SIMILARITY OF OPERATOR ALGEBRAS

BY
RICHARD V. KADISON
University of Pennsylvania, Philadelphia, Pa., U.S.A.
Dedicated to M. H. Stone on his seventy fifth birthday

1. Introduction

When viewed in a certain light, Tomita's theorem (the main result of the TomitaTakesaki theory-see [3, 14, 15, 16, 17]) appears as the combination of a result on "unbounded" similarity between self-adjoint operator algebras and the special structure of a von Neumann algebra and its commutant relative to a joint separating vector. The main purpose of this article is to introduce and develop the theory of such similarities. (See section 3.) Our secondary purpose is to present a full proof of Tomita's theorem in the style mentioned. (See section 4.) In connection with this argument, we develop a new density result (Theorem 4.10). In section 2 we prove a bounded similarity result.

The author is indebted to the Centre Universitaire de Marseille-Luminy, the University of Neweastle and the Zentrum für interdiziplinaire Forschung Universität Bielefeld for their hospitality during various stages of this work and to J. Ringrose, M. Takesaki \& A. Van Daele, for important insights into the Tomita-Takesaki theory. Thanks are due to the NSF (USA) and SRC (UK) for partial support.

2. Bounded similarity

If \mathcal{H} is a complex Hilbert space and H is an operator on \mathcal{H} such that $0<a I \leqslant H \leqslant b I$, then H is bounded and $\mathrm{sp}(H)$, the spectrum of H, lies in [a,b]. In addition, H has an inverse with spectrum in $\left[b^{-1}, a^{-1}\right]$. If $\varphi(T)=H T H^{-1}$ for T in $\mathcal{B}(\mathcal{H})$, then φ is a bounded operator on $\mathcal{B}(\mathcal{H})$ and $\operatorname{sp}(\varphi)$ (relative to $\mathcal{B}(\mathcal{B}(\mathcal{H}))$) is contained in [ab-1, $\left.a^{-1} b\right]$. To see this, note that left multiplication by H on $\mathcal{B}(\mathcal{H})$ has the same spectrum as H, that right multiplication by H^{-1} has the same spectrum as H^{-1}, and that these two multiplications commute.

We employ the Banach-algebra-valued, holomorphic function calculus (see, for example, [1 ; Chapter VII]) to discuss holomorphic functions f of an element A of a Banach
algebra \mathcal{B}. If f is analytic on an open set containing $\mathrm{sp}_{\mathrm{g}}(A)$, we define $f(A)$ to be $(2 \pi i)^{-1} \int_{C} f(z)(z-A)^{-1} d z$, where C consists of a finite number of rectifiable Jordan curves (positively oriented) constituting the boundary of an open set containing $\mathrm{sp}_{B}(A)$. The theory assures us that $f(A)$, as defined, is independent of C.

Lemma 2.1. If ϑ_{0} is a closed linear subspace of a complex, normed, linear space \mathfrak{V} stable under the bounded operator A and f is holomorphic on a compact neighborhood n of $\mathrm{sp}_{\boldsymbol{B}}(A)$, where \mathcal{B} is the Banach algebra of bounded linear transformations on ϑ and \boldsymbol{n} does not disconnect the plane \mathbf{C} of complex numbers, then ϑ_{0} is stable under $f(A)$.

Proof. Let C be a curve, disjoint from n, in an open set O containing n such that f is holomorphic on O and $f(A)=(2 \pi i)^{-1} \int_{C} f(z)(z-A)^{-1} d z$. Since $f(A)$ is the norm limit of approximating sums to the integral and ϑ_{0} is closed, it will suffice to show that ϑ_{0} is stable under $\left(z_{0}-A\right)^{-1}$ for each z_{0} on C. Since $z \rightarrow\left(z_{0}-z\right)^{-1}$ is holomorphic on η and η does not disconnect the plane, from Runge's theorem it is the uniform limit on n, of polynomials p_{n}. Since η is a neighborhood of $\operatorname{sp}_{\mathrm{B}}(A), p_{n}(A)$ tends in norm to $\left(z_{0}-A\right)^{-1}$ (see, for example, [1; Lómma VII.3.13, p. 571]). By assumption ϑ_{0} is stable under $p_{n}(A)$. Since ϑ_{0} is closed, it is stable under $\left(z_{0}-A\right)^{-1}$.

With reference to the following lemma, see Gardner's result [2; Corollary 3]. With the notation (H and φ) of the first paragraph of this section, we prove:

Lemma 2.2. If $H \mathfrak{H} H^{-\mathbf{1}} \subseteq \mathfrak{M}$ for some closed subspace \mathfrak{Y} of $\mathcal{B}(\mathcal{H})$ then φ^{z} is defined for each complex number $z, \varphi^{2}(A)=H^{z} A H^{-2}$ for all A in $\mathcal{B}(\mathcal{H})$, and $\varphi^{z}(\mathfrak{H}) \subseteq \mathfrak{N}$.

Proof. Let $\psi(z)(A)$ be $H^{2} A H^{-z}$. Then $\psi(z)$ and φ^{z} are entire functions of z with values in $\boldsymbol{B}(\mathcal{B}(\mathcal{H}))$ (where $\left.\varphi^{z}=(2 \pi i)^{-1} \int_{C} \zeta^{\prime z}(\zeta-\varphi)^{-1} d \zeta\right)$. If \mathbb{C}_{s} is $\{z: z \neq|z|\}$ (i.e. \mathbf{C} "slit" along the negative real axis) and r is in (0,1), then $z \rightarrow z^{r}$ is a one-one, holomorphic mapping on \mathbf{C}_{s} with range $\{z:-r \pi<\arg z<r \pi\}$. Thus $z \rightarrow z^{\dagger}$ has a one one, holomorphic inverse, $z \rightarrow z^{1 / r}$ defined on $\{z:-r \pi<\arg z \leqslant r \pi\}$ and having \mathbf{C}_{s} as its range. With n a positive integer and $1 / n$ in place of r, both $\varphi^{1 / n}$ and $\psi(1 / n)$ have spectrum in $\left[a^{1 / n} b^{-1 / n}, b^{1 / n} a^{-1 / n}\right](\subsetneq\{z:-r \pi<$ $\arg z<r \pi\})$. Now $\psi(1 / n)^{n}(A)-H A H^{-1}=\varphi(A)$, and $\left(\varphi^{1 / n}\right)^{n}=\varphi$. Since $z \rightarrow z^{n}$ is one-one on $\{z:-\pi / n<\arg z<\pi / n\} ; \psi(1 / n)=\varphi^{1 / n}$. As $\{1 / n\}$ accumulates at 0 and $\psi(z), \varphi^{2}$ are entire; $\psi(z)=\varphi^{2}$ for all z in \mathbf{C}.

Since $\zeta \rightarrow \zeta^{2}$ is holomorphic on \mathbf{C}_{s} and $\operatorname{sp} \varphi \subseteq\left[a b^{-1}, b a^{-1}\right] \subseteq \mathbf{C}_{s}$, Lemma 2.1 applies and $\varphi^{z}(\mathfrak{A}) \subseteq \mathfrak{A}$.

The bounded similarity result referred to in the introduction appears next (in slightly exténded form).

Theorem 2.3. If \mathfrak{H} and \mathcal{B} are norm-closed, self-adjoint subspaces of $\mathcal{B}(\mathcal{H})$ and T is an invertible operator in $\mathcal{B}(\mathcal{H})$ such that $T \mathfrak{H} T^{-1}=\mathcal{B}$, then $U \mathfrak{Y} U^{*}=\mathcal{B}$, where UH is the polar decomposition of T.

Proof. Since T is invortible, $\left(T^{*} T\right)^{\frac{1}{2}}(-H)$ is invertible and $T H^{-1}(-U)$ is a unitary operator. By assumption $U H \mathscr{A} H^{-1} U^{*}=\boldsymbol{B}$, so that $H \mathscr{Y} H^{-1}=U^{*} B U$. As $U^{*} B U$ is selfadjoint, $H \mathfrak{Y} H^{-1}=H^{-19} \mathfrak{A} I I$; and $H^{2} \mathfrak{Y} H^{-2}=\mathfrak{N}$. It follows from (Gardner [2; Corollary 3]) Lemma 2.2 that $H \mathfrak{A} H^{-1}=\mathfrak{Q}$. Thus $U H \mathfrak{Y} I^{-1} U^{*}=U \mathfrak{A} U^{*}=\boldsymbol{B}$.

3. Unbounded similarities

Various possibilities for the meaning of " $T \mathfrak{Y} T^{-1}=\mathcal{B}$ " present themselves when T is a closed densely-defined operator. A weak interpretation might be: for each A in \mathfrak{N}, there is a dense linear subspace \mathcal{D}_{0} of $\mathcal{D}\left(T^{-1}\right)$ such that $A T^{-1}\left(\mathcal{D}_{0}\right) \subseteq \mathcal{D}(T), T A T^{-1} \mid \mathcal{D}_{0}$ is bounded, the (unique) bounded extension of $T A T^{-1} \mid \mathcal{D}_{0}$ is in \mathcal{B}, and each operator in \mathcal{B} is such an extension, where $\mathcal{D}(T)$ denotes the domain of T and $T A T^{-1} \mid \mathcal{D}_{0}$ denotes the restriction of $T A T^{-1}$ to \dot{D}_{0}. A slightly stronger interpretation might include the assumption that \mathcal{D}_{0} can be found independent of A in \mathfrak{M}. We begin our discussion with an example that indicates the need for caution even when dealing with "potentially bounded" operators.

Example 3.1. With the preceding notation, we show that unitary equivalence of \mathfrak{a} and B does not follow from the stronger interpretation noted above. In our Hilbert space \mathcal{H}, we choose an orthonormal basis $\left\{e_{n}\right\}$. Let T^{-1} be the operator that assigns $\sum_{n-1}^{\infty} n \lambda_{n} e_{n}$ to $\sum_{n-1}^{\infty} \lambda_{n} e_{n}$, with domain $\left\{\sum_{n-1}^{\infty} \lambda_{n} e_{n}: \sum_{n-1}^{\infty} n^{2}\left|\lambda_{n}\right|^{2}<\infty\right\}$. Then T^{-1} is self-adjoint. Let E_{0} be the one-dimensional projection with range generated by $\sum_{n-1}^{\infty} n^{-1} e_{n}\left(=x_{0}\right)$. Let D_{0} be the set of those vectors in $\mathcal{D}\left(T^{-1}\right)$ such that $\sum_{n=1}^{\infty} \lambda_{n}=0$ (so that \mathcal{D}_{0} is a linear space). We prove that \mathcal{D}_{0} is dense by showing that we can approximate each $e_{n 0}$ in norm as closely as we wish by an element of \mathcal{D}_{0}. Note, for this, that $e_{n_{0}}-\sum_{j=1}^{m} m^{-1} e_{n_{0} j}\left(=x_{m}\right)$ lies in \mathcal{D}_{0} and that $\left\|e_{n_{0}}-x_{m}\right\|^{2}-1 / m$. Since $\left\langle T^{-1} x, x_{0}\right\rangle=0$ for each x in $\mathcal{D}_{0} ; E_{0} T^{-1} \mid D_{0}$ is 0 .It follows that $\left(a E_{0}+b I\right) T^{-1}\left|\mathcal{D}_{0}=b T^{-1}\right| \mathcal{D}_{0}$; so that $T\left(a E_{0}+b I\right) T^{-1}\left|\mathcal{D}_{0}=b I\right| \mathcal{D}_{0}$ for all scalars a and b. If \mathfrak{A} is the (two-dimensional) C^{*}-algebra generated by E_{0} and I and B is the algebra of scalar multiples of I, then $T \mathfrak{A} T^{-1}=\mathcal{B}$ (in the stronger sense noted above) but \mathfrak{A} and \mathcal{B} are not even isomorphic.

In the preceding example, \mathcal{D}_{0} is not a core for T^{-1} (i.e. the restriction of T^{-1} to \mathcal{D}_{0} does not have closure T^{-1}). To see this; note that the closure of the graph of the restriction of T^{-1} to a cone is the graph of T^{-1}. In particular, the range of this restriction is dense
in the range of T^{-1}, hence in this case, dense in \mathcal{H}. But x_{0} is orthogonal to the range of the restriction of T^{-1} to \mathcal{D}_{0} (this is precisely the crux of the example); so that $T^{-1}\left(\mathcal{D}_{0}\right)$ is not dense in \mathcal{H}, and \mathcal{D}_{0} is not a core for T^{-1}. It is exactly in the failure of the lemma that follows (when D_{0} is not a core) that the pathology of the preceding example resides.

Lemma 3.2. If H and K are closed, densely-defined operators on the complex Hilbert space $\mathcal{H}, \mathcal{D}_{\mathbf{0}}$ is a core for H, A is a bounded operator (with domain \mathcal{H}), and KAH is defined and bounded on \mathcal{D}_{0}, then $K A H$ has domain $\mathcal{D}(H)$ and $K A H$ is a bounded extension of $K A H \mid \mathcal{D}_{0}$. In addition $(K A H)^{*}$ is a bounded operator with domain \mathcal{H} and $(K A H)^{*} \mid \mathcal{D}\left(K^{*}\right)=H^{*} A^{*} K^{*}$.

Proof. Suppose $h_{0} \in \mathcal{D}(H)$. Since \mathcal{D}_{0} is a core for H, there is a sequence $\left(h_{n}\right)$ in D_{0} such that $h_{n} \rightarrow h_{0}$ and $H h_{n} \rightarrow H h_{0}$. Now $A H h_{n} \rightarrow A H h_{0}$, since A is bounded with domain \mathcal{H}. By hypothesis $A H h_{n} \in \mathcal{D}(K)$ for each n (as $h_{n} \in \mathcal{D}_{0}$). Boundedness of $K A H \mid D_{0}$ assures us that $\left(K A H h_{n}\right)$ is a Cauchy convergent sequence in \mathcal{H} and, hence, has limit k in \mathcal{H}. But $A H h_{n} \rightarrow$ $A H h_{0}, K A H h_{n} \rightarrow k$, and K is closed. Thus $A H h_{0} \in \mathcal{D}(K)$ and $K A H h_{0}=k$.

If $\left\|h_{0}\right\|=1$ we can choose h_{n}, as above, so that $\left\|h_{n}\right\|=1$. If b is the bound of the restriction of $K A H$ to \mathcal{D}_{0}, then $\left\|K A H h_{n}\right\| \leqslant b$; so that $\left\|K A H h_{0}\right\| \leqslant b$. Thus $K A H \mid \mathcal{D}(H)$ has bound b, and $K A H$ has domain $\mathcal{D}(H)$. With x in $\mathcal{D}(H)$ and y in $\mathcal{H},|\langle K A H x, y\rangle| \leqslant b\|x\| \cdot\|y\|$; so that $y \in \mathcal{D}\left((K A H)^{*}\right)$, and $\left\langle x,(K A H)^{*} y\right\rangle=\langle K A H x, y\rangle$. Thus $\mathcal{D}\left((K A H)^{*}\right)=\mathcal{H}$ and $\left\|(K A H)^{*} y\right\| \leqslant b\|y\|$; so that $(K A H)^{*}$ is bounded. If we restrict y to $\mathcal{D}\left(K^{*}\right)$, then $\langle K A H x, y\rangle$ $=\left\langle H x, A^{*} K^{*} y\right\rangle$. Hence $A^{*} K^{*} y \in \mathcal{D}\left(H^{*}\right)$ and $\langle K A H x, y\rangle=\left\langle x, H^{*} A^{*} K^{*} y\right\rangle$; so that $(K A H)^{*} y=H^{*} A^{*} K^{*} y$.

Remark. If H is a positive operator with inverse H^{-1} on the Hilbert space $\mathcal{H}, \boldsymbol{E}_{\boldsymbol{m}}$ is the spectral projection for H corresponding to the interval [m^{-1}, m], with m a positive integer, and \mathcal{H}_{m} is $E_{m}(\mathcal{H})$, then $\bigcup_{m=1}^{\infty} \mathcal{H}_{m}$ is a core for H^{k}, for each integer k. To see this note that $E_{m} x_{m} x$ for each x in \mathcal{H} so that $H^{k} E_{m} x=E_{m} H^{k} x \rightarrow \underset{m}{ } H^{k} x$ for each x in $\mathcal{D}\left(H^{k}\right)$. We denote this particular core for H by $\mathcal{D}_{0}(H)$ and observe that $D_{0}(H)=\mathcal{D}_{0}\left(H^{-1}\right)$.

Lemma 3.3. If H and its inverse H^{-1} are densely-defined, positive operators on the Hilbert space $\mathcal{H}, \mathcal{D}_{0}$ is a core for $\boldsymbol{H}^{-1}, \mathfrak{X}$ is a norm-closed, linear subspace of $\mathcal{B}(\mathcal{H l})$ such that, for each A in $\mathfrak{A}, H A H^{-1}$ is defined and bounded on \mathcal{D}_{0}, and $\varphi(A)$ is the (unique) bounded extension to \mathcal{H} of $H A H^{-1} \mid \mathcal{D}_{0}$, then φ is a bounded linear mapping of \mathfrak{A} into $\mathcal{B}(\mathcal{H})$.

Proof. From Lemma 3.2, $H A H^{-1}$ has domain $D\left(H^{-1}\right)$ and is a bounded extension of $H A H^{-1} \mid \mathcal{D}_{0}$. Thus $H A H^{-1}$ is the restriction to $\mathcal{D}\left(H^{-1}\right)$ of the (unique) bounded extension of $H A H^{-1} \mid D_{0}$. We may assume, without loss of generality, that \mathcal{D}_{0} is $\mathcal{D}\left(H^{-1}\right)$.

Let E_{m} be the spectral projection for H corresponding to $\left[m^{-1}, m\right], H_{m}$ be $E_{m} H, \mathcal{H}_{m}$
be $E_{m}(\mathcal{H})$, and H_{m}^{\prime} be the operator on \mathcal{H} inverse to H_{m} on \mathcal{H}_{m} and 0 on $\left(I-E_{m}\right)(\mathcal{H})$. If $\varphi_{m}(T)=H_{m} T H_{m}^{\prime}$ for T in $B(\mathcal{H}), A$ is in the unit ball of \mathfrak{A}, x and y are unit vectors in \mathcal{H}, and b is the bound of $H A H^{-1} \mid D\left(H^{-1}\right)$, then $\left|\left\langle H_{m} A H_{m}^{\prime} x, y\right\rangle\right|=\left|\left\langle H A H^{-1} E_{m} x, E_{m} y\right\rangle\right| \leqslant$ $b\left\|E_{m} x\right\| \cdot\left\|E_{m} y\right\| \leqslant b$. Thus $\left\{\left\|\varphi_{m}(A)\right\|: m=1,2, \ldots\right\}$ is bounded. As this is true for each A in $\mathfrak{N},\left\{\left\|\varphi_{m} \mid \mathfrak{Q}\right\|: m=1,2, \ldots\right\}$ is bounded, say, by b_{0}, from the Uniform Boundedness Principle. Hence $\left|\left\langle H_{m} A H_{m}^{\prime} x, y\right\rangle\right| \leqslant b_{0}$ for all A in the unit ball of \mathfrak{A}, each pair of unit vectors x and y in \mathcal{H}, and all m. With x and y unit vectors in \mathcal{H}_{m}, we have

$$
\left|\left\langle H A H^{-1} x, y\right\rangle\right|=\left|\left\langle H_{m} A H_{m}^{\prime} x, y\right\rangle\right| \leqslant b_{0}
$$

when A is in the unit ball of $\mathfrak{A l}$. Thus $|\langle\varphi(A) x, y\rangle| \leqslant b_{0}$ for unit vectors x and y in $\bigcup_{m=1}^{\infty} \mathcal{F}_{m}$, a dense subspace of \mathcal{H}. As $\varphi(A)$ is bounded, $\|\varphi(A)\| \leqslant b_{0}$. Since this holds for all A in the unit ball of $\mathfrak{Y} ;\|\varphi\| \leqslant b_{0}$.

Proposition 3.4. If H and its inverse H^{-1} are densely-defined, positive operators on the Hilbert space $\mathcal{H}, \mathcal{D}_{0}$ is a core for H^{-1}, and \mathfrak{Y} is a C^{*}-algebra such that $H A H^{-1}$ is defined and bounded on \mathcal{D}_{0} and has a (unique) bounded extension $\varphi(A)$ belonging to $\mathfrak{A l}$ for each A in \mathfrak{U} then φ is an automorphism of \mathfrak{H} (necessarily, bounded) and there is a positive H_{0} in $\mathfrak{A}{ }^{\prime \prime}$ such that $H_{0} A H_{0}^{-1} \mid \mathcal{D}\left(H^{-1}\right)=H A H^{-1}$ for all A in \mathfrak{A}. Moreover φ^{2} is defined for each complex z and $H^{2} A H^{-z}$ has a (unique) bounded extension from $\mathcal{D}_{0}(H)$ to \mathcal{H} equal to $\varphi^{2}(A)$ (in $\left.\mathfrak{U}\right)$ for each A in \mathfrak{A}.

Proof. From Lemma 3.3, φ is bounded. From Lemma 3.2, $\left(H A^{*} H^{-1}\right)^{*}$ is bounded and everywhere defined; and its restriction to $D(H)$ is $H^{-1} A H$. Thus the same considerations apply, with the roles of H and H^{-1} interchanged, to yield a bounded linear mapping ψ of \mathfrak{A} into \mathfrak{A}. Now $\psi(\varphi(A))$ restricted to $\mathcal{D}(H)$ is $H^{-1} \varphi(A) H$. Since the range of H is $\mathcal{D}\left(H^{-1}\right)$ and $\varphi(A)$ restricted to $\mathcal{D}\left(H^{-1}\right)$ is $H A H^{\mathbf{- 1}} ; \psi(\varphi(A))|\mathcal{D}(H)=A| \mathcal{D}(H)$. As both $\psi(\varphi(A))$ and A are bounded, $A=\psi(\varphi(A))$. Symmetrically $A=\varphi(\psi(A))$. Hence φ and ψ are inverses of one another. Since the range of H is the domain of H^{-1},

$$
\varphi(A) \varphi(B)\left|\mathcal{D}\left(H^{-1}\right)=H A H^{-1} H B H^{-1}=H A B H^{-1}=\varphi(A B)\right| D\left(H^{-1}\right)
$$

Thus $\varphi(A) \varphi(B)=\varphi(A B)$; and φ is an automorphism of \mathfrak{A}.
Gardner shows [2; Theorem A, p. 395] that an automorphism of a C^{*}-algebra is implemented by a bounded invertible operator in the reduced atomic representation of that algebra. Let \mathfrak{A} acting on \mathcal{H}_{0} be that representation and T be a bounded operator with bounded inverse such that $\varphi(A)=T A T^{-1}$ for each A in \mathfrak{A}. From Theorem 2.3, with $U K$ the polar decomposition of T (i.e. $K=\left(T^{*} T\right)^{\frac{1}{2}}$ and $\left.U=T\left(T^{*} T\right)^{-\frac{1}{2}}\right), U \mathfrak{A} U^{*}=\mathfrak{A}$ and $K \mathfrak{U} K^{-1}=$ \mathfrak{A}. Let $\varphi_{1}(A)$ be $U A U^{*}$ and $\varphi_{2}(A)$ be $K A K^{-1}$ for A in $\mathcal{B}\left(\mathcal{H}_{0}\right)$. Then $\varphi=\varphi_{1} \varphi_{2}$; and φ_{2} has
spectrum (relative to $\mathcal{B}\left(\mathcal{B}\left(\mathcal{H}_{0}\right)\right)$) in some closed, bounded subset of the positive real numbers. From Lemma 2.2, $K^{2} \mathfrak{2} K^{-z} \subseteq \mathfrak{A}$ for each complex number z, and $\varphi_{2}^{2}(A)=K^{z} A K^{-z}$. In particular, $t \rightarrow \varphi_{2}^{t}$ is a norm-continuous, one-parameter group of automorphisms of \mathfrak{A}. Hence (cf. [6; Theorem 5] or [11; 4.1.19]) there is an operator H_{0} in $\mathfrak{U}{ }^{n}$ (recall that \mathfrak{A}^{n} acts on \mathcal{H}) such that $\varphi_{2}(A) \backsim H_{0} A H_{0}{ }^{1}$ for each A in \mathfrak{A}. Note that $\varphi^{*}=\varphi^{-1}$ and $\varphi_{2}^{*}=\varphi_{2}^{-1}$ (for $\varphi^{*}(A)=\varphi\left(A^{*}\right)^{*}=\left(H A^{*} H^{-1}\right)^{*}=\varphi^{-1}(A)$, and, similarly for $\left.\varphi_{2}\right)$; and $\varphi_{1}^{*}=\varphi_{1}$. Thus $\varphi \varphi_{2}^{-1}=\varphi_{1}=$ $\varphi_{1}^{*}=\varphi^{*} \varphi_{2}^{-1 *}=\varphi^{-1} \varphi_{2}$; and $\varphi^{2}=\varphi_{2}^{2}$. As in [7; Lemma 2], $\varphi_{2}^{t}=e^{t \delta}$ for some derivation δ of \mathfrak{N}. Now $\left(\varphi_{2}^{t}\right)^{*}=\left(\varphi_{2}^{*}\right)^{t}=\varphi_{2}^{-t}=e^{-t \delta}=\left(e^{t \delta}\right)^{*}=e^{t \delta^{*}}$. Comparing series coefficients, $\delta^{*}=-\delta$. If A_{0} in \mathfrak{A}^{n} is such that $\delta=\operatorname{ad} A_{0} \mid \mathfrak{A}$ (cf. [4, 13]), then $-\delta(A)=\dot{A} A_{0}-A_{0} A=\delta^{*}(A)=\left(A_{0} A^{*}-\right.$ $\left.A^{*} A_{0}\right)^{*}=A A_{0}^{*}-A_{0}^{*} A$. Hence $A_{0}-A_{0}^{*} \in \mathfrak{Q}^{\prime}, \left.\delta=\operatorname{ad} \frac{1}{2}\left(A_{0}+A_{0}^{*}\right) \right\rvert\, \mathfrak{Y}$, and we may assume that A_{0} is self-adjoint. It follows that $\varphi_{2}(A)=e^{\delta}(A)=e^{A_{0}} A e^{-A_{0}}$ for each A in \mathfrak{A}, and I_{0} can be chosen as the positive operator $e^{A_{0}}$ (in $\mathfrak{X}^{\prime \prime}$).

Let E_{m} be the spectral projection for H corresponding to $\left[m^{-1}, m\right]$, for each positive integer m, and \mathcal{H}_{m} be $E_{m}(\mathcal{H})$. We show, now, that for each A in $\mathfrak{A}, H^{z} A H^{-z}$ has a bounded restriction to $\mathcal{D}_{0}(H)\left(=\bigcup_{m \rightarrow 1}^{\infty} \mathcal{H}_{m}\right)$ which coincides with the restriction of $H_{0}^{z} A H_{0}^{-z}$ to $\mathcal{D}_{0}(H)$. Let H_{m} be $E_{m} I I, H_{m}^{2}$ be the operator on \mathcal{H} equal to H_{m}^{2} on \mathcal{H}_{m} and 0 on $\left(I-E_{m}\right)(\mathcal{H})$, and $\varphi_{m}(T)$ be $H_{m} T H_{m}^{-1}$ for T in $\mathcal{B}\left(\mathcal{H}_{m}\right), m=3,4, \ldots$ (since φ_{1} and φ_{2} have other meanings). Since $\varphi^{2}=\varphi_{2}^{2} ; H \varphi(A) H^{-1}$ and $H_{0}^{2} A H_{0}^{-2}$ have the same restriction to $\mathcal{D}_{0}(H)$. But $H \varphi(A) H^{-1}$ restricted to $\mathcal{D}_{0}(H)$ is $H^{2} A H^{-2}$. Let $\eta(B)$ be $H_{0}^{2} B H_{0}^{-2}$ for each B in $\mathcal{B}(\mathcal{H})$. The spectrum of η relative to $\mathcal{B}(\mathcal{B}(\mathcal{H}))$ is a closed bounded subset of the positive real numbers. The same is true for the spectrum of φ_{m}^{2} relative to $\mathcal{B}\left(\mathcal{B}\left(\mathcal{H}_{m}\right)\right)$. Fixing m, let n be a closed neighborhood of both these spectra and let C be a simple, closed curve in the open, right-half plane with η in its interior. Note that, for each polynomial p and all x and y in $\mathcal{H}_{m},\langle p(\eta)(A) x, y\rangle$ $=\left\langle p\left(\varphi_{m}^{2}\right)\left(E_{m} A E_{m}\right) x, y\right\rangle$. With ζ on C, using Runge's theorem to approximate $z \rightarrow(\zeta-z)^{-1}$ uniformly on n by polynomials, as in Lemma 2.1, there is a sequence of polynomials p_{n} such that $p_{n}(\eta)$ tends in norm to $(\zeta-\eta)^{-1}$ and $p_{n}\left(\varphi_{m}^{2}\right)$ tends to $\left(\zeta-\varphi_{m}^{2}\right)^{-1}$ in norm. It follows that

$$
\left\langle(\zeta-\eta)^{-1}(A) x, y\right\rangle=\left\langle\left(\zeta-\varphi_{m}^{2}\right)^{-1}\left(E_{m} A E_{m}\right) x, y\right\rangle
$$

for each ζ on C. Hence

$$
\begin{aligned}
\left\langle H_{0}^{2 z} A H_{0}^{-2 z} x, y\right\rangle & =\left\langle\eta^{2}(A) x, y\right\rangle=\frac{1}{2 \pi i} \int_{C} \zeta^{z}\left\langle(\zeta-\eta)^{-1}(A) x, y\right\rangle d \zeta \\
& =\frac{1}{2 \pi i} \int_{C} \zeta^{2}\left\langle\left(\zeta-\varphi_{m}^{2}\right)^{-1}\left(E_{m} A E_{m}\right) x, y\right\rangle d \zeta=\left\langle\varphi_{m}^{2 z}\left(E_{m} A E_{m}\right) x, y\right\rangle \\
& =\left\langle H_{m}^{2 z}\left(E_{m} A E_{m}\right) H_{m}^{-2 z} x, y\right\rangle=\left\langle A H^{-2 z} x,\left(H^{2 z}\right)^{*} y\right\rangle
\end{aligned}
$$

Thus $H^{2} A H^{-2}$ has a bounded restriction to $\mathcal{D}_{0}(H)$, and this restriction coincides on $\mathcal{D}_{0}(H)$ with $H_{0}^{z} A H_{0}^{-z}$.

Theorem 3.5. If T is a closed; densely-defined, linear transformation from one complex Hilbert space \mathcal{H} into another \mathcal{K} and T has a (closed) densely-defined inverse T^{-1} with core \mathcal{D}_{1} such that $\mathcal{D}_{1} \subseteq \mathcal{D}\left(T A T^{-1}\right), T A T^{-1} \mid \mathcal{D}_{1}$ has a (unique) bounded extension to \mathcal{K} in the C^{*}-algebra \mathcal{B} for each A in the C^{*}-algebra \mathfrak{N}, and each B in \mathcal{B} is such an extension, then $U \mathscr{U} U^{-1}=\mathcal{B}$, where U is the unitary transformation of \mathcal{H} onto \mathcal{K} appearing in the polar decomposition, UH, of T, and $I^{2} A I^{-z}$ has a (unique) bounded extension to \mathcal{H} in \mathfrak{A} for each complex z. There is a positive H_{0} in $\mathfrak{Y}^{\prime \prime}$ such that $H_{0} A H_{0}^{-1} \mid \mathcal{D}\left(H^{-1}\right)=H A H^{-1}$ for each A in \mathfrak{A}.

Proof. From our hypothesis, $U^{-1}\left(\mathcal{D}_{1}\right)\left(=\mathcal{D}_{0}\right)$ is a core for H^{-1} such that $H A H^{-1} \mid \mathcal{D}_{0}$ has a (unique) bounded extension to \mathcal{H} in $U^{-1} B U$, a self-adjoint family on \mathcal{H}. From Lemma 3.2, $\left(H A H^{-1} \mid \mathcal{D}_{0}\right)^{*}$ is a bounded, everywhere-defined operator on \mathcal{H} in $U^{-1} \mathcal{B} U$, whose restriction to $\mathcal{D}(H)$ is $H^{-1} A^{*} H$. By assumption, $U\left(H A H^{-1} \mid D_{0}\right)^{*} U^{-1}$ is the extension of $U H A_{0} H^{-1} U^{-1} \mid D_{1}$ to \mathcal{K}, for some A_{0} in \mathfrak{A}. Thus $\left.\left\langle H A H^{-1}\right| D_{0}\right)^{*}$ is the extension of $H A_{0} H^{-1} \mid \mathcal{D}_{0}$; and $H^{-2} A^{*} H^{2}\left|\mathcal{D}_{0}(H)=A_{0}\right| \mathcal{D}_{0}(H)$. From Proposition 3.4, we conclude that $H^{-2 z} A H^{2 z} \mid D_{0}(H)$ has a (unique) bounded extension in \mathfrak{A} for each A in \mathfrak{A} and all complex z. In particular, $H A H^{-1} \mid \mathcal{D}_{\mathbf{0}}(H)$ has a bounded extension $\varphi(A)$ in \mathfrak{A}, and φ is an automorphism of \mathfrak{A}. It follows that $U \varphi(A) U^{-1}\left|D_{1}=T A T^{-1}\right| D_{1}$; and $U \mathfrak{A} U^{-1}=\mathcal{B}$.

Lemma 3.6. If H is a positive, densely-defined operator with a densely-defined inverse H^{-1} on the complex Hilbert space $\mathcal{H}, \mathcal{D}_{0}$ is a core for H^{-1}, and A is a bounded, everywhere defined operator on \mathcal{H} such that $\mathcal{D}_{0} \subseteq \mathcal{D}\left(H A H^{-1}\right)$ and $H A H^{-1} \mid D_{0}$ is bounded, then, for each complex number z in the strip $\{z: 0<\operatorname{Re} z<1\}\left(=S_{1}\right), H^{2} A H^{-2} \mid \mathcal{D}_{0}$ is bounded with (unique) bounded extension $\varphi_{2}(A)$ to \mathcal{H}. If x and y are unit vectors in \mathcal{H}, then the function $z \rightarrow\left\langle\varphi_{2}(A) x, y\right\rangle$ is holomorphic on S_{1}, bounded by $\max \left\{\|A\|,\left\|H A H^{-1}\right\|\right\}$ on the closure S_{1}^{-}of S_{1} and continuous on S_{1}^{-}.

Proof. Let E_{m} be the spectral projection for H corresponding to $\left[m^{-1}, m\right.$], with m a positive integer; and let \mathcal{H}_{m} be $E_{m}(\mathcal{H})$. The operator $E_{m} H\left(=H_{m}\right)$ on \mathcal{H}_{m} is a bounded, positive operator with a bounded inverse; so that H_{m}^{z} is defined and bounded for each complex z. From Lemma 3.2, $H A H^{-1} \mid D_{0}(H)$ is bounded (with the same bound as $\left.H A H^{-1} \mid \mathcal{D}_{0}\right)$. If x_{0} and y_{0} are unit vectors in \mathcal{H}_{m}, then, with z in $S_{1}^{-}, A H^{-z} x_{0} \in \mathcal{D}(H) \subseteq \mathcal{D}\left(H^{2}\right)$, and

$$
\left\langle H^{2} A H^{-2} x_{0}, y_{0}\right\rangle=\left\langle E_{m} H^{2} A H^{-2} E_{m} x_{0}, y_{0}\right\rangle=\left\langle H_{m}^{2} E_{m} A H_{m}^{-2} x_{0}, y_{0}\right\rangle,
$$

and $z \rightarrow\left\langle H_{m}^{z} E_{m} A H_{m}^{-z} x_{0}, y_{0}\right\rangle$ is entire. Now

$$
\left|\left\langle H^{1+t s} A H^{-1-i s} x_{0}, y_{0}\right\rangle\right| \leqslant\left\|E_{m} H A H^{-1} E_{m}\right\| \leqslant\left\|H A H^{-1}\right\|
$$

and $\left|\left\langle H^{i s} A H^{-i s} x_{0}, y_{0}\right\rangle\right| \leqslant\|A\|$. By (a variant of) the Hadamard Three Circle Theorem, $\left|\left\langle H^{2} A H^{-2} x_{0}, y_{0}\right\rangle\right| \leqslant \max \left\{\|A\|,\left\|H A H^{-1}\right\|\right\}$ for all z in S_{1}^{-}and all unit vectors x_{0}, y_{0} in $D_{0}(H)$. Note for this that

$$
\left|\left\langle H^{2} A H^{-2} x_{0}, y_{0}\right\rangle\right| \leqslant\left\|H_{m}^{z} E_{m} A E_{m} H_{m}^{-2}\right\| \leqslant m^{2 t}\|A\| \leqslant m^{2}\|A\|
$$

for $\boldsymbol{z}(=\boldsymbol{t}+\boldsymbol{i s})$ in S_{1}^{-}. Since $\mathcal{H}_{m} \subseteq \mathcal{H}_{m+1}$ and $\mathcal{D}_{0}(H)$ is dense in $\mathcal{H},\left\|H^{z} A H^{-z} x_{0}\right\| \leqslant \max \{\|A\|$, $\left.\left\|H A H^{-1}\right\|\right\}$, for each unit vector x_{0} in $\mathcal{D}_{0}(H)$. Thus $\left\|\varphi_{2}(A)\right\| \leqslant \max \left\{\|A\|,\left\|H A H^{-1}\right\|\right\}$, for z in S_{1}^{-}.

Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences of unit vectors in $\mathcal{D}_{0}(H)$ with limits x and y, respectively. Then

$$
\begin{aligned}
& \left|\left\langle\varphi_{z}(A) x, y\right\rangle-\left\langle H^{z} A H^{-z} x_{n}, y_{n}\right\rangle\right| \\
& \quad \leqslant\left|\left\langle\varphi_{z}(A) x, y\right\rangle-\left\langle\varphi_{2}(A) x_{n}, y\right\rangle\right|+\left|\left\langle\varphi_{z}(A) x_{n}, y\right\rangle-\left\langle H^{z} A H^{-z} x_{n}, y_{n}\right\rangle\right| \\
& \quad \leqslant\left\|\varphi_{z}(A)\right\| \cdot\left\|x-x_{n}\right\|+\left\|\varphi_{2}(A)\right\| \cdot\left\|y-y_{n}\right\| \rightarrow 0
\end{aligned}
$$

uniformly for z in S_{1}^{-}. Thus $z \rightarrow\left\langle\varphi_{z}(A) x, y\right\rangle$ is continuous on S_{1}^{-}and holomorphic on S_{1}.
With notation as in the preceding lemma, repeated application of it (or changes of notation in the argument) yields:

Corollary 3.7. If n_{1} and n_{2} are positive integers, such that

$$
H^{-n_{1}} A H^{n_{1}}\left|\mathcal{D}_{0}, H^{-\left(n_{1}-1\right)} A H^{n_{1}-1}\right| \mathcal{D}_{0}, \ldots, H^{-1} A H\left|\mathcal{D}_{0}, A, H A H^{-1}\right| \mathcal{D}_{0}, \ldots, H^{n_{2}} A H^{-n_{2}} \mid \mathcal{D}_{0}!
$$

are bounded, then $z \rightarrow\left\langle\varphi_{z}(A) x, y\right\rangle$ is holomorphic on the strip $\left\{z:-n_{1}<\operatorname{Re} z<n_{2}\right\}\left(=S_{n_{1}, n_{2}}\right)$, continuous on its closure, and bounded there, where $H^{z} A H^{-z} \mid D_{0}$ is bounded for z in $S_{n_{1}, n_{1}}$ and $\varphi_{z}(A)$ is its (unique) bounded extension to \mathcal{H}. In particular, if $H^{n} A H^{-n} \mid \mathcal{D}_{0}$ is bounded for all integers n, then $z \rightarrow\left\langle\varphi_{z}(A) x, y\right\rangle$ is entire for each pair of vectors x, y in \mathcal{H}; and

$$
\left|\left\langle\varphi_{z}(A) x, y\right\rangle\right| \leqslant k_{A, n}\|x\| \cdot\|y\|
$$

where $k_{A . n}=\max \left\{\|A\|,\left\|H^{n} A H^{-n} \mid D_{0}\right\|\right\}$ and $\operatorname{Re} z$ lies in the interval with 0 and n as endpoints.

Lemma 3.8. If H is a positive, densely-defined operator with a densely-defined inverse H^{-1} on the complex Hilbert space $\mathcal{H}, \mathcal{D}_{0}$ is a core for H^{-1}, \mathfrak{M}_{0} is a^{*}-algebra of bounded operators on \mathcal{H} such that, for each A in $\mathfrak{U}_{0}, \mathcal{D}_{0} \subseteq \mathcal{D}\left(H A H^{-1}\right)$ and $H A H^{-1} \mid \mathcal{D}_{0}$ has a (unique) bounded extension $\varphi(A)$ to \mathcal{H} in \mathfrak{A}_{0} satisfying $\left\|\varphi^{n}(A)\right\| \leqslant k_{A}^{|n|}$ for each integer n and some constant k_{A} (depending on A); then $H^{z} A H^{z} \mid D_{0}(H)$ is bounded for each complex number z and each A in \mathfrak{U}_{0}, and its (unique) bounded extension $\varphi_{z}(A)$ to \mathcal{H} lies in $\mathfrak{H}_{0}^{\boldsymbol{n}}$.

Proof. From Lemma 3.2 and our hypothesis, $H^{n} A H^{-n} \mid D_{0}(H)$ is bounded for each integer n. Thus, from Corollary 3.7, $H^{z} A H^{-z} \mid D_{0}(H)$ is bounded for all complex numbers z,
$z \rightarrow\left\langle\varphi_{z}(A) x, y\right\rangle$ is entire for each pair of unit vectors x, y in \mathcal{H} and $\left|\left\langle\varphi_{z}(A) x, y\right\rangle\right| \leqslant k_{A}^{n}$, where $|\operatorname{Re} z| \leqslant n$. If $\mathfrak{X}_{0}^{\prime}$ contains no projections other than 0 and I then $\varphi_{z}(A) \in \mathcal{B}(\mathcal{H})=\mathfrak{H}_{0}^{\prime \prime}$.

Suppose E^{\prime} is a projection in $\mathfrak{X}_{0}^{\prime}$ distinct from 0 and I; and let x_{0}, y_{0} be unit vectors in $E^{\prime}(\mathcal{H}),\left(I-E^{\prime}\right)(\mathcal{H})$, respectively. Then

$$
\left\langle\varphi_{n}(A) x_{0}, y_{0}\right\rangle=\left\langle\varphi^{n}(A) E^{\prime} x_{0},\left(I-E^{\prime}\right) y_{0}\right\rangle=0
$$

for each positive integer n, since $\varphi^{n}(A)$ is in \mathfrak{Y}_{0}. Let $f(z)$ be $k_{A}^{-(z+1)}\left\langle\varphi_{\bar{z}}(A) x_{0}, y_{0}\right\rangle$, for z in \mathbf{C}_{r}, the (open) right half-plane. Then $|f(z)| \leqslant 1$ for z in \mathbf{C}_{r} and $f(n)=0$ for each positive integer n. Thus $f(z)=(z-1)^{k} f_{1}(z)$, where f_{1} is bounded and holomorphic on \mathbf{C}_{r}. Multiplying by a positive scalar, we may assume that $\left|f_{1}(z)\right| \leqslant 1$ for z in \mathbf{C}_{r} Let $F_{n}(z)$ be $(2-z)(3-z) \ldots(n-z) / n$!. With ε positive, $1-\varepsilon \leqslant\left|F_{n}(z)\right|$ for all z near the imaginary axis. Thus f_{1} / F_{n} is bounded and holomorphic on C_{r} and $\left|f_{1}(z) / F_{n}(z)\right| \leqslant(1-\varepsilon)^{-1}$ for z near the imaginary axis. From the Phragmen-Lindelöf theorem, $\left|f_{1}(z) / F_{n}(z)\right| \leqslant 1$ for z in \mathbf{C}_{r}. In particular $\left|f_{1}(1)\right| \leqslant\left|F_{n}(1)\right|=$ $1 / n$. It follows that $f_{1}(1)=0$ and that 1 is a zero of infinite order for f. Hence f is identically 0 on \mathbf{C}_{r}; and $\left(I-E^{\prime}\right) \varphi_{z}(A) E^{\prime}=0$ for each projection E^{\prime} in $\mathfrak{U}_{0}^{\prime}$, each A in \mathfrak{M}_{0} and each complex z. From this

$$
\left(I-E^{\prime}\right) \varphi_{z}(A) E^{\prime}=0=E^{\prime} \varphi_{z}(A)\left(I-E^{\prime}\right)
$$

and $E^{\prime} \varphi_{z}(A)=\varphi_{z}(A) E^{\prime}$. Thus $\varphi_{z}(A) \in \mathfrak{A}_{0}^{\prime \prime}$.
Theorem 3.9. If T is a closed, densely-defined transformation from one complex Hilbert space \mathcal{H} into another \mathcal{K}, T has densely-defined inverse T^{-1} with core \mathcal{D}_{1} such that $T A T^{-1} \mid D_{1}$ has a (unique) bounded extension in a *-algebra of operators \mathcal{B}_{0} acting on \mathfrak{K} for each A in a *-algebra of operators \mathfrak{A}_{0} acting on \mathcal{H}, each B in \mathcal{B}_{0} is such an extension, and $\left\|H^{n} A H^{-n} \mid \mathcal{D}_{0}(H)\right\| \leqslant k_{A}^{|n|}$ for each integer n and some constant $k_{A}($ depending on A), where $U H$ is the polar decomposition of T and $\mathcal{D}_{0}=U^{-1}\left(\mathcal{D}_{1}\right)$; then $U \mathfrak{H}_{0}^{\prime \prime} U^{-1}=\mathcal{B}_{0}^{\prime \prime}, H^{z} A H^{-2} \mid D_{0}(H)$ is bounded for each complex number zand each A in \mathfrak{N}_{0}, and the (unique) bounded extension of $H^{z} A H^{-z} \mid D_{0}(H)$ to \mathcal{H} lies in $\mathfrak{A}_{0}^{\prime \prime}$. In particular, $t \rightarrow H^{\mathfrak{i t}}$ is a strong-operator-continuous, one-parameter unitary group which gives rise to a one-parameter group of *-automorphisms of $\mathfrak{M}_{0}^{\prime \prime}$.

Proof. Arguing precisely as in the proof of Theorem 3.5, we conclude that, with A in $\mathfrak{A}_{0}, H^{-2} A H^{2}\left|D_{0}(H)=A_{0}\right| D_{0}(H)$ for some A_{0} in \mathfrak{A}_{0}. By hypothesis $H^{-2 n} A H^{2 n} \mid \mathcal{D}_{0}(H)$ is bounded and $\left\|H^{-2 n} A H^{2 n} \mid D_{0}(H)\right\| \leqslant k_{A}^{2 n \mid}$. From Lemma 3.8, $H^{-2 z} A H^{2 z} \mid D_{0}(H)$ is bounded for each complex z and each A in \mathfrak{A}_{0} and its (unique) bounded extension to \mathcal{H} lies in $\mathfrak{A}_{0}^{\prime \prime}$. In particular, $H^{i t} A H^{-i t} \in \mathfrak{X}_{0}^{\prime \prime}$ for each A in \mathfrak{A}_{0} - hence, for each A in $\mathfrak{H}_{0}^{\prime \prime}$. At the same time, the (unique) bounded extension $\varphi(A)$ of $H A H^{-1} \mid D_{0}$ is in $\mathfrak{U}_{0}^{\prime \prime}$. Since $U \varphi(A) U^{-1}\left|D_{1}=T A T^{-1}\right| D_{1}$ and, by assumption, $T A T^{-1} \mid \mathcal{D}_{1}$ has a (unique) bounded extension to \mathcal{K} in $\mathcal{B}_{0} ; U \varphi(A) U^{-1} \in \mathcal{B}_{0}$.

On the other hand, given B in \mathcal{B}_{0}, by hypothesis, there is an A in \mathfrak{M}_{0} such that B is the unique extension of $T A T^{-1} \mid D_{1}\left(=U \varphi(A) U^{-1} \mid D_{1}\right)$. Hence $B=U \varphi(A) U^{-1}$; and $U^{-1} B U=$ $\varphi(A) \in \mathfrak{S}_{0}^{\prime \prime}$. Thus $U^{-1} \mathcal{B}_{0}^{\prime \prime} U \subseteq \mathfrak{H}_{0}^{\prime \prime}$.

We note, next, that the hypotheses apply with the rôles of T and \mathfrak{U}_{0} interchanged with those of T^{-1} and \boldsymbol{B}_{0}, from which we can conclude, as above, that $U \mathfrak{H}_{0}^{\prime \prime} U^{-1} \subseteq \boldsymbol{B}_{0}^{\prime \prime} \subseteq$

$$
T^{-1} B T\left|D_{0}(H)=H^{-1} U^{-1} B U H\right| D_{0}(H)=H^{-1} \varphi(A) H\left|D_{0}(H)-A\right| D_{0}(H)
$$

that is, $T^{-1} B T \mid \mathcal{D}_{0}(H)$ has a bounded extension A in \mathscr{H}_{0} and each A in \mathfrak{N}_{0} is such an extension. For the growth condition on the bound, let $W K^{-1}$ be the polar decomposition of T^{-1}, where $K^{-1}=\left(T^{-1 *} T^{-1}\right)^{\ddagger}=\left(T T^{*}\right)^{-\frac{1}{2}}$. Then $K=\left(T T^{*}\right)^{\sharp}$, and $K U$ is a polar decomposition for T. Since $T=K U=K W^{-1}$, we have $W^{-1}=U$ and $K=U H U^{-1}$. Thus

$$
K^{n} B K^{-n}=U H^{n} U^{-1}\left(U \varphi(A) U^{-1}\right) U H^{-n} U^{-1}-U H^{n} \varphi(A) H^{-n} U^{-1}
$$

so that $K^{n} B K^{-n} \mid D_{0}(K)$ is bounded and

$$
\left\|K^{n} B K^{-n}\left|\mathcal{D}_{0}(K)\|=\| H^{n+1} A H^{-(n, 1)}\right| \mathcal{D}_{0}(H)\right\| \leqslant k_{A}^{|n+1|}
$$

for all integers n, which establishes the symmetry between the rôles of T and \mathfrak{A}_{0} and those of T^{-1} and \mathcal{B}_{0}.

4. The Tomita-Takesaki theory

Throughout this section R denotes a von Neumann algebra acting on the Hilbert space \mathcal{H} and x_{0} is a separating and generating unit vector for \boldsymbol{R}. Let $\overline{\mathcal{H}}$ denote the Hilbert space conjugate to \mathcal{H} (so that $\overline{a x+y}=\bar{a} \bar{x}+\bar{y}$ and $\langle\bar{x}, \bar{y}\rangle=\langle y, x\rangle$). With z in $\overline{\mathcal{H}}$, we denote by \bar{z} the element of \mathcal{H} corresponding to z. With T an operator on \mathcal{H}, let $\bar{T} \bar{x}$ be $\overline{T x}$. Then $T \rightarrow \bar{T}$ is a conjugate-linear, *-isomorphism of $\mathcal{B}(\mathcal{H})$ onto $\mathcal{B}(\overline{\mathfrak{H}})$. Let $S_{0} A x_{0}$ be $\overline{A^{*} x_{0}}$ and $F_{0} \bar{A}^{\prime} x_{0}$ be $A^{\prime *} x_{0}$, where $A \in R$ and $A^{\prime} \in R^{\prime}$. We shall note (Lemma 4.3) that S_{0} and F_{0} are preclosed. Let $J \Delta^{1}$ be a polar decomposition of the closure S of S_{0}. In this notation, Tomita's theorem asserts that:
$J R J^{*}=\overline{R^{\prime}}$ and $A \rightarrow \Delta^{t t} A \Delta^{-t t}$ is a ${ }^{*}$-automorphism of R for each real t.
The relation of this theory to unbounded similarity theory lies in the identity

$$
S A S^{-1} \bar{B} \bar{C} \bar{x}_{0}=\bar{B} \bar{C} \bar{A}^{*} \bar{x}_{0}=\bar{B} S A S^{-1} \bar{C} \bar{x}_{0}
$$

so that, if $S A S^{-1}$ is bounded, its extension to $\overline{\mathcal{H}}$ is in $\overline{R^{\prime}}$. In the results that follow, we locate strong-operator-dense, self-adjoint subalgebras of \boldsymbol{R} and $\overline{\boldsymbol{R}}$ ' between which S effects an unbounded similarity satisfying the growth condition of Theorem 3.9.

Lemma 4.l. If $x \in \mathcal{D}\left(F_{0}^{*}\right)$ and $\bar{y} \in \mathcal{D}\left(S_{0}^{*}\right)$ then there are closed operators L_{x} and R_{y} affiliated with R and R^{\prime}, respectively, such that $L_{x} A^{\prime} x_{0}=A^{\prime} x$ and $R_{y} A x_{0}=A y$, for each A in \widetilde{R} and A^{\prime} in \widetilde{R}^{\prime}. In addition $\overparen{R}^{\prime} x_{0} \subseteq \mathcal{D}\left(L_{x}^{*}\right), \widetilde{R} x_{0} \subseteq \mathcal{D}\left(R_{y}^{*}\right) ; L_{x}^{*} B^{\prime} x_{0}=B^{\prime} \bar{F}_{0}^{*} x$, and $R_{y}^{*} B x_{0}=$ $B S_{0}^{*} \bar{y}$.

Proof. With A^{\prime}, B^{\prime} in \boldsymbol{R}^{\prime},

$$
\left\langle L_{x} A^{\prime} x_{0}, B^{\prime} x_{0}\right\rangle=\left\langle x, F_{0} \bar{B}^{\prime *} \bar{A}^{\prime} \bar{x}_{0}\right\rangle-\left\langle A^{\prime} x_{0}, B^{\prime} \bar{F}_{0}^{*} x\right\rangle
$$

Hence $B^{\prime} x_{0} \in \mathcal{D}\left(L_{x}^{*}\right)$ and $L_{x}^{*} B^{\prime} x_{0}=B^{\prime} \overline{F_{0}^{*} x}$. Since L_{x}^{*} is densely defined, there is a closed operator L_{x} (mapping $R^{\prime} x_{0}$ as defined). Now $U^{\prime *} L_{x} U^{\prime} A^{\prime} x_{0}=L_{x} A^{\prime} x_{0}$ for each unitary operator U^{\prime} in R^{\prime}. Since $R^{\prime} x_{0}$ is a core for $L_{x}, L_{z} \eta R$. (See Remark 4.2.) Similarly for $R y$.

Remark 4.2. If A is a closed, densely-defined operator with core \mathcal{D}_{0}, and $U^{\prime *} A U^{\prime} x=-A x$ for each x in D_{0} and each unitary operator U^{\prime} in R^{\prime}, then $A \eta R\left(\right.$ that is, $\mathcal{D}\left(U^{\prime *} A U^{\prime}\right)=\mathcal{D}(A)$ and $U^{\prime *} A U^{\prime} y=A y$ for all y in $\mathcal{D}(A)$). To see this, note that, with y in $\mathcal{D}(A)$, there is a sequence $\left(y_{n}\right)$ in D_{0} such that $y_{n} \rightarrow y$ and $A y_{n} \rightarrow A y$ (since D_{0} is a core for A). Now $U^{\prime} y_{n} \rightarrow U^{\prime} y$ and $A U^{\prime} y_{n}=U^{\prime} A y_{n} \rightarrow U^{\prime} A y$. Since A is closed, $U^{\prime} y \in \mathcal{D}(A)$ and $A U^{\prime} y=U^{\prime} A y$. Thus $\mathcal{D}(A) \subseteq$ $U^{\prime *}(\mathcal{D}(A))$. Applied to $U^{\prime *}$, we have $\mathcal{D}(A) \subseteq U^{\prime}(\mathcal{D}(A))$; so that $U^{\prime}(\mathcal{D}(A))=\mathcal{D}(A)$. Hence $\mathcal{D}\left(U^{\prime *} A U^{\prime}\right)=\mathcal{D}(A)$ and $U^{\prime *} A U^{\prime} y=-A y$ for each y in $\mathcal{D}(A)$.

Lemma 4.3. The operators S_{0} and F_{0} are preclosed linear operators and their closures S and F satisfy: $S \subseteq F_{0}^{*}, F \subseteq S_{0}^{*}$.

Proof. With A in R^{R} and A^{\prime} in \boldsymbol{R}^{\prime},

$$
\left\langle S_{\mathbf{0}} A x_{0}, A^{\prime} \bar{x}_{0}\right\rangle=\left\langle A x_{0}, A^{\prime *} x_{0}\right\rangle
$$

so that $\bar{A}^{\prime} \bar{x}_{0} \in \mathcal{D}\left(S_{0}^{*}\right)$ and $S_{0}^{*} \bar{A}^{\prime} \bar{x}_{0}=F_{0} \bar{A}^{\prime} \bar{x}_{0}$. Thus S_{0} is preclosed and $F_{0} \subseteq S_{0}^{*}$.
Lemma 4.4. If $T \eta \boldsymbol{R}$ and $x_{0} \in \mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)$ then $T x_{0} \in \mathcal{D}(S)$. If $T^{\prime} \eta \boldsymbol{R}^{\prime}$ and $x_{0} \in$ $\mathcal{D}\left(T^{\prime}\right) \cap \mathcal{D}\left(T^{\prime *}\right)$ then $\overline{T^{\prime} x_{0}} \in \mathcal{D}(F)$. Moreover $S T x_{0}=\overline{T^{*}} x_{0}$ and $F T^{\prime} x_{0}=T^{\prime *} x_{0}$.

Proof. Let $V H$ be the polar decomposition of T. Let E_{n} be the spectral projection for H corresponding to $[-n, n]$ and H_{n} be $H E_{n}\left(\supseteq E_{n} H\right)$. Then $V H_{n} x_{0} \rightarrow T x_{0}$, and $S_{0} V H_{n} x_{0}=$ $\overline{H_{n}} \bar{V}^{*} x_{0} \rightarrow \overline{T^{*} x_{0}}$. Thus $T x_{0} \in \mathcal{D}(S)$, and $S T x_{0}=\overline{T^{*} x_{0}}$. Similarly $\overline{T^{\prime} x_{0}} \in \mathcal{D}(F)$ and $F \overline{T^{\prime} x_{0}}=$ $T^{\prime *} x_{0}$.

Corollary 4.5. The operators S and F are each others adjoints.

Proof. From Lemma 4.3, $S \subseteq F_{0}^{*}$. If $x \in \mathcal{D}\left(F_{0}^{*}\right)$, from Lemma 4.1, there is a closed operator L_{x} affiliated with R such that $x_{0} \in \mathcal{D}\left(L_{x}\right) \cap \mathcal{D}\left(L_{x}^{*}\right)$. From Lemma 4.4, $x=L_{x} x_{0} \in \mathcal{D}(S)$. Thus $S=F_{0}^{*}$. Similarly, $F=S_{0}^{*}$; so that $F^{*}=S_{0}^{* *}=S$ and $S^{*}=F_{0}^{* *}=F$.

Since S is a closed operator, it has polar decompositions $J \Delta^{\ddagger}$ and $\bar{\Delta}_{\frac{1}{1}}^{\frac{1}{2}} J$, where J is an isometric linear transformation from \mathcal{H}, the closure of the range of $S^{*}\left(=F^{\prime}\right)$, onto the closure of the range of the range of S (viz. $\overline{\mathcal{H}}$), $\Delta=F S$, and $\bar{\Delta}_{1}=S F$. Let $\tilde{J} x$ be $\overline{J^{*} \bar{x}}$. Then \tilde{J} is a unitary transformation of \mathcal{H} onto $\overline{\mathcal{H}}$. Since S^{-1} is a closed operator (obtained by interchanging the rôles of R and \bar{R}, x_{0} and \bar{x}_{0}, and \mathcal{H} and $\overline{\mathcal{H}}$) with polar decomposition $\Delta^{-\frac{1}{2}} J^{*}$, we have
for each A in R. Thus $\bar{\Delta}^{-i} \tilde{J}$ is a polar decomposition for S. From uniqueness of the polar decomposition for $S, \bar{\Delta}^{-\frac{1}{2}}=\bar{\Delta}_{1}^{\frac{1}{2}}$ and $\tilde{J}=J$. It follows that $J \Delta^{\frac{1}{2}}=\bar{\Delta}^{-\frac{1}{2}} J$, from which we have:

Lemma 4.6. For each real t,

$$
J \Delta^{t} J^{*}=\bar{\Delta}^{-t}, \quad(S F)^{t}=\bar{\Delta}_{1}^{t}=(\overline{F S})^{-t}=\bar{\Delta}^{-t} .
$$

Among other things, Lemma 4.6 tells us that if we interchange R and R^{\prime} and let $\tilde{S} A^{\prime} x_{0}$ be $\bar{A}^{* *} \bar{x}_{0}, \tilde{F} \bar{A} \bar{x}_{0}$ be $A^{*} x_{0}$, and $\tilde{\Delta}$ be $\tilde{F} \tilde{S}$, then $\tilde{\Delta}=\Delta^{-1}$. Thus statements proved for \boldsymbol{R} and Δ apply to \boldsymbol{R}^{\prime} and Δ^{-1}. In view of this symmetry, we need prove only the first assertion of the crucial "bridging lemma" that follows.

Lemma 4.7. If $x=(\Delta-a I)^{-1} A_{0}^{\prime} x_{0}$, where $a \neq|a|$ and $A_{0}^{\prime} \in \boldsymbol{R}^{\prime}$ then $L_{x} \in \mathcal{R}$ and $\left\|L_{x}\right\| \leqslant$ $a_{0}\left\|A_{0}^{\prime}\right\|$, where $a_{0}=(2|a|-2 \operatorname{Re} a)^{-\frac{1}{2}}$. If $y=\left(\Delta^{-1}-a I\right) A_{0} x_{0}$, where $A_{0} \in \mathcal{R}$, then $R_{y} \in R^{\prime}$ and $\left\|R_{y}\right\| \leqslant a_{0}\left\|A_{0}\right\|$.

Proof. Since Δ is positive, $\Delta(\Delta-a I)^{-1}$ is bounded. Thus $x \in \mathcal{D}(\Delta) \subseteq D\left(\Delta^{\frac{1}{2}}\right)=\mathcal{D}(S)=$ $\mathcal{D}\left(F_{0}^{*}\right)$. From Lemma 4.1, $L_{x} \eta R$. Let $U H$ and $K U$ be the polar decompositions of L_{x}. Let M and N be the spectral projections for H and K corresponding to thessame closed, finite subinterval of ($a_{0}\left\|A_{0}^{\prime}\right\|, \infty$). Then U, M, and N are in $R, U M H=K N U$, and

$$
S N x=S N L_{x} x_{0}=S N K U x_{0}=\overline{U^{*} K N x_{0}}=\overline{M H U^{*} x_{0}}=\overline{M L_{x}^{*} x_{0}}=\bar{M} S x .
$$

If $N \neq 0$ then $N x_{0} \neq 0$. By choice of N,

$$
\begin{aligned}
\left\|A_{0}^{\prime}\right\|^{2} \| & N x_{0}\left\|^{2}<a_{0}^{-2}\right\| K N x_{0}\left\|^{2}=a_{0}^{-2}\right\| U^{*} K N x_{0} \|^{2} \\
= & a_{0}^{-2}\left\|M H U^{*} x_{0}\right\|^{2}=a_{0}^{-2}\left\|M L_{x}^{*} x_{0}\right\|^{2}=a_{0}^{-2}\|M \overline{S x}\|^{2} \\
= & a_{0}^{-2}\langle\bar{M} S x, S x\rangle=a_{0}^{-2}\langle S N x, S x\rangle=a_{0}^{-2}\langle N x, \Delta x\rangle \\
= & 2|a|\langle N x, \Delta x\rangle-2 \operatorname{Re}\langle a N x, \Delta x\rangle \leqslant\|N \Delta x\|^{2} \\
\quad & \quad+|a|^{2}\|N x\|^{2}-2 \operatorname{Re}\langle a N x, N \Delta x\rangle=\|N(\Delta-a I) x\|^{2} \\
= & \left\|N A_{0}^{\prime} x_{0}\right\|^{2} \leqslant\left\|A_{0}^{\prime}\right\|^{2}\left\|N x_{0}\right\|^{2} .
\end{aligned}
$$

Thus $N=0, L_{x}$ is bounded, and $\left\|L_{x}\right\| \leqslant a_{0}\left\|A_{0}^{\prime}\right\|$.

When $A x_{0}=A^{\prime} x_{0}$ with A in R and A^{\prime} in R^{\prime}, we shall say that A^{\prime} is the reflection of A (about x_{0}) and that A is the reflection of A^{\prime}.

Definition 4.8. A reflection sequence (of operators for R and R^{\prime} relative to x_{0}) is a sequence (..., $\left.A_{-3}^{\prime}, A_{-2}, A_{-1}^{\prime}, A_{0}, A_{1}^{\prime}, A_{2}, \ldots\right)$ such that each operator is the reflection of the adjoint of the operator following it, and there is a constant k such that $\left\|A_{n}\right\| \leqslant k^{|n|}$, $\left\|A_{m}^{\prime}\right\| \leqslant k^{|m|}$.

Lemma 4.9. The elements in R that belong to a reflection sequence form a^{*}-subalgebra R_{0} of R.

Proof. If A and B are in the reflection sequences (..., $A_{-1}^{\prime}, A_{0}, A_{1}^{\prime}, \ldots$) and (..., B_{-1}^{\prime}, $B_{0}, B_{1}^{\prime}, \ldots$), renumbering, we may assume that $A=A_{0}$ and $B=B_{0}$. Then $a A+B$ belongs to the reflection sequence

$$
\left(\ldots, \bar{a} A_{-1}^{\prime}+B_{-1}^{\prime}, a A_{0}+B_{0}, \bar{a} A_{1}^{\prime}+B_{1}^{\prime}, a A_{2}+B_{2}, \ldots\right) ;
$$

while $A B$ belongs to the reflection sequence,

$$
\left(\ldots, A_{-2} B_{-2}, A_{-1}^{\prime} B_{-1}^{\prime}, A_{0} B_{0}, A_{1}^{\prime} B_{1}^{\prime}, \ldots\right)
$$

Moreover A^{*} belongs to the "adjoint" reflection sequence

$$
\left(\ldots, A_{2}^{*}, A_{1}^{*}, A_{0}^{*}, A_{-1}^{\prime *}, A_{-2}^{*}, \ldots\right)
$$

We will speak, too, of a reflection sequence of vectors, (.., $y_{-2}, y_{-1}, y_{0}, y_{1}, y_{2}, \ldots$), when $y_{-2}=A_{-2} x_{0}, y_{-1}=A_{-1}^{\prime} x_{0}, y_{0}=A_{0} x_{0}, y_{1}=A_{1}^{\prime} x_{0}, y_{2}=A_{2} x_{2}$ and $\left(\ldots, A_{-2}, A_{-1}^{\prime}, A_{0}, A_{1}^{\prime}, A_{2}, \ldots\right)$ is a reflection sequence of operators. Note that a vector y_{0} lies in a reflection sequence of vectors if and only if $y_{0} \in \mathcal{D}\left(\Delta^{n}\right)$ and $\Delta^{n} y_{0} \in R x_{0} \cap R^{\prime} x_{0}$ for each integer n, and provided the norm-growth condition holds for the associated reflection sequence of operators. To see this, if $y_{0}=A_{0} x_{0}=A_{1}^{\prime *} x_{0}$, let y_{1} be $A_{1}^{\prime} x_{0}$ and let $y_{2 n}$ be $\Delta^{-n} y_{0}\left(=A_{2 n} x_{0}\right)$ and $y_{2 n+1}$ be $\Delta^{n} y_{1}$. Then $A_{2} \bar{x}_{0}=\bar{y}_{2}=\bar{\Delta}^{-1} \bar{y}_{0}=S F \bar{A}_{1}^{\prime *} \bar{x}_{0}=S A_{1}^{\prime} x_{0}$; so that $S^{-1} A_{2} \bar{x}_{0}=A_{2}^{*} x_{0}=A_{1}^{\prime} x_{0}$. Since $y_{1}=F \bar{y}_{0}$; we have

$$
\Delta^{n} y_{1}=\Delta^{n+\sharp} J^{*} \bar{y}_{0}=J^{*} J \Delta^{n+\sharp} J^{*} \bar{y}_{0}=J^{*} \Delta^{-n-\frac{1}{y}} \bar{y}_{0}=F \Delta^{-n} \bar{y}_{0}=F \bar{A}_{2 n+1}^{*} \bar{x}_{0}=A_{2 n+1}^{\prime} x_{0}
$$

for some $A_{2 n+1}^{\prime}$ in \boldsymbol{R}^{\prime}. Thus

$$
A_{-1}^{\prime} \bar{x}_{0}=\bar{y}_{-1}=\Sigma^{-1} \bar{y}_{1}=S F A_{1}^{\prime} \bar{x}_{0}=S A_{1}^{\prime *} x_{0}=S A_{0} x_{0}=\overline{A_{0}^{*} x_{0}}
$$

Continuing in this way, and assuming that $\left\|A_{2 n}\right\| \leqslant k^{|2 n|},\left\|A_{2 n+1}^{\prime}\right\| \leqslant k^{|2 n+1|}$ for some constant k, we construct the reflection sequence of vectors (..., $y_{-1}, y_{0}, y_{1}, \ldots$).

If $A^{*} x_{0}=A^{\prime} x_{0}$ with A in R and A^{\prime} in R^{\prime}, then, with B in R,

$$
S A S^{-1} \bar{B} \bar{x}_{0}=S A B^{*} x_{0}=\bar{B} A^{*} \bar{x}_{0}=\bar{B} \bar{A}^{\prime} \bar{x}_{0}=\bar{A}^{\prime} \bar{B} \bar{x}_{0}
$$

Thus $S A S^{-1} \mid \bar{R} \bar{x}_{0}$ has a (unique) bounded extension \bar{A}^{\prime} to \mathcal{H} and $\bar{A}^{\prime} \in \bar{R}^{\prime}$. If A_{0} is in a reflection sequence then $A_{0}^{*} x_{0}=A^{\prime}{ }_{1} x_{0}$; so that $S A_{0} S^{-1} \mid \bar{R} \bar{x}_{0}$ has a (unique) bounded extension to $\overline{\mathcal{H}}$ and this extension, $A^{\prime}{ }_{1}$ lies in a reflection sequence of operators for \bar{R} and $\overline{\mathcal{R}}^{\prime}$ relative to \bar{x}_{0}. It follows that S induces a similarity (unbounded) of \boldsymbol{R}_{0} onto the *-subalgebra of elements in $\overline{R^{\prime}}$ that lie in a reflection sequence. The conditions of Theorem 3.9 apply and yield the main theorem of the Tomita-Takesaki theory once we note that $\boldsymbol{R}_{0}^{\prime \prime}=\boldsymbol{R}$. For this last, we must produce an abundance of vectors and operators in reflection sequences. Having done this, we employ the density theorem (of independent interest) whose proof follows. In [5] we gave an example of a type I_{∞} factor and a proper type I_{∞} subfactor and a unit generating and separating vector for both. This cannot occur in the finitedimensional case (nor even for finite von Neumann algebras-and that forms the basis for the results of [5]). In Theorem 4.10 we supply the condition on the generating vector that is needed to return the conclusion to the classical framework.

Tifforem 4.10. If \boldsymbol{R} is a von Neumann algebra acting on the Hilbert space $\mathcal{H}, \mathcal{R}_{\mathbf{0}}$ is a self-adjoint subalgebra of \mathcal{R} and x_{0} is a unit vector in \mathcal{H} that is separating and generating for \boldsymbol{R}, then the following three statements are equivalent:
(i) R_{0} is strong-operator dense in R;
(ii) $\left(\boldsymbol{R}_{0}\right)_{\mathrm{sa}} x_{0}$ is dense in $(\boldsymbol{R})_{\mathrm{sa}^{2}} x_{0}$;
(iii) $\boldsymbol{R}_{0} x_{0}$ is a core for Δ^{l}.

Proof. (i) \rightarrow (ii). Since R_{0} is weak-operator dense in R and the adjoint oporation is weak-operator continuous, $\left(\mathcal{R}_{0}\right)_{\mathrm{sa}}$ is weak-operator dense in $(\overparen{R})_{\mathrm{sa}}$. As $\left(\boldsymbol{R}_{\boldsymbol{\theta}}\right)_{\mathrm{sa}}$ and $(\boldsymbol{R})_{\mathrm{sa}}$ are convex, $\left(\mathcal{R}_{0}\right)_{\mathrm{sa}}$ is strong-operator dense in $(\boldsymbol{R})_{\mathrm{sa}}$.
(ii) \rightarrow (iii). Since $R x_{0}$ is a core for $\Delta^{\frac{1}{2}}$, given A in R, it will suffice to find operators A_{n} in R_{0} such that $A_{n} x_{0} \rightarrow A x_{0}$ and $\Delta^{\frac{1}{2}} A_{n} x_{0}\left(-J^{*} S A_{n} x_{0}=J^{*} \bar{A}_{n}^{*} \bar{x}_{0}\right) \rightarrow \Delta^{\sharp} A x_{0}\left(=J^{*} \bar{A}^{*} \bar{x}_{0}\right)$, or, equivalently, such that $A_{n}^{*} x_{0} \rightarrow A^{*} x_{0}$ (since J^{*} and $x \rightarrow \bar{x}$ are isometries). Now $A=H_{1} \div i I_{2}$, with H_{1} and H_{2} self-adjoint operators in R. By assumption, there are self-adjoint operators $K_{1 n}$ and $K_{2 n}$ in R_{0} such that $K_{1 n} x_{0} \rightarrow H_{1} x_{0}$ and $K_{2 n} x_{0} \rightarrow H_{2} x_{0}$. If $A_{n}-K_{1 n}+i K_{2 n}$, then $A_{n} \in \boldsymbol{R}_{0}, A_{n} x_{0} \rightarrow A x_{0}$, and $A_{n}^{*} x_{0} \rightarrow A^{*} x_{0}$.
(iii) \rightarrow (i). We show that $\boldsymbol{R}_{0}^{\prime} \subseteq \boldsymbol{R}^{\prime}$ by showing that each self-adjoint H^{\prime} in R_{0}^{\prime} lies in \boldsymbol{R}^{\prime}. Since $\boldsymbol{R}_{0} \subseteq \boldsymbol{R}$, we have $\boldsymbol{R}^{\prime} \subseteq \boldsymbol{R}_{0}^{\prime}$; so that $\boldsymbol{R}_{0}^{\prime}=\boldsymbol{R}^{\prime}$ and $\boldsymbol{R}_{0}^{\prime \prime}-\boldsymbol{R}^{\prime \prime}-\boldsymbol{R}$. With \boldsymbol{A}_{n} in $\boldsymbol{R}_{\mathbf{0}}$,

$$
\left\langle S A_{n} x_{0}, \bar{H}^{\prime} \bar{x}_{0}\right\rangle \cdots\left\langle\bar{A}_{n}^{*} \bar{x}_{0}, \bar{H}^{\prime} \bar{x}_{0}\right\rangle=\left\langle\bar{H}^{\prime} \bar{x}_{0}, \bar{A}_{n} \bar{x}_{0}\right\rangle
$$

If $x \in \mathcal{D}\left(\Delta^{\frac{1}{2}}\right)$, by assumption, there are operators A_{n} in R_{0} such "that $A_{n} x_{0} \rightarrow x$ and $\Delta^{\ddagger} A_{n} x_{0}\left(=J^{*} A_{n}^{*} \bar{x}_{0}\right) \rightarrow \Delta^{\ddagger} x$. In this case $\left\langle S A_{n} x_{0}, \bar{H}^{\prime} \bar{x}_{0}\right\rangle=\left\langle J \Delta^{t} A_{n} x_{0}, \bar{H}^{\prime} \bar{x}_{0}\right\rangle \rightarrow\left\langle J \Delta^{\sharp} x, \bar{H}^{\prime} \bar{x}_{0}\right\rangle=$
$\left\langle S x, \bar{H}^{\prime} \bar{x}_{0}\right\rangle$; and $\left\langle\bar{H}^{\prime} \bar{x}_{0}, \bar{A}_{n} \bar{x}_{0}\right\rangle=\left\langle A_{n} x_{0}, H^{\prime} x_{0}\right\rangle \rightarrow\left\langle x, H^{\prime} x_{0}\right\rangle$. Thus $\left\langle S x, \bar{H}^{\prime} \bar{x}_{0}\right\rangle=\left\langle x, H^{\prime} x_{0}\right\rangle$. It follows that $\bar{H}^{\prime} \bar{x}_{0} \in \mathcal{D}\left(S^{*}\right)\left(=\mathcal{D}\left(F^{\prime}\right)\right)$ and $F \bar{H}^{\prime} \bar{x}_{0}=H^{\prime} x_{0}$. Hence the mapping $A x_{0} \rightarrow A H^{\prime} x_{0}$ has closure H_{0}^{\prime} affiliated with \boldsymbol{R}^{\prime}, where A takes on values in R, from Lemma 4.1. If $A \in \boldsymbol{R}_{\mathbf{0}}$ then $H_{0}^{\prime} A x_{0}=A H^{\prime} x_{0}-H^{\prime} A x_{0}$, since $I I^{\prime} \in \mathfrak{R}_{0}^{\prime}$. With x in \mathcal{H} and A_{n} in \mathcal{R}_{0} such that $A_{n} x_{0} \rightarrow x$, we have $H_{0}^{\prime} A_{n} x_{0}=H^{\prime} A_{n} x_{0} \rightarrow H^{\prime} x$. Since H_{0}^{\prime} is closed, $x \in \mathcal{D}\left(H_{0}^{\prime}\right)$ and $H_{0}^{\prime} x=H^{\prime} x$. Thus $H_{0}^{\prime}=H^{\prime} \in \boldsymbol{R}^{\prime}$.

In the discussion that follows, we complete the proof by showing that vectors in $\left(\mathcal{R} x_{0}\right) \cap E\left(k^{-1}, k\right)(\mathcal{H})$, where $E\left(k^{-1}, k\right)$ is the spectral projection for Δ (and also Δ^{-1}) corresponding to the interval (k^{-1}, k), lie in a reflection sequence; and that the set of these vectors, with k taking values in ($1, \infty$), is a core for $\Delta^{\frac{1}{2}}$. Thus $\boldsymbol{R}_{0} x_{0}$ is a core for $\Delta^{\frac{1}{2}}$; and the density theorem (4.10) just proved establishes that $\boldsymbol{R}_{0}^{\prime \prime}=\boldsymbol{R}$.

The essential steps in the argument that follows are drawn from part (Lemmas 3-7) of Haagerup's argument [3]. Using the Bridging Lemma (4.7) and some preliminary analysis of the special functions involved, we shall prove:

Lemma 4.11. If $f_{a}(t)=\exp (-|t-a|)$ with a real, ant $A \in R$, then $f_{a}(\log \Delta) A x_{0}=B x_{0}$, where $B \in R$ and $\|B\| \leqslant\|A\|$.

Assuming this result, for the time, we prove:
Lemma 4.12. If $A_{0} x_{0} \in E\left(k^{-1}, k\right)(\mathcal{H})$ for some k greater than 1 and $A_{0} \in \mathbb{R}$, then $\Delta^{n} A_{0} x_{0}=$ $A_{n} x_{0}$, where $A_{n} \in R$ and $\left\|A_{n}\right\| \leqslant h^{|n|}\left\|A_{0}\right\|$. . In addition $A_{0} x_{0}=A^{\prime} x_{0}$, where $A^{\prime} \in R^{\prime}$ and $\left\|A^{\prime}\right\| \leqslant$ $k^{\bullet}\left\|A_{0}\right\|$. The statement obtained by interchanging R and \boldsymbol{R}^{\prime} in the preceding is also valid.

Proof. Since $k \exp (-|t-\log k|)$ and $\exp t$ coincide on $[-\log k, \log k]$; we have

$$
\Delta A_{0} x_{0}=k f_{\log k}(\log \Delta) A_{0} x_{0}=A_{1} x_{0}
$$

where $A_{1} \in R$ and $\left\|A_{1}\right\| \leqslant k\left\|A_{0}\right\|$. (The last equality uses Lemma 4.11.) Replacing t by $-t$, we also have

$$
\Delta^{-1} A_{0} x_{0}-k f_{\log k}(\log \Delta) A_{0} x_{0}=A_{1} x_{0}
$$

with A_{-1} in R and $\left\|A_{-1}\right\| \leqslant k\left\|A_{0}\right\|$. Since $A_{1} x_{0} \in\left(\mathcal{R} x_{0}\right) \cap E\left(k^{-1}, k\right)(\mathcal{H})$, it follows from what we have proved that $\Delta A_{1} x_{0}=A_{2} x_{0}$, where $A_{2} \in R$ and $\left\|A_{2}\right\| \leqslant k^{2}\left\|A_{0}\right\|$. In addition $A_{2} x_{0} \in$ $\left(\mathcal{R} x_{0}\right) \cap E\left(k^{-1}, k\right)(\mathcal{H})$. Continuing, we construct A_{n} with the desired properties.

As Δ^{-1} plays the rôle of Δ when R and \boldsymbol{R}^{\prime} are interchanged (with the same x_{0}) and $E\left(k^{-1}, k\right)$ is the spectral projection corresponding to $\left(k^{-1}, k\right)$ for both Δ and Δ^{-1}, we can apply the result just established to \widetilde{R}^{\prime} and Δ^{-1} with the only modification of the conclusion being the replacement of \boldsymbol{R} by \boldsymbol{R}^{\prime}.

From the Bridging Lemma (4.7), $\left(k I+\Delta^{-1}\right)^{-1} A_{0} x_{0}=A_{0}^{\prime} x_{0}$, where $A_{0}^{\prime} \in R^{\prime}$ and $\left\|A_{0}^{\prime}\right\| \leqslant$ $(4 k)^{-\frac{1}{2}}\left\|A_{0}\right\|$. Thus $A_{0} x_{0}=\left(k I+\Delta^{-1}\right) A_{0}^{\prime} x_{0}=k A_{0}^{\prime} x_{0}+A_{1}^{\prime} x_{0}$, where $A_{1}^{\prime} \in R^{\prime}$ and $\left\|A_{1}^{\prime}\right\| \leqslant k\left\|A_{0}^{\prime}\right\|$. (Note for this that $A_{0}^{\prime} x_{0}=\left(k I+\Delta^{-1}\right)^{-1} A_{0} x_{0} \in E\left(k^{-1}, k\right)(\mathcal{H})$ and apply the result of the preceding paragraph.) Letting A^{\prime} be $k A_{0}^{\prime}+A_{1}^{\prime}$, the last assertion of this lemma follows.

We conclude from Lemma 4.12 that each y in $\left(\mathcal{R} x_{0}\right) \cap E\left(k^{-1}, k\right)(\mathcal{H})$ (or in $\left(\boldsymbol{R}^{\prime} x_{0}\right) \cap$ $\left.E\left(k^{-1}, k\right)(\mathcal{H})\right)$ lies in a reflection sequence. We want, next, to show that the set of such vectors (as k takes values in $(1, \infty)$) forms a core for Δ^{\sharp}. We prove this in the lemma that follows.

Lemma 4.13. The linear manifold $\bigcup_{n=2}^{\infty}\left(\mathbb{R} x_{0}\right) \cap E\left(n^{-1}, n\right)(\mathcal{H})(=\mathcal{D})$ is a core for $\Delta^{\text {t }}$.
Proof. If $A \in R$ and

$$
g_{n}(t)=e^{-|t|}-\left(e^{n}+e^{-n}\right)^{-1}\left(e^{-|t-n|}+e^{-|t+n|}\right)
$$

with n an integer greater that 1 , then $\left(g_{n}\right)$ is an increasing sequence of positive functions vanishing outside (but not on) $(-n, n)$ and converging at each t to $\exp (-|t|)$. (Note, for this, that $g_{n}(t)=g_{n}(-t)$; so that we may assume $0 \leqslant t$; and write $g_{n}(t)$ as $\exp (-t)[1-$ $\left.(\exp (2 n)+1)^{-1}(\exp (2 t)+1)\right]$ when $0 \leqslant t \leqslant n$.) From Lemma 4.11, $g_{n}(\log \Delta) A x_{0}=B x_{0}$, where $B \in \boldsymbol{R}$. Moreover $g_{n}(\log \Delta) E_{n}=g_{n}(\log \Delta)$, where $E_{n}=E(\exp (-n), \exp n)$, since g_{n} vanishes outside $(-n, n)$; and $g_{n}(\log \Delta) E_{n}(\mathcal{H})$ is dense in $E_{n}(\mathcal{H})$ since g_{n} does not vanish on ($-n, n$). Thus $g_{n}(\log \Delta) A x_{0}=g_{n}(\log \Delta) E_{n} A x_{0} \in \mathcal{D}$ for each A in R and all $n(=2,3, \ldots)$. Since $\left\{E_{n} A x_{0}: A \in \mathcal{R}\right\}$ is dense in $E_{n}(\mathcal{H}) ;\left\{g_{n}(\log \Delta) E_{n} A x_{0}: A \in \mathcal{R}\right\}$ is dense in $E_{n}(\mathcal{H})$. If $y \in E_{n}(\mathcal{H})$, we can, therefore, choose y_{m} in $\mathcal{D} \cap E_{n}(\mathcal{H})$ such that $\left(y_{m}\right)$ tends to y. As Δ^{\ddagger} is bounded on $E_{n}(\mathcal{H}), \Delta^{\ddagger} y_{m} \rightarrow \Delta^{\ddagger} y$. Hence $\left(y, \Delta^{\ddagger} y\right)$ is in the closure of the graph of $\Delta^{\ddagger} \mid \mathcal{D}$. Since $\bigcup_{n=2}^{\infty} E_{n}(\mathcal{H})$ is a core for $\Delta^{\frac{t}{2}}, \mathcal{D}$ is a core for $\Delta^{\frac{1}{2}}$.

It remains to prove Lemma 4.11.
Proof of Lemma 4.11. If

$$
h_{a}(t)=[\cosh (t-a)]^{-1}\left(=2\left[e^{t-a}+e^{a-t}\right]^{-1}\right)
$$

then

$$
h_{a}(\log \Delta)=2\left(e^{-a} \Delta+e^{a} \Delta^{-1}\right)^{-1}=2 i\left(\Delta+i e^{a} I\right)^{-1}\left(\Delta^{-1}+i e^{-a} I\right)^{-1}
$$

From the Bridging Lemma, with A in R, we have $h_{a}(\log \Delta) A x_{0}=B_{0} x_{0}$, where $B_{0} \in R$ and $\left\|B_{0}\right\| \leqslant\|A\|$. We use the fact that, for all real t,

$$
e^{-|t|}=\sum_{n=1}^{\infty} a_{n}[\cosh t]^{-(2 n-1)}
$$

and convergence is uniform on the reals, where $0<a_{n}$ and $\sum_{n=1}^{\infty} a_{n}=1$. (This can be proved by studying the inverse to $s \rightarrow 2 s\left(s^{2}+1\right)^{-1}$ on $[-1,1]$ and letting s be $\exp (-t)$.) From this, we have

$$
f_{a}(\log \Delta)=\sum_{n=1}^{\infty} a_{n}\left[h_{a}(\log \Delta)\right]^{2 n-1}
$$

where convergence is in the operator-norm topology. Thus, for each A in \mathcal{R},

$$
f_{a}(\log \Delta) A x_{0}=\sum_{n=1}^{\infty} a_{n}\left[h_{a}(\log \Delta)\right]^{2 n-1} A x_{0}=\sum_{n=1}^{\infty} a_{n} B_{n} x_{0}
$$

where $B_{n} \in R$ and $\left\|B_{n}\right\| \leqslant\|A\|$. Since $0 \leqslant a_{n}$ and $\sum a_{n}=1$; we have that $\sum_{n=1}^{\infty} a_{n} B_{n}$ converges (in norm) to an operator B in R and $\|B\| \leqslant\|A\|$.

References

[1]. Dunford, N. \& Schwartz, J., Linear Operators, Part I. Interscience Publishers, New York, 1958.
[2]. Gardner, L., On isomorphisms of C^{*}-algebras. Amer. J. Math., 87 (1965), 384-396.
[3]. Haagerup, U., Tomita's theory for von Neumann algebras with a cyclic and separating vector, June 1973. Private circulation.
[4]. Kadison, R., Derivations of operator algebras. Ann. of Math., 83 (1966), 280-293.
[5]. - Remarks on the type of von Neumann algebras of local observables in quantum field theory. J. Math. Phys., 4 (1963), 1511-1516.
[6]. Kadison, R. \& Ringrose, J., Algebraic automorphisms of operator algebras. J. London Math. Soc., 8 (1974), 329-334.
[7]. - Derivations and automorphisms of operator algebras. Comm. Math. Phys., 4 (1967), 32-63.
[8]. Okayasu, T., A structure theorem of automorphisms of von Neumann algebras. Tôhoku Math. J., 20 (1968), 199-206.
[9]. - Polar decomposition theorem for isomorphisms of operator algebras. Notes \& Abstracts, Japan-U.S. Seminar on C^{*}-algebras and applications to physics, 1974.
[10]. Ringrose, J., Automatic continuity of derivations of operator algebras. J. London Math. Soc., 5 (1972), 171-175.
[11]. Sakai, S., C^{*}-algebras and W^{*}-algebras. Springer, Berlin, 1971.
[12]. - On a conjecture of Kaplansky. Tôhoku Math. J., 1 (1960), 31-33.
[13]. - Derivations of W^{*}-algebras. Ann. of Math., 83 (1966), 273-279.
[14]. Takesaki, M., Tomita's theory of modular Hilbert algebras and its applications. Springer lecture notes in Mathematics no. 128 (1970).
[15]. Tomita, M., Standard forms of von Neumann algebras. Fifth Functional Analysis Symposium of the Math. Soc. of Japan, 1967.
[16]. Van Daele, A., The Tomita-Takesaki theory for von Neumann algebras with a separating and cyclic vector. Proc. Int. School of Phys. Enrico Fermi. Ital. Phys. Soc. Pub., Bologna, 1976.
[17]. Zsido, L., A proof of Tomita's fundamental theorem in the theory of standard von Neuman algebras. Revue Comm. Pures et Appl., 20 (1975), 609-619.

Received November 14, 1977

