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I n t r o d u c t i o n  

The so-called "Cauchy  Prob lem"  has a ve ry  long and classical story, f rom J.  H a d a m a r d  

[7], I. G. Petrovski  [22], J.  Leray  [20], L. G~rding [6] . . . .  to, for example, the  last results 

of Ivrii  and P ie tkov  [13] or L. H6rmander  [12], bu t  we will no t  review here. 

The difficulty t reated by  the  last authors  lies in the  fact  t h a t  the principal symbol  

of the operator  is no t  of simple characteristic, and  the  lower order symbols have an  

essential role (Levi conditions). However,  we know by  [4] t ha t  with the  use of hyper-  

functions the  si tuat ion is simple: "hyperbol ic i ty"  is given b y  the principal symbol.  This 

fact  allows us to t reat  the case of (overdetermlned) systems. I n  this paper,  we t rea t  the  

initial value problem and the problem of propagat ion for hyperfunct ion or microfunct ion 

solutions of (micro-)hyperbolie systems. The  hyperbolici ty is just  a geometrical  p roper ty  

of the complex characteristic var ie ty  of the system. 
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Let M be a real analytic manifold, X a complexification of M, and T~X the conormal 

bundle of M in the cotangent vector bundle T*X of X. Let us denote by CM the sheaf of 

microfunctions on T'X,  and by Ex the sheaf of microdifferential operators on T*X 
(cf. [24]). Let ~ be a coherent ~x-modulo and SS(~) its characteristic variety (in T'X). 
We say (cf. [17]) that  a covector OET*(T*X) is micro-hyperbohc for ~ if H(O) does not 

belong to the normal cone to SS(~) along T~X. We denote this cone by C(SS(~); T'X). 
Here H is the identification of T(T*M) and T*(T*M) by the symplectic structure. Recall 

that C(SS(~); T~X)xc Tx(T*X) is the set of limits of sequences (in some local chart) 

an(xn--yn), with anER +, x, ESS(~), ynET~X, x,~"-~ x, y,~-"~'x (cf. w 1). 

When the system reduces to a single equation, that  is when 7~/= E;c/~xP for a 

microdifferential operator P,  the system is micro-hyperbolic in the codirection 0 at  

(x0, i~?o)eT*X if, in some local chart we have: a(P)((x, iT)+eH(O))~=O for (x, i~/) in a 

neighbourhood of (%, i~7o ) in T*X and 0 < s < l .  a(P) denotes the principal symbol of P. 

Thus in the case of differential operators we get the usual definition of weak hyperbolicity. 

We prove the following prolongation theorem: if Z is a conic closed set of T'X ,  and 

if the exterior conormals to Z at  xe~Z are micro-hyperbolic for ~V/ then, for any ~, 

~xt~ x ( ~ ,  r~(c~)), =0. 
Meanwhile we prove the following: let N be an analytic submanifold of M, and assume 

that  all conormals to 2V in M are micro-hyperbolic for :DI. Let  Y be the complexification 

of N in X , ~  and 9 the natural maps from T*X• to T*X and T*Y and ~ l r  the 

system induced by ~1 on Y. We write Hem (F, G) for the sheaf of homomorphisms of 

the sheaf F in the sheaf G, and Ext  j for the j th derived funetor of Hem. Then for any 

we have a natural isomorphism: 

~ ,~-1  Ext~ x (~l, C~) ~ Exgr(~Dlr, CN) 

that  is, the Cauchy problem is well posed (for microfunctions) on h r. If we assume that  

is a module on the ring ~Ox of differential operators and that  hr is a submanifold of M, 

replacing the sheaf C by the sheaf B of hyperfunctions, we get the isomorphisms 

Extbx ('m, B~) I hr -~ EXtbr(Y/r, ~ )  

In the case of a single equation "!11 = Dx/DxP, where P is of order m, My is a free 

~0r-module of rank m, and we obtain: 

Hom,x  ( ~ ,  ~M) IN = Ker (BM ~ B~)]N __- B~ 

Ext ;~0n,  B~)12r = ( ~ / P ~ )  [hr = 0 

which is equivalent to the fact that  the usual Cauchy Problem is well posed. When the 

system ~D1 reduces to a single equation, these theorems were proved, in the differential case, 
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by J. M. Bony and P. Schapira [4], then in the microdifferential case by M. Kashiwara 

and T. Kawai [17]. 

To prove these theorems, we represent the sheaf CM by a sheaf of boundary values 

of holomorphic functions on a strictly pseudo-convex domain of C a, and we prove a pro- 

longation theorem for the holomorphic solutions of the system. For this, first we must 

define the action of microdifferontial operators: if V0c V 1 c c  D are open subsets of C n, 

F is a real convex proper cone of C n and if (V 1 §  (V0+F) = V1-V0, then we define 

the ring ~(F; D) of microdifferential operators defined near D •  ~ which acts on 

O(Vo)/O(V1) (O(V) denotes the space of holomorphic functions on V). 

The geometry of the prolongation theorem being invariant by a change of real 

coordinates, we are lead to a geometrical problem quite simple in its nature. 

We will give three applications: 

1. We give a new proof for our previous result of [19]. Let  Y be a complex submanifold 

of X, xET*X• and let ~ and ~/ be two coherent Ex-modules defined near x. 

Assume that  Y is non microcharacteristic for (7~/, ~/), i.e., the conormals to Y in X do not 

belong to C(SS(~); SS(~l)). Let ~/s be the module generated by ~/over  the ring ~x a of 

complex microlocal operators. Then for all ?', Ext~x ( ~ ,  ~/R)x -- Ext~r ( ~ r ,  s ~/r)Q~x~, that  is, 

the Cauchy problem is well posed for (7~/, ~/B) on Y. 

This theorem improves the results of [8], [9] and moreover gives a generalization for 

systems. At the same time ~ve prove the prolongation theorem which we could not get by 

the complex method in [19]. 

2. We extend a theorem of J. M. Bony and P. Schapira [5] on the propagation of 

singularities to a more general setting where one has systems of equations. Again we 

emphasize that  this gives stronger result for the case of a single equation. 

Let A be a conic involutive submanifold of T~X, A c the complexification of A in 

T'X, and/~  the union of bicharacteristic leaves of A c issued from A. Let ~ be a coherent 

~x-module such that  any non zero vector of TA(T*X) does not belong to C(SS(~l); A). 
Then, the support of a section of Homex (~/, CM] A) is a union of bicharacteristic leaves of 

A (in fact we give a theorem which treats all the group E x t ~ x ( ~ ,  CMIA)). 

3. We extend a result of M. Kashiwara [15] to the microdifferential case, and prove 

that  if ~ / i s  a holonomic ~x-module, the sheaves Ext~x ( ~ ,  CM) are locally constant along 

strata of a stratification of 22()~/)N T~X which satisfies the Whitney conditions. 

We shall now give the plan of this paper. 

In w 1, we review microdifferential operators, microfunctions, etc. 

In  w 2 we give the notion of micro-hyperbolicity and announce the main theorems 

on the initial value problem and on the prolongation. 
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In w 3, we define the ring ~(G; D) of "micro-differential operators defined near 

D x (-GO) '' and give the operation of this ring on the relative cohomology group with 

holomorphic functions as coefficients. Also, we investigate the geometry of conormal cones 

and Q-fiat sets. 

In w 4, we give the theorem of prolongation in the complex domain. 

w 5 is a preliminary but important part of the proof of the main theorems and uses 

results from w 4. We finish the proof in w 7. 

In w 6, we give the proof of the division theox'em for sheaves of microfunctions with 

holomorphic parameters, which is necessary for the proof of the initial value theorem for 

micro-hyperbolic systems. 

w 8, w 9, and w 10 are for the applications of micro.hyperbolic systems. 

w 1. Preliminaries 

1.1. Let W be a manifold of class C 1, TW the tangent vector bundle to W, and let V 

and ~ be two subsets of W. 

De/inition 1.1.1. The normal cone Cx(S; V) of S along V at x is the subset of Tx W 

defined by: 

Cx(S; V)={vETx(W); there are sequences {xn} in S, {Yn} in V and {an} in R+ such 

that  {x,} and {Yn} converge to x and that  an(xn-yn) converge to v}. 

We denote by C(S; V) the union of Cz(S; V) (x E W). The definition is free from the choice 

of local coordinate systems. 

Note that: 

C(V; S) is a closed cone in TW. 

~(s; V)-- - cCV; s).  

If V is smooth, Cz(S; V) is a closed cone of T~ W, invariant by T: V. We sometimes 

identify it with its image in TvW, and denote it by Cv(S). C~x~(S)--Cx(S; {x}) will 

be denoted by Cz(S ). 
If we identify W with the diagonal of W x W and TW with TA(W • W) the normal to 

A by the first component, we have (cf. [19]): 

c(~; v) = c~(s • v). 

If W is open in some vector space, v E Tx(W) does not belong to C,(S; V) if and only 

if there exists an open cone F with v E F such that  

( (un  v ) + F ) n  u o s = O  

for some neighborhood U of x. 
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1.2. We review in this section and the following ones some constructions of [24]. 

Let  W be a C~.manifold and V a C2-submanifold of W. We denote by T*W the 

cotangent vector bundle to W, and by  T~, W the conormal bundle to V in W. We endow 

( W -  V) ]_I T~ W with the topology of the comonoidal transform (cf. [24, chapter 1, w 2] 

where this topology is only defined on W I_I S* W, S~ W being the spherical cotangent 

bundle, but  that  of (W - V) ]_I T~ W is the inverse image of the preceding by  the mapping 

which identifies two points of Tg W on the same orbit of the action of R+). 

Let re denote the projection of ( W -  V) I_[ T~ W on W, and let F be a sheaf on W. 

We have for (x, ~) e T* W: 

( ~  w(~ iF))(~. ~) = ~ Hi(  U, F) 
U.  G 

where U runs on the family of neighborhoods of x in W and G on the family of closed sets 

of W such that  the normal cone Cv(G)~ to G along V at x is contained in the set 

{0} t) {v e T v W=; <v, ~> > 0}. The sheaf ~ ;  w(~t-*F) is regarded as a sheaf on T* W supported 

by T~ W. I t  is locally constant on the orbits of the action of R+. If we identify W with 

the zero section T*  W of T*W we have 

We denote by a the antipodal map on T'W: 

a: (x, ~)~+(x, -~). 

We denote by  eovlw the sheaf of relative orientation of V in W. 

1.3. Now lot X be a complex analytic manifold of dimension n, T*X the complex 

cotangent vector bundle to X and co the canonical I-form on T*X. For local coordinates 

(z, .... , z~; ~1, ..., ~n) on T'X, we have 

$ - 1  

The isomorphism H of T*(T*X) on T(T*X) associated to r is defined by: 

<0, v> = <da~, v A H(O)> 

for v 6 T(T*X), 0 6 T*(T*X). 

We denote by Ox the sheaf on X of holomorphic functions. If Y is a complex sub. 

manifold of codimension d, the sheaf C~lx on T*X is defined, with the preceding nota- 

tions, by: 
R __  d e - 1  a Crlx -- :H~'yX(~ OX) �9 
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Let ? be the projection on the complex projective cotangent bundle: 

?: T ' X -  T~X ~ P*X. 

The sheaf C~lx on T~.X is defined by: 

C~lxl  T* X - T ~ X  = r 1 r ,  C~l~ 

co $ R $ C ~ t . ~ l T ~ X  = C~,~l T~ X( = ~t~(Ox)). 

If  we take local coordinates, it is possible to associate a symbol of infinite order with any 

section of C~jx (cf. [24, chapter 2, w 1]). The sheaf Crlx is then defined as the subsheaf 

of C~jx of sections of finite order. 

The sheaf ~ax of microlocal operators on T*X is given by: 

5 ~  _ C R •(0. n) x-- XlXxX Q ~XxX 
Oxxx 

where ~x•176 denotes the sheaf of holomorphic forms of type (0, n) on X x X. The sheaf 
Enx owns a natural structure of (unitary, non commutative) ring (el. w 3) and 

,~1 T ~ X  = Z)~ 

where Z)~ is the sheaf on X of differential operators of i~finite order. 

We construct in the same way the sheaf ~ (resp. Ex) of microdifferential operators 

Cxlx• Then, of infinite order (resp. finite order) with Cxlx• (resp. Cxlx~x) instead of R 

we have 

where Dx is the sheaf (of rings) of differential operators of finite order on X. 

A system of microdifferential equations is, by definition, a coherent ~x-module 7~/, 

defined on an open subset U of T*X. The characteristic variety of the system, denoted 

by SS(~/I), is nothing but the support of ~ in U. 

Example. Let (P) be an ~Y x N  matrix of microdifferential operators on U c  T*X. 

We associate 7~/=E~/ExN.(P). Then there exists ([23]) a holomorphic function on U, 

homogeneous in ~, denoted by det (P), such that: 

SS(TYl) -- {(z, ~) e U; det (P) (z, r = 0}. 

If  h r = 1, dot (P) coincides with t he  principal symbol a(P) of P. 
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1.4. Let Y be a complex analytic manifold, and 90 a holomorphic map from Y to X. 

We denote by ~ and ~ the natural mappings: 

(1.4.1) ~: T * X  x Y ~ T * X  
X 

~:T*X x Y--*T* Y. 
X 

If  we identify Y with the graph of 90 in Y x X  and T~.(YxX) with T*XxxY ,  the 

(q-lEar, eS-IEax)-bimodule Ear_.x on T*X • Y is defined by: 

~-'Y-~R X ~/~'R ~ 6~(dim X) 
~ YIYxX ~ ~&X 

OX 

and the (~- t  Ex ~, 9-1 ERr).bimodule EBx~_r is defined by 

~xR_r= R ~ r .  r). Crlrxx@ 
OF 

The sheaves ~ - . x ,  ~r-.x, .-. are constructed in the same way, with Crlr•176176 or Cnr•  

instead of " Crlr• If (z 1 .... , z,) is a system of coordinates oil X and Y is given by 

z I . . . .  - -z l=0  , there are (non canonical) isomorphisms of ~x-modules: 

Ex~-r -~ Ex/ExZl + ... + 8xZz 

8r-~x -~ 8x/Zl 8x +.. .  + z, 8x. 

If ~ / i s  a coherent ~x-module, the inverse image of :~ /b y  ~0 is by definition 

~ r  = O,(~r-,x | ~). 
ex 

The map ~0 is non characteristic if ~ is proper (hence finite) on ~-1SS(7~1). In this case 7~/r 

is a coherent ~r-module with the support ~((o-lSS(7~1)). 

1.5. Let  now M be a real analytic manifold of dimension n, and X a complexification 

of M. The sheaf CM of microfunctions is the sheaf on T~X given by: 

Cu = ~ , ~ ( ~ - ~  Ox)" | o~l~" 

This sheaf is naturally endowed with a structure of left ~x~-module, and a fortiori, o 

~ .  and ~x-module. Moreover: 

C IM= 

where BM denotes the sheaf of hyperfunctions on M. 
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1.6. To end this paragraph, let us remark that  in [24] the sheaves Crlx, C~r .... arc 

constructed on the projective or spherical cotangent bundles, but it seems more con- 

venient to get all these sheaves on the same space, T*X. Although the letters Crlz; CM, 

do not denote exactly the same objects as in [24] we keep these notations. At the 

contrary we denote by Ex and ~ the sheaves denoted by ~)rx and ~)x (on P ' X )  in [24], 

and we call the sections microdifferential operators instead of pseudo-differential operators. 

w 2. Statement of main theorems 

2.1. Let  M be a real analytic manifold and X a complexification of M. Let  77~ be a 

coherent ~x-module on an open set U of T ' X ,  V a closed set in U, x a point of U and 

0 a vector of T*(T*X). 

De/inition 2.1.1. (a) We say that  0 is non microcharacteristic for ( ~ ,  V) if: 

H(O) r V), 

(b) if V is the characteristic variety of a coherent ~x-module 7'/, we say in this case 0 

is non microcharaaeriatic for ( ~ ,  71). 

(c) If V = T ~ X  N U, we say that  0 is microhyperbolic for ~ .  

Definition 2.1.1 (a) has been introduced when 7~ is reduced to a single equation and 

V is a complex submanifold of T ' X ,  in a different but equivalent way by J. M. Bony [2]. 

Definition 2.1.1 (b) has been introduced and studied in detail in our previous paper 

[19]. 

Definition 2.1.1 (c) has been introduced (under the name of "partial  microhyper- 

bolicity") by M. Kashiwara and T. Kawai [17]. 

Let now ~ denote a holomorphic map from Y to X. We denote, as in the preceding 

section (1.4.1), by  ~ and q the natural mappings associated to ~0. 

De/inition 2.1.2. (a) We say that  q~ is non microcharacteristic for ( ~ ,  V) at  x if, for 

any nonzero covector OET*(x)X with ~*(0)ffi0, the covector ~*(0) is non microcharac. 

teristic for ( ~ ,  V). 

(b) If V is the characteristic variety of a coherent ~x-module ~,  one may say that  

is non microcharacleriallc for (7?/, ~/) at  x. 

(c) If ~ is the complexification of a real analytic map from N to M, and if V -- T ~ X ,  

we say that  ~ is microhyperboUc for 7?/ at x when any non zero covector 0 of M with 

~o*(0)--0 is non microcharaeteristic for (77'/, V). 
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(d) In  the preceding situation, if x belongs to M = M •  (in this case ~ is a 

coherent ~x-module) we just say tha t  ~0 is hyperbolic for ~ at  x. 

(e) I f  N is a submanifold of M and if q0 is the injection of N in M, we also say tha t  N 

is (micro-)hyperbolic for ~ .  

I t  is clear tha t  if x belongs to V, and if 90 is non microcharacteristic for ( ~ ,  V) at  x, 

~0 is non microcharacteristic for (TB, {x)) at  x, and this last condition implies tha t  ~0 is 

non characteristic at  x (the converse is false). 

Example 1. Assume tha t  ~ is reduced to a single equation, that  is, 7~l~-Ex/~x.P, 

for a microdifferential operator P. Let V be a complex analytic submanifold of T*X and let r 

be the smallest integer such that  or(P) vanishes with all its derivatives of order < r on V. 

Let  0 belong to T*(T*X),  x e  V. We can prove [19] tha t  0 is non microcharacteristic for 

(77/, V) if and only ff 

a(P) (x + ell(O)) ~= o(er). 

Hence, in this case, the definition is tha t  introduced by  J.  M. Bony [2]. 

Example 2. Assume 7~/= E N / ~  �9 P where P is an N • N matrix of microdifferential 

operators on U c  T*X. Let (z 1 ..... zn; $1 ..... ~n) be a system of local coordinates on T ' X ,  

in a neighborhood of (x~ i~l ~ E T ' X ,  where z = x + iy, ~ = ~ + i~. I t  is easy to prove, with the 

help of the local Bochner tube theorem [24] tha t  )~/ is micro-hyperbolic in the dx 1- 

codirection a t  (x~ i~ ~ if and only if we have: 

(det P) (x; i~/+e0) 4= 0 

for 0<e<l, x real, W real, Ix-xOl<l, I~-~o1<1, for 0=(I,0 .... 0). Hence we find 
at least in the case of one operator, the classical definition of (weak) hyperbolicity [22]. 

2.2. To formulate, and mainly to prove, our theorems, we use systematically the 

language of derived category, as in [24]. In  particular, R Hem, RU, R i .  .. . .  s tand for the 

right derived functors of Hem, U, f .  . . . .  and | for the left derived functor of |  

Let  Z be a subset of T ' X ,  and p a point in T ~ X .  A conormal 0 to Z is, by  definition, 

a covcctor O at  p satisfying <0, v>>0  for any  v ~ C r ( T ~ X - Z , Z  ). H Z is defined by an 

equation ~0 >10 with d~04=0, the conormal to Z a t  p eZ-int  Z is cdg0(p ) with c >0.  Note that ,  

for p C Z - i n t  Z, no covector is a conormal of Z at  p. We shall show tha t  T ( T * X ) -  

C ( T ~ X - Z ,  Z) is an open convex cone in w 3. 
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THEOREI~I 2.2.1. Let ~ be a left coherent ~x-module defined in a neighborhood o/ 

x E T ~ X .  Let Z be a closed subset of T*MX such that x is not in the interior o /Z .  l f ,  for any 

conormal 0 of Z at x, - 0  is micro.hyperbolic/or ~ ,  then: 

R Homex (7'/'1, RFZ(CM))~ = O. 

If  x belongs to T * M  we obtain: 

COROLLARY 2.2.2. Let ~ be a left coherent ~)x-module defined in a neighborhood of a 

point x in M, and let Z be a closed set in M such that x does not belong to the interior of Z. 

We assume that any conormal of Z at x is hyperbolic for ~ .  Then, we have 

t t  Hom~ x ( ~ ;  FZ(BM))~ = O. 

Theorem 2.1.1 is of local type. However, once we obtained a theorem of local type, 

it is not  difficult to get a theorem of global type, using only geometric arguments. 

Let  Q be an open convex cone in T U. An open set ~ in U is called Q-flat if 

C ( U - ~ ,  ~ ) N Q = O .  

THEOREM 2.2.3. Let ~ be a left coherent ~x-module defined on an open set U of 

T ~ X ,  Q an open convex cone o/ TU.  Assume that 

(i) any codirection 0 such that (0, Q) >0  is microhyperbolic for 7I~, 

(ii) there is a Cl.fuuction g on U such that [,J~Ev{veTj, U; (v, dg(p)) >O}~Q. 

Then,/or any couple of Q.fiat open sets ~ l  ~ D,o in U such that ~l-~' lo c c- U, we have 

Ext~x (~1; ~ ,  C~)-~ Ext~ z (s ~ ,  CM). 

2.3. Let  N and M be two real analytic manifolds, and let r be a real analytic map from 

N to M, which extends to a holomorphie map from Y to X. 'Here Y and X are complexi- 

fications of N and M. We denote, as usual, by ~ and q the natural map from T*X • x Y 

to T*X and T*Y associated to ~. 

THEOREM 2.3.1. Let ~ be a left coherent Ex.module on an open set U c  T*X. We 

assume that ~ is micro-hyperbolic for ~ on U and we make the extra assumption: 

(2.3.1) ~-*(U) N ~ - ' (SS(m) )  N e- ' (T~ Y)c~o- I (T*X) .  

Then the natural homomorphism 

q , ~ - l R  HOm~x ( ~ ,  CM) -~ R Homer ( ~ r ,  CN) 
is an isomorphism. 
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Let  us make the following remark. Since ~ is microhyperbolic, we can always let the 

condition (2.3.1) be satisfied by shrinking U without changing U fl T * X .  Thus this 

condition just means that  we must not include points of SS(W/) outside T * X  in the calcu- 

lation of W/r. If U contains T ~ M  we obtain: 

COROLLARY 2.3.2. Let 7~ be a le/t coherent ~x-module. Let q) be an analytic map from 

N to M, hyperbolic for W~ on M. Then the natural homomorphism: 

9-1(R Homvx (W/, BM))"-> R Homvr (Wit, BN) 

is an isomorphism. 

I t  is well known [24] tha t  on a complex manifold of complex dimension n, a coherent 

~x-module admits, locally, projective resolutions of length ~<n. Thus we get: 

COROLLARY 2.3.3. Let N be a submanqold of M of dimension m, and assume N 

micro.hyperbolic for 7~ at x 6 T*  X • Then, 

Ext~(w/, r = 0, i > m. 

If W/ is reduced to a single equation, the induced system on a non characteristic 

hypersurfaee is a free module of finite rank, and we get by Theorem 2.3.1 Ext~x (W/, CM) = 0, 

i > 0 in this case. The same is true for ~ x  and •M instead of Ez and CM. 

As already mentioned in the introduction, Theorems 2.2.1 and 2.3.1 have been 

proved, for a single equation, by J. M. Bony and P. Schapira [4] for the differential case, 

then by M. Kashiwara and T. Kawai [17] for the microdifferential case. 

2.4. To prove Theorem 2.3.1 we will prove the vanishing theorem of cohomology 

group in sheaves of microfunctions which are partly holomorphie in some variable 

(sheaves CM+lX), and these results can be useful in the study of boundary value problems. 

w 3. Action of microdiiterential operators in the complex domain 

3.1. Let  X be a complex manifold of dimension n, and take a point p in the cotangent 

bundle T*X. The ring ~ is defined as the inductive limit: 

(3.1) E~--li_m H~(n x n; 0(~ 
Z.~ 

where s  on the set of neighborhoods of ~(p) and Z runs on the set of closed sets in 

X x X satisfying 

(3.2) Ca(Z) c (v6 T=~,)X; Re <v, p> > 0} U {0}. 
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Here, A means the diagonal set and 0 ~~ is the sheaf of n-forms with respect to the 

H" �9 0 ~~ second variable. We shall t ry  to provide each cohomology group z(~ x ~,  with 

the ring structure so that  E~ is obtained by  the inductive limit. Recall first how the ring 

structure on ~R is defined: denote by p~j the projection from X x X x X onto X • X by 

the ith and j th components (i.e. pu(xl, x2, x3) = (xt, xj)). Then, the multiplication is obtained 

as the composition: 

n (3.3) lim Hz(~ • ~; 0 ~~ • lim H~(~ • ~;  0 ~~ 

2n 
-*li__mm H;r; z• z(~ • ~ • ~; 0 ~~ .... )) 

n li_~m Hz(~ • ~; 0 C~ ~). 

The first arrow is defined by the cup-product and the second arrow is induced from 

RplslO~~162176 where the subscript ! denotes the subsheaf of sections with 

proper support. 

Definition 3.1.1. A closed set Z in X • X is called proper ordering on X if Z satisfies 

the following conditions: 

(i) Z contains the diagonal set A. 

(ii) If Z contains (x,y) and (y, z), then Z contains (x, z), i.e. p13(p~Z O p ~ Z ) c Z .  

(iii) The map p ~ Z N p ~ Z  ~', Z is a proper map. 

Definition 3.1.2. We say that  an open set ~ in Z is Z-round, if {y; (x, y), (y, z) EZ} 

is contained in ~ for any x and z in ~;  equivalently, p2(p~l~ N p~ l~  0 p ~ Z  O p ~ Z ) c ~  

where p~ are the projection from X • X • X onto X by the j th component. 

De/inition 3.1.3. We call an open set ~ in X, Z-open if {y; (x, y) EZ} is contained in 

for any x in ~;  equivalently p,(Z fl p ~  ~ ) c  ~ where p~ are the projection from X • X onto 

X by the i th component. 

First remark the following proposition: 

PROPOSITION 3.1.4. Let X and Y be locally compact topological spaces, ] a continuous 

map/rein X into Y, Z and (~ locally closed subsets o / X  and Y respectively, and let ~ be a 

shea I on X. Suppose that 

(a) ]-~GNZ~G is a proper map, 

(b) Z 0 ]-aG is an open subset ol Z. 

Then we can define naturally the ]oUowing homomorphism: 

RFz(X; :~) ~ RF~(X; R/,:~). 

Here ~l ~ is the subshea/ of / .  :~ o/the ~ection.s u~th proper support~ on Y. 
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Proo:. Let ~ (resp. ~ ' )  be an open set in X (resp. Y) containing Z ~/-IG (resp. G) as 

closed set such t ha t / ( g3 )=~ ' .  Then we obtain the homomorphism: 

RFz(X; y) ---> Rrzn:- ,  ~(~; y). 

Since Z ~ / - X G - ~ '  is a proper map we obtain: 

RF~:-, o(~; y)-, Rr~(a'; R/, y), 

and the desired homomorphism is obtained as the composite. Q.E.D. 

De/inition 3.1.5. For a proper relation Z and a Z-round open set D, we set ~(Z; D) --- 

" X Hz(D D; 0(~ 

THEOREM 3.1.6. Suppose that Z is a proper relation on X, D is a Z.round open set and 

~1~ ~2o two Z-open sets Such that ~ x - ~ o  ~ D and ~ z - ~ o  is compact. Then we have 

(a) E(Z; D) has a canonical ring structure with a unit. 

(b) E(Z; D) operates on H~,-~o(~I; O) naturally. 

Proo/. We have the homomorphism 

H~(D • D; 0 ~~ | H~(D • D; r~(~ ra2" in  • D • D; 0 ~~ 
C 

by the aid of cup-product. Since p ~ Z  n p ~ Z  n D • D • D = p ~ Z  N p ~ Z  N D • X • D, 

PlS: p ~ Z  N p ~ Z  N D • D • D-*Z N D x D is a proper map. The preceding proposition can 

be therefore applied to obtain the homomorphism: 

By applying l~4~18~O(~176 we obtain E(Z;D)|  I t  is 

easy to check this operation makes E(Z; D) a ring. Also, we can see that  H~(X • X; 0 (~ 

contains a canonical element and its imago by the homomorphism H~(X • X; 0(~ 

H~(D • D; O r176 is the unit of E(Z; D). Let  us show (b). Setting S = ~ I - ~  0, we have 

the homomorphism 

~(Z; D) k . ,+~ | O)~Hzn~,s((D x D) • p~1~1; O (~ 

-* Hg(~; O) 

because the condition in Proposition 3.1.4 is satisfied to apply it. 
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8.2. We consider the following special case. X is (~" and Z is {(x, y) EX • X; y - x E G }  

where G is a closed proper convex cone containing 0. I t  is easy to see that  Z is a proper 

ordering on X. We shall call an open set G,open (resp. G,round) if it is Z-open (resp. 

Z-round). Therefore, an open set ~ is G-open if and only if ~ + G c ~  and an open set D 

is G-round if and olfly if (D+G) N(D+Ga)=D. Here Ga={-x;  xEG} and D + G =  

{x+y;  xED, ~EG). For a G-round open set D, we denote E(G; D) for ~(Z; D). 

Theorem 3.1.6 is translated as follows: 

THEO~V.M 3.2.1. Let D be a G-open set, and ~ lD~o  two G-open sets such that 

~ - ~ o  C D and that ~2x-~ o i8 compact. 

(a) ~(G; D) i8 a ring, and 

(b) H~,_~,(~ a , k  " O) is an ~(G; D).module. 

(c) We have the ring homomorphism 

g(G; D) ~ F(D x a o'~, E) 

where a~176 {~; Re <~, ~>>0 for any ~eO-{0}}. 

We define the new topology (which we shall call G.topology) on X as follows: an 

open sot for the G-topology is, by definition, a G-open set. For a subset S of X, we 

denote by So the topological space S with the G-topology. Let  90 be the continuous 

map 9o: X ~ X a  defined by x~-->x. If Gx is a closed convex proper cone containing G, then 

we denote by r the map Xa~Xa ,  defined by x~--~x. 

LEMMA 3.2.2. (i) Rk9G.(Ox)=O for k4=0, 

(if) Rkga,.a.(ga, O)=O /or k~O and equals q~a,,O for k=0.  

Proof. Since 9~,=ga, .ao9a,  (if) is an immediate consequence of (i). For any xEX,  

Rkq~a.(O)x=~_mmvHk(U, O) where U is a G-neighborhood of x. However a convex G- 

neighborhood of x forms a fundamental neighborhood system of x (for example, take 

V+G with a small open ball V containing x). Hence, we have Hk(U, 0 ) = 0  for k4=0 

for such U. Q.E.D. 

LEMMA 3.2.3. Let ~ C o  be two G-open sets. Suppose that the following conditions are 

satisfied. 

(i) There is a pseudo.convex open set m such that ~ - &  is an open sub~et o/ ~-r  

(if) For any xE~,  (x+G)Nr 

Then RkFa_g~(~po,(O[no))=O on ~o for k:~l. 
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Proo[. Since convex G-open sets U in ~ form a base of open sets in ~ ,  it is enough 

to show 

Hv_~(U;q~o.Oia)=O for k=~l. 

H~_,(U, O). Since U - ~  is closed By the preceding lemma, this cohomology group equals ~ - "" 

and open in U-a~ we have 

H~_~(U; O) ~ " �9 ~ " " = Hv-,~(U, O) | Hvn(,-,)(U, O) 

which is zero for k/>2, and hence we obtain ~ - �9 Hv_~(U, 0 ) = 0  fo r / c~0 ,  1. Since UN~5:~D 

(when U4:~),  H~ O)~He(UN o3; O) is injective, which implies H~ O)=0. 

THEOREM 3.2.4. Let ~ ~o be two G-open sets, and D a relatively coml~ct G-round 

open set containing ~ -  ~o. Suppose that there is a pseudo-convex open set eo satis/ying the 

/ollowing conditions: 

(i) a~n ( t 2 - ~ o ) = 0 ,  

(ii) ( a+G)f l  f in  Dcr 

(iii) r  aD. 

Then RPa-a0(~0o. O) is well-delined in the derived category el the abelian category o] the 

sheaves o[ E(G; D).modules de[ined on ~G. 

Proo[. If G = {0}, then E(G; D) is nothing but the ring of the differential operators of 

infinite order defined on D and ~o  = ~.  Since O is an E(G; D)-module, the theorem is evi- 

dent. Suppose that  G@{0}. Since ~ N D = [ ( ~ N D } + G ] N D ,  we may assume that  

(~fi  D ) + G = ~ .  Set eS=(~N Dflw)+G=(~of l  DNeo)+G. I t  is obvious that  r  0. 

First we shall show that  ~SU D D ~ .  Suppose x E ~ - D .  Then there is y E ~ f l  D and 

yEG such that  x = y + y .  Pu t  to=inf {t>~0; y+tTCD }. Then, 1 > t0>0  and y+toy is in OD 

and in ~,  and hence by (iii), it belongs to co. Therefore, y+t  7 belongs to fiN D N ~o for 

0 < t o - t ~ : l ,  which implies x belongs to ~5. 

We have 

(~ -co )  n D = ~ - ~ .  

In  fact, we know already that  (~  -co) N D contains ~ -r I t  is therefore sufficient to 

prove r N D fi ~ c c o ,  which is an immediate consequence of (ii). 

We have also 

( ~ + G ) N ~  for a n y x E ~ .  

In  fact, if (x+G)Nr then x + G c ~ - C o c D c c C  n, which is a contradiction. 
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Thus, we may apply Lemma 3.2.3. Set ~=R1ra_~,(qDa, OIn)=Rrn_~(q)a. OIn) [1]. 

Then 3: is a sheaf of ~(G; D)-modules by  Theorem 3.2.1. Hence 

Rr~_~.(~o, 0 I.) = Rrn_~o(y) [- I] 

is well-defined in the derived category of the sheaves of ~(G; D)-modules. This is indepen- 

dent of the choice of co. In fact, if there is another co' which satisfies the same condition 

as co, then so is co" =m N w'. We define :~' and :~" in the same way as :~ by replacing o) 

with co' and co", respectively. Then it  is clear tha t  

Rr~_  ~.(y') = Rr~_~ . (y  ~) = Rr~_~o(y). 
Q.E.D. 

C O R O L L A R Y  3.2,5. Let D be a G-round open set and x o a point in D. Then, there 

exists a G-round open neighborhood U o /x  o such that,/or any G-open sets ~ lD ~O satis/ying 

~ 1 - ~ o  = U, we can define naturally RFn,_a0(~ ,O)  in the derived category el the abelian 

category o/sheaves o/ ~(G; D)-modules de[ined on ~a. 

Proof By Theorem 3.2.4, it is enough to show there exists a pseudo-convex open set 

o) such that  co is G-open and eel) U=~), and that  eOD~oNOD. 

By replacing ~0 and ~1 with ~0 N (U + G) and ~1 N (U + G), respectively, we may 

assume without loss of generality that  ~ 1 c  U+G. Then it is evident, that  if U is small 

enough, there exists a convex G-open set co such that  con U=iD and mD(U§ 

3.3. In  this section, we shall study the properties of G-open sets. First, we shall prove 

the following propositions, which say that  the notion "G-open" is almost a local property. 

G is a closed proper convex set containing (0~ in this section. 

PROPOSZTZO~T 3.3.1. Let ~zD~o be two open sets and Z = ~ 1 - s  o. Consider the 

tollowing conditions. 

(i) g is G-locaUy closed (i.e. a diJ]erence o] G-open subsets). 

(ii) /or any point x in Z, x +GacZ in a neighborhood o/x .  

(iii) /or any point xCZ, (x +Ga)fiZ=O in a neighborhood o/x .  

(iv) ~0 is G.open. 

(v) ~ 1 / s  G.open. 

Then (i) implies (ii) and (iii). Under the condition o/ (iv) (resp. (v)), (i), (ii) and (v) (resp. 

(i), ('~ii), and (iv)) are equivalent. 
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Proo/. First let us show that  (i) implies (ii) and (iii). We may assume that  ~o and 

f2~ are G-open. 

(i) ~ (ii): If x E Z, then x ~ ~o and hence (x + G a) N ~o = ~D, which implies (x + G a) N f21= Z. 

(i)~ (iii): If x~Z, then x E ~  o or x ~ .  If xE~2o, then (x+Ga)NZN~2o=~. If xSf2~, 

then (x + G a) N Z ~ (x + G a) N ~1= ~. 

Thus, it remains to prove that  (iv) and (ii) implies (v) (resp. (v) and (iii) implies (iv)). 

Let us prove first (iv)+ (ii)~ (v). Let x be a point in ~21 and y E G. We shall show 

x+yE~21. Suppose that  x+yr and we shall see the contradiction. Set t0=inf {t>~0; 

x+tyr Then y=x+toYr  Since y does not belong to Z, x+ty  does not belong 

to Z for 0 < 4 - t < l .  For such t, x + t y E ~  1, and hence x + t y E ~  o, which implies x+toyE~ o 

because X+to~(x+t~)+G.  Thus, x + t 0 ~ E ~ 0 = ~  ~, which is a contradiction. 

We shall prove (v)+(ii i)~ (iv). Take xE~20 and yEG. If  x + y r  0, take to=inf {t~>0; 

x+tyr Then X + t o y ~  o. Since X+to~E~ ~, X+toy belongs to Z. Therefore 

x+tyEZ for 0 < t 0 - t < l .  Since x+t~,E~l,  x + t y ~  o, which is a contradiction. Q.EID. 

LEMMA 3.3.2. Let ~ be a G-open set. Then, /or any xE~,  x + i n t  G c ~ .  

Proo]. Let ~ Eint G. Then there is a neighborhood U of 0 such that  U + y c  G. Take y 

in (x+ U a) N ~. Then, x + ~  is contained in y + G c ~ .  

LEMMA 3.3.3. I] ~ iS a G-open set and i / in t  G~O,  then ~ coincides with the interior o/ 

the closure o] ~. 

This is an immediate consequence of the preceding lemma because x + in t  G con- 

tains x. 

LEMMA 3.3.4. Let D be a G-round open set and ~ an open subset o]D. I], Gx(~) N G a :  {0} 

]or any x E D - ~ ,  then D N (~ + G)= ~; i.e. ~ is an open set o] Do. 

Proo]. Set ~ = ( ~ N D ) + G .  Let x be a point in ~ n  D. Then there are yE~O D and 

~EG such that  z=y+~ .  Set yt=y+t~. Since D is G-round, Yt belongs to D for 0~t~<l .  

Now, we can apply the same argument as in Proposition 3.3.1 to prove that  x belongs to ~ .  

Suppose that  x r  and set to=inf {t~>0; Y t ~ ) .  Then, y~0r 4 > 0  and Yt belongs to 

for t < t  0, y=limtz~0 (yto-yt)/(to-t) belongs to C~(~2) ~, which is a contradiction. 

LEMMA 3.3.5. Let Z be a G-locaUy closed set. I] Z is open (in the usual topology), then Z 

is G-open. 

Proo]. Because Z = Z - O ,  we can apply Proposition 3.3.1. 

2 - 782904 Acta matfiematica 142. Imprim6 le 20 F6vrier 1979 
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3.4. In the preceding section, we investigated G-open sets. We introduce here a 

notion similar to G-openness which is free of the change of coordinates. 

Definition 3.$.1. Let M be a differentiable manifold of class C x and S a subset of M. 

We denote T M - C ( M - S ;  S) by At(S) and call it  the strict normal cone of S. 

Pl~OPOSI~IO~l 3.4.2. (i) ~(S) i~ an open convex cone. 

(ii) When M ~-R ~, s contains a vector v i/and only if there are an open convex cone 

F containing v, a neighborhood U o/x and a nsi~hborhood W o/0 such that (S fi U) + (F ~ W) ~ 2. 

Proof. (ii) is evident by the definition. Let  us prove (i). Let  v 1 and v 2 be elements of 

T ~ M - C z ( M - S ;  S). Then, there are open cones F 1 and I~, a neighborho.od W of 0 and 

a neighborhood U of x such that  (Uf iS)§  W ) c 8  and I'j~vj, (~=1,2). We may 

assume that  either F x § I~ is a proper convex cone or l~x A F ~ O .  Then, there is a neigh- 

borhood U' of x and neighborhoods W' and W ~ of 0 such that  (F 1 § f~ W ~ (F1N W') § 

( F ~  W'), U ' + W ' c U  and W ' c W .  Then 

(2n U ' ) + ( P I + F , ) N  W " = ( 2 n  U')+(Fxr) W ' )+ (F ,  fl W')=(SN U)+(P ,N W)=S. 

Thus vx +v ~ belongs to T # M - C z ( M - S ;  S). Q.E.D. 

Definition 3.d.3. We call the dual cone {OET*M; /0, v ) > 0  for any yeN(S)},  the 

conormal cone and denote it by N*(S). 

Exanvple. If  Q = { x ; f ( x ) > 0 }  for a Ca-function f such tha t  dr4=0, then Nz(Q)ffi 

{vE T~M; (v, dr(x))>0} and N*(~)=R+d/(x) for x wi th / (x)  =0. 

Example. If Z is a cone in R s, 

No(Z) = i n t  {veRN; v + Z c Z } .  

Remark. (I) -~:(S)~TxM ff and only ff x E ~ - i n t  S. (II) ~(M-S)=~r(S)a.  

Definition 3.d.4. Let M be a differentiable manifold of class C a and Q an open convex 

cone in TM. Set Q(x)--Qf~'c-l(x), where ~ is the projection from T M  onto M. 

(i) An open set V is called/oca//y Q-f/a~ at x ff Cz(M-V,  V)f~ Q(x)--0, and called 

Q.fiat if V is locally Q-flat at  any point. 

(ii) A locally closed set Z is called Q-fla~ on an open set U, ff there are two open sets 

~ i  and D0 which are locally Q-flat at  any point in U such that  Ufl ( ~ I - ~ o ) = U N Z .  

If Z is Q-flat on X, we say Z is Q-/Mt. 



M~CRO-HYPERBOLIC SYSTEMS 19 

PROPOSITION 3.4.5. Let G be a proper closed convex cone in R s, D a G.round open 

set and ~ an open set in D and Q an open convex cone in Tit  ~. 

(i) 1 / ~  is Q.flat on D and if Q ~ D  • (G-{0}), then ~ is an open set in Da. 

(if) 1/[2 is open in D~ and if D • G ~ ,  N ~-~(D), then f2 is Q-flat on D. 

Proof. (if) is evident. (i) is an immediate consequence of Lemma 3.3.4. Q.E.D. 

PaOPOSITION 3.4.6. An open set V is Q-flat i /and only if C~(V)NQ(x)a=~ for any 

x E M - V .  

Proof. Since C~(V)= Cx(M-V;  V) a, one implication is clear. Let us prove that  V 

is Q,flat if Cx(V)NQ(x)a=O for any x E M - V .  We may assume that  M = R  N. Suppose 

vEQ(x). Take a closed proper convex cone G in Q(x)O {0} such that  int GEv. Take a 

G-round open neighborhood D of x such that  Q(y)~G-{0}  for yED. Then, by Lemrna 

3.3.4, [(DN V ) + G ] N D = V N D ,  which implies GNCx(RN-V, V)=~.  Q.E.D. 

PROPOSITION 3.4.7.1. A union of Q.flat open sets is aJso Q-fiat. 

Proof. Let {V~} be a family of Q-fiat open sets and set V= 0 Vv For x E M c R  ~r and 

vEQ(x), take G and D as in the proof of the preceding proposition. Then, all Vtf~ D are 

open in Da, and hence so is VN D. This implies immediately v*Cz(R ~r- V; V). Q.E.D. 

PROPOSXTXON 3.4.7.2. Let V~ be Q-fiat open sets and V the interior of the intersection 

o/ Vj's. Then V is also Q-/~. 

Proof. ~'or a point xEM ~ B N and vEQ(x), we take D and G as in the proof of Proposi- 

tion 3.4.6. Then, Vjfi D is open in Da; i.e. [(VjN D)+G]N D c  V~, which implies that  

[ (VND)+G]nDcV~ ,  which implies that  [ ( V N D ) + G ] N D ~ V .  Thus we ob~in  

Cz(R N-  V, V)tv .  Q.E.D. 

PROPOSITION 3.4.8. Let Z be a b~,aJly closed set. I f  Z is Q-fiat, then 

(i) ay(z)nQ(y). ~ for y e M - z  

(~) O y ( M - Z )  n Q(y)~ ffi ~ for yEZ. 

Proof. Suppose that  Z is Q-fiat. Then Z ffi V I -  V0 in a neighborhood of x, where V I 

and Vo are Q-fiat in a neighborhood of x. Therefore, for yEUNZ,  Z f M - V  o in a 

neighborhood of y and hence C~(M-Z) =Cu(Vo): Cu(V0, M -  V0), which implies 

C~(M-Z) N Q(y)~=O. For yE U - Z ,  if yE V 1 then yE V0 and hence Z- -O in a neighborhood 

of y and hence C~(Z)ffiO. H y~Vx, then Cy(Z)cC~(V1, M - V x ) ,  which implies 

o~(z) a n Q(y) = ~. 
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COROLLARY 3.4.9. Let Z be a closed set. 1] Z is Q-fiat, then M - Z  is Q-/lat. 

Proof. Set V = M - Z .  Then we have Cu(V)fl Q(y)a=~3 for y ~ M - Z  by Proposition 

3.4.8, and hence we can apply Proposition 3.4.6 to show that  V is Q-fiat. Q.E,D. 

PROPOSITION 3.4.10. Let V i and V o be two open sets in M such that V1D Vo. Suppose 

that V i - Vo is Q-fiat on a neighborhood o/x.  Then, q one el V t is Q-fiat in a neighborhood o/x ,  

then so is the other. 

Proo/. Suppose that  V0 is Q-fiat. Then for y r V1, we have C~(V1) c Cy( V 1 - V0) U Cy(Vo). 

Hence C~(Vi)fl Q(y)a= ~3, which implies that  V i is Q-fiat. Conversely, suppose that  V1 is 

Q-fiat. For yq. Vz, C~(Vo)cC,(Vi). For ye V1-Vo, C,(Vo)cG,(M-(V~-Vo) ). Thus, we 

have C~(Vo) f~ Q(y)~=f3 for y r  Vo. Q.E.D. 

Let G be a proper closed cone in C n and Q an open cone in TC"= C"• C n containing 

C ~ • (G-0) .  Then the following proposition is an immediate consequence of Proposition 

3.3.1, Lemma 3.3.2, Lemma 3.3.4, and Proposition 3.3.10. 

PROPOSITION 3.4.11. (i) A Q-fiat open set is O.open. 

(ii) Let ~ l  and ~o be two open sets such that ~ i  ~ ~o. I] ~ l - ~ o  is Q-/lat and i] one o] 

them is G.open, then so is the other. 

(iii) For x, there is an open neighborhood U of x such that, for any open set ~ which is 

Q-fiat on U, ~ contains [x+(G-{0}) ] f i  U q x is contained in ~ .  

w 4. Prolo~ation theorem in the complex domain 

4.1. Let G be a closed convex proper cone in C" containing 0, D a relatively compact 

G-round open set. Let  M" be a bounded complex of free ~(G; D)-modules of finite rank 

(i.e. M~=0 for k > 0  or k < 0  and all M k are free E(G; D)-modules of finite rank). We 

shall investigate sufficient conditions such that  

Ext  j (M'; RF~_~o(~; ?a,(O))) ~ 0. 

THEOREM 4.1.1. Let D, G and M" be as above and let {~}o<t~l be a lamily o/opensets 

in X = C n, We assume the ]oUowing conditions. 

(a) There is an open convex cone R in T D  such that,/or any x e D, R(x) is non emiaty 

and contains G - { 0 }  and tha2 either ~o or ~1 is R.fiat on D. 

(b) ~ 1 - ~ e  is a compact set contained in D. 

(c) There is a pseudo.convex open set o~ satis/ying 
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(%) ~oA ~D=o~ 

(d) ~ ~  U~<~o~ /or any t o such that 0<to~<l and ~ 0 ~  U~>~0~ ]or any t o such tha~ 

0 < t 0 < l .  

(e) There is an open convex cone Q in TC" satisfying the/ollowing conditions: 

(eo) Q(x) is not empty and contains G - ( 0 } / o r  x ~ D. 

(%) ~ i - ~ t ~  /s Q-fiat on a neighborhood o/ any point in ~ - ~ o  /or any 

0 < t o < t l <  1. 

(e~) ~ ~ | is exact /or any p-~(x, ~) ~ T*D with (~, Q(x)) <0. 

Then all ~ A D are open in Do and we have 

R Hom~(o:D) (M'; RFa~_~o(f2d ~o. O)) = 0 
/or 0~<t<l.  

The proof of this theorem is rather long and ends at w 4.4. 

~ l f i  D and ~0fi D are open in Do by Proposition 3.4.11 and (a). Applying the same 

proposition ~ t  is open in Do by (e). Therefore, by replacing Ot with (Os N D) + G, we may 

assume that  (a') ~ are G-open sets and (e~) Q~ R. Condition (c) assures that  RF~,.o.(~o, O)) 
is well-defined by Theorem 3.2.4. 

LE~MA 4.1.2. For any 0 ~ t 0 < l ,  f'lS>So~S is contained in ~ .  

Proof. Take xe  fl ~ .  Since ~ t - D = ~ t o - D ,  x is contained in ~ if x~D.  Suppose 

that  x E D. Take a proper closed convex cone G 1 such that  GI~ R(x) U (0) and that  int G 14=O. 

There is a Gl,round open neighborhood D~ such that  R(y) ~ Gx - (0) for any y E Dr  Then, 

all ~ f l D  are open in Dla ,. Therefore, we have ( x + i n t G 1 ) N D 1 c ~  ~ which implies 

(x + in t  Ol) A D1c ~u. Thus we obtain x E ~s0. Q.E.D. 

4.2. Set Ks0 = A ~lt - ~s0 for 0 ~ t o < 1. 

L'~.MMA 4.2.1. For any point x in Ks~ and any neighborhood U o/ x, U-O~ is a 

neighborhood o / x  in (X-~s~ 

Proo]. Take G 1 and D 1 as in the proof of Lemma 4.1.2. Moreover, we assume that  

int G I ~ G - ( O  ~. Then, ~lu contains IDeA (x+in t  G~)] + G =  W. I t  is evident tha t  there is 

an open neighborhood V of x such that  (V+G) - W ~  U. Then (F+G) -~so is a neighbor- 

hood of x in ( X - ~ , ) o  and is contained in U. Q.E.D. 

This lemma immediately implies the following: 
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LEM~A 4.2.2. (i) The topology on K u induced from G-t~ology coincides with the usual 

topology. 

(fi) Kt~ is relatively separated in (X-~ to )a  (i.e./or x~-y in K u, there are neighborhoods 

U, V o/x ,  y in ( X - ~ u )  a such that UN V--O). In  laarticular, /or a shea/ E on (X-Qt,)o, 

Hk(Kt,; s Hk(U; s where U runs on a neighborhood system of Kt,. 

Let j~ be the inclusion map 

(Q, -  ~t.)o ~ (X - fl~.)a. 

Let T be the functor s176 )'t,)';1 s from the category of the sheaves on (g21 -~2o) a 

into the category of the sheaves on (X-g20) a. 

LEI~A 4.2.3. For any complex s o/sheaves on (Qi-Qu)a, we have 

(i) ~ H~(f~,- ~t.; s R~'.(s 
t>.to 

t>to 

/or any x E Kt.. 

Proo]. First observe that any open set U in ( X - ~ u )  a contai~ng K u contains 

~ , - ~ u  for some t>t  o. We may assume that s is a complex of injective shcave~. Then 

H~(~, - Q.; s ~ ~ / ~ ( F ( Q  - ~,.; s 
t>to t>t~ 

,-, H~(li~m r ( ~ -  ~ . ;  s 

Thus (i) is proved. 

(ii) is proved in the same way. 

PROPOSITION 4.2.4. 1/ we have 

$>to 

~H~(lim lira F(U N (a r  s 
U:~Kte t>t~ 

=H'(li_~m li.m r ( v ;  j,.j;,s 

-~ He(lim r(Kt0; j,.#~as 
t>te 

--~ Hk(r(Ku; ~ Jto #/-1s 
t>to 

= He(F(Kto; ~s 

Q.E.D. 

li__.m ~ Extt (M'; RF v_nu ( U fi ~ ;  q~a. 0)) -- 0 
t > ~  U~z 

]or any i, 0 ~ t o < l  and xEKu,  then the conelnsion o/Theorem 4.1.1 holds. Here, U runs on 

a neighborhood system of x. 
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Proof. Setting I : ' = R  Hom (M'; Rrn,-n0(~o,O)), we have RkT(RFn,_n,~163 
�9 H k  �9 by the preceding lemma. The same lemma implies also ~__mt>to n,_nt0(~t, l : ' )=0,  or 

equivalently the homomorphisms 

li__m Hk(f2t; s  H~(~t.; s  
t>~o 

are isomorphisms. 

Note the following lemma. 

Lv.MMA 4.2.5. Let X be a topological space {~}n ,z  an increasing sequence of open sets 

in X such that X = U ~n, and ~" a complex of sheaves on X.  Then 

(i) ~0k: H~(X; y')~H~m Hk(~n; y') are surjective /or any k. 

(fi) I f  {H~-X(~; y')}, satisfies the condition of Mittag-LeHler, then qu is bl]ective. 

For the Mittag-Leffler condition and for the proof, see [15], [26]. 

Let us prove that Hk(~t,; s176 1:') are bijective for 0 ~<t 0 ~<t 1 ~< 1 by induction 

on k. H~-X(~t,; s s are bijective for 0~t0-<tl-<l.  Then {H~-a(~t; s 

satisfies the condition of Mittag-Leffler for 1 >~t 0 >0, and hence, by  the preceding lemma. 

H~(~t.; s ) .~ li._m_m HSC(~t; ~," ). 
t < t ,  

Thus, Proposition 4.2.4 is an immediate consequence of the following lomma. 

L ~ t ~ A  4.2.6. Let (Vt}0~t~x be a family of abelian groups, ~e.t" a homomorphism from 

Vv to V, for 1 >t t' >1 t >1 O. Suppose that 

(i) Qt. vo~v.r=Qt.t ,  for 1 >~t">~t'>~t>~O, 

(ii) V,o-*~m_t<to Vt is bijeaive for O<to< l ,  

Oii) ~__mm,> u V,-~ Vt~ is biieaive, for 0-<<to<l. 

Then cdl ~t. v are bi#aive. 

4.3. In order to show that the condition in Proposition 4.2.4 is verified, we investigate 

the following special case. 

Let (7 be s closed convex proper cone with non empty  interior, ](x) a linear form 

(R-valued) such that f(x)>0 for xEG-{0}. Let ~=int q and o)={xefl; f(z)>l}. Let D 

be a G-round open set containing fl-~o and M" a bounded complex of free E(G; D)- 

modules of finite rank. Set ~:" =Hem (M'; Rrn_o(ga, 0)). 

PROPOSITION 4.3.1�9 Suppose that E~| is exact /or any Ip=(x, ~) with xED,  

<~, q> <o, ~4:0. Then 
R Hem (M'; RFn-o,(ga, 0)) = O. 
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Proof. Since x + i n t  G ( x ~ )  forms a base of open sets in ~o,  it is enough to show tha t  

R r ( x + i n t  G; ~ ' )=0 .  Replacing x + i n t  G with ~ ,  the proposition is a consequence of the 

following propositions. 

PROPOSITION 4.3.2. H~(f~; ~')=0 /or any k. 

Proo]. We will need the lommas 4.3.3-4.3.7. 

First fix a point x o in ~ such that  [(xo)= 1. For 8 >0,  we set 

u~ = {(a,, 82)eR'; al <0) u {(a. a2) eR,; a2 <d 

U {(al, 82) e R2; 0 ~81 <~, 0 ~'~82 < 2~, (~ -- 81) 2 "~- (2~ -- 82) 2 > ~2~. 

U8 is an open set with Ca-boundary and Ue+((sl, as); 81<<.0, s2<~O}=U~. Sot O(x, G)= 

~n { Ix- Y l; Y e 0). Then, we have 

~(x, o ) ,  = ~(x~, G) 2 + 2 ( ~ -  xl, x~ - y) + o(] x~ - z] ) 

with yEG such that  c~(Xl, G)= I x l - y [ .  Therefore, 0(x, G) is a continuous function on X 

and Ca on X-G. Moreover d~(x,G)EG ~ for x~G. Set Ot(x)=~(x-(l-t)Xo, G)= 

8(x, (l-t)xo+G ). Then, O~(x) is continuous on (t, x) and we have Ot(x)<~Or(X)for:t~>t', 

~t(x)<Oe(x ) for t>t' and x~(l-t')xo+G. There is a constant c>0 such that 

{x;~t(x)<2e}~intG for 8>0 and t<l-ce. 

Set 

f~t = (zeint G; (I -/(z), O~(z)) e U~} = o~ U {x;/(~) I> I, (I -/(x), ~(~))e U~} 

for t < l - c a .  

We have ~'/t~r for t <  -c~. 

L ~ . ~ A  4.3.3. (i) ~ = (Jt<~ ~t and ~t0~ N t>t, ~ ,  

(ii) g2 t are G-open 

(iii) ~t+2Xo~f2t_ x /or2>O.  

Proo/. First let us prove (ii). For 7 EG-{0}  

( 1 - / ( x  +7) ,  0t(~ +7) )  -- ( 1 - / ( z ) ,  0 , (z ) )+  ( - / ( 7 ) ,  ~,(x + 7 ) - ~ ( ~ ) ) .  

Since -1(7), ~t(x+7)-~t(x) are non positive, ( 1 - l ( x + ~ ) ,  ~t(x+~)) is in U e if so is 

(1 -](x), Or(x)). (iii) is clear. The relation ~to-- U ~t  is also clear. Let  us prove that  

N t>to ~t  is contained in ~t,- If  xE N ~t, then x+(t - to)X o is contained in ~to for any 

t>t  o. Thus x is contained in ~t0. Q.E.D. 
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LEMMA 4.3.4. ~ t , - ~ t ~  {x; /(z) ~<l) ]or t o<t~<4<l -e .  

In fact, if xe  ~t, - ~t0 we have ](x) ~< 1 and hence ~t, -~ t0  is contained in {x; ](x) ~< 1, 

Ot,(x) <2e). We have therefore 

~ , -  ~ .  c {~ e G;/(~) < 1, ~.(x) < 2~, (1 - / (~) ,  ~,(~))e ~} 
= {~eG; 1(~) < 1, 0 <~,,(~) <2~, (1 -l(x), ~,,(~))e ~} 
u {~e(~ -t0~o+O; 1(~) <1}. 

Since Ot,(x)<~t,(x) for x such that 0t,(x)>0, and since 0t,(x)~<2e implies x~intG,  

~ a - ~ t 0  is contained in ~t,. Q.E.D. 

LEMMA 4.3.5. Kt~ N t>t~ ~ t - ~ t ~  coincides with [7 t>to (~t-~to).  Moreover, K u is 

contained in a~t, and O~t~ is a Cl-mani/old in a neighborhood o/Kto. 

In fact, 0~t~ ~ = { x e ~ ;  (1- / (x) ,  ~t~ any positive linear combination of 

d(1-/(x)), and dOto(X) does not vanish for xr Therefore, ~ t 0 ~  ~ is a C ~- 

manifold. 

LEMMA 4.3.6. For xE~Na~t0  , we have 

Ext  j (M'; RFa-nt~ O))x -- 0. 

Proo]. Note that  ~ is a O-manifold at x whose conormal p = (x, ~) is contained in 

the antipodal of the polar of G. Consider the following spectral sequence 

E~ q = H~(Hom (M'; ~_nt,(O)~)) ~ H~+q(Hom (M'; RFa_at~ 0)3)). 

Since ~/~_nt0((O)x is an E~-module and ~ |  is exact, E~q=O for all p, q and hence 

H j (Horn (M'; RFn_au(~a, 0)~))=0. Q.E.D. 

LEMMA 4.3.7. H~(~x_cs; ~')--*HJ(m; ~') are bi~ective. 

Proo/. The conditions in Theorem 4.1.1 are all satisfied, we can apply Proposition 

4.2.4, and therefore it is enough to show that, for all xEKto, 

li__mm li__mmH~_ato(Ut; ~') vanishes, 
t>to U 

where U runs on a neighborhood system of x. Since x is contained in ~ t  for t>t0, these 

cohomology groups coincide with H j (ttom (M'; RFn-at~ which is zero by the 

preceding lemma. Q.E.D. 
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Thus, if we set 

we have an isomorphism 

~ ( ~ ;  y ' ) - ~ ( ~ ;  y'). 

~ =  (Je>of2e and, for any el, e~>0 there exists e>0  such that  ~ s ~ U  ~ , .  Therefore 

H~(~;~')_~m_meH~(~e;~ ") if (H~-~(~e;~')} satisfies the condition of Mittag.Leffler 

(Lemma 4.2.5), which is obviously satisfied. Thus, we obtain 

/P(~; y')_~/P(o~; y'). 

This completes the proof of Proposition 4.3.2 and hence the proof of Proposition 4.3.1. 

4.4. Now, let us return to the proof of Theorem 4.1.1. We already observed in 

Proposition 4.2.4 that  it  is enough to show 

li__mm Extk (M'; Rru_~t,(U 0 ~ ;  ~a* 0)) = 0 
U 

for x o E K~ and t > to, where U runs on a system of neighborhoods of x o. Let U be a neighbor- 

hood of ~0. By shrinking U, we may assume that  E~| is exact for p=(x, ~) with 

xE U and ~:~0 such that  ~ ,  (~1)~<0 for some closed convex proper cone G 1 contained in 

Q(xo)tJ{0 }. Since ~ - ~ a  is Q-fiat, for any y sufficiently near x 0, Uf~(y-bint(~l)f~ 

( ~ - ~ t 0 ) c c U .  Set V=y§ 1 and take /(x) such that  (xE]~; f(x)>~f(xo)-l}cU. 

Set co-~(xE V; f(~)<f(xo)-1}. Then, by Proposition 4.3.1, we have 

R Hem (M'; Rrv_ , (~a , ,  O] v)) = 0. 

In particular, we have 

H~(~  N V - co; R Hem (M'; RF(v-~)-~(~a,  0)) ffi 0 

for V --y +int  (71. 
Note that,  if y Ex + (int G~) a, V is a neighborhood of x 0. Thus, taking an inductive limit, 

we obtain 

lira Ext~(M'; R r ~ n ~ t _ ~ ) ( U  ~ ~t; ~a,O)) ~O. 
-5~ 

This completes the proof of Theorem 4.1.1. 
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4.5. We reformulate Theorem 4.1.1 in the following way, which we use in the later 

sections. 

THEOREM 4.5.1. Let G, D and M" be as in w 4.1, and x o a point in D. Then, there is an 

open neighborhood U of x o satisfying the following property: let ~1 and ~o be two open sets 

satisfying the following conditions: 

(a) ~ 2 ~  o and ~21-~oCC U. 
(b) There is an open convex cone R in T U  such that R ~  D • (G-(0}),  the projection 

R ~ U  is sur]ective and ~1 and ~o are R-fiat on U. 

(c) There are an open convex cone Q o/ T X  and a Cl-function g on U with 

(c,) {v; <v, dg(x)> > O } ~ Q ( x ) ~ G - { O }  for any x e  U. 

(c~) ~ 1 - ~ o  is Q-flat in a neighborhood of ~ 1 - ~ o .  

(%) E~| i~ exact for p = (x ,  ~) such that x e U  and <~, Q(x)><0. 

Then ~ 1 - ~ o  is locally closed in D a and we have 

R Home(a:D) (M'; RFn,_ no(q~a, 0)) = 0. 

Proof. We may assume that  U is D-round and so small that  Corollary 3.2.5 holds. 

Thus, the conditions (a), (b), (c) in Theorem 4.1.1 hold. Now, we may assume that  

0 < g ( x ) < l  on ~ 1 - ~ 0 .  Set ~- - -~0 U {xE~IA U; g(x)<t}. Then, it is evident that  condi. 

tions (d) and (e) in Theorem 4.1.1 are satisfied. Thus, we can apply Theorem 4.1.1 and we 

obtain 
R Hom~(o:D)(M'; RFn,-no(~a. O)) -- 0. 

w 5. Micro-Hyperbolic systems on the boundary of an open set 
ot a complex analytic manifold 

5.1. Let X be a complex manifold of dimension n, S a real hypersurface of class C 1 
$ 

and ~+ a pseudo-convex open set with S as its boundary. We define the sheaf Cs on TaX 

by 
Cs = Rrr}x(rc-1Os) a [I], 

where, as usual, ~ denotes the projection of ( X -  S) ~I T* X onto X, the fh'st space being 

endowed with the topology of the comonoidal transformation. Suppose that  ~+ is given by 

~+ = {xeX; s(x)>o} 

for a differentiable function s(x) of class C 1 with ds(x)~ 0 on S. We call the conormal of 

~+ at xGS, a covector of the form ~ds(x) with ~ >0. We are just interested in the restriction 

of the sheaf Cs to the negative part ( T ' X ) -  of T~X (i.e. (T*X)-={ads(x);  a < 0 ,  xES}) 
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and we denote this restriction by  C [ . . a s  the sheaf C~ is locally constant on the orbit of 

the action of R+, we can regard C~ as a sheaf on S and we have C~ = R r x - a + ( O x ) ] s  [1]. 

I f  we denote by  ~ the inclusion of ~+ in X, C~ is the restriction of (~', 0 ) [ 0  to S; tha t  is, 

the sheaf C[ is the sheaf of boundary values on S of holomorphic functions defined on ~+, 

modulo functions which extend holomorphically across S. The sheaf Cs is natural ly 

endowed with a structure of ~ - m o d u l e .  

Definition 5./.1. Let  ~ be a coherent ~x-modulo defined on a neighborhood of a point 

x E T* X. Let  0 be a covector on T*X at  x. We say tha t  0 is microhyperbolic for )~  on S, if 

0 is not micro-characteristic for ()~, T~X). 

Let o be the canonical 1-form on the complex homogeneous symplectic manifold 

T*X. We denote by  (T 'X)  R the real homogeneous symplectic man i fo ld  T*X endowed 

with the 1-form co R = o  +~5. We denote by  H and H R the isomorphisms between the 

tangent and cotangent spaces of T*X and (T 'X)  s associated with o~ and o R. I f  / is a holo- 

morphic function on X, we have 

Re H r = H ~  t" 

Ta~.OR~M 5.1.2. Assume that S is o/class C ~. Let ~ be a coherent Ex-module de/ined 

in a neighborhood o / x E ( T ~ X ) -  and let Z be a closed set de/incd by (xES; ~(x)~>O} with a 

di/]erentiable /unction q) o[ class C 1. I f  -dq~(x) is micro.hyperbolic/or 7~1 on S and i/q~(x) =0, 

then we have 
R ~ I o m e x ( ~ ,  RF~(C~))~ = 0 

5.2. We prove Theorem 5.1.2 by  using the theory developed in w 3 and w 4. Repre- 

senting 7?/ as a ~(G; D)-module, we reduce this to the vanishing theorem of the relative 

cohomology. 

We may  assume tha t  X is an open sot in C n. 

Let us take a free resolution of )~l in a neighborhood of x: 

0 ~ - ~  ~ 8 ~  o ~- 8~' ~ -  . . .  ~ -  8~ ,  ~ - 0  

Since ~ax.~ is an inductive limit of the ~(G; D)'s with a closed proper convex cone G and a 

G-round open set D such tha t  D x ( - G e) is a conical neighborhood of x, we can find some 

G, D and a complex of free ~(G;/))-modules of finite rank  

M.: 0 ~- s D) ~' ~ ~(G; D) ~' ~ . . .  ~ 8(G; D) ~" ~- 0 

such tha t  the complex 

O ~ - ~ x  ~ ~  ~ - ~ a Z , ~ O  is isomorphic to R 

o n  D • ( -  O~ 

Therefore, ~ax.p| is exact for p E D  x ( - O  ~ - S u p p  ~ .  
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5.3. W e  take a real system of local coordinates of class C 2 which we denote by  

x 1 ..... x N (N =2n), such that  

(5.3.1) x = (0; --dzN), ~+ = {x6X; xN>0} 

and d~(x)=dzr 
Let us denote by  @i ....  , xN; ~1, ..., ~zr the coordinates on (T*X)R with coR=Z ~jdxj. 

We set: x = @i, x', xN) and ~ = (~1, ~', ~N). In  these new coordinates, we m a y  assume that  

D • ( -  G ~ c T*X (in the old coordinates) contains the set defined by  the conditions 

(5.3.2) --~N>h0(]~[ + I~'[), x e D  

for some constant h 0 > 0. 

The condition of micro-hyperbolicity is invariant by  a change of coordinates of class 

C ~. I f  we write the condition tha t  ~/a~l = - H x ,  does not belong to Cr~ x(SS(~)) ,  we find 

some h 1 > h .  such tha t  any (x, ~)E T*X which satisfies the conditions 

(5.3.3) ~l>h~(]x~l I~,,l+l~'l), -~>hl(l$1[+[~'[) and I~l<X 

does not belong to S S ( ~ ) .  

Fix h > 2h 1, 1 and we denote by  Q'Q (~ > 0), the antipodal of the dual cone of the cone 

given by  

Therefore, Q'q has the form: 

Q'q ={(x 1, x', xN; vx, v', vN)fi TX; -V l  +hvN>h~l (1 -h ' ( l~ l  +e))lv'l  and 

vN-h(l~,l +#)v~ >ha- l (1 - r - (  I:~,,[ +~))i,, 'l} u ((~; ~,); 1 <h'(I,~,,I +~)}. 

Let  us define the open convex cone QQ by  

(5.3.4) QQ ={(xl, x', xN; v 1, v', vN)ETX; -v l+hvN>h-l[v '[  and 

v,,-h(l~,,I +e)v ,>h- ' lv ' l }u  ((~. ~); I~,,I > h-,/2-e}. 

Then Q~ is contained in Qq. Therefore, Q0-flat sets are Q'q-flat. Let  R be the antipodal of 

the dual cone of 

-a,,>~ ~ max (1~,1, WI)-  
R is given by  

(5.3.5) a~,, > I~ l  + Ir 
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Then, R contains D x (G-{0})~  TX .  I f  we take g ( x ) = - x ~ + x l / h ,  then the conditions 

(Cl) and (ca} in Theorem 4.5.1 are satisfied for [x~[ <h-~[2-q.  Therefore, we can apply 

Theorem 4.5.1 and obtain the following lemma. 

L ~ . ~  5.3.1. There is an o'laen neighborhood U o / 0  such that 

R Homeca:D~ (M.; RFn , -a0(~ .  O)) = 0 

for any open sets ~1~ Elo satisfying the following properties: 

(i) EI , -E~o== Uo={xe  U; ]:vN] <h-S /2 -e ) ,  

(ii) Ell and Elo are R-flat on U, 

(Eli) Ell and E~ o are Qe-flat on a neighborhood of E~ 1 -Elo. 

L~.MMA 5.3.2. We have 

Q~r ~-~l>h'~IVl} for h<q, hIl=.l +e)a<l. 

Proof. Set ~--l~-l+e" Sm~ h"~<�89 the inequalities ~.-h~,>h-~l~'l and 
hv N -  v 1 > h -I [ v'[ hold on Qo(z). Therefore, we have 

(1-heg)(hv.-v,) + ( q - h ) ( v . - ~ , )  > (1-heq+g-h)h-l[r  :> h-'(l-h~e)[r I, 

which implies (1 -h2e) (qv#-v l )  >h- l ( l  -h2e)Iv'[.  Since } >hse, we have the desired result. 

This lemma immediately implies the following 

L ~ M A  5.3.3. {x; qzs--zl>/~(]z '  I --c)} /a Qo-flat on {z; I=~1 <r and R - / ~  

/or q>~h and {]<h -1. 

L ~  5.3.4. (~;=:-='~>~} r ~o-1~ on (=; I=~I <h-212-e} /or any ~>0 and c. 

Proof. Since the conormal of this set is ( - h z s ,  O, 1) and since - h z s v l  + v ~ > 0  on Qo, 

we obtain the lemma. 

LEMMA 5.3.5. Let K be a compact subset of S. Let {U,},el be a family of (rlaen subsets of X 

such tha~ (a) U ~ K ,  (b) {Ut-El+}~ is a fundamental system of neighborhoods of K in 

X -El+. 

Then, we have 

RF(K, C~) ffi li,m RFvi-(vt n a~)(Ut; O) [1]. 
i 

This lomma is evident because we have C~ =Rrx_s(O)[1][s. 
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and 

LEMM~ 5.3.6. Set 
Kt(a, b) ={xes; o<x .  Ix'l +h~t<a} 

Ko(a, b) ={XeKl(a, b); x t ~<b}. 

Then, there exists So>0 such that 

RF(KI(a, b); R Homzx ( ~ ,  C~')) ~ RP(Ko(a, b); R Homex (]fl, C~)) 

[or O<~a<~ao and O~b. 

Proo[. We shall prove this by using the vanishing theorem given in Lemma 5.3.1. 

We may assume that U contains {x; Ix~l <2h-', Ix'l <So, IxNI < h - q  exchanging h 

with a bigger one. We may assume that  hb<~a. For 1/2>al>a>~O, h-lal>~bt>b>~O, 
~ > m a x  (2h, (3al/bx)-h)) and 0>0,  we set 

~1(~, at, bt) ={~; ~N >x, +h-~(l~'l -a~), ~ > x t  +h-t(lx, I -at)} 
~o(~, at, bt) : {x  et~(~, a .  bl); 2h~>xt-bl} ,  

~ ( ~ ,  at, bt) - ~ + t 3  ~j(~, al, bt) ( j=0,  1) 

~j(0t, at, bl, ~}) ={xE~'~t(~, al, bl); h~N-t-xl > -~}} 
and 

~(~ t ,  a 1, b t, 0) ffi={x e ~?(a ,  a t, bl); hx~+xl > -~}. 

Note that  ~ j  and ~ "  are R-flat. Then we have 

RF(Kj(a, b), C~) = li__,m RFhj(~.~,.b,.~)-a?c,.~,.b,.~)(~j(a, al, bl, O), qo.(O)) [1], 
at Xaa. b~ x4b 

and hence we have  

RF(K,(a, b), R Hem (~I, C;)) = lira R Hem (M.; RFh~(,.a,.~,.0)_aj~(,.~,.~,.~)(~0o. O)):[1]. 

Therefore, in order to prove Lemma 5.3.6, it is sufficient to show that  

(5.3.6) R H e m  (M.; RFf,(,.a,.~,.~)-fio( .. . . .  b,.~)(~t(a, a~, bt, ~}); ~a* 0 ) )  = 0, 

(5.3.7) R Hem (M.; RFflt+(r.a,.b,.O)_t~o+(tt, a,.b,,O)(~"~+(Ot, al, b t, 0); 900, O)) = 0. 

Let us denote by ~lt, ~o, etc. instead of ~lt(~, a 1, b 1, 0) . . . . .  

LEMMA 5.3.7. (i) ~t--~0ffi~l--~0 and ~1 --~o = ~ - - ~ .  
(fi) We have --1/o,3z<xN<�89 -2/or  xE~t--s  o. 

(iii) ~ , -~o~{X; I~'1 < . t - ~ t ,  Ixd <~h-t). 
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Proo/. In order to prove (i), it is enough to show that  hx~ + x~ > 0 for x ~ ~ x -  ~ .  Since 

~ c ~ - x l > - h - ~ a ~  and x~-2hx~>~b x, we have 

(~ - 2h) (hxN + Xl) = 3h(o~x~- Xl) + (~ + h) (x I - 2hx~) > - 3a 1 + (~ + h) b I > 0. 

Thus we obtain hxN + xl > O. 
Let us prove (ii). Since, for xE~l -~o ,  Xx-2hxN>~bl and hxN-xl>h-l([x'[-al), 

-hxN>bl+h-l(Ix'[-al). Thus xN<(1/h~)al-(bl/h)<(1/2h~). Therefore, we obtain 

xN<�89 -2 for x E ~ l - - ~  .. For X E ~ l - ~  o, (o~-2h)xN=(o:xN-xl)+(xj-2hxN)>bl+ 
h-~( Ix'l -a~) >51 -h-lar Therefore, we have x~> -((h-~a~-b~)/(:c-2h)) > - 1/~h. 

Last we shall prove (iii). Since 2hx~>x 1 +h-l( Ix'l - a l )  on ~ ,  we have b I <~x~ -2hx~< 

- h - l ( [ x ' l  - h i )  on ~1-~)0,  and -2/o~+b 1 <b~ + 2hxN<~b~ <2hx~c+h-~al <~ h -1 +h-lal, 

which shows the desired result. Q.E.D. 

By this lemma, ~ x - ~ 0  is contained in U. Let us prove s a 1, bl) are QQ-flat on 

V={x; -o~-lh-l<xN<2-1h -2} for 0 < Q < I .  By Lemma 5.3.3, ~j  are Q~-flat on a neigh- 

borhood of xN=O. Since {xN>O}fl~I={X;xN>O, hx~>xl+h-'(Ix'l--al)} and since 

{x~<0}fl~) l=(x;  x~c<O,~ ~1 is QQ-flat on V. Since (x; 2hxN> 

xl-bl} is Qq-flat on V, ~0 is Q-fiat on V. Thus, the conditions in Lemma 5.3.3 are 

satisfied and we obtain R Hem (M.; RF~,-a0(~a, O)) =0,  which shows (5.3.6) together 

with (i) is Lemma 5.3.7. 

Now let us prove (5.3.7). Set ~r  XNe-hX'>e}. Then ~ l (e ) -~0(e)  is Qo-flat 

in V by Lemma 5.3.4. Thus, we can apply Lemma 5.3.1 and we get 

R Hem (M.; RFn,(,~-no(,)(~a.O)) = 0, 

for e>0 .  Thus, we have 

It Hem (M.; t tFn #_n+ (~a. 0)) = 1}_ram t t  Hem (M.; ItFn,(,)-no(,)(ga. O)) =0 .  
$ 

This shows (5.3.7). Q.E.D. 

5.4. Now, we resume to prove Theorem 5.1.2. First let us remark that  Lemma 5.3.6 is 

also true if we replace Kx(a, b) and Ko(a, b) with Kx(a, b)+w, Ko(a , b)+w for a sufficient 

small w in S. 

set a <o}, 

and 

/~0(a, b) ={x; hx I +lx'l <a, 0 < x l < b  }. 
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Then we have 

Rr(~Aa, b); R Hem (~,  C~)) = li_m_m Rr(gAa-  2~, b -  2e) + ~v0; R Hem (~,  C~)) 
e--~0 

for w 0 = (1, 0, ..., 0). 

This shows immediately 

(5.4.1) RF(/~I(a, b); R Hem ( ~ ,  C~)) -~ Rr(/~o(a, b); R Hem ( ~ ,  C~)). 

This is also true if we replace/~j(a, b) with their translates. 

We shall prove the theorem by using the argument employed in w 4. 

Set Zo=(xES;  x 1 ~ - e }  and let ~a be the canonical map from Z o to (Zo) o (i.e. the 

topological space Z o with G-topology). Then, (5.4.1) shows immediately 

R~o. Rrz,  R Hem (~i, C~) = 0 

in a neighborhood U of 0. Thus, for any G-open set ~ such that  ~ - Z 0 ~  U we have 

RFnnZo(~; R Hem ( ~ ,  C~)) =0.  Therefore RFnnz(~;  R Hem (~l, C~)) =0  because S - Z  

is G-open in a neighborhood of U. Taking the inductive limit on ~ ,  we obtain the desired 

result 

RFzR Hem ( ~ ,  C~)= = 0. 

5.5. Let  S, ~+ denote the same subsets of R N as in w 5.3; tha t  is 

s = {~; ~. =o}, n+ = {~; ~,>o}. 
Let U- be the open set 

and ~ -  be the boundary of U-: 

~- =(~; ~N=0, ~ > 0 ) v  {~; ~ =  -~L ~<0) .  

We define the sheaf C~.- on ~ -  by 

C~- = Rrz-(O~ l~-) [1] = Rr~_ ~-(0~) [I] Is-. 

PROPOSITION 5.5.1. In  this situation, we have: 

R H o m e x  (~ l ,  C~,-)o = O. 

LEMMA 5.5.2. U- is Qo-/lat on {x: - (1 /2h )<x l  < - ~ / ( 2 h - 1 ) ,  ]xNI <h-~/2-~}  and 

R-flat on {x; x 1 > - 1/2h}. 

3 - 782904 Acta mathematica 142. I m p r i m 6  Iv 20 P~vrier  1979 
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Proof. The boundary of U- is xN= -x~. Therefore, the conormal at the boundary is 

(2xl,0, 1). For vEQQ(x), VN+2Xlv1>O if IXll + Q < - 2 h x l < l .  The second statement is 

also evident. Q.E.D. 

Let  us prove Proposition 5.5.1. Set 

n~(a, e) = {x; hx N -  x 1 > h- X(]x'] - a), 3hxN - xl > h-X([x' I - a)} 

n ( u -  o {x; �89 + e ~) > e~(Xl + e)}). 

Since the first set is Qq-flat on IxNI < l / 4 h  ~ and the second set is Qo-flat on Ix~ I < l / 4 h  2 

for 0 < ~ < 1 ,  ~)l(a, e) is Q0-flat on [x~[ < l / 4 h  ~. Set 

~o(a, e, ~) = ({~e u- ;  2hx~ >Xl +~} 0 {~; x~e -hx' >~}) n ~l(a,  ,). 

Then ~o(a, e, ~) is also QQ.flat on ]xN] < 114h 2 for 0 < e < l .  Set ~o(a, e )=  On>o~o(a, e, 0)= 

U-fl  ~l(a, e). I t  is easy to check that  any neighborhood of 0 contains ~a(a, e) -~o (a ,  e, ~) 

for O<a,  e, 0<1 .  

Therefore, we can apply Lemma 5.3.1 and we got 

R Horn (M.; RFn,(~.,)_no(~.~.n~(~l(a, e), 9a* 0)) = 0 

for 0 < a ,  e, ~<1.  

Taking the projective limit with respect to ~, we obtain 

R Hom (M.; RFn,(~. ,)-no(~.,)(~x( a, e); 9a* 0)) = 0. 

Since C~-. o = limm~.,~oRFn,(a.,)_no(a. ~)(~x( a, e); ~o* O) [1], we obtain the desired result. 

w 6. Division theorem for sheaves of mierofunetions 
with holomorphie parameters 

6.1. We recall in this paragraph some results briefly announced in [16]. 

Let  X be a complex analytic manifold of dimension n, N a real analytic submanifold 

of X. We say that  iV is of local type (p, q) if, at any point of iV, there exists a system of local 

holomorphic coordinates (z 1 ..... z,) such that: 

N = {zeX; Im Zl . . . . .  Im zv=O, zv+ 1 . . . . .  Zn_q=0}. 

De/inition 6.1.1. Let iV be a real analytic submanifold of X of local type (p, q). We 

define the sheaf CNIx on T*X by 

C N f x  = n - q  - 1  a Wr;,x(~' Ox) | 
(cf. w 1 for the notations). 



M I C R O - H Y P E R B O L I C  S Y S T E M S  35 

To be consistent with the notations of [24] we write C~Ix instead of CNIx if 10 =0,  

and CN if I0 = n. 

Examples: 

(a) 10=n, q=O. X is a complexification of N and we find the sheaf CN of mierofunc- 

tions. 

(b) 1~ =0. N is a complex submanifold of X and we find the sheaf of "holomorphie 

microfunctions" defined in [24, Chapter 2]. 

(e) 10 < n, q = 0: The sheaf CNIx is considered in [16] and plays an important  par t  in [16]. 

(c) 10<n, 10+q=n: We find a sheaf of microfunctions with holomorphic parameters.  

This sheaf is used for example in [5] (el. w 9). 

The sheaves CNIx are sheaves on T*X supported by T*X. They are locally constant 

on the orbits of the action of R+, and are naturally endowed with a structure of ~ax-module. 

THEOREM 6.1.2. Let N and L be two real analytic submani/olds o / X  o/respective local 

type (10, O) and (10, q). Let Yo (rest0. Yt) be the complex submani/old o / X  o/dimension 10 

(rest0. 1o +q) which contains N (rest0. L). 

(a) there exists, locally on T * X - T * o X  and T * X - T ~ , X ,  a com10lex homogeneous 

canonical trans/ormation which exchanges T* X and T ' X ,  

(b) i/q) is such a trans/ormation, q) can be extended as an isomor10hism o/ Ex-module o/ 

Crux to CLIx. 

Proo]. We choose two systems of local coordinates such that:  

X =~xSZxC ~ 

N = R~ x {0} • {0} 

Y0 = e '  • {0}  x {0} 
and 

X = ~ x C Z x C  ~ 

L = B , ' x { O }  x C  ~, 

Y t  = O' x {0} x C q. 

I t  is clear tha t  a partial Legendre canonical transformation will exchange T ' X - T * o X ,  

with T~ X - T*, X. We set 
g = C  pxc lx~lxC qx~q  

~ = R,' x C~ x ~' x C,~ x ~,~ 
C t C r 

i~o = c~ • {o}  • {o}  • {o}  • {o}  
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and we identify X with 

A=C ~xc'x~xc~x~. 
C ~ Cr 

In other words, if we denote by (z, v, w) the coordinates in X, we look at  X as a real 

manifold on v, w, and complexify it in these variables. We denote by  (z, v, ~, w, uO) the 

coordinates on J~, and consider the E~-modules s and Et given by the relations: 

s f / =  O, 

s ~! =0 ,  

I t  is not difficult to prove the isomorphisms: 

(~1~) / = O. 

C~l x ___ R Home~ • (C 0, C~) 

CLix ~-- R Hom~c~• , (s C~). 

In fact the case of equations of type ~/a~ is treated in [24, chapter 3, Th. 2.2.5], but  we 

can get the general case with slight modifications. The modules JCo and C1 are equivalent 
* $ 

as ~-modules ,  by a real quantized transformation which exchanges TM~--T?oJ~ with 

T * J ~ -  T - ~  (cf. [24, chapter 3]). If ~ is such a transformation, ~ defines an isomorphism 

of the E n d ~  (s R H o m ~  (F.o, C~) with the Ends]  (El)-module R Home~ (Cx, C9), 

and it remains to remark that: 

E n d ~  (s = Endl~ (Cx) - ~x. 

6.2. In  this section we denote by (t, x a ..... x~) = (t, x) the coordinates in C n, and we 

defino the submanifold A r by the equations x~ . . . .  x~_p = I m  z~_~+ 1 . . . . .  Im z n = 0. Thus 

N is of local type (~, 1), and t is an holomorphie coordinate in N. Let  P be a micro- 

differential operator in a neighborhood of the point p = ( 0 ,  0; 0 ..... 1), with: 

~(P)(p)--o j<m 

~ 0  ]= m .  

L E M M x 6.2.1. In  the preceding sltuaAion any u E (Cmx)r can be written in a unique way 

u = P v + w  

with v, wE(Cmz)~, and (om]~p)w=O. 

Proo[. By the division theorem we can write 

1 1 
2~'-ii 8 ----tt ffi P(t, x, Dr, Dx) G(t, s, x, Dr, D~, DD + K(t, s, x, Dr, D., D:) 
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with (ad Dr)inK=0. We may assume K and G defined bor [81 > Itl. Then: 

= P(t, x, Dr, D,) ~ G(t, s, x, Dr, D,, Dx) u(s, x) ds 

+ ~K(t ,  s, x, Dr, D,, Dx) u(s, x) ds 

Here ~ is a contour integral around Is I =Q> Itl. We set 

v = ~ Gu(s, z) ds 

w = ~ Ku(s, z) ds, 

then v and w belong to Crux and Dr~w=~ [(ad Dt)mK]u(s, x)ds=O. We shall show the 

uniqueness. We may assume P of Weierstrass type in t: 

P(t, x, D t, D~) = ~ Aj(x, Dr, Dx) t j 
t - 0  

with o rdAj<0 ,  Am=l .  Assume 
m--1 

P(t, x, D t, Dz) v(t, x) = w(t, x) = ~, tJwj(x) 
t - 0  

then: 

1 ~ 1 p_l(s,x,D,,Dx)w(s,x)ds" v(t, z) - ~ /  I,,-~-o s ----i 

By the change of variables ~t = l/s, the operator P(s, x, D,, D~) becomes 

Q(2, x, Da, D~) = ~ Aj(x, - 22Da, Dx) 2 -~ 
J-O 

and 2m-lQ2 is well defined and invertible at  2 =0. Thus 

1 2 (2m_ 1 
v(t, x) = ~ i  ~lal-x/e 22(1] ~ -  t) Q2)-I (2m-x w(1/2, x)) d2 

and the term we integrate being holomorphic, we get v--0. 

6.3. Let V be an involutive submanifold of T ' X ,  of codimension p. Let x belong to V, 

and let b(x) be the unique bicharaeteristic leaf of dimension p of V passing through z. 

We say that  V is non characteristic for a coherent ~ rmodu le  ~ at  x if: 

b(~) n S S ( ~ ) =  {x} 
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is a neighborhood of x. Recall t h a t  F is said to be regular at  x, if co Iv is nonzero at  x, where co 

is the canonical 1-form on T*X. 

THEORV.M 6.3.1. [16]. Let ~ be a real anaZytic submani/old el X el local type (p, q), Yo 

the complex submani/old o/dimension p + q containg N. Let ~ be a left coherent ~x-module 

on an open set U ~  T ' X ,  and let V be a complex involutive submani/old el U which contains 

T~X.  Let s be a felt coherent ~x-module on U such that: 

(6.3.1) SS(s  ~ V 

(6.3.2) s has simple characteristics on V. 

We assume F non characteristic/or ~ .  Then the natural homomorphism: 
I, 

R Hom~x ( ~ ,  CNrx) ~- R Homsx ( ~ ,  s  | R Hom~x (s CNjx) Endex (s 

is an isomorphism outside T * X  N T~~ 

Proo/. The involutive manifold T*X • Y0 = Vo is regular outside T~oX. We may  

assume by  a complex canonical transformation tha t  V and Fo are given in some local 

coordinates (z 1 ... . .  zn; ~1, ..., ~n) of T*X by: 

V: z 1 . . . . .  z z = 0 

V0: zl . . . .  = zl . . . .  = zr = 0 

then T ~ X  will be of the type: 

T ' X :  {z 1 . . . . .  z, = 0 ,  (z'; ~ ' )eA'}  

where ~' =(zr+ 1 ..... zn), ~' =(~r+l ..... ~) ,  and A'  is a real Lagrangean manilold whose 

complexification is T*(C~-~). Thus a complex canonical transformation in the (z'; ~') variables, 

and Theorem 6.1.2 reduces the situation to N of local type (p, 0), and V = T*X • Y, for a 

complex submanifold Y of X containing N. As all ~x-modules which satisfy (6.3.1) and 

(6.3.2) are locally isomorphic, we may  assumed s = Ez~-r. Now we use the method of [16] 

to reduce the problem to the case where ~ is a single equation. Let  x belong to V. By  the 

hypothesis that  V is non characteristic, we may  assume 

s,s(~) n ~-~(x) c {x} 

where @ denotes, as usual, the projection T*X • x Y ~ T * Y .  Then it is enough to prove 

Z 

R Homex ( ~ ,  CN)x)z ~ R Hom~x ( ~ ,  8x<-r)x | R Homgx (Sx(-r, CNIx)x 
Q-IE F 

-~ R Homer  ( ~ r ,  CNIr)y [ -- d] 

where y=0(x),  d=codimx Y. By induction on d we may  assume tha t  Y is a hypersurfaee. 
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Let u 1 ..... u~ be generators of ~ near x. We can find mierodifferential operators 

P1 ..... P~ near x, such that:  
P~u~ = 0 

Y is non characteristic for each P~ ( i=1  .... .  r). 

Let ~ '  be the module | ~x[~x.P~ and ~ "  the module defined by the exact sequence 

(6.3) 

Then the sequence 

(6.4) 

0 ~- ~ ~- 7~' ~- 7~" ~-0. 

t u 
0 *- M y  *- M r  ~- ?/lr *- 0 

is exact. We apply the functor Homax ( . ,  C~lx)x to (6.3) and Homax ( . ,  CNjr)~ to (6.4). 

As ~ and ~ "  satisfy the same hypothesis, we see by  induction on i, that  it is enough to 

prove that  for any  i the natural  homomorphisms 

t I t + 1  I 
E x t ~ r ( ~ r ,  CNIr)y'* Ext~x ( ~ ,  Cujx)x 

are isomorphisms, tha t  is to prove the theorem when ~ = ,~x[,~x.P for a microdifferential 

operator P. By Theorem 6.1.2 we can take for N the submanifold of X described in 

section 6.2 and for V the manifold of equation v = 0  in T ' X ,  where (t, x; ~, ~) are co- 

ordinates in T*X = T*(C • C"-1). Let m be the order of the zero of a(P)]~-l(Q(x)) at  x. 

Then ~ r  ~ _ ~ ,  and it remains to apply Lemma 6.2.1. 

Remark 6.3.2. The isomorphism of Theorem 6.3.1 remains valid all over T * X  when 

N is a complex submanifold of X; this is clear by  the proof. 

w 7. Proo | s  oi the m a i n  theorems 

7.1. Let  M be a real analytic manifold of dimension n and X a complexification of M. 

Let  U + be a strictly pseudo-convex open set in X with real analytic boundary S. I t  is well 

known that  we can find locally in T * X -  T ~ X  and T * X -  T~X,  a complex homogeneous 

canonical transformation ~ which exchanges T * X  and T*X.  Moreover it  can be proved, 

with the results of [16], tha t  ~ can be extended as an isomorphism of ~x,modules of CM 

and Cs (with the notations of w 5). For example, if X =C n with coordinates (z x ... .  , zn), 

where z = x + iy, and 

{ "-1 t S - -  z ; x . =  ~ x ,  ~ 
1 - 1  J 

we can define ~ by: (z, ~)---~(iz+dc~(~ ), - iF)  where ~ ( ~ ) = ( ~ + . . .  + ~ - x ) / ( - 4 ~ , ) .  
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7.2. Now we prove Theorem 2.2.1. If  Z is conic in T'X,  and x does not belong to T~M, 
the image by  ~ of Z in T*X will arise from a closed set of S. Thus in this case the theorem 

follows from Theorem 5.1.2 by using the same argument as in w 4.4 whose details are left 

to the reader (replace Lemma 4.3.6 by Theorem 5.1.2). The general case results of the 

preceding one by the following trick. We define Z' in T~R(M x C) by 

z' --{(x, t; i(~, ~)); (x, i~/~)ez, ~>o). 

Let  ~t be the ~c-module 

Then we have the isomorphism: 

Hom~ x 07/, Cu) ~- R Hero,x• c (~ (~ ~t, CM• R 

and if z=(x e, i~~ y= (x ~ 0; i~ ~ i) the conormals to Z' at y are micro-hyperbolic for 

~/r which completes the proof of Theorem 2.2.1. 

7.3. We begin the proof of Theorem 2.3.1. Setting Zffi Y • X we decompose ~ into 

YJ---~ Z ~--~ X (cf. [24], Chapter 2) where ] is the graph map, andp the second projection. It 

is enough to prove the theorem for ]" and p, because j will be micro-hyperbolic for ~z, and 

(~z)~ = ~. 

7.4. Assume r is smooth. Then ~v is micro-hyperbolic for any coherent ~x-module ~. 

As the theorem we want to prove is local, we may consider a resolution of )F/ by free 

~z-modules of finite rank. It is then enough to prove the theorem when 7~/= ~x, that 

is to verify 

O, co-1C:~ "" R Hom~ r (8r..)x, C~v) 

which is clear. 

7.5. We assume now that  ~ is a closed embedding, and identify Y with its image 

in X. I t  is clear by induction on the codimension of Y in X that  we may assume Y is 

the complexification in X of a hypersurface N of M. We keep the notations of w 5, and 

consider the hypersuffaces ~ and Y. of X=Cn: 

, ~ ;  z;z,,-- 2 
l - I  

{ 
t -S ) 
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and the sheaves Cg, Cs Cs and Cs on (T~X)-, (T~X)-, (T~+X)- and (T~-X)-.  

If q is a canonical transformation which exchanges T ~ X  with T~ X, the inverse image by 

of T~X A T*rX will be a regular hypersurface of T*X.  Thus by composing q on the right 

with a real canonical transformation on T~X,  we may assume that q exchanges T~X with 

T ~ X  and T ~ X  with T;X .  It  is not difficult to prove, by the same method as for 

CM, looking at CNIx as a sheaf of microfunctions with one holomorphic parameter, that 

extends to an isomorphism of ~x-modules of CNix with C~. It  would be tedious to prove 

the compatibihty of the isomorphisms of Crux and C~ with that of CM with C~, and we 

prefer, for the proof of Theorem 2.3.1, to "translate" everything in terms of Ex-modules. 

Let V be the complexification (in T 'X)  of T*X  f] T ' X ,  A the image of V by ~. 

If (z, r are the coordinates in T*(C"), A is given by: 

A: ~1 = 0 .  

LEMMA 7.5.1. Let F. be a coherent ~x-module such that: 

(7.5.1) SS( F.) = A 

(7.5.2) s has simple characteristics on A. 

Let ~ be a coherent Ex.module such that A is non characteristic ]or ~l. Then the natural 

homomorlohism 
L 

RHomex(~,  C~)*-RHomex(~,s  | RHom~x(s C~) 
End (s 

is an isomorphism. 

Proo]. As q~ extends to an isomorphism of ~x-modules of CNIx with C~., Lemma 7.5.1 

follows from Theorem 6.3.1. 

LEMMA 7.5.2. Let C be a coherent ~x.~dule which eatis/iss (7.5.1) and (7.5.2). Let 

be a coherent ~x-module which is micro.hyperbolis on S at the codirections dx 1 and - d x  r 

Then we have a natural isomorphism: 

L 

R Hom~x (~/~, C~ )lsn~ ~- R Homex (~ ,  s | R Hom~x (s C~ ) [ + 1]. 
End (s 

Proo]. The hypersurface SA T~ of S defines two closed sets Z+ and Z_ whose 

boundaries ave S A ]~. Consider the following commutative diagram with exact rows: 

0 r ,+(c ; ) l ,~  �9 c ;  ,~ 0. 
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The prolongation theorem implies 

R Hem (Wi, rz.(C~) [s~:) = 0 
and 

R Horn (WI, C ~  [snr~) = 0. 

In this induced commutative diagram 

R Hem (WI, C~ I~nz) 

1 
R I-Iota (~ ,  Cs Isn~) 

. RHom (WI, C~[s.z) [1] 

~q and ~q are isomorphisms and hence so is f12. Now, consider the following diagram: 

RHomex(Wl,/: ) | RHom~x(C,C~)lsnz ,RHom(W/,Cfi[sn~) 

1 2 
z 72 

RHomex(7~/,C) | RHomex(C, Fsnr~(Cs-)) ,RHom(Fsn~(C~)) 
Encl(s 

By Lemma 7.5.1, the homomorphism 71 is an isomorphism. 

The module /~ being isomorphic to ~x/~xD 1, we have RHomex(~,  Cr,)[saE-% 
R Homsx (/~, Fsnz(Cs)), and hence fll is an isomorphism. Since f12 is an isomorphism so is 

7~. Thus we obtain the lemma. 

If we reformulate Lemma 7.5.2 by replacing C~ by CM and JC by ~x,-r we get: 

L 

(7.5.3) ~lRHom~x(Wl,  CM)-RHom~x(Wl, ~x--r) | ~'-ICN[1] 
Q-* E r  

where @' denotes the projection 
~': T* X x N-* T* Y. 

M 

The hypothesis (2.3.1) of Theorem 2.3.1 implies 

~*(s | ~ )  = ~,(s | Wl) = W~. 

Thus, it remains to take the direct imago by e' of isomorphism (7.5.3) to got the theorem. 

w 8. Application I: Cauehy problem tor sheaves o! coherent Ex-modules 

8.1. We show in this section how our theorems allow us to give new proofs to the 

results of [19] and to complete them. 

Let q~ be a holomorohic map from Y to X, ~ and t~ denoting, as usual, the mappings: 

~: T*X x Y-* T* Y 
x 

Co: T*X • Y ~. T*X. 
X 
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If ~ is a coherent ~x-module we write 7/~176 and ~/a for ~ |  and ~ |  ~. Recall 

that ~ and ~ are flat over ~x. We have given in w 1 the definition of "~ non mierocha- 

racteristic for ( ~ ,  ~)". Let d = d i m c X - d i m c  Y. 

THEOREM 8.1.1. [19, Theorem 3.1]. Let 7n and ~ be two coherent Ex-modules on an 

open set U ~  T*X. Assume ~ non microcharacteristic /or ( ~ ,  7/). Then the natural homo. 

morphism on Co-I( U): 
n 

~-lRHomex(~,~R)- 'RHom~x(Tn,~x~-r) | (ER-,x| 
Q-I ~y gX 

is an isomorphism. 

The result remains true i/ we replace 7~ )t and ERr__,x by W ~ and E~ 

Proo]. As for the proof of Theorem 2.3.1, it is easy to see that it is sufficient to con- 

sider the case where Y is a submanifold of X. The theorem must be proved at each point 

xEeo-l(U) and q being non characteristic we may assume: 

s s ( T n )  n e-l~(~) = {z} 

ss(~} n e - l e ( x )  = {~}. 
Then we have to prove: 

R Homex (~ ,  ~a)x-~ R Homer (mr, ~ ) ~  

where y=o(x). 

We identify T*X with the diagonal of T*X • T*X by the first projection, and 

T(T*X) with TT, x(T*X • T 'X) .  Let us denote by 7/* the adjoint system to 

'/~* = R HOmex (~, 8x) | ~x ~-1 
ox 

(where f/x is the sheaf of holomorphie n-forms on X). We have: 

R Hom~ x (7~, ~a) ~ R Homex• x ( ~  ~3 7/*, Caxlx • x) 

and also: 

Cnr• RHom~r(~r ,  ~Rr)_~RHomer• ' R 

We first restrict the systems to Y • X, then to Y • Y. We have 

r Cy,r• r) [d] R Homer• (7/Ir(~ ~/i*, CRrlr• - R Homer • ( ~ r ~  (~*)r, R 

by Remark 6.3.2, and (~*)r[d] =(~r)*. The theorem wffl thus result of the following: 
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LEMMA 8.1.2. [19, Proposition 3.4]. Let Y and Z be complex submani/olds of X .  We 

assume Y and Z transversal. Let ~ be a coherent Ex-module defined near xe  T*X • Y. 

We assume Y is non microcharaeteristic for ~ on T* X and 

ss( ) n {x}. 

Then the natural homomorphism 

R Hom~ x (Wl, C zfl Y[ Y )e(X) Czfx),~ R Homey ('l~r, R 

is an isomorlahizm. 

Proof. We can assume that  in some local coordinates: 

X = (~= • C q 

z = {o} • 

Y = ~ x (F-" x {0}. 

Let :~ denote the complexification of X: ~ =X x i~ and we identify X with A =X • 

Let us denote by C the system on 2 defined by the equations: 

{ ~,,u=O i = 1  . . . . .  p 
(~/O~) u = 0 i = i o + 1  . . . . .  ~,+q 

We have: 

(8.1.1) 

and an isomorphism (of. w 6): 

(8.1.2) 

T~ X N (T* X x $8(s ~_ TzX* 

R Cz)x ~ R H o m ~  (s Cx) 

where Cx is, as usual, the sheaf of mierofunetions on the real manifold X. Let  ~ be the 

eomplexifieation of r in ~ .  We have: 

and s  is the system defined by the equations: 

~u =0, i = l  ..... p 

(0/~j)u = 0, i = p + l  ..... p + q - d .  

I t  is thus enough to prove: 

(8.1.3) R Home~ ( ~  ~ s Cx), -- R Home~, ( ~  ~ s C r)e(,) 
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because the first term of (8.1.3) is equal to 

R Hom~ x (]f ,  R Home2 (s Cz)), -~ R Hom~z (]f,  CzRix), 

and the second term of (8.1.3) is equal to 

~ H R R Homer (]fir, R H o m ~  (s Cr))Q(z) - R Om~x (]f r ,  Czo rlr)~cz) 

The isomorphism (8.1.3) will be a consequence of Theorem 2.3.1 if we show that  Y is 

microhyperbolic for ] f ~  s Lot 0 belong to T(T*X),  with: 

0 r C(SS(]f); T ' X )  

it is enough to show that  

(0, O) r x SS(s T*~2) 

in T (T*X  • T'X).  Let us denote by (z, @) a point in T*X x T*X. 

Let (zn, @,) and (z~, ~ )  be two sequences in T*(X x X),  such that: 

z~ ess( ] f ) ,  ~ e s s ( s  

(~, ~ )  - ~  (Zo, ~o) 

and there exist cnER+, with 

r --~ '  * (zn, w.)eTA(X x X) 

(~'n, ~ )  -if* (Zo, ~o) 

-- - - t  ~ Oo  c.(z . -  z~) - ~  O, c.(w.-  w.) 

We have w~=z'n, we=z0, hence z 0 belongs to T ~ X  and cn(wn-z'n)--~O thus 

c n ( z . - w . )  n , O 

as ff~,ESS(s w~ET~X and OfiC(SS(]f); T~X): this is a contradiction. 

8.2. If we use Theorem 2.2.1 in place of Theorem 2.3.1 we get, by the same arguments, 

the following result that  we could not obtain directly by the complex method. 

TH~.OR~,~ 8.2.1. Let ] f  and 7t be two coherent E x-modules on an open set U c T*X. Let Z 

be a closed set o/ U and x a point outside the interior o/ Z. Assume that any conormal to Z 

at x is non micro-characteristic/or ( ] f ,  7t). Then 

(RFzR Hom~ x (]f, ~It))~ _= O. 

The result remain~ true if we replace 7/1R by ~1 ~ and i /we  assume that g is invariant by C*. 
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We give many applications of Theorem 8.1.1 in [19] and show in particular how it 

allows us to extend to (overdetermined) systems the results of Hamada and Hamada- 

Leray-Wagschal (cf. [8], [9]). :But even for a single equation our hypothesis is weaker than 

those in [9] ("non microcharacteristic" instead of "constant multiplicities"). 

Let  us give another example. Let  X =C ~ x C a with coordinates (x, t). Let  ~0(t) be a 

holomorphic function on X, which does not depend on x, ~ ~ 0, S the hypersurfaee of X 

given by q~ =0  (S may be singular). Let  P be a differential operator whose principal part is 

a polynomial (with holomorphie coefficients on X) in D~ ...... Dxp, ~(t)Dt .. . . . .  ~0(t) Dtq. 

We assume the hypersurfaee xt=O non characteristic. We prove in [19] using Theorem 

8.1.1 that  the Cauchy problem is well posed on x l = 0  with holomorphic data on X - S  

(in a neighborhood of x t = 0  ). If we use Theorem 8.2.1 instead of Theorem 8.1.1 we get: 

Let  ~ be a pseudo-convex open set with Ca-boundary. Assume 0 E ~ ,  and (1, 0 ... 0) 

is the conormal of f2 at 0. Let [ be a holomorphic function on f ~ -  S n ~ ,  such that  P /  

extends to X - S  in a neighborhood of 0. Then the same is true f o r / .  Moreover, if g is 

holomorphic on ~ - S n  f~, there exists a solution [ of the equation P / = g  which is holo- 

morphic on ( ~ - S  N ~ ) f ) U  for a neighborhood U of 0. 

w 9. Application II: Propagation of singularities 

9.1. In this section, we generalize the results of J. M. Bony and P. Schapira [5] (cf. 

also [1], [11]) and extend them to systems of micro-differential equations. Let M be a 

real analytic manifold of dimension n, X a complexification of M, and N a real analytic 

submanifold of X of local type (q, n - q )  which contains M. We set: 

I t  is clear by the definitions that  there exists a natural homomorphism: 

and this homomorphism is injective (el. [5, Theorem 6.2]), but  we do not need this 

fact here. 

THEOREM 9.1.1. With the preceding notations let 7~ be a coherent Ex-module defined 

on an open set U c  T*X. We assume that/or any OeTA.v(T~X), 04:0, 0 is non micro- 

characteristic [or (711, T~X). Then the natural homomorphism 

a Hom~ x (~ ,  C~I~[A)-* R Hom~ x (~ ,  C~IA) 
is an isomorphism. 
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Proo/. We may assume, with p=n-q: 

X = C ~ x C q 

M = R p • R q 

N = C ~ X R q. 

Let us define, as in w 6, the following: 

X = C ~ x C ~ x C q 

2~ = ~ x C ~ x R ~ 
~p 

A = (~" x C" x Cq. 
~p 

We identify X with its image A in )7 by the diagonal map. Let s be the ECp-module 

given by the equations: 

I~:~_ u = 0 ,  }'=1 . . . . .  _iv. 
~ j  

T~X ~_ T~)? N (SS(s • T*(C ~ x Cq)). 

We have seen (w 6) 

(9.1.1) 

(9.1.2) CNIx ~ R Horn,e, (E, C~) 

and it is thus enough to prove: 

R Homtx ( ~ ,  CM)IA ---- R Homt~r (s ~ 7T/, C~)IA. 

But ( I ~  ~ / ) Ix=  ~ ,  and by Theorem 2.3.1, it is sufficient to show that  X (identified 

with A) is microhyperbolie for s  

The same argument as in Lemma 8.1.2 shows, by (9.1.1) that  if 0 belongs to T(T*X), 
and 

0 r C(SS(~t); T'X) 
then 

(0, 0)r163 • SS(~) ;  T ~ )  

which achieves the proof of the theorem. 

9.2. We can now prove the theorem of "propagation of singularities". Note that  

our method, that  is, using an intermediate sheaf of mierofunetions with holomorphie 

parameters, is the same as in [5]. 
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THEOREM 9.2.1. Let A be an involutive submanilold o] T ' X ,  A c the complexification 

o/ A in T ' X ,  A the union o/complex bicharacteristic leaves o / A  c issued/tom A. Let 

be a coherent Ex-module on U c T*X. We assume that ]or any O e T A( T *  X ), 0~=0, 0 is non 

microcharacteristic for (~tl, fk). 

Let u be a section o] Homex ( ~ ,  C~IA). Then the support o] u is a union o] bicharac- 

teristic leaves o/ A. 

Proo]. We use the same trick as in w 7.2. The section u|  belongs to 

Homex • c ( ~  ~) ~t, CM• R ]A') 

where A'  ={(x, t; i(~, 0)); (x, i~)EA} and if u|  is zero at some point (x ~ 0; i(~ 0, 1)), 

then u is zero at (x ~ i~0). As the hypothesis of the theorem are satisfied for ~ (DSt and A', 

we may assume from the beginning that  A is regular,that is r where eo is the 

canonical 1-form on T ~ X .  Thus we are, by a real quantized canonical transformation, in 

the situation of Theorem 9.1.1. I t  remains to apply Theorem 9.1.1 and to remark that  

the support of a section of CNtx in P $ X  is a union of complex bicharacteristic leaves, 

by Theorem 2.2.9 of [24], Chapter 3. 

Remark. Our condition is weaker than the condition of [5], which is equivalent to 

say that  O is non microcharacteristic for ( ~ ,  AC). 

Let us take an example to see the difference. 

Let M = R r •  R ~, P be a micro-differentiM operator whose principal symbol Pm is 

written with the coordinates (x, t; i(~, v)) on iT*M 

with: 

and 

There exists h >0  such that  

implies 

P,~(x, t; i& iv) = Q~(x, t; i~, iv) + RAt;  i~, iv) 

Q,n(x, t; i~, iv) >1 c l~l ~ for some c > O, 

Q~(x, t; i~, iv) = 0 for ~ =0, 

Rm(t; i~, iv) >I O. 

>h[IAtl + IA l], l y l< l  

Pm(x+iy, t +iAt; i~+A~, iv+by) =~o. 

If A denotes the manifold ~=0  in T ~ X ,  the conditions of Theorem 9.1.1 are satisfied 

and we have propagation "in x".  
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For example let us take on RS: 

+ t~) Dr, 

then the analytic singularities of the hyperfunctions solution of Pu =0 will propagate 

along the line t~ =t2 =0.  

w 10. Application IH: Holonomie systems 

10.1 Let  M be a real analytic manifold, X a complexification of M, and ~ a holo- 

nomic system of micro-differential equations defined on an open set U of T*X. We shall 

show 

THEOREM 10.1.1. For any j, the groula Ext  j ( ~ ,  CM) are constructibte sheaves; that is, 

there is a stratification of U A T *  X satisfying the condition of Whitney such that Ext~x ( ~ ,  CM) 

is locally constant on each stratum. 

In the case of system of differential equations, this is proved in [15]. 

10.2. Let X be an analytic manifold, Y a submanifold of X (over C or R), and 

T r X  the normal bundle of Y. Let 0 be a 1-form on X whose restriction on Y vanishes. 

Then 0 defines a linear function on T r X ,  which we shall denote lr(0 ). 

Suppose Y is locally defined by ]z . . . . .  ]~=0. Then 0 is written in the form 

0=~. a sd f j+~ f j~  j with 1,forms ~/t and functions aj. Set vj=a(fj) the linear function 

corresponding to fj or equivalently lr(dfj). Therefore 

lr(O) = E 

Definition 10.2.1. We define the 1-form ~z(0) on T r X  

ar(O) = E aj d(~(/,) + ~ a(h ) ~,. 

PROPOSITION 10.2.2. tTr(0 ) is well-defined. 

Proof. First, we shall show that  ~r(0) does not depend on the choice of a t and ~j. 

Suppose that  0 has two expressions: 

o = E a,d/,  + / , '7 ,  = F a', d/, 

Since ~. ( a j - a ; ) d f j - O m o d  (/, ..... f,), we have a ; = a s + E b j j  ~ for some functions b,k. 

Therefore, we have 

~..h~l, = 5 b,ks Eh~l'J. 
I ,k  

4 -  782904 Acta mathematica 142. Imprim~ le 20 F6vrier 1979 
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or equivalently 

~:5(7,- ~ ~dl~-7;)=o 

Therefore 7 ~ -  ~ bk~dfk -7'J =-0 mod (/1 ..... /z). Thus we can write 

7; = 7, - ~ b~j d/~ +/j 7,~, 

for some I-forms 7jk. Then it is easy to see 

7 a, ~,;(lj) + ,~(1,) 7j = ~ =; ~(1~) + ,~(1,) 7.; 

because =,lr==;I, and 7,1r=7;Ir. 
Now, we shall show tha t  the definition of ~(0) does not depend on the choice of I~. 

Choose another {/~ ... . .  l't} so tha t  Y is defined by  1~ . . . . .  /; =0.  Then we can write 

~j = ~ e~/~. Therefore, if 0 = ~ ajdlj + ~. ljT~, we have O = ~.j.~ ajcj~dl~ + ~ l'k(~j ajdcm + 

~ j  C~Tj). Then we obtain 

X a, c,,,,~(~l,~) + X ~(/,;) (X =, de,,, + X*,,, 7,) 
J,/c / J 

-- ~ =j d(X cj,, ~(/;,)) + ~ (X  c~,, ~(/;,)) 7, 

= ~ =~ ~ ( / , )  + 7 ~(/,)7,, 

which shows the result. Q.E.D. 

Note tha t  ~r(O)-dlr(O ) is zero modulo functions vanishing on the zero section of 

TrX. 

10.3. Let  I be a map  from X '  to X and let Y', Y be submanifolds of X '  and X 

respectively. Suppose t h a t / ( y ' ) c  Y. If a 1-form 0 on X vanishes on Y, then 1"0 vanishes 

on Y'. Let [ be the canonical map T r . X ' ~ T r X .  Then we have 

(10.3.1) [ *~r(O)  = ~r ( ] *O) .  

In  fact, it is enough to check if for 0 =d~ or 0 ~g7 where g is a function on X vanishing on 

Y and 7 is a 1-form on X. We have 

f *~ r (@)  = t * ~ , ( g )  = d (~r (g )o f )  = d~r , (go/ )  = ~r,(,~(go/)), 

a n d  

k~,(g7) = f*(,n.(g)7) = ~.(gol) /*7 =,7,.(/*(g7)). 

10.4. Let  V be a subanalytic set of X. 
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PROPOSITION 10.4.1. Let X be a real analytic ~ n i / o ~ ,  Y a swS~nl/o~, 0 a 1-/orm 

on X which vanishes on Y. I! 0 vanishes on a subanalytic set V (i.e. 0Iv=0 at a non-singular 

locus el V), then ar(O)lcr(v~=O and Cr(V)c{Ir(O)=O}. (For subanalytic sets, we re/er to 

[10].) 

Proof. Considering the blowing up of X with center Y and using the result in w 10.3, 

we may assume without loss of generality that  Y is a hypersurface of X. The question 

being local, we assume X--{(t,  x ) e R  "+1} and Y={(t,  x)EX; t=0},  and we may assume 

that  V is contained in t > 0. 

Let  r~ be the projection from {v E TyX; a(t)(v)>10} onto Y. Then Cr(V)=r~-l(~ N Y). 

Let  us denote 0 =a(t, x)dt+t~. I t  is then enough to show that  

(10.4.1) a(0, x) = 0 

on VN Y and ~l~ny=0. Since V is a subanalytic set there is a proper map ~: W ~ X  such 

that  ~(W)= Y. Let  W1 be the union of connected components where t is identically 

zero. Then ~(W1)c Y, and hence r  V. Therefore, we may assume that  t is not 

identically zero on each connected component of W. 

Let us show that  

(10 .4 .2)  a [~-~(r~ -- ~ [~-,(r) = 0. 

In order to show that  it is enough to consider a generic point where t has the form 

gm with dg~0.  Then ~*0ffind(g~)+g~q=mgm-l(adg+~)ffi0 and hence adg+g~=0.  I t  

implies a is a multiple of g, say a=bg. Then 7 - - - b d g .  This shows (10.4.2). Since 

q~(q)-IY)=VN Y, we have a[rnV-=~lrnv=O by (10.4.2). Q.E.D. 

10.5. Lot (X, r be a homogeneous symplectic manifold of dimension 2n; i.e. m is a 

1-form on a manifold X such that  ~o and (dee) n does not vanish at  any point. 

Lot A be a homogeneous Lagrangian manifold (i.e. a manifold of dimension n on 

which r vanishes). Then, TAX and T*A are identified by the Hamilton map 

H: T*X ~ TX. 

Let a~ A be the fundamental 1-form on T~X.  Then we have 

PROPOSITION 10.5.1. ~AWGA(O))=d/A(O~ ). 

Proof. Take a local coordinate system (z, ..... x,, ~i ..... ~,) such that  dca = ~  d~j A dxj 

and A={~=0} .  If we identify TAX with X by this linear structure, eoA=-<~,  dx>. 

We can write r =<~, dx> +&p. Since colA=0, d~lh=0,  and hence we may assume r 

Then lA(eo) =O'A((p) and aA(eo)=<~, dx> +daA(q~), which shows the result. Q.E.D. 

TH~.OREM 10.5.2. Let V be a homogeneous Lagrangian subanalytic set. Then CA(V) is 

an isotroloic subanalytic set o/ (T 'A,  o~A) and is contained in the zero of /A(O~). 
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This is an immediate consequence of Proposition 10.4.1 and the preceding proposi- 

tion. 

10.6. Let  X be a real analytic manifold. 

Definition 10.6.1. Let V be a conic subset of T*V. A locally closed set Y of X is called 

flat at y E Y with respect to V ff 

C(V; 7~-1(Y))1~ C {V6 T~(T*X); <v, co(p)> >10}, 

for any point p in ~ l ( y ) .  

LEMMA 10.6.2. I / a  submani/old Y is fiat with respect to V, then ~- l (y )  N V c T* X. 

Proof. Take a point p in  VN~-I(Y). Then C~-,cy)(V ) contains T~(~-a( Y) ). Hence 

o~(p) =0  on T~(~-I( Y) ). This is equivalent to say that  p belongs to T~X. 

PROPOSITIOlq 10.6.3. Supposethat X is an open set in R N and that a subset Y is flat 

with respect to a conic set V in T*X at a point x o. Then there is e > 0 such that (x; y - x) does not 

belong to V/or  x E X, y E Y satisfying I x -  x o ], ] Y -  x0] < e, x ~=y. 

Proof. We shall prove the proposition by contradiction. 

If the proposition is false, then there are sequences xnEX and ynE Y which con- 

verges to x 0 such that  (xn; yn-x . )  is contained in V and x.M=y.. Let  cn>0 be a sequence 

such that  ca(y.-xn) tends to v~=0. Then, (xn; cn(yn-xn)) is a sequence in V which con- 

verges to p=(x0; v) and (y.; c.(yn-xn)) is a sequence in ~ - l y  which converges to p. 

Since c,((xn; cn(x~-yn) ) - (yn ;  c~(x,-y,)) )  converges to ( - v ,  0), ( - v ,  0) belongs to 

C,-,(y~(V). Thus ( ( - v ,  0), (o(p))= -~v ,  v~, which is a contradiction. Q.E.D. 

P ~ o P o s I T I O ~  10.6.4. Let X = I ~ X a  be a stratification of Whitney. Then, V =LIa T* X 

is a closed subset and each stratum X~ is flat with respect to V. 

Proof. Let (x,; ~n) be a sequence in T~aX which converges to (x; ~). We shall prove 

that  (x; ~) belongs to T~pX for fl such that  X# contains x. By the condition of Whitney, 

if T~nX ~ converges to a plane T c  T~ X, then z contains TxX p. Therefore, the orthogonal 

(T*aX)z,, converges to v ~ which is contained in (T~pX)~. This implies (x; ~)E T~$X. Let 

us show that  X~ is flat with respect to T~,X. Let  x be a point in X~, p--- (x, ~) a point 

in ~-l(x) and ~/a point in C~(T~,~X; ~-IX~). Then there are a sequence (x~; ~ )  in T *  X, a 

sequence (y~;~,) in ~-~(X~) and a sequence c~>0 such that  c~(x~-y~; ~ - ~ ) c o n v e r g e s  

to q=(v; w) and that  (x,; ~ )  and (Yn,~) converge to p. Suppose that  T~aX ~ converges 

to a plane ~ in TxX. Then, by  the condition of Whitney, ~ contains v and T~X~. Since 

p is contained in T ~ X ,  we have (q, w(p)) --(v,  ~ =0.  Q.E.D. 
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Remarlr Conversely, if V is closed and if each X~ is flat with respect to V then 

X =iX X~ is a stratification of Whitney. 

PROPOSITION 10.6.5. Let V be a closed conic isotropic subanalytic set in T*X. Then 

there exists a stratification of Whitney X =H Xa of X such that V is contained in HT* X. 

Proof. Let I z = H g a  be a stratification of Whitney so that  Va-~ Ya =~z(Ya) is smooth 

and Y~ is a submanifold (and subanalytic). Then V~ is contained in T * X .  In fact, let us 

choose a local coordinate (x 1 ..... x,) such that  Ya is defined by x 1 . . . . .  x~ =0. Then on 

Ira, O=eo=~. ~jdxj=~.z+l~jdx~. The forms dx~ (/+1~<]) are linearly independent on 

Y~ and hence on Va. This implies ~z+l=...=~,=O on V~. Take a stratification of 

Whitney X~-]._[Y'~ which is a subdivision of U Y~. Then this satisfies clearly the required 

condition. Q.E.D. 

10.7. Now let us prove Theorem 10.1.1. The method employed here is almost the 

same as [15]. Let M be a real analytic manifold and X its complexification. 

THEOREM 10.7.1. Let ~ be a system of micro-differential equations on X, A the 

characteristic variety of ~ and V = Cr~x(A)c T*( T* X). I f  a submanifold Y of T~ X is flat 

with respect to V, then Ext~x ( ~ ,  CM)[r is a locally constant sheaf/or any ]. 

Proof. Let (tl, ..., t2,) be a local coordinate system on T~X such that  Y is linear, 

and Y0 a point in Y. By Proposition 10.6.3, there is e > 0  such that  

(10.7.1) (x; y - x )  ~ V 

for  eT ,X, ye r satisfying I -Yol, iY-Yol 
Set Ur(y)--{x; [x-Yl  <r}. In order to prove the theorem, it is enough to show that  

(10.7.2) E xtJ (Us(y0); ~ ,  CM) -~ Ext  ~ (Uo(Y); ~ ,  CM) 

for y6  Y and e >0 such that  lY-Yol +@ <s. In fact, then we have Ext  j (U~(y0); 7~, CM) 

li_mm Ext  ~ (U0(y); ~ ,  CM) ~-- Ext  J ( ~ ,  CM)y for any y 6 Y N U(yo). 

Set ~t= U~+(l_t)o(tyo+ (1 - t )y) .  Then ~1=  U~(Y0), ~o= Uo(Y). I t  is easy to check tha t  

{~t}0<~<l is an increasing sequence and that  

~t .  = U ~t 0 < t ~ < l  
t<to 

and 
~t0= n ~t for l > $0 >/ 0. 

$>t, 
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Moreover, ~ is microhyperbolic by (10.7.1) with respect to ~ t  and hence 

Ext~j,_n~ ( ~ ,  CM)x"O for x E ~ t ,  

which implies, by the same argument as in [15] or w 4, the desired result (10.7.2). Q.E.D. 

Theorem 10.1.1 is immediately proved by this theorem, Theorem 10.5.2 and Proposi- 

tion 10.6.5. 

Remar,~. I t  has been proven by M. Kashiwaxa and T. Kawai [18] that  for any 

xE T ~ X  N U, any j, the vector spaces Ext~x ( ~ ,  CM)x axe finite dimensional over C. 

10.8.  If we use Theorem 8.2.1 instead of Theorem 2.2.1 we get, for a complex 

manifold X: 

THEOREM 10.8.1. Let ~ and ~ be two felt coherent ~x-modules on an open set U o/ 

T*X. We assume that ~ and ~l are holomonic. Then there is a complex strati/ication of U 

satisfying the conditions of Whitney such that /or any i, the groups Ext~x ( ~ ,  ~a) and 

Ext~ z ( ~ ,  ~r are locally constant on each stratum. 

Recall that  we set in w 8. 

~x 

~x 

Note added in proo l 

Theorem 2.2.1 is valid in a more general context: we may replace ~ with a complex 

s bounded to the left, of free modules of finite rank over E~ or over ~Rx, and replace the 

characteristic variety of ~ / w i t h  the union of the closures of the supports of the cohomology 

groups of s  This is in fact what we have done in the proof. Let us only notice that  the 

isomorphism of the sheaves CM and Cs of chapter 7 is compatible with the corresponding 

isomorphisms of the rings ~ or Lax. 
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