SUBELLIPTICITY OF THE ∂-NEUMANN PROBLEM ON PSEUDO-CONVEX DOMAINS: SUFFICIENT CONDITIONS

BY

J. J. KOHN⁽¹⁾

Princeton University, Princeton, N.J., U.S.A.

Contents

§1.	Introduction			•	•			•	•			•	79
§ 2.	The basic estimate on pseudo-convex domains												87
§ 3.	Tangential Sobolev norms												91
§4.	Ideals and modules of subelliptic multipliers .			•									93
§ 5.	Subelliptic stratifications and orders of contact									•			102
§ 6.	The real-analytic case			•							•		110
§ 7.	Some special domains		•	•			•				•		115
§ 8.	Estimates for $(p, n-1)$ -forms							•			•		118
§ 9.	Propagation of singularities for $\bar{\partial}$			•			•				•		119
Ref	erences												121

§1. Introduction

The main idea of this work is to analyze a-priori estimates for partial differential operators using the theory of ideals of functions. Here I deal only with the $\bar{\partial}$ -Neumann problem; however, it is my belief that this type of analysis will be useful in deriving estimates by algebraic methods in diverse situations (see for example Chapter 3 of [20a]). In particular, by means of the Spencer sequence, a wide class of differential operators can be reduced to the *D*-Neumann problem (see [30] and [31a]) which in turn seems to be amenable to these methods.

The principal results proved here are Theorems 1.19 and 1.21, they were announced in [20b]. To introduce this paper I give a brief review of those aspects of the $\bar{\partial}$ -problem and the $\bar{\partial}$ -Neumann problem which motivated my work.

⁽¹⁾ This work was done in part while the author was a Guggenheim Fellow. This research was also supported by a National Science Foundation project at Princeton University.

The $\bar{\partial}$ -problem. Consider the inhomogeneous Cauchy-Riemann equations on a domain Ω in \mathbb{C}^n . To be explicit, let $z_1, ..., z_n$ be holomorphic coordinates in \mathbb{C}^n and let $x_j = \operatorname{Re}(z_j)$, $y_j = \operatorname{Im}(z_j)$, we set

$$\frac{\partial}{\partial z_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} - \sqrt{-1} \frac{\partial}{\partial y_j} \right) \quad \text{and} \quad \frac{\partial}{\partial \overline{z}_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + \sqrt{-1} \frac{\partial}{\partial y_j} \right)$$

as usual. Now, given functions $\alpha_1, ..., \alpha_n$ on Ω , the problem is to solve the equations

(1.1)
$$\frac{\partial u}{\partial \bar{z}_j} = \alpha_j, \quad j = 1, \dots, n$$

and to study the regularity of the solution. Naturally, we must assume that the α_i satisfy the compatibility conditions

(1.2)
$$\frac{\partial \alpha_j}{\partial \bar{z}_k} - \frac{\partial \alpha_k}{\partial \bar{z}_j} = 0.$$

Using the notation of differential forms we let $\alpha = \sum \alpha_j d\bar{z}_j$; the equations (1.1) are then expressed by $\bar{\partial}u = \alpha$ and the compatibility conditions (1.2) by $\bar{\partial}\alpha = 0$.

We will assume that Ω is pseudo-convex and has a smooth boundary (see § 2). Since the system (1.1) is elliptic, the regularity properties of u in the interior of Ω are well known. Roughly speaking, on an open set $U \subset \subset \Omega$ a solution u restricted to U is "smoother by one derivative" then α restricted to U. Regularity of u on the boundary is more delicate. Notice that if h is a holomorphic function on Ω then u+h is also a solution of (1.1); thus, "in general" the solutions of (1.1) will not be smooth on the boundary. The problem then is to find some particular solution with good regularity properties at the boundary. In [20d] and [20c] the following result is proved.

THEOREM 1.3. If $\Omega \subset \mathbb{C}^n$ is pseudo-convex with a C^{∞} boundary and if $\alpha_j \in C^{\infty}(\overline{\Omega})$ and satisfy (1.2) then there exists $u \in C^{\infty}(\overline{\Omega})$ which satisfies (1.1).

This result gives global regularity of solutions. The problem of local regularity is the following: given an open set U such that the restriction of α to $U \cap \overline{\Omega}$ is smooth can we find a solution u whose restriction to $U \cap \overline{\Omega}$ is also smooth. The answer to this question, in general, is negative. In [20e] and also in § 9 of this paper, we show that singularities of u can propagate along complex-analytic varieties contained in the boundary of Ω . More precisely, for certain domains Ω we can find an α so that local regularity fails for every solution u. Our construction depends on the fact that the boundary of Ω contains a complex-analytic variety and it is this phenomenon that led us to the main results of this paper.

D. Catlin, in [5], gives an example of a pseudo-convex domain in \mathbb{C}^3 for which local regularity fails and whose boundary does not contain any non-trivial complex-analytic varieties.

In recent years many results have been obtained concerning the regularity of solutions of (1.1), on strongly pseudo-convex domains (see [16] for a survey of this field). These results are concerned with estimates of Hölder and L_p norms. In the present work we study pseudo-convex domains which are not strongly pseudo-convex and our results concern estimates of Sobolev norms.

The $\bar{\partial}$ -Neumann problem. This problem was formulated by D. C. Spencer to study the $\bar{\partial}$ -problem and other properties of the operator $\bar{\partial}$. Here we give a brief description of the problem, for a detailed account see [13].

Let $L_2^{p,q}(\Omega)$ denote the space of square-integrable (p, q)-forms on Ω . The inner product and norm are defined as usual by

(1.4)
$$(\alpha, \beta) = \sum_{I,J} \int_{\Omega} \alpha_{IJ} \bar{\beta}_{IJ} dV$$
, and $||\alpha||^2 = (\alpha, \alpha)$,

where $\alpha = \sum \alpha_{IJ} dz_I \wedge d\bar{z}_J$, $\beta = \sum \beta_{IJ} dz_I \wedge d\bar{z}_J$, $I = (i_1, ..., i_p)$, $J = (j_1, ..., j_q)$, $1 \leq i_1 < ... < i_p \leq n$, $1 \leq j_1 < ... < j_q \leq n$, $dz_I = dz_{i_1} \wedge ... \wedge dz_{i_p}$ and $d\bar{z}_J = d\bar{z}_{j_1} \wedge ... \wedge d\bar{z}_{j_q}$. Then we have

(1.5)
$$L_{2}^{p,q-1}(\Omega) \xrightarrow{\overline{\partial}} L_{2}^{p,q}(\Gamma) \xrightarrow{\overline{\partial}} L_{2}^{p,p+1}(\Omega),$$

by $\bar{\partial}$ we mean the closed operator which is the maximal extension of the differential operator and by $\bar{\partial}^*$ we mean the L_2 -adjoint of $\bar{\partial}$. We define $\mathcal{H}^{p,q} \subset L_2^{p,q}(\Omega)$ by

(1.6)
$$\mathcal{H}^{p,q} = \{ \varphi \in \text{Dom} \ (\bar{\partial}) \cap \text{Dom} \ (\bar{\partial}^*) | \bar{\partial}\varphi = 0 \text{ and } \bar{\partial}^*\varphi = 0 \}.$$

Observe that $\mathcal{H}^{0,0}$ is the space of holomorphic functions in $L_2(\Omega)$. The $\overline{\partial}$ -Neumann problem for (p, q)-forms can then be stated as follows: given $\alpha \in L_2^{p,q}(\Omega)$ with $\alpha \perp \mathcal{H}^{p,q}$, does there exist $\varphi \in \text{Dom}(\overline{\partial}) \cap \text{Dom}(\overline{\partial}^*)$ with $\overline{\partial}\varphi \in \text{Dom}(\overline{\partial}^*)$ and $\overline{\partial}^*\varphi \in \text{Dom}(\overline{\partial}\varphi)$, such that

(1.7)
$$\overline{\partial}\overline{\partial}^* \varphi + \overline{\partial}^* \overline{\partial} \varphi = \alpha.$$

Observe that if a solution of (1.7) exists then there is a unique solution φ of (1.7) such that $\varphi \perp \mathcal{H}^{p,q}$. We will denote this unique solution by $N\alpha$. If a solution to (1.7) exists for all $\alpha \perp \mathcal{H}^{p,q}$, then we extend the operator N to a linear operator on $L_2^{p,q}(\Omega)$ by setting it equal to 0 on $\mathcal{H}^{p,q}$. Then N is bounded and self-adjoint. Furthermore, if $\bar{\partial}\alpha = 0$, then from (1.7)

6-782904 Acta mathematica 142. Imprimé le 20 Février 1979

we obtain $\bar{\partial}\bar{\partial}^*\bar{\partial}N\alpha=0$, taking inner products with $\bar{\partial}N\alpha$ we get $\|\bar{\partial}^*\bar{\partial}N\alpha\|^2=0$ and hence $\bar{\partial}^*\bar{\partial}N\alpha=0$. Thus we see from (1.7) that if $\bar{\partial}\alpha=0$ and $\alpha\perp\mathcal{H}^{p,q}$ then

(1.8)
$$\alpha = \bar{\partial} \bar{\partial}^* N \alpha$$

It then follows that $u = \bar{\partial}^* N \alpha$ is the unique solution to the equation $\bar{\partial} u = \alpha$ which is orthogonal to the null space of $\bar{\partial}$.

If the $\overline{\partial}$ -Neumann problem is solvable on (0, 1)-forms and if $f \in L_2(\Omega) \cap \text{Dom}(\overline{\partial})$ then, applying (1.8) to $\alpha = \overline{\partial} f$ we can easily deduce that the Bergman orthogonal projection $B: L_2(\Omega) \to \mathcal{H}^{0,0}$ is given by

$$Bf = f - \bar{\partial}^* N \bar{\partial} f.$$

Then the following result holds (see [17a] and [13]).

THEOREM 1.10. If $\Omega \in \mathbb{C}^n$ is pseudo-convex and if $\overline{\Omega}$ is compact then the $\overline{\partial}$ -Neumann problem is solvable on (p, q)-forms for all (p, q) and $\mathcal{H}^{p,q} = 0$ when q > 0.

Subelliptic estimates. These estimates are defined as follows.

Definition 1.11. If $x_0 \in \overline{\Omega}$ we say that the $\overline{\partial}$ -Neumann problem for (p, q)-forms satisfies a subelliptic estimate at x_0 if there exists a neighborhood U of x_0 and constants $\varepsilon > 0$ and C > 0 such that:

(1.12)
$$\|\varphi\|_{\epsilon}^{2} \leq C(\|\bar{\partial}\varphi\|^{2} + \|\bar{\partial}^{*}\varphi\|^{2} + \|\varphi\|^{2})$$

for all $\varphi \in \mathcal{D}_U^{p_i^q}$. Here $\mathcal{D}_U^{p_i^q}$ denotes the space of (p, q)-forms $\varphi \in \text{Dom}(\bar{\partial}^*)$ such that $\varphi_{IJ} \in C_0^{\infty}(U \cap \overline{\Omega})$, for all components φ_{IJ} of φ . The norm $\|\varphi\|_{\epsilon}^2 = \sum \|\varphi_{IJ}\|_{\epsilon}^2$, denotes the Sobolev ϵ -norm.

The following theorem (see [21 b] and [13]), shows what implications this estimate has for local regularity of the $\bar{\partial}$ -Neumann problem, the $\bar{\partial}$ -problem and the Bergman operator.

THEOREM 1.13. Suppose that $\Omega \subset \mathbb{C}^n$ is pseudo-convex, the boundary of Ω is C^{∞} and that (1.12) holds at $x_0 \in \overline{\Omega}$. Then if $\alpha \in L_2^{p,q}(\Omega)$ and if α is smooth in a neighborhood of x_0 , (i.e. a neighborhood in $\overline{\Omega}$) then $N\alpha$ is also C^{∞} in a neighborhood of x_0 . Also if (1.12) holds for (0, 1)-forms, if $f \in L_2(\Omega)$ and if f is C^{∞} in a neighborhood of x_0 then so is Bf. More precisely, if α and f are in H^s in a neighborhood of x_0 then $N\alpha$ is in H^{s+2s} , $\overline{\partial}^*N\alpha$ is in H^{s+s} and Bf is in H^s in a neighborhood of x_0 .

In [19a], Kerzman showed how the above theorem can be used to study the regularity of the Bergman kernel function.

In case $\Omega \subset X$ and X is a complex analytic manifold with a hermitian metric the definitions given above extend in a natural way and subellipticity has several important consequences. It should be noted that, according to a result of W. Sweeney (see [31b]), the validity of (1.12), is independent of the choice of hermitian metric (even though the space $\mathcal{D}_{U}^{p,q}$ does depend on the choice of metric). We refer again to [21b] and [13] for a proof of the following.

THEOREM 1.14. Suppose that $\Omega \subset X$, where X is a complex analytic manifold with a hermitian metric, suppose also that Ω has a C^{∞} boundary and that every point in $\overline{\Omega}$ has a neighborhood such that (1.12) holds. Then the space $\mathcal{H}^{p,q}$ is finite dimensional and all of its elements are C^{∞} on $\overline{\Omega}$. Furthermore, the operators N, $\overline{\partial}^*N$ and B have the same regularity properties as in Theorem 1.13.

We will consider the estimate (1.12) on (p, q)-forms for domains which are pseudoconvex and when q > 0. It will be shown in § 2 that the validity of (1.12) is independent of p. The estimate (1.12) is always satisfied when $\varepsilon \leq 0$ and it cannot be satisfied for any $\varepsilon > 1$. Denote by $\mathcal{E}^{q}(\varepsilon)$ the subset of $\overline{\Omega}$ such that there exists a neighborhood U of x_{0} for which (1.12) holds whenever $\varphi \in \mathcal{D}_{U}^{p,q}$. Then we have

$$\mathcal{E}^{q}(\varepsilon) \subset \mathcal{E}^{q}(\varepsilon') \quad \text{when } \varepsilon \geq \varepsilon'.$$

For $\varepsilon = 1$ the estimate (1.12) is an elliptic estimate and we have

(1.15)
$$\mathcal{E}^{q}(1) = \begin{cases} \Omega & \text{if } q < n \\ \overline{\Omega} & \text{if } q = n, \end{cases}$$

the reason for this is that (1.12) is elliptic in the interior for all q and for q=n the space $\mathcal{D}_U^{p,n}$ consists of (p, n)-forms all of whose components vanish on the boundary of Ω . It follows from the general theory of subelliptic estimates that if $x_0 \notin \mathcal{E}^q(1)$ then $x_0 \notin \mathcal{E}^q(\varepsilon)$ for $\varepsilon > \frac{1}{2}$, see [17 b].

The next case is when $\varepsilon = \frac{1}{2}$ and we have the following result (see [17a] and [13]).

THEOREM 1.16. If Ω is pseudo-convex and if $x_0 \notin \mathcal{E}^q(1)$ then the following are equivalent (a) $x_0 \in \mathcal{E}^q(\frac{1}{2})$

(b) $x_0 \in b\Omega$ (b Ω denotes the boundary of Ω), q < n and the Levi-form at x_0 has at least n-q positive eigen-values.

The definition of the Levi-form will be recalled in § 2. The case $\varepsilon = \frac{1}{2}$ has received a great deal of attention in the last few years. In this case there are very precise estimates

in terms of Hölder and L_p norms (see, for example [16], [15b], [19a], [23] and [22]), also real-analytic hypoellipticity has been established (see [28], [8] and [29]). Furthermore, asymptotic expansions of the Bergman kernel function have been obtained (see [12], [3] and [18]). When $\varepsilon < \frac{1}{2}$ such results are not known yet except in some special cases (see [6a], [15], [22] and [26]).

The next case for which (1.12) can be completely analyzed is when q=n-1. The result is the following

THEOREM 1.17. If Ω is a pseudo-convex domain contained in an n-dimensional complex analytic manifold X then the following are equivalent.

(a) $x_0 \in \mathcal{E}^{n-1}(1/m)$, m an integer.

(b) If $V \subseteq X$ is a complex analytic manifold of dimension n-1 and if $x_0 \in V$ then the order of contact of V to $b\Omega$ at x_0 is at most m.

The proof that (b) implies (a) is given in §8 (Theorem 8.1). In the case n=2 a somewhat weaker result is given in [20e]. Greiner in [14] showed that (a) implies (b) when n=2, a proof along the same lines establishes the general case (we do not include this proof in the present paper, it will be part of a more general treatment of necessary conditions).

When q < n-1 the determination of when (1.12) holds for a given ε seems to be extremely complicated. What we do here is to give up the attempt to analyze (1.12) for a fixed ε given a-priori, but instead we find conditions for (1.12) to hold for some $\varepsilon > 0$. When our conditions are satisfied we only have a very rough estimate on the size of ε . Setting

(1.18)
$$\mathcal{E}^{q} = \bigcup_{\varepsilon > 0} \mathcal{E}^{q}(\varepsilon),$$

we state one of our principal results in the following theorem.

THEOREM 1.19. Suppose that Ω is pseudo-convex, that $x_0 \in b\Omega$, that in a neighborhood of x_0 the boundary is real-analytic and that there exists no complex-analytic variety V of dimension greater than or equal to q such that $x_0 \in V \subseteq b\Omega$. Then $x_0 \in \mathcal{E}^q$, i.e. the estimate (1.12) holds.

The above theorem is proven in § 6, here we will indicate the method of proof. In § 4 we introduce the notion of a "subelliptic multiplier", this is a C^{∞} function f defined on a neighborhood U of x_0 such that there exist positive ε and C so that

(1.20)
$$\|f\varphi\|_{\epsilon}^{2} \leq C(\|\bar{\partial}\varphi\|^{2} + \|\bar{\partial}^{*}\varphi\|^{2} + \|\varphi\|^{2})$$

for all $\varphi \in \mathcal{D}_U^{p,q}$. We denote by $I^q(x_0)$ the set of germs of multipliers satisfying (1.20). It is then clear that $x_0 \in \mathcal{E}^q$ if and only if $1 \in I^q(x_0)$ and that if $x \in \overline{\Omega}$, $f \in I^q(x_0)$ and $f(x) \neq 0$ then $x \in \mathcal{E}^q$. We then prove, in § 4, that $I^q(x_0)$ has the following properties:

THEOREM 1.21. If Ω is pseudo-convex, with a C^{∞} boundary and if $x_0 \in \overline{\Omega}$ then we have

- (a) $I^{q}(x_{0})$ is an ideal.
- (b) $I^{q}(x_{0}) = \sqrt[]{I^{q}(x_{0})}, \text{ where } \sqrt[]{I^{q}(x_{0})} = \{f \mid \text{ there exists } g \in I^{q}(x_{0}) \text{ and } m \text{ such that } |f|^{m} \leq |g| \}.$
- (c) If r=0 on $b\Omega$ then $r \in I^q(x_0)$ and the coefficients of $\partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q}$ are in $I^q(x_0)$.

(d) If $f_1, ..., f_{n-q} \in I^q(x_0)$ then the coefficients of $\partial f_1 \wedge ... \wedge \partial f_j \wedge \partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q-j}$, with $j \leq n-q$, are in $I^q(x_0)$.

It is then natural to define the ideals $I_k^q(x_0)$ inductively as follows

(1.22)

$$I_{1}^{q}(x_{0}) = \sqrt[\mathcal{H}]{(r, \operatorname{coeff}\{\partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q}\})}}$$

$$I_{k+1}^{q}(x_{0}) = \sqrt[\mathcal{H}]{(I_{k}^{q}(x_{0}), A_{k}^{q}(x_{0}))},$$

where

$$A_k^q(x_0) = \operatorname{coeff} \left\{ \partial f_1 \wedge \ldots \wedge \partial f_j \wedge \partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q-j} \right\}.$$

Here $f_1, ..., f_{n-q} \in I_k^q(x_0)$ and $j \le n-q$, coeff. { } stands for the germs of the coefficients of the set of forms { } and () stands for ideal generated by the sets appearing inside the parenthesis.

It then follows that $I_k^q(x_0) \subset I^q(x_0)$ and hence $l \in I_k^q(x_0)$ implies $x_0 \in \mathcal{E}^q$. In § 5 we study the geometric meaning of these ideals, they appear to measure the maximum order of contact that a complex analytic variety of dimension q through x_0 can have with the boundary of Ω . One must distinguish here between the order of contact that can be achieved by complex analytic manifolds and by complex-analytic varieties. Consider, for example, a pseudo-convex domain in \mathbb{C}^3 whose boundary, near the origin, is given by the function r, defined by:

(1.23)
$$r(z_1, z_2, z_3) = \operatorname{Re}(z_3) + |z_1^2 - z_2^3|^2 + \exp\left[-\left(|z_1|^2 + |z_2|^2 + |z_3|^2\right)^{-1}\right].$$

The order of contact, with r=0, of simple complex analytic curves at the origin is at most 6; but the curve defined by $z_3=0$, $z_1^2=z_2^3$ has infinite order of contact. Such behaviour has been studied in [2]. In this case, for $x \in b\Omega$ and $x \neq 0$ the maximum order of contact of all complex analytic curves is at most 2. In a forthcoming publication we will show that in the domain defined by $r \leq 0$ there is no subelliptic estimate for (0, 1)-forms at the origin, i.e. $0 \notin \mathcal{E}^1$.

Returning to Theorem 1.19, when the boundary is analytic near x_0 we restrict ourselves to germs of real-analytic functions in the definition of the ideals $I_k^q(x_0)$. We then use the theory of ideals of real analytic functions to show that $1 \in I_k^q(x_0)$ for some k is equivalent to the non-existence of real-analytic varieties of "holomorphic dimension" (see Definition 6.16) greater or equal to q contained in the boundary near x_0 . We then apply a theorem of Diederich and Fornaess (see [9]) to show that this is equivalent to the non-existence of complex-analytic varieties of dimension greater than or equal to q. Finally, we apply a theorem due to Fornaess (see Theorem 6.23) which shows that not having q-dimensional complex analytic varieties in the boundary arbitrarily close to x_0 is equivalent to not having a q-dimensional complex analytic variety through x_0 in the boundary.

In §7 we consider the special case of domains whose boundary is given by

(1.24)
$$r(z_1, \ldots, z_n) = \operatorname{Re}(z_n) + \sum_{j=1}^m |h_j(z_1, \ldots, z_n)|^2 + a = 0$$

where $h_1, ..., h_m$ are holomorphic functions and $a \in \mathbb{C}$. For these domains, if $r(z^0) = 0$ we construct a sequence of ideals of germs of holomorphic functions $J_k^q(z^0)$ such that $1 \in J_k^q(z^0)$ if and only if there is no complex analytic variety of dimension greater or equal to q through z^0 which lies in r=0. This is also equivalent to the condition that the dimension of the variety $\{z \mid z_n = z_n^0, h_j(z) = h_j(z^0) \text{ for } j = 1, ..., m\}$ is less than q. Our construction leads us to a formula for the dimension of a complex analytic variety (see Theorem 7.10).

In this article we do not take up the question of necessity. The problem is to prove that if Ω is pseudo-convex then $x_0 \in \mathcal{E}^q$ implies $1 \in I_k^q(x_0)$ for some k. We can prove this for very large classes of domains, but as yet we do not have the proof in general. In [10], Egorov announces a result which implies that if there is a non-singular complex-analytic curve through $x_0 \in b\Omega$, with contact m then $x_0 \notin \mathcal{E}^1(\varepsilon)$ when $\varepsilon > 1/m$. This result implies the converse of Theorem 1.19 in the case q = 1; for if a complex-analytic curve is contained in the boundary then at every regular point x in the curve we have $x \notin \mathcal{E}^1(\varepsilon)$ for $\varepsilon > 1/m$ for all m, thus $x \notin \mathcal{E}^1$ for all regular points and hence for all points of the curve. In [22], Krantz shows that the type of condition considered by Egorov is necessary for subellipticity in the sense of Hölder estimates when q = n - 1.

I am greatly indebted to J. E. Fornaess, R. C. Gunning and J. Mather for several discussions which were very helpful, especially in the study of ideals of functions. I also wish to express my thanks to L. Hörmander and H.-M. Maire who read the original version of this manuscript and suggested several revisions, corrections and clarifications which have been incorporated in the present text.

§ 2. The basic estimate on pseudo-convex domains

In this section we recall the basic estimate for the $\bar{\partial}$ -Neumann problem on pseudoconvex domains (for a detailed exposition of this material see [13]).

Let X be an n-dimensional complex-analytic manifold with a hermitian metric. Let $\Omega \subset X$ be an open subset of X and let $b\Omega$ denote the boundary of Ω . Throughout this paper we will restrict ourselves to domains Ω such that $b\Omega$ is smooth in the following sense. We assume that in a neighborhood U of $b\Omega$ there exists a C^{∞} real-valued function r such that $dr \neq 0$ in U and r(x) = 0 if and only if $x \in b\Omega$. Without loss of generality, we shall assume that r > 0 outside of $\overline{\Omega}$ and that r < 0 in Ω . For $x \in X$, we denote by CT_x the complex-valued tangent vectors to X at x and we have the direct sum decomposition $CT_x = T_x^{1,0} \oplus T_x^{0,1}$, where $T_x^{1,0}$ and $T_x^{0,1}$ denote the holomorphic and anti-holomorphic vectors at x respectively.

We denote by $A_x^{p,q}$ the space of (p,q)-forms at x and by \langle , \rangle_x the pairing of $A_x^{p,q}$ with its dual space, we will also denote by \langle , \rangle_x the inner product induced on $A_x^{p,q}$ by the hermitian metric and by $| |_x$ the associated norm. We will denote: by $T^{1,0}$, $T^{0,1}$ and $A^{p,q}$ the bundles with fibers $T_x^{1,0}$, $T_x^{0,1}$ and $A_x^{p,q}$ respectively; by $\Gamma(T^{1,0}, U)$, $\Gamma(T^{0,1}, U)$ and $\Gamma(A^{p,q}, U)$ the spaces of C^{∞} sections of these bundles; and by $T_x^{1,0}$, $T_x^{0,1}$, $A_x^{p,q}$ the set of germs at xof local C^{∞} sections of these bundles. Finally we will set $\mathcal{A}^{p,q} = \Gamma(\mathcal{A}^{p,q}, \overline{\Omega})$, that is (p,q)forms which are C^{∞} up to and including the boundary.

Definition 2.1. If $\theta \in A_x^{0,1}$, we define the map int (θ): $A_x^{p,q} \to A_x^{p,q-1}$ as follows, given $\varphi \in A_x^{p,q}$ then int (θ) φ is the element of $A_x^{p,q-1}$ which satisfies

(2.2)
$$\langle \operatorname{int} (\theta) \varphi, \omega \rangle_{\mathbf{z}} = \langle \varphi, \theta \wedge \omega \rangle_{\mathbf{z}}$$

for all $\omega \in A_x^{p, q-1}$. Thus the map int (θ) is the adjoint of the map given by $\omega \mapsto \theta \wedge \omega$.

For each $x \in X$ we denote by $(dV)_x$ the unique positive (n, n)-form such that: $|(dV)_x| = 1$. We call dV the volume element. If $x \in b\Omega$ we define $(dS)_x$ to be the unique real (2n-1)-form on $b\Omega$ such that $(dr)_x \wedge (dS)_x = |dr|_x (dV)_x$. If $\varphi, \psi \in \mathcal{A}^{p, d}$ we define the inner products:

(2.3)
$$(\varphi, \psi) = \int_{\Omega} \langle \varphi, \psi \rangle_x (dV)_x$$

(2.4)
$${}^{b}(\varphi, \psi) = \int_{b\Omega} \langle \varphi, \psi \rangle_{x} (dS)_{x}$$

and the corresponding norms:

(2.5)
$$\|\varphi\|^2 = (\varphi, \varphi) \text{ and } {}^b \|\varphi\|^2 = {}^b (\varphi, \varphi).$$

The subspace $\mathcal{D}^{p,q} = \mathcal{D}^{p,q}(\Omega)$ of $\mathcal{A}^{p,q}$ is defined by:

(2.6)
$$\mathcal{D}^{p,q} = \{\varphi \in \mathcal{A}^{p,q} \mid (\operatorname{int} (\bar{\partial} r)\varphi)_x = 0 \quad \text{for } x \in b\Omega \}$$

The operators $\bar{\partial}: \mathcal{A}^{p,q} \to \mathcal{A}^{p,q+1}$ and $\bar{\partial}^*: \mathcal{D}^{p,q+1} \to \mathcal{A}^{p,q}$, then satisfy

(2.7)
$$(\varphi, \bar{\partial}^* \psi) = (\bar{\partial} \varphi, \psi),$$

for all $\varphi \in \mathcal{A}^{p,q}$ and $\psi \in \mathcal{D}^{p,q+1}$. It can be shown that $\mathcal{D}^{p,q} = \mathcal{A}^{p,q} \cap \text{Dom}(\bar{\partial}^*)$, see [13].

The quadratic form Q is defined on $\mathcal{D}^{p,q}$ by:

for $\varphi, \psi \in \mathcal{D}^{p,q}$.

Definition 2.9. If $x \in b\Omega$ we denote by $\mathbb{C}T_x(b\Omega)$ the space of complex-valued tangent vectors to $b\Omega$, i.e. $\mathbb{C}T_x(b\Omega)$ is the subspace of $\mathbb{C}T_x$ consisting of all S such that S(r) = 0. We set $T_x^{1,0}(b\Omega) = \mathbb{C}T_x(b\Omega) \cap T_x^{1,0}$ and $T_x^{0,1}(b\Omega) = \mathbb{C}T_x(b\Omega) \cap T_x^{0,1}$.

Definition 2.10. The Levi-form is the quadratic form on $T_x^{1,0}(b\Omega)$ denoted by $\mathcal{L}_x(L, L')$ and defined by:

(2.11)
$$\mathcal{L}_{\mathbf{x}}(L,L') = \langle \partial \bar{\partial} r, L \wedge \bar{L}' \rangle_{\mathbf{x}}, \text{ where } L, L' \in T^{1,0}_{\mathbf{x}}(b\Omega).$$

We say that Ω is *pseudo-convex* if for each $x \in b\Omega$ the form \mathcal{L}_x is non-negative.

If $x_0 \in b\Omega$ then there exists a neighborhood U of x_0 such that on $U \cap \overline{\Omega}$ we can choose C^{∞} vector fields with values in $T^{1\cdot 0}$, which at each point $x \in U \cap \overline{\Omega}$ are an orthonormal basis of $T^{1\cdot 0}$. Let $L_1, ..., L_n$ be such a basis, then for each $x \in U \cap \overline{\Omega}$ we have $\langle (L_i)_x, (L_j)_x \rangle_x = \delta_{ij}$. We wish to write the operators $\overline{\partial}$ and $\overline{\partial}^*$ in terms of this basis. Let $\omega_1, ..., \omega_n$ be the dual basis of (1, 0)-forms on $U \cap \overline{\Omega}$, so for each $x \in U \cap \overline{\Omega}$ we have $\langle (\omega_i)_x, (L_j)_x \rangle_x = \delta_{ij}$. We denote by $L_1, ..., L_n$ the conjugates of the L_i (i.e. $L_i(f) = \overline{L_i(f)}$), these form an orthonormal basis of $T^{0\cdot 1}$ on $U \cap \overline{\Omega}$ and $\overline{\omega}_1, ..., \overline{\omega}_n$, the conjugates of the ω_i , are the local basis of $\Gamma(A^{0\cdot 1}, U \cap \overline{\Omega})$ which is dual to $L_1, ..., L_n$. If φ is in $\mathcal{A}^{p \cdot q}$ then on $U \cap \overline{\Omega} \varphi$ can be written as follows:

(2.12)
$$\varphi = \sum' \varphi_{IJ} \omega_I \wedge \bar{\omega}_J,$$

where $I = (i_1, ..., i_p)$, $J = (j_1, ..., j_q)$, the i_k and j_k are integers between 1 and n. The symbol \sum' signifies that the summation is restricted to strictly increasing p-tuples I and q-tuples J. The forms ω_I and $\bar{\omega}_J$ are given by

(2.13)
$$\omega_I = \omega_{i_1} \wedge \ldots \wedge \omega_{i_p} \text{ and } \bar{\omega}_J = \bar{\omega}_{j_1} \wedge \ldots \wedge \bar{\omega}_{j_{q'}}$$

We then have

(2.14)
$$\bar{\partial}\varphi = (-1)^p \sum_{i} \sum_{I} \tilde{L}_{I}(\varphi_{IJ}) \omega_I \wedge \bar{\omega}_J \wedge \bar{\omega}_J + \sum_{I} f_{HL}^{IJ} \varphi_{IJ} \omega_H \wedge \bar{\omega}_L,$$

where H and L run through increasing p-tuples and (q+1)-tuples respectively. We also have:

(2.15)
$$\bar{\partial}^* \varphi = (-1)^{p+1} \sum_{j}' \sum_{I} L_j(\varphi_{I,jk}) \, \omega_I \wedge \bar{\omega}_K + \sum_{j}' g_{HK}^{IJ} \varphi_{IJ} \, \omega_H \wedge \bar{\omega}_K,$$

where the summations are over increasing ruples (I and H run through p-tuples, J through q-tubles and K through (q-1)-tuples) and

(2.16)
$$\varphi_{I,jk} = \begin{cases} 0 & \text{if } j \in K \\ sgn\left(\frac{jK}{\langle jK \rangle}\right) \varphi_{I\langle jK \rangle} & \text{if } j \notin K, \end{cases}$$

here $\langle jK \rangle$ denotes the increasingly ordered q-tuple with elements $(j, k_1, ..., k_{q-1})$ and $\operatorname{sgn}\begin{pmatrix} jK \\ \langle jK \rangle \end{pmatrix}$ is the sign of the permutation taking jK to $\langle jK \rangle$. The coefficients f_{HL}^{IJ} and g_{HK}^{IJ} are C^{∞} functions on $U \cap \overline{\Omega}$.

We fix r so that $|\partial r|_x = 1$ in a neighborhood of $b\Omega$. For $x_0 \in b\Omega$, in a small neighborhood U of x_0 , we choose $\omega_1, ..., \omega_n$ to be (1, 0)-forms on U such that $\omega_n = \partial r$ and such that $\langle \omega_i, \omega_j \rangle = \delta_{ij}$ for $x \in U$. We then define $L_1, ..., L_n, L_1, ..., L_n, \tilde{\omega}_1, ..., \tilde{\omega}_n$ as above. Note that on $U \cap b\Omega$, we have

$$(2.17) L_j(r) = L_j(r) = \delta_{jn}.$$

Thus $L_1, ..., L_{n-1}$ and $L_1, ..., L_{n-1}$ are local bases of $T^{1,0}(U \cap b\Omega)$ and $T^{0,1}(U \cap b\Omega)$ respectively. We define a vector field T on $U \cap b\Omega$ with values in $CT(U \cap b\Omega)$ by:

$$(2.18) T = L_n - L_n.$$

Observe that $L_1, ..., L_{n-1}, L_1, ..., L_{n-1}, T$ are a local basis for $\Gamma(\mathbb{C}T(U \cap b\Omega))$. We denote the Levi form in terms of these bases by:

$$(2.19) c_{ij}(x) = \langle \partial \bar{\partial} r, L_i \wedge \bar{L}_j \rangle_x,$$

for i, j=1, ..., n and $x \in U \cap b\Omega$. On $b\Omega$, for i, j < n we have

(2.20)
$$[L_i, L_j] = c_{ij} T + \sum_{1}^{n-1} a_{ij}^k L_k + \sum_{1}^{n-1} b_{ij}^k L_k,$$

where $[L_i, \tilde{L}_j] = L_i \tilde{L}_j - \tilde{L}_j L_i$, as usual.

If $\varphi \in \mathcal{A}^{p,q}$; then, in terms of the local basis, the condition (2.6) is expressed as follows: $\varphi \in \mathcal{D}^{p,q}$ whenever

(2.21)
$$\varphi_{II}(x) = 0$$
, when $n \in J$ and $x \in b\Omega$.

Here φ_{II} denotes components of φ in (2.12) relative to the local basis defined above.

If U is an open subset of X then the space $\mathcal{D}_{U}^{p,q}$, which is defined in connection with (1.12) is also given by:

(2.22)
$$\mathcal{D}_{U}^{p,q} = \{ \varphi \in \mathcal{D}^{p,q} | \operatorname{supp} (\varphi) \subset U \cap \overline{\Omega} \}.$$

THEOREM 2.23. (Basic estimate.) If $x_0 \in b\Omega$ and Ω is pseudo-convex then there exists a neighborhood U of x_0 and a constant C > 0 such that

(2.24)
$$\|\varphi\|_{\bar{z}}^{2} + \sum_{i,j} \int_{\partial\Omega} c_{ij} \varphi_{I,\,iK} \,\bar{\varphi}_{I,\,jK} \, dS \leq CQ(\varphi,\,\varphi)$$

for all $\varphi \in \mathcal{D}_{U}^{p,q}$, with $q \ge 1$. Here $\|\varphi\|_{\mathbb{Z}}$ denotes the norm given by:

(2.25)
$$\|\varphi\|_{z}^{2} = \sum \|L_{j}\varphi_{IJ}\|^{2} + \|\varphi\|^{2}.$$

Observe that if $u \in C_0^{\infty}(U \cap \overline{\Omega})$ with u(x) = 0 on $U \cap b\Omega$, then

(2.26)
$$\sum \|L_{j}u\|^{2} \leq \text{const.} (\sum \|\tilde{L}_{j}u\|^{2} + \|u\|^{2}),$$

where the constant is independent of u. Hence we have

$$(2.27) ||u||_1^2 \leq \text{const.} ||u||_2^2,$$

for all u satisfying the above. Here $||u||_1$ denotes the Sobolev 1-norm, i.e. the sum of the L_2 -norms of the first derivatives of u. Combining this observation with (2.21) and (2.25) we obtain

(2.28)

$$\|\varphi\|_{\mathbb{Z}}^{2}+\sum \|\varphi_{I,nK}\|_{1}^{2}+\sum' \left\|\sum_{j=1}^{n-1} L_{j}(\varphi_{I,jK})\right\|^{2}+\sum' \sum_{i,j} \int_{\partial\Omega} c_{ij}\varphi_{I,iK} \tilde{\varphi}_{J,jK} dS \leq \text{const. } Q(\varphi,\varphi),$$

for all $\varphi \in \mathcal{D}_{U}^{p,q}$ with $q \ge 1$, since the third term on the left is bounded by

(2.29) const.
$$(\|\bar{\partial}^* \varphi\|^2 + \sum \|\varphi_{I_* nK}\|^2 + \|\varphi\|^2)$$

and hence by const. $Q(\varphi, \varphi)$.

Notice that conversely we have

(2.30)
$$Q(\varphi, \varphi) \leq \text{const.} \left(\|\varphi\|_{\bar{z}}^2 + \left| \sum_{i,j} \int_{\partial \Omega} c_{ij} \varphi_{I,\,iK} \bar{\varphi}_{J,\,jK} dS \right| \right).$$

for all $\varphi \in \mathcal{D}_U^{p,q}$. This inequality is a consequence of the definitions and holds without the assumption of pseudo-convexity.

The estimates that we will derive will be valid for (p, q)-forms if and only if they are valid for (0, q)-forms, by virtue of the following.

LEMMA 2.31. Let E be a norm on $C_0^{\infty}(U \cap \overline{\Omega})$ and denote also by E the norm on $\mathcal{D}_{U}^{p_j^{\alpha}}$ defined by:

$$E(\varphi)^2 = \sum E(\varphi_{IJ})^2.$$

Then the following are equivalent. There exists C > 0 such that

(2.32)
$$E(\varphi)^2 \leq CQ(\varphi,\varphi), \quad \text{for all } \varphi \in \mathcal{D}_U^{p,a};$$

and there exists C > 0 such that

(2.33)
$$E(\psi)^2 \leq CQ(\psi, \psi), \quad \text{for all } \psi \in \mathcal{D}_U^{0, \varphi}$$

Proof. The inequalities (2.28) and (2.30) show that $Q(\varphi, \varphi)$ is equivalent to

(2.34)
$$\sum_{I}' \left\{ \sum_{J}' \|\varphi_{IJ}\|_{Z}^{2} + \sum \|\varphi_{I,nK}\|^{2} + \sum_{K}' \left\| \sum_{j=1}^{n-1} L_{j}(\varphi_{I,jK}) \right\|^{2} + \sum_{K}' \sum_{i,j} \int_{\partial \Omega} c_{ij} \varphi_{I,iK} \bar{\varphi}_{I,jK} dS \right\},$$

thus (2.32) is equivalent to the sum (over I) of the inequality (2.33) applied to $\psi_I \in \mathcal{D}_{U}^{0,q}$ with $\psi_I = \sum_{J}' \varphi_{IJ} \bar{\omega}_J$.

Remark 2.35. In the case of (0, 1)-forms on pseudo-convex domains the third term in (2.34) is $\|\sum_{i=1}^{n-1} L_j \varphi_j\|^2$ which is dominated by $Q(\varphi, \varphi)$. It is important to note that $\sum_{i=1}^{n-1} \|L_j \varphi_j\|^2$ is in general not bounded by $Q(\varphi, \varphi)$: (relative to any basis L_i, ω_i) as can be seen in the case of $\Omega \subset \mathbb{C}^4$, where r near the origin is given by

(2.36)
$$r(z) = \operatorname{Re} (z_4) + |z_1|^6 + |z_1^2 + z_2^2|^2 + |z_3|^4.$$

These types of bounds are studied by Derridj in [7].

§ 3. Tangential Sobolev norms

In our study of (1.12) we will use tangential pseudo-differential operators on $U \cap \overline{\Omega}$, with U a neighborhood of $x_0 \in b\Omega$. These will be expressed in terms of boundary coordinates which are defined as follows.

Definition 3.1. If $x_0 \in b\Omega$ we will call a system of real C^{∞} coordinates, defined in a neighborhood U of x_0 , boundary coordinates if one of the coordinate functions is r. We will denote such a system by $(t_1, ..., t_{2n-1}, r)$ and we call the t_j tangential coordinates and r the normal coordinate.

For $u \in C_0^{\infty}(U \cap \overline{\Omega})$ we define \tilde{u} , the tangential Fourier transform of u, by

(2.3)
$$\tilde{u}(\tau, r) = \int_{\mathbf{R}^{2n-1}} e^{-it \cdot \tau} u(t, r) dt,$$

where

$$\begin{aligned} \tau &= (\tau_1, \, \dots, \, \tau_{2n-1}), \quad t = (t_1, \, \dots, \, t_{2n-1}), \\ t \cdot \tau &= \sum t_j \tau_j \quad \text{and} \ dt = dt_1, \, \dots, \, dt_{2n-1}. \end{aligned}$$

For each $s \in \mathbf{R}$ we define $\Lambda^{s} u$ by:

(3.3)
$$\widetilde{\Lambda^s u}(\tau, r) = (1+|\tau|^2)^{s/2} \tilde{u}(\tau, r),$$

where $|\tau|^2 = \sum \tau_j^2$.

Further, we define $|||u|||_s$, the tangential s-norm of u, by

(3.4)
$$|||u|||_s^2 = \int_{-\infty}^0 \int_{\mathbf{R}^{2n-1}} |\Lambda^s u(t, r)|^2 dt dr.$$

Of course, if s is a non-negative integer, then $|||u|||_s^2$ is equivalent to $\sum_{|\alpha| \leq s} ||D_t^{\alpha}u||^2$, where $\alpha = (\alpha_1, ..., \alpha_{2n-1})$ and the subscript t denotes differentiation with respect to the tangential variables.

Definition 3.5. P is a tangential pseudo-differential operator of order m on $C_0^{\infty}(U \cap \overline{\Omega})$ if it can be expressed by:

(3.6)
$$Pu(t, r) = \int_{\mathbf{R}^{2n-1}} e^{-it \cdot \tau} p(t, r, \tau) \, \tilde{u}(\tau, r) \, d\tau.$$

Here $p \in C^{\infty}(\mathbb{R}^{2n} \times \mathbb{R}^{2n-1})$, where \mathbb{R}^{2n} consist of $(t, r) \in \mathbb{R}^{2n}$ with $r \leq 0$. The function p is called the symbol of P and satisfies the following inequalities, for multiindices $\alpha = (\alpha_1, ..., \alpha_{2n})$, $\beta = (\beta_1, ..., \beta_{2n-1})$ there exists a constant $C = C(\alpha, \beta)$ such that:

$$(3.7) \qquad |D^{\alpha}D^{\beta}_{\tau}p(t,r,\tau)| \leq C(1+|\tau|)^{m-|\beta|}$$

Both, tangential s-norms and tangential pseudo-differential operators have natural extensions to the space $\mathscr{G}(\mathbb{R}^{2n})$, i.e. the space of C^{∞} functions all of whose derivatives are rapidly decreasing.

PROPOSITION 3.8. If P is a tangential pseudo-differential operator of order m then for each $s \in \mathbb{R}$ there exists $C_s > 0$ such that:

$$(3.9) \qquad \qquad |||Pu|||_{s} \leq C_{s}|||u|||_{s+m} \quad for \ all \ u \in \mathscr{G}(\mathbf{R}^{2n}).$$

Furthermore, if P^* is the adjoint of P then P^* is a tangential pseudo-differential operator of order m and if p and p^* are the symbols of P and P^* then $\tilde{p}-p^*$ is the symbol of an operator of order m-1. If P' is a tangential pseudo-differential operator of order m' with symbol p',

then PP' is a tangential pseudo-differential operator of order m + m'; if q is the symbol of PP'then pp'-q is the symbol of an operator of order m + m' - 1. Hence, the commutator [P, P'] = PP' - P'P has order m + m' - 1.

The proof of the above is exactly the same as the proof of the corresponding properties of pseudo-differential operators. The only tangential pseudo-differential operators which are used in this paper are the elements of the algebra generated, under composition and taking adjoints, by the Λ^s and the tangential differential operators (i.e. operators of the form $\sum a_{\alpha}(t, r) D_t^{\alpha}$, where the a_{α} and all their derivatives are bounded). These will arise because the subelliptic estimate (1.12) can be expressed entirely in terms of the tangential ε -norm. More precisely, we have the following proposition.

PROPOSITION 3.10. If $x_0 \in b\Omega$ then $x_0 \in \mathcal{E}^q(\varepsilon)$ if and only if there exists a neighborhood U' of x_0 and constant C' > 0 such that

$$(3.11) \qquad \qquad |||\varphi|||_{\varepsilon}^{2} \leq C'Q(\varphi,\varphi), \quad \text{for all } \varphi \in \mathcal{D}_{U}^{p,q}$$

This proposition is an easy consequence of the fact that $b\Omega$ is non-characteristic with respect to Q, see [21 b].

§ 4. Ideals and modules of subelliptic multipliers

For $x_0 \in \overline{\Omega}$ and U a neighborhood of x_0 we wish to study functions $f \in C^{\infty}(U \cap \overline{\Omega})$ which satisfy (1.20). For $x_0 \in b\Omega$ (or near $b\Omega$) the inequality (1.20) is equivalent to the following:

$$(4.1) \qquad \qquad |||f\varphi|||_{\mathfrak{e}}^{2} \leq CQ(\varphi,\varphi), \quad \text{for all } \varphi \in \mathcal{D}_{U}^{p,q}$$

which is a consequence of Proposition 3.10.

Observe that if f' is a function defined on a neighborhood U' of x_0 , such that f = f'on $U \cap U'$ then f' satisfies (1.20) or (4.1), for all $\varphi \in \mathcal{D}^{p,q}_{U \cap U'}$. Thus, denoting the set of germs of C^{∞} functions at x_0 by $C^{\infty}(x_0)$, we are led to the following definition.

Definition 4.2. For $x_0 \in \overline{\Omega}$ we define $I^q(x_0) \subset C^{\infty}(x_0)$, the subelliptic multipliers at x_0 , as follows. $f \in I^q(x_0)$ if and only if there exists a neighborhood U of x_0 and constants $\varepsilon > 0$ and C > 0 such that (1.20) holds. Here we denote by f both the germ at x_0 and a representative of this germ defined on a sufficiently small U.

It is a consequence of Lemma 2.31 that the sets $I^q(x_0)$ are independent of p.

Definition 4.3. To each $x_0 \in \overline{\Omega}$ and $q \ge 1$, we associate the module $M^q(x_0) \subset A^{1,0}(x_0)$, which is defined as follows. $\sigma \in M^q(x_0)$ if and only if there exists a neighborhood U of x_0 and constants C > 0, $\varepsilon > 0$ such that:

(4.4) $\|\inf (\bar{\sigma})\varphi\|_{\varepsilon}^{2} \leq CQ(\varphi,\varphi), \text{ for all } \varphi \in \mathcal{D}_{U}^{p,q}.$

As above, if x_0 is near $b\Omega$ we can replace $\| \|_{\varepsilon}$ by $\| \| \|_{\varepsilon}$ in (4.4). Here again, σ stands both for the germ at x_0 and a (1, 0)-form on a sufficiently small U representing the germ.

Definition 4.5. If $J \subset C^{\infty}(x_0)$, then the real radical of J, denoted by \sqrt{J} , is the set of all $g \in C^{\infty}(x_0)$ such that there exists and integer m and an $f \in J$ so that

$$|g|^m \leq |f|$$

on some neighborhood of x_0 .

Definition 4.6. If $S \subset A^{1,0}(x_0)$ then $\det_k S$ is the subset of $C^{\infty}(x_0)$ consisting of all f that, for x near x_0 , can be expressed by:

$$f(x) = \langle \sigma^1(x) \land \dots \land \sigma^k(x), \theta(x) \rangle_x$$

where $\sigma^1, ..., \sigma^k \in S$ and $\theta \in A^{k,0}(x_0)$.

The following proposition gives information about $I^{q}(x_{0})$ and $M^{q}(x_{0})$ which will enable us to prove Theorem 1.21.

PROPOSITION 4.7. If Ω is pseudo-convex and if $x_0 \in \overline{\Omega}$, then $I^q(x_0)$ and $M^q(x_0)$ have the following properties.

- (A) $1 \in I^n(x_0)$ and for all q, whenever $x_0 \in \Omega$, then $1 \in I^q(x_0)$.
- (B) If $x_0 \in b\Omega$, then $r \in I^q(x_0)$.
- (C) If $x_0 \in b\Omega$, then int $(\theta) \partial \overline{\partial} r \in M^q(x_0)$, for all $\theta \in A^{0,1}(x_0)$ such that $\langle \theta, \overline{\partial} r \rangle = 0$ on $b\Omega$.
- (D) $I^{q}(x_{0})$ is an ideal.
- (E) If $f \in I^q(x_0)$ and if $g \in C^{\infty}(x_0)$ with $|g| \leq |f|$ in a neighborhood of x_0 , then $g \in I^q(x_0)$. R
- (F) $I^{q}(x_{0}) = \sqrt{I^{q}(x_{0})}$.
- (G) $\partial I^q(x_0) \subset M^q(x_0)$, where $\partial I^q(x_0)$ denotes the set of $\partial f \in A^{1,0}(x_0)$ with $f \in I^q(x_0)$.
- (H) $\det_{n-q+1} M^q(x_0) \subset I^q(x_0)$.

Observe that, due to (A), the properties (B) to (H) are non-trivial only when $x_0 \in b\Omega$.

Proof of (A). If $\varphi \in \mathcal{D}^{p,n}$ then $\varphi = 0$ on $b\Omega$ and hence (1.20) holds with $\varepsilon = 1$. If $x_0 \in \Omega$ choose U so that $\overline{U} \cap b\Omega = \emptyset$, then (1.20) again holds with $\varepsilon = 1$ since supp $(\varphi) \subset U$.

Proof of (B). We choose U so that r is defined on U, and we have

(4.8) $\|r\varphi\|_1^2 \leq \text{const.} \|r\varphi\|_2^2 \leq \text{const.} \|\varphi\|_2^2 \leq \text{const.} Q(\varphi, \varphi).$

The following lemma will be used in the proofs of (C) and (G).

LEMMA 4.9. Let $L_1, ..., L_n$ be the special local basis defined in a neighborhood U of $x_0 \in b\Omega$ and characterized by (2.17). Let $u, v \in C_0^{\infty}(U \cap \overline{\Omega})$, then we have

(4.10)
$$(L_{i}u, v) = -(u, \bar{L}_{i}v) + \delta_{in} \int_{b\Omega} u\bar{v} dS + (u, g_{i}, v),$$

where $g_i \in C^{\infty}(\overline{U} \cap \overline{\Omega})$.

Proof. In terms of a boundary coordinate system we have

$$L_i u = \sum a_i^k \frac{\partial u}{\partial t_k} + b_i \frac{\partial u}{\partial r},$$

where $b_i = \delta_{in}$ on $b\Omega$, hence

$$(L_i u, v) = (u, L_i^* v) + \delta_{in} \int_{b\Omega} u \bar{v} dS,$$

where

$$L_i^* v = -L_i v - \left(\sum_k \frac{\partial \bar{a}_i^k}{\partial t_k} + \frac{a \bar{b}_i}{\partial r}\right) v$$

so (4.10) follows.

Proof of (C). We will use the special local basis in $U \cap \overline{\Omega}$ described in section 2. It suffices to prove (C) in the case $\theta = \overline{\omega}_k$ for k = 1, ..., n-1. We have:

(4.11)
$$\partial \bar{\partial} r = \sum_{i,j} c_{ij} \omega_i \wedge \bar{\omega}_j,$$

where the c_{ij} are given by (2.19) for i, j = 1, ..., n, hence for i, j = 1, ..., n-1 they satisfy (2.20). Then

(4.12)
$$\operatorname{int}(\bar{\omega}_k)\partial\bar{\partial}r = \sum_i c_{ik}\omega_i.$$

If $\varphi \in \mathcal{D}^{0, q}_{U}$, then

$$(4.13) \qquad \qquad \varphi = \sum_{J}' \varphi_{J} \omega_{J}$$

and

(4.14)
$$\varphi_J = 0$$
 on $b\Omega$ whenever $n \in J$.

Now setting

(4.15) $\sigma^k = \sum_i c_{ik} \omega_i, \text{ for } k = 1, \dots, n = 1; \text{ we have}$

(4.16)
$$\operatorname{int}(\bar{\sigma}^k)\varphi = \sum_{K}'\sum_{i} c_{ik}\varphi_{iK}\bar{\omega}_{K}.$$

To prove (C) we will show that

(4.17)
$$\||\operatorname{int}(\bar{\sigma}^k)\varphi|||_{1/2}^2 \leq CQ(\varphi,\varphi), \text{ for all } \varphi \in \mathcal{D}_U^{0,q} \text{ and } k=1,\ldots,n-1.$$

We will first show that there exists C > 0 such that

$$(4.18) \qquad \left|\sum_{i,k} \left(c_{ik} \varphi_{iK}, D u_{k}\right)\right| \leq C \left(Q(\varphi, \varphi) + \sum_{k < n} \left\|u_{k}\right\|_{\overline{z}}^{2} + \sum_{i,k < n} \int_{b\Omega} c_{ik} u_{i} \bar{u}_{k} dS\right),$$

for all $\varphi \in \mathcal{D}_U^{0,q}$ and $u_k \in C_0^{\infty}(U' \cap \overline{\Omega})$, k=1, ..., n-1; where, U' is a neighborhood of \overline{U} and D is any first order differential operator. It will suffice to prove (4.18) in the cases when $D=L_i$ and $D=L_i$, i=1, ..., n. For $D=L_i$, (4.18) follows by applying the Schwartz inequality. Similarly, if $D=L_i$ with i < n we first apply (4.10), then the Schwartz inequality and (2.28). Finally, if $D=L_n$ we obtain by use of (4.10):

(4.19)
$$\sum_{i,k} (c_{ik} \varphi_{iK}, L_n u_k) = \sum_{i,k < n} \int_{b\Omega} c_{ik} \varphi_{iK} \bar{u}_k dS + O(||\varphi||_{\mathbb{Z}} (\sum ||u_k||)),$$

here the term i=n does not appear in the boundary integral since $\varphi_{n\kappa}=0$ on $b\Omega$. Since the Levi-form is non-negative, we have

(4.20)
$$\Big|\sum_{i,k< n} c_{ik} \varphi_{iK} \bar{u}_k\Big| \leq (\sum_{i,k< n} c_{ik} \varphi_{iK} \bar{\varphi}_{kK})^{1/2} (\sum_{i,k< n} c_{ik} u_i \bar{u}_k)^{1/2},$$

on $b\Omega$. Then (4.18) follows by integrating the above over the boundary and invoking (2.28).

We will use (4.18) with u_k defined by

(4.21)
$$u_k = \sum_{j < n} c_{jk} \zeta S^0 \varphi_{jK},$$

where $\zeta \in C_0^{\infty}(U')$, $\zeta = 1$ on U and S⁰ is a tangential pseudo-differential operator of order 0. First, we show that

(4.22)
$$\sum_{k} \|u_{k}\|_{z}^{2} + \sum_{i, k < n} \int_{b\Omega} c_{ik} u_{i} \bar{u}_{k} dS \leq \text{const. } Q(\varphi, \varphi).$$

The first term is estimated by:

(4.23)
$$\|u_k\|_2^2 \leq \text{const.} \|\zeta S^0 \varphi\|_2^2 \leq \text{const.} Q(\zeta S^0 \varphi, \zeta S^0 \varphi) \leq \text{const.} Q(\varphi, \varphi).$$

To estimate the boundary integral, we have on $b\Omega$:

(4.24)
$$\sum_{i,k< n} c_{ik} u_i \bar{u}_k \leq \text{const.} \sum_{k< n} |u_k|^2$$

97

and, using the Schwartz inequality, we obtain

(4.25)
$$\sum_{k$$

hence

(4.26)
$$\sum_{i,k< n} c_{ik} u_i \bar{u}_k \leq \text{const.} \sum_{k,j< n} c_{jk} \zeta S^0 \varphi_{jK} \overline{\zeta S^0 \varphi_{kK}}.$$

Thus, by (2.28), the integral over the boundary (4.26) is bounded by const. $Q(\zeta S^0 \varphi, \zeta S^0 \varphi)$ and hence by const. $Q(\varphi, \varphi)$; which concludes the proof of (4.22).

Putting all this together, and replacing D by $\partial/\partial t_m$ in (4.18) (with m < 2n), we obtain

(4.27)
$$\left|\sum_{i,k,j} \left(c_{ik} \varphi_{iK}, \frac{\partial}{\partial t_m} S^0(c_{jk} \varphi_{jK}) \right) \right| \leq \text{const. } Q(\varphi, \varphi),$$

where we have replaced $(\partial/\partial t_m) c_{jk} \zeta S^0 \varphi_{j\kappa}$ by $\zeta(\partial/\partial t_m) S^0(c_{jk} \varphi_{j\kappa})$ (ζ does not appear in (4.27) since it is one on the support of φ); the difference between these terms is $O(||\varphi||)$ and hence dominated by the right hand side.

We will now conclude the proof of (C) by showing how (4.17) follows from (4.27). Set $S^0 = -(\partial/\partial t_m) \Lambda^{-1}$ in (4.27) and sum over *m*. Observe that

(4.28)
$$-\sum_{1}^{2n-1}\frac{\partial^2}{\partial t_m^2}\Lambda^{-1} = \Lambda^1 - \Lambda^{-1},$$

and hence

(4.29)
$$\sum_{\mathbf{k}} \left\| \left| \sum_{\mathbf{i}} c_{i\mathbf{k}} \varphi_{i\mathbf{K}} \right| \right\|_{1/2}^2 = \left| \sum_{\mathbf{i}, \mathbf{k}, \mathbf{j}} \left(c_{i\mathbf{k}} \varphi_{i\mathbf{k}}, \Lambda^1(c_{j\mathbf{k}} \varphi_{j\mathbf{K}}) \right) \right| \leq \text{const. } Q(\varphi, \varphi);$$

which establishes (4.17).

Proof of (D). Property (D) follows immediately from the following inequality. For any $g \in C^{\infty}(\hat{U})$ there exists C > 0 so that:

$$(4.30) |||gu|||_{\varepsilon} \leq C|||u|||_{\varepsilon}$$

for all $u \in C_0^{\infty}(U \cap \overline{\Omega})$. Thus if $f \in I^q(x_0)$ and $g \in C^{\infty}(x_0)$ we can conclude that $fg \in I^q(x_0)$ by replacing u with $f\varphi$ in (4.30), with $\varphi \in \mathcal{D}_U^{0,q}$ and U suitably small.

Property (E) is a consequence of the following lemma.

LEMMA 4.31. If $\varepsilon \leq 1$, $f, g \in C^{\infty}(\bar{U})$ and if $|g| \leq |f|$, then

$$(4.32) |||gu|||_{\varepsilon} \leq |||fu|||_{\varepsilon} + \text{const.} ||u||$$

for all $u \in C_0^{\infty}(U \cap \overline{\Omega})$.

7-782904 Acta mathematica 142. Imprimé le 20 Février 1979

Proof. The operators $[\Lambda^{\varepsilon}, g]$ and $[f, \Lambda^{\varepsilon}]$ are of order $\varepsilon - 1$ and hence bounded in L_2 so that we have

$$(4.33) \qquad \qquad |||gu|||_{\varepsilon} = ||\Lambda^{\varepsilon}(gu)|| = ||g\Lambda^{\varepsilon}u|| + O(||u||)$$

and

$$\|g\Lambda^{\varepsilon}u\| \leq \|f\Lambda^{\varepsilon}u\| = \||fu\||_{\varepsilon} + O(\|u\|),$$

which gives (4.32).

For the proof of (F) we need the following lemma.

LEMMA 4.34. If $0 < \delta \leq 1/m$, then there exists C > 0 such that

$$(4.35) |||gu|||_{\delta} \leq |||g^{m}u|||_{m\delta} + C||u||$$

for all $u \in C_0^{\infty}(U \cap \overline{\Omega})$.

Proof. Proceeding by induction we assume that the left hand side of (4.35) is bounded by $|||g^k u|||_{k\delta} + \text{const.} ||u||$ for k < m. Then for any j, with $0 \le j \le k$ and $(k+j)\delta \le 1$, we have

 $\begin{aligned} |||g^{k}u|||_{k\delta}^{2} &= (g^{k}\bar{g}^{j}\Lambda^{(k+j)\delta}u, g^{k-j}\Lambda^{(k-j)\delta}u) + O(||u||^{2}) \\ &\leq |||g^{k+j}u|||_{(k+j)\delta}|||g^{k-j}u|||_{(k-j)\delta} + O(||u||^{2}). \end{aligned}$

If m is even we obtain the desired estimate by setting k=j=m/2.

If m is odd, set k = (m+1)/2 and j = (m-1)/2, we then have

$$|||gu|||_{\delta}^2 \leq |||g^m u|||_{m\delta} |||gu|||_{\delta} + \text{const.} ||u||^2,$$

which proves the desired inequality (4.35).

Proof of (F). If $g \in \sqrt[n]{I(x_0)}$ then on some neighborhood U of x_0 we have $|g|^m \leq |f|$, where f satisfies (4.1). Hence, combining (4.1) with 4.31 and 4.34 we obtain

(4.36)
$$|||g\varphi|||_{e/m}^2 \leq \text{const. } Q(\varphi, \varphi),$$

for all $\varphi \in \mathcal{D}^{0, q}_{U}$. Therefore, $g \in I^{q}(x_{0})$ which proves (F).

Proof of (G). By Lemma 2.31 it suffices to consider $\varphi \in \mathcal{D}_{U}^{0,q}$. Then, if $f \in I^{q}(x_{0})$ and satisfies (4.1) we have

(4.36)
$$\operatorname{int}(\overline{\partial f}) \varphi = \sum_{K}' \sum_{j} (L_{j} f) \varphi_{jK} \bar{\omega}_{K},$$

where φ is given by (4.13). Thus,

(4.37)
$$||| \operatorname{int} (\overline{\partial f}) \varphi |||_{\delta}^{2} = \sum_{K}' ||| \sum_{j} (L_{j} f) \varphi_{jK} |||_{\delta}^{2}.$$

Setting

$$\psi_{\mathcal{K}} = \sum_{j} \left(L_{j} f \right) \varphi_{j\mathcal{K}},$$

we have

$$(4.38) \qquad |||\sum_{j} (L_{j}f) \varphi_{jK}|||_{\theta}^{2} = \sum_{j} (\Lambda^{\delta}((L_{j}f) \varphi_{jK}), \Lambda^{\delta} \psi_{K}) \\ = \sum_{j} ((L_{j}f) \Lambda^{\delta} \varphi_{jK}, \Lambda^{\delta} \psi_{K}) + O(|||\varphi|||_{2\delta-1} ||\psi_{K}||) \\ = -\sum_{j} (fL_{j} \Lambda^{\delta} \varphi_{jK}, \Lambda^{\delta} \psi_{K}) - \sum_{j} (f\Lambda^{\delta} \varphi_{jK}, L_{j} \Lambda^{\delta} \psi_{K}) \\ + O(|||f\varphi|||_{2\delta} ||\psi_{K}|| + |||\varphi|||_{2\delta-1} ||\psi_{K}||) \\ = (-\sum_{j} L_{j} \varphi_{jK}, \Lambda^{2\delta}(f\psi_{K})) - \sum_{j} (\Lambda^{2\delta}(f\varphi_{jK}), L_{j} \psi_{K}) \\ + O(|||f\varphi|||_{2\delta}^{2} + |||\varphi|||_{2\delta-1}^{2} + ||\varphi||^{2}),$$

where the term $|||\varphi|||_{2\delta-1}$ in the second line arises in estimating $||\Lambda^{\delta}[\Lambda^{\delta}, L_{j}f]\varphi_{j\kappa}||$; the third line is obtained by an application of Lemma 4.9, the boundary term does not appear since $\Lambda^{\delta}\varphi_{n\kappa}=0$ on $b\Omega$. The new error terms on the fourth line come from the last term in (4.10), that is

$$(f\Lambda^{\delta}\varphi_{jK}, g_{j}\Lambda^{\delta}\psi_{K}) = (\Lambda^{2\delta}(f\varphi_{jK}), g_{j}\psi_{K}) + O(|||\varphi|||_{2\delta-1} ||\psi_{K}||)$$

here the term $|||\varphi|||_{2\delta-1}$ comes from commutators as above. In the last line of (4.38) we have used $\psi_{\kappa} = O(||\varphi||)$. Now, from (2.15), we have

(4.39)
$$\|\sum_{t} L_{t} \varphi_{jK}\| \leq \|\bar{\partial}^{*} \varphi\| + \text{const.} \|\varphi\|.$$

From the definition of $\psi_{\mathbf{x}}$ we obtain

(4.40)
$$\|\Lambda^{2\delta}(f\psi_{\mathcal{K}})\| \leq \text{const.} (|||f\varphi|||_{2\delta} + |||\varphi|||_{2\delta-1}),$$

and

$$\|L_j \psi_{\mathcal{K}}\| \leq \text{const.} \|\varphi\|_2$$

Setting $\varepsilon = 2\delta$ and combining the above, we obtain

hence property (G) follows from (4.1).

For the proof of property (H) we will need the proposition given below. The case q = 1 is somewhat simpler then the case of other q.

Definition 4.43. If (a_{ij}) is a matrix with i, j = 1, ..., n and if I and J are two *m*-tuples of integers between 1 and n; we define the $m \times m$ matrix (a_{jk}^{IJ}) by

(4.44)
$$(a_{ij}^{IJ}) = \begin{pmatrix} a_{i_1 j_1} \cdots a_{i_1 j_m} \\ \vdots \\ a_{i_m j_1} \cdots a_{i_m j_m} \end{pmatrix},$$

where $I = (i_1, ..., i_m)$ and $J = (j_1, ..., j_m)$. We then define a norm $\delta^m(a_{ij})$ on the *m*th exterior powers by

(4.45)
$$\delta^{m}(a_{ij}) = (\sum_{I,J}' |\det a_{ij}^{IJ}|^2)^{1/2},$$

where the sum runs over all *m*-tuples I and J; and "det" denotes the determinant.

PROPOSITION 4.46. Suppose for each $x \in \overline{U \cap \Omega}$, that $(a_{ij}(x))$ is a semi-definite matrix, and that $\omega_1, ..., \omega_n$ form a basis of the (1, 0)-forms on $\overline{U \cap \Omega}$; then there exists C > 0 such that:

(4.47)
$$\delta^{n-q+1}(a_{ij}(x)) \sum_{K} |\varphi_{J}(x)|^{2} \leq C \sum_{K} \sum_{i,j} a_{ij}(x) \varphi_{iK}(x) \overline{\varphi_{jK}(x)}$$

for all $x \in \overline{U \cap \Omega}$ and all $\varphi \in \mathcal{A}^{0, q}(\overline{U \cap \Omega})$.

Proof. At each x we define the inner product \langle , \rangle_x by $\langle \omega_i(x), \omega_j(x) \rangle_x = \delta_{ij}$. Let $(s_{ki}(x))$ be a unitary matrix such that

(4.48)
$$a_{ij}(x) = \sum_{h} \lambda_h(x) s_{hi}(x) \overline{s_{hj}(x)},$$

where $\lambda_1(x), ..., \lambda_n(x)$ are the eigenvalues of $a_{ij}(x)$. Then we obtain

(4.49)
$$\sum_{K}' \sum_{i,j} a_{ij}(x) \varphi_{iK}(x) \overline{\varphi_{jK}(x)} = \sum_{J}' (\sum_{h \in J} \lambda_{h}(x)) |\varphi_{J}'(x)|^{2},$$

where

(4.50)
$$\varphi'_J(x) = \sum \operatorname{sgn} \begin{pmatrix} i_1 \dots i_q \\ J \end{pmatrix} s_{i_1 h_1} \dots s_{i_q h_q} \varphi_{h_1 \dots h_q}$$

and

$$\operatorname{sgn}\begin{pmatrix}i_1 \dots i_q\\J\end{pmatrix} = 0 \quad \text{if } (i_1, \dots, i_q) \neq J$$

sign of permutation π of $(1, \ldots, q)$ for which $i_m = j_{\pi(m)}$, where $J = (j_1, \ldots, j_q)$.

SUBELLIPTICITY OF THE $\overline{\partial}$ -NEUMANN PROBLEM ON PSEUDO-CONVEX DOMAINS 101

It follows from (4.48) that there is a $C_0 > 0$ such that

(4.51)
$$\delta^{n-q+1}(x) \leq C_0 \sum_{1 \leq h_1 < \ldots < h_{n-q+1} \leq n} \lambda_{h_1}(x) \ldots \lambda_{h_{n-q+1}}(x),$$

Now, we let

$$(4.52) C_1 = \max_x \sum_{j=1}^n \lambda_j(x).$$

Then for any strictly increasing q-tuple J we have:

(4.53)
$$\delta^{n-q+1}(x) \leq C_0 C_1^{n-q} \binom{n}{q} \sum_{h \in J} \lambda_h(x),$$

since each term in the sum in (4.51) must have at least one factor whose subscript is in J.

Since (s_{ik}) is unitary, we have $(s_{ik})^{-1} = (s_{ki})$ and hence

(4.54)
$$\varphi_J(x) = \sum \operatorname{sgn} \begin{pmatrix} i_1 \cdots i_q \\ J \end{pmatrix} \bar{s}_{i_1 h_1} \cdots \bar{s}_{i_q h_q} \varphi'_{h_1 \cdots h_q}$$

Therefore, there is a C_2 such that

$$(4.55) \qquad \qquad \sum' |\varphi_J(x)|^2 \leq C_2 \sum' |\varphi'_J(x)|^2$$

for all $x \in \overline{U \cap \Omega}$. The estimate (4.47) then follows by combining (4.55), (4.53) and (4.49); thus concluding the proof of the proposition.

Proof of (H). Suppose $\sigma^k \in M^q(x_0)$, with k = 1, ..., n-q+1, satisfying (4.4); that is, if

(4.56)
$$\sigma^k = \sum_j \sigma_j^k \omega_j,$$

then, for each (q-1)-tuple $K = (k_1, ..., k_{q-1})$, we have

(4.57)
$$||| \sum_{i} \sigma_{i}^{k} \varphi_{iK} |||_{e}^{2} \leq CQ(\varphi, \varphi)$$

for all $\varphi \in \mathcal{D}_U^{0,q}$. We will show that the function that takes $x \in U \cap \overline{\Omega}$ to $\langle \sigma^1 \wedge \ldots \wedge \sigma^{n-q+1}, \theta \rangle_x$ is in $I^q(x_0)$ for all $\theta \in \mathcal{A}^{n-q+1,0}(U \cap \overline{\Omega})$. It will suffice to show this in the case $\theta = \omega_H$, for all $H = (h_1, \ldots, h_{n-q+1})$ with $1 \leq h_1 < \ldots < h_{n-q+1} \leq n$. We then have

(4.58)
$$(\sigma^1 \wedge \ldots \wedge \sigma^{n-q+1}, \omega_H) = \det (\sigma^k_{h_f}).$$

Let K be the ordered (q-1)-tuple consisting of all integers between 1 and n which are not in H. Since $\varphi_{iK} = 0$, whenever $i \in K$, the sum in (4.57) runs over all $i \in H$. Then, we have

(4.59)
$$||| \sum_{i} \sigma_{i}^{k} \varphi_{iK} |||_{\varepsilon}^{2} = \sum_{i,j \in H} (\sigma_{i}^{k} \overline{\sigma}_{j}^{k} \Lambda^{\varepsilon} \varphi_{iK}, \Lambda^{\varepsilon} \varphi_{jK}) + O(||| \varphi |||_{\varepsilon - \frac{1}{2}}^{2}),$$

where the error term estimates

(4.60)
$$\sum_{i,j\in H} \{ ([\Lambda^{e}, \sigma_{i}^{k}]\varphi_{iK}, \Lambda^{e}(\sigma_{j}^{k}\varphi_{jK})) + (\sigma_{i}^{k}\Lambda^{e}\varphi_{iK}, [\Lambda^{e}, \sigma_{j}^{k}]\varphi_{jK}) \}.$$

Let

(4.61)
$$a_{ij}(x) = \sum_{k=1}^{n-q+1} \sigma_i^k(x) \, \bar{\sigma}_j^k(x).$$

Applying Proposition 4.46 with $\varphi_{i\kappa}$ replaced by $\Lambda^{e}\varphi_{i\kappa}$, we obtain

(4.62)
$$\delta^{n-q+1}(a_{ij}(x)) \sum' |\Lambda^e \varphi_j(x)|^2 \leq C \sum_{K}' \sum_{i,j,k} \sigma_i^k(x) \,\overline{\sigma}_j^k(x) \,\Lambda^e \varphi_{iK}(x) \,\overline{\Lambda^e \varphi_{jK}(x)}.$$

Furthermore, we have

$$(4.63) \qquad \qquad \delta^{n-q+1}(a_{ij}(x)) \ge \sum_{H} |\det \sigma_{n_j}^k(x)|^2$$

Integrating the above and estimating commutators as in (4.60), we obtain

(4.64)
$$|||\det(\sigma_{h_j}^k)\varphi|||_{\varepsilon} \leq \sum_{K}' |||\sum_{i} \sigma_i^k \varphi_{iK}|||_{\varepsilon}^2 + \text{const. } |||\varphi|||_{\varepsilon-\frac{1}{4}}^2.$$

Therefore, we conclude from (4.57), that det $(\sigma_{n_j}^k) \in I^q(x_0)$, thus completing the proof of (H). The proof of one of our principal results now follows immediately from Proposition 4.7.

Proof of Theorem 1.21. The only properties of $I^{q}(x_{0})$ which are not explicitly stated in Proposition 4.7 are (c) and (d). These are obtained by combining (C) with (H) and (G) with (H), respectively.

§ 5. Subelliptic stratifications and orders of contact

We define the ideals $I_k^q(x_0)$ below and then show that this definition coincides with the one given by (1.22). If $x_0 \in b\Omega$ we define the sequence of ideals $I_1^q(x_0) \subset ... \subset I_k^q(x_0) \subset I^q(x_0)$ and the sequence of modules $M_1^q(x_0) \subset ... \subset M_k^q(x_0) \subset M^q(x_0)$ by:

(5.1)
$$M_1^q(x_0) = \{\partial r, \operatorname{int}(\theta) \,\partial \bar{\partial} r \quad \text{for all } \theta \in A_{x_0}^{0,1} \quad \text{with } \theta \perp \bar{\partial} r\}$$

(5.2)
$$I_{1}^{q}(x_{0}) = \sqrt[]{(r, \det_{n-q+1} M_{1}^{q}(x_{0}))}$$

and inductively

(5.3)
$$M_k^q(x_0) = \{M_{k-1}^q(x_0), \partial I_{k-1}^q(x_0)\}$$

(5.4)
$$I_k^q(x_0 = \sqrt[k]{(I_{k-1}^q(x_0), \det_{n-q+1} M_k^q(x_0))}$$

PROPOSITION 5.5. The ideals $I_k^q(x_0)$ are also given by (1.22).

Proof. If we choose (as usual) $\omega_1, ..., \omega_n$ to be an orthonormal basis of $A_{x_0}^{1,0}$ with $\omega_n = \partial r$ and if

$$\partial \bar{\partial} r = \sum_{i,j} c_{ij} \omega_i \wedge \bar{\omega}_j.$$

then define $\tau_1, ..., \tau_{n-1}$ by:

$$\boldsymbol{\tau}_{j} = \operatorname{int}\left(\boldsymbol{\omega}_{j}\right) \partial \bar{\partial} \boldsymbol{r} = \sum c_{ij} \boldsymbol{\omega}_{i}.$$

Then $M_1(x_0)$ is generated by: $\tau_1, ..., \tau_{n-1}$ and ω_n . Hence $I_1^q(x_0)$ is the real radical of the ideal generated by the determinants of the $(n-q) \times (n-q)$ minors of (c_{ij}) with i, j < n, and the function r. This establishes (1.22) for k = 1. The general case then follows by induction.

If V is a complex-analytic variety defined in a neighborhood U of x_0 we denote by $\mathcal{J}_{x_0}(V)$ the ideal of germs of holomorphic functions that vanish on V and by $\mathcal{J}_{x_0}(V)$ the ideal of germs of complex-valued real-analytic functions that vanish on V. We will make use of a result of R. Ephraim (see [11]) which asserts that when V is irreducible then $\mathcal{J}_{x_0}(V)$ is generated by $\mathcal{J}_{x_0}(V)$ and $\overline{\mathcal{J}_{x_0}(V)}$, where $\overline{\mathcal{J}_{x_0}(V)} = \{f | f \in \mathcal{J}_{x_0}(V)\}.$

Definition 5.6. If V is a germ of a complex-analytic variety at $x_0 \in b\Omega$ then we define the order of contact of V to $b\Omega$ at x_0 , denoted by $O(x_0, V)$, by

(5.7)
$$O(x_0, V) = O_{x_0}(r/\mathcal{J}_{x_0}(V)) = \max_{g \in \mathcal{J}_{x_0}(V)} O_{x_0}(r-g),$$

where $O_{x_0}(f)$ denotes the order of vanishing of f at x_0 . Let $\mathcal{V}^q(x_0)$ denote the set of germs of q-dimensional, irreducible varieties containing x_0 . Then we define $O^q(x_0)$, the q-order of x_0 , by:

(5,8)
$$O^{q}(x_{0}) = \max_{V \in \mathcal{W}^{q}(x_{0})} O(x_{0}, V).$$

Let $\mathcal{W}^q(x_0)$ be the set of all germs of q-dimensional complex manifolds containing x_0 . Then we define the *regular q-order* of x_0 , denoted by reg $O^q(x_0)$, by

(5.9)
$$\operatorname{reg} O^{q}(x_{0}) = \max_{V \in W^{q}(x_{0})} O(x_{0}, V)$$

Observe that

$$(5.10) reg Oq(x_0) \leq Oq(x_0).$$

In fact, for r in \mathbb{C}^3 given by

$$r(z) = \operatorname{Re}(z_3) + |z_1^2 - z_2^3|^2,$$

we have reg $O^1(x_0) = 6$ and $O^1(x_0) = \infty$. This type of phenomenon has been studied in [2] and [6a]. In [6a], D'Angelo shows that, if reg $O^1(x_0) \leq 4$ then $O^1(x_0) = \operatorname{reg} O^1(x_0)$.

LEMMA 5.11. If $O^{q}(x_{0}) = m$ then there exist germs of holomorphic functions $h_{1}, ..., h_{k}$ at x_{0} and polynomials A_{i} , B_{i} such that

$$r = \sum A_i h_i + \sum B_i \bar{h}_i + O(|z|^m).$$

Proof. By definition of $O^q(x_0)$ there exists a germ of a q-dimensional irreducible variety $V \in \mathcal{V}^q(x_0)$ such that $O(x_0, V) = m$. Let h_1, \ldots, h_k be the generators of $\mathcal{J}_{x_0}(V)$ then, by the above cited theorem of Ephraim, we conclude that h_1, \ldots, h_k , $\tilde{h}_1, \ldots, \tilde{h}_k$ generate $\mathcal{J}_{x_0}(V)$. Thus the function g which attains the maximum in (5.7) can be expressed in terms of these generators, which concludes the proof.

LEMMA 5.12. Given N > 0 there exists a holomorphic coordinate system $z_1, ..., z_n$ with origin at x_0 such that

(5.13)
$$r = 2\operatorname{Re}(z_n) + \sum_{\substack{|\alpha|>0, |\beta|>0\\ |\alpha+\beta|$$

Proof. Choose any holomorphic coordinate system $w_1, ..., w_n$ with origin x_0 . Then by expanding in Taylor series we have

$$r = \operatorname{Re}\left(\sum_{|\alpha| < N} c_{\alpha} w^{\alpha}\right) + \sum_{\substack{|\alpha| > 0, |\beta| > 0 \\ |\alpha + \beta| < N}} b_{\alpha \gamma} w^{\alpha} \bar{w}^{\beta} + O(|w|^{N}).$$

Let $z_1, ..., z_n$ be any holomorphic coordinate systems with origin at x_0 and with $z_n = \frac{1}{2} \sum_{|\alpha| < N} c_{\alpha} w^{\alpha}$, then substituting in the above, we obtain (5.13).

LEMMA 5.14. Given $N > O(x_0, V)$, where V is a germ of an irredubible complex-analytic variety through x_0 ; then

$$O_{x_0}(z_n/\mathcal{J}_{x_0}(V)) \geq O(x_0, V).$$

Proof. Let $h_1, ..., h_k$ be generators of $\mathcal{J}_{x_0}(V)$ then, by 5.11,

(5.15)
$$r = \sum A_i h_i + \sum B_i \tilde{h}_i + O(|z|^m), \quad \text{with } m = O(x_0, V).$$

From (5.13) we have:

$$z_n - \sum A_i h_i = \sum B_i \bar{h}_i - \bar{z}_n + \sum^{"} a_{\alpha\beta} z^{\alpha} \bar{z}^{\beta} + O(|z|^m).$$

We can write $A_i = F_i + G_i$, when F_i is holomorphic and G_i has a power series expansion all of whose terms have one of the \bar{z}_i as a factor. Then

$$\boldsymbol{z}_n - \sum_{\boldsymbol{i}} \boldsymbol{F}_{\boldsymbol{i}} \boldsymbol{h}_{\boldsymbol{i}} = \boldsymbol{G} + O(|\boldsymbol{z}|^m),$$

where G is a polynomial each of whose terms contains at least one \bar{z}_j . Hence all partial derivatives of the left hand side up to order m vanish at x_0 , which completes the proof.

In the following proposition the main assertion that (b) is equivalent to (d) is proven, in the case q = 1 by J. D'Angelo in [6b].

PROPOSITION 5.16. If Ω is pseudo-convex then the following are equivalent

(a) $1 \in I_1^q(x_0)$

(b) The Levi-form at x_0 has at least n-q positive eigen-values

- (c) reg $O^{q}(x_{0}) = 2$
- (d) $O^{q}(x_{0}) = 2$

Proof. That (a) is equivalent to (b) is an immediate consequence of the definition of $I_1^q(x_0)$. It is also clear that (d) implies (c), by (5.10) and since from (5.13) we see that reg $O^q(x_0) \ge 2$. We will first prove that (c) implies (b). Choosing the coordinate system $z_1, ..., z_n$ so that (5.13) holds with N=3 we have

(5.17)
$$r(z) = 2 \operatorname{Re}(z_n) + \sum r_{z_i \bar{z}_i}(0) \, z_i \bar{z}_j + O(|z|^3).$$

We will assume (c) holds and that (b) does not hold. Thus

(5.18)
$$\dim \left\{ z \, \big| \, z_n = 0, \, \sum_{i=1}^{n-1} r_{z_j \bar{z}_j}(0) \, z_i = 0, \, j = 1, \, \dots, \, n-1 \right\} \ge q.$$

So by (5.17) the order of contact of the linear space defined in (5.18) is greater or equal to 3, which contradicts (c).

Now assuming (a) we will prove (d). Let $V \in \mathcal{W}(x_0)$ and let $h_1, ..., h_k$ be generators of $\mathcal{J}_{x_0}(V)$. Suppose $O(x_0, V) > 2$, then, by 5.11:

(5.19)
$$r = \sum A_i h_i + \sum B_i \tilde{h}_i + O(|z|^3)$$
$$\partial \bar{\partial} r = -\sum \bar{\partial} A_i \wedge dh_i + \sum \partial B_i \wedge d\bar{h}_i + \theta + O(|z|),$$

where $\theta = 0$ on V. From (5.17) we have,

(5.20)
$$\partial r = dz_n + O(|z|).$$

By virtue of (5.14) we know that $z_n|_v = O(|z|^3)$, hence

(5.21)
$$(\partial r)_{x_0} = (dz_n)_{x_0} = \sum_{1}^{k} c_i (dh_i)_{x_0}.$$

Let α and β be (1, 0)-forms with constant coefficients such that

(5.22)
$$(\bar{\partial}A)_{x_0} = a_i d\bar{z}_n + \bar{a}_i \text{ and } (\partial B_i)_{x_0} = b_i dz_n + \beta_i$$

with

$$a_i = \left(\frac{\partial A_i}{\partial \bar{z}_n}\right)_{z_0}$$
 and $b_i = \left(\frac{\partial B_i}{\partial z_n}\right)_{z_0}$.

Then, from (5.19), we have

$$(5.23) \qquad (\partial \bar{\partial} r)_{x_0} = \sum (dh_i)_{x_0} \wedge \bar{\alpha}_i + \sum \beta_i \wedge (d\bar{h}_i)_{x_0} + \sum a_i (dh_i)_{x_0} \wedge d\bar{z}_n + \sum b_i dz_n \wedge (dh_i)_{x_0}$$

The restriction of $(\partial \bar{\partial} r)_{x_0}$ to $T_{x_0}^{1,0}(b\Omega)$ is given by the first two terms on the right of (5.23). This is a semi-definite hermitian form which vanishes on the intersection of the annihilators of the $(dh_j)_{x_0}$. Hence we have, using (5.21)

$$(5.24) \qquad \qquad (\partial \bar{\partial} r)_{x_0} = \sum a_{ij} (dh_i)_{x_0} \wedge (d\bar{h}_j)_{x_0}.$$

Then

$$(5.25) \qquad \qquad \partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q} = \sum dh_{i_1} \wedge \ldots \wedge dh_{i_{n-q+1}} \wedge \psi_{i_1 \ldots i_{n-q+1}} + O(|z|).$$

Since V is q-dimensional at most n-q of the dh_i are linearly independent at regular points of V. Hence $dh_i \wedge \ldots \wedge dh_{i_{n-q+1}} = 0$ on V and hence $[\partial r \wedge \overline{\partial} r \wedge (\partial \overline{\partial} r)^{n-q}]_{x_0} = 0$ so that $1 \notin I_1^q(x_0)$ which is a contradiction and concludes the proof.

Definition 5.26. A is an admissible vector-field in a neighborhood U of x_0 if $\langle A, \partial r \rangle = 0$ and $\langle A, \overline{\partial}r \rangle = 0$. In particular for $x \in b\Omega$, $A_x \in T_x^{1,0}(b\Omega) + T_x^{0,1}(b\Omega)$.

LEMMA 5.27. If c_{ij} is a component of the Levi-form and if $A_1, ..., A_m$ are admissible vector fields then $A_1, ..., A_m(c_{ij}) \in I_{m+1}^{n-1}(x_0)$.

Proof. Since

$$\partial r \wedge \bar{\partial} r \wedge \partial \bar{\partial} r = \sum_{i,j < n} c_{ij} \omega_i \wedge \bar{\omega}_j \wedge \omega_n \wedge \bar{\omega}_n$$

each $c_j \in I_1^{n-1}(x_0)$ when i, j < n. Further

$$\partial c_{ij} \wedge \partial r = \sum_{k < n} (L_k c_{ij}) \omega_k \wedge \omega_n.$$

Hence $L_k c_{ij} \in I_2^{n-1}(x_0)$ and also $L_k c_{ji} \in I_2^{n-1}(x_0)$; but $L_k c_{ji} = L_k \bar{c}_{ij}$ and $|L_k \bar{c}_{ij}| = |L_k c_{ij}|$, hence $L_k c_{ij} \in I_2^{n-1}(x_0)$. Since the admissible vectors are combinations of the L_k and L_k the lemma follows for m = 1. For m = 2 we apply the same argument to $\partial A c_{ij}$, when A is an admissible vector field and similarly conclude the proof by induction.

LEMMA 5.28. Let F be a real-valued C^{∞} function defined in a neighborhood of the origin in \mathbb{R}^n . Suppose that $F \ge 0$ and F(0) = 0. Let X be a real C^{∞} vector field defined in a neighborhood of $0 \in \mathbb{R}^n$. Then either $X^j F(0) = 0$ for all j or there exists some integer k such that $X^j F(0) = 0$ if j < 2k and $X^{2k} F(0) > 0$.

Proof. It suffices to consider X such that $X \neq 0$ in a neighborhood of 0. Choose a coordinate system x_1, \ldots, x_n so that $X = \partial/\partial x_1$, then

$$F(x) = \sum_{j=1}^{m} a_j(0, x_2, \ldots, x_n) x_1^j + O(|x|^{n+1}).$$

Choosing *m* to be the smallest number such that $a_m(0, ..., 0) \neq 0$ we see that $F(x_1, 0, ..., 0) \ge 0$ implies that *m* is even and $a_m(0, ..., 0) > 0$ which concludes the proof.

LEMMA 5.29. If $f, g_1, ..., g_m$ are complex-valued C^{∞} functions in a neighborhood of $0 \in \mathbb{R}^n$ such that

(5.30)
$$|f|^{2p} \leq \text{const.} \sum_{1}^{m} |g_j|^2$$

furthermore, if X is a real C^{∞} vector field and $X^{i}f(0) = 0$ for j < k and $X^{k}f(0) \neq 0$ then for some j and some $q \leq pk$ we have $X^{q}g_{i}(0) \neq 0$.

Proof. Assume that $X^{q}g_{j}(0) = 0$ for j = 1, ..., m and all q < pk. Let $F = \text{const.} \sum_{1}^{m} |g_{j}|^{2} - |f|^{2p}$, then

$$X^{2pk}F(0) = \text{const.} \sum_{1}^{m} |X^{pk}g_{j}(0)|^{2} - |X^{k}f(0)|^{2}$$

and the result follows from 5.29.

Definition 5.31. $\mathcal{L}^k(x_0) \subset \mathbb{C}T_{x_0}$ is defined inductively as follows:

 $\mathcal{L}^{1}(x_{0}) = \text{germs of admissible vector fields.}$ $\mathcal{L}^{k}(x_{0}) = \mathcal{L}^{k-1}(x_{0}) + [\mathcal{L}^{1}(x_{0}), \mathcal{L}^{k-1}(x_{0})]$. $\mathcal{L}^{k}(x_{0}) \subset CT_{x_{0}}$ is the subspace obtained by evaluating all elements of $\mathcal{L}^{k}(x_{0})$ at x_{0} . Note that $\mathcal{L}^{1}(x_{0}) = T_{x_{0}}^{1,0}(b\Omega) + T_{x_{0}}^{0,1}(b\Omega)$. We say that x_{0} is of *finite type* if for some integer *m* we have $\mathcal{L}^{m}(x_{0}) = CT_{x_{0}}(b\Omega)$ and if *m* is the least such integer we say that x_{0} is of *type m*.

Observe that if $f \in C^{\infty}(x_0)$ and $A \in \mathcal{L}^k(x_0)$ then $fA \in \mathcal{L}^k(x_0)$ since

$$f[B_1, B_2] = B_2(f) B_1 + [fB_1, B_2],$$

so that if $B_1 \in \mathcal{L}^1(x_0)$ and $B_2 \in \mathcal{L}^{k-1}(x_0)$ then $f[B_1, B_2] \in \mathcal{L}^k(x_0)$.

LEMMA 5.32. $x_0 \in b\Omega$ is of type greater than or equal to m, with $m \ge 3$, if and only if whenever $A_1, \ldots, A_k \in \mathcal{L}^1(x_0)$, with k < m-2, then $A_1 \ldots A_k c_{ij}(x_0) = 0$ if i, j < n. Furthermore, x_0 is of type 2 if and only if $c_{ij}(x_0) \neq 0$ for some i, j with i, j < n.

Proof. With our usual notation (see 2.20) we have

$$[L_i, L_j] = c_{ij} T \mod \mathcal{L}^1(x_0),$$

if $i, j \le n$. For any $S \in \mathbb{C}T_{x_0}$ we have $S = aT \mod \mathcal{L}^1(x_0)$. Thus by induction we obtain, when $i, j \le n$

$$(5.33) \qquad [A_1, [A_2, ..., [A_k, [L_i, \tilde{L}_j] ...] = (A_1 ... A_k(c_{ij}) + R_{kij}(c_{ij})) T \mod \mathcal{L}^{k+1}(x_0).$$

where R_{kij} is a polynomial in the $A_1, ..., A_k$ of degree less than k. The desired conclusion then follows by evaluating (5.33) at x_0 .

LEMMA 5.34. Suppose that $x_0 \in b\Omega$ is of type greater than p and that $f \in C^{\infty}(x_0)$ has the properties that $f(x_0) = 0$ and that $A_1 \dots A_k f(x_0) = 0$ whenever k < p and $A_j \in \mathcal{L}^1(x_0)$. Then if $A_1, \dots, A_p \in \mathcal{L}^1(x_0)$ and if π is a permutation of $\{1, \dots, p\}$ we have

(5.35)
$$A_1 \dots A_p f(x_0) = A_{\pi(1)} \dots A_{\pi(p)} f(x_0).$$

Furthermore, if for some choice of $A_1, ..., A_p \in \mathcal{L}^1(x_0)$, we have $A_1 ... A_p f(x_0) \neq 0$ then there exists $A \in \mathcal{L}^1(x_0)$ such that $A^p f(x_0) \neq 0$. Finally, if in the last statement the $A_1, ..., A_p$ are real then there exists a real $A \in \mathcal{L}^1(x_0)$ such that $A^p f(x_0) \neq 0$.

Proof. From (5.33) it follows that

(5.36)
$$A_1 \dots A_p = A_{\pi(1)} \dots A_{\pi(p)} + \sum_{i,j < n} P_{ij}(c_{ij}) T + P_p$$

where the P_{ij} and P_p are polynomials in $A_1, ..., A_p$ of degree less than p. Hence (5.35) follows by applying (5.36) to f and evaluating at x_0 .

If $A_1 ldots A_p f(x_0) \neq 0$, let $A = \sum s_j A_j$. Then $A^p f(x_0)$ is a homogeneous polynomial in the s_j 's and the coefficient of $s_1 ldots s_p$ equals $p! A_1 ldots A_p f(x_0) \neq 0$. Hence the polynomial is not identically zero and so for some choice of the s_j we have $A^p f(x_0) \neq 0$. If the A_j are real we can choose the s_j real and obtain a real A as required.

PROPOSITION 5.37. $1 \in I_m^{n-1}(x_0)$ if and only if x_0 is of finite type.

Proof. By Lemmas 5.32 and 5.34 it will suffice to prove that $1 \in I_m^{n-1}(x_0)$ is equivalent to the existence of $A \in \mathcal{L}^1(x_0)$ such that $A^p(c_{ij}) \neq 0$ with $p \ge 0$ and some $i, j \le n$. From Lemma 5.27 it follows that if $A^p(c_{ij}) \neq 0$, with $A \in \mathcal{L}^1(x_0)$ $i, j \le n$ and $p \ge 0$ then $1 \in I_{p+1}^{n-1}(x_0)$.

Suppose that $l \in I_m^{n-1}(x_0)$ then there exists a function $f^{(1)} \in I_{m-1}^{n-1}(x_0)$ such that, for some $i < n, L_i f^{(1)} \neq 0$. Then there exist functions $f_1^{(2)}, \dots, f_{k_1}^{(2)} \in I_{m-2}^{n-1}(x_0)$ and p_1 , such that

$$|f^{(1)}|^{2p_1} \leq \sum_{s=1}^{n-1} \sum_{j=1}^{k_s} |L_s f_j^{(2)}|^2$$

Let A be either Re (L_i) or Im (L_i) so that $Af^{(1)} \neq 0$. Then, by 5.9, there exist s, j and q so that $A^q L_s f_2^{(2)} \neq 0$. Let $f^{(2)} = f_1^{(2)}$ and let B be either Re (L_s) or Im (L_s) so that $A^q B f^{(2)} \neq 0$. Now suppose that x_0 is of type greater than $q_2 = q + 1$ then, from Lemma 5.34, we conclude that there exists a real $A_2 \in \mathcal{L}^1(x_0)$ and an integer q_2 so that $A_2^{q_s} f^{(2)} \neq 0$. Similarly we obtain $f^{(3)} \in I_{m-3}^{n-1}(x_0)$ and a real $A_3 \in \mathcal{L}^1(x_0)$ such that $A_3^{q_s} f^{(3)} \neq 0$. After repeating this procedure m-1 times we obtain $f^{(m-1)} \in I_1^{n-1}(x_0)$ and a real $A_{m-1} \in \mathcal{L}^1(x_0)$ so that $A_{m-1}^{q_m-1} f^{(m-1)} \neq 0$, further

$$|f^{(m-1)}|^{2p_{m-1}} \leq \sum_{i,j < n} |c_{ij}|^2$$

hence $A_{m-1}^k c_{ij} \neq 0$, for some k, i, j; which, by 5.32, concludes the proof.

PROPOSITION 5.38. x_0 is of type m if and only if reg $O^{n-1}(x_0) = m$.

Proof. Choose coordinates $z_1, ..., z_n$ with origin at x_0 so that $r = \text{Re}(z_n) + F + O(|z|^{m+1})$, where F is a mixed polynomial vanishing at 0. Let

$$L_{j} = \frac{\partial}{\partial z_{j}} - \frac{r_{z_{i}}}{r_{z_{n}}} \frac{\partial}{\partial z_{n}}, \quad j = 1, \dots, n - 1,$$
$$L_{n} = \frac{1}{r_{z_{n}}} \frac{\partial}{\partial z_{n}},$$
$$T = L_{n} - \tilde{L}_{n}.$$

Let $V = \{z_n | z_n = 0\}$. Then, by Lemma 5.14, $O(x_0, V) = m$ if and only if reg $O^{n-1}(x_0) = m$. We also have $O(x_0, V) = m$ if and only if there is some i, j < n and $\alpha_1, ..., \alpha_{2n-1}$ with $\alpha_1 + ... + \alpha_{2n-2} = m-2$ such that

(5.39)
$$B_1^{\alpha_1} \dots B_{2n-2}^{\alpha_{2n-2}} F_{z_i \overline{z}_i}(0) \neq 0$$

and this expression equals zero whenever i, j < n and $\alpha_1 + ... + \alpha_{2n-2} < m-2$, where

$$B_i = \frac{\partial}{\partial z_i}, \ B_{i+n-1} = \frac{\partial}{\partial \bar{z}_i}, \quad i = 1, ..., n-1.$$

We will show that if $O(x_0, V) \ge m$ then

$$(5.40) B_2^{\alpha_1} \dots B_{2n-2}^{\alpha_{2n-2}} F_{z_i \overline{z}_j}(0) = A_1^{\alpha_1} \dots A_{2n-2}^{\alpha_{2n-2}} c_{ij}(0),$$

whenever i, j < n and $\alpha_1 + \ldots + \alpha_{2n-1} \leq m-2$, where

$$A_i = L_i, A_{i+n-1} = \tilde{L}_i, \quad i = 1, ..., n-1.$$

The desired conclusion follows from (5.40) by applying Lemma 5.32. To prove (5.40) we first note that for $i, j \le n$ we have

$$c_{ij} = F_{z_i \bar{z}_j} - \frac{r_{\bar{z}_i}}{r_{\bar{z}_n}} F_{z_i \bar{z}_n} - \frac{r_{z_i}}{r_{z_n}} F_{z_n \bar{z}_j} + \frac{r_{z_i \bar{z}_j}}{|r_{z_n}|^2} F_{z_n \bar{z}_n} + O(|z|^{m-1}) = F_{z_i \bar{z}_j} + h_{ij} F_{z_i} + g_{ij} F_{\bar{z}_j} + O(|z|^{m-1}),$$

where $h_{ij}, g_{ij} \in C^{\infty}(x_0)$. Furthermore

$$A_{i} = \begin{cases} B_{i} + h_{i} F_{z_{i}} \frac{\partial}{\partial z_{n}}, & i = 1, \dots, n-1 \\ \\ B_{i} + g_{i} F_{\overline{z}_{i-n+1}} \frac{\partial}{\partial z_{n}}, & i = n, \dots, 2n-2 \end{cases}$$

where $h_i, g_i \in C^{\infty}(x_0)$. Now (5.40) is easily established by induction on $k = \alpha_1 + \ldots + \alpha_{2n-2}$.

§ 6. The real-analytic case

In this section we will suppose that r is real-analytic in a neighborhood of $x_0 \in b\Omega$. We will deal only with real-analytic functions. We will denote by $\mathscr{A}(x_0)$ the set of germs of real-analytic functions at x_0 . If $S \subset \mathscr{A}(x_0)$ then (S) denotes the ideal of germs of real-analytic functions generated by S and $\sqrt[V]{S}$ denotes the set of all $f \in \mathscr{A}(x_0)$ such that there exists an m and a $g \in S$ with $|f|^m \leq |g|$. In this section $I_k^g(x_0)$ will denote the ideal of germs of real-analytic functions defined by (1.22) where () and $\sqrt[V]{}$ are interpreted as above. Before we enter into an examination of the ideals $I_k^g(x_0)$ we will state some properties of ideals of germs of real-analytic functions.

Let *I* be an ideal of germs of real-analytic functions at $0 \in \mathbb{R}^p$. Let $\mathcal{V}(I)$ denote the germ of the real-analytic variety defined by *I*; that is, if f_1, \ldots, f_k are generators of *I* which are defined on a neighborhood *U* of 0, then $U \cap \mathcal{V}(I) = \{x \in U | f_j(x) = 0, j = 1, \ldots, k\}$. If $x \in \mathcal{V}(I)$ we denote by $\mathcal{J}_x \mathcal{V}(I)$ the ideal of germs of real-analytic functions at x which vanish on $\mathcal{V}(I)$. The following is proved in [24].

THEOREM 6.1. (Lojasiewicz). If I is an ideal of germs of real-analytic functions at $0 \in \mathbb{R}^p$, then $\mathcal{J}_0 \mathcal{V}(I) = \sqrt{I}$.

As usual we will complexify \mathbb{R}^p by the embedding of \mathbb{R}^p into \mathbb{C}^p given by $z_j = x_j$, where x_1, \ldots, x_p are coordinates in \mathbb{R}^p and z_1, \ldots, z_p are coordinates in \mathbb{C}^p . If f is a real-analytic function on an open set $U \subset \mathbb{R}^p$ then there exists an open set $\tilde{U} \subset \mathbb{C}^p$ such that $\tilde{U} \cap \mathbb{R}^p = U$ and a holomorphic function \tilde{f} on \tilde{U} such that $\tilde{f} = f$ on U. We call \tilde{f} the complexification of f,

and if I is an ideal of germs of real-analytic functions then we denote by $I^{\mathbb{C}}$ the ideal of germs of holomorphic functions generated by the complexifications of the elements of I. We will also denote by $\mathcal{V}(I^{\mathbb{C}})$ the germ of the complex-analytic variety defined by $I^{\mathbb{C}}$ and if $z \in \mathcal{V}(I^{\mathbb{C}})$ we will denote by $\mathcal{J}_z \mathcal{V}(I^{\mathbb{C}})$ the ideal of germs of holomorphic functions at z that vanish on $\mathcal{V}(I^{\mathbb{C}})$.

PROPOSITION 6.2. Let I be an ideal of germs of real-analytic functions at $0 \in \mathbb{R}^p$ such that $I = \sqrt{I}$. Then we have

(6.3)
$$\dim_{\mathbf{R}} \mathfrak{V}(I) = \dim_{\mathbf{C}} \mathfrak{V}(I^{\mathbf{C}}).$$

Proof. In Narasimhan [25], Proposition 1, page 91, it is shown that

$$(\mathcal{J}_0 \mathcal{V}(I))^{\mathbb{C}} = \mathcal{J}_0 \mathcal{V}((\mathcal{J}_0 \mathcal{V}(I))^{\mathbb{C}}).$$

Applying 6.1 we have

(6.4) $\mathcal{J}_0 \mathcal{V}(I^{\mathbb{C}}) = I^{\mathbb{C}}.$

Then (6.3) follows by Proposition 3 of [25], p. 93.

H. Cartan in [4] shows that in \mathbb{R}^3 if $I = (z(x^2 + y^2) - x^3)$ then, for any $z \neq 0$, the ideal $\mathcal{J}_{(0,0,z)} \mathcal{V}(I)$ is not generated by $\mathcal{J}_{(0,0,0)} \mathcal{V}(I)$. For our purposes this difficulty can be overcome by means of the following result.

PROPOSITION 6.5. If I is an ideal of germs of real-analytic functions at $0 \in \mathbb{R}^p$ and if \mathbf{R} $I = \sqrt{I}$, then there exists a sequence of points $x^{(\nu)} \in \mathfrak{V}(I)$ such that $x^{(\nu)}$ converges to 0 and such that each $x^{(\nu)}$ has a neighborhood U_v with the property that if $y \in U_v \cap \mathfrak{V}(I)$ then $\mathcal{J}_v \mathfrak{V}(I)$ is generated by the elements of I.

Proof. Let $m = \dim_{\mathbb{R}} \mathfrak{V}(I)$, then we can choose a sequence $x^{(v)} \in \mathfrak{V}(I)$ with $\lim_{v \to \infty} x^{(v)} = 0$ such that $\mathfrak{V}(I)$ is regular and of dimension m at $x^{(v)}$ (see Theorem 1, page 41 of [25]). Let U'_{v} be a neighborhood of $x^{(v)}$ such that every $y \in U'_{v} \cap \mathfrak{V}(I)$ is a regular point of $\mathfrak{V}(I)$ and $\mathfrak{V}(I)$ has dimension m at y. Let $\tilde{U} \subset \mathbb{C}^{p}$ be a neighborhood of 0 such that for every $z \in \tilde{U} \cap$ $\mathfrak{V}(I^{\mathbb{C}})$ the ideal $\mathfrak{I}_{z} \mathfrak{V}(I^{\mathbb{C}})$ is generated by elements of $I^{\mathbb{C}}$ (such a \tilde{U} exists by Oka's theorem). If $y \in \tilde{U} \cap U'_{v} \cap \mathfrak{V}(I)$ then y is a regular point of $\mathfrak{V}(I^{\mathbb{C}})$ and so there exists $h_{1}, \ldots, h_{p-m} \in I^{\mathbb{C}}$ so that $(dh_{1})_{y} \wedge \ldots \wedge (dh_{p-m})_{y} \neq 0$. The restrictions of h_{1}, \ldots, h_{p-m} to \mathbb{R}^{p} are elements of Iwhich generate $\mathfrak{I}_{u} \mathfrak{V}(I)$. Hence the neighborhoods $U_{v} = \tilde{U} \cap U'_{v}$ have the desired property.

Returning to our ideals $I_k^q(x_0)$ we let \mathcal{V}_k^q be the germ of a real-analytic variety at x_0 given by

$$\mathfrak{V}_k^q(x_0) = \mathfrak{V}(I_k^q(x_0))$$

Definition 6.7. If I is an ideal of germs of analytic function at x_0 and if $x \in \mathcal{V}(I)$ then we define $Z_x^{1,0}(I)$ the Zariski tangent space of I at x as follows

(6.8)
$$Z_x^{1,0}(I) = \{ L \in T_x^{1,0} | L(f) = 0 \quad \text{if } f \in I \}.$$

If V is a germ of a real-analytic variety at x_0 then we define

(6.9)
$$Z_x^{1,0}(V) = Z_x^{1,0}(\mathcal{J}_x V)$$

The following is then immediate.

LEMMA 6.10. If I is an ideal of germs of real-analytic functions at x_0 and if $x \in \mathcal{V}(I)$ then

If $\mathfrak{I}_{x}\mathfrak{V}(I)$ is generated by elements of I then equality holds in (6.11).

PROPOSITION 6.12. If $x \in \mathcal{W}_k^q(x_0)$ then $x \in \mathcal{W}_{k+1}^q(x_0)$ if and only if

(6.13)
$$\dim (Z_x^{1,0}(I_k^q(x_0)) \cap \mathcal{H}_x) \ge q,$$

where \mathcal{H}_{x} is defined by:

(6.14)
$$\mathcal{H}_{x} = \{ L \in T_{x}^{1,0}(b\Omega) | \langle (\partial \bar{\partial} r)_{x}, L \wedge \bar{L} \rangle = 0 \}.$$

Proof. If $L_1, ..., L_n$ is the usual local basis of $T^{1\cdot 0}$ with $\langle L_i, \partial r \rangle = \delta_{in}$ and $c_{ij} = \langle \partial \overline{\partial} r, L_i \wedge \overline{L}_j \rangle$ so that (c_{ij}) with i, j < n on $b\Omega$ is the Levi form; then $x \in \mathcal{V}_{k+1}^q(x_0)$ if and only if the following system has at least q linearly independent solutions.

(6.15)
$$\sum_{i=1}^{n-1} c_{ij}(x) \zeta_i = 0, \quad j = 1, \dots, n-1$$
$$\sum_{i=1}^n [L_i(f)]_x \zeta_i = 0, \quad f \in I_k^q(x_0).$$

For $x \in \mathcal{W}_k^q(x_0)$ and $L = \sum_{i=1}^n \zeta_i L_i$ the above system characterizes those L such that $L_x \in \mathbb{Z}_k^{1,0}(I_k^q(x_0)) \cap \mathcal{H}_x$, which concludes the proof.

Definition 6.16. If V is a real-analytic variety contained in $b\Omega$ we define the holomorphic dimension of V by

(6.17)
$$\operatorname{hol.\,dim}(V) = \min_{x \in V} \operatorname{dim} Z_x^{1,0}(V) \cap \mathcal{H}_x.$$

PROPOSITION 6.18. If $V \subset U \cap b\Omega$ is a real-analytic variety and if hol. dim $(V) \ge q$ then $V \subset \mathcal{V}_m^q(x_0)$ for all m.

Proof. If $x \in V$ then dim $\mathcal{N}_x \ge q$ hence $x \in \mathcal{W}_1^q(x_0)$, so that $V \subset \mathcal{W}_1^q(x_0)$. Assume that $V \subset \mathcal{W}_k^q(x_0)$, then, applying (6.10), we obtain for $x \in V$:

(6.19)
$$Z_x^{1,0}(V) \subset Z_x^{1,0}(\mathcal{W}_k^q(x_0)) \subset Z_x^{1,0}(I_k^q(x_0)).$$

Then, intersecting the above with \mathcal{H}_x and applying Proposition 6.12 we conclude that $x \in \mathcal{W}_{k+1}^q(x_0)$ hence $V \subset \mathcal{W}_{k+1}^q(x_0)$ so that $V \subset \mathcal{W}_m^q(x_0)$ for all m.

PROPOSITION 6.20. If for every real-analytic variety $V \subseteq U \cap b\Omega$ we have hold $\dim(V) < q$ then $\mathcal{W}_{2n}^{q}(x_0) = \emptyset$.

Proof. We will show that, if $\mathcal{W}_k^q(x_0) \neq \emptyset$, then

(6.21)
$$\dim \mathcal{W}_k^q(x_0) > \dim \mathcal{W}_{k+1}^q(x_0).$$

Suppose (6.21) does not hold. Then, these dimensions are equal and hence in an open set W with the property that every $y \in W \cap \mathcal{V}_{k+1}^q(x_0)$ is a regular point at which the dimension of $\mathcal{V}_{k+1}^q(x_0)$ is maximal, we have $W \cap \mathcal{V}_k^q(x_0) = W \cap \mathcal{V}_{k+1}^q(x_0)$. Now by 6.5 we can choose such a $W \subset U$ so that for each $y \in W \cap \mathcal{V}_k^q(x_0)$ the ideal $\mathcal{J}_y \mathcal{V}_k^q(x_0) = \mathcal{J}_y \mathcal{V}_{k+1}^q(x_0)$ is generated by the elements of $I_k^q(x_0)$. Hence by Proposition 6.12 we conclude that hol. dim $W \cap \mathcal{V}_k^q(x_0) \ge q$, which is a contradiction. Hence (6.21) holds and the conclusion follows since dim $\mathcal{V}_1^q(x_0) \le \dim b\Omega = 2n - 1$.

It then follows that if in some neighborhood U of x_0 there is no $V \subset U \cap b\Omega$ with hol. dim $V \ge q$ then $1 \in I_{2n}^q(x_0)$ and hence a subelliptic estimate holds at x_0 for (p, q)-forms. Observe that if W is a complex-analytic variety with $W \subset b\Omega$ then hol. dim $W = \dim W$ since then $Z_x^{1,0}(W) \subset \mathcal{N}_x$ for all $x \in W$. The converse of this is the following deep result of Diederich and Fornaess (see [9]).

THEOREM 6.22. (Diederich and Fornaess). If Ω is pseudo-convex, if r is analytic in a neighborhood U of $x_0 \in b\Omega$ and if there exists a real analytic variety $V \subset U \cap b\Omega$ with hol. dim (V) = q then there exists a complex-analytic variety $W \subset U \cap b\Omega$ with dim W = q.

Using this theorem we see that a subelliptic estimate holds if there are no complexanalytic varieties of dimension greater or equal to q in some neighborhood of x_0 . Actually, this is equivalent to the condition that there is no variety in $b\Omega$ of dimension q which contains x_0 , by a result that was obtained by J. Fornaess and which is given below. The proof given here is also due to Fornaess; it uses the methods developped in [9].

8-782904 Acta mathematica 142. Imprimé le 20 Février 1979

THEOREM 6.23. (Fornaess.) If W_k is a sequence of complex varieties with dim $W_k \ge q$, $W_k \subset b\Omega$ and x_0 a cluster point of this sequence them there exists a complex variety W such that dim $W \ge q$, $W \subset b\Omega$ and $x_0 \in W$.

Choose a neighborhood U of x_0 such that the Taylor series of r about x_0 converges in U. Let \tilde{r} be the complexification of r. Now we need the following result which is proved in section 6 of [9].

PROPOSITION 6.24. There exists a neighborhood U' of x_0 such that $U' \subset U$ and such that if W is an irreducible complex-analytic variety in $U' \cap b\Omega$ then there exists a complex analytic variety W' such that $W \subset W' \subset U' \cap b\Omega$ and such that W is closed in U'; that is: $\overline{W'} \cap U' = W'$. Furthermore, for any complex analytic variety $W \subset U' \cap b\Omega$ we have $\tilde{r}(z, \bar{w}) = 0$ whenever $z, w \in W$.

Proof of Theorem 6.23. We may suppose that the W_k are closed irreducible varieties contained in $U' \cap b\Omega$. Let $p^{(1)}$ be a cluster point of the W_k , then we can find a subsequence, which we also denote by $\{W_k\}$ such that $p_k^{(1)} \in W_k$ and $p^{(1)} = \lim_{k \to \infty} p_k^{(1)}$. Now, let $p^{(2)}$ be a cluster point of this subsequence whose distance from $p^{(1)}$ is maximal. We then choose a further subsequence $\{W_k\}$ such that $p_k^{(2)} \in W_k$ and $\lim_{k\to\infty} p_k^{(2)} = p^{(2)}$. Proceeding inductively and using diagonalization we finally obtain a sequence $\{W_k\}$ and for each mwe have $p_k^{(m)} \in W_k$ and $\lim_{k\to\infty} p_k^{(m)} = p^{(m)}$. If C denotes the set of cluster points of $\{W_k\}$; then the sequence $\{p^{(m)}\}$ is dense in C. For every k we have $p_k^{(i)}$, $p_k^{(i)} \in W_k$ hence $\tilde{r}(p_k^{(i)})$, $\tilde{p}_k^{(j)} = 0$ and hence if p and $p' \in C$ we have $\tilde{r}(p, \tilde{p}') = 0$. Let W' be defined by

(6.24)
$$W' = \bigcap_{r \in C} \{ p \in U' | \tilde{r}(p, \bar{p}') = 0 \}.$$

Thus W' is a closed complex-analytic variety contained in U' and $W' \supset C$; furthermore, if $w' \in W$ and $c \in C$ then we have

(6.25)
$$\tilde{r}(w', \bar{c}) = \tilde{r}(c, \bar{w}') = 0.$$

Let W be defined by

(6.26)
$$W = \bigcap_{w' \in W'} \{ w \in U' | \tilde{\tau}(w, \bar{w}') = 0 \}.$$

Then $C \subset W \subset W'$ and if $w \in W$ we have $r(w) = \tilde{r}(w, \bar{w}) = 0$. Hence W is a closed complexanalytic subvariety of $U' \cap b\Omega$, it remains to show that dim $W \ge q$. Consider the stratification $\tilde{W}_0 \subset \tilde{W}_1 \subset \ldots \subset \tilde{W}_l = W$, where the \tilde{W}_j are the singular points of \tilde{W}_{j+1} for j = 1, ..., l-1.

Let d be the smallest integer such that $C - \tilde{W}_d$ does not cluster at x_0 . Let W^1, \ldots, W^s be the irreducible germs of \tilde{W}_d . Then $(W^i - \tilde{W}_{d-1}) \cap C$ clusters at x_0 for some $i \in \{1, \ldots, s\}$.

Fix such an *i*. It suffices to show that dim $W^i \ge q$. Choose $p^{(m)} \in W^i - \widehat{W}_{d-1}$ and a neighborhood U'' of $p^{(m)}$ such that $U'' \cap W^i$ consists of regular points of W^i and $U'' \cap C$ in contained in W^i . Let η_1, \ldots, η_n be holomorphic coordinates with origin at $p^{(m)}$ such that $\Delta \subset U''$ and

$$W^{t} \cap \Delta = \{ (\eta_{1}, ..., \eta_{n}) \in \Delta | \eta_{t+1} = ... = \eta_{n} = 0 \},\$$

where $\Delta = \{(\eta_1, ..., \eta_n) \in \mathbb{C}^n | |\eta_j| < 1, j = 1, ..., n\}$ and $t = \dim W^i$. Then on points of $C \cap \Delta$ we have $\eta_{t+1} = ... = \eta_n = 0$. Let $\tilde{\Delta} = \{\eta | |\eta_j| < \frac{1}{2}, j = 1, ..., n\}$. It then follows, if k is sufficiently large, that

$$W_k \cap \tilde{\Delta} \subset \{\eta \in \tilde{\Delta} | |\eta_j| \leq \frac{1}{4}, j = t+1, ..., n\}.$$

Hence the map

$$\pi_k: W_k \cap \overline{\Delta} \to \{(\eta_1, ..., \eta_t) \big| \big| \eta_j \big| < \frac{1}{2}, j = 1, ..., t \}$$

is proper. This is only possible if dim $W_k \leq t$. Hence dim $W \geq q$ since dim $W_k \geq q$ and $t = \dim W^i \leq \dim W$.

The above results are then summarized by the following theorem.

THEOREM 6.27. Assume that Ω is pseudo-convex, $x_0 \in b\Omega$ and r is real-analytic in a neighborhood of x_0 . Then the following conditions are equivalent:

(a) $1 \in I_k^q(x_0)$ for some k.

(b) There exists a neighborhood U of x_0 such that $U \cap b\Omega$ does not contain any complex analytic varieties of dimension q.

(c) If W is a germ of a complex-analytic variety at x_0 such that $W \subseteq b\Omega$ then dim W < q.

Theorem 1.19 then follows since (a) implies that $x_0 \in \mathcal{E}^q$.

§ 7. Some special domains

In this section we consider domains $\Omega \subset \mathbb{C}^n$ whose defining function r is given, near the origin, by:

(7.1)
$$r(z_1, \ldots, z_n) = \operatorname{Re}(z_n) + \sum_{j=1}^m |h_j(z_1, \ldots, z_n)|^2 + a,$$

where $h_1, ..., h_m$ are holomorphic functions, $a \in \mathbf{R}$ and r(0, ..., 0) = 0; so that

$$a = -\sum_{j=1}^{m} |h_j(0, ..., 0, 0)|^2.$$

Then we have

(7.2)
$$r_{z_k \overline{z}_i} = \sum_{j=1}^m h_{j z_k} \bar{h}_{j \overline{z}_i}$$

and hence

(7.3)
$$\sum_{k,i=1}^{n} r_{z_k \bar{z}_i} \zeta_k \bar{\zeta}_i = \sum_{j=1}^{m} \left| \sum_{k=1}^{n} h_{j z_k} \zeta_k \right|^2.$$

Thus, the domain is pseudo-convex.

PROPOSITION 7.4. If W is a germ of a complex-analytic variety such that $W \subseteq b\Omega$ then the functions z_n and h_j are constant on W. In particular, if W contains the origin then W is contained in the variety V given by $V = \{z_n = 0, h_j(z_1, ..., z_n) = h_j(0, ..., 0) \text{ for } j = 1, ..., m\}$. Note that $V \subseteq b\Omega$.

Proof. Let $z^0 = (z_1^0, ..., z_n^0)$ be a regular point of W. Let $z'_n = z_n - z_n^0$, then by Lemma 5.12 we have $z'_n = 0$ on W. We choose coordinates $z'_1, ..., z'_n$ with origin at z^0 so that, in a neighborhood of z^0 the variety W is given by $z'_{p+1} = ... = z'_n = 0$. Let h'_j be the function given by $h'_j(z') = h_j(z(z'))$, then we have

(7.5)
$$r(z') = \operatorname{Re}(z'_n) + \sum_{j=1}^m |h'_j(z')|^2 + a + \operatorname{Re}(z^0_n).$$

Evaluating r on W we obtain

(7.6)
$$\sum_{j=1}^{m} |h_j'(z_1', \ldots, z_p', 0, \ldots, 0)|^2 = -a - \operatorname{Re}(z_n^0).$$

Applying $\partial^2/\partial z'_k \partial \bar{z}'_k$ to (7.6) and summing on k gives

(7.7)
$$\sum_{k=1}^{p-1} \sum_{j=1}^{m} \left| \frac{\partial h'_j}{\partial z_k}(z'_1, \ldots, z'_p, 0, \ldots, 0) \right|^2 = 0.$$

Hence the h_j are constant on W.

Applying Theorem 6.27 we find that the following conditions are equivalent.

- (a) $1 \in I_k^q(0)$ for some k.
- (b) dim V < q.
- (c) dim $\{z_n = z_n^0, h_j = h_j(z^0)\} \le q$, where z^0 is close to the origin.

Observe that

(7.8)
$$\partial r \wedge (\partial \overline{\partial} r)^{n-q} = \frac{1}{4} dz_n \wedge (\sum_j \partial h_j \wedge \overline{\partial} \overline{h_j})^{n-q} + \dots,$$

where the dots represent forms in which either ∂h , or $\overline{\partial h}$, appears as factor at least n-q+1 times.

Definition 7.9. Let $J_k^q(0)$ denote ideals of germs of holomorphic functions at 0 defined by

$$J_1^q(0) = \bigvee (\text{coeff.} \{ dz_n \wedge dh_{j_1} \wedge \ldots \wedge dh_{j_n-q} \})$$

and

$$J_{k}^{q}(0) = \sqrt{(J_{k-1}^{q}(0), \operatorname{coeff.} \{df_{1} \land \ldots \land df_{n-q+1}\} \text{ where } f_{k} \in J_{k-1}^{q}(0) \cup \{z_{n}, h_{j}\})}$$

We set

$$J^q(0) = \bigcup_k J^q_k(0).$$

PROPOSITION 7.10. The conditions (a), (b) and (c) are equivalent to $1 \in J^q(0)$. Furthermore, if $1 \notin J^q(0)$ then dim $V \ge q$, where $V = \{z \mid z_n = 0, h_j(z) = h_j(0), j = 1, ..., m\}$.

Proof. We will show that (b) is equivalent to $1 \in J^{q}(0)$. The proof is along the same lines as that of Proposition 6.20; it is much simpler because it is based only on properties of ideals of holomorphic functions.

Suppose that dim V < q, define \mathcal{F}_z by

(7.11)
$$\mathbf{\mathcal{J}}_{z} = \{ L \in T_{z}^{1,0} | L(z_{n}) = L(h_{j}) = 0 \}.$$

Suppose $1 \notin J_k^q(0)$ and let A be an open subset of reg $\mathcal{V}(J_k^q(0))$ which is so close to the origin that (c) is satisfied for all $z^0 \in A$. If $z \in A$ and $z \in \mathcal{V}(J_{k+1}^q(0))$ then, since (by Oka's theorem) $\mathcal{J}_z(\mathcal{V}(J_k^q(0)))$ is generated by $J_k^q(0)$, we have (by Cramer's rule)

(7.12)
$$\dim \left(Z_z^{1,0} \mathcal{V}(J_k^q(0)) \cap \mathcal{F}_z \right) \ge q.$$

If there were an open subset $A' \subset A$ with $A' \subset \mathcal{V}(J_{k+1}^q(0))$ then A' would contain an open subset A'' on which the left hand side of (7.12) is constant. Hence, by the Frobenius theorem, A'' is a complex manifold of dimension greater or equal to q. On the other hand if $z^0 \in A''$ then for each $z \in \operatorname{reg} A''$ we have $T_z^{1,0}(A'')$ is a subspace of the tangent space to $\{z \mid z_n = z_n^0, h_j(z) = z_n^0\}$, which contradicts (c). Hence A cannot have an open subset contained in $\mathcal{V}(J_{k+1}^q(0))$ and therefore dim $\mathcal{V}(J_{k+1}^q(0) < \dim \mathcal{V}(J_k^q(0))$. Thus we conclude inductively that $\mathcal{V}(J^q(0)) = \emptyset$, so that $1 \in J^q(0)$.

If, conversely, dim $V \ge q$, then (7.12) holds at all points of $z \in V'$, where V' denotes the union of components of V of dimension greater or equal to q. Hence $V' \subset \mathcal{V}(J_k^q(0))$ for all k and thus $1 \notin J_k^q(0)$.

Observe that in the above proposition z_n plays the same role as the h_j ; hence, we obtain the following result, whose proof is analogous to the one given above.

THEOREM 7.13. Let $h_0, ..., h_m$ be germs of holomorphic functions at $0 \in \mathbb{C}^n$ and let $V = \{z \mid h_j(z) = 0, j = 0, ..., m\}$. Define the ideals of germs J_k^q as follows

$$J_1^q = \sqrt{(\operatorname{coeff.} \{ dh_{j_0} \wedge \ldots \wedge dh_{j_{n-q}} \})},$$

where $(j_0, ..., j_{n-q})$ range over all (n-q+1)-tuples of integers from 0 to m; inductively we let

$$J_{k+1}^{q} = \sqrt{(J_{k}^{q}, \{\text{coeff.}(df_{0} \land \ldots \land df_{n-q})\}, f_{j} \in J_{k}^{q} \cup \{h_{0}, \ldots, h_{m}\})}.$$

We set $J^q = \bigcup_k J_k^q$. Note that $J^0 \subset J^1 \subset ... \subset J^n$. Let q_0 be the unique integer such that $1 \in J^q$ if $q > q_0$ and $1 \notin J^q$ if $q \leq q_0$. Then dim $V = q_0$.

§ 8. Estimates of (p, n-1)-forms

In this section we prove the following which is an extension of the main result in [20e].

THEOREM 8.1. If Ω is pseudo-convex $x_0 \in b\Omega$ and if reg $O^{n-1}(x_0) = m$ then $x_0 \in \mathcal{E}^{n-1}(1/m)$.

Proof. If $\varphi \in \mathcal{D}_U^{0, n-1}$, where U is a neighborhood of x_0 , we can write

(8.2)
$$\varphi = u\bar{\omega}^{1} \wedge \ldots \wedge \bar{\omega}^{n-1} + \psi \wedge \bar{\omega}^{n},$$

where $\psi = 0$ on $b\Omega$, then we have

(8.3)
$$Q(\varphi, \varphi) \sim \sum_{i=1}^{n-1} ||L_i u|| + \sum_{i=1}^n ||L_i u|| + ||u||^2 + ||\psi||_1^2.$$

Thus to show that $x_0 \in \mathcal{E}^{n-1}(1/m)$ it suffices to prove that

(8.4)
$$|||u|||_{1/m}^2 \leq \text{const.} \left(\sum_{i=1}^{n-1} ||L_i u||^2 + \sum_{i=1}^n ||L_i u||^2 + ||u||^2\right)$$

for all $u \in C_0^{\infty}(U \cap \overline{\Omega})$.

We first reduce the estimate (8.4) to an estimate on the boundary, following a procedure developed by L. Hörmander (see [17b]) and which was applied to the *D*-Neumann problem by W. Sweeney (see [31a]).

Applying Proposition 5.8 of [31a] we conclude that there exists a pseudo-differential operator P of order one operating on $C_0^{\infty}(U \cap b\Omega)$, such that (8.4) holds if and only if:

(8.5)
$$(||u||_{1/m}^2 \leq \text{const.} \left(\sum_{i=1}^{n-1} ('||L_i u||^2 + '||L_i u||^2) + '||Pu||^2 + '||u||^2 \right),$$

for all $u \in C_0^{\infty}(U \cap b\Omega)$, where '|| || denotes norms on $U \cap b\Omega$.

Setting:

(8.6)
$$X_{i} = \begin{cases} L_{i} + \bar{L}_{i}, & i = 1, ..., n-1 \\ \sqrt{-1} (L_{i-n+1} - \bar{L}_{i-n+1}), & i = n, ..., 2n-2, \end{cases}$$

we have, by Lemma 5.32, that $[X_{i_1}, [X_{i_2}, ..., [X_{i_{p-1}}, X_{i_p}]] ...]$ for $p \leq m$ span the tangent vector fields on $U \cap b\Omega$, when U is small. In [17c], Hörmander proves that this condition implies that for each $\varepsilon < 1/m$ there exists C such that

(8.7)
$$' \|u\|_{\varepsilon}^{2} \leq C \left(\sum_{i=1}^{2n-2} \|X_{i}u\|^{2} + \|u\|^{2} \right), \text{ for all } u \in C_{0}^{\infty}(U \cap b\Omega).$$

In [27], E. Stein and L. Rothschild, proves that (8.7) holds also for $\varepsilon = 1/m$. From this (8.5) follows, since

(8.8)
$$\sum_{i=1}^{n-1} (' \| L_i u \|^2 + ' \| L_i u \|^2) + \| u \|^2 \sim \sum_{i=1}^{2n-2} ' \| X_i u \|^2 + ' \| u \|^2.$$

The operator P that appears in (8.5) can be described quite explicitly using the results of [17b] and [31a]. The principal symbol of P, denoted by p is given by

(8.9)
$$p(t,\tau) = -\sigma_t(T,\tau) + \sqrt{|\sigma_t(T,\tau)|^2 + \sum_{j=1}^{n-1} |\sigma_t(L_j,\tau)|^2},$$

where $t \in U \cap b\Omega$, $\tau \in \Lambda^1(T_t(b\Omega))$, $T = L_n - L_n$ and $\sigma_t(T, \tau)$ denotes the symbol of T evaluated at τ .

§ 9. Propagation of singularities for $\bar{\partial}$

In [20e] we discussed propagation of singularities for $\overline{\partial}$ on Levi-flat domains in C², here we will give a natural generalization of this for domains in Cⁿ whose boundary contains a germ of a complex-analytic curve.

Definition 9.1. If $\alpha \in L_2^{p,q}(\Omega)$ we define the singular support of α to be the closed subset of $\overline{\Omega}$, denoted by sing. supp. (α), as follows. If $x \in \overline{\Omega}$ then $x \notin \text{sing. supp. } (\alpha)$ if there exists a neighborhood U of x such that the restriction of α to $U \cap \overline{\Omega}$ (denoted by $\alpha |_{U \cap \overline{\Omega}}$) is in C^{∞} .

An immediate consequence of Theorem 1.13 is the following.

THEOREM 9.2. If Ω is pseudo-convex and $\alpha \in L_2^{p,q}(\Omega)$ with $\overline{\partial}\alpha = 0$ then there exist $u \in L_2^{p,q-1}(\Omega)$ such that $\overline{\partial}u = \alpha$. Furthermore, if $x_0 \in \mathcal{E}^q$ then there exists a neighborhood U of x_0 such that

(9.3)
$$U \cap \text{sing. supp. } (u) \subset \text{sing. supp. } (\alpha),$$

where $u \in L_2^{p,q-1}(\Omega)$ is the unique solution of $\overline{\partial} u = \alpha$ which is orthogonal to the null space of $\overline{\partial}$.

Definition 9.4. Let $x_0 \in b\Omega$ we say that Ω admits a local holomorphic separating function at x_0 if there exists a neighborhood U of x_0 and a holomorphic function g on U such that $g(x_0) = 0$ and whenever Re g(x) = 0 then $x \notin U \cap \Omega$.

The example in [21a] shows that this condition is rather restrictive. Recent results of Bedford and Fornaess (see [1]) indicate that peak functions can substitute for separating functions in many applications.

PROPOSITION 9.5. Suppose Ω is pseudo-convex, that $x_0 \in b\Omega$ and that the following hypotheses are satisfied:

- (a) Ω admits a local holomorphic separating function g at x_0 such that $dg \neq 0$.
- (b) There is a complex-analytic curve V such that $x_0 \in V$ and $V \subset b\Omega$.
- (c) g vanishes on V.

Then for any neighborhood U of x_0 there exists an open set $U' \subset U$ and a form $\alpha \in L_2^{0,1}(\Omega)$, with $\bar{\partial}\alpha = 0$, such that $U' \cap \text{sing. supp. } (\alpha) = \emptyset$ and for every $u \in L_2(\Omega)$ which satisfies $\bar{\partial}u = \alpha$ we have $U' \cap \text{sing. supp. } (u) \neq \emptyset$.

Proof. Let $z_1, ..., z_n$ be holomorphic coordinates with origin at x_0 such that $z_n = \pm g$, where the sign is chosen so that $\operatorname{Re}(z_n) \leq 0$ in Ω (near x_0). Let $a \in U \cap \operatorname{reg}(V)$ and let $\varrho \in C_0^{\infty}(U)$, such that $\varrho(z) = 1$ if $|z-a| \leq \gamma$ and $\varrho(z) = 0$ if $|z-a| \geq 2\gamma$; where γ is so small that if z satisfies $|z-a| \leq 3\gamma$ then: $z \in U$; Re $(z_n) \leq 0$ if $z \in \overline{\Omega}$ and also if $z \in V$ then $z \in \operatorname{reg} V$.

We define α by:

(9.6)
$$\alpha = \begin{cases} (-z_n)^{-1/4} \overline{\partial} \varrho & \text{in } U \cap \overline{\Omega} \\ 0 & \text{outside of } U \cap \overline{\Omega}, \end{cases}$$

where we choose the principal value of $(-z_n)^{-1/4}$. Observe that $\bar{\partial}\alpha = 0$, that $\alpha \in L_2^{0,1}(\Omega)$ and that

(9.7) sing. supp.
$$(\alpha) = \{z \in U \cap \Omega \mid \gamma \leq |z-a| \leq 2\gamma \text{ and } z_n = 0\}.$$

Let K be a small closed neighborhood of the above set and let U' = U - K. Then we have $U' \cap \text{sing. supp.}(\alpha) = \emptyset$. Suppose there exists a function $u \in L_2(\Omega)$ such that $\overline{\partial}u = \alpha$ and suppose that $U' \cap \text{sing. supp.}(u) = \emptyset$. Let $h = u - (-z_n)^{-1/4}\varrho$. Then h is holomorphic. For small δ we restrict h to the set $\{z \mid |z-a| \le 4\gamma, z_j = a_j \text{ for } j = 2, ..., n-1 \text{ and } z_n = -\delta\}$ and we obtain the function of one variable f_{δ} defined by

(9.8)
$$f_{\delta}(z_1) = u(z_1, a_2, ..., a_{n-1}, -\delta) - \frac{\varrho(z_1, a_2, ..., a_{n-1}, -\delta)}{\delta^{1/4}}.$$

The assumption that $U' \cap \text{sing. supp.}(u) = \emptyset$ implies that $u(a_1, ..., a_{n-1}, -\delta)$ is bounded independently of δ and that $u(z_1, a_2, ..., a_{n-1}, -\delta)$ evaluated on the set $\{z_1 \mid |z_1 - a_1| = 3\gamma\}$ is bounded independently of δ , (for $\delta < \gamma$). Hence from (9.8) we conclude that $f_{\delta}(z_1)$ is bounded independently of δ on the circle $|z_1 - a_1| = 3\gamma$ (since $\varrho = 0$ there) and that $|f_{\delta}(a_1)| > 1/\delta^{1/4} - M$, where M is the bound of $|u(a_1, ..., a_{n-1}, -\delta)|$. Since f_{δ} is holomorphic the value $f_{\delta}(a_1)$ is an average of the values of f_{δ} on the circle $|z_1 - a_1| = 3\gamma$; which, for small δ , is a contradiction. Hence $U' \cap \text{sing. supp.}(u) \neq \emptyset$.

References

- [1]. BEDFORD, E. & FORNAESS, J. E., A construction of peak functions on weakly pseudoconvex domains. Preprint.
- [2]. BLOOM, T. & GRAHAM, I., A geometric characterization of points of type m on real hypersurfaces. J. Differential Geometry, to appear.
- [3]. BOUTET DE MONVEL, L. & SJÖSTRAND, J., Sur la singularité des noyaux de Bergman et de Szegö. Soc. Math. de France Astérisque, 34–35 (1976), 123–164.
- [4]. CARTAN, H., Variétés analytiques reélles et variétés analytiques complexes. Bull. Soc. Math. France, 85 (1957), 77–99.
- [5]. CATLIN, D., Boundary behaviour of holomorphic functions on weakly pseudo-convex domains. Thesis, Princeton Univ. 1978.
- [6]. D'ANGELO, J., (a) Finite type conditions for real hypersurfaces. J. Differential Geometry, to appear.

(b) A note on the Bergman kernel. Duke Math. J., to appear.

- [7]. DERRIDJ, M., Sur la régularité des solutions du problème de Neumann pour
 dans quelques domains faiblement pseudo-convexes. J. Differential Geometry, to appear.
- [8]. DERRIDJ, M. & TARTAKOFF, D., On the global real-analyticity of solutions of the ∂-Neumann problem. Comm. Partial Differential Equations, 1 (1976), 401-435.
- [9]. DIEDERICH, K. & FORNAESS, J. E., Pseudoconvex domains with real-analytic boundary. Ann. of Math., 107 (1978), 371-384.
- [10]. EGOROV, YU. V., Subellipticity of the ∂-Neumann problem. Dokl. Akad. Nauk. SSSR, 235, No. 5 (1977), 1009-1012.
- [11]. EPHRAIM, R., C^{∞} and analytic equivalence of singularities. *Rice Univ. Studies*, Complex Analysis, Vol. 59, No. 1 (1973), 11-31.
- [12]. FEFFERMAN, C., The Bergman kernel and biholomorphic mappings. Invent. Math., 26 (1974), 1-65.
- [13]. FOLLAND, G. B. & KOHN, J. J., The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, No. 75, P.U. Press, 1972.
- [14]. GREINER, P. C., On subelliptic estimates of the ∂-Neumann problem in C². J. Differential Geometry, 9 (1974), 239-250.
- [15]. GREINER, P. C. & STEIN, E. M., (a) On the solvability of some differential operators of type \Box_b , preprint.

— (b) Estimates for the δ-Neumann problem. Math. Notes No. 19, Princeton University Press 1977.

- [16]. HENKIN, G. M. & ČIRKA, E. M., Boundary properties of holomorphic functions of several complex variables. Problems of Math. Vol. 4, Moscow 1975, 13-142.
- [17]. HÖRMANDER, L., (a) L^2 estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math., 113 (1965), 89-152.

—— (b) Hypoelliptic second order differential equations. Acta Math., 119 (1967), 147–171.

- ---- (c) Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83 (1966), 129-209.
- [18]. KASHIWARA, M., Analyse micro-locale du noyau de Bergman. Sem. Goulaouic-Schwartz 1976-1977. Exposé N° VIII.
- [19]. KERZMAN, N., (a) The Bergman-kernel function: differentiability at the boundary. Math. Ann., 195 (1972), 149-158.
 - --- (b) Hölder and L^p estimates for solutions of $\overline{\partial} u = f$ in strongly pseudo-convex domains. Comm. Pure Appl. Math., 24 (1971), 301-379.
- [20]. KOHN, J. J., (a) Lectures on degenerate elliptic problems. Proc. CIME Conf. on Pseudodifferential Operators, Bressanone (1977), to appear.
 - (b) Sufficient conditions for subellipticity on weakly pseudo-convex domains. Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 2214-2216.
 - ---- (c) Methods of partial differential equations in complex analysis. Proc. of Symp. in Pure Math., vol. 30, part 1 (1977), 215-237.
 - (d) Global regularity for \$\overline{\darget}\$ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc., 181 (1973), 273–292.
 - --- (e) Boundary behaviour of $\overline{\partial}$ on weakly pseudo-convex manifolds of dimension two. J. Differential Geometry, 6 (1972), 523-542.
- [21]. KOHN, J. J. & NIRENBERG, L., (a) A pseudo-convex domain not admitting a holomorphic support function. Math. Ann., 201 (1973), 265-268.
 - (b) Non-coercive boundary value problems. Comm. Pure Appl. Math., 18 (1965), 443-492.
- [22]. KRANTZ, S. G., (a) Characterizations of various domains of holomorphy via $\bar{\partial}$ estimates and applications to a problem of Kohn, preprint.
 - (b) Optimal Lipschitz and L^p regularity for the equation $\partial u = f$ on strongly pseudoconvex domains. *Math. Ann.*, 219 (1976), 223-260.
- [23]. LIEB, I., Ein Approximationssatz auf streng pseudo-konvexen Gebieten. Math. Ann., 184 (1969), 55-60.
- [24]. LOJASIEWICZ, S., Ensembles semi-analytiques. Lecture note (1965) at I.H.E.S.; Reproduit nº A66-765, Ecole polytechnique, Paris.
- [25]. NARASIMHAN, R., Introduction to the theory of analytic spaces. Lectures notes in Math. No. 25, Springer Verlag 1966.
- [26]. RANGE, R. M., On Hölder estimates for $\overline{\partial} u = f$ on weakly pseudoconvex domains, preprint.
- [27]. ROTHSCHILD, L. P. & STEIN, E. M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137 (1976), 247-320.
- [28]. TARTAKOFF, D., The analytic hypoellipticity of \square_b and related operators on non-degenerate C-R manifolds, preprint.
- [29]. TREVES, F., Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and application to the $\overline{\partial}$ -Neumann problem, preprint.
- [30]. SPENCER, D. C., Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc., 75 (1969), 176-239.
- [31]. SWEENEY, W. J., (a) The D-Neumann problem. Acta Math., 120 (1968), 223-277.
 (b) A condition for subellipticity in Spencer's Neumann problem. J. Differential

Equations, 21 (1976), 316-362.

Received May 3, 1978