SUBELLIPTICITY OF THE $\bar{\delta}$-NEUMANN PROBLEM ON PSEUDO-CONVEX DOMAINS: SUFFICIENT CONDITIONS

BY

J. J. KOHN ${ }^{\mathbf{1}}$)
Princeton University, Princeton, N.J., U.S.A.

Contents
§ 1. Introduction 79
§2. The basic estimate on pseudo-convex domains 87
§ 3. Tangential Sobolev norms 91
§ 4. Ideals and modules of subelliptic multipliers 93
§ 5. Subelliptic stratifications and orders of contact 102
§6. The real-analytic case 110
§ 7. Some special domains 115
§ 8. Estimates for ($p, n-1$)-forms 118
§9. Propagation of singularities for $\bar{\partial}$ 119
References 121

§ 1. Introduction

The main idea of this work is to analyze a-priori estimates for partial differential operators using the theory of ideals of functions. Here I deal only with the $\bar{\partial}$-Neumann problem; however, it is my belief that this type of analysis will be useful in deriving estimates by algebraic methods in diverse situations (see for example Chapter 3 of [20a]). In particular, by means of the Spencer sequence, a wide class of differential operators can be reduced to the D-Neumann problem (see [30] and [31a]) which in turn seems to be amenable to these methods.

The principal results proved here are Theorems 1.19 and 1.21 , they were announced in [20 b]. To introduce this paper I give a brief review of those aspects of the $\bar{\partial}$-problem and the $\bar{\partial}$-Neumann problem which motivated my work.
${ }^{(1)}$ This work was done in part while the author was a Guggenheim Fellow. This research was also supported by a National Science Foundation project at Princeton University.

The $\bar{\partial}$-problem. Consider the inhomogeneous Cauchy-Riemann equations on a domain Ω in \mathbf{C}^{n}. To be explicit, let z_{1}, \ldots, z_{n} be holomorphic coordinates in \mathbf{C}^{n} and let $x_{j}=\operatorname{Re}\left(z_{j}\right)$, $y_{j}=\operatorname{Im}\left(z_{j}\right)$, we set

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-\sqrt{-1} \frac{\partial}{\partial y_{j}}\right) \text { and } \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+\sqrt{-1} \frac{\partial}{\partial y_{j}}\right)
$$

as usual. Now, given functions $\alpha_{1}, \ldots, \alpha_{n}$ on Ω, the problem is to solve the equations

$$
\begin{equation*}
\frac{\partial u}{\partial \bar{z}_{j}}=\alpha_{j}, \quad j=1, \ldots, n \tag{1.1}
\end{equation*}
$$

and to study the regularity of the solution. Naturally, we must assume that the α_{j} satisfy the compatibility conditions

$$
\begin{equation*}
\frac{\partial \alpha_{j}}{\partial \bar{z}_{k}}-\frac{\partial \alpha_{k}}{\partial \bar{z}_{j}}=0 . \tag{1.2}
\end{equation*}
$$

Using the notation of differential forms we let $\alpha=\sum \alpha_{j} d \bar{z}_{j}$; the equations (1.1) are then expressed by $\bar{\partial} u=\alpha$ and the compatibility conditions (1.2) by $\bar{\partial} \alpha=0$.

We will assume that Ω is pseudo-convex and has a smooth boundary (see $\S 2$). Since the system (1.1) is elliptic, the regularity properties of u in the interior of Ω are well known. Roughly speaking, on an open set $U \subset \subset \Omega$ a solution u restricted to U is "smoother by one derivative" then α restricted to U. Regularity of u on the boundary is more delicate. Notice that if h is a holomorphic function on Ω then $u+h$ is also a solution of (1.1); thus, "in general" the solutions of (1.1) will not be smooth on the boundary. The problem then is to find some particular solution with good regularity properties at the boundary. In [20d] and [20c] the following result is proved.

Theorem 1.3. If $\Omega \subset \mathbf{C}^{n}$ is pseudo-convex with a C^{∞} boundary and if $\alpha_{j} \in C^{\infty}(\bar{\Omega})$ and satisty (1.2) then there exists $u \in C^{\infty}(\bar{\Omega})$ which satisfies (1.1).

This result gives global regularity of solutions. The problem of local regularity is the following: given an open set U such that the restriction of α to $U \cap \bar{\Omega}$ is smooth can we find a solution u whose restriction to $U \cap \bar{\Omega}$ is also smooth. The answer to this question, in general, is negative. In [20e] and also in § 9 of this paper, we show that singularities of u can propagate along complex-analytic varieties contained in the boundary of Ω. More precisely, for certain domains Ω we can find an α so that local regularity fails for every solution u. Our construction depends on the fact that the boundary of Ω contains a complexanalytic variety and it is this phenomenon that led us to the main results of this paper.
D. Catlin, in [5], gives an example of a pseudo-convex domain in \mathbf{C}^{3} for which local regularity fails and whose boundary does not contain any non-trivial complex-analytic varieties.

In recent years many results have been obtained concerning the regularity of solutions of (1.1), on strongly pseudo-convex domains (see [16] for a survey of this field). These results are concerned with estimates of Hölder and L_{p} norms. In the present work we study pseudo-convex domains which are not strongly pseudo-convex and our results concern estimates of Sobolev norms.

The $\bar{\partial}$-Neumann problem. This problem was formulated by D. C. Spencer to study the $\bar{\partial}$-problem and other properties of the operator $\bar{\partial}$. Here we give a brief description of the problem, for a detailed account see [13].

Let $L_{2}^{p, q}(\Omega)$ denote the space of square-integrable (p, q)-forms on Ω. The inner product and norm are defined as usual by

$$
\begin{equation*}
(\alpha, \beta)=\sum_{I, J} \int_{\Omega} \alpha_{I J} \bar{\beta}_{I J} d V, \quad \text { and } \quad\|\alpha\|^{2}=(\alpha, \alpha) \tag{1.4}
\end{equation*}
$$

where $\alpha=\sum \alpha_{I J} d z_{I} \wedge d \bar{z}_{J}, \beta=\sum \beta_{I J} d z_{I} \wedge d \bar{z}_{J}, I=\left(i_{1}, \ldots, i_{p}\right), J=\left(j_{1}, \ldots, j_{q}\right), \quad 1 \leqslant i_{1}<\ldots<i_{p} \leqslant n$, $1 \leqslant j_{1}<\ldots<j_{q} \leqslant n, d z_{I}=d z_{i_{1}} \wedge \ldots \wedge d z_{i_{p}}$ and $d \bar{z}_{J}=d \bar{z}_{j_{1}} \wedge \ldots \wedge d \bar{z}_{j_{q}}$. Then we have

$$
\begin{equation*}
L_{2}^{p, q-1}(\Omega) \underset{\bar{\partial}^{*}}{\stackrel{\partial}{\leftrightarrows}} L_{2}^{p \cdot q}(\Gamma) \underset{\bar{\partial}^{*}}{\stackrel{\bar{\partial}}{\rightleftarrows}} L_{2}^{p, p+1}(\Omega), \tag{1.5}
\end{equation*}
$$

by $\bar{\partial}$ we mean the closed operator which is the maximal extension of the differential operator and by $\bar{\delta}^{*}$ we mean the $L_{2^{2}}$-adjoint of $\bar{\partial}$. We define $\mathcal{H}^{p, q} \subset L_{2}^{p, q}(\Omega)$ by

$$
\begin{equation*}
\mathcal{Z}^{p, q}=\left\{\varphi \in \operatorname{Dom}(\bar{\partial}) \cap \operatorname{Dom}\left(\bar{\partial}^{*}\right) \mid \bar{\partial} \varphi=0 \quad \text { and } \bar{\partial}^{*} \varphi=0\right\} \tag{1.6}
\end{equation*}
$$

Observe that $\mathcal{H}^{0.0}$ is the space of holomorphic functions in $L_{2}(\Omega)$. The $\bar{\partial}$-Neumann problem for (p, q)-forms can then be stated as follows: given $\alpha \in L_{2}^{p, q}(\Omega)$ with $\alpha \perp \mathcal{H}^{p . q}$, does there exist $\varphi \in \operatorname{Dom}(\bar{\partial}) \cap \operatorname{Dom}\left(\bar{\partial}^{*}\right)$ with $\bar{\partial} \varphi \in \operatorname{Dom}\left(\bar{\partial}^{*}\right)$ and $\bar{\partial}^{*} \varphi \in \operatorname{Dom}(\bar{\partial} \varphi)$, such that

$$
\begin{equation*}
\bar{\partial} \bar{\partial}^{*} \varphi+\bar{\partial}^{*} \bar{\partial} \varphi=\alpha . \tag{1.7}
\end{equation*}
$$

Observe that if a solution of (1.7) exists then there is a unique solution φ of (1.7) such that $\varphi \perp \mathcal{H}^{p, Q}$. We will denote this unique solution by $N \alpha$. If a solution to (1.7) exists for all $\alpha \perp \mathcal{H}^{p . q}$, then we extend the operator N to a linear operator on $L_{2}^{p, q}(\Omega)$ by setting it equal to 0 on $\mathcal{H}^{p . a}$. Then N is bounded and self-adjoint. Furthermore, if $\bar{\partial} \alpha=0$, then from (1.7)

[^0]we obtain $\bar{\partial} \bar{\partial}^{*} \bar{\partial} N \alpha=0$, taking inner products with $\bar{\partial} N \alpha$ we get $\left\|\bar{\partial}^{*} \bar{\partial} N \alpha\right\|^{2}=0$ and hence $\bar{\partial}^{*} \bar{\partial} N \alpha=0$. Thus we see from (1.7) that if $\bar{\partial} \alpha=0$ and $\alpha \perp \mathcal{H}^{p, \alpha}$ then
\[

$$
\begin{equation*}
\alpha=\bar{\partial} \bar{\partial}^{*} N \alpha . \tag{1.8}
\end{equation*}
$$

\]

It then follows that $u=\bar{\partial}^{*} N \alpha$ is the unique solution to the equation $\bar{\partial} u=\alpha$ which is orthogonal to the null space of $\vec{\partial}$.

If the $\bar{\partial}$-Neumann problem is solvable on (0,1)-forms and if $f \in L_{2}(\Omega) \cap \operatorname{Dom}(\bar{\partial})$ then, applying (1.8) to $\alpha=\bar{\partial} f$ we can easily deduce that the Bergman orthogonal projection $B: L_{2}(\Omega) \rightarrow \mathcal{F}^{0.0}$ is given by

$$
\begin{equation*}
B f=f-\bar{\partial}^{*} N \bar{\partial} f \tag{1.9}
\end{equation*}
$$

Then the following result holds (see [17a] and [13]).
THEOREM 1.10. If $\Omega \in \mathbb{C}^{n}$ is pseudo-convex and if $\bar{\Omega}$ is compact then the $\bar{\partial}$-Neumann problem is solvable on (p, q)-forms for all (p, q) and $\mathfrak{H}^{p, q}=0$ when $q>0$.

Subelliptic estimates. These estimates are defined as follows.
Definition 1.11. If $x_{0} \in \bar{\Omega}$ we say that the $\bar{\partial}$-Neumann problem for (p, q)-forms satisfies a subelliptic estimate at x_{0} if there exists a neighborhood U of x_{0} and constants $\varepsilon>0$ and $C>0$ such that:

$$
\begin{equation*}
\|\varphi\|_{\varepsilon}^{2} \leqslant C\left(\|\bar{\partial} \varphi\|^{2}+\left\|\bar{\partial}^{*} \varphi\right\|^{2}+\|\varphi\|^{2}\right) \tag{1.12}
\end{equation*}
$$

for all $\varphi \in \mathcal{D}_{V}^{p, q}$. Here $D_{V}^{p, q}$ denotes the space of (p, q)-forms $\varphi \in \operatorname{Dom}\left(\bar{\partial}^{*}\right)$ such that $\varphi_{I J} \in$ $C_{0}^{\infty}(U \cap \bar{\Omega})$, for all components $\varphi_{I J}$ of φ. The norm $\|\varphi\|_{8}^{2}=\Sigma\left\|\varphi_{I J}\right\|_{\varepsilon}^{2}$, denotes the Sobolev ε-norm.

The following theorem (see [21 b] and [13]), shows what implications this estimate has for local regularity of the $\bar{\partial}$-Neumann problem, the $\bar{\partial}$-problem and the Bergman operator.

THEOREM 1.13. Suppose that $\Omega \subset \mathbf{C}^{n}$ is pseudo-convex, the boundary of Ω is C^{∞} and that (1.12) holds at $x_{0} \in \bar{\Omega}$. Then if $\alpha \in L_{2}^{p \cdot a}(\Omega)$ and if α is smooth in a neighborhood of x_{0}, (i.e. a neighborhood in $\bar{\Omega}$) then $N \alpha$ is also C^{∞} in a neighborhood of x_{0}. Also if (1.12) holds for $(0,1)$-forms, if $f \in L_{2}(\Omega)$ and if f is C^{∞} in a neighborhood of x_{0} then so is Bf. More precisely, if α and f are in H^{s} in a neighborhood of x_{0} then $N \alpha$ is in $H^{s+2 \varepsilon}, \bar{\partial}^{*} N \alpha$ is in H^{s+s} and Bf is in H^{s} in a neighborhood of x_{0}.

In [19a], Kerzman showed how the above theorem can be used to study the regularity of the Bergman kernel function.

In case $\Omega \subset X$ and X is a complex analytic manifold with a hermitian metric the definitions given above extend in a natural way and subellipticity has several important consequences. It should be noted that, according to a result of W. Sweeney (see [31 b]), the validity of (1.12), is independent of the choice of hermitian metric (even though the space $\mathcal{D}_{U}^{p, q}$ does depend on the choice of metric). We refer again to [21 b] and [13] for a proof of the following.

Theorem 1.14. Suppose that $\Omega \subset X$, where X is a complex analytic manifold with a hermitian metric, suppose also that Ω has a C^{∞} boundary and that every point in $\bar{\Omega}$ has a neighborhood such that (1.12) holds. Then the space $\mathcal{H}^{p . q}$ is finite dimensional and all of its elements are C^{∞} on $\bar{\Omega}$. Furthermore, the operators $N, \bar{\partial}^{*} N$ and B have the same regularity properties as in Theorem 1.13.

We will consider the estimate (1.12) on (p, q)-forms for domains which are pseudoconvex and when $q>0$. It will be shown in § 2 that the validity of (1.12) is independent of p The estimate (1.12) is always satisfied when $\varepsilon \leqslant 0$ and it cannot be satisfied for any $\varepsilon>1$. Denote by $\mathcal{E}^{q}(\varepsilon)$ the subset of $\bar{\Omega}$ such that there exists a neighborhood U of x_{0} for which (1.12) holds whenever $\varphi \in D_{V}^{p}{ }^{q}$. Then we have

$$
\mathcal{E}^{q}(\varepsilon) \subset \mathcal{E}^{q}\left(\varepsilon^{\prime}\right) \quad \text { when } \varepsilon \geqslant \varepsilon^{\prime}
$$

For $\varepsilon=1$ the estimate (1.12) is an elliptic estimate and we have

$$
\mathcal{E}^{q}(1)= \begin{cases}\Omega & \text { if } q<n \tag{1.15}\\ \bar{\Omega} & \text { if } q=n,\end{cases}
$$

the reason for this is that (1.12) is elliptic in the interior for all q and for $q=n$ the space $D_{j}^{p, n}$ consists of (p, n)-forms all of whose components vanish on the boundary of Ω. It follows from the general theory of subelliptic estimates that if $x_{0} \ddagger \mathcal{E}^{q}(1)$ then $x_{0} \notin \mathcal{E}^{q}(\varepsilon)$ for $\varepsilon>\frac{1}{2}$, see [17b].

The next case is when $\varepsilon=\frac{1}{2}$ and we have the following result (see [17a] and [13]).
Theorem 1.16. If Ω is pseudo-convex and if $x_{0} \oplus \mathcal{E}^{\mathbb{Q}}(1)$ then the following are equivalent
(a) $x_{0} \in \mathcal{E}^{a}\left(\frac{1}{2}\right)$
(b) $x_{0} \in b \Omega$ ($b \Omega$ denotes the boundary of Ω), $q<n$ and the Levi-form at x_{0} has at least $n-q$ positive eigen-values.

The definition of the Levi-form will be recalled in §2. The case $\varepsilon=\frac{1}{2}$ has received a great deal of attention in the last few years. In this case there are very precise estimates
in terms of Hölder and L_{p} norms (see, for example [16], [15b], [19a], [23] and [22]), also real-analytic hypoellipticity has been established (see [28], [8] and [29]). Furthermore, asymptotic expansions of the Bergman kernel function have been obtained (see [12], [3] and [18]). When $\varepsilon<\frac{1}{2}$ such results are not known yet except in some special cases (see [6a], [15], [22] and [26]).

The next case for which (1.12) can be completely analyzed is when $q=n-1$. The result is the following

Theorem 1.17. If Ω is a pseudo-convex domain contained in an n-dimensional complex analytic manifold X then the following are equivalent.
(a) $x_{0} \in \mathcal{E}^{n-1}(1 / m), m$ an integer.
(b) If $V \subset X$ is a complex analytic manifold of dimension $n-1$ and if $x_{0} \in V$ then the order of contact of V to $b \Omega$ at x_{0} is at most m.

The proof that (b) implies (a) is given in $\$ 8$ (Theorem 8.1). In the case $n=2$ a somewhat weaker result is given in [20e]. Greiner in [14] showed that (a) implies (b) when $n=2$, a proof along the same lines establishes the general case (we do not include this proof in the present paper, it will be part of a more general treatment of necessary conditions).

When $q<n-1$ the determination of when (1.12) holds for a given ε seems to be extremely complicated. What we do here is to give up the attempt to analyze (1.12) for a fixed ε given a-priori, but instead we find conditions for (1.12) to hold for some $\varepsilon>0$. When our conditions are satisfied we only have a very rough estimate on the size of ε. Setting

$$
\begin{equation*}
\mathcal{E}^{q}=\bigcup_{\varepsilon>0} \mathcal{E}^{a}(\varepsilon), \tag{1.18}
\end{equation*}
$$

we state one of our principal results in the following theorem.

Theorem 1.19. Suppose that Ω is pseudo-convex, that $x_{0} \in b \Omega$, that in a neighborhood of x_{0} the boundary is real-analytic and that there exists no complex-analytic variety V of dimension greater than or equal to q such that $x_{0} \in V \subset b \Omega$. Then $x_{0} \in \mathcal{E}^{q}$, i.e. the estimate (1.12) holds.

The above theorem is proven in § 6 , here we will indicate the method of proof. In § 4 we introduce the notion of a "subelliptic multiplier", this is a C^{∞} function f defined on a neighborhood U of x_{0} such that there exist positive ε and C so that

$$
\begin{equation*}
\|f \varphi\|_{\varepsilon}^{2} \leqslant C\left(\|\bar{\partial} \varphi\|^{2}+\left\|\bar{\partial}^{*} \varphi\right\|^{2}+\|\varphi\|^{2}\right) \tag{1.20}
\end{equation*}
$$

for all $\varphi \in D_{V}^{p . q}$. We denote by $I^{q}\left(x_{0}\right)$ the set of germs of multipliers satisfying (1.20). It is then clear that $x_{0} \in \mathcal{E}^{\alpha}$ if and only if $1 \in I^{q}\left(x_{0}\right)$ and that if $x \in \bar{\Omega}, f \in I^{q}\left(x_{0}\right)$ and $f(x) \neq 0$ then $x \in \mathcal{E}^{a}$. We then prove, in § 4, that $I^{a}\left(x_{0}\right)$ has the following properties:

Theorem 1.21. If Ω is pseudo-convex, with a C^{∞} boundary and if $x_{0} \in \bar{\Omega}$ then we have
(a) $I^{q}\left(x_{0}\right)$ is an ideal.
(b) $I^{q}\left(x_{0}\right)=\sqrt[\mathbf{R}]{I^{q}\left(x_{0}\right)}$, where $\stackrel{\mathbf{R}}{\sqrt{I^{q}\left(x_{0}\right)}}=\left\{\mid\right.$ there exists $g \in I^{\alpha}\left(x_{0}\right)$ and m such that $\left.|f|^{m} \leqslant|g|\right\}$.
(c) If $r=0$ on $b \Omega$ then $r \in I^{q}\left(x_{0}\right)$ and the coefficients of $\partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q}$ are in $I^{q}\left(x_{0}\right)$.
(d) If $f_{1}, \ldots, f_{n-q} \in I^{q}\left(x_{0}\right)$ then the coefficients of $\partial f_{1} \wedge \ldots \wedge \partial f_{1} \wedge \partial r \wedge \bar{\partial} r \wedge(\partial \partial \breve{r})^{n-q-j}$, with $j \leqslant n-q$, are in $I^{q}\left(x_{0}\right)$.

It is then natural to define the ideals $I_{k}^{q}\left(x_{0}\right)$ inductively as follows

$$
\begin{align*}
I_{1}^{q}\left(x_{0}\right) & =\sqrt[\mathbf{R}]{\left(r, \text { coeff }\left\{\partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-a}\right\}\right)} \tag{1.22}\\
I_{k+1}^{q}\left(x_{0}\right) & =\sqrt[\mathbf{R}]{\left(I_{k}^{q}\left(x_{0}\right), A_{k}^{q}\left(x_{0}\right)\right)},
\end{align*}
$$

where

$$
A_{k}^{q}\left(x_{0}\right)=\operatorname{coeff}\left\{\partial f_{1} \wedge \ldots \wedge \partial f_{j} \wedge \partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q-j}\right\}
$$

Here $f_{1}, \ldots, f_{n-q} \in I_{k}^{q}\left(x_{0}\right)$ and $j \leqslant n-q$, coeff. $\}$ stands for the germs of the coefficients of the set of forms $\}$ and () stands for ideal generated by the sets appearing inside the parenthesis.

It then follows that $I_{k}^{q}\left(x_{0}\right) \subset I^{q}\left(x_{0}\right)$ and hence $1 \in I_{k}^{q}\left(x_{0}\right)$ implies $x_{0} \in \mathcal{E}^{\alpha}$. In $\S 5$ we study the geometric meaning of these ideals, they appear to measure the maximum order of contact that a complex analytic variety of dimension q through x_{0} can have with the boundary of Ω. One must distinguish here between the order of contact that can be achieved by complex analytic manifolds and by complex-analytic varieties. Consider, for example, a pseudo-convex domain in $\mathbf{C}^{\mathbf{3}}$ whose boundary, near the origin, is given by the function r, defined by:

$$
\begin{equation*}
r\left(z_{1}, z_{2}, z_{3}\right)=\operatorname{Re}\left(z_{3}\right)+\left|z_{1}^{2}-z_{2}^{3}\right|^{2}+\exp \left[-\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)^{-1}\right] \tag{1.23}
\end{equation*}
$$

The order of contact, with $r=0$, of simple complex analytic curves at the origin is at most 6; but the curve defined by $z_{3}=0, z_{1}^{2}=z_{2}^{3}$ has infinite order of contact. Such behaviour has been studied in [2]. In this case, for $x \in b \Omega$ and $x \neq 0$ the maximum order of contact of all complex analytic curves is at most 2 . In a forthcoming publication we will show that in the domain defined by $r \leqslant 0$ there is no subelliptic estimate for $(0,1)$-forms at the origin, i.e. $0 \notin \varepsilon^{1}$.

Returning to Theorem 1.19, when the boundary is analytic near x_{0} we restrict ourselves to germs of real-analytic functions in the definition of the ideals $I_{k}^{q}\left(x_{0}\right)$. We then use the theory of ideals of real analytic functions to show that $1 \in I_{k}^{q}\left(x_{0}\right)$ for some k is equivalent to the non-existence of real-analytic varieties of "holomorphic dimension" (see Definition 6.16) greater or equal to q contained in the boundary near x_{0}. We then apply a theorem of Diederich and Fornaess (see [9]) to show that this is equivalent to the non-existence of complex-analytic varieties of dimension greater than or equal to q. Finally, we apply a theorem due to Fornaess (see Theorem 6.23) which shows that not having q-dimensional complex analytic varieties in the boundary arbitrarily close to x_{0} is equivalent to not having a q-dimensional complex analytic variety through x_{0} in the boundary.

In § 7 we consider the special case of domains whose boundary is given by

$$
\begin{equation*}
r\left(z_{1}, \ldots, z_{n}\right)=\operatorname{Re}\left(z_{n}\right)+\sum_{j=1}^{m}\left|h_{j}\left(z_{1}, \ldots, z_{n}\right)\right|^{2}+a=0 \tag{1.24}
\end{equation*}
$$

where h_{1}, \ldots, h_{m} are holomorphic functions and $a \in \mathbf{C}$. For these domains, if $r\left(z^{0}\right)=0$ we construct a sequence of ideals of germs of holomorphic functions $J_{k k}^{q}\left(z^{0}\right)$ such that $1 \in J_{k}^{q}\left(z^{0}\right)$ if and only if there is no complex analytic variety of dimension greater or equal to q through z^{0} which lies in $r=0$. This is also equivalent to the condition that the dimension of the variety $\left\{z \mid z_{n}=z_{n}^{0}, h_{f}(z)=h_{f}\left(z^{0}\right)\right.$ for $\left.j=1, \ldots, m\right\}$ is less than q. Our construction leads us to a formula for the dimension of a complex analytic variety (see Theorem 7.10).

In this article we do not take up the question of necessity. The problem is to prove that if Ω is pseudo-convex then $x_{0} \in \mathcal{E}^{a}$ implies $l \in I_{k}^{q}\left(x_{0}\right)$ for some k. We can prove this for very large classes of domains, but as yet we do not have the proof in general. In [10], Egorov announces a result which implies that if there is a non-singular complex-analytic curve through $x_{0} \in b \Omega$, with contact m then $x_{0} \notin \mathcal{E}^{1}(\varepsilon)$ when $\varepsilon>1 / m$. This result implies the converse of Theorem 1.19 in the case $q=1$; for if a complex-analytic curve is contained in the boundary then at every regular point x in the curve we have $x \notin \mathcal{E}^{1}(\varepsilon)$ for $\varepsilon>1 / m$ for all m, thus $x \notin \mathcal{E}^{1}$ for all regular points and hence for all points of the curve. In [22], Krantz shows that the type of condition considered by Egorov is necessary for subellipticity in the sense of Hölder estimates when $g=n-1$.

I am greatly indebted to J. E. Fornaess, R. C. Gunning and J. Mather for several discussions which were very helpful, especially in the study of ideals of functions. I also wish to express my thanks to L. Hörmander and H.-M. Maire who read the original version of this manuscript and suggested several revisions, corrections and clarifications which have been incorporated in the present text.

8 2. The basic estimate on pseudo-convex domains

In this section we recall the basic estimate for the $\bar{\partial}$-Neumann problem on pseudoconvex domains (for a detailed exposition of this material see [13]).

Let X be an n-dimensional complex-analytic manifold with a hermitian metric. Let $\Omega \subset X$ be an open subset of X and let $b \Omega$ denote the boundary of Ω. Throughout this paper we will restrict ourselves to domains Ω such that $b \Omega$ is smooth in the following sense. We assume that in a neighborhood U of $b \Omega$ there exists a C^{∞} real-valued function r such that $d r \neq 0$ in U and $r(x)=0$ if and only if $x \in b \Omega$. Without loss of generality, we shall assume that $r>0$ outside of $\bar{\Omega}$ and that $r<0$ in Ω. For $x \in X$, we denote by $\mathbf{C} T_{x}$ the complex-valued tangent vectors to X at x and we have the direct sum decomposition $\mathbf{C} T_{x}=T_{x}^{1,0} \oplus T_{x}^{0,1}$, where $T_{x}^{1,0}$ and $T_{x}^{0,1}$ denote the holomorphic and anti-holomorphic vectors at x respectively.

We denote by $A_{x}^{p . a}$ the space of (p, q)-forms at x and by \langle,\rangle_{x} the pairing of $A_{x}^{p . q}$ with its dual space, we will also denote by \langle,\rangle_{x} the inner product induced on $A_{x}^{p, q}$ by the hermitian metric and by $\left|\left.\right|_{x}\right.$ the associated norm. We will denote: by $T^{1.0}, T^{0.1}$ and $A^{p, q}$ the bundles with fibers $T_{x}^{1,0}, T_{x}^{0,1}$ and $A_{x}^{p, q}$ respectively; by $\Gamma\left(T^{1,0}, U\right), \Gamma\left(T^{0,1}, U\right)$ and $\Gamma\left(A^{p, q}, U\right)$ the spaces of C^{∞} sections of these bundles; and by $T_{x}^{1,0}, T_{x}^{0,1}, A_{x}^{p, q}$ the set of germs at x of local C^{∞} sections of these bundles. Finally we will set $\mathcal{A}^{p . q}=\Gamma\left(A^{p, q}, \bar{\Omega}\right)$, that is (p, q). forms which are C^{∞} up to and including the boundary.

Definition 2.1. If $\theta \in A_{x}^{0.1}$, we define the map int $(\theta): A_{x}^{p, q} \rightarrow A_{x}^{p . q-1}$ as follows, given $\varphi \in A_{x}^{p, q}$ then int $(\theta) \varphi$ is the element of $A_{x}^{p, q-1}$ which satisfies

$$
\begin{equation*}
\langle\operatorname{int}(\theta) \varphi, \omega\rangle_{x}=\langle\varphi, \theta \wedge \omega\rangle_{x} \tag{2.2}
\end{equation*}
$$

for all $\omega \in A_{x}^{p . a-1}$. Thus the map int (θ) is the adjoint of the map given by $\omega \mapsto \theta \wedge \omega$.
For each $x \in X$ we denote by $(d V)_{x}$ the unique positive (n, n)-form such that: $\left|(d V)_{x}\right|=1$. We call $d V$ the volume element. If $x \in b \Omega$ we define $(d S)_{x}$ to be the unique real ($2 n-1$)form on $b \Omega$ such that $(d r)_{x} \wedge(d S)_{x}=|d r|_{x}(d V)_{x}$. If $\varphi, \psi \in \mathcal{A}^{p . Q}$ we define the inner products:

$$
\begin{array}{r}
(\varphi, \psi)=\int_{\Omega}\langle\varphi, \psi\rangle_{x}(d V)_{x}, \\
{ }^{b}(\varphi, \psi)=\int_{b \Omega}\langle\varphi, \psi\rangle_{x}(d S)_{x} \tag{2.4}
\end{array}
$$

and the corresponding norms:

$$
\begin{equation*}
\|\varphi\|^{2}=(\varphi, \varphi) \quad \text { and }{ }^{b}\|\varphi\|^{2}={ }^{b}(\varphi, \varphi) \tag{2.5}
\end{equation*}
$$

The subspace $D^{p, q}=D^{p, a}(\Omega)$ of $A^{p, q}$ is defined by:

$$
\begin{equation*}
\mathcal{D}^{p, q}=\left\{\varphi \in \mathcal{A}^{p, q} \mid(\operatorname{int}(\bar{\partial} r) \varphi)_{x}=0 \quad \text { for } x \in b \Omega\right\} \tag{2.6}
\end{equation*}
$$

The operators $\bar{\partial}: \mathcal{A}^{p, q} \rightarrow \mathcal{A}^{p, q+1}$ and $\bar{\partial}^{*}: \mathcal{D}^{p, q+1} \rightarrow \mathcal{A}^{p, q}$, then satisfy

$$
\begin{equation*}
\left(\varphi, \bar{\partial}^{*} \psi\right)=(\bar{\partial} \varphi, \psi) \tag{2.7}
\end{equation*}
$$

for all $\varphi \in \mathcal{A}^{p, q}$ and $\psi \in \mathcal{D}^{p, q+1}$. It can be shown that $\mathcal{D}^{p, q}=\mathcal{A}^{p, q} \cap \operatorname{Dom}\left(\bar{\partial}^{*}\right)$, see [13].
The quadratic form Q is defined on $\mathcal{D}^{p, q}$ by:

$$
\begin{equation*}
Q(\varphi, \psi)=(\bar{\partial} \varphi, \bar{\partial} \psi)+\left(\bar{\partial}^{*} \varphi, \bar{\partial}^{*} \psi\right)+(\varphi, \psi) \tag{2.8}
\end{equation*}
$$

for $\varphi, \psi \in D^{p . \varnothing}$.
Definition 2.9. If $x \in b \Omega$ we denote by $\mathrm{C} T_{x}(b \Omega)$ the space of complex-valued tangent vectors to $b \Omega$, i.e. $\mathbf{C} T_{x}(b \Omega)$ is the subspace of $\mathbf{C} T_{x}$ consisting of all S such that $S(r)=0$. We set $T_{x}^{1,0}(b \Omega)=\mathbf{C} T_{x}(b \Omega) \cap T_{x}^{1,0}$ and $T_{x}^{0.1}(b \Omega)=\mathbf{C} T_{x}(b \Omega) \cap T_{x}^{0,1}$.

Definition 2.10. The Levi-form is the quadratic form on $T_{x}^{1,0}(b \Omega)$ denoted by $\mathcal{L}_{x}\left(L, L^{\prime}\right)$ and defined by:

$$
\begin{equation*}
\mathcal{C}_{x}\left(L, L^{\prime}\right)=\left\langle\partial \bar{\partial} r, L \wedge L^{\prime}\right\rangle_{x}, \quad \text { where } L, L^{\prime} \in T_{x}^{1,0}(b \Omega) \tag{2.11}
\end{equation*}
$$

We say that Ω is pseudo-convex if for each $x \in b \Omega$ the form \mathcal{L}_{x} is non-negative.
If $x_{0} \in b \Omega$ then there exists a neighborhood U of x_{0} such that on $U \cap \bar{\Omega}$ we can choose C^{∞} vector fields with values in $T^{\mathbf{1}, 0}$, which at each point $x \in U \cap \bar{\Omega}$ are an orthonormal basis of $T^{1,0}$. Let L_{1}, \ldots, L_{n} be such a basis, then for each $x \in U \cap \bar{\Omega}$ we have $\left\langle\left(L_{i}\right)_{x},\left(L_{j}\right)_{x}\right\rangle_{x}=$ $\delta_{i j}$. We wish to write the operators $\bar{\partial}$ and $\bar{\partial}^{*}$ in terms of this basis. Let $\omega_{1}, \ldots, \omega_{n}$ be the dual basis of (1, 0)-forms on $U \cap \bar{\Omega}$, so for each $x \in U \cap \bar{\Omega}$ we have $\left\langle\left(\omega_{i}\right)_{x},\left(L_{j}\right)_{x}\right\rangle_{x}=\delta_{i j}$. We denote by L_{1}, \ldots, L_{n} the conjugates of the L_{i} (i.e. $\left.L_{i}(f)=\overline{L_{i}(f)}\right)$, these form an orthonormal basis of $T^{0.1}$ on $U \cap \bar{\Omega}$ and $\bar{\omega}_{1}, \ldots, \bar{\omega}_{n}$, the conjugates of the ω_{i}, are the local basis of $\Gamma\left(A^{0.1}\right.$, $U \cap \bar{\Omega}$) which is dual to L_{1}, \ldots, L_{n}. If φ is in $\mathcal{A}^{p, a}$ then on $U \cap \bar{\Omega} \varphi$ can be written as follows:

$$
\begin{equation*}
\varphi=\Sigma^{\prime} \varphi_{I I} \omega_{I} \wedge \bar{\omega}_{J} \tag{2.12}
\end{equation*}
$$

where $I=\left(i_{1}, \ldots, i_{p}\right), J=\left(j_{1}, \ldots, j_{q}\right)$, the i_{k} and j_{k} are integers between 1 and n. The symbol \sum^{\prime} signifies that the summation is restricted to strictly increasing p-tuples I and q-tuples J. The forms ω_{I} and $\bar{\omega}_{J}$ are given by

$$
\begin{equation*}
\omega_{I}=\omega_{i_{1}} \wedge \ldots \wedge \omega_{i_{p}} \quad \text { and } \bar{\omega}_{J}=\bar{\omega}_{j_{1}} \wedge \ldots \wedge \bar{\omega}_{f_{q}} \tag{2.13}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\bar{\partial} \varphi=(-1)^{p} \Sigma^{\prime} \sum_{J} L_{J}\left(\varphi_{J J}\right) \omega_{I} \wedge \bar{\omega}_{I} \wedge \bar{\omega}_{J}+\Sigma^{2} \dagger_{H L}^{H} \varphi_{I J} \omega_{H} \wedge \bar{\omega}_{L}, \tag{2.14}
\end{equation*}
$$

where H and L run through increasing p-tuples and $(q+1)$-tuples respectively. We also have:

$$
\begin{equation*}
\overline{\hat{\sigma}}^{*} \varphi=(-1)^{p+1} \sum^{\prime} \sum_{j} L_{j}\left(\varphi_{I, j k}\right) \omega_{I} \wedge \bar{\omega}_{K}+\sum^{\prime} g_{H K}^{I J} \varphi_{I J} \omega_{H} \wedge \bar{\omega}_{R}, \tag{2.15}
\end{equation*}
$$

where the summations are over increasing ruples (I and H run through p-tuples, J through q-tubles and K through ($q-1$)-tuples) and

$$
\varphi_{I, j k}=\left\{\begin{array}{l}
0 \quad \text { if } j \in K \tag{2.16}\\
\operatorname{sgn}\binom{j K}{\langle j K\rangle} \varphi_{K\langle K K\rangle} \quad \text { if } j \notin K,
\end{array}\right.
$$

here $\langle j K\rangle$ denotes the increasingly ordered q-tuple with elements $\left(j, k_{1}, \ldots, k_{q-1}\right)$ and $\operatorname{sgn}\binom{j K}{\langle j K\rangle}$ is the sign of the permutation taking $j K$ to $\langle j K\rangle$. The coefficients $f_{H L}^{11}$ and $g_{H K}^{1 H}$ are C^{∞} functions on $U \cap \bar{\Omega}$.

We fix r so that $|\partial r|_{x}=1$ in a neighborhood of $b \Omega$. For $x_{0} \in b \Omega$, in a small neighborhood U of x_{0}, we choose $\omega_{1}, \ldots, \omega_{n}$ to be $(1,0)$-forms on U such that $\omega_{n}=\partial r$ and such that $\left\langle\omega_{1}, \omega_{j}\right\rangle$ $=\delta_{i j}$ for $x \in U$. We then define $L_{1}, \ldots, L_{n}, L_{1}, \ldots, L_{n}, \bar{\omega}_{1}, \ldots, \bar{\omega}_{n}$ as above. Note that on $U \cap b \Omega$, we have

$$
\begin{equation*}
L_{j}(r)=L_{j}(r)=\delta_{j n} . \tag{2.17}
\end{equation*}
$$

Thus L_{1}, \ldots, L_{n-1} and L_{1}, \ldots, L_{n-1} are local bases of $T^{1.0}(U \cap b \Omega)$ and $T^{0.1}(U \cap b \Omega)$ respectively. We define a vector field T on $U \cap b \Omega$ with values in $C T(U \cap b \Omega)$ by:

$$
\begin{equation*}
T=L_{n}-L_{n} \tag{2.18}
\end{equation*}
$$

Observe that $L_{1}, \ldots, L_{n-1}, L_{1}, \ldots, L_{n-1}, T$ are a local basis for $\Gamma(\mathbf{C} T(U \cap b \Omega)$. We denote the Levi form in terms of these bases by:

$$
\begin{equation*}
c_{i j}(x)=\left\langle\partial \bar{\partial} r, L_{i} \wedge L_{j}\right\rangle_{x} \tag{2.19}
\end{equation*}
$$

for $i, j=1, \ldots, n$ and $x \in U \cap b \Omega$. On $b \Omega$, for $i, j<n$ we have

$$
\begin{equation*}
\left[L_{i}, L_{j}\right]=c_{i j} T+\sum_{1}^{n-1} a_{i j}^{k} L_{k}+\sum_{1}^{n-1} b_{i j}^{k} L_{k}, \tag{2.20}
\end{equation*}
$$

where $\left[L_{i}, L_{j}\right]=L_{i} L_{j}-L_{j} L_{i}$, as usual.
If $\varphi \in \mathcal{A}^{p, q}$; then, in terms of the local basis, the condition (2.6) is expressed as follows: $\varphi \in \mathcal{D}^{p . q}$ whenever

$$
\begin{equation*}
\varphi_{I J}(x)=0, \quad \text { when } n \in J \quad \text { and } x \in b \Omega \tag{2.21}
\end{equation*}
$$

Here $\varphi_{I J}$ denotes components of φ in (2.12) relative to the local basis defined above.

If U is an open subset of X then the space $\mathcal{D}_{U}^{p, q}$, which is defined in connection with (l.12) is also given by:

$$
\begin{equation*}
D_{U}^{p . q}=\left\{\varphi \in D^{p . q} \mid \operatorname{supp}(\varphi) \subset U \cap \bar{\Omega}\right\} . \tag{2.22}
\end{equation*}
$$

Theorfm 2.23. (Basic estimate.) If $x_{0} \in b \Omega$ and Ω is pseudo-convex then there exists a neighborhood U of x_{0} and a constant $C>0$ such that

$$
\begin{equation*}
\|\varphi\|_{z}^{2}+\sum^{\prime} \sum_{i, j} \int_{b \Omega} c_{i j} \varphi_{I, i K} \bar{\varphi}_{1, j K} d S \leqslant C Q(\varphi, \varphi) \tag{2.24}
\end{equation*}
$$

for all $\varphi \in \mathcal{D}_{U}^{p, q}$, with $q \geqslant 1$. Here $\|\varphi\|_{z}$ denotes the norm given by:

$$
\begin{equation*}
\|\varphi\|_{Z}^{2}=\sum\left\|L_{J} \varphi_{I J}\right\|^{2}+\|\varphi\|^{2} . \tag{2.25}
\end{equation*}
$$

Observe that if $u \in C_{0}^{\infty}(U \cap \bar{\Omega})$ with $u(x)=0$ on $U \cap b \Omega$, then

$$
\begin{equation*}
\sum\left\|L_{j} u\right\|^{2} \leqslant \text { const. }\left(\sum\left\|L_{j} u\right\|^{2}+\|u\|^{2}\right) \tag{2.26}
\end{equation*}
$$

where the constant is independent of u. Hence we have

$$
\begin{equation*}
\|u\|_{1}^{2} \leqslant \text { const. }\|u\|_{2}^{2}, \tag{2.27}
\end{equation*}
$$

for all u satisfying the above. Here $\|u\|_{1}$ denotes the Sobolev l-norm, i.e. the sum of the L_{2}-norms of the first derivatives of u. Combining this observation with (2.21) and (2.25) we obtain

$$
\begin{equation*}
\|\varphi\|_{z}^{2}+\sum\left\|\varphi_{I, n \Sigma}\right\|_{I}^{2}+\sum^{\prime}\left\|\sum_{j=1}^{n-1} L_{j}\left(\varphi_{I, j E}\right)\right\|_{i}^{2}+\sum^{\prime} \sum_{i, j} \int_{O \Omega} c_{i j} \varphi_{I, i \Sigma} \bar{\varphi}_{J, j K} d S \leqslant \text { const. } Q(\varphi, \varphi), \tag{2.28}
\end{equation*}
$$

for all $\varphi \in D_{U}^{p, q}$ with $q \geqslant 1$, since the third term on the left is bounded by

$$
\begin{equation*}
\text { const. }\left(\left\|\bar{\partial}^{*} \varphi\right\|^{2}+\sum\left\|\varphi_{I_{s} n E}\right\|_{1}^{2}+\|\varphi\|^{2}\right) \tag{2.29}
\end{equation*}
$$

and hence by const. $Q(\varphi, \varphi)$.
Notice that conversely we have

$$
\begin{equation*}
Q(\varphi, \varphi) \leqslant \text { const. }\left(\|\varphi\|_{z}^{2}+\left|\sum^{\prime} \sum_{i, j} \int_{\sigma \Omega} c_{i j} \varphi_{I, i K} \bar{\varphi}_{J, I K} d S\right|\right) . \tag{2.30}
\end{equation*}
$$

for all $\varphi \in \mathcal{D}_{U}^{p a}$. This inequality is a consequence of the definitions and holds without the assumption of pseudo-convexity.

The estimates that we will derive will be valid for (p, q)-forms if and only if they are valid for $(0, q)$-forms, by virtue of the following.

Lemma 2.31. Let E be a norm on $C_{0}^{\infty}(U \cap \bar{\Omega})$ and denote also by E the norm on $\mathcal{D}_{\dot{V}}^{p a}$ defined by:

$$
E(\varphi)^{2}=\sum E\left(\varphi_{I J}\right)^{2}
$$

Then the following are equivalent. There exists $C>0$ such that

$$
\begin{equation*}
E(\varphi)^{2} \leqslant C Q(\varphi, \varphi), \quad \text { for all } \varphi \in D_{V}^{p, q} ; \tag{2.32}
\end{equation*}
$$

and there exists $C>0$ such that

$$
\begin{equation*}
E(\psi)^{2} \leqslant C Q(\psi, \psi), \quad \text { for all } \psi \in D_{U}^{0, q} \tag{2.33}
\end{equation*}
$$

Proof. The inequalities (2.28) and (2.30) show that $Q(\varphi, \varphi)$ is equivalent to

$$
\begin{equation*}
\sum_{I}^{\prime}\left\{\sum_{J}^{\prime}\left\|\varphi_{I J}\right\|_{z}^{2}+\sum\left\|\varphi_{I, n K}\right\|^{2}+\sum_{K}^{\prime}\left\|\sum_{j=1}^{n-1} L_{j}\left(\varphi_{I, j K}\right)\right\|^{2}+\sum_{K}^{\prime} \sum_{i, 1} \int_{b \Omega} c_{i j} \varphi_{I, i K} \bar{\varphi}_{I, j K} d S\right\} \tag{2.34}
\end{equation*}
$$

thus (2.32) is equivalent to the sum (over I) of the inequality (2.33) applied to $\psi_{I} \in \mathcal{D}_{U}^{0 . a}$ with $\psi_{I}=\sum_{J}^{\prime} \varphi_{I J} \bar{\omega}_{J}$.

Remark 2.35. In the case of (0,1)-forms on pseudo-convex domains the third term in (2.34) is $\left\|\sum_{1}^{n-1} L, \varphi_{j}\right\|^{2}$ which is dominated by $Q(\varphi, \varphi)$. It is important to note that $\sum_{1}^{n-1}\left\|L, \varphi_{j}\right\|^{2}$ is in general not bounded by $Q(\varphi, \varphi)$: (relative to any basis L_{i}, ω_{i}) as can be seen in the case of $\Omega \subset \mathbf{C}^{4}$, where r near the origin is given by

$$
\begin{equation*}
r(z)=\operatorname{Re}\left(z_{4}\right)+\left|z_{1}\right|^{6}+\left|z_{1}^{2}+z_{2}^{2}\right|^{2}+\left|z_{3}\right|^{4} . \tag{2.36}
\end{equation*}
$$

These types of bounds are studied by Derridj in [7].

83. Tangential Sobolev norms

In our study of (1.12) we will use tangential pseudo-differential operators on $U \cap \bar{\Omega}$, with U a neighborhood of $x_{0} \in b \Omega$. These will be expressed in terms of boundary coordinates which are defined as follows.

Definition 3.1. If $x_{0} \in b \Omega$ we will call a system of real C^{∞} coordinates, defined in a neighborhood U of x_{0}, boundary coordinates if one of the coordinate functions is r. We will denote such a system by $\left(t_{1}, \ldots, t_{2 n-1}, r\right)$ and we call the t_{j} tangential coordinates and r the normal coordinate.

For $u \in C_{0}^{\infty}(U \cap \bar{\Omega})$ we define \tilde{u}, the tangential Fourier transform of u, by

$$
\begin{equation*}
\tilde{u}(\tau, r)=\int_{\mathbf{R}^{2 n-1}} e^{-i t \cdot \tau} u(t, r) d t \tag{2.3}
\end{equation*}
$$

where

$$
\begin{array}{r}
\tau=\left(\tau_{1}, \ldots, \tau_{2 n-1}\right), \quad t=\left(t_{1}, \ldots, t_{2 n-1}\right), \\
t \cdot \tau=\sum t_{j} \tau_{j} \quad \text { and } d t=d t_{1}, \ldots, d t_{2 n-1} .
\end{array}
$$

For each $s \in \mathbf{R}$ we define $\Lambda^{s} u$ by:

$$
\begin{equation*}
\widetilde{\Lambda^{s} u} u(\tau, r)=\left(1+|\tau|^{2}\right)^{s / 2} \tilde{u}(\tau, r), \tag{3.3}
\end{equation*}
$$

where $|\tau|^{2}=\sum \tau_{j}^{2}$.
Further, we define $\left|\|u \mid\|_{s}\right.$, the tangential s-norm of u, by

$$
\begin{equation*}
\left\|\|u\|_{s}^{2}=\int_{-\infty}^{0} \int_{\mathbf{R}^{2 n-1}}\left|\Lambda^{s} u(t, r)\right|^{2} d t d r\right. \tag{3.4}
\end{equation*}
$$

Of course, if s is a non-negative integer, then $\|\|u\|\|_{s}^{2}$ is equivalent to $\sum_{|\alpha| \leqslant s}\left\|D_{t}^{\alpha} u\right\|^{2}$, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{2 n-1}\right)$ and the subscript t denotes differentiation with respect to the tangential variables.

Definition 3.5. P is a tangential pseudo-differential operator of order m on $C_{0}^{\infty}(U \cap \bar{\Omega})$ if it can be 3xpressed by:

$$
\begin{equation*}
P u(t, r)=\int_{\mathbf{R}^{3 n-1}} e^{-i t \cdot \tau} p(t, r, \tau) \check{u}(\tau, r) d \tau \tag{3.6}
\end{equation*}
$$

Here $p \in C^{\infty}\left(\mathbf{R}^{2 n} \times \mathbf{R}^{2 n-1}\right)$, where $\mathbf{R}^{2 n}$ consist of $(t, r) \in \mathbf{R}^{2 n}$ with $r \leqslant 0$. The function p is called the symbol of P and satisfies the following inequalities, for multindices $\alpha=\left(\alpha_{1}, \ldots\right.$, $\left.\alpha_{2 n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{2 n-1}\right)$ there exists a constant $C=C(\alpha, \beta)$ such that:

$$
\begin{equation*}
\left|D^{\alpha} D_{\tau}^{\beta} p(t, r, \tau)\right| \leqslant C(1+|\tau|)^{m-|\beta|} . \tag{3.7}
\end{equation*}
$$

Both, tangential s-norms and tangential pseudo-differential operators have natural extensions to the space $\mathscr{S}\left(\mathbf{R}^{2 n}\right)$, i.e. the space of C^{∞} functions all of whose derivatives are rapidly decreasing.

Proposition 3.8. If P is a tangential pseudo-differential operator of order m then for each $s \in \mathbf{R}$ there exists $C_{s}>0$ such that:

$$
\begin{equation*}
\|P u\|\left\|_{s} \leqslant C_{s}\right\|\|u\|_{s+m} \quad \text { for all } u \in \mathscr{S}\left(\mathbf{R}^{2 n}\right) \tag{3.9}
\end{equation*}
$$

Furthermore, if P^{*} is the adjoint of P then P^{*} is a tangential pseudo-differential operator of order m and if p and p^{*} are the symbols of P and P^{*} then $\tilde{p}-p^{*}$ is the symbol of an operator of order $m-1$. If P^{\prime} is a tangential pseudo-differential operator of order m^{\prime} with symbol p^{\prime},
then $P P^{\prime}$ is a tangential pseudo-differential operator of order $m+m^{\prime}$; if q is the symbol of $P P^{\prime}$ then $p p^{\prime}-q$ is the symbol of an operator of order $m+m^{\prime}-1$. Hence, the commutator $\left[P, P^{\prime}\right]=$ $P P^{\prime}-P^{\prime} P$ has order $m+m^{\prime}-\mathbf{1}$.

The proof of the above is exactly the same as the proof of the corresponding properties of pseudo-differential operators. The only tangential pseudo-differential operators which are used in this paper are the elements of the algebra generated, under composition and taking adjoints, by the Λ^{s} and the tangential differential operators (i.e. operators of the form $\sum a_{\alpha}(t, r) D_{t}^{\alpha}$, where the a_{α} and all their derivatives are bounded). These will arise because the subelliptic estimate (1.12) can be expressed entirely in terms of the tangential ε-norm. More precisely, we have the following proposition.

Proposition 3.10. If $x_{0} \in b \Omega$ then $x_{0} \in \mathcal{E}^{q}(\varepsilon)$ if and only if there exists a neighborhood U^{\prime} of x_{0} and constant $C^{\prime}>0$ such that

$$
\begin{equation*}
\|\mid \varphi\|_{\varepsilon}^{2} \leqslant C^{\prime} Q(\varphi, \varphi), \quad \text { for all } \varphi \in \mathcal{D}_{U}^{p, q} \tag{3.11}
\end{equation*}
$$

This proposition is an easy consequence of the fact that $b \Omega$ is non-characteristic with respect to Q, see [21 b].

§ 4. Ideals and modules of subelliptic multipliers

For $x_{0} \in \bar{\Omega}$ and U a neighborhood of x_{0} we wish to study functions $f \in C^{\infty}(U \cap \bar{\Omega})$ which satisfy (1.20). For $x_{0} \in b \Omega$ (or near $b \Omega$) the inequality (1.20) is equivalent to the following:

$$
\begin{equation*}
\left\|\|f \varphi\|_{\mathbb{B}}^{2} \leqslant C Q(\varphi, \varphi), \quad \text { for all } \varphi \in D_{i}^{p, q}\right. \tag{4.1}
\end{equation*}
$$

which is a consequence of Proposition 3.10.
Observe that if f^{\prime} is a function defined on a neighborhood U^{\prime} of x_{0}, such that $f=f^{\prime}$ on $U \cap U^{\prime}$ then f^{\prime} satisfies (1.20) or (4.1), for all $\varphi \in \mathcal{D}_{U \cap U^{\prime}}^{p .{ }^{\prime}}$. Thus, denoting the set of germs of C^{∞} functions at x_{0} by $C^{\infty}\left(x_{0}\right)$, we are led to the following definition.

Definition 4.2. For $x_{0} \in \bar{\Omega}$ we define $I^{q}\left(x_{0}\right) \subset C^{\infty}\left(x_{0}\right)$, the subelliptic multipliers at x_{0}, as follows. $f \in I^{q}\left(x_{0}\right)$ if and only if there exists a neighborhood U of x_{0} and constants $\varepsilon>0$ and $C>0$ such that (1.20) holds. Here we denote by f both the germ at x_{0} and a representative of this germ defined on a sufficiently small U.

It is a consequence of Lemma, 2.31 that the sets $I^{q}\left(x_{0}\right)$ are independent of p.
Definition 4.3. To each $x_{0} \in \bar{\Omega}$ and $q \geqslant 1$, we associate the module $M^{q}\left(x_{0}\right) \subset A^{1,0}\left(x_{0}\right)$, which is defined as follows. $\sigma \in M^{q}\left(x_{0}\right)$ if and only if there exists a neighborhood U of x_{0} and constants $C>0, \varepsilon>0$ such that:

$$
\begin{equation*}
\|\operatorname{int}(\bar{\sigma}) \varphi\|_{\varepsilon}^{2} \leqslant C Q(\varphi, \varphi), \quad \text { for all } \varphi \in D_{U}^{p, q} \tag{4.4}
\end{equation*}
$$

As above, if x_{0} is near $b \Omega$ we can replace $\left\|\|_{\varepsilon} \text { by ||| ||| }\right\|_{\varepsilon}$ in (4.4). Here again, σ stands both for the germ at x_{0} and a (1,0)-form on a sufficiently small U representing the germ.

Definition 4.5. If $J \subset C^{\infty}\left(x_{0}\right)$, then the real radical of J, denoted by $\sqrt[\mathbf{R}]{J}$, is the set of all $g \in C^{\infty}\left(x_{0}\right)$ such that there exists and integer m and an $f \in J$ so that

$$
|g|^{m} \leqslant|f|
$$

on some neighborhood of x_{0}.
Definition 4.6. If $S \subset A^{1.0}\left(x_{0}\right)$ then $\operatorname{det}_{k} S$ is the subset of $C^{\infty}\left(x_{0}\right)$ consisting of all f that, for x near x_{0}, can be expressed by:

$$
f(x)=\left\langle\sigma^{1}(x) \wedge \ldots \wedge \sigma^{\iota}(x), \theta(x)\right\rangle_{x},
$$

where $\sigma^{1}, \ldots, \sigma^{k} \in S$ and $\theta \in A^{k .0}\left(x_{0}\right)$.
The following proposition gives information about $I^{q}\left(x_{0}\right)$ and $M^{q}\left(x_{0}\right)$ which will enable us to prove Theorem 1.21.

Proposition 4.7. If Ω is pseudo-convex and if $x_{0} \in \bar{\Omega}$, then $I^{a}\left(x_{0}\right)$ and $M^{a}\left(x_{0}\right)$ have the following properties.
(A) $1 \in I^{n}\left(x_{0}\right)$ and for all q, whenever $x_{0} \in \Omega$, then $1 \in I^{q}\left(x_{0}\right)$.
(B) If $x_{0} \in b \Omega$, then $r \in I^{q}\left(x_{0}\right)$.
(C) If $x_{0} \in b \Omega$, then $\operatorname{int}(\theta) \partial \bar{\partial} r \in M^{a}\left(x_{0}\right)$, for all $\theta \in A^{0.1}\left(x_{0}\right)$ such that $\langle\theta, \bar{\partial} r\rangle=0$ on $b \Omega$.
(D) $I^{q}\left(x_{0}\right)$ is an ideal.
(E) If $f \in I^{q}\left(x_{0}\right)$ and if $g \in C^{\infty}\left(x_{0}\right)$ with $|g| \leqslant|f|$ in a neighborhood of x_{0}, then $g \in I^{q}\left(x_{0}\right)$.
(F) $I^{a}\left(x_{0}\right)=\stackrel{\mathbf{R}}{\sqrt{I^{q}}\left(x_{0}\right)}$.
(G) $\partial I^{q}\left(x_{0}\right) \subset M^{a}\left(x_{0}\right)$, where $\partial I^{q}\left(x_{0}\right)$ denotes the set of $\partial f \in A^{1.0}\left(x_{0}\right)$ with $f \in I^{q}\left(x_{0}\right)$.
(H) $\operatorname{det}_{n-q+1} M^{q}\left(x_{0}\right) \subset I^{q}\left(x_{0}\right)$.

Observe that, due to (A), the properties (B) to (H) are non-trivial only when $x_{0} \in b \Omega$.
Proof of (A). If $\varphi \in \mathcal{D}^{p, n}$ then $\varphi=0$ on $b \Omega$ and hence (1.20) holds with $\varepsilon=1$. If $x_{0} \in \Omega$ choose U so that $\tilde{U} \cap b \Omega=\varnothing$, then (1.20) again holds with $\varepsilon=1$ since $\operatorname{supp}(\varphi) \subset U$.

Proof of (B). We choose U so that r is defined on U, and we have

$$
\begin{equation*}
\|r \varphi\|_{1}^{2} \leqslant \text { const. }\|r \varphi\|_{2}^{2} \leqslant \text { const. }\|\varphi\|_{z}^{2} \leqslant \text { const. } Q(\varphi, \varphi) . \tag{4.8}
\end{equation*}
$$

The following lemma will be used in the proofs of (C) and (G).

Lemma 4.9. Let L_{1}, \ldots, L_{n} be the special local basis defined in a neighborhood U of $x_{0} \in b \Omega$ and characterized by (2.17). Let $u, v \in C_{0}^{\infty 0}(U \cap \bar{\Omega})$, then we have

$$
\begin{equation*}
\left(L_{i} u, v\right)=-\left(u, L_{i} v\right)+\delta_{i n} \int_{b \Omega} u \bar{v} d S+\left(u, g_{i}, v\right) \tag{4.10}
\end{equation*}
$$

where $g_{i} \in C^{\infty}(\bar{U} \cap \bar{\Omega})$.
Proof. In terms of a boundary coordinate system we have

$$
L_{i} u=\sum a_{i}^{k} \frac{\partial u}{\partial t_{k}}+b_{i} \frac{\partial u}{\partial r}
$$

where $b_{i}=\delta_{i n}$ on $b \Omega$, hence

$$
\left(L_{i} u, v\right)=\left(u, L_{i}^{*} v\right)+\delta_{i n} \int_{b \Omega} u \bar{v} d S
$$

where

$$
L_{i}^{*} v=-L_{i} v-\left(\sum_{k} \frac{\partial \bar{a}_{i}^{k}}{\partial t_{k}}+\frac{a \bar{b}_{i}}{\partial r}\right) v
$$

so (4.10) follows.
Proof of (C). We will use the special local basis in $U \cap \bar{\Omega}$ described in section 2. It suffices to prove (C) in the case $\theta=\bar{\omega}_{k}$ for $k=1, \ldots, n-1$. We have:

$$
\begin{equation*}
\partial \bar{\partial} r=\sum_{i, j} c_{i j} \omega_{i} \wedge \bar{\omega}_{j} \tag{4.11}
\end{equation*}
$$

where the $c_{i j}$ are given by (2.19) for $i, j=1, \ldots, n$, hence for $i, j=1, \ldots, n-1$ they satisfy (2.20). Then

$$
\begin{equation*}
\operatorname{int}\left(\bar{\omega}_{k}\right) \partial \bar{\partial} r=\sum_{i} c_{i k} \omega_{i} \tag{4.12}
\end{equation*}
$$

If $\varphi \in \mathcal{D}_{\dot{U}}^{0, q}$, then

$$
\begin{equation*}
\varphi=\sum_{J}^{\prime} \varphi_{J} \omega_{J} \tag{4.13}
\end{equation*}
$$

and
(4.14)
$\varphi_{J}=0$ on $b \Omega$ whenever $n \in J$.

Now setting

$$
\begin{gather*}
\sigma^{k}=\sum_{i} c_{i k} \omega_{i}, \quad \text { for } k=1, \ldots, n=1 ; \quad \text { we have } \tag{4.15}\\
\operatorname{int}\left(\bar{\sigma}^{k}\right) \varphi=\sum_{K}^{\prime} \sum_{i} c_{i k} \varphi_{i K} \bar{\omega}_{K} . \tag{4.16}
\end{gather*}
$$

To prove (C) we will show that

$$
\begin{equation*}
\left\|\operatorname{int}\left(\bar{\sigma}^{k}\right) \varphi\right\|_{1 / 2}^{2} \leqslant C Q(\varphi, \varphi), \quad \text { for all } \varphi \in \bar{D}_{U}^{0, Q} \quad \text { and } \quad k=1, \ldots, n-1 . \tag{4.17}
\end{equation*}
$$

We will first show that there exists $C>0$ such that

$$
\begin{equation*}
\left|\sum_{i, k}\left(c_{i k} \varphi_{t K}, D u_{k}\right)\right| \leqslant C\left(Q(\varphi, \varphi)+\sum_{k<n}\left\|u_{k}\right\|_{z}^{2}+\sum_{i, k<n} \int_{b \Omega} c_{i k} u_{i} \bar{u}_{k} d S\right) \tag{4.18}
\end{equation*}
$$

for all $\varphi \in \mathcal{D}_{U}^{0, q}$ and $u_{k} \in C_{0}^{\infty}\left(U^{\prime} \cap \bar{\Omega}\right), k=1, \ldots, n-1$; where, U^{\prime} is a neighborhood of \bar{U} and D is any first order differential operator. It will suffice to prove (4.18) in the cases when $D=L_{i}$ and $D=L_{i}, i=1, \ldots, n$. For $D=L_{i},(4.18)$ follows by applying the Schwartz inequality. Similarly, if $D=L_{i}$ with $i<n$ we first apply (4.10), then the Schwartz inequality and (2.28). Finally, if $D=L_{n}$ we obtain by use of (4.10):

$$
\begin{equation*}
\sum_{i, k}\left(c_{i k} \varphi_{i K}, L_{n} u_{k}\right)=\sum_{i, k<n} \int_{b \Omega} c_{i k} \varphi_{i K} \bar{u}_{k} d S+O\left(\|\varphi\|_{z}\left(\sum\left\|u_{h}\right\|\right)\right) \tag{4.19}
\end{equation*}
$$

here the term $i=n$ does not appear in the boundary integral since $\varphi_{n K}=0$ on $b \Omega$. Since the Levi-form is non-negative, we have

$$
\begin{equation*}
\left|\sum_{i, k<n} c_{i k} \varphi_{i K} \bar{u}_{k}\right| \leqslant\left(\sum_{i, k<n} c_{i k} \varphi_{i K} \bar{\varphi}_{k K}\right)^{1 / 2}\left(\sum_{i, k<n} c_{i k} u_{i} \bar{u}_{k}\right)^{1 / 2}, \tag{4.20}
\end{equation*}
$$

on $b \Omega$. Then (4.18) follows by integrating the above over the boundary and invoking (2.28).

We will use (4.18) with u_{k} defined by

$$
\begin{equation*}
u_{k}=\sum_{j<n} c_{j k} \zeta S^{0} \varphi_{J K}, \tag{4.21}
\end{equation*}
$$

where $\zeta \in C_{0}^{\infty}\left(U^{\prime}\right), \zeta=1$ on U and S^{0} is a tangential pseudo-differential operator of order 0 . First, we show that

$$
\begin{equation*}
\sum_{k}\left\|u_{k}\right\|_{z}^{2}+\sum_{i, k<n} \int_{0 \Omega} c_{i k} u_{i} \bar{u}_{k} d S \leqslant \text { const. } Q(\varphi, \varphi) . \tag{4.22}
\end{equation*}
$$

The first term is estimated by:

$$
\begin{equation*}
\left\|u_{k}\right\|_{z}^{2} \leqslant \text { const. }\left\|\zeta S^{0} \varphi\right\|_{z}^{2} \leqslant \text { const. } Q\left(\zeta S^{0} \varphi, \zeta S^{0} \varphi\right) \leqslant \text { const. } Q(\varphi, \varphi) . \tag{4.23}
\end{equation*}
$$

To estimate the boundary integral, we have on $b \Omega$:

$$
\begin{equation*}
\sum_{i, k<n} c_{i k} u_{i} \bar{u}_{k} \leqslant \text { const. } \sum_{k<n}\left|u_{k}\right|^{2} \tag{4.24}
\end{equation*}
$$

and, using the Schwartz inequality, we obtain

$$
\begin{equation*}
\sum_{k<n}\left|u_{k}\right|^{2}=\sum_{k, j<n} c_{j k} \zeta S^{0} \varphi_{j K} u_{k} \leqslant \text { const. }\left(\sum_{k, j<n} c_{j k} \zeta S^{0} \varphi_{j K} \overline{\zeta S^{0} \varphi_{k K}}\right)^{1 / 2}\left(\sum_{k<n}\left|u_{k}\right|^{1}\right)^{1 / 2} \tag{4.25}
\end{equation*}
$$

hence

$$
\begin{equation*}
\sum_{i, k<n} c_{i k} u_{i} \bar{u}_{k} \leqslant \text { const. } \sum_{k, j<n} c_{j k} \zeta S^{0} \varphi_{j K} \overline{\zeta S^{0} \varphi_{k K}} . \tag{4.26}
\end{equation*}
$$

Thus, by (2.28), the integral over the boundary (4.26) is bounded by const. $Q\left(\zeta S^{0} \varphi, \zeta S^{0} \varphi\right)$ and hence by const. $Q(\varphi, \varphi)$; which concludes the proof of (4.22).

Putting all this together, and replacing D by $\partial / \partial t_{m}$ in (4.18) (with $m<2 n$), we obtain

$$
\begin{equation*}
\left|\sum_{i, k, t}\left(c_{i k} \varphi_{i K}, \frac{\partial}{\partial t_{m}} S^{0}\left(c_{j k} \varphi_{j K}\right)\right)\right| \leqslant \text { const. } Q(\varphi, \varphi) \tag{4.27}
\end{equation*}
$$

where we have replaced $\left(\partial / \partial t_{m}\right) c_{j k} \zeta S^{0} \varphi_{j K}$ by $\zeta\left(\partial / \partial t_{m}\right) S^{0}\left(c_{j k} \varphi_{j K}\right)(\zeta$ does not appear in (4.27) since it is one on the support of φ); the difference between these terms is $O(\|\varphi\|)$ and hence dominated by the right hand side.

We will now conclude the proof of (C) by showing how (4.17) follows from (4.27). Set $S^{0}=-\left(\partial / \partial t_{m}\right) \Lambda^{-1}$ in (4.27) and sum over m. Observe that

$$
\begin{equation*}
-\sum_{1}^{2 n-1} \frac{\partial^{2}}{\partial t_{m}^{2}} \Lambda^{-1}=\Lambda^{1}-\Lambda^{-1} \tag{4.28}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{k}\| \| \sum_{i} c_{i k} \varphi_{i K} \|_{1 / 2}^{2}=\left|\sum_{i, k, j}\left(c_{i k} \varphi_{i k}, \Lambda^{1}\left(c_{j k} \varphi_{j K}\right)\right)\right| \leqslant \text { const. } Q(\varphi, \varphi) ; \tag{4.29}
\end{equation*}
$$

which establishes (4.17).
Proof of (D). Property (D) follows immediately from the following inequality. For any $g \in C^{\infty}(\tilde{D})$ there exists $C>0$ so that:

$$
\begin{equation*}
\||g u|\|_{\varepsilon} \leqslant C\left|\|u \mid\|_{\varepsilon}\right. \tag{4.30}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}\{U \cap \bar{\Omega})$. Thus if $f \in I^{q}\left(x_{0}\right)$ and $g \in C^{\infty}\left(x_{0}\right)$ we can conclude that $f g \in I^{q}\left(x_{0}\right)$ by replacing u with $f \varphi$ in (4.30), with $\varphi \in \mathcal{D}_{\dot{U}}^{0 . a}$ and U suitably small.

Property (E) is a consequence of the following lemma.
Lemma 4.31. If $\varepsilon \leqslant 1, f, g \in C^{\infty}(\bar{U})$ and if $|g| \leqslant|f|$, then

$$
\begin{equation*}
\|\mid g u\|_{\varepsilon} \leqslant\| \| f u \|_{\varepsilon}+\text { const. }\|u\| \tag{4.32}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(U \cap \bar{\Omega})$.

[^1]Proof. The operators $\left[\Lambda^{\varepsilon}, g\right]$ and $\left[f, \Lambda^{\varepsilon}\right]$ are of order $\varepsilon-1$ and hence bounded in L_{2} so that we have

$$
\begin{equation*}
\left\|\|g u \mid\|_{\varepsilon}=\right\| \Lambda^{\varepsilon}(g u)\|=\| g \Lambda^{\varepsilon} u \|+O(\|u\|) \tag{4.33}
\end{equation*}
$$

and

$$
\left\|g \Lambda^{\varepsilon} u\right\| \leqslant\left\|f \Lambda^{\varepsilon} u\right\|=\mid\|f u\|_{\varepsilon}+O(\|u\|)
$$

which gives (4.32).
For the proof of (F) we need the following lemma.
Lemma 4.34. If $0<\delta \leqslant 1 / m$, then there exists $C>0$ such that

$$
\begin{equation*}
\|\|g u\|\|_{\delta} \leqslant\| \| g^{m} u\| \|_{m \delta}+C\|u\| \tag{4.35}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(U \cap \bar{\Omega})$.
Proof. Proceeding by induction we assume that the left hand side of (4.35) is bounded by $\mid\left\|g^{k} u\right\| \|_{k \delta}+$ const. $\|u\|$ for $k<m$. Then for any j, with $0 \leqslant j \leqslant k$ and $(k+j) \delta \leqslant 1$, we have

$$
\begin{aligned}
\left\|\mid g^{k} u\right\|_{k \delta \delta}^{2} & =\left(g^{k} \bar{g}^{j} \Lambda^{(k+j) \delta} u, g^{k-j} \Lambda^{(k-j) \delta} u\right)+O\left(\|u\|^{2}\right) \\
& \leqslant\| \| g^{k+j} u \mid\| \|_{(k+j) \delta}\| \| g^{k-j} u \|_{(k-j) \delta}+O\left(\|u\|^{2}\right) .
\end{aligned}
$$

If m is even we obtain the desired estimate by setting $k=j=m / 2$.
If m is odd, set $k=(m+1) / 2$ and $j=(m-1) / 2$, we then have

$$
\left\|\left\|g u \left|\left\|_{\delta}^{2} \leqslant\right\|\left\|g^{m} u \mid\right\|_{m \delta}\| \| g u \|_{\delta}+\text { const. }\|u\|^{2}\right.\right.\right.
$$

which proves the desired inequality (4.35).

R

Proof of (F). If $g \in \sqrt[R]{I\left(x_{0}\right)}$ then on some neighborhood U of x_{0} we have $|g|^{m} \leqslant|f|$, where f satisfies (4.1). Hence, combining (4.1) with 4.31 and 4.34 we obtain

$$
\begin{equation*}
\|\mid g \varphi\|_{\varepsilon / m}^{2} \leqslant \text { const. } Q(\varphi, \varphi), \tag{4.36}
\end{equation*}
$$

for all $\varphi \in D_{\dot{U}}^{0, q}$. Therefore, $g \in I^{q}\left(x_{0}\right)$ which proves (F).
Proof of (G). By Lemma 2.31 it suffices to consider $\varphi \in \mathcal{D}_{\dot{U}}{ }^{q}$. Then, if $f \in I^{q}\left(x_{0}\right)$ and satisfies (4.1) we have

$$
\begin{equation*}
\operatorname{int}(\overline{\partial f}) \varphi=\sum_{K}^{\prime} \sum_{j}\left(L_{j} f\right) \varphi_{j K} \bar{\omega}_{K}, \tag{4.36}
\end{equation*}
$$

where φ is given by (4.13). Thus,

$$
\begin{equation*}
\|\operatorname{int}(\overline{\partial f}) \varphi\|_{\delta}^{2}=\sum_{K}^{\prime}\| \| \sum_{j}\left(L_{f} f\right) \varphi_{j K} \|_{\delta}^{2} \tag{4.37}
\end{equation*}
$$

Setting

$$
\psi_{K}=\sum_{j}\left(L_{j} f\right) \varphi_{j K}
$$

we have

$$
\begin{align*}
&\left\|\left\|\sum_{j}\left(L_{j} f\right) \varphi_{j K}\right\|_{\delta}^{2}=\right. \sum_{j}\left(\Lambda^{\delta}\left(\left(L_{j} f\right) \varphi_{j K}\right), \Lambda^{\delta} \psi_{K}\right) \tag{4.38}\\
&= \sum_{j}\left(\left(L_{j} f\right) \Lambda^{\delta} \varphi_{j K}, \Lambda^{\delta} \psi_{K}\right)+O\left(\| \|\left\|_{2 \delta-1}\right\| \psi_{K} \|\right) \\
&=-\sum_{j}\left(f L_{j} \Lambda^{\delta} \varphi_{j K}, \Lambda^{\delta} \psi_{K}\right)-\sum_{j}\left(f \Lambda^{\delta} \varphi_{j K}, L_{j} \Lambda^{\delta} \psi_{K}\right) \\
& \quad+O\left(\|\mid f \varphi\|_{2 \delta}\left\|\psi_{K}\right\|+\| \| \varphi\left\|_{2 \delta-1}\right\| \psi_{K} \|\right) \\
&=\left(-\sum_{j} L_{j} \varphi_{j K}, \Lambda^{2 \delta}\left(f \psi_{K}\right)\right)-\sum_{j}\left(\Lambda^{2 \delta}\left(f \varphi_{j K}\right), L_{j} \psi_{K}\right) \\
& \quad+O\left(\|f \varphi\|_{2 \delta}^{2}+\| \| \varphi\left\|_{2 \delta-1}^{2}+\right\| \varphi \|^{2}\right)
\end{align*}
$$

where the term $\left\|\|\varphi \mid\|_{2 \delta-1}\right.$ in the second line arises in estimating $\| \Lambda^{\delta}\left[\Lambda^{\delta}, L_{j} f\right] \varphi_{j K} \|$; the third line is obtained by an application of Lemma 4.9, the boundary term does not appear since $\Lambda^{6} \varphi_{n K}=0$ on $b \Omega$. The new error terms on the fourth line come from the last term in (4.10), that is

$$
\left(f \Lambda^{\delta} \varphi_{j K}, g_{j} \Lambda^{\delta} \psi_{K}\right)=\left(\Lambda^{2 \delta}\left(f \varphi_{i K}\right), g_{j} \psi_{K}\right)+O\left(\||\varphi|\|_{2 \delta-1}\left\|\psi_{K}\right\|\right)
$$

here the term $\left\|\|\varphi\|_{2 \delta-1}\right.$ comes from commutators as above. In the last line of (4.38) we have used $\psi_{K}=O(\|\varphi\|)$. Now, from (2.15), we have

$$
\begin{equation*}
\left\|\sum_{j} L_{j} \varphi_{j K}\right\| \leqslant\left\|\bar{\partial}^{*} \varphi\right\|+\text { const. }\|\varphi\| . \tag{4.39}
\end{equation*}
$$

From the definition of ψ_{K} we obtain

$$
\begin{equation*}
\left\|\Lambda^{2 \delta}\left(f \psi_{R}\right)\right\| \leqslant \text { const. }\left(\left|\left\|f \varphi\left|\left\|_{2 \delta}+\mid\right\| \varphi \|_{2 \delta-1}\right)\right.\right.\right. \tag{4.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|L_{j} \psi_{K}\right\| \leqslant \text { const. }\|\varphi\|_{z} \tag{4.41}
\end{equation*}
$$

Setting $\varepsilon=2 \delta$ and combining the above, we obtain

$$
\begin{equation*}
\left\|\|\operatorname{int}(\overline{\partial f}) \varphi\|_{\varepsilon / 2}^{2} \leqslant \text { const. }\left(\|\mid f \varphi\|_{\varepsilon}^{2}+Q(\varphi, \varphi)\right)\right. \tag{4.42}
\end{equation*}
$$

hence property (G) follows from (4.1).

For the proof of property (H) we will need the proposition given below. The case $q=1$ is somewhat simpler then the case of other q.

Definition 4.43. If $\left(a_{i j}\right)$ is a matrix with $i, j=1, \ldots, n$ and if I and J are two m-tuples of integers between 1 and n; we define the $m \times m$ matrix $\left(a_{j k}^{I J}\right)$ by

$$
\left(a_{i j}^{I J}\right)=\left(\begin{array}{ccc}
a_{i_{1} i_{1}} & \ldots & a_{i_{1} j_{m}} \tag{4.44}\\
\vdots & & \vdots \\
a_{i_{m} j_{1}} & \ldots & a_{i_{m} j_{m}}
\end{array}\right)
$$

where $I=\left(i_{1}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, \ldots, j_{m}\right)$. We then define a norm $\delta^{m}\left(a_{i j}\right)$ on the m th exterior powers by

$$
\begin{equation*}
\left.\delta^{m}\left(a_{i j}\right)=\left.\left(\sum_{i, J}^{\prime} \mid \operatorname{det} a_{i j}^{I J}\right)\right|^{2}\right)^{1 / 2} \tag{4.45}
\end{equation*}
$$

where the sum runs over all m-tuples I and J; and "det" denotes the determinant.
Proposition 4.46. Suppose for each $x \in \overline{U \cap \Omega}$, that $\left(a_{i t}(x)\right)$ is a semi-definite matrix, and that $\omega_{1}, \ldots, \omega_{n}$ form a basis of the $(1,0)$-forms on $\overline{U \cap \Omega}$; then there exists $C>0$ such that:

$$
\begin{equation*}
\delta^{n-a+1}\left(a_{i j}(x)\right) \sum^{\prime}\left|\varphi_{J}(x)\right|^{2} \leqslant C \sum_{K}^{\prime} \sum_{i, j} a_{i j}(x) \varphi_{i K}(x) \overline{\varphi_{j K}(x)} \tag{4.47}
\end{equation*}
$$

for all $x \in \widetilde{\bar{U} \cap \Omega}$ and all $\varphi \in \mathcal{A}^{0 . q}(\overline{U \cap \Omega})$.
Proof. At each x we define the inner product \langle,\rangle_{x} by $\left\langle\omega_{i}(x), \omega_{j}(x)\right\rangle_{x}=\delta_{i f}$. Let $\left(s_{k i}(x)\right)$ be a unitary matrix such that

$$
\begin{equation*}
a_{i f}(x)=\sum_{h} \lambda_{h}(x) s_{h 1}(x) \overline{s_{h j}(x)}, \tag{4.48}
\end{equation*}
$$

where $\lambda_{1}(x), \ldots, \lambda_{n}(x)$ are the eigenvalues of $a_{i j}(x)$. Then we obtain

$$
\begin{equation*}
\left.\sum_{K}^{\prime} \sum_{i . j} a_{t j}(x) \varphi_{I K}(x) \overline{\varphi_{J K}(x)}=\sum_{J}^{\prime}\left(\sum_{h \in J} \lambda_{h}(x)\right)\left|\varphi_{J}^{\prime}(x)\right|^{2}\right), \tag{4.49}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{J}^{\prime}(x)=\sum \operatorname{sgn}\binom{i_{1} \ldots i_{q}}{J} s_{i_{1} h_{2}} \ldots s_{i_{q} h_{q}} \varphi_{h_{1} \ldots h_{q}}, \tag{4.50}
\end{equation*}
$$

and

$$
\operatorname{sgn}\binom{i_{1} \ldots i_{q}}{J}=0 \quad \text { if }\left(i_{1}, \ldots, i_{a}\right) \neq J
$$

sign of permutation π of $(1, \ldots, q)$ for which $i_{m}=j_{\pi(m)}$, where $J=\left(j_{1}, \ldots, j_{q}\right)$.

It follows from (4.48) that there is a $C_{0}>0$ such that

$$
\begin{equation*}
\delta^{n-q+1}(x) \leqslant C_{0} \sum_{1 \leqslant h_{1}<\ldots<h_{n-q+1} \leqslant n} \lambda_{h_{1}}(x) \ldots \lambda_{h_{n-q+1}}(x), \tag{4.51}
\end{equation*}
$$

Now, we let

$$
\begin{equation*}
C_{1}=\max _{x} \sum_{1}^{n} \lambda_{j}(x) \tag{4.52}
\end{equation*}
$$

Then for any strictly increasing q-tuple J we have:

$$
\begin{equation*}
\delta^{n-q+1}(x) \leqslant C_{0} C_{1}^{n-q}\binom{n}{q} \sum_{n \in J} \lambda_{h}(x) \tag{4.53}
\end{equation*}
$$

since each term in the sum in (4.51) must have at least one factor whose subscript is in J.
Since $\left(s_{i k}\right)$ is unitary, we have $\left(s_{i k}\right)^{-1}=\left(\overline{s_{k i}}\right)$ and hence

$$
\begin{equation*}
\varphi_{J}(x)=\sum \operatorname{sgn}\binom{i_{1} \ldots i_{q}}{J} \bar{s}_{i_{1} h_{1} \ldots \bar{s}_{i_{q} h_{q}} \varphi_{h_{1} \ldots h_{q}}^{\prime}} \tag{4.54}
\end{equation*}
$$

Therefore, there is a C_{2} such that

$$
\begin{equation*}
\Sigma^{\prime}\left|\varphi_{J}(x)\right|^{2} \leqslant C_{2} \Sigma^{\prime}\left|\varphi_{J}^{\prime}(x)\right|^{2} \tag{4.55}
\end{equation*}
$$

for all $x \in \overline{U \cap \Omega}$. The estimate (4.47) then follows by combining (4.55), (4.53) and (4.49); thus concluding the proof of the proposition.

Proof of (H). Suppose $\sigma^{k} \in M^{q}\left(x_{0}\right)$, with $k=1, \ldots, n-q+1$, satisfying (4.4); that is, if

$$
\begin{equation*}
\sigma^{k}=\sum_{j} \sigma_{j}^{k} \omega_{j} \tag{4.56}
\end{equation*}
$$

then, for each $(q-1)$-tuple $K=\left(k_{1}, \ldots, k_{q-1}\right)$, we have

$$
\begin{equation*}
\left\|\sum_{i} \sigma_{i}^{k} \varphi_{i K}\right\|_{\varepsilon}^{2} \leqslant C Q(\varphi, \varphi) \tag{4.57}
\end{equation*}
$$

for all $\varphi \in D_{\dot{U}}^{0}{ }^{q}$. We will show that the function that takes $x \in U \cap \bar{\Omega}$ to $\left\langle\sigma^{1} \wedge \ldots \wedge \sigma^{n-q+1}, \theta\right\rangle_{x}$ is in $I^{q}\left(x_{0}\right)$ for all $\theta \in A^{n-q+1.0}(U \cap \bar{\Omega})$. It will suffice to show this in the case $\theta=\omega_{H}$, for all $H=\left(h_{1}, \ldots, h_{n-q+1}\right)$ with $1 \leqslant h_{1}<\ldots<h_{n-q+1} \leqslant n$. We then have

$$
\begin{equation*}
\left(\sigma^{1} \wedge \ldots \wedge \sigma^{n-a+1}, \omega_{H}\right)=\operatorname{det}\left(\sigma_{h_{q}}^{k}\right) \tag{4.58}
\end{equation*}
$$

Let K be the ordered ($q-1$)-tuple consisting of all integers between 1 and n which are not in H. Since $\varphi_{i K}=0$, whenever $i \in K$, the sum in (4.57) runs over all $i \in H$. Then, we have

$$
\begin{equation*}
\left\|\sum_{i} \sigma_{i}^{k} \varphi_{i K}\right\|_{i}^{2}=\sum_{i, j \in H}\left(\sigma_{i}^{k} \sigma_{j}^{k} \Lambda^{s} \varphi_{i \mathrm{~K}}, \Lambda^{\varepsilon} \varphi_{j K}\right)+O\left(\|\varphi\|_{\left.\varepsilon-\frac{k}{i}\right)}^{2}\right), \tag{4.59}
\end{equation*}
$$

where the error term estimates

$$
\begin{equation*}
\sum_{i . j \in H}\left\{\left(\left[\Lambda^{\varepsilon}, \sigma_{i}^{k}\right] \varphi_{i K}, \Lambda^{\varepsilon}\left(\sigma_{j}^{k} \varphi_{j K}\right)\right)+\left(\sigma_{i}^{k} \Lambda^{\varepsilon} \varphi_{i K},\left[\Lambda^{e}, \sigma_{j}^{k}\right] \varphi_{j K}\right)\right\} \tag{4.60}
\end{equation*}
$$

Let

$$
\begin{equation*}
a_{i j}(x)=\sum_{k=1}^{n-a+1} \sigma_{i}^{k}(x) \bar{\sigma}_{j}^{k}(x) . \tag{4.61}
\end{equation*}
$$

Applying Proposition 4.46 with $\varphi_{i K}$ replaced by $\Lambda^{\varepsilon} \varphi_{i K}$, we obtain

$$
\begin{equation*}
\delta^{n-\alpha+1}\left(\alpha_{i j}(x)\right) \sum^{\prime}\left|\Lambda^{\varepsilon} \varphi_{J}(x)\right|^{2} \leqslant C \sum_{K}^{\prime} \sum_{i, j, k} \sigma_{i}^{k}(x) \bar{\sigma}_{j}^{k}(x) \Lambda^{\varepsilon} \varphi_{i K}(x) \overline{\Lambda^{\varepsilon} \varphi_{j K}(x)} . \tag{4.62}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\delta^{n-a+1}\left(a_{t j}(x)\right) \geqslant \sum_{H}\left|\operatorname{det} \sigma_{h_{j}}^{k}(x)\right|^{2} . \tag{4.63}
\end{equation*}
$$

Integrating the above and estimating commutators as in (4.60), we obtain

$$
\begin{equation*}
\left\|\left\|\operatorname{det}\left(\sigma_{h_{j}}^{k}\right) \varphi\right\|_{\varepsilon} \leqslant \sum_{K}^{\prime}\right\|\left\|\sum_{i} \sigma_{i}^{k} \varphi_{i K}\right\|_{\varepsilon}^{2}+\text { const. }\left\|\|\varphi\|_{\varepsilon-i}^{2}\right. \tag{4.64}
\end{equation*}
$$

Therefore, we conclude from (4.57), that $\operatorname{det}\left(\sigma_{h_{j}}^{k}\right) \in I^{q}\left(x_{0}\right)$, thus completing the proof of (H).
The proof of one of our principal results now follows immediately from Proposition 4.7.
Proof of Theorem 1.21. The only properties of $I^{q}\left(x_{0}\right)$ which are not explicitly stated in Proposition 4.7 are (c) and (d). These are obtained by combining (C) with (H) and (G) with (H), respectively.

§ 5. Subelliptic stratifications and orders of contact

We define the ideals $I_{k}^{q}\left(x_{0}\right)$ below and then show that this definition coincides with the one given by (1.22). If $x_{0} \in b \Omega$ we define the sequence of ideals $I_{1}^{q}\left(x_{0}\right) \subset \ldots \subset I_{k}^{q}\left(x_{0}\right) \subset I^{q}\left(x_{0}\right)$ and the sequence of modules $M_{1}^{q}\left(x_{0}\right) \subset \ldots \subset M_{k}^{q}\left(x_{0}\right) \subset M^{q}\left(x_{0}\right)$ by:

$$
\begin{gather*}
M_{1}^{q}\left(x_{0}\right)=\left\{\partial r, \operatorname{int}(\theta) \partial \bar{\partial} r \quad \text { for all } \theta \in A_{x_{0}}^{0,1} \quad \text { with } \theta \perp \bar{\partial} r\right\} \tag{5.1}\\
I_{1}^{q}\left(x_{0}\right)=\sqrt{\left(r, \operatorname{det}_{n-q+1} M_{1}^{q}\left(x_{0}\right)\right)} \tag{5.2}
\end{gather*}
$$

and inductively

$$
\begin{gather*}
M_{k}^{q}\left(x_{0}\right)=\left\{M_{k-1}^{q}\left(x_{0}\right), \partial I_{k-1}^{q}\left(x_{0}\right)\right\} \tag{5.3}\\
\mathbf{R} \tag{5.4}\\
I_{k}^{q}\left(x_{0}=\sqrt{\left(I_{k-1}^{q}\left(x_{0}\right), \operatorname{det}_{n-q+1} M_{k}^{q}\left(x_{0}\right)\right)} .\right.
\end{gather*}
$$

Proposition 5.5. The ideals $I_{k}^{q}\left(x_{0}\right)$ are also given by (1.22).
Proof. If we choose (as usual) $\omega_{1}, \ldots, \omega_{n}$ to be an orthonormal basis of $\boldsymbol{A}_{x_{0}}^{1,0}$ with $\omega_{n}=\partial r$ and if

$$
\partial \bar{\partial} r=\sum_{i . j} c_{i j} \omega_{i} \wedge \bar{\omega}_{j}
$$

then define $\tau_{1}, \ldots, \tau_{n-1}$ by:

$$
\tau_{j}=\operatorname{int}\left(\bar{\omega}_{j}\right) \partial \bar{\partial} r=\sum c_{i j} \omega_{i}
$$

Then $M_{1}\left(x_{0}\right)$ is generated by: $\tau_{1}, \ldots, \tau_{n-1}$ and ω_{n}. Hence $I_{1}^{q}\left(x_{0}\right)$ is the real radical of the ideal generated by the determinants of the $(n-q) \times(n-q)$ minors of $\left(c_{i j}\right)$ with $i, j<n$, and the function r. This establishes (1.22) for $k=1$. The general case then follows by induction.

If V is a complex-analytic variety defined in a neighborhood U of x_{0} we denote by $\mathcal{J}_{x_{0}}(V)$ the ideal of germs of holomorphic functions that vanish on V and by $\mathcal{F}_{x_{0}}(V)$ the ideal of germs of complex-valued real-analytic functions that vanish on V. We will make use of a result of R. Ephraim (see [11]) which asserts that when V is irreducible then $\mathcal{F}_{x_{0}}(V)$ is generated by $\mathcal{J}_{x_{0}}(V)$ and $\overline{\mathcal{J}_{x_{0}}(V)}$, where $\overline{\mathcal{J}_{x_{0}}(V)}=\left\{f \mid f \in \mathcal{J}_{x_{0}}(V)\right\}$.

Definition 5.6. If V is a germ of a complex-analytic variety at $x_{0} \in b \Omega$ then we define the order of contact of V to $b \Omega$ at x_{0}, denoted by $O\left(x_{0}, V\right)$, by

$$
\begin{equation*}
O\left(x_{0}, V\right)=O_{x_{0}}\left(r / \mathcal{F}_{x_{0}}(V)\right)=\max _{g \in \mathcal{J}_{x_{0}}(V)} O_{x_{0}}(r-g) \tag{5.7}
\end{equation*}
$$

where $O_{x_{0}}(f)$ denotes the order of vanishing of f at x_{0}. Let $\vartheta^{q}\left(x_{0}\right)$ denote the set of germs of q-dimensional, irreducible varieties containing x_{0}. Then we define $O^{q}\left(x_{0}\right)$, the q-order of x_{0}, by:

$$
\begin{equation*}
O^{q}\left(x_{0}\right)=\max _{V \in \mathbb{V}^{(}\left(x_{0}\right)} O\left(x_{0}, V\right) \tag{5,8}
\end{equation*}
$$

Let $W^{a}\left(x_{0}\right)$ be the set of all germs of q-dimensional complex manifolds containing x_{0}. Then we define the regular q-order of x_{0}, denoted by reg $O^{q}\left(x_{0}\right)$, by

$$
\begin{equation*}
\operatorname{reg} O^{q}\left(x_{0}\right)=\max _{V \in \operatorname{wox}^{\left(x_{0}\right)}} O\left(x_{0}, V\right) \tag{5.9}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\operatorname{reg} O^{a}\left(x_{0}\right) \leqslant O^{a}\left(x_{0}\right) \tag{5.10}
\end{equation*}
$$

In fact, for r in \mathbf{C}^{8} given by

$$
r(z)=\operatorname{Re}\left(z_{3}\right)+\left|z_{1}^{2}-z_{2}^{3}\right|^{2}
$$

we have reg $O^{1}\left(x_{0}\right)=6$ and $O^{1}\left(x_{0}\right)=\infty$. This type of phenomenon has been studied in [2] and [6a]. In [6a], D'Angelo shows that, if reg $O^{1}\left(x_{0}\right) \leqslant 4$ then $\mathcal{O}^{1}\left(x_{0}\right)=\operatorname{reg} \mathcal{O}^{1}\left(x_{0}\right)$.

LEMMA 5.11. If $O^{q}\left(x_{0}\right)=m$ then there exist germs of holomorphic functions h_{1}, \ldots, h_{k} at x_{0} and polynomials A_{i}, B_{i} such that

$$
r=\sum A_{i} h_{i}+\sum B_{i} h_{i}+O\left(|z|^{m}\right)
$$

Proof. By definition of $O^{\alpha}\left(x_{0}\right)$ there exists a germ of a q-dimensional irreducible variety $V \in \vartheta^{q}\left(x_{0}\right)$ such that $O\left(x_{0}, V\right)=m$. Let h_{1}, \ldots, h_{k} be the generators of $\mathcal{J}_{x_{0}}(V)$ then, by the above cited theorem of Ephraim, we conclude that $h_{1}, \ldots, h_{k}, \hbar_{1}, \ldots, \hbar_{k}$ generate $\boldsymbol{7}_{x_{0}}(V)$. Thus the function g which attains the maximum in (5.7) can be expressed in terms of these generators, which concludes the proof.

Lemma 5.12. Given $N>0$ there exists a holomorphic coordinate system z_{1}, \ldots, z_{n} with origin at x_{0} such that

$$
\begin{equation*}
r=2 \operatorname{Re}\left(z_{n}\right)+\sum_{\substack{|\alpha|>0 .|\beta|>0 \\|\alpha+\beta|<N}} a_{\alpha \beta} z^{\alpha} \bar{z}^{\beta}+O\left(|z|^{N}\right) . \tag{5.13}
\end{equation*}
$$

Proof. Choose any holomorphic coordinate system w_{1}, \ldots, w_{n} with origin x_{0}. Then by expanding in Taylor series we have

$$
r=\operatorname{Re}\left(\sum_{|\alpha|<N} c_{\alpha} w^{\alpha}\right)+\sum_{\substack{|\alpha|>0,|\beta|>0 \\|\alpha+\beta|<N}} b_{\alpha \gamma} w^{\alpha} \bar{w}^{\beta}+O\left(|w|^{N}\right)
$$

Let z_{1}, \ldots, z_{n} be any holomorphic coordinate systems with origin at x_{0} and with $z_{n}=$ $\frac{1}{2} \sum_{|\alpha|<N} c_{\alpha} w^{\alpha}$, then substituting in the above, we obtain (5.13).

Lemma 5.14. Given $N>O\left(x_{0}, V\right)$, where V is a germ of an irredubible complex-analytic variety through x_{0}; then

$$
O_{x_{0}}\left(z_{n} / J_{x_{0}}(V)\right) \geqslant O\left(x_{0}, V\right)
$$

Proof. Let h_{1}, \ldots, h_{k} be generators of $\mathcal{J}_{x_{0}}(V)$ then, by 5.11,

$$
\begin{equation*}
r=\sum A_{i} h_{i}+\sum B_{i} \bar{h}+O\left(|z|^{m}\right), \quad \text { with } m=O\left(x_{0}, V\right) \tag{5.15}
\end{equation*}
$$

From (5.13) we have:

$$
z_{n}-\sum A_{i} h_{i}=\sum B_{i} \bar{h}_{i}-\bar{z}_{n}+\sum^{\prime \prime} a_{\alpha \beta} z^{\alpha} \bar{z}^{\beta}+O\left(\mid z^{m}\right)
$$

We can write $A_{i}=F_{t}+G_{t}$, when F_{i} is holomorphic and G_{i} has a power series expansion all of whose terms have one of the \bar{z}_{j} as a factor. Then

$$
z_{n}-\sum_{i} F_{i} h_{i}=G+O\left(|z|^{m}\right)
$$

where G is a polynomial each of whose terms contains at least one \bar{z}_{j}. Hence all partial derivatives of the left hand side up to order m vanish at x_{0}, which completes the proof.

In the following proposition the main assertion that (b) is equivalent to (d) is proven, in the case $q=1$ by J. D'Angelo in [6b].

Proposition 5.16. If Ω is pseudo-convex then the following are equivalent
(a) $1 \in I_{1}^{q}\left(x_{0}\right)$
(b) The Levi-form at x_{0} has at least $n-q$ positive eigen-values
(c) $\operatorname{reg} O^{\alpha}\left(x_{0}\right)=2$
(d) $O^{a}\left(x_{0}\right)=2$

Proof. That (a) is equivalent to (b) is an immediate consequence of the definition of $I_{1}^{q}\left(x_{0}\right)$. It is also clear that (d) implies (c), by (5.10) and since from (5.13) we see that reg $O^{a}\left(x_{0}\right) \geqslant 2$. We will first prove that (c) implies (b). Choosing the coordinate system z_{1}, \ldots, z_{n} so that (5.13) holds with $N=3$ we have

$$
\begin{equation*}
r(z)=2 \operatorname{Re}\left(z_{n}\right)+\sum r_{z_{i} \bar{z}_{j}}(0) z_{i} \bar{z}_{j}+O\left(|z|^{3}\right) . \tag{5.17}
\end{equation*}
$$

We will assume (c) holds and that (b) does not hold. Thus

$$
\begin{equation*}
\operatorname{dim}\left\{z \mid z_{n}=0, \sum_{i=1}^{n-1} r_{z, z, j}(0) z_{i}=0, j=1, \ldots, n-1\right\} \geqslant q \tag{5.18}
\end{equation*}
$$

So by (5.17) the order of contact of the linear space defined in (5.18) is greater or equal to 3, which contradicts (c).

Now assuming (a) we will prove (d). Let $V \in \vartheta^{\vartheta \sigma}\left(x_{0}\right)$ and let h_{1}, \ldots, h_{k} be generators of $\mathcal{J}_{x_{0}}(V)$. Suppose $O\left(x_{0}, V\right)>2$, then, by 5.11:

$$
\begin{align*}
r & =\sum A_{i} h_{i}+\sum B_{i} \bar{h}_{i}+O\left(|z|^{3}\right) \\
\partial \vec{\partial} r & =-\sum \bar{\partial} A_{i} \wedge d h_{i}+\sum \partial B_{i} \wedge d \bar{h}_{i}+\theta+O(|z|) \tag{5.19}
\end{align*}
$$

where $\theta=0$ on V. From (5.17) we have,

$$
\begin{equation*}
\partial r=d z_{n}+O(|z|) \tag{5.20}
\end{equation*}
$$

By virtue of (5.14) we know that $\left.z_{n}\right|_{V}=O\left(|z|^{3}\right)$, hence

$$
\begin{equation*}
(\partial r)_{x_{0}}=\left(d z_{n}\right)_{x_{0}}=\sum_{1}^{k} c\left(d h_{t}\right)_{x_{0}} \tag{5.21}
\end{equation*}
$$

Let α and β be (1,0)-forms with constant coefficients such that

$$
\begin{equation*}
(\bar{\partial} A)_{x_{0}}=a_{i} d \bar{z}_{n}+\bar{a}_{i} \quad \text { and }\left(\partial B_{i}\right)_{x_{\mathrm{e}}}=b_{i} d z_{n}+\beta_{i} \tag{5.22}
\end{equation*}
$$

with

$$
a_{i}=\left(\frac{\partial A_{i}}{\partial \bar{z}_{n}}\right)_{x_{0}} \quad \text { and } \quad b_{i}=\left(\frac{\partial B_{i}}{\partial z_{n}}\right)_{x_{0}} .
$$

Then, from (5.19), we have

$$
\begin{equation*}
(\partial \bar{\partial} r)_{x_{0}}=\sum\left(d h_{i}\right)_{x_{0}} \wedge \bar{\alpha}_{i}+\sum \beta_{i} \wedge\left(d \bar{h}_{i}\right)_{x_{0}}+\sum a_{i}\left(d h_{i}\right)_{x_{0}} \wedge d \bar{z}_{n}+\sum b_{i} d z_{n} \wedge\left(d h_{i}\right)_{x_{0}} \tag{5.23}
\end{equation*}
$$

The restriction of $(\partial \bar{\partial} r)_{x_{0}}$ to $T_{x_{0}}^{1,}{ }^{0}(b \Omega)$ is given by the first two terms on the right of (5.23). This is a semi-definite hermitian form which vanishes on the intersection of the annihilators of the $\left(d h_{f}\right)_{x_{0}}$. Hence we have, using (5.21)

$$
\begin{equation*}
(\partial \bar{\partial} r)_{x_{0}}=\sum a_{i j}\left(d h_{i}\right)_{x_{0}} \wedge\left(d \breve{h}_{j}\right)_{x_{0}} . \tag{5.24}
\end{equation*}
$$

Then

$$
\begin{equation*}
\partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q}=\sum d h_{i_{1}} \wedge \ldots \wedge d h_{i_{n-q+1}} \wedge \psi_{i_{1} \ldots i_{n-q+1}}+O(|z|) . \tag{5.25}
\end{equation*}
$$

Since V is q-dimensional at most $n-q$ of the $d h_{j}$ are linearly independent at regular points of V. Hence $d h_{i_{1}} \wedge \ldots \wedge d h_{i_{n-q+1}}=0$ on V and hence $\left[\partial r \wedge \bar{\partial} r \wedge(\partial \bar{\partial} r)^{n-q}\right]_{x_{0}}=0$ so that $1 € I_{1}^{q}\left(x_{0}\right)$ which is a contradiction and concludes the proof.

Definition 5.26. A is an admissible vector-field in a neighborhood U of x_{0} if $\langle A, \partial r\rangle=0$ and $\langle A, \bar{\partial} r\rangle=0$. In particular for $x \in b \Omega, A_{x} \in T_{x}^{1,0}(b \Omega)+T_{x}^{0,1}(b \Omega)$.

Lemma 5.27. If $c_{i j}$ is a component of the Levi-form and if A_{1}, \ldots, A_{m} are admissible vector fields then $A_{1}, \ldots, A_{m}\left(c_{i j}\right) \in I_{m+1}^{n-1}\left(x_{0}\right)$.

Proof. Since

$$
\partial r \wedge \bar{\partial} r \wedge \partial \bar{\partial} r=\sum_{i, j<n} c_{i j} \omega_{i} \wedge \bar{\omega}_{j} \wedge \omega_{n} \wedge \bar{\omega}_{n}
$$

each $c, \in I_{1}^{n-1}\left(x_{0}\right)$ when $i, j<n$. Further

$$
\partial c_{i j} \wedge \partial r=\sum_{k<n}\left(L_{k} c_{i j}\right) \omega_{k} \wedge \omega_{n}
$$

Hence $L_{k} c_{i j} \in I_{2}^{n-1}\left(x_{0}\right)$ and also $L_{k} c_{j 2} \in I_{2}^{n-1}\left(x_{0}\right)$; but $L_{k} c_{j t}=L_{k} \bar{c}_{t j}$ and $\left|L_{k} \bar{c}_{i j}\right|=\left|L_{k} c_{i j}\right|$, hence $L_{k} c_{i j} \in I_{2}^{n-1}\left(x_{0}\right)$. Since the admissible vectors are combinations of the L_{k} and L_{k} the lemma follows for $m=1$. For $m=2$ we apply the same argument to $\partial A c_{i j}$, when A is an admissible vcetor field and similarly conclude the proof by induction.

Lemma 5.28. Let F be a real-valued C^{∞} function defined in a neighborhood of the origin in \mathbf{R}^{n}. Suppose that $F \geqslant 0$ and $F(0)=0$. Let X be a real C^{∞} vector field defined in a neighborhood of $0 \in \mathbf{R}^{n}$. Then either $X^{\prime} F(0)=0$ for all j or there exists some integer k such that $X^{\prime} F(0)=0$ if $j<2 k$ and $X^{2 k} F(0)>0$.

Proof. It suffices to consider X such that $X \neq 0$ in a neighborhood of 0 . Choose a coordinate system x_{1}, \ldots, x_{n} so that $X=\partial / \partial x_{1}$, then

$$
F(x)=\sum_{j=1}^{m} a_{j}\left(0, x_{2}, \ldots, x_{n}\right) x_{1}^{j}+O\left(|x|^{n+1}\right)
$$

Choosing m to be the smallest number such that $a_{m}(0, \ldots, 0) \neq 0$ we see that $F\left(x_{1}, 0, \ldots, 0\right) \geqslant 0$ implies that m is even and $a_{m}(0, \ldots, 0)>0$ which concludes the proof.

Lemma 5.29. If f, g_{1}, \ldots, g_{m} are complex-valued C^{∞} functions in a neighborhood of $0 \in \mathbf{R}^{n}$ such that

$$
\begin{equation*}
|f|^{2 p} \leqslant \text { const. } \sum_{1}^{m}\left|g_{j}\right|^{2} ; \tag{5.30}
\end{equation*}
$$

furthermore, if X is a real C^{∞} vector field and $X^{1} f(0)=0$ for $j<k$ and $X^{k} f(0) \neq 0$ then for some j and some $q \leqslant p k$ we have $X^{q} g_{j}(0) \neq 0$.

Proof. Assume that $X^{q} g_{j}(0)=0$ for $j=1, \ldots, m$ and all $q<p k$. Let $F=$ const. $\sum 1_{1}^{m}\left|g_{j}\right|^{2}-$ $|f|^{2 p}$, then

$$
X^{2 p k} F(0)=\text { const. } \sum_{1}^{m}\left|X^{p k} g_{j}(0)\right|^{2}-\left|X^{k} f(0)\right|^{2}
$$

and the result follows from 5.29.
Definition 5.31. $\mathbf{C}^{k}\left(x_{0}\right) \subset \mathbf{C} \boldsymbol{T}_{x_{0}}$ is defined inductively as follows:
$\mathcal{L}^{1}\left(x_{0}\right)=$ germs of admissible vector fields. $\mathcal{L}^{k}\left(x_{0}\right)=\mathcal{L}^{k-1}\left(x_{0}\right)+\left[\mathcal{L}^{1}\left(x_{0}\right), \boldsymbol{L}^{k-1}\left(x_{0}\right)\right] . \dot{\mathcal{L}}^{k}\left(x_{0}\right) \subset$ $\mathbf{C} T_{x_{0}}$ is the subspace obtained by evaluating all elements of $\mathfrak{L}^{k}\left(x_{0}\right)$ at x_{0}. Note that $\dot{\mathcal{L}}^{1}\left(x_{0}\right)=$ $T_{x_{0}}^{1,0}(b \Omega)+T_{x_{0}}^{0,1}(b \Omega)$. We say that x_{0} is of finite type if for some integer m we have $\dot{\mathcal{L}}^{m}\left(x_{0}\right)=$ $\mathbf{C} T_{x_{0}}(b \Omega)$ and if m is the least such integer we say that x_{0} is of type m.

Observe that if $f \in C^{\infty}\left(x_{0}\right)$ and $A \in \mathcal{L}^{k}\left(x_{0}\right)$ then $f A \in \mathcal{L}^{k}\left(x_{0}\right)$ since

$$
f\left[B_{1}, B_{2}\right]=B_{2}(f) B_{1}+\left[f B_{1}, B_{2}\right]
$$

so that if $B_{1} \in \mathcal{L}^{1}\left(x_{0}\right)$ and $B_{2} \in \mathcal{L}^{k-1}\left(x_{0}\right)$ then $f\left[B_{1}, B_{2}\right] \in \mathcal{L}^{k}\left(x_{0}\right)$.
Lemma 5.32. $x_{0} \in b \Omega$ is of type greater than or equal to m, with $m \geqslant 3$, if and only it whenever $A_{1}, \ldots, A_{k} \in \mathcal{L}^{1}\left(x_{0}\right)$, with $k<m-2$, then $A_{1} \ldots A_{k} c_{i j}\left(x_{0}\right)=0$ if $i, j<n$. Furthermore, x_{0} is of type 2 if and only if $c_{i j}\left(x_{0}\right) \neq 0$ for some i, j with $i, j<n$.

Proof. With our usual notation (see 2.20) we have

$$
\left[L_{i}, L_{j}\right]=c_{i j} T \bmod \mathcal{L}^{1}\left(x_{0}\right),
$$

if $i, j<n$. For any $S \in \mathbf{C} \boldsymbol{T}_{x_{0}}$ we have $S=a T \bmod \mathcal{L}^{1}\left(x_{0}\right)$. Thus by induction we obtain, when $i, j<n$

$$
\begin{equation*}
\left[A_{1},\left[A_{2}, \ldots,\left[A_{k},\left[L_{i}, L_{j}\right] \ldots\right]=\left(A_{1} \ldots A_{k}\left(c_{i j}\right)+R_{k i j}\left(c_{i j}\right)\right) T \bmod \mathcal{L}^{k+1}\left(x_{0}\right)\right.\right. \tag{5.33}
\end{equation*}
$$

where $R_{k i j}$ is a polynomial in the A_{1}, \ldots, A_{k} of degree less than k. The desired conclusion then follows by evaluating (5.33) at x_{0}.

Lemma 5.34. Suppose that $x_{0} \in b \Omega$ is of type greater than p and that $f \in C^{\infty 0}\left(x_{0}\right)$ has the properties that $f\left(x_{0}\right)=0$ and that $A_{1} \ldots A_{k} f\left(x_{0}\right)=0$ whenever $k<p$ and $A_{j} \in \mathcal{L}^{1}\left(x_{0}\right)$. Then if $A_{1}, \ldots, A_{p} \in \mathcal{L}^{1}\left(x_{0}\right)$ and if π is a permutation of $\{1, \ldots, p\}$ we have

$$
\begin{equation*}
A_{1} \ldots A_{p} f\left(x_{0}\right)=A_{\pi(1)} \ldots A_{\pi(p)} f\left(x_{0}\right) \tag{5.35}
\end{equation*}
$$

Furthermore, if for some choice of $A_{1}, \ldots, A_{p} \in \mathcal{L}^{1}\left(x_{0}\right)$, we have $A_{1} \ldots A_{p} f\left(x_{0}\right) \neq 0$ then there exists $A \in \mathcal{L}^{1}\left(x_{0}\right)$ such that $A^{p} f\left(x_{0}\right) \neq 0$. Finally, if in the last statement the A_{1}, \ldots, A_{p} are real then there exists a real $A \in \mathcal{L}^{1}\left(x_{0}\right)$ such that $A^{p} f\left(x_{0}\right) \neq 0$.

Proof. From (5.33) it follows that

$$
\begin{equation*}
A_{1} \ldots A_{p}=A_{\pi(1)} \ldots A_{\pi(p)}+\sum_{i, j<n} P_{i j}\left(c_{i f}\right) T+P_{p} \tag{5.36}
\end{equation*}
$$

where the $P_{i j}$ and P_{p} are polynomials in A_{1}, \ldots, A_{p} of degree less than p. Hence (5.35) follows by applying (5.36) to f and evaluating at x_{0}.

If $A_{1} \ldots A_{p} f\left(x_{0}\right) \neq 0$, let $A=\sum s_{j} A_{j}$. Then $A^{p} f\left(x_{0}\right)$ is a homogeneous polynomial in the s_{j} 's and the coefficient of $s_{1} \ldots s_{p}$ equals $p!A_{1} \ldots A_{p} f\left(x_{0}\right) \neq 0$. Hence the polynomial is not identically zero and so for some choice of the s_{j} we have $A^{p} f\left(x_{0}\right) \neq 0$. If the A, are real we can choose the s_{j} real and obtain a real A as required.

Proposition 5.37. $1 \in I_{m}^{n-1}\left(x_{0}\right)$ if and only if x_{0} is of finite type.
Proof. By Lemmas 5.32 and 5.34 it will suffice to prove that $1 \in I_{m}^{n-1}\left(x_{0}\right)$ is equivalent to the existence of $A \in \mathcal{L}^{1}\left(x_{0}\right)$ such that $A^{p}\left(c_{i j}\right) \neq 0$ with $p \geqslant 0$ and some $i, j<n$. From Lemma 5.27 it follows that if $A^{p}\left(c_{i j}\right) \neq 0$, with $A \in \mathcal{L}^{1}\left(x_{0}\right) i, j<n$ and $p \geqslant 0$ then $1 \in I_{p+1}^{n-1}\left(x_{0}\right)$.

Suppose that $l \in I_{m}^{n-1}\left(x_{0}\right)$ then there exists a function $f^{(1)} \in I_{m-1}^{n-1}\left(x_{0}\right)$ such that, for some $i<n, L_{i} f^{(1)} \neq 0$. Then there exist functions $f_{1}^{(2)}, \ldots, f_{k_{1}}^{(2)} \in I_{m-2}^{n-1}\left(x_{0}\right)$ and p_{1}, such that

$$
\left|f^{(1)}\right|^{2 p_{1}} \leqslant \sum_{s=1}^{n-1} \sum_{j=1}^{k_{2}}\left|L_{s} f_{j}^{(2)}\right|^{2}
$$

Let A be either $\operatorname{Re}\left(L_{i}\right)$ or $\operatorname{Im}\left(L_{i}\right)$ so that $A f^{(1)} \neq 0$. Then, by 5.9 , there exist s, j and q so that $A^{Q} L_{s} f_{j}^{(2)} \neq 0$. Let $f^{(2)}=f_{j}^{(2)}$ and let B be either $\operatorname{Re}\left(L_{s}\right)$ or $\operatorname{Im}\left(L_{s}\right)$ so that $A^{a} B f^{(2)} \neq 0$. Now suppose that x_{0} is of type greater than $q_{2}=q+1$ then, from Lemma 5.34, we conclude that there exists a real $A_{2} \in \mathcal{L}^{1}\left(x_{0}\right)$ and an integer q_{2} so that $A_{2}^{q_{2}} f^{(2)} \neq 0$. Similarly we obtain $f^{(8)} \in I_{m-8}^{n-1}\left(x_{0}\right)$ and a real $A_{3} \in \mathcal{L}^{1}\left(x_{0}\right)$ such that $A_{8}^{g_{8}} f^{(8)} \neq 0$. After repeating this procedure $m-1$ times we obtain $f^{(m-1)} \in I_{1}^{n-1}\left(x_{0}\right)$ and a real $A_{m-1} \in \mathcal{L}^{1}\left(x_{0}\right)$ so that $A_{m-1}^{q_{m} 1} f^{(m-1)} \neq 0$, further

$$
\left|f^{(m-1)}\right|^{2 p_{m-1}} \leqslant \sum_{1 . j<n}\left|c_{i j}\right|^{2}
$$

hence $A_{m-1}^{k} c_{i j} \neq 0$, for some k, i, \dot{j}, which, by 5.32 , concludes the proof.
Proposition 5.38. x_{0} is of type m if and only if reg $O^{n-1}\left(x_{0}\right)=m$.
Proof. Choose coordinates z_{1}, \ldots, z_{n} with origin at x_{0} so that $r=\operatorname{Re}\left(z_{n}\right)+F+O\left(|z|^{m+1}\right)$, where F is a mixed polynomial vanishing at 0 . Let

$$
\begin{aligned}
& L_{j}=\frac{\partial}{\partial z_{j}}-\frac{r_{2_{1}}}{r_{2 n}} \frac{\partial}{\partial z_{n}}, \quad j=1, \ldots, n-1, \\
& L_{n}=\frac{1}{r_{z_{n}}} \frac{\partial}{\partial z_{n}}, \\
& T=L_{n}-L_{n} .
\end{aligned}
$$

Let $V=\left\{z_{n} \mid z_{n}=0\right\}$. Then, by Lemma 5.14, $O\left(x_{0}, V\right)=m$ if and only if reg $O^{n-1}\left(x_{0}\right)=m$. We also have $O\left(x_{0}, V\right)=m$ if and only if there is some $i, j<n$ and $\alpha_{1}, \ldots, \alpha_{2 n-1}$ with $\alpha_{1}+\ldots+$ $\alpha_{2 n-2}=m-2$ such that

$$
\begin{equation*}
B_{1}^{\alpha_{1}} \ldots B_{2 n-2^{2}}^{\alpha_{2}{ }_{2}^{2}} F_{z_{i} \bar{z}_{j}}(0) \neq 0 \tag{5.39}
\end{equation*}
$$

and this expression equals zero whenever $i, j<n$ and $\alpha_{1}+\ldots+\alpha_{2 n-2}<m-2$, where

$$
B_{i}=\frac{\partial}{\partial z_{i}}, \quad B_{i+n-1}=\frac{\partial}{\partial \bar{z}_{i}}, \quad i=1, \ldots, n-1 .
$$

We will show that if $O\left(x_{0}, V\right) \geqslant m$ then

$$
\begin{equation*}
B_{2}^{\alpha_{1}} \ldots B_{2 n-2}^{\alpha_{2} n-2^{2}} F_{z_{1} z_{j}}(0)=A_{1}^{\alpha_{1}} \ldots{ }_{2 n}^{\alpha_{2} n--_{2}^{2}} c_{t_{i j}}(0) \tag{5.40}
\end{equation*}
$$

whenever $i, j<n$ and $\alpha_{1}+\ldots+\alpha_{2 n-1} \leqslant m-2$, where

$$
A_{i}=L_{i}, A_{i+n-1}=L_{i}, \quad i=1, \ldots, n-1
$$

The desired conclusion follows from (5.40) by applying Lemma 5.32. To prove (5.40) we first note that for $i, j<n$ we have

$$
c_{i j}=\boldsymbol{F}_{z_{i} \bar{z}_{j}}-\frac{r_{\bar{z}_{i}}}{r_{\bar{z}_{n}}} F_{z_{i} \bar{z}_{n}}-\frac{r_{z_{i}}}{r_{z_{n}}} F_{z_{n} \bar{z}_{j}}+\frac{r_{z i} \bar{z}_{j}}{\left|r_{z_{n}}\right|^{2}} F_{z_{n} \bar{z}_{n}}+O\left(|z|^{m-1}\right)=F_{z_{i} \bar{z}_{j}}+h_{i j} F_{z_{i}}+g_{i j} F_{\bar{z}_{j}}+O\left(|z|^{m-1}\right),
$$

where $h_{i j}, g_{i j} \in C^{\infty}\left(x_{0}\right)$. Furthermore

$$
A_{i}=\left\{\begin{array}{l}
B_{i}+h_{i} F_{z_{i}} \frac{\partial}{\partial z_{n}}, \quad i=1, \ldots, n-1 \\
B_{i}+g_{i} F_{z_{i-n+1}} \frac{\partial}{\partial z_{n}}, \quad i=n, \ldots, 2 n-2
\end{array}\right.
$$

where $h_{i}, g_{i} \in C^{\infty}\left(x_{0}\right)$. Now (5,40) is easily established by induction on $k=\alpha_{1}+\ldots+\alpha_{2 n-2}$.

§ 6. The real-analytic case

In this section we will suppose that r is real-analytic in a neighborhood of $x_{0} \in b \Omega$. We will deal only with real-analytic functions. We will denote by $\mathscr{A}\left(x_{0}\right)$ the set of germs of real-analytic functions at x_{0}. If $S \subset \mathscr{A}\left(x_{0}\right)$ then (S) denotes the ideal of germs of real-analytic functions generated by S and $\stackrel{\mathbf{R}}{\sqrt{S}}$ denotes the set of all $f \in \mathscr{A}\left(x_{0}\right)$ such that there exists an m and a $g \in S$ with $|f|^{m} \leqslant|g|$. In this section $I_{k}^{q}\left(x_{0}\right)$ will denote the ideal of germs of realanalytic functions defined by (1.22) where () and $\stackrel{R}{V}$ are interpreted as above. Before we enter into an examination of the ideals $I_{k}^{q}\left(x_{0}\right)$ we will state some properties of ideals of germs of real-analytic functions.

Let I be an ideal of germs of real-analytic functions at $0 \in \mathbf{R}^{p}$. Let $\mathcal{V}(I)$ denote the germ of the real-analytic variety defined by I; that is, if f_{1}, \ldots, f_{k} are generators of I which are defined on a neighborhood U of 0 , then $U \cap \mathfrak{V}(I)=\left\{x \in U \mid f_{j}(x)=0, j=1, \ldots, k\right\}$. If $x \in \mathfrak{\vartheta}(I)$ we denote by $\mathcal{J}_{x} \vartheta(I)$ the ideal of germs of real-analytic functions at x which vanish on $\mathcal{\vartheta}(I)$. The following is proved in [24].

Theorem 6.1. (Lojasiewicz). If I is an ideal of germs of real-analytic functions at $0 \in \mathbf{R}^{p}$, then $J_{0} \mathcal{V}(I)=\stackrel{\mathbf{R}}{\sqrt{I}}$.

As usual we will complexify \mathbf{R}^{p} by the embedding of \mathbf{R}^{p} into \mathbf{C}^{p} given by $z_{j}=x_{j}$, where x_{1}, \ldots, x_{p} are coordinates in \mathbf{R}^{p} and z_{1}, \ldots, z_{p} are coordinates in \mathbf{C}^{p}. If f is a real-analytic function on an open set $U \subset \mathbf{R}^{p}$ then there exists an open set $\tilde{U} \subset \mathbf{C}^{p}$ such that $\tilde{U} \cap \mathbf{R}^{p}=U$ and a holomorphic function f on $\tilde{\theta}$ such that $f=f$ on U. We call f the complexification of f,
and if I is an ideal of germs of real-analytic functions then we denote by I^{C} the ideal of germs of holomorphic functions generated by the complexifications of the elements of I. We will also denote by $\mathfrak{V}\left(I^{\mathbf{C}}\right)$ the germ of the complex-analytic variety defined by I^{C} and if $z \in \mathfrak{V}\left(I^{\mathbf{C}}\right)$ we will denote by $\mathcal{J}_{z} \mathcal{V}\left(I^{\mathbf{C}}\right)$ the ideal of germs of holomorphic functions at z that vanish on $\mathfrak{V}\left(I^{\mathrm{C}}\right)$.

Proposition 6.2. Let I be an ideal of germs of real-analytic functions at $0 \in \mathbf{R}^{p}$ such that $I=\sqrt[(\mathrm{R}]{I} \text {. Then we have }$

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{R}} \vartheta(I)=\operatorname{dim}_{\mathbf{C}} \mathfrak{V}\left(I^{\mathbf{C}}\right) . \tag{6.3}
\end{equation*}
$$

Proof. In Narasimhan [25], Proposition 1, page 91, it is shown that

$$
\left(J_{0} \vartheta(I)\right)^{\mathbf{c}}=J_{0} \mathfrak{V}\left(\left(J_{0} \vartheta(I)\right)^{\mathbf{c}}\right)
$$

Applying 6.1 we have

$$
\begin{equation*}
\mathcal{J}_{0} \mathfrak{U}\left(I^{\mathrm{c}}\right)=I^{\mathrm{c}} \tag{6.4}
\end{equation*}
$$

Then (6.3) follows by Proposition 3 of [25], p. 93.
H. Cartan in [4] shows that in \mathbf{R}^{3} if $I=\left(z\left(x^{2}+y^{2}\right)-x^{3}\right)$ then, for any $z \neq 0$, the ideal $\boldsymbol{J}_{(0,0,2)} \mathfrak{V}(I)$ is not generated by $J_{(0,0,0)} \mathfrak{V}(I)$. For our purposes this difficulty can be overcome by means of the following result.

Proposition 6.5. If I is an ideal of germs of real-analytic functions at $0 \in \mathbf{R}^{p}$ and if $I=\sqrt[\mathbf{R}]{I}$, then there exists a sequence of points $x^{(\nu)} \in \mathcal{V}(I)$ such that $x^{(\nu)}$ converges to 0 and such that each $x^{(\nu)}$ has a neighborhood U_{v} with the property that if $y \in U_{y} \cap \mathfrak{\vartheta}(I)$ then $\mathcal{J}_{y} \mathfrak{V}(I)$ is generated by the elements of 1 .

Proof. Let $m=\operatorname{dim}_{\mathbf{R}} \mathfrak{V}(I)$, then we can choose a sequence $x^{(\nu)} \in \mathfrak{V}(I)$ with $\lim _{v \rightarrow \infty} x^{(\nu)}=0$ such that $\vartheta(I)$ is regular and of dimension m at $x^{(v)}$ (see Theorem 1, page 41 of [25]). Let U_{v}^{\prime} be a neighborhood of $x^{(v)}$ such that every $y \in U_{v}^{\prime} \cap \vartheta(I)$ is a regular point of $\vartheta(I)$ and $\vartheta(I)$ has dimension m at y. Let $\tilde{U} \subset \mathbb{C}^{p}$ be a neighborhood of 0 such that for every $z \in \tilde{U} \cap$ $\mathfrak{O}\left(I^{\mathbf{C}}\right)$ the ideal $\mathcal{J}_{z} \mathfrak{V}\left(I^{\mathbf{C}}\right)$ is generated by elements of $I^{\mathbf{C}}$ (such a \tilde{U} exists by Oka's theorem). If $y \in \tilde{U} \cap U_{v}^{\prime} \cap \vartheta(I)$ then y is a regular point of $\mathcal{V}\left(I^{\mathbf{c}}\right)$ and so there exists $h_{1}, \ldots, h_{p-m} \in I^{\mathbf{c}}$ so that $\left(d h_{1}\right)_{y} \wedge \ldots \wedge\left(d h_{p-m}\right)_{y} \neq 0$. The restrictions of h_{1}, \ldots, h_{p-m} to \mathbf{R}^{p} are elements of I which generate $J_{\nu} \mathfrak{V}(I)$. Hence the neighborhoods $U_{v}=\hat{U} \cap U_{v}^{\prime}$ have the desired property.

Returning to our ideals $I_{k}^{q}\left(x_{0}\right)$ we let ϑ_{k}^{q} be the germ of a real-analytic variety at x_{0} given by

$$
\begin{equation*}
\mathfrak{v}_{k}^{g}\left(x_{0}\right)=\mathfrak{v}_{(}\left(I_{k}^{q}\left(x_{0}\right)\right) \tag{6.6}
\end{equation*}
$$

Definition 6.7. If I is an ideal of germs of analytic function at x_{0} and if $x \in \mathfrak{V}(I)$ then we define $Z_{x}^{1,0}(I)$ the Zariski tangent space of I at x as follows

$$
\begin{equation*}
Z_{x}^{1,0}(I)=\left\{L \in T_{x}^{1,0} \mid L(f)=0 \quad \text { if } f \in I\right\} \tag{6.8}
\end{equation*}
$$

If V is a germ of a real-analytic variety at x_{0} then we define

$$
\begin{equation*}
Z_{x}^{1,0}(V)=Z_{x}^{1,0}\left(\mathcal{J}_{x} V\right) \tag{6.9}
\end{equation*}
$$

The following is then immediate.
Lemma 6.10. If I is an ideal of germs of real-analytic functions at x_{0} and if $x \in \mathfrak{V}(I)$ then

$$
\begin{equation*}
Z_{x}^{1,0}(\mathfrak{Y}(I)) \subset Z_{x}^{1,0}(I) \tag{6.11}
\end{equation*}
$$

If $\mathscr{J}_{x} \mathfrak{V}(I)$ is generated by elements of I then equality holds in (6.11).
Proposition 6.12. If $x \in \vartheta_{k}^{q}\left(x_{0}\right)$ then $x \in \vartheta_{k+1}^{q}\left(x_{0}\right)$ if and only if

$$
\begin{equation*}
\operatorname{dim}\left(Z_{x}^{1,0}\left(I_{k}^{q}\left(x_{0}\right)\right) \cap n_{x}\right) \geqslant q \tag{6.13}
\end{equation*}
$$

where n_{x} is defined by:

$$
\begin{equation*}
n_{x}=\left\{L \in T_{x}^{1,0}(b \Omega) \mid\left\langle(\partial \bar{\partial} r)_{x}, L \wedge L\right\rangle=0\right\} \tag{6.14}
\end{equation*}
$$

Proof. If L_{1}, \ldots, L_{n} is the usual local basis of $T^{1,0}$ with $\left\langle L_{i}, \partial r\right\rangle=\delta_{i n}$ and $c_{i j}=\left\langle\partial \bar{\partial} r, L_{i} \wedge L_{j}\right\rangle$ so that ($c_{i j}$) with $i, j<n$ on $b \Omega$ is the Levi form; then $x \in \mathfrak{\vartheta}_{k+1}^{\sigma}\left(x_{0}\right)$ if and only if the following system has at least q linearly independent solutions.

$$
\begin{align*}
& \sum_{i=1}^{n-1} c_{i j}(x) \zeta_{i}=0, \quad j=1, \ldots, n-1 \\
& \sum_{i=1}^{n}\left[L_{i}(f)\right]_{x} \zeta_{i}=0, \quad f \in I_{k}^{q}\left(x_{0}\right) \tag{6.15}
\end{align*}
$$

For $x \in \vartheta_{k}^{\rho}\left(x_{0}\right)$ and $L=\sum_{i-1}^{n} \zeta_{i} L_{i}$ the above system characterizes those L such that $L_{x} \in Z_{x}^{1,0}\left(I_{k}^{0}\left(x_{0}\right)\right) \cap \eta_{x}$, which concludes the proof.

Definition 6.16. If V is a real-analytic variety contained in $b \Omega$ we define the holomorphic dimension of V by

$$
\begin{equation*}
\text { hol. } \operatorname{dim}(V)=\min _{x \in V} \operatorname{dim} Z_{x}^{1,0}(V) \cap \eta_{x} \tag{6.17}
\end{equation*}
$$

Proposition 6.18. If $V \subset U \cap b \Omega$ is a real-analytic variety and if hol. $\operatorname{dim}(V) \geqslant q$ then $V \subset \mathfrak{w}_{m}^{(}\left(x_{0}\right)$ for all m.

Proot. If $x \in V$ then $\operatorname{dim} \eta_{x} \geqslant q$ hence $x \in \vartheta_{1}^{q}\left(x_{0}\right)$, so that $V \subset \vartheta_{1}^{q}\left(x_{0}\right)$. Assume that $V \subset \vartheta_{k}^{q}\left(x_{0}\right)$, then, applying (6.10), we obtain for $x \in V$:

$$
\begin{equation*}
Z_{x}^{1,0}(V) \subset Z_{x}^{1,0}\left(\vartheta_{k}^{q}\left(x_{0}\right)\right) \subset Z_{x}^{1,0}\left(I_{k}^{q}\left(x_{0}\right)\right) . \tag{6.19}
\end{equation*}
$$

Then, intersecting the above with Π_{x} and applying Proposition 6.12 we conclude that $x \in \mathfrak{V}_{k+1}^{g}\left(x_{0}\right)$ hence $V \subset \mathfrak{\vartheta}_{k+1}^{q}\left(x_{0}\right)$ so that $V \subset \mathfrak{Y}_{m}^{\varrho}\left(x_{0}\right)$ for all m.

Proposition 6.20. If for every real-analytic variety $V \subset U \cap b \Omega$ we have hol. $\operatorname{dim}(V)<q$ then $\vartheta_{2 n}^{q}\left(x_{0}\right)=\varnothing$.

Proof. We will show that, if $\vartheta_{k}^{q}\left(x_{0}\right) \neq \varnothing$, then

$$
\begin{equation*}
\operatorname{dim} \vartheta_{k}^{q}\left(x_{0}\right)>\operatorname{dim} \mathfrak{\vartheta}_{k+1}^{q}\left(x_{0}\right) . \tag{6.21}
\end{equation*}
$$

Suppose (6.21) does not hold. Then, these dimensions are equal and hence in an open set W with the property that every $y \in W \cap \vartheta_{k+1}\left(x_{0}\right)$ is a regular point at which the dimension of $\vartheta_{k+1}^{q}\left(x_{0}\right)$ is maximal, we have $W \cap \vartheta_{k}^{q}\left(x_{0}\right)=W \cap \vartheta_{k+1}^{g}\left(x_{0}\right)$. Now by 6.5 we can choose such a $W \subset U$ so that for each $y \in W \cap \vartheta_{k}^{q}\left(x_{0}\right)$ the ideal $\mathscr{y}_{y} \vartheta_{k}^{q}\left(x_{0}\right)=\mathcal{J}_{y} \vartheta_{k+1}^{g}\left(x_{0}\right)$ is generated by the elements of $I_{k}^{q}\left(x_{0}\right)$. Hence by Proposition 6.12 we conclude that hol. $\operatorname{dim} W \cap \mathfrak{V}_{k}^{q}\left(x_{0}\right) \geqslant q$, which is a contradiction. Hence (6.21) holds and the conclusion follows since dim $\vartheta^{q}\left(x_{0}\right) \leqslant$ $\operatorname{dim} b \Omega=2 n-1$.

It then follows that if in some neighborhood U of x_{0} there is no $V \subset U \cap b \Omega$ with hol. $\operatorname{dim} V \geqslant q$ then $l \in I_{2 n}^{q}\left(x_{0}\right)$ and hence a subelliptic estimate holds at x_{0} for (p, q)-forms. Observe that if W is a complex-analytic variety with $W \subset b \Omega$ then hol. $\operatorname{dim} W=\operatorname{dim} W$ since then $Z_{x}^{1.0}(W) \subset \eta_{x}$ for all $x \in W$. The converse of this is the following deep result of Diederich and Fornaess (see [9]).

Theorem 6.22. (Diederich and Fornaess). If Ω is pseudo-convex, if r is analytic in a neighborhood U of $x_{0} \in b \Omega$ and if there exists a real analytic variety $V \subset U \cap b \Omega$ with hol. $\operatorname{dim}(V)=q$ then there exists a complex-analytic variety $W \subset U \cap b \Omega$ with $\operatorname{dim} W=q$.

Using this theorem we see that a subelliptic estimate holds if there are no complexanalytic varieties of dimension greater or equal to q in some neighborhood of x_{0}. Actually, this is equivalent to the condition that there is no variety in $b \Omega$ of dimension q which contains x_{0}, by a result that was obtained by J. Fornaess and which is given below. The proof given here is also due to Fornaess; it uses the methods developped in [9].

Theorem 6.23. (Fornaess.) If W_{k} is a sequence of complex varieties with $\operatorname{dim} W_{k} \geqslant q$, $W_{k} \subset b \Omega$ and x_{0} a cluster point of this sequence them there exists a complex variety W such that $\operatorname{dim} W \geqslant q, W \subset b \Omega$ and $x_{0} \in W$.

Choose a neighborhood U of x_{0} such that the Taylor series of r about x_{0} converges in U. Let \tilde{r} be the complexification of r. Now we need the following result which is proved in section 6 of [9].

Proposition 6.24. There exists a neighborhood U^{\prime} of x_{0} such that $U^{\prime} \subset U$ and such that if W is an irreducible complex-analytic variety in $U^{\prime} \cap b \Omega$ then there exists a complex analytic variety W^{\prime} such that $W \subset W^{\prime} \subset U^{\prime} \cap b \Omega$ and such that W is closed in U^{\prime}; that is: $\bar{W}^{\prime} \cap U^{\prime}=W^{\prime}$. Furthermore, for any complex analytic variety $W \subset U^{\prime} \cap b \Omega$ we have $\tilde{r}(z, \bar{w})=0$ whenever $z, w \in W$.

Proof of Theorem 6.23. We may suppose that the W_{k} are closed irreducible varieties contained in $U^{\prime} \cap b \Omega$. Let $p^{(1)}$ be a cluster point of the W_{k}, then we can find a subsequence, which we also denote by $\left\{W_{k}\right\}$ such that $p_{k}^{(1)} \in W_{k}$ and $p^{(1)}=\lim _{k \rightarrow \infty} p_{k}^{(1)}$. Now, let $p^{(2)}$ be a cluster point of this subsequence whose distance from $p^{(1)}$ is maximal. We then choose a further subsequence $\left\{W_{k}\right\}$ such that $p_{k}^{(2)} \in W_{k}$ and $\lim _{k \rightarrow \infty} \mathcal{F}_{k}^{(2)}=p^{(2)}$. Proceeding inductively and using diagonalization we finally obtain a sequence $\left\{W_{k}\right\}$ and for each m we have $p_{k}^{(m)} \in W_{k}$ and $\lim _{k \rightarrow \infty} p_{k}^{(m)}=p^{(m)}$. If C denotes the set of cluster points of $\left\{W_{k}\right\}$; then the sequence $\left\{p^{(m)}\right\}$ is dense in C. For every k we have $p_{k}^{(i)}, p_{k}^{(i)} \in W_{k}$ hence $\tilde{r}\left(p_{k}^{(i)}\right.$, $\left.\bar{p}_{k}^{(\lambda)}\right)=0$ and hence if p and $p^{\prime} \in C$ we have $\tilde{r}\left(p, \bar{p}^{\prime}\right)=0$. Let W^{\prime} be defined by

$$
\begin{equation*}
W^{\prime}=\bigcap_{p^{\prime} \in C}\left\{p \in U^{\prime} \mid \tilde{r}\left(p, \tilde{p}^{\prime}\right)=0\right\} . \tag{6.24}
\end{equation*}
$$

Thus W^{\prime} is a closed complex-analytic variety contained in U^{\prime} and $W^{\prime} \supset C$; furthermore, if $w^{\prime} \in W$ and $c \in C$ then we have

$$
\begin{equation*}
\tilde{r}\left(w^{\prime}, \tilde{c}\right)=\tilde{r}\left(c, \bar{w}^{\prime}\right)=0 \tag{6.25}
\end{equation*}
$$

Let W be defined by

$$
\begin{equation*}
W=\bigcap_{w^{\prime} \in w^{\prime}}\left\{w \in U^{\prime} \mid \tilde{r}\left(w, \bar{w}^{\prime}\right)=0\right\} \tag{6.26}
\end{equation*}
$$

Then $C \subset W \subset W^{\prime}$ and if $w \in W$ we have $r(w)=\tilde{r}(w, \bar{w})=0$. Hence W is a closed complexanalytic subvariety of $U^{\prime} \cap b \Omega$, it remains to show that $\operatorname{dim} W \geqslant q$. Consider the stratification $W_{0} \subset W_{1} \subset \ldots \subset W_{1}=W$, where the W_{j} are the singular points of W_{j+1} for $j=1, \ldots, l-1$.

Let d be the smallest integer such that $C-W_{d}$ does not cluster at x_{0}. Let W^{1}, \ldots, W^{s} be the irreducible germs of W_{d}. Then $\left(W^{i}-W_{d-1}\right) \cap C$ clusters at x_{0} for some $i \in\{1, \ldots, s\}$.

Fix such an i. It suffices to show that $\operatorname{dim} W^{t} \geqslant q$. Choose $p^{(m)} \in W^{i}-W_{d-1}$ and a neighborhood $U^{\prime \prime}$ of $p^{(m)}$ such that $U^{\prime \prime} \cap W^{i}$ consists of regular points of W^{\prime} and $U^{\prime \prime} \cap C$ in contained in W^{i}. Let $\eta_{1}, \ldots, \eta_{n}$ be holomorphic coordinates with origin at $p^{(m)}$ such that $\Delta \subset U^{\prime \prime}$ and

$$
W^{i} \cap \Delta=\left\{\left(\eta_{1}, \ldots, \eta_{n}\right) \in \Delta \mid \eta_{t+1}=\ldots=\eta_{n}=0\right\}
$$

where $\Delta=\left\{\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbf{C}^{n}| | \eta_{j} \mid<1, j=1, \ldots, n\right\}$ and $t=\operatorname{dim} W^{i}$. Then on points of $C \cap \Delta$ we have $\eta_{t+1}=\ldots=\eta_{n}=0$. Let $\tilde{\Delta}=\left\{\eta| | \eta_{j} \left\lvert\,<\frac{1}{2}\right., j=1, \ldots, n\right\}$. It then follows, if k is sufficiently large, that

$$
W_{k} \cap \tilde{\Delta} \subset\left\{\eta \in \tilde{\Delta}| | \eta_{j} \left\lvert\,<\frac{1}{4}\right., j=t+1, \ldots, n\right\} .
$$

Hence the map

$$
\pi_{k}: W_{k} \cap \tilde{\Delta} \rightarrow\left\{\left(\eta_{1}, \ldots, \eta_{t}\right)| | \eta_{j} \left\lvert\,<\frac{1}{2}\right., j=1, \ldots, t\right\}
$$

is proper. This is only possible if $\operatorname{dim} W_{k} \leqslant t$. Hence $\operatorname{dim} W \geqslant q$ since $\operatorname{dim} W_{k} \geqslant q$ and $t=$ $\operatorname{dim} W^{i} \leqslant \operatorname{dim} W$.

The above results are then summarized by the following theorem.
Theormm 6.27. Assume that Ω is pseudo-convex, $x_{0} \in b \Omega$ and r is real-analytic in a neighborhood of x_{0}. Then the following conditions are equivalent:
(a) $1 \in I_{k}^{q}\left(x_{0}\right)$ for some k.
(b) There exists a neighborhood U of x_{0} such that $U \cap b \Omega$ does not contain any complex analytic varieties of dimension q.
(c) If W is a germ of a complex-analytic variety at x_{0} such that $W \subset b \Omega$ then $\operatorname{dim} W<q$.

Theorem 1.19 then follows since (a) implies that $x_{0} \in \mathcal{E}^{q}$.

87. Some special domains

In this section we consider domains $\Omega \subset \mathbf{C}^{n}$ whose defining function r is given, near the origin, by:

$$
\begin{equation*}
r\left(z_{1}, \ldots, z_{n}\right)=\operatorname{Re}\left(z_{n}\right)+\sum_{j=1}^{m}\left|h_{j}\left(z_{1} \ldots, z_{n}\right)\right|^{2}+a \tag{7.1}
\end{equation*}
$$

where h_{1}, \ldots, h_{m} are holomorphic functions, $a \in \mathbf{R}$ and $r(0, \ldots, 0)=0$; so that

$$
a=-\sum_{j=1}^{m}\left|h_{j}(0, \ldots, 0,0)\right|^{2}
$$

Then we have

$$
\begin{equation*}
r_{z_{k} z_{i}}=\sum_{j=1}^{m} h_{j z_{k}} \hbar_{j z_{i}} \tag{7.2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{k . i=1}^{n} r_{z_{k} \bar{z}_{i}} \zeta_{k} \zeta_{i}=\sum_{j=1}^{m}\left|\sum_{k=1}^{n} h_{z_{k}} \zeta_{k}\right|^{2} . \tag{7.3}
\end{equation*}
$$

Thus, the domain is pseudo-convex.
Proposition 7.4. If W is a germ of a complex-analytic variety such that $W \subset b \Omega$ then the functions z_{n} and h_{j} are constant on W. In particular, if W contains the origin then W is contained in the variety V given by $V=\left\{z_{n}=0, h_{f}\left(z_{1}, \ldots, z_{n}\right)=h_{j}(0, \ldots, 0)\right.$ for $\left.j=1, \ldots, m\right\}$. Note that $V \subset b \Omega$.

Proof. Let $z^{0}=\left(z_{1}^{0}, \ldots, z_{n}^{0}\right)$ be a regular point of W. Let $z_{n}^{\prime}=z_{n}-z_{n}^{0}$, then by Lemma 5.12 we have $z_{n}^{\prime}=0$ on W. We choose coordinates $z_{1}^{\prime}, \ldots, z_{n}^{\prime}$ with origin at z^{0} so that, in a neighborhood of z^{0} the variety W is given by $z_{p+1}^{\prime}=\ldots=z_{n}^{\prime}=0$. Let h_{j}^{\prime} be the function given by $h_{j}^{\prime}\left(z^{\prime}\right)=h_{f}\left(z\left(z^{\prime}\right)\right.$), then we have

$$
\begin{equation*}
r\left(z^{\prime}\right)=\operatorname{Re}\left(z_{n}^{\prime}\right)+\sum_{j=1}^{m}\left|h_{j}^{\prime}\left(z^{\prime}\right)\right|^{2}+a+\operatorname{Re}\left(z_{n}^{0}\right) . \tag{7.5}
\end{equation*}
$$

Evaluating r on W we obtain

$$
\begin{equation*}
\sum_{j=1}^{m}\left|h_{f}^{\prime}\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}, 0, \ldots, 0\right)\right|^{2}=-a-\operatorname{Re}\left(z_{n}^{0}\right) \tag{7.6}
\end{equation*}
$$

Applying $\partial^{2} / \partial z_{k}^{\prime} \partial z_{k}^{\prime}$ to (7.6) and summing on k gives

$$
\begin{equation*}
\sum_{k=1}^{p-1} \sum_{j=1}^{m}\left|\frac{\partial h_{j}^{\prime}}{\partial z_{k}^{\prime}}\left(z_{1}^{\prime}, \ldots, z_{p}^{\prime}, 0, \ldots, 0\right)\right|^{2}=0 \tag{7.7}
\end{equation*}
$$

Hence the h_{j} are constant on W.
Applying Theorem 6.27 we find that the following conditions are equivalent.
(a) $1 \in I_{k}^{q}(0)$ for some k.
(b) $\operatorname{dim} V<q$.
(c) $\operatorname{dim}\left\{z_{n}=z_{n}^{0}, h_{j}=h_{y}\left(z^{0}\right)\right\}<q$, where z^{0} is close to the origin.

Observe that

$$
\begin{equation*}
\partial r \wedge(\partial \bar{\partial} r)^{n-q}=\frac{\downarrow}{4} d z_{n} \wedge\left(\sum_{j} \partial h_{j} \wedge \overline{\partial h}_{j}\right)^{n-q}+\ldots \tag{7.8}
\end{equation*}
$$

where the dots represent forms in which either ∂h_{j} or $\overline{\partial \bar{h}}$, appears as factor at least $n-q+1$ times.

Definition 7.9. Let $J_{k}^{q}(0)$ denote ideals of germs of holomorphic functions at 0 defined by

$$
J \mathcal{P}(0)=\sqrt{\left(\text { coeff. }\left\{d z_{n} \wedge d h_{f_{1}} \wedge \ldots \wedge d h_{f_{n-q}}\right\}\right)}
$$

and

$$
J_{k}^{q}(0)=\sqrt{\left(J_{k-1}^{q}(0), \text { coeff. }\left\{d f_{1} \wedge \ldots \wedge d f_{n-q+1}\right\} \quad \text { where } f_{k} \in J_{k-1}^{q}(0) \cup\left\{z_{n}, h_{;}\right\}\right)}
$$

We set

$$
J^{q}(0)=\bigcup_{k} J_{k}^{q}(0)
$$

Proposition 7.10. The conditions (a), (b) and (c) are equivalent to $1 \in J^{q}(0)$. Furthermore, if $1 \notin J^{q}(0)$ then $\operatorname{dim} V \geqslant q$, where $V=\left\{z \mid z_{n}=0, h_{f}(z)=h_{j}(0), j=1, \ldots, m\right\}$.

Proof. We will show that (b) is equivalent to $1 \in J^{q}(0)$. The proof is along the same lines as that of Proposition 6.20; it is much simpler because it is based only on properties of ideals of holomorphic functions.

Suppose that $\operatorname{dim} V<q$, define \boldsymbol{F}_{z} by

$$
\begin{equation*}
\mathcal{F}_{z}=\left\{L \in T_{z}^{1,0} \mid L\left(z_{n}\right)=L\left(h_{j}\right)=0\right\} . \tag{7.11}
\end{equation*}
$$

Suppose $1 \ddagger J_{k}^{q}(0)$ and let A be an open subset of reg $\vartheta\left(J_{k}^{q}(0)\right)$ which is so close to the origin that (c) is satisfied for all $z^{0} \in A$. If $z \in A$ and $z \in \mathfrak{V}\left(J_{k+1}^{q}(0)\right)$ then, since (by Oka's theorem) $\boldsymbol{J}_{z}\left(\mathfrak{\vartheta}\left(J_{k}^{q}(0)\right)\right.$ is generated by $J_{k}^{q}(0)$, we have (by Cramer's rule)

$$
\begin{equation*}
\operatorname{dim}\left(Z_{2}^{1,0} \mathcal{V}\left(J_{k}^{\ell}(0)\right) \cap \mathcal{I}_{z}\right\rangle \geqslant q \tag{7.12}
\end{equation*}
$$

If there were an open subset $A^{\prime} \subset A$ with $A^{\prime} \subset \mathfrak{V}\left(J_{k+1}^{\mathcal{Z}}(0)\right)$ then A^{\prime} would contain an open subset $A^{\prime \prime}$ on which the left hand side of (7.12) is constant. Hence, by the Frobenius theorem, $A^{\prime \prime}$ is a complex manifold of dimension greater or equal to q. On the other hand if $z^{0} \in A^{\prime \prime}$ then for each $z \in \operatorname{reg} A^{\prime \prime}$ we have $T_{z}^{1,0}\left(A^{\prime \prime}\right)$ is a subspace of the tangent space to $\left\{z \mid z_{n}=\right.$ $\left.z_{n}^{0}, h_{j}(z)=z_{n}^{0}\right\}$, which contradicts (c). Hence A cannot have an open subset contained in $\mathfrak{V}\left(J_{k+1}^{q}(0)\right)$ and therefore $\operatorname{dim} \mathfrak{V}\left(J_{k+1}^{q}(0)<\operatorname{dim} \vartheta\left(J_{k}^{q}(0)\right)\right.$. Thus we conclude inductively that $\mathfrak{V}\left(J^{q}(0)\right)=\varnothing$, so that $1 \in J^{q}(0)$.

If, conversely, $\operatorname{dim} V \geqslant q$, then (7.12) holds at all points of $z \in V^{\prime}$, where V^{\prime} denotes the union of components of V of dimension greater or equal to q. Hence $V^{\prime} \subset \mathfrak{\vartheta}\left(J_{k}^{q}(0)\right)$ for all k and thus $1 \ddagger J_{k}^{q}(0)$.

Observe that in the above proposition z_{n} plays the same role as the h_{j}; hence, we obtain the following result, whose proof is analogous to the one given above.

Theorem 7.13. Let h_{0}, \ldots, h_{m} be germs of holomorphic functions at $0 \in \mathbb{C}^{n}$ and let $V=$ $\left\{z \mid h_{j}(z)=0, j=0, \ldots, m\right\}$. Define the ideals of germs J_{k}^{q} as follows

$$
J_{\mathrm{q}}^{q}=\sqrt{\left(\text { coeff. }\left\{d \bar{h}_{j_{0}} \wedge \ldots \wedge d h_{f_{n-q}}\right\}\right)},
$$

where $\left(j_{0}, \ldots, j_{n-q}\right)$ range over all $(n-q+1)$-tuples of integers from 0 to m; inductively we let

$$
J_{k+1}^{q}=\sqrt{\prime}\left(J_{k}^{q},\left\{\text { coeff. }\left(d f_{0} \wedge \ldots \wedge d f_{n-q}\right)\right\}, f_{j} \in J_{k}^{q} \cup\left\{h_{0}, \ldots, h_{m}\right\}\right) .
$$

We set $J^{q}=\bigcup_{k} J_{k}^{q}$. Note that $J^{0} \subset J^{1} \subset \ldots \subset J^{n}$. Let q_{0} be the unique integer such that $1 \in J^{q}$ if $q>q_{0}$ and $1 \ddagger J^{q}$ if $q \leqslant q_{0}$. Then $\operatorname{dim} V=q_{0}$.

§ 8. Estimates of ($\boldsymbol{p}, \boldsymbol{n} \mathbf{- 1}$)-forms

In this section we prove the following which is an extension of the main result in [20e].
Theorem 8.1. If Ω is pseudo-convex $x_{0} \in b \Omega$ and if reg $O^{n-1}\left(x_{0}\right)=m$ then $x_{0} \in \mathcal{E}^{n-1}(1 / m)$.
Proof. If $\varphi \in D_{\dot{U}}^{0, n-1}$, where U is a neighborhood of x_{0}, we can write

$$
\begin{equation*}
\varphi=u \bar{\omega}^{1} \wedge \ldots \wedge \bar{\omega}^{n-1}+\psi \wedge \bar{\omega}^{n} \tag{8.2}
\end{equation*}
$$

where $\psi=0$ on $b \Omega$, then we have

$$
\begin{equation*}
Q(\varphi, \varphi) \sim \sum_{i=1}^{n-1}\left\|L_{i} u\right\|+\sum_{i=1}^{n}\left\|L_{i} u\right\|+\|u\|^{2}+\|\psi\|_{1}^{2} \tag{8.3}
\end{equation*}
$$

Thus to show that $x_{0} \in \mathcal{E}^{n-1}(1 / m)$ it suffices to prove that

$$
\begin{equation*}
\|u\| \|_{1 / m}^{2} \leqslant \text { const. }\left(\sum_{i=1}^{n-1}\left\|L_{i} u\right\|^{2}+\sum_{i=1}^{n}\left\|L_{i} u\right\|^{2}+\|u\|^{2}\right) \tag{8.4}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(U \cap \bar{\Omega})$.
We first reduce the estimate (8.4) to an estimate on the boundary, following a procedure developed by L. Hörmander (see [17b]) and which was applied to the D-Neumann problem by W. Sweeney (see [31 a]).

Applying Proposition 5.8 of [31 a] we conclude that there exists a pseudo-differential operator P of order one operating on $C_{0}^{\infty 0}(U \cap b \Omega)$, such that (8.4) holds if and only if:

$$
\begin{equation*}
\|u\|_{1 / m}^{2} \leqslant \text { const. }\left(\sum_{i=1}^{n-1}\left(^{\prime}\left\|L_{i} u\right\|^{2}+{ }^{\prime}\left\|L_{i} u\right\|^{2}\right)+\prime\|P u\|^{2}+{ }^{\prime}\|u\|^{2}\right), \tag{8.5}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(U \cap b \Omega)$, where ' $\|\|$ denotes norms on $U \cap b \Omega$.

Setting:

$$
X_{i}=\left\{\begin{array}{l}
L_{i}+L_{i}, \quad i=1, \ldots, n-1 \tag{8.6}\\
\sqrt{-1}\left(L_{i-n+1}-L_{i-n+1}\right), \quad i=n, \ldots, 2 n-2,
\end{array}\right.
$$

we have, by Lemma 5.32, that $\left[X_{i_{1}},\left[X_{i_{v}}, \ldots,\left[X_{i_{p-1}}, X_{i_{p}}\right]\right.\right.$...] for $p \leqslant m$ span the tangent vector fields on $U \cap b \Omega$, when U is small. In [17c], Hörmander proves that this condition implies that for each $\varepsilon<1 / m$ there exists C such that

$$
\begin{equation*}
\prime\|u\|_{\varepsilon}^{2} \leqslant C\left(\sum_{i=1}^{2 n-2} \prime\left\|X_{1} u\right\|^{2}+{ }^{\prime}\|u\|^{2}\right), \quad \text { for all } u \in C_{0}^{\infty}(U \cap b \Omega) \tag{8.7}
\end{equation*}
$$

In [27], E. Stein and L. Rothschild, proves that (8.7) holds also for $\varepsilon=1 / \mathrm{m}$. From this (8.5) follows, since

$$
\begin{equation*}
\sum_{i=1}^{n-1}\left(^{\prime}\left\|L_{i} u\right\|^{2}+{ }^{\prime}\left\|L_{i} u\right\|^{2}\right)+\|u\|^{2} \sim \sum_{i=1}^{2 n-2}\left\|X_{i} u\right\|^{2}+\prime\|u\|^{2} . \tag{8.8}
\end{equation*}
$$

The operator P that appears in (8.5) can be described quite explicitly using the results of [17b] and [31 a]. The principal symbol of P, denoted by p is given by

$$
\begin{equation*}
p(t, \tau)=-\sigma_{t}(T, \tau)+\sqrt{\left|\sigma_{\tau}(T, \tau)\right|^{2}+\sum_{j=1}^{n-1}\left|\sigma_{t}\left(L_{j}, \tau\right)\right|^{2}} \tag{8.9}
\end{equation*}
$$

where $t \in U \cap b \Omega, \tau \in \Lambda^{1}\left(T_{t}(b \Omega)\right), T=L_{n}-L_{n}$ and $\sigma_{t}(T, \tau)$ denotes the symbol of T evaluated at τ.

§ 9. Propagation of singularities for $\bar{\partial}$

In [20e] we discussed propagation of singularities for $\bar{\partial}$ on Levi-flat domains in \mathbf{C}^{2}, here we will give a natural generalization of this for domains in \mathbf{C}^{n} whose boundary contains a germ of a complex-analytic curve.

Definition 9.1. If $\alpha \in L_{2}^{p, q}(\Omega)$ we define the singular support of α to be the closed subset of $\bar{\Omega}$, denoted by sing. supp. (α), as follows. If $x \in \bar{\Omega}$ then $x \notin \operatorname{sing}$. supp. (α) if there exists a neighborhood U of x such that the restriction of α to $U \cap \bar{\Omega}\left(\right.$ denoted by $\left.\left.\alpha\right|_{U \cap \bar{\Omega}}\right)$ is in C^{∞}.

An immediate consequence of Theorem 1.13 is the following.
Theorem 9.2. If Ω is pseudo-convex and $\alpha \in L_{2}^{p . q}(\Omega)$ with $\bar{\partial} \alpha=0$ then there exist $u \in L_{2}^{p, q-1}(\Omega)$ such that $\bar{\partial} u=\alpha$. Furthermore, if $x_{0} \in \mathcal{E}^{q}$ then there exists a neighborhood U of x_{0} such that

$$
\begin{equation*}
U \cap \text { sing. supp. }(u) \subset \text { sing. supp. }(\alpha), \tag{9.3}
\end{equation*}
$$

where $u \in L_{2}^{p, \alpha-1}(\Omega)$ is the unique solution of $\bar{\partial} u=\alpha$ which is orthogonal to the null space of $\bar{\partial}$.

Definition 9.4. Let $x_{0} \in b \Omega$ we say that Ω admits a local holomorphic separating function at x_{0} if there exists a neighborhood U of x_{0} and a holomorphic function g on U such that $g\left(x_{0}\right)=0$ and whenever $\operatorname{Re} g(x)=0$ then $x \notin U \cap \Omega$.

The example in [21 a] shows that this condition is rather restrictive. Recent results of Bedford and Fornaess (see [1]) indicate that peak functions can substitute for separating functions in many applications.

Proposition 9.5. Suppose Ω is pseudo-convex, that $x_{0} \in b \Omega$ and that the following hypotheses are satisfied:
(a) Ω admits a local holomorphic separating function g at x_{0} such that $d g \neq 0$.
(b) There is a complex-analytic curve V such that $x_{0} \in V$ and $V \subset b \Omega$.
(c) g vanishes on V.

Then for any neighborhood U of x_{0} there exists an open set $U^{\prime} \subset U$ and a form $\alpha \in L_{2}^{0.1}(\Omega)$, with $\bar{\partial} \alpha=0$, such that $U^{\prime} \cap$ sing. supp. $(\alpha)=\varnothing$ and for every $u \in L_{2}(\Omega)$ which satisfies $\bar{\partial} u=\alpha$ we have $U^{\prime} \cap$ sing. supp. $(u) \neq \varnothing$.

Proof. Let z_{1}, \ldots, z_{n} be holomorphic coordinates with origin at x_{0} such that $z_{n}= \pm g$, where the sign is chosen so that $\operatorname{Re}\left(z_{n}\right) \leqslant 0$ in Ω (near x_{0}). Let $a \in U \cap \operatorname{reg}(V)$ and let $\varrho \in C_{0}^{\infty}(U)$, such that $\varrho(z)=1$ if $|z-a| \leqslant \gamma$ and $\varrho(z)=0$ if $|z-a| \geqslant 2 \gamma$; where γ is so small that if z satisfies $|z-a| \leqslant 3 \gamma$ then: $z \in U$; $\operatorname{Re}\left(z_{n}\right) \leqslant 0$ if $z \in \bar{\Omega}$ and also if $z \in V$ then $z \in \operatorname{reg} V$.

We define α by:

$$
\alpha=\left\{\begin{array}{l}
\left(-z_{n}\right)^{-1 / 4} \bar{\partial} \varrho \text { in } U \cap \bar{\Omega} \tag{9.6}\\
0 \quad \text { outside of } U \cap \bar{\Omega},
\end{array}\right.
$$

where we choose the principal value of $\left(-z_{n}\right)^{-1 / 4}$. Observe that $\bar{\partial} \alpha=0$, that $\alpha \in L_{2}^{0,1}(\Omega)$ and that

$$
\begin{equation*}
\text { sing. supp. }(\alpha)=\left\{z \in U \cap \Omega\left|\gamma \leqslant|z-a| \leqslant 2 \gamma \text { and } z_{n}=0\right\}\right. \tag{9.7}
\end{equation*}
$$

Let K be a small closed neighborhood of the above set and let $U^{\prime}=U-K$. Then we have $U^{\prime} \cap$ sing. supp. $(\alpha)=\varnothing$. Suppose there exists a function $u \in L_{2}(\Omega)$ such that $\bar{\partial} u=\alpha$ and suppose that $U^{\prime} \cap$ sing. supp. $(u)=\varnothing$. Let $h=u-\left(-z_{n}\right)^{-1 / 4} \varrho$. Then h is holomorphic. For small δ we restrict h to the set $\left\{z\left||z-a|<4 \gamma, z_{j}=a\right.\right.$, for $j=2, \ldots, n-1$ and $\left.z_{n}=-\delta\right\}$ and we obtain the function of one variable f_{δ} defined by

$$
\begin{equation*}
f_{\delta}\left(z_{1}\right)=u\left(z_{1}, a_{2}, \ldots, a_{n-1},-\delta\right)-\frac{\varrho\left(z_{1}, a_{2}, \ldots, a_{n-1},-\delta\right)}{\delta^{1 / 4}} \tag{9.8}
\end{equation*}
$$

The assumption that $U^{\prime} \cap$ sing. supp. $(u)=\varnothing$ implies that $u\left(a_{1}, \ldots, a_{n-1},-\delta\right)$ is bounded independently of δ and that $u\left(z_{1}, a_{2}, \ldots, a_{n-1},-\delta\right)$ evaluated on the set $\left\{z_{1}| | z_{1}-a_{1} \mid=3 \gamma\right\}$ is bounded independently of δ, (for $\delta<\gamma$). Hence from (9.8) we conclude that $f_{\delta}\left(z_{1}\right)$ is bounded independently of δ on the circle $\left|z_{1}-a_{1}\right|=3 \gamma$ (since $\varrho=0$ there) and that $\left|f_{\delta}\left(a_{1}\right)\right|>1 / \delta^{1 / 4}-M$, where M is the bound of $\left|u\left(a_{1}, \ldots, a_{n-1},-\delta\right)\right|$. Since f_{δ} is holomorphic the value $f_{\delta}\left(a_{1}\right)$ is an average of the values of f_{δ} on the circle $\left|z_{1}-a_{1}\right|=3 \gamma$; which, for small δ, is a contradiction. Hence $U^{\prime} \cap$ sing. supp. $(u) \neq \varnothing$.

References

[1]. Bedford, E. \& Fornaess, J. E., A construction of peak functions on weakly pseudoconvex domains. Preprint.
[2]. Bloom, T. \& Graham, I., A geometric characterization of points of type m on real hypersurfaces. J. Differential Geometry, to appear.
[3]. Boutet De Monvel, L. \& Soöstrand, J., Sur la singularité des noyaux de Bergman et de Szegö. Soc. Math. de France Astérisque, 34-35 (1976), 123-164.
[4]. Cartan, H., Variétés analytiques reélles et variétés analytiques complexes. Bull. Soc. Math. France, 85 (1957), 77-99.
[5]. Catlin, D., Boundary behaviour of holomorphic functions on weakly pseudo-convex domains. Thesis, Princeton Univ. 1978.
[6]. D'Angelo, J., (a) Finite type conditions for real hypersurfaces. J. Differential Geometry, to appear.

- (b) A note on the Bergman kernel. Duke Math. J., to appear.
[7]. Derrids, M., Sur la régularité des solutions du problème de Neumann pour $\bar{\partial}$ dans quelques domains faiblement pseudo-convexes. J. Differential Geometry, to appear.
[8]. Derridj, M. \& Tartakoff, D., On the global real-analyticity of solutions of the δ-Neumann problem. Comm. Partial Differential Equations, l (1976), 401-435.
[9]. Diederich, K. \& Fornaess, J. E., Pseudoconvex domains with real-analytic boundary. Ann. of Math., 107 (1978), 371-384.
[10]. Egorov, Yu. V., Subellipticity of the $\bar{\partial}$-Neumann problem. Dokl. Akad. Nauk. SSSR, 235, No. 5 (1877), 1009-1012.
[11]. Ephraim, R., C^{∞} and analytic equivalence of singularities. Rice Univ. Studies, Complex Analysis, Vol. 59, No. 1 (1973), 11-31.
[12]. Fefferman, C., The Bergman kernel and biholomorphic mappings. Invent. Math., 26 (1974), 1-65.
[13]. Folland, G. B. \& Kohn, J. J., The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, No. 75, P.U. Press, 1972.
[14]. Greiner, P. C., On subelliptic estimates of the ∂-Neumann problem in \mathbf{C}^{2}, J. Differential Geometry, 9 (1974), 239-250.
[15]. Greiner, P. C. \& Stein, E. M., (a) On the solvability of some differential operators of type \square_{b}, preprint.
-- (b) Estimates for the 万-Neumann problem. Math. Notes No. 19, Princeton University Press 1977.
[16]. Henkin, G. M. \& Ctrra, E. M., Boundary properties of holomorphic functions of several complex variables. Problems of Math. Vol. 4, Moscow 1975, 13-142.
[17]. Hörmander, L., (a) L^{2} estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math., 113 (1965), 89-152.
(b) Hypoelliptic second order differential equations. Acta Math., 119 (1967), 147-171.(c) Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83 (1966), 129-209.
[18]. Kashiwara, M., Analyse micro-locale du noyau de Bergman. Sem. Goulaouic-Schwartz 1976-1977. Exposé N° VIII.
[19]. Kerzman, N., (a) The Bergman-kernel function: differentiability at the boundary. Math. Ann., 195 (1972), 149-158.
—— (b) Hölder and L^{p} estimates for solutions of $\partial u=f$ in strongly pseudo-convex domains. Comm. Pure Appl. Math., 24 (1971), 301-379.
[20]. KoHn, J. J., (a) Lectures on degenerate elliptic problems. Proc. CIME Conf. on Pseudodifferential Operators, Bressanone (1977), to appear.
(b) Sufficient conditions for subellipticity on weakly pseudo-convex domains. Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 2214-2216.
(c) Methods of partial differential equations in complex analysis. Proc. of Symp. in Pure Math., vol. 30, part 1 (1977), 215-237.
- (d) Global regularity for $\bar{\partial}$ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc., 181 (1973), 273-292.
- (e) Boundary behaviour of $\bar{\delta}$ on weakly pseudo-convex manifolds of dimension two. J. Differential Geometry, 6 (1972), 523-542.
[21]. Kohn, J. J. \& Nirenberg, L., (a) A pseudo-convex domain not admitting a holomorphic support function. Math. Ann., 201 (1973), 265-268.
—— (b) Non-coercive boundary value problems. Comm. Pure Appl. Math., 18 (1985), 443-492.
[22]. Krantz, S. G., (a) Characterizations of various domains of holomorphy via $\bar{\partial}$ estimates and applications to a problem of Kohn, preprint.
—— (b) Optimal Lipschitz and $L^{\mathfrak{p}}$ regularity for the equation $\delta u=f$ on strongly pseudoconvex domains. Math. Ann., 219 (1976), 223-260.
[23]. Lieb, I., Ein Approximationssatz auf streng pseudo-konvexen Gebieten. Math. Ann., 184 (1969), 55-60.
[24]. Lojasiewicz, S., Ensembles semi-analytiques. Lecture note (1965) at I.H.E.S.; Reproduit n^{0} A66-765, Ecole polytechnique, Paris.
[25]. Narasimhan, R., Introduction to the theory of analytic spaces. Lectures notes in Math. No. 25, Springer Verlag 1966.
[26]. Ranae, R. M., On Hölder estimates for $\bar{\delta} u=f$ on weakly pseudoconvex domains, preprint.
[27]. Rothschild, L. P. \& Stein, E. M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137 (1976), 247-320.
[28]. Tartakoff, D., The analytic hypoellipticity of \square_{b} and related operators on non-degenerate $\mathbf{C}-\mathbf{R}$ manifolds, preprint.
[29]. Treves, F., Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and application to the $\bar{\delta}$-Neumann problem, preprint.
[30]. Spenoer, D. C., Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc., 75 (1969), 176-239.
[31]. Sweeney, W. J., (a) The D.Neumann problem. Acta Math., 120 (1968), 223-277.
- (b) A condition for subellipticity in Spencer's Neumann problem. J. Differential Efquations, 21 (1976), 316-362.

Received May 3, 1978

[^0]: 6-782904 Acta mathematica 142. Imprimé le 20 Février 1979

[^1]: 7-782904 Acta mathematica 142. Imprimé le 20 Février 1979

