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1. Introduction 

Let M be an n-dimensional Riemannian manifold of class C ~. For small r > 0  let 

Fro(r) denote the volume of a geodesic ball with center m and radius r. This paper is con- 

cerned with the following question: To what extent do the /unctions Fro(r) determine the 

Riemannian geometry o /M? In  particular we shall be concerned with the following conjec- 

ture: 

(I) Suppose 
Vm(r) = o~r ~ (1.1) 

for all m E M and all su]liclently small r > O. Then M is fiat. 

(Here o~-~the volume of the unit ball in R". The simplest expression for eo is w =  

(1](�89 "/~ where ({rn)! ---F(�89 + 1).) 

First we make several remarks. 

1. Our method for attacking the conjecture (I) will be to use the power series expan- 

sion for Vm(r). This expansion will be considered in detail in section 3; however, the general 

facts about it are the following: (a) the first term in the series is corn; (b) the coefficient of 

r n+~ vanishes provided k is odd; (c) the coefficients of r n+~ for/r even can be expressed in 

terms of curvature. Unfortunately the nonzero coefficients depend on curvature in a 

rather complicated way, and this is what makes the resolution of the conjecture (I) an 

interesting problem. 

2. To our knowledge the power series expansion for Vm(r) was first considered in 1848 

by Bertrand-Diguet-Puiseux [6]. See also [14, p. 209]. In  these papers the first two terms 

of the expansion for Fro(r) are computed for surfaces in RS: 

K 
Vm(r)=~r'{1-~2r '+O(r ' )}m,  (1.2) 
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where K denotes the Gaussian curvature at  m. In fact the reason why these authors obtained 

this expansion was to give a new proof of the famous theorema egregi~m of Gauss [16]. 

A new proof by Liouville [32] had appeared the preceding year. Indeed it is obvious from 

(1.2) that  the Gaussian curvature, defined, say as the product of principal curvatures, 

really is intrinsic to M, and does not depend on the embedding of the surface into R 8. 

Vermeil [35] in 1917 and Hotelling [31] in 1939 generalized (1.2) to arbitrary Rie- 

mannian manifolds. (The Gaussian curvature K must be replaced by the scalar curvature.) 

See also C2], [37]. The third term in the expansion was computed in [20] and in section 3 

of this paper we shall compute the fourth term. Furthermore we write down the fifth term 

for surfaces but we omit the calculation. These terms are given by complicated formulas in 

the invadants of the curvature operator. 

3. There are many hypotheses which, when combined with the hypothesis Vm(r) =wr  n, 

imply tha t  M is fiat. In sections 4 and 5 we sinew that  (I) is true in any of the following 

c a s e s :  

(a) d~m M < 3; 

(b) M is Einstein, or more generally if M has nonnegative or nonpositive Ricci curva- 

ture; 

(c) M is conformally fiat; 

(d) M is a compact oriented four-dimensional manifold whose Euler characteristic and 

signature satisfy X(M) >i - ~ Iv(M) l ; 

(e) M is a product of surfaces; 

i f) M is a 4- or 5-dimensional manifold with parallel Ricei tensor; 

(g) M is the product of symmetric spaces of classical type. 

The proofs of these results utilize only the first three terms in the power series expan. 

sion of Fro(r). That (I) is true when dim M ~< 3 was first proved by P. Giinther [27] by a 

different method. 

4. Although the conjecture (I) seems quite reasonable, we have been unable to resolve 

it in general. In section 6 we give interesting examples for which 

V~,(r) = ~e{1 + OCt*)} 

for all points mEM. One of these is a 4-dimensional positive definite metric which is a 

generalization of the Schwarzschild metric. Another is a homogeneous 5.dimensional 

metric. In section 7 we use a different technique to find a manifold of dimension 734 with 

v,.(r) = o~r"{1 + O(r~)). 

(5) There is a formal similarity between the coefficients of the power series expansion 

of Vm(r) and the coefficients arising in the asymptotic expansion for the spectrum of the 
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Laplacian. We modify some of the techniques in this theory to prove (I) in certain special 

c a s e s .  

6. The volume functions for the symmetric spaces of rank 1 are written down in [20]. 

In sections 8 and 9 we consider conjectures analogous to (I) where the model spaces in- 

stead of being fiat, are the symmetric spaces of rank 1. 

Furthermore we show in section 11 that  if M is an Einstein manifold with dim M ~< 5 

such that  for each mEM, Vm(r) is the same as that  of a symmetric Einstein space, then M 

is in fact a symmetric space. 

7. Let hm(expm(ru)) denote the mean curvature of a geodesic sphere expm (Sn-~(r)) in 

M and put 

Hm(r ) = rn-1 f~_  I~1)hm(exp m (r~)) du. 

In analogy with (I) we have the conjecture 

(II) Suppose Hm(r)=n(n-  1)cor n-~/or all m E M  and all su//iciently small r. Then M is 

fiat. 
I t  is remarkable that  in contrast to (I), which seems difficult, (II) is true. We prove 

this in section 12. 

8. In a series of papers [38], [30], [28], [15], [29], [26] a hypothesis similar to that  of 

(I) was considered, namely that  the volumes of tubes about all hypersurfaces be poly- 

nomials. In section 13 we consider a weaker hypothesis; we require only that  the volumes 

of tubes about small geodesic spheres be polynomials. In this way we are able to strengthen 

some of the results of [351, [301, [201, [151, and [291. 

We suppose all the manifolds to be connected. 

We wish to thank A. Besse, P. Gilkey, R. Reilly, F. Tricerri and T. J. Willmore for 

several useful discussions. 

2. Curvature invarlants 

In  this section we write down all of the scalar valued curvature invariants of order ~ 6, 

and we give some useful identities. The invariants of order 2 and 4 are well understood, 

and the 17 order 6 invariants have been written down [13], [17]. Our purpose here is to give 

these invariants using the notation similar to that  of [111 and [7], in order to facilitate the 

calculations in later sections. 

Let M be a Riemannian manifold. We choose the signs so that  the curvature operator 

of M is given by Rxr~Vtx.r~-[Vx,  Vrl, where V denotes the Riemannian connection of 

M. The components of the curvature tensor will be denoted by R~jkz where i, j, /r I are 
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par t  of an orthonormal basis of the tangent space M s for some m 6 M. The components of 

the Ricci tensor will be denoted by  0~ and the scalar curvature will be denoted by r 

By definition a scalar valued curvature invariant is a polynomial in the components 

~f the curvature tensor and its covariant derivatives which does not  depend on the choice 

of basis of Ms. Such a scalar valued invariant is said to have order k if it involves a total 

of k derivatives of the metric tensor. (Each component of the curvature tensor contains 

two derivatives.) A basis for the invariants of low order has been computed using Weyl's 

theory of invariants [5, p. 76], [12]. (Weyl's theorem implies that  the invariant poly- 

nomials are contractions in the components of the curvature tensor and its covariant 

derivatives.) 

Let  l(k, n) denote the space of invariants of order 2/~ for manifolds of dimension n. 

The spaces ](1, n) and 1(2, n) are well-known (see for example [5, pp. 76 and 79]). We have 

dim 1(1, n)~-1 for n~>2 and dim 1(2, n ) = 4  for n~>4. In  fact if we put  

then {T} is a basis for I(1, n) and {~', 11511', IlRll ', ~ }  is a basis for I(2, n). 

Furthermore the space 1(3, n) of order 6 invariants has dimension 17 provided n >~ 6. 

Using a notation similar to tha t  of [11] and [7, chapter 6] we write down a basis for 1(3, n): 

~,  ~11~11', ~IIRII ~, 

(~, R) = ~ ~jj R ~  R ~  

(0| R) = ~ 0u~R~j~ 
/~ ffi ~ R,jk~ R ~  R,~u, 

IIv, II ' =  Y Iv,-~)', 
Ilvoll ' =  y (v,a,~)', 

IIvRIl' = Y. Iv, R,~,,),, 

V g 

( v  ~T, o> = Y (V,~ ~) 0,~, 

A'L,g. 

(where R v ffi ~ Rj~q, Rjpq,), 

(where R~jkl ffi Ru, j:), 
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Of course one must  check tha t  these 17 order 6 invariants form a basis for 1(3, n), n >~ 6. 

This can be carried out as follows. F i r s tone  uses Weyl 's  theorem to show tha t  dim I(3, n) <~ 

17. Then one assumes tha t  there is a linear relation of the form 

A1~3+ ... + A 1 7 A 2 ~  ~- 0, 

which is valid for all manifolds of a fixed dimension n>~6. Then by  carefully choosing 17 

different manifolds and evaluating the linear relation on each of them, one shows tha t  

A 1 . . . . .  A17 =0,  so tha t  (T 3 ... . .  A~v} is indeed a basis fo r / (3 ,  n). This is not as formidable 

a task as it first appears, provided one makes use of certain simple 3-dimensional and 4- 

dimensional metrics. 

Concerning the order 6 invariants see also [11], [12], [17], [33]. 

We shall need some identities involving the invariants. Most of these are well known 

or can be found in [33]. All of the identities are consequences of the symmetries of the 

curvature operator, including the two Bianehi identities and the Ricci identity. We write 

down these three identities and two of their consequences. 

LEMMA 2.1. We have 

R,mz + R,~zj + R~z m = 0, 

V, Rjk~ + Vj R~.p + Vk/r = 0, 

V~, - V~, = - R,,,  

(2.1) 

(2.2) 

(2.3) 

where R~j denotes the derivation of the tensor algebra determined by the curvature tensor. 

V~ Rm~ = Vk Qal -- Vz ~ ,  

The first Bianchi identity (2.1) has the following consequences. 

(2.4) 

(2.5) 

LEMMA 2.2. We have 

R~c, R~bj-- �89 Ra~c, R,~o,, (2.6) 

y. R ~ R ~  = �89 ~. (2.7) 

The identities (2.1)-(2.7) suffice for the theory of the order 2 and order 4 invariants. For 

the order 6 invariants there are many  more. Many are given in [33]. For our purposes we 

shall write the identities in terms of the 17 order 6 invariants. 
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y v~ R ~  v~ R~o~ = ~llwll  ~, (2.8) 

y v~ R ~  v~ R ~  = ~llwll  ~, (2.9) 

V,'R,~o V, R~o~ = tllvRll ~, (2 .10)  

E R,~V~uR,~na = �89 AR>, (2.11) 

Y. O,jR,~oRj~ = �89 R>, (2.12) 

R,j~, Rkz,,~ R~,~, = �89 R, (2.13) 

y. R,j~, R~,~ R,,,, = I R, (2.14) 

Y (v,5 o,~) o,~ = �89 o> + ~ -  <o| R>, (2.10) 

y (v, ~, R~o) Rj~o = 2E (v,5 R~o) R ~  --- �89 R>, (2.17) 

E (VbQk,) R,,,, = <VZo, R> -- �88 R> - �89 R> + ~ + �88 (2.18) 

y v,%~= ~ v t : =  a ~ +  ~[lwll' + <v'~. e>, (2.19) 

V 4 ~ V4 ,jk,0j~ = 2. ,jkjO~ 

= �89 ~, + �89 ~ - 2]IVel[ ~ + 2<Wz, O> - <nO, e> + 3,x(e) + 2~ - 2<e| ~> 
- �88 R> + �89 R> - .R- �88 (2.20) 

2 v,'~ e,, = � 89 + �89 + 4~(~) + 2<v~, o> - 3llvoll'- <ao, o> 

+ 2~ -- 2<0| , ~> - �89 R> + <0, R> -- 2~ - �89 (2.21) 

Proo[. To prove (2.8)-(2.15) one makes repeated use of (2.1) and (2.2). The Rice�88 

identity (2.3) is used together with (2.1), (2.2) to prove the rest of the equations. 

Remark. In dimensions ~5  there are certain relations between the invariants. More 

precisely, the situation is as follows. 

Dimen~on 2. The spaces of invariants of order 2, 4 and 6 have dimensions 1, 2 and 4 

respectively. Instead of using v as a generator of the order 9 invariants, it  is more convenient 

to use the Gaussian curvature K. Furthermore {K 2, AK} is a basis for I(2, 2), and {K 8, 

IIdK]]2, KAK, A2K} is a basis of I(3, 2). Then we have 
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K = ~l~, 

K=_- �89 = ~11~11 ~, 
AK-- �89 

IIVKII ~ = �89 ~ = ~ ( ~ ) =  t l l w l r -  = t l l w l l  ~, 

K A K  = �89 e} -- �89 ~> = ~<AR, R> -- �88 

/~=0.  

(2.22) 

(2.22) can be proved by direct calculation. 

Dimension 3. The spaces 1(1, 3), I(2, 3) and I(3, 3) have dimensions 1, 3 and 10, 

respectively. We choose {~} as a basis of 1(1, 3), {~, ][~[]2, AT} as a basis of I(2, 3) and 

(§ ~IIQII ~, ~, I l W 1 5  IIV~ll =, ~(o), ~A~, <e, ,',o>, < w ,  ~>, ,',~} as a basis o~ 1(3, 3). Then 

IIRII' = ~11011 ~ - ~ ,  

( ~ |  _~> = - 2~ + J ' l l~ l l ' -  ~ ,  

= - s ~  + 12~11ell 2 - 3~ s, 

ilVRII ~ = 411roll ~ - I l w 1 5  

(AR,  R >  = 4(Aq, e )  - ~A~. 

(2.23) 

Equations (2.23) follow from the fact that  the curvature tensor of a 3-dimensional 

manifold is expressible in terms of the Ricci tensor and the scalar curvature. The exact 

formula is 

~5 

Dimen~n~  4 and 5. The spaces 1(3, 4) and 1(3, 5) have dimensions 15 and 16, respec- 

tively. This comes about because the 6-dimensional Gauss-Bonnet integrand must vanish 

for lower dimensional manifolds. Explicitly, there is the following relation between the 

order 6 invariants of manifolds M with dim M ~<5 ([11], [17]): 
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For manifolds M with dim M~<4 the Riemannian double form ~ A R A R of type (5, 5) 

vanishes identically. See [23], [24]. Hence the complete contraction 

C5(~ A R A R) = ~ (~ A R A R) (ijklp) (ijklp) 
| , t .k . l ,P 

vanishes identically. This leads to the following relation between the order 6 invariants of 

manifolds with dim M 44:  

~-8~:[lell~ +~[[ RII ~-4<e,  -~> + 8<eoe,  -~> +80 ffi o. (2.25) 

Thus because of (2.24) and (2.25) we have dim I(3, 4)~< 15 and dim I(3, 5)~< 16. To 

show that  the dimensions of 1(3, 4) and I(3, 5) are actually 15 and 16, respectively, one 

evaluates the invariants on carefully chosen manifolds, just as with I(3, n), n ~ 6, to show 

that  there are no relations other than (2.24) and (2.25). 

3. Power series expansions for volume functions 

Let M be an analytic Riemannian manifold. (We could treat  the C OO case; then all 

of our power series would he defined, hut they might not converge.) Let  r e>0  be so small 

tha t  the exponential map expm is defined on a hall of radius r 0 in the tangent space M m. 

We put 

s~(ro) = volume of {exp~ (~)l~ e M~, II~ll = 'o}, 

V,,(ro) = volume of { exp~(x ) lxeU~ ,  II~ll <,o} .  

Here we mean the (n - 1)-dimensional volume for Sin(re) and the n.dimensional volume for 

V~(ro). 

Let 8 and a be the functions defined on neighborhoods of 0 E M~ and ra E M by 

8(x) ~- the Euclidean distance from 0 to x, 

a(p) -- the distance in _M from m to p. 

If  expm denotes the exponential map then a =soexp~ 1. The functions s and a are di~erenti- 

able in deleted neighborhoods of 0 and m respectively. Finally, let (x 1 ..... Xn) he a system 

of normal coordinates on M at  m. Write 

~  

In [20] the following power series expansion is given for cot...n: 



R I E M A N N I A N  G E O M E T R Y  165 

LEMMA 3.1. 

O. ) l . , . n  m 1--~ ~),jx, x j - ~  ~ V,'~)j,~x,;xjx k 
L J-1  t , l ,k=l  

f ,J .k , l -1  \ a, b=l ]  ] 

- ~V,j~,Oho 3(V,j~k,) ~h~ + ~(V, ejk) (ViQhg) 
t , t . k . l , h . g - I  

a. bffil a .b-1  

(3.1) 

Using (3.1) we compute the power series expansion of Fro(r) and Sin(r) where r > 0  

is sufficiently small. In  doing so we clarify the exposition of [20]. First we prove 

LEMMA 3.2. We have 

where u varies on Sn-l(1). 

P 
Sm(r ) = r n-I  | 0 . )  1 . . .  n ( e x p ~ r u )  du  

d s ~- 1(1) 

Proo/ .  ~ d 8  is the volume element of any sphere in M m. Furthermore by the Gauss 

lemma ~-d~ is the volume element of any small geodesic sphere in M ~4th center at m. 

Moreover, let (u I ..... un) be the natural coordinates in M m corresponding to the normal 

coordinates (so that  x, =uioexp~l). Then 

exp*(a)) = a)((exp,,), (0~-1) , . . . ,  (exp,,), ( s  A ... Adu~  

--oJ1...ndUl A ... A d u n = c o l . . . ~ d s A  ~eds. 

On the other hand we have 

exp* (co) = exp* (da h ~ da) = exp* (da) h exp* ( * da) = d~ h exp* ( * da). 

I t  follows that  exp* ( ~ da) = oJ 1 ...,, ~ d8. 

Next let h: S n - l ( 1 ) - ~ S ' - l ( r )  be  defined by h ( x ) = r x  on Sn-l(1). Then h*(ds )=rds  and 

h*(du 1 h ... h du , )  = r ' d u l  h ... h du , .  
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Thus h*(~- ds) = r n-1 ~- d8. Hence we get 

'Sm(r)ffif.,,,,.,s,._,,,'d'~=fs._,,,)exP*(*d'~) 

= fs._,,r 

== r n - x  f $  gO 1 ... n ( e X p m  ru) dU. 
,~-a(l ) 

Next we compute the power series expansions. We write down the formulas for 

Euclidean space in a way tha t  is especially easy to remember. Let  (�89189 + 1). Then 

Vm(r) (~).12 

d S,~(r) = ~ V.(r) = (~r")<"/2)-x(2~r) = 2n m2 r.-1 

For a general Riemannian manifold it will turn  out tha t  the power series expansion for 

Vm(r) is of the form 

V . ( r )  = (~)-~{I+Ar'+Br'+C#+...}. 

(The coefficient of r n+~ vanishes for/r odd.) Here 

A = a  multiple of the scalar curvature; 

B = a linear combination of the order 4 invariants of the curvature operator; 

C = a linear combination of the order 6 invariants of the curvature operator. 

Next  we determine A, B and C precisely. 

THEOREM 3.3. We have/or any R i e ~ n n ~ n  mani/old M and any mEM 

(~rS) "/~ { T 2) r2"l 1 
Vm(r)- (2)  I 1 - 6 ( n +  360(n+2)(n+4)(-3]iltii'+81]ells+5zs-18Az)r" 

1 
720(n + 2) (n + 4) (n + 6) ( - ~_s), _ a_u_l)V, l lel l ,  + .riln, ll 2t'Di' + ~ ,  _ ~(e(~)e ,  ~".o,/, 4. 

+ R > -  +, llv.dl, +  llvoll" HIIvnll' 

+ W<Ao, o) + 9 ( V ~ ,  o) - ~ (A R , /~ )  - 9A2T) r e + O(r~ + 6 t A ,  (3.2) 
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Proof. It suffices to compute ~qm(r), because we can compute Vm(r) from the formula 

V . , ( r )  ffi [" SAt) dr. 
3o 

We write 

r176 v=o ~ ~ ~.r~" 

If u=~  a~e~ where {el ..... e~} is an orthonormal basis of Mm, then 7r is a homogeneous 

polynomial of degree p in the a/s. From (3.1) we have 

n 

~" " .,.~.~.l { - 'V~'o~' + �89 - i~a.~_l R'a'b R~tt'b} a'aj " a'' 

~'a = something irrelevant, 

- ~V.~, Oho + 3(Vg O~z) Ohg + ~(Vl OJ~) (Vt On.) 
L I . k , l , h , r  

a ,  b - 1 a .  b -  I 

a,b ,c -1  

From Lemma 3.2 it follows that 

__ - 1  o0 r p  

By symmetry on the sphere Ss.-~(x) ~,~du=O when p is odd. 

Furthermore 
2 ~  n/2 

N e x t  

I-1 J 5m-I(I) -- ~ -I(I) 

Here we have used the fact that ~ a~= 1 and ~a~du= Sa~du. 

~1~ n/2 T 
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To compute ~'ff4-1(1)~4du w e  first note that 

~5r 1(1 ) a~du -~ 3~"/~ ,(;)' ( n + 2  ! 

f s._l(1)a2 a~ du ~ :gn,2 
( •+2) (2) '  , i:#]. 

(These formulas can be proved by making appropriate choices of the orthonormal basis 
{e x ..... en}. All other integrals of degree 4 vanish. See also [37].) Put 

a, b ~ 1 
Then using (2.5) and (2.7) we obtain 

fsn_z(1,}"duf,.l.~k.t.l~"tk'L_x(1)a'ataka, du 

= 3 Y~ ;t~,. + ~ ( t . z  + Lj .  + 2~jj~) 
(n + 2) ! 

~n12 n 
= ~ (t.jj + t~j~j + l~m ) 

(n+2)(2)1"  1 

~r~ at2 
{ -  ~v~,~,,- ~v~,,~,, + ~,,~,, + ~ ,  

} - ~ (Rl.~ Rj=jb +/~.j~ + R ~ / ~ = )  
a, b-1 

:gnt(~ 
- (~,' + sll~ll'- 311RII'- aSA~}. 

X5("+2) (2) ' 

Next we compute J's--aa)~edu. We need the following formulas: 

f s~_la)a~ duffi 15~"J2 
(n+2)(n+4)(2)" 

f s,,_l(x)a~ a~ du'= 3~ ~/~ (;) (n + 2) (n + 4) I 

f ,.V a ~n12 
2 2 2  _la)aj aj akdu---- (;) (n + 2) (n + 4) I 
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Put  
5 4 2 ,aot,~ ~ = - ~Y#~ ~)n~ + 3(Vo ~ )  ~ + ~(V~ ~,~) (V~ ~)no) 

(V~ R~b) R~o~ (V~ R ~ )  (V, R~o~) 
a , b - 1  a . b - 1  

a , b , c ~ l  a.bffil 

Then 

I~.,. + 3 ~, (~.~,z +.. .  + ~z . . )  + Y. (l~.z~ +. . . )  
(n+2)(n+4)(;)! '*' ,.,.k. 

(n + 2) (n + 4) ( 2 ) ,  ""'=' 

9,r 2 
= {A~ + . . .  + Aa}. 

(n+ 2) (n + 4) (2) , 

Here the eight A~'s correspond to the eight terms in the expression for }'s. Each As is a 

sum of 15 different types of terms. We now compute each At. We start  with A a which 

is the easiest. Extensive use will be made of Lemmas 2.1-2.3. 

First we use (2.5) to find 

= 5llvoll' + aollwll'  + lo<Q).  

Next  we have 

Using (2.6) we obtain 

L L k - I  

- -~-:~11~11'- :,~. 

n 

i, L k ,  a . b - 1  

+ ~tj(2R~ R~o~ + 4 R ~  R j ~  + 4 R ~  R~ca~ + 2 R ~  R~b)} 

= ~11~11' + fllRll ~ + ~<Q| -~> + 4<~, ~> .  



170 A. GRAY AND L. VANHECKE 

To obtain A e we use (2.4), (2.8), (2.9), (2.10) and get 

Ae = - ~ ~ {2(V, R,~)  (V~ R ~ )  + 2(V, R,ozb) IV~ R ~ )  + 2(V, R,~,b ) (V~ R~a~) 
f.Lk.a.b-1 

+ (v, R~.~) (V, R ~ )  + 2(V, R~o,~) (V~ R ~ )  + (V, R~o~) ~ + (V, R~b) (V, R~o~) 

+ 2(V, R ~ )  (% R,~) + 2(V, R ~ )  (V~R~o,~)} 

= -- 1"}~ { 2 J. a. b=l ~ (V'lOab--VbOa')VJOab'~-2 ,.a,b-1 ~ (VJ 0oh -- Vb 0~'~) (V] 0ba -- Va 0b'/) 

J,a,b-1 |,a,b=l |,a,b=l 

IIVRH' + �89 + IIVRII ~ + �89 ~} + 

= - '{ Uvo U + - i IivRU 
To calculate A 2 we must use (2.16). We find 

A. -- s ~ {(W. ~,,) ~ + 2(v. ~, 0,~) ~,~ + 2(v~ ~,j) o~ + 4(v.~ ~,,) ~,~ + 4(v.~ 0,~) ~ + 2(v.~ ~ )  0.,} 

= 6zA~+ 6<A0, Q) + 18<V%, Q) + 120 - 12<~| ~ ) .  

Using (2.4), (2.16), (2.17), (2.18) we have 

n 
= {(V, Rj.,.) Rk~ + (V, Rj.ko) Rj~., + ' (v.  Rj~) ~ + 2(v.~ R~j~) R~.~ 

| , J ,k ,a .b-1  

2 2 2 2 2 + 2(V~j R,o,,b) _.e~. ~, + 2(VJi~,~) Rs, k,, + 2(V~j .ejo,,b) R,~b+ 2(V,~ R~)/Z,,,.~ + 2(V,j-R,~.kb) Rj,,~,} 

= - ,8{<A0, 0> + ~<AR, R> + 2 Z (V, ~, 0,b - V,~, 0~) 0,~ + 3~ (V,~ R ~ )  R,~kb 
l,a,b 

+ 2E (v~ 0~ - v~ 0 .~1R~ + 2~ r 0o~ - V~ 0.~t R~.~ + 2S r 0~1 ~ . . }  

= - ~{3<~0, 0> + a<aR, ~> - <V~z, 0> - 20 + 2(0| R) 

+ 2<AR, R> - 4<0, R> + 8~ + 2~} 

= - ~{3<A0, 0> + 5<AR, R> - <V~, 0> - 2~ + 2<0@ 0, R> - 4<0, R> + 8~ + 2~}. 

Further using (2.12)-(2.15) we have 

LLk, a,b,c-I 

+ R,.~ 1~,~ R~o~ + R,.~ R~o R~.  + R ~  R~b,r R~ .  + 1 ~  R ~  R,o~. + R ~  R~o R~o~ 

+ R,~ R ~  R ~  + R~ b R ~  R~. + R=~ R ~  R~. + R ~  R~o R ~  + R,.~ R~b~ R ~  
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+ Obo R~,.~ R,o~,~ + e~ R ~  R ~ )  + 1~ 

+ ~ ( R ~  R ~  Rw. ~ + 1r R~.  R~,~,,, + R~a~ R~,. R,o~,~ + tr  R~.  R ~  

+ R ~  R~e R~a + .R~b R ~  R~,~ + R,,~ R ~  R~,o,~)} 

+ Rtatb R~ ,  c Rtvka + .R|alb Rkbtc R~c]a + .R,atb R~.bl c R,cka + .R~,,t b R ~  R~,,) } 

"b ~. R~a,~ RktaeRlcka} 

= - ~{0 + ~1~ + ~<e, I t> - :~ + i_tt) 

= -~O-~<e,/~> + ~ - ~ .  

Finally, using (2.19), (2.20) and (2.21) we have 

+ 2V.j~ qj~ + V . . ~ .  + Vim e~ + 2V~, q~ + 2V~k~ ~)~k 
I . ] . k - 1  

�9 4 2 4 + 2V.~ q. + V,.~ Q..} 

- $(0~,'~ + 211wll ~ + 4<v'~, ~> + 2~  ~, + 21 iwl l ' -  s l ivdl '  + a < v ' , ,  ~> 

- 4<Aq, ~> + 12a(~) + 8~ - 8<~| ~> - <AR, R> + 2<~, R> - 4~ - i~ 

+ a ' z  + Ilwll ~ + 8~(e) § 4<v'~,  q> - 611vQll ~ -  2<a~, Q> + 4~ - 4<~|  ,~> 

-- <AR, R> + 2<~, -~> - 4R - / ~ }  

= $ { 0 a ~  + ~llwll ~ + l o < v ~ ,  e> 1411veil'- o<ae,  e> + 2o~(e) + 12~ 
- 12<Q@~, R> - 2<AR, R> + 4< e, R> - 8~ - 2J~}. 

Adding up all the terms we get the expansion for ~qm(r). Then integrating from 0 to r 

we find that  Fro(r) is given by (3.2), completing the proof. 
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For convenience we write down the expansions for Vm(r) in dimensions 2 and 3. Our 

computation makes use of the fact that  there are fewer invariants of order 4 and 6 in these 

dimensions. Furthermore we give the fifth term in the expansion of V~(r) for a surface. 

This is an expression using the order 8 invariants. In  fact [18] we have 1(4, 2)=8.  We 

omit the long tedious calculations. 

COROLLARY 3.4. If  dim M=2,  then/or each mEM, 

V,n(r)=~r~ll K 2 1 ]-2 r + ~-0 (2K - 3AK) r 4 

+ 16~2s0 ( - 8K~ + 3~ + 4 2 K A K -  15A~K)r e 

1 
+ 29030400 (16K4 - 6~ 168K~AK + I I2(AK)~ + 16sllV:K[{~ 

+ 170KA~K - 35ASK) r 8 + O(rl~ + 420(V(AK), V K )  (3.3) 

COROLLARY 3.5. I / d i m  M = 3 ,  then/or each m6M, 

4Y~r 3 ~ T 
v (r) -  ll lr- r,  

1587------~ 10va -- 96vllqll~ + 12ab-  [Ivell ~ - 72<A9, 0) 

+ 45~(Q) + -~135 ]lvTil~ + 72~AT + 54(V'% ~ ) -  4 5 A ' ~ ) r ' +  O(rS)}m. (3.4) 

These expansions follow upon substituting (2.22) and (2.23) into (3.2). 

4. Proof o|  the conjecture in some particular cases 

First we note that  (1. l) implies 

= 0, 

3HR[I 2 -~ 811~ll ~. 

In fact (4.1) and (4.2) are equivalent to 

v~(r) -- ~r~{1 + 0 ( , %  

In section 6 we shall show that  (4.3) is weaker than (1.1). 

(4.1) 

(4.2) 

(4.3) 
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In the present section we prove (I) in several cases. Actually what we prove is slightly 

stronger than (I) because we make use of (4,3) instead of (1.1). 

THEOREM 4.1. (I) iS true provided any o/ the /ollowin9 additional hypotheses are made: 

(i) dim M-<<3; 

(ii) M has nonpositive or nonnegative Ricci curvature (in particular i / M  is Einstein); 

(iJi) M is conformalIy flat; 

iiv) M is a Bochner fiat Kghler manifold; 

(v) M is a product of eurfaces; 

(vi) M is a 4- or 5.dimensional manifold with parallel Riccl tensor; 

(vii) M is compact and the Laplacian of M has the same spectrum on functions as that 

of a compact flat manifold. 

Proof. (i) For a surface M we have liRIl~ffi2ilell ~. Combining this with (4.2) we get at 

once R =0. 

Further let dim M t> 3. Then the Weyl curvature tensor C of M satisfies 

4 2 ~ .  (4.4) 

Since C = 0  on 3-dimensional manifolds we get from (4.4) that  IIRII =411 II.. Using (4.2) 
we obtain (I). 

(ii) If  M has nonnegative or nonpositive Ricci curvature, then (I) follows at  once 

from (4.1) and (4.2). In  particular (I) is true for Einstein manifolds and for M with non- 

negative or nonpositive sectional curvature. 

(iii) This case is a consequence of (4.1), (4.2), and (4.4) with C=0.  

(iv) Let B be the Bochner curvature tensor for a 2n.dimensional K~hler manifold 

in > 1). Then we have 
8 2 

IIBII~ = liRII - n-+--2 l[~li' + ~a. (4.5) (n+  1)(n+2)  

M is Bochner flat if and only if B = 0. Then (n + 2) 11RII = slleil, which implies the required 

result. 

(v) Let M be the Riemannian product of the surfaces Mt, i=  1, ..., p. Then we have 

[ I R [ [ ~  [[R~[[ ~ and I]~[[2=~ I[~[I 2. Hence [[R]]2--2H~][~, just as for surfaces. As before 

(I) is true. 

(vi) Suppose M is a 4-dimensional manifold with parallel Ricci tensor. I f  M is reducible 
2 2 then locally M = M1 • M~ or M = M a x M 1 and (I) follows from (i) and iv). If  M is irreducible 

then M is an Einstein manifold and (ii) implies (I). 

1 2 -  782905 Acta mathematlca 142. Imprim6 le 11 Mai 1979 



174 A. GRAY AND L. VANHECKE 

The proof when the dimension of M is 5 is the same, except that  one must also take 

care of the case when locally M -- M s • M s. But then both M 9' and M s must have constant 

curvatures a and b, respectively, because they are Einstein manifolds. An easy calculation 

using (4.1) and (4.2) shows that  in fact a--b ~-0, and so (I) holds. 

(vii) Finally, let (M s, g) be a compact n-dimensional Riemanuian manifold and A 

its Laplacian on functions. If  {~} is the spectrum of (M, g) we have the following asymptotic 

expansion [5, p. 215]: 

k;~O ~ 0  

where the first three coefficients are given by 

ao = vol (M, g), oa-- ~ z d V ,  a~ = "3-60 

Hence (I) is true ff a2--<O. In particular we obtain (vii}. 

5. The conjecture ( I )  tor locally symmetric spaces 

I t  seems quite probable that  the conjecture (I) is true for all locally symmetric spaces. 

Of course, this could be verified ff one knew explicitly the curvature of all the irreducible 

symmetric spaces. To our knowledge this has been done for the Hernn'~ian symmetric 

spaces [I0], [8], the symmetric spaces of rank 1 (see for example [25]) and a few others, 

but not in genera]. 

Therefore we proceed in the following way. We introduce a class ~ of Riemannian 

manifolds which contains all the nonflat symmetric spaces of class/ca] type, and also a few 

exceptional symmetric spaces such as the Cayley plane. The relation (1.1) turns out to be 

impossible for any  manifold in J4. This implies that  (I) holds for manifolds of the form 

R ~ • M where ME ~4. In particular (I) holds for all of the classical symmetric spaces. 

De/inition.. ,4 is the class of Riemannian manifolds M for which 

31l~[l*-sllell ~ < o. (5.1) 

L ~, M M A 5 , 1 . 1 / M  I and M~ are in  .,4 then so i8 the product Riemannian mani/old M I x M a. 

P~oo/. Let Ilell ~, IIRxll ~ and IIR~II ~ denote the ]en~h of the cur,ature operator for 
M x x M e, M x and Ms, respectively. Similarly let IIoII ~, Ilo~ll ~ and Ilu~ll ~ be the corresponding 

lengths of the Rieci tensors. Then one checks that  

I IRII ~ --  I IR~II, + I IR,  II ~ and  IIoII ~ --- I10.11~+ Ile.II ~. 

Hence it is clear that  if both M x and M e satisfy (5.1), then so does M 1 xM~.  
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LEMMA 5.2. Let M be a symmetric s~ace and sutrpose that M 6 A. Then the dual sym. 

metric space M* is also in A. 

Proo]. The curvature operator of M* is just the negative of the curvature operator of 

M. Thus the quantities 3][RI]2-8H~H 2 are the same for both M and M*. 

LEMMA 5.3. I] M e A, then 

/or all mf iM and/or a sequence otr  temtin9 to O. 

Proo/. Let M E A and suppose 

Ln(r) 
(=~=).,2 

for some m EM and all sufficiently small r. Then in particular equation (4.2) holds for m. 

But this contradicts 5.1. 

COROLLARY 5.4. The ~'_~n~'e~l,~ur8 (I) /~/~/or .~ ~n i lo~8  ol the lorm M • R ~ ~ th  

M ~ A .  

Next we show that  most (nonflat) symmetric spaces belong to J4. 

LEMMA 5.5. The c/asa ~ contains the tollowingZmani/olds: 

(1) all symmetric ~ o/ ~ 8 ~  type; 

(2) all Hermiti~n symmetric spaces; 

(3) all symmetric s~ar.~ o/ rank 1. 

Proof. To verify that  all Hermitian symmetric spaces are in ,,4, it  suffices (using 

Lemmas 5.1 and 5.2) to check that  all irreducible Hermitian symmetric spaces of non- 

compact type lie in A. The curvature operators of the six types of irreducible Hermitian 

symmetric spaces have been computed in [10] and [8]. Using the results in these two papers, 

the quantities ~, IIq]] ~, IIRII ~, and 311R]]2-8]]QII ~ can be computed. The results are given 

in Table I. 

Next we consider the symmetric spaces of rank 1. The complete power series ex- 

pansions for the volume functions of these spaces have been given in [20]. From this the 

first four terms in each of the power'series are given as follows: 
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Table I. Hermitian symmetric space~ 

C o m p l e x  

T y p e  d i m e n s i o n  T [[~1]' ] IRII '  a l I R I I ' -  sll~]l ~ 

A-Ira.  m, ram" - 2 m m ' ( m + m ' ) g  2mm'(m+m')o~ ~ 8mm'( l  +ram')o# - S m m ' ( 2 m  ~ 

1 ~ m <-< m '  + 2 m  "~ + m m '  - 3 )  o~ a 

A - I I  m ~ra(m - 1) - 2 m ( m -  1)8c~ 4m(m - 1)ac~ ~ 4 r a ( m -  1) - 4 m ( m  - 1) 

m>~2 x ( m l - 3 m + 4 ) ~  2 x ( 5 m 2 - 7 m - 4 ) ~  2 

A - I I I r a  ~ n ( m  + I) - 2m(m + 1)~o~ 4m(m + 1)a o~ 4m(m + 1) - 4m(ra + 1) 

m ~ > l  x ( m ~ + 3 m + 4 ) a  2 x (5m2 + 7 m -  4 ) ~  2 

A - I  V m m - 2m2a 2m8~ * 4 m ( 3 m  - 2) ~ - 4 m ( 4 m  8 - 9m + 6) ~2 

m ~ 3  

A - V  16 - 192~  1 152a  ~ 864~  ~ - 6  624~  ~ 

A - V I  27 - 4 8 6 ~  4 374~  ~ 3 132o: ~ - 2 5  596c~ ~ 

The sphere 8n(,~) (with constant sectional curvature ]), or its dual: 

V , . ( r )  = - -  

(7~r2) n/2 

n(n n ( n -  1) ( 5 n -  7)). 'r .  n(n-1)(35n'-I12n+O3)~a#+ }. x 1 - 1 ) ~ r ~ +  - O(r s) 
6(n + 2) 360(n + 4) 45360(n + 6) 

(5 .2)  

The complex projective space CPn(p) (with constant holomorphic sectional curvature 

p), or its dual: 

f~r% n f np n(5n - 1) p~ r4 _ n(35n I - 21n + 4)/z s re + O(rS)}" 
Vm(r) f f i~  11-~2 r'-~ 1440 362280 (5.3) 

The quaternionic projective space QPn(v) (with maximum sectional curvature v), or 

its dual: 

m, , ( 2n ) t  

n(n + n(20n ~ + 68n + 29) v2 x 1 2)Vr~+ 
3(2n + I) 720(2n + 1) 

n(70n 8 + 329n ~ + 275n + 64) v 8 r6 + O(rS)~" 
45760 J 

(5.4) 
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Table II. Symmetric spaces o/rank 1 

177 

Real 
Type dimension �9 UOI? IIRll: 3[[/~11'- 8l[~II' 

Sn($ )  n n ( n  - 1) t  n ( n  - 1)2~t I 2 n ( n  - 1)~'  - 2 n ( n  - 1) (4n - 7)A * 

CPn(/~) 2n n ( n +  1)p �89 + 1)~# ~ 2 n ( n + l ) #  s - 2 n ( n + l ) ( 2 n - 1 ) l a  s 

Q P n ( v )  4 n  4 n ( n +  2 ) v  4 n ( n +  2)2v s 4n(5n+ 1)v 2 - 4 n ( 8 n "  + l q n + 2 9 ) v  ~ 

Cay P~(~) 16 16(36)~ 16(36)'~' (16)236~ ' -240(16)  (36)~ 2 

The Cayley plane Cay P~(~) (with maximum sectional curvature ~), or its dual: 

(~rr')S {1 - ~ r '  + 13~' ' 2747~8 O(rS)}. (5.5) V~,(r) = -g-C. - i -g-  r - - ~ - 6  ,o + 

The quantities 7, II~ll', and 311Rll,-811~ll, for each of the symmetric spaces of rank 1 

can be computed by comparing the power series (5.2)-(5.5) with (3.2) and using the fact 

that  each symmetric space of rank 1 is an Einstein manifold. The results are given in 

table I I  above. 

Now we consider the classical symmetric spaces. Each of the classical compact simple 

Lie groups can be realized as a group of orthogonal matrices. A biinvariant inner product 

on the corresponding Lie algebra is given by 

<X, Y> = ~ tr (XY*). 

This, in the standard way, induces a metric on each classical symmetric space of compact 

type considered as a coset space. Then the curvature tensor of < ,  > is given by Rwxrz = 

[<[W, X], J r ,  Z]>. From the formula for the curvature operator the quantities z, Ilell:, 
II R II:, and 3 II Rll 2 - 8 lie II: can be computed by brute force. The results are given in Table III .  

Thus in all cases we see that  3I IW-81I+II '  is negative. Hence the lemma follows. 

Combining Lemmas 5.1-5.5 we have 

T~v.O~EM 5.6. Let M be a Riemannian product o[ classical symmetric spaces, Hermi- 

tian symmetric spaces, symmetric spaces o/rank 1, and R ~. I/  (1.1) holds/or M, then M is fiat. 

COROLLARY 5.7. Let M be a locally symmetric space with dim M <.9 and suppose (1.1) 

holds/or M. Then M is fiat. 

Proo/. The only nonclassical symmetric spaces of dimension less or equal 8 are G2/S0(4) 

and its noncompact dual. However these spaces are Einstein and so (I) holds for them, as 

well as their products with R 1. 

For general symmetric spaces we have also the following result: 
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T a b l e  H I .  C l a s s i c a l  s y m m e t r i c ,  s p a c e s  

Real 

Type dimension T Ilell' IIRII' 311RII' - 8Uell* 

EO(n) �89 - 1) n(n  - I ) (n  - 2)fl 2n(n  - 1) 2n(n  - l ) ( n  - 2)*81 - 10n(n - 1)(n - 2)e82 
x (n- 2 ) * 8 2  

BU(n )  n ~ - 1 4n(n  ~ - 1)8 l en l (n  ~ - 1) 8" 8n(n  - 1) - 8 n ( n  - 1)(13n a 
• (n s + 8n - 8)82 - 8n + 24)81 

s n (2n  + 1 ) 4n(n  + 1) 16n(2n + 1) 8n(n  ! + 70n I - 8n(29n 8 - 130n 2 
• (2n + 1)8 • (n + I ) '8"  - 151n + 104)8' + 517n - 296)8'  

SO(p  + q) pq pq(p  + q - 2) 8 ~ / ( p  + q - 2)'fl 2 2pq(2pq - p  - q)8 ~ - 2pq( 4p a + 4q'  

s x toO(q) + 2pq - 13p - 13q + 1 6 ) 8 "  

U (p + q) 2pq 2pq(p + q)8 2(p + q)pq82 8pq(pq + 1) 8 '  - 8pq(2p s + 2q ~ 

U(p) x U(q) + P q - 3 ) 8  I 

61p(p+q) 4pq 8 p q ( p + q + l ) 8  1 6 p q ( p + q + l ) g 8  a 16pq(pq+6p  - 1 6 p q ( S p ' + 8 q '  

s x Ep(q) + eq - 7) 8" + 13pq - 2p - 2q + 29)89 

~ U ( n )  } ( n -  l) n ( n - 1 ) ( n + 2 ) 8  2 n S ( n - 1 )  2 n ( n - 1 ) ( n + 2 ) t 8 8  - 2 n ( n - 1 ) ( n + 2 )  

,SO(n) x (n + 2) x (n + 2)8  s x ( S n -  6)8" 

XO(2n) n(n  - 1) 2n(n  - 1)a 8 4n(n  - l)S8 s 4n(n  - 1) - 4n(n  - 1) (Sn a - 7n - 4)8 s 
U(n) x (n I - 3n + 4)8 a 

EU(2n) (n - 1) 4n(n - 1) 18nt(n - 1) 8n(n - 1) - 8 n ( n  - 1) 
~p(n)  • (2n + 1) x (2n + 1)8 • (2n + 1)8~ • (n t + 20n - 34)8a x (29n a - 44n + 102)8~ 

Sp(n)  n (n  + 1 ) 2n(n  + 1)* 8 4n(n + 1)sSI 4n(n  + l) - 4n(n  + l) 
U(n) x (n t + 3n + 4)8* x ( S n  s + 7n - 4)8t 

T H E O R E M  5.8. L e t  M be a s y m m e t r i c  apace  a n d  M *  the  d u a l  s y m m e t r i c  ~ o l  M .  

T h e n  the v o l u m e / u n c t i o n  o / M  x M *  s a t i # i e s  

V.(r) = (~r')" ,~ a~,r '~ 
n l  ~-o 

w h e r e  d i m  M = n .  

P r o o / .  L e t  R b e  t h e  c u r v a t u r e  o p e r a t o r  of  M ( a t  a n y  p o i n t )  a n d  R* t h e  c u r v a t u r e  

o p e r a t o r  of M*.  T h e n  R* = - R.  H e n c e  i f  we  c o m p u t e  t h e  v o l u m e  e x p a n s i o n  fo r  M • M *  

we see  t h a t  t h e  coe f f i c i en t s  of  r T M  v a n i s h .  

6 .  M - n i t o l d s  w i t h  V ~ ( r )  = o J r n ( 1  + O ( r e ) }  

I n  t h e  p r e v i o u s  s e c t i o n  we  s h o w e d  t h a t  (I)  is  t r u e  i f  d i m  M ~< 3 u s i n g  o n l y  t h e  n u l l i t y  

of  t h e  s e c o n d  a n d  t h i r d  t e r m  i n  t h e  p o w e r  se r ies  e x p a n s i o n  of Vm(r) .  ( I ) n e e d  n o t  b e  
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true when dim M ~ 4 .  We show this by  giving two examples of nonfiat manifolds for 

which 
V,.(r) = o~r"{l + O(re)} (6.1) 

for all m E M and sufficiently small r > 0. 

6.a. A generalization of the Schwarzsehild metric 

The Schwarzsehild metric in relativity is a spherically symmetric metric which is 

Ricci fiat but  not fiat. Specifically it  is given in spherical coordinates by 

d ~  (l-2-~mr ) - Idr~+r 'dO '+r~s in 'Odq~ ' -  (1-2--m)dL'  (6.2) 

(assuming the speed of light to be unity). There are generalizations of (6.2) which are Ein- 

stein metrics or have scalar curvature 0. 

H one changes the sign of the coefficient of dt 2 in (6.2) then one obtains a positive 

definite metric. Just  as before this metric is Ricci fiat but  not fiat. In fact let us consider 

the metric 
d,a 2 = ea(r) dr2 + r2dO ~ + r 2 sin 2 0drp ~ + eV<r) dL 2. (6.3) 

We shall compute the curvature of this metric for general ~ and ~. Then we determine 

and ~ so that  (6.1) is satisfied. 

The simplest method to compute the curvature of (6.3) is to utilize the Cartan structure 

equations: 
dO~= Y o~,j ̂  Oj, ~ . + % ~ = 0 ,  

J 

d~lj = ~ ~o~ ̂  ~okj + ~jj. (6.4) 
k 

Then the sectional curvatures are the only nonvanishing components of the curvature 

tensor of M and are given by  

Specifically we take 

01 ffi etadr, 0 s = rdO, 0 s-- r sin 0daj0 and 0 4 = et'dt. 

Then we obtain the following expressions for the sectional curvatures K~j: 

Kls -~ Kxs -~ I ~'e -;t, K ~  = Ks4 = - ~  w'e -Jr, 

I 
(6.5) 
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I t  is easy to see tha t  (6.3) is Einstein if and only if ~ ' + v ' = 0  and 

_ ,y2 _ ~ (e~ _ 1). 

However we need a weaker condition, so we choose to set 

b 
~' + r ' - -  r '  b a constant. (6.6) 

From (6.5) and (6.6) it follows tha t  the scalar curvature T of the metric (6.3) is given by  

�9 = - u" - (8 + 3b) ~' - ~ (b ~ + 2b + 4) ~ + r- ~ 

where ~ - - e  -~. Then 

4 
~ ' ~ b ~ + 2 b + 4  

is a particular solution of the differential equation ~ = 0  and for this solution we obtain 

Hence 

2b 
KI~ - K18 = 0, K~4 ffi K 3 4 -  r~(b ~ + 2b + 4) '  

2b + b s 2b - b ~ 
K2a = r2(b 2 + 2b + 4)'  Kt4 ~ r2(b 2 + 2b + 4)" 

4b~(b ~ + 2) 8b~(b ~ + 8) 
IIdl' = + 2b + 4)" IIRI['= + 2b + 4) 

I t  follows easily tha t  3] lRJl ' -81Jg]l '=0 if and only if b ' = 1 6  or b : 0 .  Taking b--+_4 we 

obtain the two following 4.dimensional metrics: 

ds~ = 7dr2+ r ~ (dO~ + sin ~ 0 dq~ 2) + (cr)4dt ~, 

ds~ = 3dr~ + r2 ( dO 2 +s in  ~ 0 d ~ )  + ( cr )-4 dt 2. (6.7) 

Here c is an arbi t rary constant. For each of these metrics (6.1) holds at  all points, but 

neither of the metrics is fiat. 

A lengthy calculation, which we omit, shows tha t  for the metrics (6.7) 

~2 r4 
Vr~(r) ffi ~ {I + A m r  8 + 0(rS)} 

where Am* 0. 
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8112 r$ 6 6.b. A 5-dimensional manifold withVm(r ) = ~ {1 + O(r  )} 

Next  we consider the manifold M =Ha• Ha(c), where Ha(c) is a surface with constant 

negative curvature c and S a is the 3-dimensional sphere with a homogeneous metric con- 

structed as follows. Let  N denote the unit outward normal to the unit sphere H a in R 4. 

Regarding R 4 as the quaternions we obtain tangent vector fields IN,  JN ,  K N  tangent to 

S a. Let  r r and q9 K be the 1-forms on S a given by  ~ ( X )  = (X,  I N ) ,  etc. We consider the 

metrics of the form 

--- ~ ~0x + fl ~j + 7 ~oK, (6.8) ( , )  a ~  ~ a  a 2  

~, fl, 7 being constant. 

The curvature of the metric (6.8) can be computed using the Cartan structure equa- 

tions (6.4) together with the relations 

dq~x = 2q~ A ~o x, d~o s = 290 K A Cz, d~0K = 2 ~  A q~. 

We obtain for the sectional curvatures of Ha: 

Kxs = ~ 1  (g4 + f14 _ 374 _ 2~afla + 2aa72 + 2flaTs), 

1 4 
K , ~  = ~ - ~  (~ - 3t~ + 7 '  + 2~'t~ ' - 2 ~ ' 7  ' + 2r 

1 
X,x - -  ~ ( - 3~'  + fl~ + 7 '  + 2~afl ' + 2~27 a - 2fla7') �9 

(6.9) 

All other curvature components vanish. 

Let  Ha(~, fl, 7) denote 8 s with the metric (6.8) and let 

4 
7 " = ~ + a 2 ,  c= a2+f l  a. 

Put  M =Hs(g, fl, 7) • H2(c) �9 I t  is not difficult using (6.9) to check that  for each m E M  the 

volume Vm(r) satisfies (4.1). 

Actually this construction yields a 1.parameter family of (normalized) metrics for 

which 

8~-z~r 5 
Vm(r) = - - ~  {1 + O(r")}. 
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7. Manifolds with Vm(r ) =oJr"{1 + O(rS)} 
In order to find a manifold M such that  Vm(r) :corn{l + O(rS)} at every point we shall 

first consider certain manifolds of dimension 2 and 3. Let  M 1 be the set of matrices of the 

form 

1 z z )  

0 1 y 

0 0 1 

with the left invariant metric ds s = dzs+ dyS+ (zdy-dz )L  Also let M s be a space of constant 

curvature - a ,  and M a be a space of constant curvature b. Here we require tha t  dim ~lf s--2, 

dim M s = 3, and that  a, b > 0. Let  

B, = ( -  311RII ~ + sll~ll%,, 

6', = (64 b - 192<0| 0, R> + 288< 0,/%> - 110/~ - 200~ - q# Ilvell ~ + 4o5~(0) + ~ Ilwll%,. 

Note that  up to a constant factor B~ is that  part  of the coefficient of r "+4 in the expansion 

of Vm(r) which does not involve T. A similar remark applies to C,. 

Now let M = MR x M~ x M~s where ~, ~, 7 are integers. I t  is easily seen tha t  Vm(r) -- 

cot"{1 + O(rS)} at each point of M if and only if 

~4; +#A2 +>'48 = 0, 

:(B I + #B ,  + y B  3 = 0, 

~c~ +#o, +~o, -- o. (7.1) 

Thus we must find nontrivial solutions of (7.1) for which ~,/q, 7 are positive integers. 

Thus, if 

First we compute 

4 , : - � 8 9  B I = - ~ ,  o1=28,  

A2=-2a,  B2=4o8, C~-,-16o 8, 

A 8=6b, B 8=60b ~, C 8*.0. 

A1 A2 A8 ) 
det B 1 B 2 B 8 

o, o, c~ 

= 0  
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we must have 
a { 9 a - 2 6 ~  

b = ~-~ \2~--~-'+1-3]" 

Assuming this, we solve (7.1) and obtain 

8as 10(2a2 + 13)2 B 
- - i 3  fl' 7 = 3 9 ( 9 a -  26) ~" 

Now let fl be an arbitrary positive integer and take a = 13/2. Then b = 13/60, ~ = 132j3 and 

7 --- 75fl. Thus 
M = M~ 8'p • M~ • M'~8 5~ 

is our required manifold. When fl--1, M has dimension 734. 

I t  is an interesting problem to determine if there are 4-dlmensional manifolds with 

V.,(r) = o~r"{1 + 0(@)}. 

8. Characterizations of spaces of constant  curvature by volume functions 

Let M(~) be an u-dimensional manifold of constant sectional curvature Z 4=0. The 

n-dimensional volume of a geodesic ball is given by 

V,)(r) = ['~At) dt 
,10 

for p E M(~), where 
Isin 

if ~t>0. If ~t<0, sin must be replaced by sinh and ~ by 1~[. See for example [20]. (Np(r) is 

just the In-1)-dimensional volume of the sphere of radius r and center p in M(X).) 

We state the following conjecture: 

(III) Let M be an n.dimensional Riemannian manifoM and auppose that for all m E M  

and all ~//icienaV 8 ~ l l  r > O, Vm(r) is the 8=~e a8 that o! an n-dime~ional ~ n l / o l d  o! 

constant aedionat curvature ~. Then M is a~so a spc~e o/constant sectional cu~ature ~. 

We prove this conjecture in some particular cases. 

THEOREM 8.1. (III) is true in the following case~: 

(i) d im  M ~ 3 ;  

(ii) M is conlormaUy flat; 

(ffi) M is an Ein~cin manilo~d. 
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Proof. Let za, IIQ~II ~ and IIR~II ~ he the appropriate functions for a space of constant 

sectional curvature ~t. In  fact 

�9 ~ = n ( n -  1);t ,  1[~]t ~ = n ( n - -  1)2), ~, H R~[[ ~ = 2n(n- 1)~ , .  (8 .1 )  

The hypotheses of (m)  imply that 7, l id '  and IIRII ' for ~ satisfy 

~ =~(n-1 )~ ,  311RIl'- 811ell' = - 2 n ( ~ -  1)(4n- m ' .  (8.2) 

For  d im M-- -  2 the resul t  fo l lows at  once f rom ~ = 2;t. I f  d im M = 3 or i f  M is eonformal ly  

flat, (8.2) and the vanishing of the Weyl tensor imply that  

Hence 
I1~11 ~ = n ( n -  x) '~ ,  II RII ~ = 2n(n-x)~. 

2 
IIRII'-- ~ IIW. 

(8.3) 

So the required result follows immediately from a result of [4]. 

Finally, let M be an Einstein manifold; then TZ=nll@H 2. This and (8.2) give again 

(8.3), proving the result. 

9. Characterizations of the other rink 1 symmetric spaces 

Let N(p) be a K~hler manifold with complex dimension n and constant holomorphic 

sectional curvature p 4= 0. Then the volume function for ~(p)  is given by: 

V,(r, p) = ~ sin-~- r 

or 

according to whether p > 0 or ~ < O. See for example [20]. We state 

(IV) Let M be a Kdhler mani]old with complex dimension n and suppose that ]or all 

m E M  and all au//iciently small r>O, Vm(r) is the aame as that o/ an n.dimensional Kdhler 

mani/old with constant holomorphic sectional curvature p. Then M has constant holomorphic 

sectional curvature lz. 

There are two cases where we can prove this conjecture. 
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THEOREM 9.1. (IV) is true in the/ollowing cases 

(i) M is Bochner fiat (n>~2); 

(ii) M is an Einstein Kiihler mani/old. 

Proo/. Let ~ ,  I]~]l ~ and II R~113 denote the appropriate functions for a space of constant 

holomorphic sectional curvature/~. Thus 

"r/,=n(n+l)/a, lle, llR~,ll~=2n(n§ (9.1) 

The hypotheses of the conjecture imply that  

T = n(n+ 1)/~, 311RII2-8119112 = - 2 n ( n §  1) (2n-  1)p 2. (0.2) 

First suppose M is Boehner fiat. Then (4.5) and (9.2) imply 

flail -- �89 2, IlRI[ ~ = 2n(n+1)~. 
Hence 

4 
liR[I ~= ~ U~[5 

and according to [13] M has constant holomorphie sectional curvature #u. 

For an Einstein Kf~hler manifold M we have T2--2nllqll z. This fact together with 

(9.2) implies again 
4 

lIRl[~= g~- I  lieU'. 

Hence M must have constant holomorphic sectional curvature/~. 

Next  let Q(~) be a 4n-dimensional Riemannian manifold locally isometric to quater- 

nionic projective space or its noncompact dual, where �9 ~ 0 denotes the maximum of the 

sectional curvatures in the positive curvature case and the minimum of the sectional 

curvatures in the negative curvature ease. Then the volume function for Q(P) is given by: 

Vv(r' ~) ffi (2 , ,  sin 4" (�89 (2n cos ~ (�89 + 1) 

o r  

F~(r, , ) =  -(-4~)~". , ,  s inh" (�89 ~V~lr)(2n cosh' (�89 + 1) (2n+ 1)ll~l-- 

according to whether u > 0 or y < 0 [20]. 

The following question naturally arises: is Q(~) characterized by its volume function 

among manifolds with holonomy group contained in ~Sp(n).Sp(1), n > l ?  The answer is 

yes, in contrast to the characterizations of S'(~) and GP'(/z). 
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THEOREM 9.2. Let M be a Rienmnnian mani]old whose holonomy group is a subgroup 

o/ Sp(n).Sp(1), n > l .  Further, suppose that/or all m e M  and all su/flciently small r > 0 ,  

Vm(r) is the aame as that o/Q(u). Then M is locally isometric to Q(r). 

Proo/. The key fact is that  for n > 1, a manifold whose holonomy group is contained 

in Ep(n).Sp(1) is automatically Einstein [3]. See also [22]. Hence if Vm(r) coincides with 

F~(r, v), then a computation shows that  
$2 

~ = 4 . ( n + 2 ) ~ ,  l i d ' - ~  

and so 
~(5n+ 1) 

R = ~ - ~ .  

In other words, the ~, Iloll', and ii~ll ~ of M are the same as the corresponding functions on 

Q(~). That M is locally isometric to Q(~) then follows from a result of [36]. 

Finally, we need not formulate a similar theorem for manifolds with holonomy group 

contained in Spin (9), because such manifolds are automatically fiat or are locally iso- 

metric to the Cayley plane or its noncompact dual [1], [9]. 

10. Topological charaeterizatlons of eompaet 4.dimensional manifolds 

In this section we consider some topological implications of the different conjectures 

and give some characterizations of 4-dimensional compact manifolds. 

First we consider a compact oriented 4-dlmensional manifold M such that  

:~2rt 
V.,(r) = - -2  {1 + O(r~)} OOa) 

for all mEM and for sufficiently small r >0. Then we have 

THEOREM 10.1. Let M be a compact oriented 4-dlmensional manqold such that Vm(r) 

satis]ics (10.1) ]or all m e M and sufficiently small r >0. Then 

z(M) < - t i c (M)  l, 

where z(M) and T(M) denote the Buler characteristic and signature o/M. I / x ( M )  -- - ] [~(M) [ 

then M is flat. 

Prco]. I t  is well-known [5, p. 82] tha t  

=-~1 ~{llRiP_41i~p + v'} dr.  00.2) g(M) 
JM 
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Hence it follows from (10.1) and (10.2) that 

1 x(M)-- 6~, fMllRll'dV. (10.3) 

Further, the Hirzebruch index formula for the signature T(M) of M states that 

'L 
By evaluation of the integrand on the oriented orthonormal frame {e 1, e~, e s, e4} we obtain 

1 1 
v(M) .ffi - ~ a  .,~., f MR,#,z R,,.,k,, dV ffi g - ~  f M( R, R-~ ) dV, (10.4) 

~- being the Hedge ~-.operator determined by the given orientation. 

According to the decomposition for curvature tensors (see for example [19], [34]) we 

have 
R = R I + R z + R  ~ 

with 

Hence 

and 

R I  ~ ~ R 1, R s  ~ ~ - R 2 ,  R w  ~ ~ - ~ R w. 

R->e ffi Rt - R2 + Rw ~ 

<R, R~> = IIR~U 2- UR211~ § R ~ - > .  

Now (Rw, Rw~-)--4tr  ( R ~ ) - 4 t r  ( R w ~ R w ) f - 4 t r  ( R ~ ) - - 0 .  Hence (R, R ~ ) =  

IIR~II'-IIR~II', and so IIRII'>~R, R ~ > .  The ~ u l t  renews from this, (10.3) and (10.4). 
Next suppose z(M) ffi - J I r(M) I" This is equivalent to 

or 

L{ 211Rffill ~ + II~II ~) ~v ~ o. 
Hence Rw-~0 and M is an Einstein manifold. But then M is flat. 

The proof of Theorem 10.1 yields also the following 

COROLLARY 10.2. Le~ M be a mani/old aatia]yin 9 the same hypotheses a8 in Theorem 

10.1. Then x(M) ~0  and Z(M) --0 i /and o~dy if M ia fla~. 

Furthermore we have 
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COROLLARY 10.3. Let M be a compact 4-dimensional manifold which admits a metric 

such that the associated volume/unction satisfies (10.1). I f  M also admits an Einstein metric 

then all Einstein metrics are fiat. 

Proof. x(M)/>0 for any 4-dimensional manifold which admits an Einstein metric [3]. 

The result follows now from Corollary 10.2 since x (M)=  0. 

We have a stronger result for compact 4-dimensional K~hler manifolds. 

TH~.OR~M 10.4. Let M be a compact 4.dimensional Kdhler manifold such that Vm(r) 

satisfies (10.1) for all m E M and sufficiently small r > O. Then 

~(M) = ~(M) = ~z(M) <- 0 

where ~(M) denotes the arithmetic genus of M. The equality sign holds i /and only q M is fiat. 

Proof. This follows easily from the following formulas (see for example [13]) 

, ' t ' (M) ffi 1 f ~  {llRJl' - 211ell } d v ,  

1 t '  
~(.M) = J {IIRII 811ell" + dr .  (10.5) 

Here M has the orientation induced by the almost complex structure. 

Next we consider compact oriented 4-dimensional manifolds such that  

~2 r' V,.(r) - --F {: + o,r' + ~r' + O(re)} (10.8) 

for all m E M and sufficiently small r > 0, where ~ and/~ are the same as in the volume 

function of a 4-dimensional space of constant sectional curvature ~, that  is 

13 ~t 2 and ~ f f i ~  . 

THEOR]~I 10.5. Let M be a comt~act oriented 4.dimensional manifold whose volume/unc. 

tion satisfies (10.6). Then 

z(M) < - ~I~(M) I + ~ vol(M). 

The equality sign hold8 i /and only if M is a space o/c~n~tant sectional curvature ~. 
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Proof. Using (8.1), (8.2), (10.2) and (10.6) we obtain 

1 9?` 2 
= -  IIRll dV+ vol(MI. 2 

Further we let 1 denote the identity transformation and put  

(Thus the scalar curvature of R is 0 [19].) Then we have 

1 f ~  2 3?'2 - IIRII dV+ ~vol(M) z(M)= 

since (~, 1)--0, (1, 1)=24 and zs=--1447` s. Now we get the required result by proceeding 

in the same way as in the proof of Theorem 10.1 using i~ in place of R. 

COROLLARY 10.6. Let M be a manifold 8atlsfying the hypotheses of Theorem 10.5. Then 

Z(M) < 5 vol (M), 

with equality sign if and only if M is a space of constant sectional curvature ~. 

I t  is also easy to prove the following 

COROLLAJtY 10.7. Let M be a compact #dimensional manifold which admits a metric 

~ch  that the associated volume function satisfies (10.6). If  M admits an Einstein metric then 

all Einstein metrics have constant sectional curvature. 

Finally we consider a compact 4-dimensional K~hler manifold with volume function 

~2r4 
Vm(r) = - ~  {1 + ~tr 2 + t~r' + 0(#)} (10.7) 

for all m E M and sll sufficiently small r > O, where ~ and # are the same as in the volume 

function for a 4-dimensional space of constsnt holomorphie sectional curvature p, tha t  is 

ffi=/~2 N. 

13-  782905 Acta mathematiea 142. Imprim6 ie 11 Mai 1979 
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T H e o r e M  10.8..Let M be a compact Kdhler manifold whose volume/unction satisfies 

(10.7). Then 
o 

~(M) = z(M) = �89 < ~ vol (M). 

The equality sign holds i / and  only i / M  is a space o/constant holomorphic sectional curva. 

ture p. 

Proof. The result follows from (9.1) and (10.4). 

Using a result of [i3] we obtain 

COROr,r, ARY 10.9. Let M be a compact complex analytic manifold o/complex dimension 

two which admits a Kdhler metric such that the associated volume function satisfies (10.7). I f  

M admits an Einstein Kdhler metric, then all Einstein Kdhler metrics have constant hole. 

morphic sectional curvature. 

Finally we prove a theorem concerning 2n-dimensional K~hler manifolds. 

TK~.OR~M 10.10. Let M be a 2n-dimensional compact Kdhler manifold with nonnegative 

generalized Chern number cz[F]n-2(M). ( F is the KdIder /arm.) Then the conjecture (I) is true. 

Proof. Let F denote the K~hler form and Y2 the second Chern class of M. Then [5] 

~[F]"-~(M)ffi fMr', ̂  I~-~f (n-- 2)I fM 32:m 2 {IIRII ~- 4lloll ' +,~} dr. (10.8) 

Suppose c2[F]n-2(M) is nonnegative. Then we obtain from (4.1), (4.2), and (10,8) tha t  

f {}RII~dV < 0 

and hence R--  0. 

11, Characterizations of locally symmetric spaces by volume functions 

In this section we prove some results concerning volume functions and locally sym- 

metric spaces. This is the first time we make use of the coefficient of r ~+e in the power 

series expansion of Vm(r). Our theorems are analogous to those of [33] for the spectrum of 

the Laplacian. 

THEOREM 11.1. Let M be an n.dimensional Einstein manifold with n = 4  or 5 and 

suppose M has far all m e M and all sufficiently small r > 0 the same volume function as an 

n.dimensional locally symmetric Einstein space M'. Then M is locally symmetriv. 
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Proo[. For an Einstein manifold we have 

and so 

Then (11.2) and (2.18) imply 

T T2 --~ ~=;~, ,  ,~11~11 ~ (11.1) 

<~, fa> ~ ~ IIRIL 

_ 3 8 
<r174 R> = ~ .  

2 T  2 <aR, R> = -~ IIRII - ~ -  4~. 

(11.2) 

(11.3) 

Further on an n-dimensional manifold with n~<5 the 6-dimensional Gauss-Bonnet 

integrand vanishes and so (2.24) holds. 

On a 4-dimensional Einstein manifold (2.24) reduces to 

32- 3311RII ~-4- 4 ~ -  8 ~ = 0 .  
2 

(II.4) 

(11.3) combined with (11.4) gives 

3 ~ 2 z 1 
= - i~  + ~ 311RII - g <aR, R>, 

38 ~3IIRII~_~</tR, R>. 
= 4 8  

(11.5) 

For a 5-dimensional Einstein manifold we proceed in the same way and obtain 

5 5 

T 8 13 ~ 3 < A R ' R > '  
~ =  - ~6+ r0311RII - 

12o 1~6 31IRll - ~ <AR, R>. 

(11.6) 

Now let M '  be a locally symmetric Einstein space of dimension 4 or 5 and suppose 

that for all m E M and sufficiently small r, _71/has the same volume function as M'. Then 
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the  equalities of the corresponding coefficients of r n+2 and r n+4 in the two expansions 

imply that 

= ~ ' ,  Usll ~ = 115'll ~, IIRII~= IIR'll ~. (11.7) 

In  particular Ilnl? is eonstant and so 

< ~ n ,  n> - - I lVnl l  ~. (11.8) 

� 9  using (11.7), (11.2), (11.5), (11.6), (11.8) and the equality of the coefficients of r n+6 

in both expansions, we obtain 

IlVnll ~ --0.  
Hence the result follows. 

Of course a 3-dimensional Einstein manifold has constant curvature and so it is 

automatically symmetric, which is the reason tha t  we considered only 4- and 5-dlmeusional 

manifolds in Theorem 11.1. However, for 3-dimensional manifolds we have a stronger result: 

TH~.OREM 11.2. Let M be a 3.dimenMxmaJ mani/old with the ,ame volume/unction as 

a locally symmetric &dimensional mani]old M'. Aa,ume also that ~r and that ~>~'. 

Then M is also locally aymmetric. 

Proof. We use the special expansion (3.4) for 3-dlmensional manifolds. Equali ty of the 

coefficients of r ~ and r 7 in the two expansions implies tha t  

=~" and 11511'= l[5'[l'. (11,9) 

Since M'  is loea]ly symmetric, (11.9) implies tha t  ~ and II~]] ~ are constant. In particular 

IlWll ~ = 0, (11.10) 

< a e ,  5> + IlVdl ~ -- �89 ~ = 0. (11.11) 

Next (11.9), (U.10), (11.11) and the equality of the coefficients of r 9 in the two expansions 

imply that  

1 2 8 ~ + t  11%11~+45~(e) = 1280'. (11.12) 

Finnlly assume ~>~ '  and ~(5) >/0. From (11.12) it  follows tha t  M is locally symmetric. 

12. Mean curvature and geodesic spheres 

L e t  hm(expmru) denote the mean curvature of a geodesic sphere of radius r > 0  and 

center m with respect to the outward normal. Pu t  Hm(r ) = r  "-1 Sll,ll.zhm(expmru)du. Here 
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Hm(r)r 1-" is the integral over the unit  sphere in the tangent space of the mean curvature 

of a geodesic sphere of radius r > 0. I t  should be remarked that  this is not the same as the  

integral over the geodesic sphere itself of the mean Curvature. The latter integral is jus~ 

d 2 
d---~ Vm(r)" 

See [26]. 

We compute the first four terms in the power series expansion of Hm(r). 

Lv.MM,~ 12.1. Let m E M  and let expm(ru ) be a point o/the geodesic sphere with center m 

and radius r. Then the mean curvature h m o/this geodesic sphere at the point expm (ru) i8 given 

by 

hm(eXpm (rU))= n -  l + ( ~ )  (expm 

where 0 =a) 1 ...,z and O' is the radial derivative o/the/unction r~O (expm(ru)). 

Proof. See for example [5, p. 134]. Note that  h m (expm (ru)) is essentially the Laplacian 

of the distance function. 

where 

L~MMA 12.2. We have 

n - 1  
hm(expm(ru))= +~xr+~r~+~.3rS+~ir t+~srS+O(r8  ) 

r 

| . J - - I  

It 

L,', k - 1  

ea=-~ ~ (9V~jo~z+2 l~fa)bRk~b aiajoqca|, 
f .Y.k ,Z-1 L , m 

~, = something irrelevant, 

#.J. k, Lg.  h - 1  a. b - 1  a, b - 1  

+ ~ Y. /~jbR~ZoR~,~ a . b , r  m a t a j C l ~ a l ~ g a h "  

Proof. Put  0=1 + ~2r2 + ~srs + .... Then 

0' 
ffi 2& r + 3& r = + ( 4 & -  28~) r ~ + 5(85 - & &) r' + (685-  6& & + 28~ - 3 ~ )  r 5 + O(r"). 

The result follows from (3.1) and Lemma 12.1. 
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THEOREM 12.3, We have 

Hm(r) -~ r "-1 [ hm(expm (ru)) du 
d s n- I(1) 

~ . ( ~ r n _ S { n _  1 _ 3~  r2 - 1 

§ 840n(n + 2) (n + 4) ( - + 44(q|  J~> + 4(~, R )  - ~ / ~  - ~ 

- 25~(e) - 4 5 A ~ -  2511W17-  72<V2% ~) -~llvd? + 6<A~, ~> 

- 3 0 < a ~ ,  R> - :~ IlVall') r r + O(rS)}. �9 (12.1) 

Proo/. This follows immediately using Lemma 12.2 and the formulas in the proof of 

Theorem 3.3. 

We have at once 

THEOREM 12.4. For su//iciently small r > 0  we have Hm(r) >O. I[ ~/>0, then Hm(r) <~ 

n(n - 1) s n-s, [or su//iciently small r > O. 

THEOREM 12.5. Let M be a compact n-dimensional mani/old such that 

ttm(r)=na~r'-2 { n -  l -  ~nrz + O(re)} m (12.2) 

[or all m E M and all su//iciently small r > O. Then M is fiat. 

Pvoo]. From (12.1) and (12.2) it follows that  

18A~ = - (3] lRl l~+2lIe i l~) ,  (12.3) 

and so the result follows at once from the maximum principle. 

THEOTtEM 12.6. Let M be an n.dimensional mani/old such that 

n - 2  T Hm(r)-~nmr { n - l - ~ n r a + O ( r 6 ) I m  

[or all m E M and all su//iciently small r > 0 and su~ose v is constant. Then M is fiat. 

Proo[. This is immediate from (12.3) with A~=0.  

CORGT.LAaY 12.7. The conjecture (II) is true. 

In  the same way as in sections 8 and 9 we deduce from (12.1): 
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THEORE~I 12.8. Let M be an n-dimensional manifold such that 

Hm(r) = neorn-~{n- 14- gr ~ + fir 4 + O(re)) 

/or all m and all su//iciently small r > O, where ~ and fl are the same as for a space o I constant 

(constant holomorphic) sectional curvature 2. Then M has constant (constant holomorphic) sec. 

tional curvature. 

We also remark that  the coefficient of r n+4 in the power series expansion of H•(r) 

may be used to obtain theorems for locally symmetric spaces analogous to those of section 

11. 

13. Growth functions of hypersurfaees 

Let M be a compact orientable hypersurface of an n-dimensional Riemannian mani- 

fold _M. For small s ~>0 denote by A(s) the (n-1)-dimensional  volume of the hypersufface 

at  a distance 8 from M, in the direction of a chosen normal. In  [30], [38] the following 

results have been proved: 

TH~.ORV.M 13.1. Suppose that /or any compact orientable hypersur/ace M o / . M  the 

/unction A(s) is linear/or small s ~O. Then M is flat and dim./~ =2.  

TH~.ORV.~I 13.2. Suppose that/or any compact orientable hypersur/ace M o/ .M we have 

A " ( s) + cA (s) = 0 / o r  small s >~ O. Then M has constant curvature c and dim M--2 .  

See also [15], [26], [28], [29] for related results. In each of these theorems a condition 

on the function A is required for every hypersurfaee. We shall show that  it is only neces- 

sary to assume tha t  A satisfy a _differential equation for hypersuriaces of the form Gin(r) 

{pE.MId(p, m)•r)  for mEl]7 and small r>0 .  

The point is that  once one has the power series expansion for the volume function 

Vm(r) the results of [15], [38], [30] can be strengthened and the proofs simplified. 

TItEOREM 13.3. Suppose that/or all m E M  and all small r > 0  the growth/uncti~m A(s) 

of each hypersur/ace qm( r ) sa$is/ie# A " ( s ) + cA ( s ) = O /or 8maU s>~0, where c is a constant. 

Then 1~ has constant curvature c, and dim i~I = 2. 

Proo]. We do the case when r > 0. The proofs for c = 0 and c < 0 are similar. 

The (n-1)-dimensional volume of •m(r) is 

Sin(r)-- d VAr). 

Moreover A(s) --- Sm(r + s). Suppose now that  A" + cA -- 0 where c > 0. Then 

A(s) = am(r) cos V~ s +bm(r) sin ~fc s. 
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Using the fact tha t  A(0)=Sm(r ) and A ( - r )  =0  we can determine am(r ) and bin(r). Thus 

S=(r) sin V~c (s + r). 
A(s) = sin ~ r  

On the other hand reversing the roles of r and s we have 

A(s) == E=(r + s) = ~ ( s )  sin V~(s + r). 
sin ~fcs 

I t  follows that  

a constant. Therefore 

S=(r) S=(s) 
sin ~/cr sin i/ca c=, 

,S'=(r) = c,,, s in  ~ r. 

From the power series expansion of Era(r) we see that  

2n 

for all m, and so i l l  has constant curvature c. 

In the same way we strengthen another result of [15]. 

TH~.OB~M 13.4. Let M be an n - d i m e ~ o ~  R i e ~ n n ~ n  ~ n i / o / ~  (n>~2) such that /or  

o21 ra ~ M and all au//ie,~ntly small r > 0  tl~ growtl~ /unctmn A ( 8 ) el eacl~ geodesic sphere Ore(r) 

saris/lea the di//erential equation 

A ' "  +c~A" +exA' +eoA = O, (13.1) 

where the cl' s are/unctions o/s. Then the dimension o/ M must be 2 or 3 and M is a space o/ 
constant curvature. 

Proo/. Since A(s)=E=(r+s)  we have by Theorem 3.3 that  

A(s) == Eo(.'/~(r -~ s) n-1 + A i r  + s) n* l  + B ( r  -'[-- 8) n+8 -'l'- O((r + 8)n+5)}, 

where 

(13.2) 

A =  ~(m) and B--- 1 (_3]IR[[8§ 18A~)=" 
6 + 2) 

We differentiate (13.2) with respect to s, nse'(13.1) and set 8=0.  In  this way we obtain a 

power series expansion in r which must be identically zero. Setting the coefficients of this 

power series equal to zero, we obtain certain relations. The first such relation implies tha t  

the dimension of M is 2 or 3. The next  five conditions imply that  M has constant curvature. 
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