~_l log r, (log v) 1/~ 

in view of (4.15). This  inequal i ty  holds for a sequence of points  z'~=zo§ ~~ which tend  

to  co, and  this completes  the  proof of (4.12). I n  par t icu lar / (z )  cannot  t end  to co along a n y  

r a y  F. In  view of (4.9)/(z) cannot  be bounded on F and  so / (z )  has  no radial  a sympto t i c  

values. This completes  the proof of Theorem 7. B y  allowing r~ to t end  to co sufficiently 

rapidly,  we can in addi t ion satisfy (2.2). 

5. Proof of Theorem 2; a topologleal lemma 

We shall deduce Theorem 2 f rom the following result  which is essentially topological.  

LEMMA 4. Suppose that/(z) is a meromorphic [unction not having co as an asymptotic 

value. Then [(z) is bounded either on a path F going to co, or on the union o /a  sequence Fz~ 

o/analytic Jordan curves which surround the origin and whose distance/rein the origin tends 

to c~ with N. 

Let  z~ be the  branchpoin ts  of /(z), i.e. the points  where /'(z)=O. We assume t h a t  

I/(zn) t is never  equal to a posit ive integer.  I f  this condit ion is not  satisfied we consider 

hi(Z) ins tead of ](z) where a is a posit ive number  unequal  to the numbers  m/]/(zn)[ where 

m, n are posit ive integers. Le t  n be a posit ive integer.  I t  follows f rom our assumpt ion  t h a t  

the  set [/(z)[ = n  consists either of disjoint closed analyt ic  J o r d a n  curves or of J o r d a n  arcs 

going f rom oo to  oo. I f  there are any  such arcs L e m m a  4 is proved.  Thus  we m a y  assume 

t h a t  the  set ][(z)] ~ n  consists ent irely of closed analyt ic  J o r d a n  curves gv(n). 

Consider nex t  the  open set [](z) ] > n. We  distinguish two cases. Suppose first  t h a t  this 

set contains an  unbounded  component  Gn for every  n. Then Gn is unique,  since G~ clearly 

lies exter ior  to all the  closed curves gv(n). I f  G'~ were another  unbounded  component  of 
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I l l  > n  and z~, z'~ were points of G~, G'n respectively we could join z~, z'~ by  a pa th  no t  

meeting any  of the  gv(n) and on such a pa th  I/(z)[ > n, which contradicts  the assumption 

tha t  zn, z'~ lie in separate components  of I/(z)[ >n. Thus Gn is unique. Eviden t ly  G~+I~ Gn. 
Let  z n be a point  of Gn such tha t  Iz~] > n ,  I/(zn)[ >n .  Then zn+~EGn+x~Gn, so tha t  we can 

join z~ to zn+i by  a pa th  ~n in G n. Let  R be a fixed number  such tha t / ( z )  has no poles on 

]z I = R and choose n o so large tha t  

n 0 > R  and n 0 > m a x  II(z) l. 
Jzl=R 

Then, for n > n 0, 7n contains z~ where [zn [ >  R and  7n cannot  meet  [z [ =  R. Thus Yn lies 

outside [z] ~-R for n > no so tha t  ~ goes to ~ with n. Thus 

o0 

F =  U~'~ 
nffil 

is a pa th  from z 1 to ~ ,  and [/(z)[ > n  on 7n, so t ha t / ( z ) - -+~  as z - + ~  along F. 

This contradicts  our assumption t h a t  oo is no t  an asymptot ic  value of/(z)  and so this 

case cannot  occur. Thus, for some fixed n, every component  G~ of the  set [/(z)[ > n  is 

bounded. 

We m a y  assume tha t / ( z )  has bffinitely m a n y  poles, since otherwise the hypotheses of 

Lemma 4 imply  tha t / (z )  is rational, and finite at  ~ ,  in which case the conclusion is trivial. 

Since each component  Gv is bounded and each pole lies in one of these Gv there mus t  be 

infinitely m a n y  components  G~. The outer  boundary  g~ of G~ will go to oo as ~-~ ~ for 

fixed n. I f  g~ surrounds the origin for infinitely m a n y  v, we have established the  conclusion 

of Lemma 4. Thus we m a y  assume tha t  for ~ > ~0, g~ does not  surround the  origin. Choose 

R 0 so large tha t  the disk I z ] < R 0 contains g~ for v ~< v0. Then for R > R 0 the circle I z I = R 

cannot  lie in any  G~ since otherwise the outer boundary  g~ of G~ would be a curve surroun- 

ding the origin. We also assume tha t  [z [ = R does not  touch any  of the g~. 

Let  G~, ~ =~1 to ~ be those components  which meet  I z] = R. B y  our  construct ion 

�9 ~ >~o, so tha t  the origin lies outside each g~ for ~ ~> ~1 and so outside the corresponding 

components  G,. I f  E is the union of [ z ] = R and the  closures of the G~ for ~1 ~< ~ ~< ~2, then E 

is a compact  connected set and so the domains complementary  to E are s imply connected. 

Let  D O be tha t  component  of the complement  of E which contains the origin. By  construc- 

t ion the boundary  7R of D o is a sectionally analyt ic  J o r d a n  curve on which [/(z) [ ~< n. For  

7R consists of arcs of gv and of arcs of [z[ = R  on which [/(z)[ <n .  

Clearly 7n surrounds the  origin, since any  pa th  F going from 0 to ~ mus t  meet  I z I = R 

and  so goes outside D 0. Thus F meets 7R. Also, for any  positive integer M we m a y  choose 
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R so large tha t  G~ lies in I z I < R for v = 1 to M. Then ~1 > M and so ~ is far away  from the 

origin if R is large. Taking FN =~RN, where RN-~ c~, we obtain a sequence of Jo rdan  curves 

with the properties required by  Lemma 4 and the  proof of t ha t  Lemma is complete. 

5.1. An example for Lemma 4 

I t  is clear t ha t  i f / (z)  is bounded on a sequence of curves FN as in Lemma 4, then / (z )  

cannot  have co as an asymptot ic  value since any  pa th  going to co mus t  meet  the  F N for 

all large IV. On the  other  hand  / m a y  very  well be bounded on one pa th  and  go to oo on 

another,  so tha t  the first condition of Lemma 4 does not  by  itself preclude oo from being 

an  asymptot ic  value. This makes it natural  to  ask whether  the first condition can be 

omit ted  from Lemma 4. The following example shows tha t  this is not  possible in general. 

Example .  Let  

= { I  cos  -n. 
n=l  

Then / (z )  does not  have c~ as an asymptot ic  value, bu t / ( z )  is not  bounded on the union 

of any  sequence F~ of curves satisfying the conditions of L e m m a  4. 

We note tha t  if l Y[ ~>2, then 

1 [cos ( x + i y ) l  >1 l ( e l~ l -e  -I~j) > ~. 

Thus  the series Ior ](z) converges locally uniformly, and / (z )  is meromorphie in the plane. 

Also if z = x + iy,  where I Y - 4 n l  >~ 2 for every n, we have 

I/(z)l < 2. 
1 

I n  part icular  this inequali ty holds for y ~< 2, and for y = 4 ~ -  2, v = 1 to ~ .  Thus if I/(z) l > 2 

on a pa th  F going to  c o  we mus t  have 4 v -  2 < y < 4u + 2 on F for some fixed v >~ 1. Thus  F 

mus t  meet  the  lines x=mTe for some arbitrari ly large positive or negative integers m. 

I f  z=mT~+iy ,  where 4 v - 2 < y < 4 ~ + 2 ,  we have 

Thus 

Ices (z -4 i~) [  = cosh ( y - 4 v )  >~ 1, I I  cos ( z - 4 i n ) ]  >/~, n ~= ~. 

2"+ 
~=1 

Hence / (z )  cannot  tend  to  ~ as z - ~  on I ~, and c~ is no t  an asymptot ic  value of/(z) .  
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Suppose now that  F~ is a Jordan curve surrounding the origin, whose distance from 

the origin is at least 4N. Then F y must  meet the line y -  4N. On this line we have 

1�89 cos ( z -  4i~') I < �89 I ~ (cos z -  4in) I >~ ~, n # ~'. 
Thus 

I/(z) l ~ 2 ~ -  ~ t I cos (z - 4 in)  l ~ > 2 ~ -  2. 
n ~ N  

Thus 

sup Ii( )l 2 2, 
z ~ I~N 

and so/(z) is unbounded on U FN. 

Our example shows that  there exist functions/(z) satisfying only the first condition, 

but not the second condition of Lemma 4. 

5 .2 .  Q u a n t i t a t i v e  c o n s e q u e n c e s  oI L e m m a  4 

In  order to prove Theorem 2 we shall show that  the conclusion of Lemma 4 is not 

compatible with (2.4) when a = ~ .  We first need an inequality for the Green's function 

of a simply connected domain. 

LEMMA 5. Suppose that D is a simply connected domain containing the origin and let 

d be the distance/rom the origin to the complement o /D.  Then i/g(O, w) is the Green's/unction 

o/ D at the origin, we have/or w in D 

where 

log + ~ ~< g(0, w) ~< 2(] w [/d), 

1 + 2 ,  t < l  2(t) = log t 

~(t) = 2t -1/2, t >~ l. 

The first inequality is obvious, since D contains the disk [w]< d and g(0, w)~> 0 for 

Iwl >d. To prove the second inequality suppose tha t  ~=q(w)  maps D onto so 

tha t  ~v(0)=0. Then 

g(0,w) = log _~_1, . 

Let  

w = ~(~)  = a l ~  +a252 + ... 
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be the inverse function to ~ =~(w), so that  yJ(~) is univalent in ]~[ < 1. I t  then follows from 

classical results, [6, pp. 3 and 4] that  [a~] ~4d and 

Iwl< lalll~l_ lad 4d 
( i~ la l )  ~ (I I (log l/l~l) ~ ~1--2_ ~11~2)~ < 

Thus 

[ d \1/2 
log = g ( O , w ) < 2 [ ~ )  =X(Iwl/d), Iwl~>d. 

If ]wl <d, we may assume l al <e-", since otherwise Lemma 5 is trivial. Then 

Thus 

This proves Lemma 5. 

alibi 4d[~] e2dl~[. 
Iwl< ( 1 - ~  2) ~ ' <  (1-e  2) 2< 

log = g(0, w) < 2 § log ~ .  

We shall deduce Theorem 2 from the following more precise result. 

T~IEOR]~M 8. Suppose that/(z) is meromorphic in the closure D o/ a simply connected 

domain D containing the origin, and that I/(z) I <~ M < co, on the finite boundary F0 o] D. Let 

d be the distance/tom the origin to P0, which is assumed not to be empty. Then either 

m(d,/)<~log (M + 1) +dl'2 f i~  n(t, ~ ) d t  t3/2 , (5.1) 

where n(r, oo) is the number o/poles o//(z) in {Izl <r} n D or D is unbounded and (1.1) 

holds/or some path tending to oo in D. 

We assume without loss of generality that  the right hand side of (5.1) is finite, since 

otherwise there is nothing to prove. Thus if b~ are the poles of/(z) in D we have 

f :  t l  dn( t ,~ )  = ~ Ib~l " 2 < ~  
Ibvl>d 

Using Lemma 5 we deduce that  

g(z) = ~ g(z, b~) 
v 

converges uniformly in any bounded subset of D to a function which is harmonic in D, 
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except at the points b v and vanishes continuously on the finite boundary of D. Let aa(9) 

be the zeros o f / ( z ) - e  '~ in [z[ ~<d and set 

gv(z) = ~ g(z, a~,(~)). 
l* 

We define 
%(z) = log I/(z) - e ~ l  +gr -g(z)  - log (M + 1). (5.2) 

Then u~(z) is subharmonic i n / )  and ur <.0 on F 0. We now distinguish two cases. Suppose 

first that  ] (0)~ 0% and 
%(z)~<0, 0 < ~ 0 < 2 ~ ,  zeD .  (5.3) 

In view of Lemma 5 this leads to 

d 
log I/(0) - e 'vl + 5, log + l a.(~)[ g(0) < log (M + 1), 

i.e. 
log 1/(0) - e '~ I +N(d, e '~) ~< 9(0) +log (M + 1). 

We integrate the left hand side with respect to ~0 and use an identity of Cartan (see e.g. [7], 

Theorem 1.3, p. 8). This yields 

T(d, / )  <~ g(O) +log (M + 1). 

Next it follows from Lemma 5 that 

Thus 

]by[ ~<d( [bv]>d 
f~( d -  ) f~176 2 (dl 1/2 

= log 2 dn(r, oo ) + - dn(r, oo ) 
r Ja \ r /  

f~  a/2 /.co n(r, oo) dr = n(r,~_)dr+gr Ja -r~ " 

T(d,/) = re(d,/) + N(d, ] <~ N(a,/)  + d l'z f :  n(r,r 8/~0~ ) dr 

which is (5.1). 

If we write 
) = fr n(t, oo) dt 

N(r, 
30 t ' 

~- log (M + 1). 

we may write (5.1) in the equivalent form 

T(d, ]) <<. �89 f ;  N(r,.r s/2~ ) dr 

after an integration by parts. 

~- log (M + 1), (5.4) 
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We suppose next  t ha t  (5.3) is false. Since u~(z) is subharmonic i n / ) ,  D must  be un- 

bounded  in this case. We choose % such t h a t  (5.2) is false for some z in D and set 

v(z) = max (u~(z), 0), zED 

v(z)=O, zCD.  

Then v(z) is subharmonic in the  whole plane and no t  constant ,  and now we deduce f rom a 

theorem of Talpur  [13], t ha t  there  exists a pa th  F, going to  co, such t h a t  

v(z) -~ + ~ ,  as z-+ ~ along F. 

Since v(z)=0 outside D, F mus t  lie in D f rom a certain point  onward,  so tha t  we m a y  

assume t h a t  F hes entirely in D. Thus  

%(z)  -~ + ~ ,  as  z - *  ~ on  r .  

We recall the  definition (5.2) and note  tha t  g(z) > 0  in 0 and 

g~(z)-+O a s z - ~  i n D .  

Thus we deduce tha t  

log I / ( z ) - e ' ~ l - *  + ~ ,  a s  z - *  ~ along r ,  

and this yields (1.1). 

I t  is wor th  not ing tha t  in this si tuation we can actual ly prove ra ther  more. Since v(z) 
is bounded on a connected unbounded  set it follows f rom [3, Theorem 3], t ha t  

v(Izl) 

as z-~ oo along some pa th  F, where ~v(t) is any  positive increasing funct ion of t, for t >~to, 
which is such tha t  

f ~  ~p(t) dt 
- ~ - <  ~ .  (5.5) 

e 

Also since v(z) has bounded min imum on circles [ z [ = r, it follows from a result of Heins [9], 

t h a t  the limit 

lim T(r, v) 
r - - ~  rl l2 

exists and  is positive, where 

1 ~2,~ 
T(r, v) = ~ ,Io v(ret~ dO. 
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From this we deduce tha t  if/(z) is meromorphic  in the plane, / mus t  have at least order 1, 

mean type.  We can sum up by  saying tha t  if (5.1) is false then log + / must  grow at  least 

like [z [1/2 in an average sense and at  least like ~p(Iz I) along a pa th  in D, where ~fl(t) is any  

function satisfying (5.5). 

We have proved Theorem S with the  hypothesis  t h a t / ( 0 )  4= co. I f / ( 0 )  = co, we apply  

Theorem 8 t o / ( %  +z), where z 0 is small. I f  for some z 0 (5.1) fails to hold we again deduce 

(1.1). Otherwise we allow z 0 to tend to zero and then we deduce (5.1) for/(z) .  

5.3. Completion of proof of Theorem 2 

Suppose now tha t / (z )  is meromorphic  in the plane and does not  have ~ as an asymp- 

totic value. Then it follows from Lemma 4, tha t  ]/(z) ] <~ M on a pa th  I" going to ~ or on 

the  union of a sequence F~ of Jo rdan  curves surrounding the origin. Suppose e.g. the former 

holds and tha t  the pa th  goes from z 0 to co. Then for d > [z 0 ] the pa th  meets ]z [ = d. Hence 

there exists an arc of this pa th  joining a point  z~ =de ~ to  ~ and lying otherwise in lz] >d .  

Thus we m a y  apply  Theorem 8 and  in part icular  (5.1) or equivalent ly (5.4) with any  

d > [z0], which contradicts (2.4). 

Similarly if ]/(z)[ <~ M on the sequence F~ of Jo rdan  curves surrounding the origin, 

we obtain (5.4) with d = d~, where d~ is the distance from F~ to the  origin and this again 

contradicts  (2.4). Thus / ( z )  must  have ~ as an asymptot ic  value and Theorem 2 is proved 

when a = ~ .  I f  a is finite we apply  the above a rgument  with (/(z) - a )  -1 instead of/(z).  

5.4. Proof of the corollaries of Theorem 2 

We proceed to prove the corollaries of Theorem 2. Suppose then tha t  (2.5) holds and 

tha t  ~ =(~(a,/) > 1 - K  -1. Then we have as t-~ 

_N(t, a) < (1 - (5§ 

r1.,2 (oo N(t, a)dt r1~2 ;.oo T(t,/) dt {K(1 - ~) + o(1)} T(r,/) 
Jr -t ~-~ < { 1 - - ~ + ~  t ~2 " 

in view of (2.5). Since K ( 1 - d ) < l  and T(r, /)-->~ with r, we deduce (2.4). This proves 

Corollary 1. 

To prove Corollary 2, it is enough to show tha t  under  the hypothesis  of Corollary 2, 

we have (2.5) with K = 1. We recall f rom section 4 tha t  (4.1) implies (4.3) and (4.5) for some 

finite a and every positive ~. Thus, writing T(r) = T(r, /) ,  we have 

T(t )<~( l+s)T(r)  ~ , t>~r>~ro(~ ). 
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This yields for r > r0(s ) 

Thus 

f T  T(t) dt 
t.~/2 

< < . ( l + s ) T ( r )  ( ~  dt ( l + s ) T ( r )  
Jr t ~l~ ~ s) r ~l~ r ~ (�89 " 

rl/2 f 7  T(t) dt 1 + s 
l i m ~ )  t 3/~ ~ < l - 2 s "  
r---~(~ 

Since s is any  posit ive number  we obta in  (2.5) wi th  K ~ 1, and we deduce f rom Corollary 

1 t ha t  any  deficient value is asympto t ic .  

I f / ( z )  satisfies (1.2) i,e. 

l~m T(r,/) A <  
T-,oo (log r) 2 

we deduce t ha t  

1 ~.2 n(t,a) dt 
n(r, a) <. log-g r Jr ~ <" (4A + o(1)) log r. 

Thus  i f / (z)  is t ranscendental ,  we deduce t ha t  for every  a with a t  most  one exception 

and so 

N(r,a)  
log r 

n(r, a) 
_N(r,a) 

a s  r--> c ~ .  

Thus in view of Theorem 6, / (z)  satisfies (4.1) and  so every  deficient value is asymptot ic .  

However  the  condition (2.4) yields more  t han  thisl We have  

1~2 ~ N(t, a) dt 
T(r ' / ) -  lr  Jr -t~ 

= re(r, ~ ) -  *- ~ ~'~ { N ( t , ~ ) - N ( r , ~ ) ) d t +  
2 Jr t "~/2 0(1) 

= re(r, a) -- r 112 I "~ n(t, a) dt + 0(1) 
Jr  t ~/2 

re(r, a) - (4A + o(1)) r 112 f 7  
log tldt 

t31r2 

> m ( r , a ) -  (8A + o(1)) log r. 

Thus the  condition (2.4) is satisfied in this case as soon as 

lim m(r, a) > SA. 
log r 
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I f  a is deficient we deduce tha t  

so tha t  

W. K. HAYMAN 

m(r,a) 
lim - -  >0 ,  

T(r,/) 

m(r, a) = m(r, a) . T(r, /) 
l o g r  T(r,/)  l o g r  ~oo, a s r ~ c r  

We have thus proved Corollary 2 in a somewhat  stronger form. 

We next  prove Corollary 3. We recall (c.f. [15]) tha t / ( z )  has very  regular growth of 

order )t if there exist positive constants  c 1, c, such tha t  

clr~ < T(r) < c~rX 

for all sufficiently large r, where T(r) = T(r, /) .  This imphes 

Thus 

f ;  T(t) dt _ ~oo dt 2c~ ~-112 
t3,~ ~c~ Jr t 3 ~ - ~ = ( 1 - ~ )  - 

r 112 f ;  T(t) dt c2 
2T(r) t 3/2 " Cl (1-  24) K.  

Hence in view of Corollary 1, a is asymptot ic  if 

~ ( a , / ) > l - K  1 = 1  
c1(1 - 24) 

C2 

I n  part icular  the  conclusion holds if 8(a,/)  = 1. 

The example of Theorem 4 shows tha t  we cannot  in this corollary replace 3(a, f) = 1 

by  (~(a,/) > 1 - e, for e independent  of cl, c2. I f  / has perfectly regular growth [15], we m a y  

choose the  ratio c2/c 1 as near one as we please. I n  this case the  conclusion holds as soon as 

~ ( a , / )  > 1 - ( 1 - 2 4 )  = 24. 

I do not  know whether this conclusion is sharp, or whether  all deficient values are neces- 

sarily asymptot ic  for this class of functions. 

I t  remains to prove Corollary 4. We suppose tha t  

T(r,/)  N(r, a) 
(1  - 22) lim ~ = cl, lim r~ c2, 

r - ~ r  r - -~oo 
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where 0 ~< c 2 < c 1 ~< oo. T h e n  

r'l~ ~'~ N(t ,  a) dl 

J ,  ta/2 

< {~+o(1) lT(r , / ) ,  as r-*oo. 

Since c2/c 1 < 1, we deduce t ha t  (2.4) holds and  so Corollary 4 follows from Theorem 1. 
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