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w 1. Introduction 

The ma in  idea of th is  work is to  ana lyze  a-pr ior i  es t imates  for pa r t i a l  dif ferent ia l  

opera tors  using the  theo ry  of ideals  of functions.  Here  I deal  only  wi th  the  ~ -Neumann  

problem; however,  i t  is m y  belief t h a t  th is  t y p e  of analys is  will be useful in der iv ing  esti-  

mates  b y  a lgebra ic  me thods  in diverse s i tua t ions  (see for example  Chap te r  3 of [20a]). 

I n  par t icu la r ,  by  means  of the  Spencer  sequence, a wide class of di f ferent ia l  opera to rs  can 

be reduced to  the  D - N e u m a n n  p rob lem (see [30] and  [31a]) which in t u rn  seems to be 

amenable  to  these methods .  

The pr incipal  results  p roved  here are  Theorems 1.19 and  1.21, t h e y  were announced  

in [20b]. To in t roduce  this  paper  I give a brief review of those aspects  of the  ~-problem 

and  the  ~-Neumann problem which m o t i v a t e d  m y  work. 

(i) This wolk was done in part while the author was a Guggenheim Fellow. This research was 
also supported by a National Science Foundation project at Princeton University. 
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The ~-problem. Consider the inhomogeneous Cauchy-Riemann equations on a domain 

in C'. To be explicit, let zl, ..., z. be holomorphic coordinates in (~ and let x j = R e  (zj), 

y~ = I m  (zj), we set 

as usual. Now, given functions ~1 ..... :~n on ~ ,  the problem is to solve the equations 

( m )  a = + '  i = 1 . . . . .  n 

and to study the regularity of the solution. Naturally, we must  assume that  the ~j satisfy 

the compatibili ty conditions 

(1.9) a~. a~k = 0. 

Using the notation of differential forms we let ~ = ~  ~jd~j; the equations (1.1) are then 

expressed by ~u = g and the compatibili ty conditions (1.2) by  ~ =0.  

We will assume tha t  ~ is pseudo-convex and has a smooth boundary (see w 2). Since 

the system (1.1) is elliptic, the regularity properties of u in the interior of ~ are well known. 

Roughly speaking, on an open set U c c ~ a solution u restricted to U is "smoother  by  

one derivative" then cr restricted to U. Regularity of u on the boundary is more delicate. 

Notice tha t  if h is a holomorphic function on ~ then u+h  is also a solution of (1.1); thus, 

"in general" the solutions of (1.1) will not be smooth on the boundary. The problem then 

is to find some particular solution with good regularity properties at  the boundary. In  

[20d] and [20c] the following result is proved. 

THEOREM 1.3. I] ~ C C  n is pseudo-convex with a C ~ boundary and i/ajEC~176 and 

satisfy (1.2) then there exists u E C~~ which satisfies (1.1). 

This result gives global regularity of solutions. The problem of local regularity is the 

following: given an open set U such tha t  the restriction of ~ to U N ~ is smooth can we 

find a solution u whose restriction to U N ~ is also smooth. The answer to this question, 

in general, is negative. In  [20el and also in w 9 of this paper, we show tha t  singularities of 

u can propagate along complex-analytic varieties contained in the boundary of ~ .  More 

precisely, for certain domains ~ we can find an a so tha t  local regularity fails for every 

solution u. Our construction depends on the fact that  the boundary of ~ contains a complex- 

analytic var iety and it is this phenomenon tha t  led us to the main results of this paper. 
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D. Catlin, in [5], gives an example of a pseudo-convex domain in C a for which local regu- 

larity fails and whose boundary does not contain any non-trivial complex-analytic varieties. 

In recent years many results have been obtained concerning the regularity of solu- 

tions of (1.1), on strongly pseudo-convex domains (see [16] for a survey of this field). 

These results are concerned with estimates of HSlder and Lr norms. In  the present work 

we study pseudo-convex domains which are not strongly pseudo-convex and our results 

concern estimates of Sobolev norms. 

The  ~ - N e u m a n n  problem. This problem was formulated by D. C. Spencer to s tudy the 

0-problem and other properties of the operator ~. Here we give a brief description of the 

problem, for a detailed account see [13]. 

Let L~'q(~2) denote the space of square-integrable (p, q)-forms on f2. The inner product 

and norm are defined as usual by 

(1.4) ( a e ' f l ) = ~ f n  ~ L ~ I ~ ' d V ' I . ,  and 

where ~ = ~ aHdzz A d~,~, fl = ~ flHdzz A d~ ,  1 = (i, . . . .  , iu), J = (Jx, ..., Je), 1 <~ i x < . . .  < i~ <<. n, 

1 <~?x < ... <~q<<.n, dz ,=dz~,  A ... A dz,~ and dS~=d~,  A ... A d ~ .  Then we have 

(1.5) 

by ~ we mean the closed operator which is the maximal extension of the differential operator 

and by ~* we mean the L2-adjoint of 0. We define r t t~ 'acL~ 'e (~)  by 

(1.6) = e D o m  n D o r a  = 0 and ~*q~ = 0}. 

Observe that  ~/0.0 is the space of holomorphie functions in L2(~ ). The ~-Neumann problem 

for (p, q)-forms can then be stated as follows: given ~GL~'q(~) with ~• does there 

exist q~E Dom (~) N Dom (~*) with 0(pEDom (~*) and ~*~0EDom (0~0), such that  

(1.7) 8a*q~ +~3"~o = ~. 

Observe that  if a solution of (1.7) exists then there is a unique solution ~0 of (1.7) such that  

~0/~/~,q. We will denote this unique solution by N~. If a solution to (1.7) exists for all 

/ ~/p.q, then we extend the operator Z r to a linear operator on L~'e(~) by setting it equal 

to 0 on ~/~'~. Then 2V is bounded and self-adjoint. Furthermore, if ~ = 0 ,  then from (1.7) 

6 -  782904 Acta mathematica 142. Imprimr le 20 F6vrier 1979 
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we obtain 80"8N~=0, taking inner products with 6Ncr we get [[6*61v~JJ~=0 and hence 

0*6N~=0. Thus we see from (1.7) that  if 6~=0 and ~ •  ~ ' q  then 

(1.8) ~ = O~*No~. 

I t  then follows that  u =6*Ne is the unique solution to the equation 0u = ~ which is ortho- 

gonal to the null space of 0. 

If the O-Neumann problem is solvable on (0, 1)-forms and if [EL~(~) N Dora (6) then, 

applying (1.8) to e=0]  we can easily deduce that  the Bergman orthogonal projection 

B: L2(s ~0.o is given by 

(1.9) mf 

Then the following result holds (see [17a] and [13]). 

THEOREM 1.10. I1 s is t)seudo-convex and i / ~  is compact then the 6.Neurnann 

l~roblem is solvable o~ (t), q).forms for all (1o, q) and ~/~'r when q>O. 

Subelliptic estimates. These estimates are defined as follows. 

Delinition 1.11. I f  x o E ~ we say that  the 6-Neumann problem for (p, q)-forms satisfies 

a subelliptic estimate at  x 0 if there exists a neighborhood U of x o and constants e > 0 and 

C > 0 such that: 

(1.12) II ll: < c(ll6 ll' + 116" 11' + II ll') 

for all ~ED~ q. Here ~ q  denotes the space of (p, q)-forms ~EDom (6*) such that  ~sE 

C~o(U fi ~), for all components ~011 of ~o. The norm II II ,=yII .IIL denotes the Sobolev 

e - n o r m .  

The following theorem (see [21 b] and [13]), shows what implications this estimate has 

for local regularity of the 0-Neumann problem, the 6-problem and the Bergman operator. 

THEOREM 1.13. Sutrloose that f2=C" is pseudo-convex, the boundary o / ~  is C ~~ and 

that (I.12) holds at Xoe~. Then if o:eL~'q(~) and i/ ~ is smooth in a neighborhood of x o, 

{i.e. a neighborhood in ~)  then No~ is also C ~ in a neighborhood o/ x o. Also i/(1.12) holds/or 

(0, 1)-forms, i / / e L s ( ~ )  and i / [  is C ~ in a neighborhood o / x  o then so is B]. More precisely, 

i[ o~ and [ are in H ~ in a neighborhood o / x  o then Nor is in H '+~', O*No~ is in H ~+" and B / i s  

in H '  in a neighborhood o / x  o. 

In [19a], Kerzman showed how the above theorem can be used to study the regularity 

of the Bergman kernel function. 
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In  case ~ :  X and X is a complex analytic manifold with a hermitian metric the 

definitions given above extend in a natural  way and subellipticity has several important  

consequences. I t  should be noted that ,  according to a result of W. Sweeney (see [31b]), 

the validity of (1.12), is independent of the choice of hermitian metric (even though the 

space ~)~]q does depend on the choice of metric). We refer again to [21b] and [13] for a 

proof of the following. 

THEOREM 1.14. Suppose that ~ =  X,  where X is a complex analytic manifold with a 

hermitian metric, suppose also that ~ has a C ~ boundary and that every point in ~ has a 

neighborhood such that (1.12) holds. Then the space ?It r'q is finite dimensional and all o / i t s  

elements are C ~ on ~.  Furthermore, the operators N, ~*N and B have the same regularity 

properties as in Theorem 1.13. 

We will consider the estimate (1.12) on (p, q)-forms for domains which are pseudo- 

convex and when ~/>0. I t  will be shown in w 2 tha t  the validity of (1.12) is independent of p. 

The estimate (1.12) is always satisfied when e ~<0 and it cannot be satisfied for any  e > 1. 

Denote by Cr the subset of ~ such tha t  there exists a neighborhood U of x o for which 

(1.12) holds whenever ~ E ~)[/q. Then we have 

~a(e) : Cq(e ') when e/> e'. 

For ~ = 1 the estimate (1.12) is an elliptic estimate and we have 

(1.15) Ca(I) = if q = n, 

the reason for this is tha t  (I.12) is elliptic in the interior for all q and for q = n  the space 

~)~n consists of (p, n).forms all of whose components vanish on the boundary of ~ .  I t  

follows from the general theory of sube]liptie estimates tha t  if x 0 r Ca(I) then x 0 $ ~q(e) for 

s189 see [17b]. 
The next  case is when s=�89 and we have the following result (see [17a] and [13]). 

THEOEEM 1.16. I f  G i~ 2~seudo.convex and if Xo ~ Cq(1) then the following are equivalen~ 

Ca) Xo e C~(�89 
(b) xoEb~ (b~ denotes the boundary of ~),  q <n and the Levi-/orm at x o has at least n - q  

positive eigen.values. 

The definition of the Levi-form will be recalled in w 2. The case e = �89 has received a 

great deal of at tention in the last few years. I n  this case there axe very precise estimates 
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in terms of HSlder and L~ norms (see, for example [16], [15b], [19a], [23] and [22]), also 

real-analytic hypoellipticity has been established (see [28], [8] and [29]). Furthermore, 

asymptotic expansions of the Bergman kernel function have been obtained (see [12], [3] 

and [18]). When e <�89 such results are not known yet  except in some special cases (see [6a], 

[15], [22] and [26]). 

The next  case for which (1.12) can be completely analyzed is when q = n - 1 .  The 

result is the following 

T H w 0 R ~ M 1.17. I t  ~ is a pseudo-convex domain contained in an n.dimensional complex 

analytic mani/old X then the ]ollowing are equivalent. 

(a) Xoe En-l(1/m), m an integer. 

( b ) / /  V c  X is a complex analytic mani/old o/dimension n - 1  and i /XoE V then the 

order o/contact o/ V to b~ at x o is at most m. 

The proof that  (b) implies (a) is given in w (Theorem 8.1). In  the ease n = 2  a some- 

what weaker result is given in [20e]. Greiner in [!4] showed that  (a) implies (b) when n =2,  

a proof along the same lines establishes the general ease (we do not include this proof in 

the present paper, it will be part of a more general treatment of necessary conditions). 

When q < n - 1  the determination of when (1.12) holds for a given e seems to be ex- 

tremely complicated. What  we do here is to give up the a t tempt  to analyze (1.12) for a 

fixed e given a-priori, but instead we find conditions for (1.12) to hold for some e > 0 .  

When our conditions are satisfied we only have a very rough estimate on the size of e. 

Setting 

(1.18) s = U ~a(t) ,  
e>O 

we state one of our principal results in the following theorem. 

THEOREM 1.19. Suppose that ~ is pseudo-convex, that xoEb~, that in a neighborhood 

o /x  o the boundary is real-analytic and that there exists no complex-analytlc variety V o/dimen- 

sion greater than or equal to q such that XoE V c b ~ .  Then XoE ~q, i.e. the estimate (1.12) holds. 

The above theorem is proven in w 6, here we will indicate the method of proof. In w 4 

we introduce the notion of a "subelliptic multiplier", this is a C ~ function / defined on a 

neighborhood U of x 0 such that  there exist positive ~ and C so that  

(1.20) II/ o11. .< c(11  112+ 11 * 112 + II ll 
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for all ~ E O~/q. We denote by Iq(xo) the set of germs of multipliers satisfying (1.20). I t  is 

then clear that  xoE ~q if and only if 1 EIq(xo) and that  if xE~, /EIq(xo)  and/(x)=~0 then 

x E ~q. We then prove, in w 4, that  Ie(xo) has the following properties: 

THEOREM 1.21. I /  ~ / s  pseudo.convex, with a C ~ boundary and i / x o E ~  then we have 

(a) Iq(xo) is an ideal. 
R R 

(b) Iq(xo) = ~ ) ,  where V-~(Xo) = {tl there e~i,t~ g e I~ and ~ ~uch that I11 ~ < I gl }" 

(c) 1] r=O on b~ then rEIq(Xo) and the coe//icients o /arA$rA  (~r )  € are in Iq(xo). 

(d) I /  h .... ,/n_eEIq(xo) then the coe//icients o/ ~/1A ... A ~]j A ~r A ar A (aar) n-q-~, with 

< n - q ,  are in Iq(xo). 

I t  is then natural to define the ideals I~(xo) inductively as follows 

(1.22) I~(xo) = V(r, eoeff (Or A ar A (a~r)~-q)i 

R 
Ii+l(xo) = V(Ii(xo), ,~(Xo)), 

where 

Aq(xo) = eoeff (a/1 A ... A 011A ar A ~r A (a~r)'-q-J}. 

Here /1  ..... /n_qEI~(x0) and ~ 4 n - q ,  eoeff. { } stands for the germs of the coefficients of 

the set of forms { } and ( ) stands for ideal generated by the sets appearing inside the 

parenthesis. 

I t  then follows that  I~(xo) c Ye(xo) and hence 1 E I~(xo) implies x o E ~q. In  w 5 we study 

the geometric meaning of these ideals, they appear to measure the maximum order of 

contact tha t  a complex analytic variety of dimension q through x o can have with the 

boundary of ~.  One must distinguish here between the order of contact that  can be achieved 

by complex analytic manifolds and by complex-analytic varieties. Consider, for example, 

a pseudo-convex domain in C s whose boundary, near the origin, is given by the function r, 

defined by: 

(1.23) r(zl ,  z,, z3) --Re %)+ Iz[-z~l~ +exp [ - ( I z d ' +  Iz~12 + 1~3l~)-1]. 

The order of contact, with r =0, of simple complex analytic curves at the origin is at most 

6; but the curve defined by za-~0, z[ =z~ has infinite order of contact. Such behaviour has 

been studied in [2]. In this case, for xEb~  and x~=0 the maximum order of contact of all 

complex analytic curves is at most 2. In  a forthcoming publication we will show that  

in the domain defined by r <~0 there is no subelliptic estimate for (0, 1)-forms at the origin, 

i.e. 0 ~  1. 
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Returning to Theorem 1.19, when the boundary is analytic near x o we restrict our- 

selves to germs of real-analytic functions in the definition of the ideals I~(xo). We then 

use the theory of ideals of real analytic functions to show tha t  1 G I~(Xe) for some k is 

equivalent to the non-existence of real-analytic varieties of "holomorphie dimension" 

(see Definition 6.16) greater or equal to q contained in the boundary near x 0. We then 

apply a theorem of Diederich and Fornaess (see [9]) to show tha t  this is equivalent to the 

non-existence of complex.analytic varieties of dimension greater than  or equal to q. Finally, 

we apply a theorem due to Fornaess (see Theorem 6.23) which shows tha t  not having 

q-dimensional complex analytic varieties in the boundary arbitrarily close to x e is equivalent 

to not having a q-dimensional complex analytic variety through x 0 in the boundary. 

In  w 7 we consider the special case of domains whose boundary is given by  

(1.24) ~(~ . . . . .  ~.) = R e ( . . ) +  ~ Ihj(~, . . . .  , ~ . )}~+ .=o  
.t=1 

where h 1 . . . .  , hm are holomorphic functions and a E(]. For these domains, if r(z ~ = 0  we 

construct a sequence of ideals of germs of holomorphic functions J~(z ~ such tha t  1 EJ~(z o) 

if and only if there is no complex analytic variety of dimension greater or equal to q through 

z ~ which lies in r = 0. This is also equivalent to the condition tha t  the dimension of the 

variety ~z[zn=z ~ hj(z)=hj(z o) for 7"=1, ..., ra} is less than q. Our construction leads us to 

a formula for the dimension of a complex analytic variety (see Theorem 7.10). 

In  this article we do not take up the question of necessity. The problem is to prove 

tha t  if ~ is pseudo-convex then x 0 E ~q implies 1 E I~(x0) for some k. We can prove this for 

very large classes of domains, but  as yet  we do not have the proof in general. In  [10], 

Egorov announces a result which implies tha t  if there is a non-singular complex-analytic 

curve through xeEb~ , with contact m then x 0 ~ El(s) when e > 1Ira. This result implies the 

converse of Theorem 1.19 in the case q - - l ;  for if a complex-analytic curve is contained 

in the boundary then at  every regular point x in the curve we have x $ ~ (e )  for e > 1Ira 

for all m, thus x ~ E 1 for all regular points and hence for all points of the curve. In  [22], 

Krantz  shows tha t  the type of condition considered by  Egorov is necessary for subel- 

lipticity in the sense of Hi~lder estimates when g ~ n -  1. 

I am greatly indebted to J.  E. Fornaess, R. C. Gunning and J.  Mather for several 

discussions which were very helpful, especially in the s tudy of ideals of functions. I also 

wish to express my  thanks to L. H6rmander  and H.-M. Maire who read the original version 

of this manuscript  and suggested several revisions, corrections and clarifications which 

have been incorporated in the present text.  
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w 2. The basic estimate on pseudo-convex domRina 

In  this section we recall the basic estimate for the ~-Neumann problem on pseudo- 

convex domains (for a detailed exposition of this material see [13]). 

Let  X be an n-dimensional complex-analytic manifold with a hermitian metric. Let  

~ c  X be an open subset of X and let b~ denote the boundary of ~.  Throughout this 

paper we will restrict ourselves to domains ~ such that  b~ is smooth in the following sense. 

We assume that  in a neighborhood U of b~ there exists a Coo real-valued function r such 

that  dr:~O in U and r(x) ~0  if and only if xEb~.  Without loss of generality, we shall assume 

that  r > 0 outside of ~ and that  r < 0 in ~.  For x E X, we denote by CTx the complex-valued 

tangent vectors to X at x and we have the direct sum decomposition CTx=T~'~ 1, 

where T~'~ and T o. 1 denote the holomorphic and anti.holomorphic vectors at  x respectively. 

We denote by A~ 'q the space of (p, q)-forms at x and by ( , ) x  the pairing of A~ "q with 

its dual space, we will also denote by ( , ) =  the inner product induced on A~ "q by the hermi- 

tian metric and by I Ix the associated norm. We will denote: by T 1'~ T ~ and A ~,q the 

bundles with fibers T~ '~ T~; z and A~ "q respectively; by  F (T  1'0, U), r ( T  ~ U) and F(A p'q, U) 

the spaces of C ~ sections of these bundles; and by T~ '~ T~x '1, A~ 'q the set of germs at x 

of local C oo sections of these bundles. Finally we will set A ~'q =F(A r'q, ~), that  is (Io, q)- 

forms which are C ~ up to and including the boundary. 

Ap, q__~ ,dP, q-1 Definition 2.1. If OEA ~ we define the map int (0): --x --x as follows, given 

9EA~ 'q then int (0)9 is the element of At; q-1 which satisfies 

(2.2) <int (0)9, (oyx = <9, 0 Ao~)= 

for all o~EA~ 'q-1. Thus the map int (0) is the adjoint of the map given by  ~o ~-~0 AoJ. 

For each x E X we denote by (d V)= the unique positive (n, n)-form such that: I (d V)= I = 1. 

We call dV the volume element. If xEb ~  we define (dS)= to be the unique real (2n -1 ) -  

form on b~ such that  (dr)z A (dS)= = I dr I = (d V)=. If 9, ~o E A r' q we define the inner products: 

(2.3) (9, ~ ) =  f o  (9,  ~)=(dV)x, 

(2.4) 

and the corresponding norms: 

b(~, ~)= Ym (9, ~)=(ds)= 

(2.5) 11911 ~ -- (9, 9)  and qlgll ~ = ~(% 9).  
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The subspaee O T' e = ~0~. q(~) of A T' q is defined by: 

(2.6) ~ . e  = {~EAT,q I (int (~r)~)x = 0 for xEb~}, 

The operators  ~: A T' q-~ A ~' q+z and  ~*: ~0 T' q+l_~ A T, q, then  sat isfy 

(2.7) (~, ~*~) = ( ~ ,  ~), 

for  all ~ E 8 '  e and  ~ E ~0 T' q+l. I t  can be shown t h a t  DT.q= AT. e N D o m  (~*), see [13]. 

The quadrat ic  form Q is defined on O ~, q by: 

(2.8) Q(~, ~)  = ( ~ ,  ~ )  + (~*~, ~*v?) + (~0, ~p), 

for  ~0, ~E  D T'a. 

De/inition 2.9. I f  x Eb~ we denote  by  CTx(bs the space of complex-valued t angen t  

vectors  to bg2, i.e. CT~(b~) is the  subspaee of r  consisting of all S such t h a t  S(r)=0. 

We set T~'~ N T~ "~ and T~iZ(bs ) N T~ '~. 

De/inition 2.10. The Levi-lotto is the  quadrat ic  form on T~'~ denoted b y  s L ' )  

and  defined by: 

(2.11) s L ' )  = ( ~ r ,  L AL'>~, where L, L'E T~'~ 

We say t h a t  ~ is pseudo-convex if for each x E b ~  the form s is non-negat ive.  

I f  x 0 6 b ~  then  there exists a neighborhood U of x 0 such t h a t  on U n ~ we can choose 

C ~ vector  fields with values in T L~ which a t  each point  xE U N ~ are an or thonormal  

basis of T I'~ Le t  L 1 . . . . .  Ln be such a basis, then  for each xE U N ~ we have  ((L~)~, (L~)x>~ = 

8 u. We wish to write the  opera tors  0 and  ~* in t e rms  of this basis. Le t  eo~ . . . . .  con be the  

dual  basis of (1, 0)-forms on U N ~ ,  so for each x 6  U N ~ we have  <(w~)~, (L~)~)~=~. We 

denote b y  ~ . . . . .  Z ,  the  conjugates  of the  L~ {i.e. Z~(/) =L~(])), these form an  or thonormal  

basis of T ~ on U fl ~ and  ~ . . . . .  ~ ,  the  conjugates of the  eo~, are the  local basis of F(A ~ 

U N ~ )  which is dual  to  Z~ . . . . .  ~ , .  I f  ~0 is in ~ . e  then  on U N ~ r can be wri t ten  as follows: 

(2.12) q~ = ~'~z~o~z A Cos, 

where I = (i~, ..., iT), J = (j~ . . . .  , Je), the  i~ and j~ are integers be tween 1 and  n. The  symbol  

~.' signifies t ha t  the summat ion  is restr icted to s tr ict ly increasing p- tuples  I and  q-tuples 

J .  The forms ~Oz and Co~ are given by  

(2.13) ~z=eo~,A ... Aw~ and Co~ =Cot, A ... ACe1. 

We then  have  

(2.1~) ~ = ( - 1)~ ~' ~ L~(~,,) ~, ~ Co~ ~ Co, + ~ f.'~ ~,, ~ ~ Co~, 
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where H and L run  th rough  increasing ID-tuples and  (q + l ) . t u p l e s  respectively.  W e  also 

have: 

- -  ~ t  IJ (2.15) 5"~ = ( - I f  +1 ~ '  ~ L~(q~.jk) coz A ~ x +  z~ g i / ~ r  ~ A eS~, 
1 

where the summat ions  are over  increasing ruples ( I  and  H run  through p-tuples ,  J th rough 

(2.16) ~1'~k= sgn <jg> ~l<J~ i f ] r  

here <]K> denotes the  increasingly ordered q-tuple wi th  elements  (], k I . . . . .  kq_l) and  

( ~K ) is the sign of the permutation taking jK to (jK). The eoefficients ]~L and g~K sgn <iK> 

are C ~ functions on U n ~ .  

We fix r so t ha t  I ~r ] z = 1 in a neighborhood of b~.  For  x o q b~, in a small neighborhood 

U of x 0, we choose co 1 . . . .  , r to  be (1, 0)-forms on U such t h a t  r = ~r and  such t h a t  <r r 

=~tj  for xq  U. We then define L I . . . . .  L=, L1, ..., L=, r . . . . .  r as above.  Note  t h a t  on 

U n b~,  we have  

(2.17) Lj(r) = Lj(r) = ~r 

Thus  L 1 .. . . .  Ln_, and  151 . . . . .  L ,_I  are local bases of TI.~ N b~) and T~ N b~) respec- 

t ively. We define a vector  field T on U f~ b ~  with values in CT(U f3 b~) by: 

(2.18) T = L , - L , .  

Observe t h a t  L 1 .... , Ln-1, L1, ..., J[',~-x, T are a local basis for F (CT(U f3 b~).  We denote 

the  Levi  form in te rms  of these bases by: 

(2.19) eli(x) = <~r, Lt A Lj>~, 

for i, ~ = 1 . . . . .  n and x fi U N b~.  On b~,  for i, ~ < n we have  

n-1 n-1 

(2.20) [L,, L,]= c,,T + ~ a~Lk + Z bSLk, 
1 1 

where [L~, Lj] =L~Lj-LjL~, as usual. 

I f  ~ E ~4v'q; then, in t e rms  of the  local basis, the condit ion (2.6) is expressed as follows: 

E ~)~' q whenever  

(2.21) ~011(x ) = 0 ,  when n e J  and x e b ~ .  

Here  ~Ij denotes components  of r in (2.12) relat ive to the  local basis defined above.  

q-tubles and  K through ( q - 1  }.tuples) and  
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If U is an open subset of X then the space ~ q, which is defined in connection with 

(1.12) is also given by: 

(2.22) ~ / ~  = {~ E ~v'q I supp (~) c U N ~}. 

THEOREM 2.23. (Basic estimate.) I] xoEb~ and ~ ks pseudo-convex then there exists a 

neighborhood U o] x o and a constant C > 0 such that 

(2.24) I1~11~ + Z',.2: ~oo~,,~,,,E~,.,~es< cO(q, ~) 

lot aU ~ ~ ~ ~  with q >11. Here M I ,  denote8 the ~o,, , ,  given by: 

(2.25) tlvlI~ = :~ IIZ, v ,  I I '+ IIvlI" 

Observe that  if uEC~o(U fl ~)  with u(x) =0 on U fl b~, then 

(2.26) ~: IIL, ull' < const./Z IIL, ull '+ IMP), 

where the constant is independent of u. Hence we have 

(2.27) I1~11~ -< const. I1~11;, 

for all u satisfying the above. Here I1~11~ denotes the Sobolev 1-norm, i.e. the sum of the 

L~-norms of the first derivatives of u. Combining this observation with (2.21) and (2.25) 

we obtain 

(2.28) 

I!' r IIv11,~+211~,,~,11,~+5 ' 5 L,(~,.,,) + 2 ' 2 :  c,,q,.,E~j,,KdS<const. Q(q,r 
t - 1  |.t d oil 

for all q e I ~  q with q>~ 1, since the third term on the left is bounded by 

(2.29) const. (11~'~11' + 5 I1~,..,11~ + IMP) 

and hence by const. Q(~, ~). 

Notice that  conversely we have 

for all ~ G ~ q. This inequality is a consequence of the definitions and holds without the 

assumption of pseudo-convexity. 

The estimates that  we will derive will be valid for (1o, q)-forms if and only if they are 

valid for (0, q)-forms, by virtue of the following. 
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LEMMA 2.31. Let E be a norm on C~(U N ~)  and denote also by E the norm on ~ q  

defined by: 
E(q~)~ = ~ E(~.)2. 

Then the ]ollowing are equivalent. There exists C > 0 such that 

(2.32) E(~)~ < cQ(9, 9), 

and there exists C > 0 such that 

(2.33) E(~p) 2 < CQ(% ~p), 

/or all ~ E Of/~; 

/or all y~ 6. ~)~ q. 

Proo/. The inequalities (2.28) and (2.30) show that  Q(~, 9) is equivalent to 

thus (2.32) is equivalent to the sum (over I)  of the inequality (2.33) applied to ~ozE Z~ r 

with ~z = ~': q)1:~:. 

Remark 2.35. In the case of (0, 1)-forms on pseudo-convex domains the third term 

in (2.34) is ' I1~[ -1Ljgjll ~ which is dominated by  Q(~, 9). I t  is important to note tha t  

~- l l ]Ljgj l l  ~ is in general not bounded by Q(9, 9): (relative to any basis L~, m~) as can be 

seen in the case of ~ c C 4, where r near the origin is given by 

(2.36) r(z) = Re (z,) + [z 116 + I z~ + z 21S + I za 14. 

These types of bounds are studied by Derridj in [7]. 

w 3. Tangential  Sobolev norms 

In our s tudy of (1.12) we will use tangential pseudo-differential operators on U N ~,  

with U a neighborhood of x 0 E b~. These will be expressed in terms of boundary coordinates 

which are defined as follows. 

Definition 3.1. If xoEb~ we will call a system of real G ~ coordinates, defined in a 

neighborhood U of x 0, boundary coordinates if one of the coordinate functions is r. We will 

denote such a system by (tx, ..., t2n_x, r) and we call the tj tangential coordinates and r the 

normal coordinate. 

For uEC~o(U fl ~)  we define ~, the tangent/a/Fourier trans/orm of u, by 

'~('~, r) = JR (~ ' -~  e-'t"u(t' r) dr, (2.3) 
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where 

"t" ~--- ( T  1 . . . . .  T 2 n _ l )  , t = ( t  1 . . . . .  t 2 n _ l )  , 

t 'T  = ~  tj~j and  dt = dt I ..... dtzn_ 1. 

For  each s E R  we define A~u by: 

(3.3) A 'u(~,  r) = (1 + ]TI2)~/~(~, r), 

where I~1 ~ =y. ~. 
Further, we define Illulll., the tangential s-norm of u, by 

,I u,l: = Foo I r)l dtdr 

Of course, if s is a non-negat ive  integer,  then  [(lullff is equivalent to ~ , ~ ,  IID~ul[~, where 

a = (~1, ..., ~ , - 1 )  and  the  subscript  t denotes  differentiat ion with respect  to  the  tangent ia l  

variables.  

De/inition 3.5. P is a tangential pseudo-differential operator of order  m on C~(U ~ ~ )  

if it can by ~xpressed by: 

r) = JRf ~'-~e-U'~P(t' r, T) ~(~, r)dT. (3.6) Pu(t, 

Here  pECOO(R~n• where R 2n consist of (t, r ) E R  ~ with r < 0 .  The  funct ion p is 

called the  symbol  of P and  satisfies the following inequalities, for mult i indiees ~r = (r162 . . . .  , 

a2n), fl = (ill, -.., fl2n-1) there exists a cons tant  C = C(~r fl) such that :  

(3.7) I D~Dfp(t,  r, 3)1 < o(] + I~l) m-~' 

Both,  tangent ia l  8-norms and tangent ia l  pseudo-differential  opera tors  have  na tu ra l  

extensions to the  space 5~'(R~n), i.e. the  space of C ~ functions all of whose der ivat ives  are 

rapidly  decreasing. 

PROPOSITION 3.8. I] P is a tangential pseudo.di/]erential operator of order m then 

/or eaoh s E R there exists O, > 0 ~raeh that: 

(3.9) IIIPulll, < GIIlullGm /or all ue~(m~). 

Furthermore, i / P *  is the ad]oint o[ P then P* is a tangential pseudo.di/]erential operator o/ 

order m and i / p  and p* are the symbols o] P and P* then ~ - p *  is the symbol o /an  operator 

o] order m -  1. I / P '  is a tangential pseudo.di]/erential operator o] order m' with symbol p', 
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then PP' is a tangential pseudo-di//erential operator o/order m + m' ; i /q  is the symbol o /PP '  

then p p ' - q  is the symbol o/an operator o] order m + m ' - 1 .  Hence, the commutator [P, P']-- 

PP' - P ' P  has order m +m' - 1. 

The proof of the above is exactly the same as the proof of the corresponding properties 

of pseudo-differential operators. The only tangential pseudo-differential operators which 

are used in this paper are the elements of the algebra generated, under composition and 

taking adjoints, by the A 8 and the tangential differential operators (i.e. operators of the 

form ~ aa(t, r)D~, where the aa and all their derivatives are bounded). These will arise 

because the subelliptie estimate (1.12) can be expressed entirely in terms of the tangential 

e-norm. More precisely, we have the following proposition. 

PROPOSTTTON 3.10. I / xoEb~  then xoE Eq(e) i /and  only i/there exists a neighborhood 

U' o / x  o and constant C' > 0 such that 

(3.11) ill,Ill? < C'Q(q~, q~), /or all q~E 7D~], q. 

This proposition is an easy consequence of the fact that  bgZ is non-characteristic with 

respect to Q, see [21b]. 

w 4. Ideals and modules of subelliptie multipliers 

For x0E~ and U a neighborhood of x o we wish to study funct ions/EC~(U N ~)  which 

satisfy (1.20). For x o E b~ (or near b~) the inequality (1.20) is equivalent to the following: 

(4.1) IIIf~ll l~ ~< CQ(% q~), for all cpE Vff q, 

which is a consequence of Proposition 3.10. 

Observe that  i f / '  is a function defined on a neighborhood U' of x o, such that  / = / '  
P, q on U n U' then ]' satisfies (1.20) or (4.1), for all ~0E :Dvnv.. Thus, denoting the set of germs 

of C ~176 functions at x 0 by C~(x,o), we are led to the following definition. 

De/inition 4.2. For xoE~ we define ]q(xo)~C~(xQ), the subelliptic multipliers at Xo, 

as follows. /E ]q(XO) if and only if there exists a neighborhood U of x o and constants e > 0 

and C > 0 such that  (1.20) holds. Here we denote by / both the germ at x o and a representa- 

tive of this germ defined on a sufficiently small U. 

I t  is a consequence of Lemma 2.31 that  the sets ]q(Xo) a r e  independent of p. 

De/inition 4.3. To each xoE~ and q/> 1, we associate the module Mq(xo)~Al'~ 

which is defined as follows, a E Mq(xo) if and only if there exists a neighborhood U of x o 

and constants C >0, e >0  such that: 

(4.4) [lint (5)~[[~ < CQ(cf, el), for all ~0E ~0~] q. 
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As above, if x o is near b~ we can replace II II, by III III, in (4.4). Here again, a stands both 

for the germ at x o and a (1, 0)-form on a sufficiently small U representing the germ. 

R 

Definition 4.5. If J c  C~(xo), then the real radical of J, denoted by VJ, is the set of 

all gEC~~ such that  there exists and integer m and a n / E J  so that  

Igl -<ltl 
on some neighborhood of x o. 

Definition 4.6. If ScAX'O(xo) then detk S is the subset of Cr176 consisting of all 1 

that,  for x near xo, can be expressed by: 

l(z) = @~(x) A ... A a~(x), 0(x)>~, 

where a 1 ..... akES and 0 EA~'~ 

The following proposition gives information about Ie(xo) and Mq(xo) which will enable 

us to prove Theorem 1.21. 

PROPOSITION 4.7. 11 ~ is pseudo.convex and if XoE~, then I~(xo) and Mr have the 
tollowing properties. 

(A) 1EIn(xo) and/or all q, whenever XoE~, then 1EIe(xo). 

(B) I1 xoEb~, then rEIq(Xo). 
(C) I1 xoEb~, then int (e)O~rEMq(xo), /or all OEA~ ~tch that<O, ~r> =0 on b~. 

(D) I~(xo)/s an ideal. 

R 

(F) l ' (xo)  = VI~(xd. 

(G) OIe(xo)C Me(xo), where OIr denotes the set o10IEAx'~ with/EIq(Xo). 

(H) detn_e+ 1 Mq(xo)C Ie(Xo). 

Observe that, due to (A), the properties (B) to (H) are non-trivial only when xoEb~. 

Prool ol (A). If  ~E~) ~'~ then ~0=0 on bfl and hence (1.20) holds with s = l .  If xoE~ 

choose U so that  /~ n b~=O, then (1.20) again holds with e = l  since supp (~0)c U. 

Proo/ o/ (B). We choose U so that  r is defined on U, and we have 

(4.8) JJrq0J]~ ~< const. ]]r~01I~ ~< const. ]]q0ll I < const. Q(~, ~0). 

The following lemma will be used in the proofs of {C) and (G). 
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LEMMA 4.9. Let L 1 ..... L ,  be the special local basis defined in a neighborhood 

xoEb~ and characterized by (2.17). Let u, vEC~(U N ~), then we have 

(L~ u, v) = - (u, L~ v) + ~.  f u~dS + (u, g,, v), 
3~ 

(4.10) 

where g~ECr176 N ~). 

Proof. In  terms of a boundary  coordinate sys tem we have 

where bt = ~  on b~,  hence 

where 

so (4.10) follows. 

ak Ou b O_._u L~u=2, ~ +  ter, 

(Lt u, v) = (u, L~ v) + 0,. fbn u~d8, 

[~ ~a~ + a~,~ 

95 

U of 

(4.11) OOr = ~, c~j oJi h ~j, 
Lt 

where the ctj are given by  (2.19) for i, j - -  1 . . . . .  n, hence for i, j ffi 1 . . . . .  n - 1 they  satisfy 

(2.20). Then  

(4.12) 

I f  ~0 E ~ q, then 

(4.13) 

and 

int  (&k) OOr -- ~ c~k o~ t. 
| 

J 

(4.14) ~j -- 0 on b~  whenever n E J .  

Now setting 

(4.15) 

(4.16) 

o ~ = ~ c ~ , ,  f o r k = l  . . . . .  n==l; 
i 

int (8 ~) ~ ffi ~'  ~ c~i~ ~x. 
K 

we have 

Proof o/ (C). We will use the special local basis in U N ~ described in section 2. I t  

suffices to prove (C) in the case e =~k for k ~ 1 . . . . .  n - 1. We have: 
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To prove (C) we will show that 

(4.17) [l[int(~)q~lH~.~<CQ(w,~), forall~0E]O~ q and k = l  . . . . .  n ' l ,  

We will first show that  there exists C > 0 such tha t  

(4.18) l Y (C'k~'K' Duk) [ < C ( Q(qJ' q~) + y~ ,.k k<n [[uk[[~ + ~ ,.k<n fb ta c'k u' q2kdS) ' 

for all q0E~O~ q and ukEC~(U'Iq ~2), k = l  ..... n - l ;  where, U' is a neighborhood of • and 

D is any  first order differential operator. I t  will suffice to prove (4.18) in the cases when 

D=L~ and D=L~, i = 1  ..... n. For D=L~, (4.18) follows by applying the Schwartz in- 

equality. Similarly, if D =L~ with i < n  we first apply (4.10), then the Schwartz inequality 

and (2.28). Finally, ff D =Ln we obtain by  use of (4.10): 

(4.19) Y (c~V,K,L,~)= 5 ~ c,~v,Ka~dS+O(llvll=(~ll~ll)), 
t ,k  t .k<n J bs 

here the term i = n does not appear in the boundary integral since ~0~E = 0 on b[2. Since the 

Levi-form is non-negative, we have 

(4.~0) I Y~ c,~,~a~l<( ~ c,~q~,,~,#'~( Y c,~u,a~) ~'~, 
I .k<n | .k<n t ,k<n 

on b~. Then (4.18) follows by integrating the above over the boundary and invoking 

(2.28). 

We will use (4.18) with uk defined by 

(421) u~= 5 cJ~ ~z~ 
t<n 

where ~EC~o (U'), ~=  1 on U and S o is a tangential pseudo-differential operator of order 0. 

First, we show tha t  

(4.22) ZII~II~ + Z f c,ku,~ dS<~ const. Q(~0, ~v). 
k L k < n  J b f l  

The first term is estimated by: 

(4.23) Ilu~ll~ < co ,~ t  IIr ~ <const .  Q(~SOcp, r <~ const. Q(~o, V). 

To estimate the boundary integral, we have on bf2: 

(4.24) 7. ~,~,,,~<<- coast. 7. I~l ~ 
t , k<n k<n 
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and, using the Schwartz inequality, we obtain 

(4.25) 

hence 

(4.26) 

I,,~['= Z c,~Cs0~,,~,,.< eonst. ( Z c,~Cs~176 Z I"~1') ~', 
k<n k,I<n k,J<n k<n 

c~u~k~<const. ~. cjk~S~176 
Lk<n kJ<n  

Thus, by (2.28), the integral over the boundary (4.26) is bounded by coast. Q(~S~ ~S~ 

and hence by const. Q(% ~0); which concludes the proof of (4.22). 

Putting all this together, and replacing D by ~/atm in (4.18) (with m <2n), we obtain 

where we have replaced (8/~tm)Cjk~S~ by ~(8/~tm)S~ (~ does not appear in (4.27) 

since it is one on the support of ~); the difference between these terms is 0(]IvH) and hence 

dominated by the right hand side. 

We will now conclude the proof of (C) by showing how (4.17) follows from (4.27). 

Set S ~ = -(O/Otto)A -1 in (4.27) and sum over m. Observe that  

(4.28) 

and hence 

(4.29) 

2n-1 ~2 
- 

k i i,k.$ 

which establishes (4.17). 

Proo] o/ (D). Property (D) follows immediately from the following inequality. For 

any g s Ca~ there exists C > 0 so that: 

(4.3o) IIIg~111~ < c111~111, 

for all uEC~o(U N ~). Thus if/EIq(Xo) and gEC| we can conclude that  ]gEIq(Xo) by 

replacing u with ]~ in (4.30), with ~E ~0~/q and U suitably small. 

Property (E) is a consequence of the following lemma. 

LEMMA 4.31. I[ e<l ,  /, geC~(~)) and i/ Igl <~ I/[, then 

<4.32) Illgulll, < III/ulll,+eoast. II~ll 

/or all u 6 C~o (U N E2). 

7-782904 Acta  matkemat ica  142. Imprim$ le 20 FSvrier 1979 
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Proo/. The operators  [A ~, g] and  [], A ~] are of order e -  1 and  hence bounded in L 2 

so t ha t  we have  

(4.33) 

and  

which gives (4.32). 

IIIgullb = IIA'(gu)ll = IIgA'~ll +O(llul l) 

IIgA'ull -<< II/A'ull = IIl/ullb+O(llull), 

For  the proof  of (F) we need the  following lemma.  

L E • M), 4.34. 1 / 0  < (~ ~< 1/m, then there exists C > 0 such that 

(4.35) IIIgulll, < IIIgmulll~,+Cllull 

/or all ueC~(g  n ~). 

Proof. Proceeding b y  induct ion we assume t h a t  the  left hand  side of (4.35) is bounded  

by IIIful l l~+const .  Ilull for k < ~ .  Then for any j, with 0 < j < k  and Ik+j )O<l ,  we have 

I I l~u II1~, = (gkg 'A'~§ g '~-'A(~'-',~u) + o(llulP) 
< III g~+,u II1,,.-,,~ IIIg ~-'u II1,,,-,. + o(11,41~). 

I f  m is even we obta in  the desired es t imate  by  set t ing k = ?" = m/2. 

I f  m is odd, set k=(m+l) /2  and j = ( m - 1 ) / 2 ,  we then  have 

IIIgulll~ < IIIg"ull l,,~ll lgull l~+ co'~t. II"IP, 

which proves  the  desired inequal i ty  (4.35). 

R 

Proo/ o/ (F). I f  g e V / ~ o i  then  on some neighborhood U of x 0 we have  ] g [ ~ <  ]/] ,  

where t satisfies (4.1). Hence,  combining (4.1) with 4.31 and  4.34 we obtain  

(4.36) I IIg~lll~,~ < eonst. Q(% ~ ) ,  

for all ~0 E ~ q. Therefore,  g E ]q(Xo) which proves  (F). 

Proof o/ (G). B y  L e m m a  2.31 it suffices to consider ~ 0 e ~ )  q. Then,  if fEIq(xo) and 

satisfies (4.1) we have  

(4.36) int  (~) ~ = ~ '  ~" (L~ {) %K ~K, 
K 1 
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where ~ is g iven by  (4.13). Thus,  

(4.37) III int (8/) ~111~ = Y' II1~ (L,t) ~,~111~. 

Sett ing 

w e  h a v e  

(4.38) 

w.  = Y (L~ 1) ~ ,  
1 

99 

(4.4o) 

and  

(4.41) 

F r o m  the  def ini t ion of ~2~ we ob ta in  

I IA'( l '~-) l l  < eo~t .  (111I~111- + II1r 

IIL,w~ll < eonst. I1~11,. 

Sett ing e = 26 and combining the above,  we obtain 

(4.42) Illint (~I)~ II1~,= -< ~onst. (111t~ II1~ +O(~, 99)); 

hence property (G) follows from (4.1). 

1 1 

= ~ ((L~I) A ~ : ,  A%,,~) + O(III~III~-~IIw~II) 
I 

J J 

+ o(llll~lll=~llwKII + II1~ IIl=,-,llw,dl) 
= ( - Y L,~j~,  A ~ ( / ~ D )  - Y (a~( l~ j~ ) ,  L , ~ )  

t J 

+ o(111I~111~ +III ~111.~-~ + II vll'), 

where the term II1~111--, in the seeoM nne arises in estimating I IA'[A~,L, I ]~,4;  the 
th ird  l ine is ob ta ined  by  an app l ica t ion  of L e m m a  4.9, the  b o u n d a r y  t e rm does no t  appea r  

since A ~ n ~  = 0 on b~.  T h e  n e w  error t e r m s  on  the  four th  line come from t h e  last  t e rm  in 

(4.10),  t h a t  is 

(/A'(p,~, g, A'W~) = (A2'(/(p,D, ~',v2~) + O(lll+ l ib-,  Ilw,dl) 

here the  term Ill,lib-1 comes from commutators as above.  In the last line of (4.38) we  

have  used v~=o(ll~ll). Now, from (2.15), we have  

(4.39) IIZ Lj~,~II < I1~*~11 + eonst. 119,11. 
t 
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For  the proof of proper ty  (H) we will need the  proposit ion given below. The ease 

q = 1 is somewhat  simpler then the ease of other q. 

De/inition 4.43. If  (a~s) is a matr ix  with i, j = 1 .. . . .  n and if I and  J are two m4up les  of 

integers between 1 and  n; we define the m • m matr ix  (a~) by  

( 4 . 4 4 )  (al~) = i i , 

aLmjx �9 atmj m / 

where 1 = (i I ..... ira) and J - - ( J l  ..... Jm). We then define a norm ~=(a~j) on the ruth exterior 

powers by  

(4.45) Ore{a,,) = { ~.' I det a~)')I~) l's, 

where the sum runs over all m-tuples I and J ;  and " d e t "  denotes the determinant .  

PROPOSITION 4.46. Suppose/or each xE U N ~,  that (a~y(x)) is a semi-delinite matrix, 

and that eo 1 .. . . .  con lorm a basis ol the (1, O).]orm8 on U fi ~;  then there exists C > 0  such that: 

(4.47) ,~-~+'(a,j(x)) Y' I~,(x)I s < e Y' ~ a,,(~) ~,~(x) ~,~(x) 
.r |,1 

/or all xE U (~ ~ and all ~E.,4~ N ~). 

Proo I. At  each x we define the inner product  ( , )x by  (o~t(x), wj(x)~ z =Ow Let  (s~(x)) 

be a uni tary  matr ix  such tha t  

(4.48) atj(x) = ~ 2~(x),~l(x) s~j(x), 
h 

where ~l(x) ..... ~n(X) are the  eigenvalues of al~(x). Then we obtain  

(4.49) ~'  y a,,(x) ~,~(~) ~,~(x) = y'  ( ~ ~(z)) I  ~;(~)IS), 
I f  |.~ .l h ( J  

where 

(4,50) ~,(x)= ~ sgn ( i " j "  iq) s,,~, ... s,,~,q~,...,, 

and 

s g n ( i " j "  iq)=O if (i, . . . . .  i,)=bJ 

sign of permutat ion ~ of (1 . . . . .  q) for  which ir~-'=~,~(.~), where J =  (7"1 . . . . .  )q). 
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I t  follows from (4.48) tha t  there is a Co>0 such that  

(4.51) ~-~*l(x) ~< C o ~ ~, (x)  ... ~h~_g+l(x), 
l<~h1<...<hn_q+l~n 

Now, we let 
n 

(4.52) c1 = max ~ ~j(~). 
x 1 

Then for any strictly increasing q-tuple J we have: 

(4.53) ~-~+l(x)~ C~ (q) ~ 

since each term in the sum in (4.51) must  have at  least one factor whose subscript is in J .  

Since (s,k) is unitary, we have (s~)-I = (sk~) and hence 

(4.54) q~j(x)f ~. sgn (il "j" iq) ~,a, ... ~,,a, qJh~...h ,. 

Therefore, there is a C2 such tha t  

(4.55) ~' I ~(~)1 ~< c~ ~'  ]~(~)]~ 

for all zE U N ~ .  The estimate (4.47) then follows by combining (4.55), (4.53) and (4.49); 

thus concluding the proof of the proposition. 

Proof o/(H). Suppose o~eMq(xo), with k= 1, ..., n - q +  1, satisfying (4.4); tha t  is, if 

(4.56) ~ ~ 5 o~j oJj, 
J 

then, for each ( q -  1)-tuple K=(kl ..... kq-1), we have 

(4.57) Ill :~ ~ ,~ l l l .  ~ < CQ(v, q~) 
i 

for all ~ E ~ e. We will show that  the function tha t  takes x E U N ~ to (a  I A ... A a,-q+l, O)x 

is in Iq(Xo) for all {}EAn-q+Lo(U fi ~).  I t  will suffice to show this in the case 0 =a)H, for all 

H = (hi ..... h,_q+ 0 with 1 ~< h 1 < . . .  < h,_e+ 1 <~ n. We then have 

(4.58) (a 1 A ... A a ~-q+l, o~x) = det (a~). 

Let  K be the ordered ( q - 1  )-tuple consisting of all integers between 1 and n which 

are not in H. Since ~tE=0, whenever iEK, the sum in (4.57) runs over all ieH. Then, we 

h a v e  

i | , t~H 
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where the error term estimates 

(4.60) ~ {([A', ~ ]  r A*(~jK)) + (~A'~,~, [ A', ~ ]  ~ ) } .  
t../e H 

Let 
n - q + l  

(4.6~) a,,(~)= ~. ~(~)O~(x). 
k = l  

Applying Proposition 4.46 with r replaced by A~K,  we obtain 

(4.62) 
K i . L k  

Furthermore, we have 

(4.63) On-q+l(a~j(x)) >1 ~ ] d e t  a~r 
H 

Integrating the above and estimating commutators as in (4.60), we obtain 

(4.64) 
K 

Therefore, we conclude from (4.57), that  det (a~)E Iq(xo), thus completing the proof of (H). 

The proof of one of our principal results now follows immediately from Proposition 4.7. 

Proo/ o/ Theorem 1.21. The only properties of Iq(xo) which are not explicitly stated in 

Proposition 4.7 are (c) and (d). These are obtained by combining (C) with (H) and (G) 

with (H), respectively. 

w 5. Subeiliptic stratifications and orders of contact 

We define the ideals I~,(xo) below and then show that  this definition coincides with the 

one given by (1.22). If xoEb~ we define the sequence of ideals l~(x0)c ... c I~,(x0)c Iq(x0) 

and the sequence of modules M~(xo)C ... c M~(xo)C Mq(xo) by: 

(5.1) M~(xo) = {Or, int(0)8~r for all OEA~ 1 with O_L~r} 

R 

I~(xo) = V(r, detn-q+x M[(xo) ) (5.2) 

and inductively 

(5.3) 

(5.4) 
R 

I~,(x o = [/(/~-x(Xo), detn_q+l M~(x0)). 
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PROPOSITION 5.5. The ideals I~(xo) are also given by (1.22). 

Proo/. If  we choose (as usual) co 1 ..... con to be an orthonormal basis of A~; ~ with w~ =gr 

and if 

~ r  = ~ c~j ~ A 5j. 

then define "gl . . . .  , vn_~ by: 

T~ = int (Sj)0~r = Y~ c~j co~. 

Then Ml(xo) is generated by: TI ..... Tn-1 and (on. Hence I~(xo) is the real radical of the ideal 

generated by the determinants of the ( n - q )  • ( n - q )  minors of (ctj) with i, j <n ,  and the 

function r. This establishes (1.22) for k = 1. The general case then follows by  induction. 

If  V is a complex-analytic variety defined in a neighborhood U of x 0 we denote by 

Yxo(V) the ideal of germs of holomorphic functions tha t  vanish o n ' V  and by ~x0(V) the 

ideal of germs of complex-valued real-analytic functions tha t  vanish on V. We will make 

use of a result of R. Ephraim (see [11]) which asserts tha t  when V is irreducible then 

yx0(V) is generated by Yxo(V) and Yxo(V), where Yxo(V)={/IfE Y~o(V)}. 

Definition 5.6. I f  V is a germ of a complex-analytic var iety at  x 0 E b~2 then we define 

the order o/contact of V to b~  a t  x 0, denoted by O(x o, V), by 

(5.7) O(x o, V) -~ Oxo(r/Yxo(V)) = max Oxo(r- g), 
r e 7Zo(V) 

where Ox~ denotes the order of vanishing of / at  x o. Let  ~r denote the set of germs of 

q-dimensional, irreducible varieties containing x o. Then we define Oa(xo), the q-order of Xo, 

by: 

(5 ,8 )  Oa(xo) = m a x  O(xo, V). 
Y e'~(zo) 

Let "l~a(Xo) be the set of all germs of q.dimensional complex manifolds containing x o. 

Then we define the regular q-order of x o, denoted by reg Oa(xo), by 

(5 .9 )  r e g  Oq(xo)~ m a x  O(xo, V). 
Ye'~v(zo) 

Observe tha t  

(5.1o) 

In  fact, for r in C a given by  

reg Oa(xo) <~ Oa(xo). 

r (z )=Re(z3)+ z ~ z 8 ~ I-- 2 
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we have reg 01(Xo)=6 and 01(Xo)= ~ .  This type of phenomenon has been studied in [2] 

and [6a]. In  [63], D'Angelo shows that,  if reg 01{Xo)<4 then 01(Zo)=reg 01(Xo). 

LEI~MA 5.11. I f  Oa(Xo)=m then there exist germ8 o! holomorphic /unctions hl,...., hk at 

x o and polynomials A~, B~ such that 

r=:~ A,h,+ E B,/;, + 0(I ~1=). 

Proo/. By definition of Oq(xo) there exists a germ of a q-dimensional irreducible variety 

V E ~a(x0) such that  O(xo, V)=m. Let h 1 ..... h~ be the generators of :/~0(V) then, by the 

above cited theorem of Ephraim, we conclude that  hi ..... hk, 1~1 ..... ~k generate ~,(V). 

Thus the function g which attains the maximum in (5.7) can be expressed in terms of these 

generators, which concludes the proof. 

L EM~IA 5.12. Given N > 0 there exists a holomorphic coordinate system z 1 ..... z,, with 

origin at x o such that 

(5.13) r -  2Re (z~) + Z a• z% ~ + 0([ zlN). 
I=1>0, I/H>O 

I=+,01 <.,v 

Proo/. Choose any holomorphic coordinate system w I .... , w~ with origin x 0. Then by 

expanding in Taylor series we have 

r=Re( ~ c=w~)+ ~ b~u~+O(lw}N) .  
Iml<N l~l>O.l~l>O 

I=+~'I<N 

Let z 1 .... , z n be any holomorphic coordinate systems with origin at x o and with z== 

�89 ~l~l<N C= w=, then substituting in the above, we obtain (5.13). 

L~.MMA 5.14. Given -hr> O(x0, V), where V is a germ o /an  irredubible complex-analytic 

variety throv41h xo; then 
O,.(z,lY~.(V)) >10(xo, V). 

Proof. Let  h 1 .... , h~ be generators of Y~.(V) then, by 5.11, 

(5.15) rfY.A,h,+YB,/; ,+O(Izl=),  with m=O(xo,  V). 

From (5.13) we have: 

:,,  - ~ A, h, = y, B, t i , -  ~,. + y" a~ z=~ + o(I ~,1"). 

We can write A t = F t + O t ,  when Ft is holomorphie and G~ has a power series expansion 

all of whose terms have one of the ~j as a factor. Then 

�9 ~ -  Y F,h,= o+O(l~l=), 
i 
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where G is a polynomial each of whose terms contains at least one ~j. Hence all partial 

derivatives of the left hand side up to order m vanish at x 0, which completes the proof. 

In the following proposition the main assertion that  (b) is equivalent to (d) is proven, 

in the case q = 1 by J. D'Angelo in [6b]. 

PROPOSITION 5.16. I[ ~ is pseudo.convex then the/oUowing are equivalent 

(a) 1 eI~(xo) 
(b) The Levi-/orm at x o has at least n - q  positive eieen-values 

(c) reg Oq(xo)=2 

(d) Oq(xo)=2 

Proo/. That  (a) is equivalent to (b) is an immediate consequence of the definition 

of I~(xo). I t  is also clear that  (d) implies (c), by (5.10) and since from (5.13) we see that  

reg Oq(xo)>/2. We will first prove that  (c) implies (b). Choosing the coordinate system 

zl ..... zn so that  (5.13) holds with N = 3  we have 

(5.17) r(z) -- 21~e (zn) + ~ %~j(O) z, ~:j + 0(] zlS). 

We will assume (c) holds and that  (b) does not hold. Thus 

(5.18) 
n-1 1 

dim zl~=O,~r~j~j(O)z~ffiO, j - -1  . . . . .  n - 1  ~>q. 
f-1 

So by (5.17) the order of contact of the linear space defined in (5.18) is greater or equal to 

3, which contradicts (c). 

Now assuming (a) we will prove (d). Let V E ~(x0) and let hi, ..., h~ be generators of 

Y~,(V). Suppose O(x 0, V)>2, then, by 5.11: 

= y A,h, + Y B,r~, + o(1~1') 

(5.19) 8~r = - Z 0A, A dh, + Z 8B, A d)~, + 0 + O(H ), 

where 0 =0  on V. From (5.17) we have, 

(5.20) ar -- d~n + 0(1~1). 

By virtue of (5.14) we know that  znlv=O(IzlS), hence 

k 

(5.21) (ar)x. = (dz,)x. = ~ r (dh, h.. 
1 
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Let  ~t and  fl be (1, O)-forms with constant  coefficients such t h a t  

(5.22) (OA )~o = atdS, +a~ and (aBt)~. = btdz, +l~t 

with 

Then,  f rom (5.19), we have  

(OA,] (OB,] 
a,= \~zn/~. and bt = \~-~/x. .  

(5.23) (OOr)x~ = ~ (dh,)~ o h 5q + ~_ fit A (d~,)xo + ~ a,(dh,)z, A d~ n + ~ b, dz, A (dht)z~ 

The restr ict ion of (00r)x0 to T~; ~ is given by  the  first two te rms  on the  r ight  of (5.23). 

This  is a semi-definite hermi t ian  fo rm which vanishes on the  intersection of the annihi la tors  

of the (dhj)z.. Hence  we have,  using (5.21) 

(O~r)~o = ~ atj(dh,)~o A (d~j)xo. (5.24) 

Then  

(5.25) Or A Or A (~Or) n-q = ~ dh,  A ... A dht, t+~ A %,...t._,+~ + O([z[). 

Since V is q-dimensional a t  most  n - q  of the dh~ are l inearly independent  a t  regular  points  

of V. Hence dht, A ... A dht,_~+x = 0 on V and hence [Or h 0r h (0~r)~-a]z 0 = 0 so t h a t  1 r I~(xo) 

which is a contradict ion and concludes the  proof.  

Definition 5.26. A is an  admissible vector .f ield in a neighborhood U of x 0 if <A, 0r> = 0  

and  <A, 0r)  =0 .  I n  par t icular  for x e b ~ ,  A,eT~ '~  + ~ '~(b~) .  

L~.~MA 5.27. I f  cjj is a component of the Levi-form and i/ A 1 . . . . .  A m are admissible 

vector fields then A 1 ... . .  Am(%) e n-1 I,,+l(Xo). 

Proof. Since 

|.t<n 

each c jEI~-X(Xo) when i, j < n .  Fur the r  

0c~j A 0r = ~ (Lk co) w~ A w,. 
k < n  

Hence Lkc,, e I~-x(xo) and also Lkcj, 6 I~-X(x0); but  L~cj, =JLkStj and ]Lkg~jl = ILkctjl, hence 

Lkc~j 6 I~-l(x0). Since the admissible vectors  are combinat ions  of the Lk and Lk the  l e m m a  

follows for m = 1. For  m = 2 we app ly  the  same a rgumen t  to OAct~, when A is an  admissible 

vcetor  field and  similarly conclude the  proof by  induction.  
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LEMMA 5.28. Let F be a real-valued C ~176 /unction defined in a neighborhood ot the origin 

in R n. Suppose that F >~O and F(0) =0. Let X be a real C ~ vector/ield defined in a neighbor- 

hood o[ 0 E R n. Then either XJF(O) = 0 /or  all ] or there exists some integer k such that XJF(O) = 0 

/ / ? ' < 2 k  and X~F(O)  >0.  

Proot. I t  suffices to consider X such t h a t  X4=0 in a neighborhood of 0. Choose a 

coordinate system x I ..... x~ so tha t  X = ~/~x 1, then 

F(x) = ~; agO, x., . . . . .  x,,) xl + O([xp+l) .  
1=1 

Choosing m to be the smallest number  such tha t  am(0 ..... 0 ) ~ 0  we see tha t  F(x  1, 0 . . . . .  O) >~0 

implies t ha t  m is even and a~(0 ..... 0) > 0 which concludes the proof. 

LEMMA 5.29. I t  t, gl . . . . .  gm are complex-valued C ~ /unctions in a neighborhood o / 0 E R  n 

such that 

(5.30) I / iS:< const. Ig, lS; 
l 

/urthermore, i t X is a real C ~ vector field and X~I(O) = 0 / o r  ~ < k  and Xk/(0)~0  then/or  some 

: and some q <~plc we have Xqgj(O)TO. 

Proo/. Assume tha t  Xqg~(O)=0 for 1---1 . . . . .  m and all q < p k .  Let  F = c o n s t .  ~ Igj] s -  

I / I  s', then 
m 

X::kF(O) = const. ~ [ X~g/(O)[: - I Xkt(O)I s 
1 

and the result follows from 5.29. 

De/inition 5.31. s CTxo is defined inductively as follows: 

El(x0) =ge rms  of admissible vector fields. s = s + [s , s ]. ~:k(xo)c 

CTx, is the subspace obtained by  evaluat ing all elements of s at  x 0. Note  t h a t  i~l(xo) = 

T~;~ + T~163 We say tha t  x 0 is of / in i te  type if for some integer m we have ~m(Xo) = 

CTxo(b~) and if m is the least such integer we say tha t  x o is of type m. 

Observe tha t  if / e C~(Xo) and A E s t h e n / A  E s since 

l/B1, Bs] = B2(/) B1 + [/ B1, B2], 

so tha t  if B l e  s and Bse  s then JIB 1, B2] e s 

L E M M A 5.32. X o E b~  is o / type  greater than or equal to m, with m >1 3, i / a n d  only it when- 

ever A 1 ... . .  A~e s with k < m - 2 ,  then A 1 ... A~ctj(xo) =0 i t i, : < n. Furthermore, x o is 

o / t ype  2 i / a n d  only i/c~j(Xo)~=O/or some i, : with i, : < n .  
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Proof. With our usual notation (see 2.20) we have 

[L,, Lt] = c~j T rood El(x0), 

if i, ?" < n. For any S E CTto we have S = a T  rood ~a(x0). Thus by induction we obtain, when 

i , ~<n  

(5.33) [A1, [A~ .... , [Au, [L~, Lt] ...] = (A 1 . . .  Ak(C~t ) + R~(c,t)) T rood I~+l(x0), 

where R~, t is a polynomial in the A~, ..., A~ of degree less than/c. The desired conclusion 

then follows by evaluating (5.33) at x 0. 

L~.MMA 5.34. Suppose that xoEb~ is of type greater than p and that/EC~176 has the 

properties that f(xo)=0 and that A 1 ... Akf(Xo)=O whenever ]c<p and AtEEl(Xo). Then i/ 

/ i 1  . . . . .  A ~  E i:l(xo) and if ~ is a permutation o/{1 ..... p} we have 

(5.35) AI ... Ap/(xo) = A,,a) ... A,(~)/(xo). 

_Furthermore, i/ for some choice o/ A 1 ,  . . . ,  ArE s we have A 1 ... Arf(x0)~0 then there 

exists A E El(xo) such that A~/(xo)4=O. Finally, if in the last statement the A x ..... A r are real 

then there exists a real A E s such that APf(Xo) 4= O. 

Proof. From (5.33) it follows that  

(5.36) AI ... A~ = A,,a) ... Am(v) + ~ Ptj(c~j) T + Pr, 
f.t<n 

where the P~j and Pr  are polynomials in 21 x ..... /iv of degree less than p. Hence (5.35) 

follows by applying (5.36) to / and evaluating at x 0. 

If A 1 .../ir/(Xo)~=0, let .4 =2:  ,jAj. Then Arf(Xo) is a homogeneous polynomial in the 

s /s  and the coefficient of *x ... ar equals p t / i x  . . . / i r / (x0)~ 0. Hence the polynomial is not  

identically zero and so for some choice of the , j  we have/iPf(Xo) 4=0. If t h e / i j  are real we 

can choose the aj real and obtain a real .4 as required. 

PROPOSITION 5.37. 1EI~-I(XO) i /and  only i / x  o is o/f inite type. 

Proof. By Lemmas 5.32 and 5.34 it will suffice to prove that  1 E/~-x(x0) is equivalent 

to the existence of A E s such that  AP(c,j) 4=0 with p 1> 0 and some i, } < n. From Lemma 

5.27 it follows that  if AV(cjt) 4=0, with A E s i, j < n and p/> 0 then 1 E I~7~(Xo). 

Suppose that  1 E I~-l(x0) then there exists a funct ion/a)  E Inm2](x0) such that,  for some 

i <n,  L|f(x)4=O. Then fhere exist functions/(~), ...,/k,~(2)E/~-I ~x~-~ 0J~ and Px, such that  

n - 1  ks 

2: 2: IL, fi 'l '. 
s -1  t - 1  
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Le t  A be either Re  (Lj) or I m  (Lj) so t h a t  A/(1)#O. Then,  b y  5.9, there  exist  s, j and  q so 

t h a t  AqLs/JU)#O. Let  /(2)=/~2) and  let B be either Re  (Ls) or I m  (Ls) so t ha t  AqB/(2)=~O. 
Now suppose t h a t  x 0 is of type  greater  t h a n  q2 = q + 1 then,  f rom L e m m a  5.34, we conclude 

t h a t  there  exists a real A~E s and  an integer  q~ so t h a t  A~'](2)#O. Similarly we obta in  

/(s)E~=~(Xo) and  a real AsEs such t h a t  Ag~ After  repeat ing this procedure 

m - 1  t imes we obta in  /(m-~)~I[-~(xo) and a real Az_lqs so t h a t  A~-~/(~-I)#o,  

fur ther  

Ic,,I 
t , t<n 

hence Akm_lC~jq=O, for some k, i, i; which, by  5.32, concludes the  proof.  

PROPOSITION 5.38. X o is O/ type m i /and only i /reg O"-l(Xo)tim. 

Proo/. Choose coordinates zx . . . . .  zn wi th  origin a t  x o so t h a t  r = R e  (z , )+  F + o(Izl +b, 
where F is a mixed polynomial  vanishing a t  0. Le t  

O _rz, 0 
L'= o.-Z 

1 0 
L . -  r.. Oz.' 

T = L ,  -L~.  

j = l ,  . . . ,  n -  l ,  

Le t  V={z ,  lz,,=O }. Then,  b y  L e m m a  5.14, O(x o, V )=m if and  only if reg o"-l(xo)=m. 

We also have  O(x o, V) = m if and only if there is some i, j < n and ~1 ..... a~,-x with ~1 + . , .  + 

a2.-2 = m - 2 such tha t  

(5.39) B~' . . .  B~-_.~,_v,,~j(O) 4 : 0  

and this expression equals zero whenever  i, ~ < n  and  ~1 + ... + ~.-z < m -  2, where 

B - - -  O B , + . _ I  = ~ , -  zl, ~zi, i =  l . . . . .  n - 1 .  

We will show t h a t  if O(xo, V) ~>m then  

(5.40) B~' .. .  B~i~_~$',,~(0) = AI '  .. .  la~_~%(0), 

whenever  i, ] < n  and 6~i+ .., + a i , _ l ~ < m - 2 ,  where 

A I = L t ,  A,§ = L l ,  i = 1 . . . . .  n - 1 .  
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The desired conclusion follows from (5.40) by  applying Lemma 5.32. To prove (5.40) we 

first note tha t  for i, j < n  we have 

where h~j, g~jEC~(xo). Fur thermore  

A~ 

B t + h t F ~ z ~  , i = 1  . . . . .  n - 1  

a 
B~+g~F~,_,+l~z--,~ i = n  . . . . .  2 n - 2 ,  

where h~, gt E C~176 Now (5.40) is easily established by  induct ion on k = cq + ... + ~n-2. 

w 6. The real .analyt lc  case 

In  this section we will suppose tha t  r is real-analytic in a neighborhood of % Ebb.  

We will deal only with real-analytic functions. We will denote by  ~(x0) the set of germs of 

real-analytic functions at  %. I f  S ~  ~(x0)  then (S) denotes the ideal of germs of real-analytic 
R 

functions generated by S and l/S denotes the set of a l l / E ~ ( x 0 )  such tha t  there exists an 

m and a g ES with Ill m ~<]g]. I n  this section I~(x0) will denote the ideal of germs of real- 
R 

analytic functions defined by  (1.22) where ( ) and ~/are interpreted as above. Before we 

enter into an examinat ion of the ideals I~(Xo) we will state some properties of ideals of 

germs of real-analytic functions. 

Let  I be an ideal of germs of real-analytic functions at  0 E R  p. Let  ~0(I) denote the 

germ of the real-analytic var ie ty  defined by  I ;  t ha t  is, if fl . . . . .  fk are generators of I which 

are defined on a neighborhood U of 0, then Ufl  ~( I )={xEUI f j ( x )=O, j=l  . . . . .  k}. I f  

xfi ~(1) we denote by  Yx~9(I) the ideal of germs of real-analytic functions at  x which 

vanish on ~0(1). The following is proved in [24]. 

THEOREM 6.1. (Lojasiewicz). I f  I is an ideal of germs of real-analytic functions at 
R 

0 e R  ~, t~n 7Jo'O(I)= V-1. 

As usual we will complexify R v by  the embedding of R v into C v given by  zj = xr where 

xl . . . . .  % are coordinates in It" and z~ ... . .  z r are coordinates in C v. I f  f is a real-analytic 

function on an open set U ~ R v then there exists an open set 0 c (3v such tha t  ~ N R v = U 

and a holomorphic function T on ~7 such tha t  T= f on U. We call [ the complexification of / ,  



SUBELLIPTICITY OF THE ~-NEUMANN PROBLEM ON PSEUDO-CONVEX DOMAINS I 11 

and if I is an ideal of germs of real-analytic functions then we denote by I c the ideal of 

germs of holomorphic functions generated by  the complexifications of the elements of I .  

We will also denote by ~o(ic) the germ of the complex-analytic variety defined by I c 

and if zE ~q(ic) we will denote by ~z~( I  c) the ideal of germs of holomorphie functions a t  

z tha t  vanish on ~(IC). 

PROPOSITION 6.2. Let I be an ideal o /germs  o/real-analyt ic /unct ions at OERv such 
R 

that I = VI.  Then we have 

(6.3) dimR 75(I) = dimc Y(1r 

Proo/. In  Narasimhan [25], Proposition 1, page 91, it is shown tha t  

(YoY(I)) r --- Yo ]9((Yo~9(I))C). 

Applying 6.1 we have 

(6.4)  y010(IC) = I c. 

Then (6.3) follows by Proposition 3 of [25], p. 93. 

H. Caftan in [4] shows tha t  in I t  s if I = ( z ( x ~ + y 2 ) - x  ~) then, for any z~0 ,  the ideal 

Y(o,o,z) ~0(I) is not generated by Y(o, o,o~0(I). For our purposes this difficulty can be over- 

come by means of the following result. 

PROPOSITIOI~ 6.5. I/ 1 i8 an ideal o /germs  o/ real-analytic /unctions at OER ~ and i/ 
R 

I = ~I ,  then there exists a sequence o /points  x (v) E "~(I) such that x (~) converges to 0 and such 

that each x (~) has a neighborhood U~ with the property that i / y E U ,  N ~ ( I )  then 71~( I )  is 

generated by the elements o /1 .  

Proo/. Let m - d i r e r  ~( I ) ,  then we can choose a sequence x (~) E ~ ( I )  with lim~_~ x(')= 0 

such that  ~ ( I )  is regular and of dimension m at  x (') (see Theorem 1, page 41 of [25]). Let  

U: be a neighborhood of x (~) such that  every y e  U: n lq(I) is a regular point of ~(1) and 

~r has dimension m at y. Let ~ c ( ~  be a neighborhood of 0 such tha t  for every zE 0 N 

~( ic )  the ideal y ~ ( I C )  is generated by  elements of I c (such a 0 exists by Oka's  theorem). 

If  yE ~ N U: fi ~ ( I )  then y is a regular point of ~( ic )  and so there exists hi, ..., h~_, ,eI  c 

so that  (dhl) ~ A ... A (dh~_,~)y:4=O. The restrictions of h 1 ..... hp_~ to R ~ are elements of I 

which generate y~ ~(I) .  Hence the neighborhoods U, = G N U~' have the desired property. 

Returning to our ideals I~(xo) we let ~r be the germ of a real-analytic variety at  x 0 given 

by 

(6.6) ]q~(xo) = "~(I~(xo) ). 



(6.13) 

where ~lz is defined by: 

(6.14) 
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Definition 6.7. I f  I is an ideal of germs of analyt ic  funct ion a t  x o and  if xE ~ ( I )  then  

we define Z~'~ the  Zarisbi tangent space of I a t  x as follows 

(6.8) Z~'~ = (LE T~'~ = 0 if fEI}.  

I f  V is a germ of a real-analyt ic  va r ie ty  a t  x o then  we define 

zz (V)=Z~'~ (6.9) 1�9 

The following is then  immediate .  

LEMMA 6�9 If  I is an ideal of germs of real.analytic functions at x o and i / x E  ~(I) 

then 

(6.11) z~.o(~(i)) c z~.0(i). 

I /  ~)z~( I) is generated by elements o / I  then equality holds in (6.11). 

PROPOSITION 6.12. If  xE ~(xo) then xE ~+l (xo)  if and only q 

�9 1 , 0  q dim (Zz (Ik(x0)) N T/z) I> q, 

~/z = (L E T~'~ I ((a~r)z, L A L )  = 0}. 

Proof. I f  L 1 ... . .  L ,  is the  usual  local basis of T 1"~ with (L,, 8r)  =5~n and  ctj = (8~r, L l A Lj )  

so t ha t  (co) with i, ~ < n on b ~  is the Levi  form; then  x E ~+l (x0)  if and  only if the following 

sys tem has a t  least q l inearly independent  solutions. 

n- -1  

c,j(x) ~t = 0, j = 1 . . . . .  n - 1 
i - 1  

(6.15) 
[L,(/)lz~t-- 0, /EI~(xo). 

t - 1  

For xE ~(x0) and L = ~ . t  ~Lt the  above sys tem characterizes those L such t h a t  
1 , 0  q LzEZ~ (I~,(Xo)) fl ~/z, which concludes the  proof. 

Definition 6.16�9 I f  V is a real-analyt ic  va r ie ty  contained in bf~ we define the  holo- 

morphic dimension of V b y  

(6.17) hol. d im(V)  = rain d im Z~'~ N ~/z. 
XGV 
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PROPOSITION 6.18. I /  V ~  U N b~ is a real-analytic variety and i/ hol. dim (V) ~>q 

then V ~  "l~q~(xo) /or all m. 

Proo]. If x E V  then dim ~/~>~q hence xE ~0~(Xo), so that  V= ~0[(xo). Assume that  

V~ ~g(Xo), then, applying (6.10), we obtain for xE V: 

(6.19) zi'~ ~ zl'~ ~ zi' ~ 

Then, intersecting the above with TI~ and applying Proposition 6.12 we conclude that  

xE ~+l(Xo) hence V c  ~+l(xo) so that  V c  ~ (xo)  for all m. 

PROPOSITION 6.20. I]/or every real-analytic variety V c U N b~ we have hol. dim (V) <q 

then ~,(xo)  =O.  

Proo/. We will show that,  if ~9~(xo)# li~, then 

(6.21) dim ~gCx0) > dim ~+lCxo). 

Suppose (6.21) does not hold. Then, these dimensions are equal and hence in an open set 

W with the property that  every y E W N ~g+l(x0) is a regular point at which the dimension 

of ~g~ dx0) is maximal, we have W N ~ ( x 0 ) =  W N ~g+l(x0). Now by 6.5 we can choose 

such a W~ U so that  for each yEW N ~0~(xo) the ideal 3~0~(x0) = 3y~+l(xo) is generated 

by the elements of Ig(xo). Hence by Proposition 6.12 we conclude that  hol. dim W N ~g(xo) >~ q, 

which is a contradiction. Hence (6.21) holds and the conclusion follows since dim ~[(Xo) ~< 

dim b~ = 2n - 1. 

I t  then follows that  if in some neighborhood U of x o there is no V c  U n b~ with 

hol. dim Y/> q then 1 E Zgn(Xo) and hence a subelliptic estimate holds at x 0 for (p, q)-forms. 

Observe that  if W is a complex-analytic variety with W c b ~  then hol. dim W = d i m  W 

since then Z~'~ ~/~ for all xE W. The converse of this is the following deep result of 

Diederich and Fornaess (see [9]). 

THEOREM 6.22. (Diederich and Fornaess). I] ~ is psendo-convex, i] r is analytic 

in a neighborhood U o/ xoEb~ and i/there exists a real analytic variety V c  U Nb~ with 

hol. dim (V)=q then there exists a complex-analytic variety W c  U N b~ with dim W=q. 

Using this theorem we see that  a subelliptie estimate holds if there are no complex- 

analytic varieties of dimension greater or equal to q in some neighborhood of x o. Actually, 

this is equivalent to the condition that  there is no variety in b~ of dimension q which 

contains x 0, by a result that  was obtained by J. Fornaess and which is given below. The 

proof given here is also due to Fomaess; it uses the methods developped in [9]. 

a -  782904 Acta mathematica 142. lmprim~ lc 20 F$vrier 1979 
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TH]~OREM 6.23. (Fornaess.) I /  Wk is a sequence o/complex varieties with dim Wk~q,  

W~ c b~ and x o a cluster point o/this sequence them there exists a complex variety W such that 

dim W>~q, W c b ~  and xoE W. 

Choose a neighborhood U of x 0 such that  the Taylor series of r about x 0 converges in 

U. Let ~ be the complexification of r. Now we need the following result which is proved 

in section 6 of [9]. 

PROPOSITION 6.24. There exists a neighborhood U' o / x  o such that U ' c  U and such 

that i/ W is an irreducible complex.analytic variety in U' N b~ then there exists a complex 

analytic variety W" such that W c  W ' c  U'N b~ and such that W is closed in U'; tha~ is: 

W'  N U'= W'. Furthermore,/or any complex analytic variety W c  U' N b~ we have ~(z, ~) =0  

whenever z, w E W. 

Proo/o/  Theorem 6.23. We may suppose that  the W~ are closed irreducible varieties 

contained in U' N b~. Let  p(1) be a cluster point of the W~, then we can find a subsequence, 

which we also denote by (Wk} such that  p(~l)EWk and p(1)=limk_~oop(k 1). NOW, let p(2) 
be a cluster point of this subsequence whose distance from pa) is maximal. We then 

choose a further subsequence {Wk} such that  p(k2)E Wk and limk_~iV(k ~) =p(2). Proceeding 

inductively and using diagonalization we finally obtain a sequence {Wk} and for each m 

�9 . ~ ( r n )  ~ ( m )  If C denotes the set of cluster points of (Wk}; we have p(~m)E W~ and nmk-,oo~,~ =~, �9 

then the sequence {p(m)} is dense in C. For every/c we have p~), p(~J)E Wk hence ~(p~), 

~(m 0 and hence if p and p '  EC we have ~(p, ~ ' )=0.  Let  W' be defined by 

(6.24) W ' =  n ( p E u ' l i ( p , ~ ' ) = o } .  
~'eC 

Thus W' is a closed complex-analytic variety contained in U' and W ' ~  C; furthermore, if 

w'E W and c E C then we have 

(6.25) 

Let W be defined by 

(6.26) 

~(w', e) = ~(c, ~ ' )  = o.  

w =  n {weU'l~(w,~')=o}. 
~" Q W" 

Then C c  W c  W' and if w E W  we have r(w)=~(w, ~)=0.  Hence W is a closed complex- 

analytic subvariety of U' N b~, it remains to show that  dim W >~q. Consider the stratifica- 

tion WoC WI c- ... c Wz= W, where the Wj are the singular points of Wj+I for ~--1 ..... 1 -1 .  

Let  d be the smallest integer such tha t  C - Wa does not cluster at z o. Let  W 1, ..., W* 

be the irreducible germs of Wa. Then (W ~-  Wa-1)N C clusters at x o for some iE{1 ..... s}. 
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Fix such an i. I t  suffices to  show t h a t  d im W i >~q. Choose p(m) E W * -  Wa-x and  a neighbor- 

hood U" of p(m) such t ha t  U ~ fi W f consists of regular  points  of W ~ and U" N C in contained 

in W ~. Let  7x . . . . .  7 .  be holomorphie  coordinates wi th  origin a t  p(m) such t h a t  A c  U" and  

w '  n A = {(7~ . . . . .  7 . ) ~ 1 7 - ~  . . . . .  7 .  = o}, 

where A={(Tx . . . . .  7n)EC"[17, I < 1 , ~ = 1  . . . . .  n} and  t = d i m  W'. Then  on points  of C n A  

we have  7t+a . . . . .  7 ,  =0 .  Le t  h = {7[ [7, [ <�89 i = 1 . . . . .  n}. I t  then  follows, if k is sufficiently 

large, t h a t  

w ~ n h = { T e h l l m l < ~ , i = t + l  . . . . .  n}. 
Hence the m a p  

;;gk; Wk N ~ -'~ {(71 . . . . .  7t)] 17,1 < ~, ~ = a . . . . .  t} 

is proper.  This is only possible if d im W~ ~ t. Hence  dim W 1> q since d im Wk/> q and  t = 

dim W t ~< dim W. 

The  above  results are then  summar ized  b y  the  following theorem.  

THEOREM 6.27. Assume that ~ is pseudo-convex, xoEb~ and r is real-analytic in a 

neighborhood o /%.  Then the ]ollowing conditions are equivalent: 

(a) 1 E I~(x0)/or some k. 

(b) There exists a neighborhood U o / x  o such that U N b~ does not contain any complex 

analytic varieties o/dimension q. 

(e) I] W is a germ o / a  complex.analytic variety at x o such that W c b~ then dim W < q. 

Theorem 1.19 then  follows since (a) implies t h a t  x 0 E ~q. 

w 7. Some special domaln• 

I n  this section we consider domains  ~ = C n whose defining funct ion r is given, near  the 

origin, by:  

(7.1) r (~,  . . . ,  z,) = R e ( z , ) +  ~ Ih,(za . . . .  z n ) l ' + a ,  
t -1  

where h 1 . . . .  , h m are holomorphic functions,  a E R and r(0 . . . . .  0) = 0; so t h a t  

m 
a -  - ~ I h,(0 . . . . .  o, o)I'. 

t -1  

Then  we have  
m 

1-1 
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and hence 

= n h I "~. 

I 

Thus, the  domain  is pseudo-convex.  

PROPOSITION 7.4. I /  W is a germ o/a  complex.analytic variety such that W c b ~  then 

the/unctions zn and hj are constant on W. In  particular, i/ W contains the origin then W is 

contained in the variety V given by V = (z, =0 ,  hj(z x, ..., zn) =hj(O ..... O)/or ]= 1, ..., m}. Note 

that V c bO. 

i 0 Proo/. Let  z~  ~ . . . .  , z e) be a regular  point  of W. Le t  z~=za-z~, then  b y  L e m m a  5.12 
/ t t 

we have  z , = 0  on W. We choose coordinates zz, ..., z~ wi th  origin a t  z ~ so tha t ,  in a neigh- 

borhood of z ~ the  va r i e ty  W is given b y  z~+z . . . . .  z~ =0 .  Le t  h~ be the funct ion given b y  

h~(z') =h~(z(z')), then  we have  

(7.5) r(=') = Re (z~) + ~ [ h,:(z')]~ + a + Re {z~ 
J-1 

Evalua t ing  r on W we obta in  

(7.6) 
p Ih;(=; . . . . .  =,,, 0 . . . . .  0)1'= -a-Re(=~ 

J-1 

Applying 02/Oz~,~s to (7.6) and  summing  on k gives 

(7.7) ~ l . , i  ~ (Zl,  . . . ,  zv, 0 . . . . .  0 )  0 .  
k-1 J-~IOZ~ I 

Hence the  hj are cons tant  on W. 

Applying  Theorem 6.27 we find t h a t  the  following conditions are  equivalent .  

(a) 1E I4(0) for  some k. 

(b) dim V<q. 

(c) d im {z,==z ~ hi=hi(z~ <q,  where z ~ is close to  the  origin. 

Observe t h a t  

(7.8) er A (O~r) ~-q = �88 A (~ Oh, h Ohj) "-q + ... .  
t 

where the  dots  represent  forms in which either ~hj or ~hj appears  as factor  a t  least n - q + 1 

times. 
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De/inition 7.9. Let J~(0) denote ideals of germs of holomorphic functions at 0 defined 

by 

J~(O) -~ V(eoeff. (dz n A dhj, A ... A dh,,,_,)) 

and 

J~(O) = V(J~-I(O), coeff.(d/1A ... h d/n-qr where/kEJ~_~(O) U (zn, hi)). 

We set 

Jq(O) -= U J~(O). 
k 

PROPOSITION 7.10. The conditions (a), (b) and (c) are equivalent to 1 EJq(0). Further- 

more, i / 1  CJq(O) then dim V>~q, where V=(z lz~=O,  hi(z)=hi(0), j = l  ..... m}. 

Proo/. We will show that  (b) is equivalent to 1 EJq(O). The proof is along the same lines 

as that  of Proposition 6.20; it is much simpler because it is based only on properties of 

ideals of holomorphic functions. 

Suppose that  dim V < q, define :~z by 

(7.11) :~ = (L E T~'~ [L(z~) = L(h~) = 0). 

Suppose 1 SJ~(0) and let A be an open subset of reg ~0(J~(0)) which is so close to the 

origin that  (c) is satisfied for all z~ If zEA and zE ~(J~+l(0)) then, since (by Oka's 

theorem) :/z(~(J~(0)) is generated by J~(0), we have (by Cramer's rule) 

(7.12) dim (Z~'~ fi :~) >/q. 

If there were an open subset A ' c A  with A ' c  ~(J~+l(O)) then A' would contain an 

open subset A" on which the left hand side of (7.12) is constant. Hence, by the Frobenins 

theorem, A" is a complex manifold of dimension greater or equal to q. On the other hand if 
T 1 0 A" z ~ E A" then for each z E reg A" we have z' ( ) is a subspace of the tangent space to (z I zn = 

z~, hi(z)=z~ which contradicts (c). Hence A cannot have an open subset contained in 

~(J~+l(O)) and therefore dim ~(J~+l(O)< dim ~(J~(O)). Thus we conclude inductively that  

~(Jq(0)) = 0 ,  so that  1 EJq(O). 

If, conversely, dim V>~q, then (7.12) holds at all points of zE V', where V' denotes 

the union of components of V of dimension greater or equal to q. Hence V ' c  ~q(J~(0)) for 

all k and thus 1 CJY,(0). 

Observe that  in the above proposition z~ plays the same role as the hi; hence, we 

obtain the following result, whose proof is analogous to the one given above. 
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THEOREM 7.13. Let he, ..., h,n be germs o/holomorphic/unction8 at OEC n and let V =  

(zih~(z) =0,  ]=0  ..... m). Define the ideals O/germs J~ as/ollows 

a~ = V(coef~. (dh,, A. . .  A dh,._,)), 

where (Jo ..... in-e) range over all ( n - q +  l )-tuples o] integers/rom 0 to m; inductively we let 

Jq+x = I/(J,~, {coeff. (d/o A. . .  A din_q)),/s EJ,~ tJ (ho . . . . .  h,,)). 

We set Jq= (Jk J~. Note that g 0 : j l c  ... c J n .  Let qo be the unique integer such that I EJ  q 

i /q>qo and 1 t Jq  i /q<qo.  Then dim V=qo. 

w 8. Estimates of (p,  n- -1) - forms 

In  this section we prove the following which is an extension of the main result in [20el. 

T H E o R E M 8.1. I / ~  is pseudo-convex x o E b~ and i / reg  0 € = m then x o E ~.-1(1/m). 

Proo/. I f  q~E ~n-1, where U is a neighborhood of x 0, we can write 

(8.2) ~ = 25{D 1/~ ... A f~n-1 ..~_ ~]) A f~n, 

where ~p = 0  on b~, then we have 
n--1 

(8.3) O(9,, 9,)'-" Y- IIL, ull + ~ IIL, ull + Ilul? + II~,lll. 
i - -1 t--1 

Thus to show tha t  xoE ~=-:(I/m) it suffices to prove tha t  

(8.4) lllulllL~<const llL, ul?+ ~ llL, ull'+ llull' 
\ i - I  i - I  

for all uEC~o(U N ~).  

We first reduce the estimate (8.4) to an estimate on the boundary, following a proce- 

dure developed by  L. H6rmander (see [17b]) and which was applied to the D-Neumana  

problem by  W. Sweeney (see [318]). 

Applying Proposition 5.8 of [318] we conclude tha t  there exists a pseudo-differential 

operator P of order one operating on C~0(U N b~), such tha t  (8.4) holds if and only if: 

m ) (8.5) 'llullL~< const. ('llL,~ll' +'IIL,'~II') +'IIP'~II' +'ll',ll' , 
\ t - 1  

for all uEC~o(U N b~), where 'II il denotes norms on U f~ b~. 
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Setting: 

f L~+ L~, i f f i l  . . . . .  n - 1  
(8.6) 

X ' =  t V-----I(L,-~+I-L,-~+z), i-- n . . . . .  2 n -  2, 

we have, by Lemma 5.32, that  [X,, [Xt ...... [X~p_ x, Xfp]] ...] for p < m  span the tangent 

vector fields on U fi b~, when U is small. In [17c], H6rmander proves that  this eondi. 

tion implies that  for each e < 1ira there exists C such that  

/ 2 n  - 2 \ 

(8.7) '[[~ll~<c(,~'llX, ull~+'llull~), for an uEC~(U n b~). 

In [27], E. Stein and L. Rothschild, proves that  (8.7) holds also for e = 1ira. From this 

(8.5) follows, since 

n - 1  2 n - 2  

is.a) Y ('llL, ull~+'lIL, ul?)+ II~,ll ~~ Y 'lIx,~ll~§ 
i f 1  f -1  

The operator P that  appears in (8.5) can be described quite explicitly using the results 

of [17b] and [31a]. The principal symbol of P, denoted by p is given by 

n--1 

(s.9) ~(t, ~) = - ,~,(e,  ~) + t,~,(T, -) l '  + E {,~(L. ~)l', 
,/-1 

where t E U fl b~, v E AZ(Tt(b~)), T =L,  - L ,  and at(T, v) denotes the symbol of T evaluated 

at  ~. 

w 9. Propagation of sin~darities for 

In [20el we discussed propagation of singularities for ~ on Levi-flat domains in C ~, 

here we will give a natural generalization of this for domains in C ~ whose boundary contains 

a germ of a complex-anMytic curve. 

Definition 9.1. H ~EL~'q(~) we define the 8i~ul~r support of ~ to be the closed subset 

of ~,  denoted by sing. supp. (~), as follows. If x E ~  then x ~ sing. supp. (~) ff there exists 

a neighborhood U of x such that  the restriction of ~ to U fl ~ (denoted by ~I vnS) is in C ~. 

An immediate consequence of Theorem 1.13 is the following. 

TH~.OREM 9.2. I /  ~ ~S pseudo-convex and ~EL~'q(~) ~i~h 0o~-~0 then there exist 

u E L~'q"l(~) such that ~u = o~. Furthermore, i / x  o E ~e then there exist~ a neighborhood U of z o 

such that 

(9.3) U N sing. supp. (u) c sing. supp. (~), 

where uEL['q-l(~) is the unique 8olu~ion of ~u=~r which is orthogonal to the null space el ~. 
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De/inition 9.4. Let x o E b~  we say tha t  ~ admits a local holomorphic separating/unc- 

tion at x 0 if there exists a neighborhood U of x o and a holomorphic function g on U such 

tha t  g(x0)=0 and whenever Re g(x)=0 then x $ U N ~ .  

The example in [21a] shows that  this condition is rather  restrictive. Recent results of 

]Bedford and Fornaess (see [1]) indicate tha t  peak functions can substitute for separating 

functions in many  applications. 

PROPOSZTION 9.5. Suppose ~ is pseudo.convex, that xoEb~ and that the/oUowing 

hypotheses are satis/ied : 

(a) ~ admits a local ho~omorphic separating ]unction g at x o such that dg 4=0. 

(b) There is a complex.analytic curve V such that XoE V and V c b ~ .  

(c) g vanishes on V. 

Then/or any neighborhood U o~ x o there exists an open set U '~  U and a/orm otEL~ 

with ~o~=O, such that U' f) sing. supp. (~ )=0  and/or every uEL2(~ ) which satis/ies ~u=o~ 

we have U' N sing. supp. (u)4=O. 

Pros/. Let zl ..... zn be holomorphic coordinates with origin at  x 0 such tha t  z~= +g, 

where the sign is chosen so that  Re (z~)<O in ~ (near Xo). Let a E U N reg (V)and  let 

~E C~(U), such that  Q(z)=1 if [ z - a / < ~  and O(z)=0 if [z-a[  >~27; whereTis  so small tha t  

if z satisfies [z-a[  ~<3~ then: zEU; Re (z~) ~<0 if z E ~  and also if zE V then zEreg V. 

We define ~ by: 

[ ( --Zn)-l/4~ in U N 
(9.6) 

= ~ [ 0 outside of U N ~ ,  

where we choose the principal value of ( - zn)- 1/4. Observe tha t  ~a = O, tha t  ~ EL ~ 1(~) and 

tha t  

(0.7) sing. supp. (a) = ( ~ e V n ~ l r  < I -al < 2 r  and zn =0}.  

Let  K be a small closed neighborhood of the above set and let U' = U - K .  Then we have 

U' N sing. supp. ( a )= O.  Suppose there exists a function uEL~(~) such tha t  ~u=r162 and 

suppose that  U'N sing. supp. ( u ) = 0 .  Let  h = u - ( - z , ) - l / 4 ~ .  Then h is holomorphic. For 

small ~ we restrict h to the set {z I I z -a I  <47, zj=a, for ] - -2  ..... n - 1  and z ,= -(~} and 

we obtain the function of one var iable/a  defined by 

(9.8) /a(zl) = u(zl, a~, ..... an_ 1, - -6 ) -  ~(zt, a s ..... an-l, -e}) (~114 
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The assumption tha t  U 'N sing. supp. ( u ) = O  implies tha t  u(a 1 .... , an_l, -~ )  is bounded 

independent ly  of (~ and tha t  u(z 1, a2 ... . .  a~_~, - ~ )  evaluated on the set {z~ I] z~-a~ ] = 3~} is 

bounded independent ly  of (~, (for ~ <~).  Hence from (9.8) we conclude that/~(zl)  is bounded 

independent ly  of ~ on the circle I z~ - a 11 = 3 r  (since e = 0 there) and tha t  [/~(a~) I > 1/~11, _ M, 

where M is the bound of Ju(a 1 . . . . .  an-l, -(~)]. Since/$  is holomorphic the value/a(al)  is 

an average of the values of/~ on the circle I z l - a l l  =37;  which, for small ~, is a contradic- 

tion. Hence U'  n sing. supp. ( u ) = ~ .  
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