# ANALYTIC FUNCTIONS WITH FINITE DIRICHLET INTEGRALS ON RIEMANN SURFACES 

BY

MAKOTO SAKAI<br>Hiroshima University, Hiroshima, Japan

Since around 1950 the general classification theory of Riemann surfaces has been studied. Although many fruitful results have been obtained, there are still unsolved fundamental problems in the theory concerning the spaces of analytic functions with finite Dirichlet integrals.

In this paper we shall be concerned with the following problems I and II (cf. [5, pp. 50-51]).

Problem I. Let $A D(R)$ be the complex linear space of analytic functions on a Riemann surface $R$ with finite Dirichlet integrals. Does there exist a Riemann surface $R$ satisfying $1<\operatorname{dim}_{\mathbf{C}} A D(R)<\infty$ ?

Problem II. Let $O_{A D}$ (resp. $O_{A B D}$ ) be the class of Riemann surfaces on which there are no nonconstant $A D$ functions (resp. bounded $A D$ functions). Does the strict inclusion relation $O_{A D} \subset O_{A B D}$ hold?

Let $H D(R)$ be the real linear space of harmonic functions on $R$ with finite Dirichlet integrals. Then, it is known that for every natural number $n$ there is a Riemann surface $R$ satisfying $\operatorname{dim}_{\mathrm{R}} H D(R)=n$ (cf. [5, p. 197]). In contrast to this result, we show that $R \notin O_{A D}$ if and only if $\operatorname{dim}_{\mathrm{C}} A D(R)=\infty$.

Problem II has been open since the beginning of the study of the classification theory of Riemann surfaces. We show that the equality $O_{A D}=O_{A B D}$ holds. Moreover, we prove that the space $A B D(R)$, the space of bounded $A D$ functions on a Riemann surface $R$, is dense in $A D(R)$ in the sense that for every $f \in A D(R)$ there is a sequence $\left\{f_{n}\right\} \subset A B D(R)$ such that $f_{n}(\zeta)=f(\zeta)$ for a fixed point $\zeta \in R$ and $\int_{R}\left|f_{n}^{\prime}-f^{\prime}\right|^{2} d x d y \rightarrow 0(n \rightarrow \infty)$.

This paper consists of three sections. The purpose of § 1 is to prove Proposition 1.9 concerning modifications of positive measures. Its proof is relatively long. This proposition is
used only in the proof of Proposition 2.2. On first reading one could omit § 1 except for the definition of admissible domains and the statement of Proposition 1.9.

In $\S 2$ we define the kernel function $M$ of the Hilbert space $A D(R, \zeta)$, the space of $A D$ functions $f$ on $R$ with $f(\zeta)=0$, and prove Theorem 2.3. In our theorem, we obtain the following inequality:

$$
\sup _{z \in R}|M(z)| \leqslant\left(\int_{R}\left|M^{\prime}\right|^{2} d x d y \mid \pi\right)^{1 / 2},
$$

which implies that $M$ is bounded. The results concerning the above two problems immediately follow from this theorem.

A generalization of our theorem and a complete condition when the equality holds in the above inequality are given in §3. As an application, we obtain the inequality on conformal invariants $c_{D}$ and $c_{B}$.

The author would like to express his hearty thanks to Professor M. Ohtsuka and the referee for their valuable comments and suggestions.

## §1. Modifications of positive measures

Let $W$ be an open set in the complex plane C. For every $\varrho \geqslant 0$ put $W_{-\varrho}=\{z \in W \mid d(z, \partial W)>$ $\varrho\}$, where $d(z, \partial W)$ denotes the distance from $z$ to the boundary $\partial W$ of $W$. The smallest open set $G$ which satisfies $W \subset G_{-\varrho}$ is denoted by $W_{+\varrho}$. If $\varrho>0$, it follows that $W_{+\varrho}=\{z \in \mathbb{C} \mid d(z, W)<\varrho\}=\bigcup_{c e W} \Delta_{\varrho}(c)$, where $\Delta_{\varrho}(c)$ denotes the open disc with radius $\varrho$ and center at $c$.

Let $W$ be a plane domain. We shall call it an admissible domain if it satisfies the following conditions:
(i) $W$ is bounded.
(ii) $m(\partial W)=0$, where $m$ denotes the Lebesgue measure.
(iii) The boundaries $\gamma_{n}$ of connected components $O_{n}, n=0,1,2, \ldots$, of $W^{e}$ are rectifiable Jordan curves and satisfy $\sum l\left(\gamma_{n}\right)<\infty$. Here $W^{e}$ denotes the exterior of $W$ and $l\left(\gamma_{n}\right)$ denotes the length of $\gamma_{n}$.

For an admissible domain $W$, we denote by $\partial_{e} W$ the union of $\gamma_{n}$. For an admissible domain $W$ and $\varrho>0$, we consider the domain surrounded by the outer boundary $\gamma_{0}$ of the closure $\bar{W}$ of $W$ and the other boundaries $\gamma_{n}$ of connected components $O_{n}$ of $W^{e}$ such that $l\left(\gamma_{n}\right) \geqslant 2 \pi \varrho$. We denote it by $W(\varrho)$.

Using this notation we have the following five lemmas. We omit the proofs of some of them.

Lemma 1.1. Let $W_{1}$ and $W_{2}$ be admissible domains such that $W_{1} \cap W_{2} \neq \varnothing$. Then $W_{1} \cup W_{2}$ is also an admissible domain and satisfies

$$
l\left(\partial_{e}\left(W_{1} \cup W_{2}\right)\right) \leqslant l\left(\partial_{e} W_{1}\right)+l\left(\partial_{e} W_{2}\right)
$$

Lemma 1.2. Let $\Delta_{j}, j=1, \ldots, n$, be open discs whose radii are not less than a positive number $r$. Then

$$
l\left(\partial_{e}\left(\bigcup_{j=1}^{n} \Delta_{j}\right)\right) \leqslant \frac{2}{r} m\left(\bigcup_{j=1}^{n} \Delta_{j}\right)
$$

where $\partial_{e}\left(\cup_{j-1}^{n} \Delta_{j}\right)$ denotes the union of $\partial_{e} W_{1}$ of the connected components $W_{1}$ of $\bigcup_{j=1}^{n} \Delta_{j}$.
Proof. We prove the lemma by mathematical induction on the number $n$ of open discs. If $n=1$, then our assertion is trivial. Assume that our assertion is true when the number of open discs is equal to $n-1$. Let $\Delta_{j}, j=1, \ldots, n$, be open discs and assume that $\Delta_{k}$ has the minimum radius $r_{k}$. Set $W=\bigcup_{j \neq k} \Delta_{f}$. Then

$$
\begin{aligned}
l\left(\partial_{e}\left(W \cap \Delta_{k}\right)\right) & \geqslant 2 \pi \sqrt{\frac{m\left(W \cap \Delta_{k}\right)}{\pi}} \\
& \geqslant \frac{2}{r_{k}} m\left(W \cap \Delta_{k}\right)
\end{aligned}
$$

Hence, by the assumption, we have

$$
\begin{aligned}
l\left(\partial_{e}\left(U \Delta_{j}\right)\right) & =l\left(\partial_{e}\left(W \cup \Delta_{k}\right)\right) \\
& =l\left(\partial_{e} W\right)+l\left(\partial \Delta_{k}\right)-l\left(\partial_{e}\left(W \cap \Delta_{k}\right)\right) \\
& \leqslant \frac{2}{r_{k}}\left\{m(W)+m\left(\Delta_{k}\right)-m\left(W \cap \Delta_{k}\right)\right\} \\
& =\frac{2}{r_{k}} m\left(W \cup \Delta_{k}\right) \\
& =\frac{2}{r_{k}} m\left(U \Delta_{j}\right)
\end{aligned}
$$

This completes the proof.

Lemma 1.3. For every admissible domain $W$ and every $\varrho \geqslant 0, W_{+\varrho}$ is an admissible domain and satisfies the following inequalities:
(1) $l\left(\partial_{e} W_{+\varrho}\right) \leqslant l\left(\partial_{e} W\right)+2 \pi \varrho$.
(2) $m\left(W_{+\varrho}-W\right) \leqslant \varrho l\left(\partial_{\varepsilon} W\right)+\pi \varrho^{2}$.

Lemma 1.4. For every admissible domain $W$ and every $\varrho>0$, $W(\varrho)$ is an admissible domain and satisfies the following:
(1) $\partial_{e} W(\varrho)=\partial W(\varrho)$.
(2) $W \subset W(\varrho) \subset\left(W_{+e}\right)_{-\varrho}$.
(3) $W(\varrho)_{+\varrho}=W_{+\varrho}$.
(4) $l(\partial W(\varrho))=l\left(\partial_{e} W\right)-\sum_{n \geqslant 1, l\left(\gamma_{n}\right)<2 \pi \varrho} l\left(\gamma_{n}\right)$.
(5) $m(W(\varrho)-W) \leqslant \frac{\varrho}{2} \sum_{n \geqslant 1, l\left(\gamma_{n}\right)<2 \pi \varrho} l\left(\gamma_{n}\right)$.

Lemma 1.5. Let $W$ be an admissible domain and set $\Delta_{Q}=\Delta_{\varrho}(c)$. If

$$
\begin{equation*}
m\left(W^{e} \cap \Delta_{Q}\right) \leqslant \frac{1}{50} m\left(\Delta_{Q}\right), \tag{1.1}
\end{equation*}
$$

then there is a number $r$ such that $\varrho / 2 \leqslant r \leqslant \varrho$ and

$$
\begin{equation*}
l\left(W^{e} \cap \partial_{r}\right) \leqslant l\left(\Delta_{r} \cap \partial_{e} W\right) \tag{1.2}
\end{equation*}
$$

where $\Delta_{r}=\Delta_{r}(c)$.
Proof. For every $r$ with $0 \leqslant r \leqslant \varrho$, set $l(r)=l\left(\Delta_{r} \cap \partial_{e} W\right)$ and $l^{*}(r)=l\left(W^{e} \cap \partial \Delta_{r}\right)$. Assume that $l(r)<l^{*}(r)$ for every $r$ with $\varrho / 2 \leqslant r \leqslant \varrho$. This implies $W^{e} \cap \partial \Delta_{r} \neq \varnothing$. If there is a number $r$ such that $\varrho / 2 \leqslant r \leqslant(49 / 50) \varrho$ and $\partial \Delta_{r} \subset W^{e}$, then we have either $\widetilde{\Delta_{r}} \subset W^{e}$ or $\Delta_{e}-\Delta_{r} \subset W^{e}$. Both of them contradict (1.1). Hence $\partial_{e} W \cap \partial \Delta_{r} \neq \varnothing$ for every $r$ with $\varrho / 2 \leqslant r \leqslant(49 / 50) \varrho$. Therefore

$$
l^{*}(r)>l(r) \geqslant r-\frac{\varrho}{2} \quad\left(\frac{\varrho}{2} \leqslant r \leqslant \frac{49}{50} \varrho\right) .
$$

Integrating both sides of this inequality, we have

$$
m\left(W^{e} \cap \Delta_{\varrho}\right) \geqslant \int_{e^{\prime} 2}^{(49 / 50) e} l^{*}(r) d r \geqslant \int_{\varrho^{\prime} / 2}^{(48 / 50) \ell}\left(r-\frac{\varrho}{2}\right) d r>\frac{1}{\delta \eta} \pi \varrho^{2}
$$

This also contradicts (1.1). The proof is complete.
Remark. In Lemma 1.5 assume further $W \cap \Delta_{Q / 2} \neq \varnothing$. Then $W \cup \Delta_{r}$ is an admissible domain by Lemma 1.1. The inequality (1.2) implies

$$
l\left(\partial_{e}\left(W \cup \Delta_{r}\right)\right) \leqslant l\left(\partial_{e} W\right)
$$

Let $W$ be a plane domain and denote by $H B(W)$ the Banach space of bounded harmonic functions $h$ on $W$ with norm $\|h\|_{\infty}=\sup _{z \epsilon W}|h(z)|$. If $h \in H B(W)$ can be extended continuously onto $\partial W$, then we say that $h$ belongs to $H B C(W)$ and also denote by $h$ its continuous extension.

The following lemma is well known.
Lemma 1.6. Let $W$ be a bounded domain such that each point of $\partial W$ is regular with respect to the Dirichlet problem. Then the mapping $h \mapsto h \mid \partial W$ is an isometric isomorphism of $H B C(W)$ onto $C(\partial W)$, where $C(\partial W)$ denotes the Banach space of continuous functions on $\partial W$ with norm $\|\cdot\|_{\infty}$.

Let $\mu$ be a totally finite signed measure on the closure $\bar{W}$ of a domain $W$ mentioned in Lemma 1.6. Then we can find a measure $\beta=\beta(\mu, W)$ on $\partial W$ such that

$$
\int_{\bar{W}} h d \mu=\int_{\partial W} h d \beta
$$

for every $h \in H B C(W)$.
For positive measures we show the following two lemmas. The proof of the first lemma is omitted.

Lemma 1.7. Let $\mu$ be a totally finite positive measure on $\mathbf{C}$ and define $\lambda(z)=\lambda(z ; \mu)$ by

$$
\lambda(z)=\sup \left\{r \geqslant 0 \mid \mu\left(\overline{\Delta_{r}(z)}\right) \geqslant N \pi r^{2}\right\},
$$

where $N$ denotes a fixed positive number and $\overline{\Delta_{r}(z)}=\{z\}$ if $r=0$. Then
(1) $\lambda$ is a nonnegative upper semicontinuous function on $\mathbf{C}$.
(2) $\mu\left(\overline{\Delta_{\lambda(z)}(z)}\right)=N \pi(\lambda(z))^{2}$.

Lemma 1.8. Let $\mu$ be a positive measure on $\mathbf{C}$ and $\varrho>0$. Suppose $\operatorname{supp} \mu \subset \overline{\Delta_{\varrho / 8}(c)}$ and $\mu\left(\overline{\Delta_{Q / 8}(c)}\right)=144 \pi(\varrho / 8)^{2}$. Then, for every number $r$ with $\varrho / 2 \leqslant r \leqslant \varrho$, there is a bounded measurable function $f(z)=f\left(\boldsymbol{z} ; \mu, \Delta_{r}(c)\right)$ on $\mathbf{C}$ such that
(1) $f(z) \geqslant 1$ on $\Delta_{r}=\Delta_{r}(c)$ and $f(z)=0$ on $\Delta_{r}^{c}$, where $\Delta_{r}^{c}$ denotes the complement of $\Delta_{r}$.
(2) $\int_{\Delta_{r}} h d \mu=\int_{\Delta_{r}} h f d m$, for every $h \in H L^{1}\left(\Delta_{r}\right)$, where $H L^{1}\left(\Delta_{r}\right)$ denotes the class of harmonic $L^{1}$ functions on $\Delta_{r}$.

Proof. For a totally finite signed measure $v$ with compact support and a number $\alpha>0$, set $\left(M_{\alpha} \nu\right)(z)=\nu\left(\Delta_{\alpha}(z)\right) / \pi \alpha^{2}$. Then $M_{\alpha} \nu$ is a bounded $L^{1}$ function on C. If $W$ is a domain such that $\operatorname{supp} v \subset \bar{W}_{-\alpha}$, then $\int h d \nu=\int_{W} h\left(M_{\alpha} \nu\right) d m$ for every $h \in H L^{1}(W)$.

Now we consider the function $M_{3 e / 8} \mu$. It is nonnegative and satisfies $\left(M_{3 \ell / 8} \mu\right)(z)=16$ on $\Delta_{Q / 4}(c)$ and $\left(M_{3 \rho / 8} \mu\right)(z)=0$ on $\left(\Delta_{Q / 2}(c)\right)^{c}$. Let $s$ be the solution of the following equation:

$$
(s-1) \pi\left(\frac{\varrho}{4}\right)^{2}=\pi\left\{r^{2}-\left(\frac{\varrho}{4}\right)^{2}\right\}
$$

Since $\varrho / 2 \leqslant r \leqslant \varrho, s$ satisfies $4 \leqslant s \leqslant 16$.

Set

$$
f(z)= \begin{cases}\left(M_{3 Q / 8} \mu\right)(z)-s+1 & \text { on } \Delta_{Q / 4}(c) \\ \left(M_{3 Q / 8} \mu\right)(z)+1 & \text { on } \Delta_{r}(c)-\Delta_{Q / 4}(c) \\ 0 & \text { on } \Delta_{r}(c)^{c}\end{cases}
$$

Then $f$ satisfies (1) and

$$
\int_{\Delta_{r}} h f d m=\int_{\Delta} h\left(M_{3_{Q} / 8} \mu\right) d m=\int_{\Delta_{r}} h d \mu
$$

for every $h \in H L^{1}\left(\Delta_{r}\right)$. This completes the proof.
Every totally finite signed measure $\mu$ on $\mathbf{C}$ can be decomposed into an absolutely continuous part $\mu_{a}$ and a singular part $\mu_{s}$ with respect to the Lebesgue measure $m$. We denote by $f_{\mu}$ the Radon-Nikodym derivative $d \mu_{a} / d m$.

We shall now prove the following proposition which plays an important role in the next section.

Proposition 1.9. Let $W$ be an admissible domain and $\nu$ a totally finite positive measure on $\mathbf{C}$ such that $\operatorname{supp} \nu \subset \bar{W}$ and $f_{\nu} \geqslant \chi_{W}$ a.e. on $\mathbf{C}$, where $\chi_{W}$ denotes the characteristic function of $W$. Then, for every $\varepsilon>0$, there are a bounded open set $W_{8}$ and a bounded domain $W_{8}$ such that
(1) $W \subset W_{\varepsilon} \subset W_{\varepsilon}$ and $\bar{W} \subset W_{\varepsilon}$.
(2) $m\left(W_{s}-W_{\varepsilon}\right)<\varepsilon$.
(3) $\iint_{W} h d \nu=\int_{W_{\varepsilon}} h d m$, for every $h \in H L^{\mathcal{1}}\left(W_{g}\right)$.

Proof. ( ${ }^{1}$ ) We may assume $\varepsilon \leqslant \mathrm{l}$. We first show that to prove the proposition it is sufficient to construct the following $W_{n}, \mathscr{W}_{n}$ and $\nu_{n}, n=0,1,2, \ldots$ :
(a) $W_{n}$ is an open set and $W_{n}$ is an admissible domain.
(b) $W_{n} \subset W_{n+1}$ and $\overline{W_{n}} \subset W_{n+1}$.
(c) $W \subset W_{n} \subset W_{n}$.
(d) $l\left(\partial_{e} W_{n}\right) \leqslant l_{0}\left\{1+\frac{A B}{K} \sum_{m=0}^{n-1}\left(\frac{k}{K}\right)^{m}+\frac{4 \pi K}{A\left(l_{0}\right)^{2}} \sum_{m=0}^{n-1}(K)^{m}\right\} \quad$ for $n \geqslant 1$.
(e) $m\left(W_{0}-W_{0}\right) \leqslant \frac{\varepsilon}{2}$ and

$$
m\left(W_{n}-W_{n}\right) \leqslant \frac{\varepsilon}{2}+4 \varepsilon\left\{\frac{K}{A} \sum_{m=0}^{n-1}(K)^{m}+\frac{B}{2} \sum_{m=0}^{n-1}(k)^{m}+\frac{\pi(K)^{2}}{\left(A l_{0}\right)^{2}} \sum_{m=0}^{n-1}(K)^{2 m}\right\} \quad \text { for } n \geqslant 1
$$

${ }^{(1)}$ In this proof we sometimes put the indices on the letters as superscripts. That is, $\varrho^{1}$ is not the $i$ th power of $\varrho$, but $i$ is an index. For powers of $\varrho$, we shall put parentheses around $\varrho$ and write ( $\varrho)^{i}$.
(f) $\nu_{n}$ is a totally finite positive measure such that $\operatorname{supp} \nu_{n} \subset \bar{W}_{n}$.
(g) $f_{v_{n}} \geqslant \chi_{W_{n}} \quad$ a.e. on C.
(h) $\operatorname{supp} \mu_{n} \subset\left(\bar{W}_{n}\right)_{-\delta(K)^{n}}$ for $n \geqslant 1$ and $\mu_{n}\left(\overline{W_{n}}\right) \leqslant(k)^{n} B \varepsilon$ for $n \geqslant 0$, where $d \mu_{n}=d \nu_{n}-\chi_{W_{n}} d m$.
(i) $\int_{\bar{W}} h d \nu=\int_{\bar{W}_{n}} h d \nu_{n}$ for every $h \in H B C\left(W_{n}\right)$.

Here $k=1-2 / 10^{5}, K=1-1 / 10^{5}, l_{0}=l\left(\partial_{e} W_{0}\right)$ and $\delta=\varepsilon /\left(A l_{0}\right)$. The numbers $A$ and $B$ are positive and satisfy the following two inequalities:

$$
\frac{A B}{K} \frac{1}{1-\frac{k}{K}}+\frac{4 \pi}{\left(A l_{*}\right)^{2}} \frac{K}{1-K}<1
$$

and

$$
\frac{1}{A} \frac{K}{1-K}+\frac{B}{2} \frac{1}{1-k}+\frac{\pi}{\left(A l_{*}\right)^{2}} \frac{(K)^{2}}{1-(K)^{2}}<\frac{1}{8}
$$

where $l_{*}$ denotes the length of the boundary of the largest open disc contained in $W$.
By virtue of (b), we can define $W_{g}$ and $W_{g}$ as $\lim W_{n}$ and $\lim W_{n}$, respectively. Then, (1) is satisfied and (e) implies (2). To see (3), let $h \in H L^{1}\left(W_{\varepsilon}\right)$ and set $\|h\|_{1}=\int \tilde{W}_{\varepsilon}|h| d m$. Then, by (h) and (i), we have

$$
\int_{W} h d v-\int_{W_{n}} h d m=\int_{\left(\tilde{W}_{n}\right)-\delta(\mathbb{E})^{n}} h d \mu_{n}
$$

Since $h$ is harmonic on $\overline{\left.\Delta_{d(K)}\right)^{n}(z)}$ for every $z \in \overline{\left(\tilde{W}_{n}\right)_{-\delta(\mathbb{I})^{n}}}$, we have

$$
|h(z)|=\left|\frac{1}{\pi\left(\delta(K)^{n}\right)^{2}} \int_{\Delta_{\delta(\mathbb{I})^{n}(z)}} h d m\right| \leqslant \frac{\|h\|_{I}}{\pi\left(\delta(K)^{n}\right)^{2}}
$$

for every $z \in \overline{\left(W_{n}\right)_{-\Delta(A)}}$. Hence, by (h),

$$
\left|\int_{W} h d v-\int_{w_{n}} h d m\right| \leqslant \frac{B \varepsilon\|h\|_{1}}{\pi(\delta)^{2}}\left(\frac{k}{(K)^{2}}\right)^{n}
$$

Combining this with the fact that $h$ is also an $L^{1}$ function on $W_{s}$, we conclude that (3) is satisfied.

Next we construct $W_{n}, W_{n}$ and $\nu_{n}, n=0,1,2, \ldots$, by mathematical induction. Assume that $W_{n}, W_{n}$ and $v_{n}$ are constructed. Set $N=144, x=1-1 / 200 N=0.999965 \ldots, l_{n}=l\left(\partial_{e} W_{n}\right)$ and

$$
\lambda_{n}=\min \left\{4 \delta(K)^{n+1}, \frac{(k-x)(k)^{n} B \varepsilon}{3 N \pi l_{n}},\left(\frac{(k-x)(k)^{n} B \varepsilon}{2 N \pi}\right)^{1 / 2}\right\}
$$

Let $W_{n}\left(\lambda_{n}\right)$ be the domain as defined before Lemma 1.1, and $\beta_{n}=\beta\left(\mu_{n}, W_{n}\left(\lambda_{n}\right)\right)$ be the measure as defined after Lemma 1.6. Suppose that there is a point $p^{1} \in \partial W_{n}\left(\lambda_{n}\right)$ such that
and

$$
\beta_{n}\left(\overline{\Delta_{\lambda_{n}}\left(p^{1}\right)}\right) \geqslant N \pi\left(\lambda_{n}\right)^{2}
$$

$$
m\left(\tilde{W}_{n}\left(\lambda_{n}\right)^{e} \cap \Delta_{Q^{2}}\left(p^{1}\right)\right) \leqslant \frac{1}{50} m\left(\Delta_{Q^{2}}\left(p^{1}\right)\right),
$$

where $\varrho^{1}=8 \lambda\left(p^{1} ; \beta_{n}\right) \geqslant 8 \lambda_{n}$. For the definition of $\lambda\left(p^{1} ; \beta_{n}\right)$, see Lemma 1.7. Then, by the remark to Lemma 1.5, we can find $r^{1}$ such that $\varrho^{1 / 2} \leqslant r^{1} \leqslant \varrho^{1}$ and

$$
\begin{equation*}
l\left(\partial_{e}\left(W_{n}\left(\lambda_{n}\right) \cup \Delta_{r}\left(p^{1}\right)\right)\right) \leqslant l\left(\partial W_{n}\left(\lambda_{n}\right)\right) \tag{1.3}
\end{equation*}
$$

Set $\Delta^{1}=\Delta_{r^{1}}\left(p^{1}\right), W_{n}^{1}=W_{n} \cup \Delta^{1}$ and $W_{n}^{1}=W_{n}\left(\lambda_{n}\right) \cup \Delta^{1}$. Then, (l.3) implies

$$
l\left(\partial_{e} W_{n}^{1}\right) \leqslant l_{n}-L_{n}
$$

where $L_{n}=l_{n}-l\left(\partial W_{n}\left(\lambda_{n}\right)\right)$. Let

$$
f(\boldsymbol{z})=f\left(z ; \beta_{n} \mid \overline{\Delta_{\lambda\left(p^{1} ; \beta_{n}\right.}\left(p^{1}\right)}, \Delta^{\mathbf{1}}\right)
$$

be the function as defined in Lemma 1.8. Set
and

$$
\begin{gathered}
d \mu_{n}^{1}=d \beta_{n} \mid\left\{\partial W_{n}\left(\lambda_{n}\right)-\overline{\Delta_{\lambda\left(D^{2}: \beta_{n}\right)}\left(p^{1}\right)}\right\}+\left(f-\chi_{\Delta^{2}-W_{n}}\right) d m \\
d \nu_{n}^{1}=\chi_{W_{n}^{1}} d m+d \mu_{n}^{1} .
\end{gathered}
$$

Then $\mu_{n}^{1}$ is nonnegative and $\nu_{n}^{2}$ satisfies

$$
\int_{\widetilde{\tilde{w}_{n}}} h d v_{n}=\int_{\overline{w_{n}^{1}}} h d v_{n}^{1}
$$

for every $h \in H B C\left(W_{n}^{1}\right)$.
Set $\beta^{1}=\beta\left(\mu_{n}^{1}, \mathscr{W}_{n}^{1}\left(\lambda_{n}\right)\right)$. Suppose that there is a point $p^{2} \in \partial \ddot{W}_{n}^{1}\left(\lambda_{n}\right)$ such that
and

$$
\beta^{1}\left(\overline{\Delta_{\lambda_{n}}\left(p^{2}\right)}\right) \geqslant N \pi\left(\lambda_{n}\right)^{2}
$$

$$
m\left(\hat{W}_{n}^{1}\left(\lambda_{n}\right)^{e} \cap \Delta_{Q^{2}}\left(p^{2}\right)\right) \leqslant \frac{1}{B 0} m\left(\Delta_{Q^{2}}\left(p^{2}\right)\right)
$$

where $\varrho^{2}=8 \lambda\left(p^{2} ; \beta^{1}\right) \geqslant 8 \lambda_{n}$. Set $\Delta^{2}=\Delta_{e^{2}}\left(p^{2}\right)$. By using the same argument as above we can construct $W_{n}^{2}=W_{n}^{1} \cup \Delta^{2}, W_{1}^{2}=W_{n}^{1}\left(\lambda_{n}\right) \cup \Delta^{2}$ and $\nu_{n}^{2}$ so that $l\left(\partial_{e} W_{n}^{2}\right) \leqslant l_{n}-L_{n}-L^{1}$, where $L^{1}=l\left(\partial_{e} W_{n}^{1}\right)-l\left(\partial W_{n}^{1}\left(\lambda_{n}\right)\right), d \mu_{n}^{2}=d \nu_{n}^{2}-\chi_{W_{n}^{9}} d m$ is nonnegative and $v_{n}^{2}$ satisfies

$$
\int_{\frac{\bar{w}_{n}^{1}}{1}} h d \nu_{n}^{1}=\int_{\overline{\bar{W}_{n}^{2}}} h d \nu_{n}^{2}
$$

for every $h \in H B C\left(W_{n}^{2}\right)$.

We continue this process as long as possible. Since $\varrho^{m} \geqslant 8 \lambda_{n}$ and $l\left(\partial_{\theta} W_{n}^{m}\right) \leqslant$ $l_{n}-L_{n}-\sum_{k=1}^{m-1} L^{k} \leqslant l_{n}$ for every $m$, our process must stop after a finite number of times. Therefore there are $W_{n}^{i}, W_{n}^{i}$ and $\nu_{n}^{i}$ such that if a point $p \in \partial W_{n}^{i}\left(\lambda_{n}\right)$ satisfies
then

$$
\beta^{1}\left(\overline{\Delta_{\lambda_{n}}(p)}\right) \geqslant N \pi\left(\lambda_{n}\right)^{2}
$$

$$
m\left(W_{n}^{i}\left(\lambda_{n}\right)^{e} \cap \Delta_{Q}(p)\right)>\frac{1}{50} m\left(\Delta_{Q}(p)\right),
$$

where $\beta^{i}=\beta\left(\mu_{n}^{i}, W_{n}^{i}\left(\lambda_{n}\right)\right)$ and $\varrho=8 \lambda\left(p ; \beta^{i}\right)$.
Set $\lambda(z)=\lambda\left(z ; \beta^{i}\right)$ and $E_{1}=\left\{p \in \partial W_{n}^{i}\left(\lambda_{n}\right) \mid \beta^{i}\left(\overline{\Delta_{\lambda_{n}}(p)}\right) \geqslant N \pi\left(\lambda_{n}\right)^{2}\right\}$. This set $E_{1}$ is compact. If $E_{1} \neq \varnothing$, then $\lambda$ attains its maximum on $E_{1}$ at a point $p_{1}$ of $E_{1}$. Set $\varrho_{1}=8 \lambda\left(p_{1}\right)$ and $E_{2}=E_{1}-\Delta_{20_{1}}\left(p_{1}\right)$. If $E_{2} \neq \varnothing$, we can again find $p_{2} \in E_{2}$ at which $\lambda$ attains its maximum on $E_{2}$. We can continue this process as long as $E_{m} \neq \varnothing$. Since $\lambda\left(p_{m}\right) \geqslant \lambda_{n}$ for each $m$, there is anumber $j$ such that $E_{j} \neq \varnothing$ and $E_{j+1}=\varnothing$.

Set $\Delta_{m}=\Delta_{Q_{m}}\left(p_{m}\right), m=1,2, \ldots, j$. Then $\left\{\Delta_{m}\right\}$ is a set of mutually disjoint open discs. Now we define $W_{n+1}, W_{n+1}$ and $\nu_{n+1}$ as follows:

$$
\begin{aligned}
& W_{n+1}=W_{n}^{t} \cup \bigcup_{m=1}^{j} \Delta_{m}, \\
& U_{n+1}=W_{n}^{i}\left(\lambda_{n}\right) \cup \bigcup_{Q_{n} \gg(K)^{n+1}} \Delta_{m}, \quad V_{n+1}=W_{n}^{\prime}\left(\lambda_{n}\right) \cup \bigcup_{m=1} \Delta_{m}, \\
& W_{n+1}=\left(U_{n+1}\right)_{+2 \delta(E)^{n+1}}, \\
& f_{m}(z)=f\left(z ; \beta^{i} \mid \overline{\Delta_{\lambda\left(p_{m}\right)}\left(p_{m}\right)}, \Delta_{m}\right), \\
& d \mu_{n+1}=d \beta^{i} \mid\left\{\partial W_{n}^{i}\left(\lambda_{n}\right)-\bigcup_{m=1}^{j} \overline{\Delta_{\lambda\left(D_{m}\right)}\left(p_{m}\right)}\right\}+\sum_{m=1}\left(f_{m}-\chi_{\Delta_{m}-W_{n}^{\prime}}\right) d m, \\
& d \nu_{n+1}=\chi_{w_{n+1}} d m+d \mu_{n+1} .
\end{aligned}
$$

It is clear that $W_{n+1}, W_{n+1}$ and $\nu_{n+1}$ satisfy (a), (b), (c), (f) and (g). To prove (d) and (e), we apply Lemma 1.2 to $\left\{\Delta_{m}\right\}_{e_{m}>\delta(K)^{n+1}}$. Then, by (h),

$$
\begin{aligned}
l\left(\partial_{e}\left(\bigcup_{e_{m} \gg(K)^{n+1}}^{U} \Delta_{m}\right)\right) & \leqslant \frac{2}{\delta(K)^{n+1}} \sum_{m=1}^{\prime} \pi\left(\varrho_{m}\right)^{2} \\
& \left.=\frac{2 \cdot 8^{2}}{N} \frac{1}{\delta(K)^{n+1}} \sum_{m=1}^{j} \beta^{1} \overline{\left(\Delta_{k\left(p_{m}\right)}^{*}\left(p_{m}\right)\right.}\right) \\
& \leqslant \frac{1}{\delta(K)^{n+1}} \beta^{1}\left(\partial W_{n}^{i}\left(\lambda_{n}\right)\right) \\
& \leqslant \frac{1}{\delta(\bar{K})^{n+1}} \mu_{n}\left(\overline{W_{n}}\right) \\
& \leqslant \frac{A l_{0} B}{K}\left(\frac{k}{K}\right)^{n}
\end{aligned}
$$

Hence, by Lemma 1.1,

$$
l\left(\partial_{e} U_{n+1}\right) \leqslant l\left(\partial \tilde{W}_{n}^{i}\left(\lambda_{n}\right)\right)+\frac{A l_{0} B}{K}\left(\frac{k}{K}\right)^{n}
$$

Therefore, by Lemma 1.3,

$$
\begin{aligned}
l_{n+1} & \leqslant l_{n}+\frac{A l_{0} B}{K}\left(\frac{k}{K}\right)^{n}+\frac{4 \pi \varepsilon K}{A l_{0}}(K)^{n} \\
& \leqslant l_{0}\left\{1+\frac{A B}{K} \sum_{m=0}^{n}\left(\frac{k}{K}\right)^{m}+\frac{4 \pi K}{A\left(l_{0}\right)^{2}} \sum_{m=0}^{n}(K)^{m}\right\} .
\end{aligned}
$$

By Lemma 1.4, we obtain

$$
\begin{aligned}
m\left(W_{n}^{i}\left(\lambda_{n}\right)-W_{n}^{i}\right) & =m\left(W_{n}^{i}\left(\lambda_{n}\right)-W_{n}^{i}\right)+m\left(W_{n}^{t}-W_{n}^{i}\right) \\
& \leqslant \frac{\lambda_{n}}{2} L^{i}+m\left(W_{n}^{i-1}\left(\lambda_{n}\right) \cup \Delta^{i}-W_{n}^{i-1} \cup \Delta^{i}\right) \\
& \leqslant \frac{\lambda_{n}}{2} L^{i}+m\left(W_{n}^{i-1}\left(\lambda_{n}\right)-W_{n}^{i-1}\right) \\
& \leqslant \frac{\lambda_{n}}{2}\left(L^{i}+L^{i-1}+\ldots+L^{1}+L_{n}\right)+m\left(W_{n}-W_{n}\right)
\end{aligned}
$$

Hence by Lemma 1.3 we have

$$
\begin{aligned}
& m\left(W_{n+1}-W_{n+1}\right) \leqslant m\left(\left(U_{n+1}\right)_{+2 \delta(\mathbb{E})^{n+1}}-U_{n+1}\right)+m\left(W_{n}^{\prime}\left(\lambda_{n}\right)-W_{n}^{t}\right) \\
& \leqslant 2 \delta(\bar{K})^{n+1}\left\{l\left(\partial W_{n}^{i}\left(\lambda_{n}\right)\right)+\frac{A l_{0} B}{K}\left(\frac{k}{K}\right)^{n}\right\} \\
& + \\
& +\pi\left(2 \delta(K)^{n+1}\right)^{2}+\frac{\lambda_{n}}{2}\left(L_{n}+\sum_{m=1}^{i} L^{m}\right) \\
& +m\left(W_{n}-W_{n}\right) .
\end{aligned}
$$

Since $l_{n} \leqslant 2 l_{0}$ and $l\left(\partial W_{n}^{t}\left(\lambda_{n}\right)\right) \leqslant l_{n}-L_{n}-\sum_{m-1}^{t} L^{m}$, we have

$$
m\left(W_{n+1}-W_{n+1}\right) \leqslant\left(W_{n}-W_{n}\right)+4 \varepsilon\left\{\frac{K}{A}(K)^{n}+\frac{B}{2}(k)^{n}+\frac{\pi(K)^{2}}{\left(A l_{0}\right)^{2}}(K)^{2 n}\right\}
$$

This implies (e).
By the definition of $\mu_{n+1}$, we have

$$
\begin{aligned}
\operatorname{supp} \mu_{n+1} & \subset \overline{V_{n+1}} \\
& \subset \overline{\left(U_{n+1}\right)_{+\delta(K)^{n+1}}} \\
& \subset \overline{\left(\left(\left(U_{n+1}\right)_{+\delta(K)^{n+1}}\right)_{+\delta(K)^{n+1}}\right)_{-\delta(K)^{n+1}}} \\
& =\overline{\left(\bar{W}_{n+1}\right)_{-\delta(K)^{n+1}}} .
\end{aligned}
$$

To estimate $\mu_{n+1}\left(\overline{\tilde{W}_{n+1}}\right)=\mu_{n+1}\left(\overline{V_{n+1}}\right)$, we set $\xi_{1}=\mu_{n+1} \mid U_{m-1}^{j} \Delta_{2 Q_{m}}\left(p_{m}\right)$ and $\xi_{2}=$ $\mu_{n+1} \mid \partial W_{n}^{i}\left(\lambda_{n}\right)-\mathrm{U}_{m=1}^{\}} \Delta_{2 \rho_{m}}\left(p_{m}\right)$. Since $\left\{\Delta_{m}\right\}$ is a set of mutually disjoint open discs and $\beta^{t}\left(\overline{\Delta_{2 Q_{m}}\left(p_{m}\right)}\right)<N \pi\left(2 \varrho_{m}\right)^{2}, m=1,2, \ldots, j$, we have

$$
\begin{aligned}
& \xi_{1}\left(\overline{V_{n+1}}\right)=\mu_{n+1}\left(\cup \Delta_{2_{Q_{m}}}\left(p_{m}\right)\right) \\
& =\beta^{i}\left(\cup \Delta_{2_{Q_{m}}}\left(p_{m}\right)\right)-\sum_{m \sim 1}^{1} \int \chi_{\Delta_{m}-W_{n}^{i}} d m \\
& \leqslant \beta^{i}\left(U \Delta_{2_{e_{m}}}\left(p_{m}\right)\right)-\sum_{m=1}^{j} \int x_{\Delta_{m}-\tilde{w}_{n}^{A}\left(\lambda_{n}\right)} d m \\
& \leqslant \beta^{\mathbf{4}}\left(\cup \Delta_{2_{\varrho_{m}}}\left(p_{m}\right)\right)-\sum_{m=1}^{1} \frac{1}{5} \pi\left(\varrho_{m}\right)^{2} \\
& \leqslant \beta^{t}\left(\cup \Delta_{2_{\rho_{m}}}\left(p_{m}\right)\right)-\sum_{m=1}^{j} \frac{1}{50} \pi\left(\varrho_{m}\right)^{2} \frac{\beta^{i}\left(\Delta_{2 Q_{m}}\left(p_{m}\right)\right)}{N \pi\left(2 \varrho_{m}\right)^{2}} \\
& \leqslant \mu \beta^{\boldsymbol{l}}\left(\cup \Delta_{2_{\rho_{m}}}\left(p_{m}\right)\right) \\
& \leqslant x(k)^{n} B \varepsilon \text {. }
\end{aligned}
$$

Since every point $p \in \partial W_{n}^{t}\left(\lambda_{n}\right)-U \Delta_{2_{m}}\left(p_{m}\right)$ satisfies
we have

$$
\beta^{f}\left(\overline{\Delta_{\lambda_{n}}(p)}\right)>N \pi\left(\lambda_{n}\right)^{2}
$$

$$
\xi_{8}\left(\overline{\Delta_{\lambda_{n} / 2}(p)}\right)<N \pi\left(\lambda_{n}\right)^{2}
$$

for every $p \in \partial W_{n}^{\prime}\left(\lambda_{n}\right)$.
Each component $\gamma$ of $\partial W_{n}^{\prime}\left(\lambda_{n}\right)$ can be covered by at most $\left[\left[l(\gamma) / \lambda_{n}\right]\right]$ closed discs with radii $\lambda_{n} / 2$ and centers on $\gamma$, where $\left[\left[l(\gamma) / \lambda_{n}\right]\right]$ denotes the smallest natural number not less than $l(\gamma) / \lambda_{n}$. If $l(\gamma) \geqslant 2 \pi \lambda_{n}$, then

$$
\left[\left[l(\gamma) / \lambda_{n}\right]\right] \leqslant \frac{l(\gamma)}{\lambda_{n}}+1 \leqslant \frac{l(\gamma)}{\lambda_{n}}\left(1+\frac{1}{2 \pi}\right) \leqslant \frac{3 l(\gamma)}{2 \lambda_{n}} .
$$

Therefore

$$
\begin{aligned}
\xi_{2}\left(\overline{V_{n+1}}\right) & =\xi_{2}\left(\partial W_{n}^{\prime}\left(\lambda_{n}\right)\right) \\
& \leqslant\left\{\frac{3 l\left(\partial W_{n}^{\prime}\left(\lambda_{n}\right)\right)}{2 \lambda_{n}}+1\right\} N \pi\left(\lambda_{n}\right)^{2} \\
& \leqslant \frac{3}{2} l_{n} N \pi \lambda_{n}+N \pi\left(\lambda_{n}\right)^{2} \\
& \leqslant(k-x)(k)^{n} B \varepsilon .
\end{aligned}
$$

Thus (h) holds for $\mu_{n+1}$.

To prove (i), let $h \in H B C\left(W_{n+1}\right)$. Then $h \mid V_{n+1} \in H B C\left(V_{n+1}\right)$, so that

$$
\int_{\bar{W}} h d v=\int_{\widetilde{\vec{x}}_{n}} h d v_{n}=\int_{\overline{\bar{w}_{n}^{l}}} h d v_{n}^{i}=\int_{\overline{\vec{W}_{n+1}}} h d v_{n+1} .
$$

Finally, we construct $W_{0}, W_{0}$ and $\nu_{0}$. Set

$$
\lambda^{0}=\min \left\{\frac{1}{2} \frac{\varepsilon}{l}, \frac{(k-x) \mu(\bar{W})}{3 N \pi l},\left(\frac{(k-x) \mu(\bar{W})}{2 N \pi}\right)^{1 / 2}\right\},
$$

where $l=l\left(\partial_{e} W\right)$ and $d \mu=d \nu-\chi_{W} d m$. In the above argument, replace $W_{n}, W_{n}, v_{n}$ and $\lambda_{n}$ by $W, W, \nu$ and $\lambda^{0}$, respectively. Then we can construct $W^{1}, V^{1}$ and $\nu^{1}$ which correspond to $W_{n+1}, V_{n+1}$ and $\nu_{n+1}$, respectively. We see that $W^{1}$ and $V^{1}$ are admissible domains and satisfy

$$
m\left(V^{1}-W^{2}\right) \leqslant \frac{\lambda^{0}}{2} l \leqslant \frac{\varepsilon}{2}\left(\frac{1}{2}\right)
$$

and

$$
\mu^{1}\left(V^{1}\right) \leqslant k \mu(\bar{W})
$$

where $d \mu^{1}=d \nu^{1}-\chi_{W^{1}} d m$. The positive measure $\nu^{1}$ satisfies supp $\nu^{1} \subset \overline{V^{1}}, f_{v^{1}} \geqslant \chi_{W^{1}}$ a.e. on $\mathbf{C}$ and

$$
\int_{\bar{W}} h d v=\int_{\overline{V^{1}}} h d v^{1}
$$

for every $h \in H B C\left(V^{1}\right)$.
For $n \geqslant 1$, set

$$
\lambda^{n}=\min \left\{\frac{1}{2^{n+1}} \frac{\varepsilon}{l^{n}}, \frac{(k-x)(k)^{n} \mu(\bar{W})}{3 N \pi l^{n}},\left(\frac{(k-x)(k)^{n} \mu(\bar{W})}{2 N \pi}\right)^{1 / 2}\right\}
$$

where $l^{n}=l\left(\partial_{e} V^{n}\right)$. Then, by using again the same argument as above, from $W^{n}, V^{n}, v^{n}$ and $\lambda^{n}$ we can construct admissible domains $W^{n+1}, V^{n+1}$ and a positive measure $\nu^{n+1}$ such that $W^{n+1} \subset V^{n+1}, W^{n} \subset W^{n+1}, V^{n} \subset V^{n+1}, m\left(V^{n+1}-W^{n+1}\right) \leqslant(\varepsilon / 2)\left(\sum_{m-1}^{n+1} 1 / 2^{m}\right), \operatorname{supp} v^{n+1} \subset$ $\overline{V^{n+1}}, t_{v^{n+1}} \geqslant \chi_{w^{n+1}}$ a.e. on $\mathbf{C}, d \mu^{n+1}=d \nu^{n+1}-\chi_{w^{n+1}} d m, \mu^{n+1}\left(V^{n+1}\right) \leqslant(k)^{n+1} \mu(\bar{W})$ and

$$
\int_{\bar{w}} h d v=\int_{\overline{v^{n+1}}} h d v^{n+1}
$$

for every $h \in H B C\left(V^{n+1}\right)$.
Choose $n$ so that $(k)^{n} \mu(\bar{W}) \leqslant B \varepsilon$, and set $W_{0}=W^{n}, W_{0}=V^{n}$ and $v_{0}=v^{n}$. Then these satisfy (a), (c), (e), (f), (g), (h) and (i). The proof is complete.

## §2. Analytic functions with finite Dirichlet integrals on Riemann surfaces

In this section we deal with the kernel function of the Hilbert space $A D(R, \zeta)$ and prove Theorem 2.3 below. Main results of this paper follow from this theorem. First we give notation and a preliminary lemma.

Let $R$ be a Riemann surface and $\zeta$ a point on $R$. We denote by $A D(R, \zeta)$ the complex linear space of analytic functions $f$ on $R$ such that $f(\zeta)=0$ and the Dirichlet integrals

$$
D_{R}[f]=\int_{R}\left|f^{\prime}(z)\right|^{2} d x d y \quad(z=x+i y)
$$

of $f$ on $R$ are finite. An inner product on $A D(R, \zeta)$ is defined by

$$
(f, g)=\frac{1}{\pi} \int_{R} f^{\prime}(z) \overline{g^{\prime}(z)} d x d y
$$

for every pair of $f$ and $g$ in $A D(R, \zeta)$. With this inner product $A D(R, \zeta)$ becomes a Hilbert space. Set $\|f\|=(f, f)^{\frac{t}{2}}=\left(D_{R}[f] / \pi\right)^{\frac{1}{2}}$.

Let $t$ be a local coordinate defined in a neighborhood of $\zeta$. Then the functional $f \mapsto(d t / d t)(\zeta)$ is bounded on $A D(R, \zeta)$, and hence there is a unique function $M(z)=$ $M(z ; \zeta, t, R)$ such that

$$
\begin{equation*}
\frac{d f}{d t}(\zeta)=(f, M) \tag{2.1}
\end{equation*}
$$

for every $f \in A D(R, \zeta)$. We call it the kernel function of $A D(R, \zeta)$. The differential $d M$ is called the exact Bergman kernel differential.

The kernel function $M(z)=M(z ; \zeta, t, R)$ is identically equal to zero if and only if $(d f / d t)(\zeta)=0$ for every $f \in A D(R, \zeta)$. If $M \neq 0$, then $(d M / d t)(\zeta)=\|M\|^{2}>0$.

In the case of a domain in the complex z-plane, we always set $t=z$ and abbreviate $M(z ; \zeta, t, R)$ by $M(z ; \zeta)$. Then

$$
M(z ; \zeta)=\frac{1}{2}\left(P_{0}(z ; \zeta)-P_{1}(z ; \zeta)\right),
$$

where $P_{0}(z ; \zeta)$ (resp. $P_{1}(z ; \zeta)$ ) is the extremal horizontal (resp. vertical) slit mapping of the plane domain (cf. [6, pp. 125-132]).

By this equality and our Proposition 1.9, we can prove Lemma 2.1 below. But, because the referee and J. Burbea [2] have given another short proof by using Schiffer's equality ([7]), we omit the proof.

Lemma 2.1. Let $R$ be a plane domain. Then the kernel function $M(z)=M(z ; \zeta)$ on $R$ satisfies

$$
\|M\|_{\infty} \leqslant\|M\|,
$$

where $\|M\|_{\infty}=\sup _{z \in R}|M(z)|$.
By using above lemma, we shall prove the following proposition:
Proposition 2.2. Let $R$ be a Riemann surface. If the valence function $\nu_{M}$ of $w=M(z)=M(z ; \zeta, t, R)$ satisfies $v_{M}(w) \geqslant n$ on $M(R)$, then

$$
\|M\|_{\infty} \leqslant\|M\| / \sqrt{n}
$$

Proof. Without loss of generality we may assume $M(z) \equiv 0$. Let $\left\{R_{j}\right\}$ be an exhaustion of $R$ such that each $\partial R_{j}$ consists of a finite number of mutually disjoint analytic Jordan curves on $R$. We may assume that $\zeta \in R_{j}$ for every $j$. Set $M_{f}(z)=M\left(z ; \zeta, t, R_{j}\right), \nu_{j}=\nu_{M_{j}}$, $W_{j}=M_{j}\left(R_{j}\right)$ and $U_{j}=\left\{w \in W_{j} \mid v_{j}(w) \geqslant n\right\}$. Then, for every compact subset $K$ of $M(R)$, there is a number $J$ such that $K \subset U_{J}$. For every $\varepsilon>0$, we choose $K$ so that $\int_{M(R)-\Sigma} \nu_{M} d m<\varepsilon$ and $J$ so that $K \subset U_{J}, \int_{K}\left(\nu_{M}-\nu_{J}\right) d m<\varepsilon$ and $\int v_{J} d m-\int \nu_{M} d m<\varepsilon$. It follows that

$$
\begin{aligned}
m\left(W_{J}-U_{J}\right) & \leqslant \int_{W_{J}-U_{J}} \nu_{J} d m \\
& \leqslant \int v_{J} d m-\int v_{M} d m+\int_{M(R)-K} \nu_{M} d m+\int_{K}\left(\nu_{M}-\nu_{J}\right) d m \\
& <3 \varepsilon .
\end{aligned}
$$

Since $M_{J}$ can be extended analytically onto $R_{J}$ (cf. [8, pp. 114-137]), $W_{J}$ is admissible. Define an $L^{1}$ function $\nu$ on $\mathbf{C}$ by $\nu=\max \left\{\nu_{J}, n \chi_{W_{J}}\right\}$ and apply Proposition 1.9 replacing $W$ and $d \nu$ by $W_{J}$ and $(\nu / n) d m$, respectively. Then there are an open set $W_{s}$ and a domain $W_{\varepsilon}$ such that $W_{J} \subset W_{\varepsilon} \subset W_{\varepsilon}, m\left(\tilde{W}_{\varepsilon}\right)<\infty, m\left(W_{\varepsilon}-W_{\varepsilon}\right)<\varepsilon$ and $\int_{W_{J}} h \nu d m=n \int_{W_{\varepsilon}} h d m$ for every $h \in H L^{1}\left(W_{\varepsilon}\right)$. Set $M_{\varepsilon}(w)=M\left(w ; 0, w, W_{\varepsilon}\right)$. Since $H L^{2}\left(W_{\varepsilon}\right) \subset H L^{1}\left(W_{\varepsilon}\right)$, by (2.1), we have

$$
n \int_{\tilde{W}_{\varepsilon}} f^{\prime}\left(\frac{1}{\int v_{J} d m}-\frac{\overline{M_{\varepsilon}^{\prime}}}{n \pi}\right) d m=\frac{n}{\int v_{J} d m} \int_{\tilde{w}_{e}-W_{\varepsilon}} f^{\prime} d m+\frac{1}{\int v_{J} d m} \int_{W_{J}} f^{\prime}\left(v-v_{J}\right) d m
$$

for every $f \in A D\left(W_{\varepsilon}, 0\right)$. Since $v-v_{J}=0$ on $U_{J}$ and $0 \leqslant v-v_{J} \leqslant n$ on $W_{J}-U_{J}$, we have

$$
D_{\bar{w}_{\varepsilon}}\left[\frac{w}{\int v_{J} d m}-\frac{M_{\varepsilon}}{n \pi}\right]^{1 / 2} \leqslant \frac{1}{\int v_{J} d m}\left\{\sqrt{m\left(W_{\varepsilon}-W_{\varepsilon}\right)}+\sqrt{m\left(W_{J}-U_{J}\right)}\right\}<\frac{1}{\int v_{J} d m}(\sqrt{\varepsilon}+\sqrt{3 \varepsilon})
$$

This implies that $M_{\varepsilon}(w)$ converges to $\left(n \pi / \int \nu_{M} d m\right) w$ uniformly on every compact subset of $M(R)$ as $\varepsilon \rightarrow 0$. By Lemma 2.1

$$
\begin{aligned}
|w| & =\frac{\int v_{M} d m}{n \pi} \lim _{\varepsilon \rightarrow 0}\left|M_{\varepsilon}(w)\right| \\
& \leqslant \frac{\int \nu_{M} d m}{n \pi} \lim _{\varepsilon \rightarrow 0} \sqrt{M_{\varepsilon}^{\prime}(0)} \\
& =\frac{1}{\sqrt{n}} \sqrt{\frac{\int \nu_{M} d m}{\pi}}=\frac{\|M\|}{\sqrt{n}}
\end{aligned}
$$

for every $w \in M(R)$. Hence $\|M\|_{\infty} \leqslant\|M\| / \sqrt{n}$.
Since $\nu(w) \geqslant 1$ on $M(R)$, the following theorem immediately follows from Proposition 2.2.

Theorem 2.3. For an arbitrary Riemann surface, the kernel function $M(z)=M(z ; \zeta, t, R)$ is bounded and satisfies

$$
\begin{equation*}
\|M\|_{\infty} \leqslant\|M\| . \tag{2.2}
\end{equation*}
$$

Finally we deal with the complex linear space $A D(R)$, the space of analytic functions on a Riemann surface $R$ with finite Dirichlet integrals. By Theorem 2.3 we obtain the following corollaries:

Corollary 2.4. If there is a nonconstant AD function on a Riemann surface $R$, then there is a nonconstant bounded $A D$ function on $R$, namely, $O_{A D}=O_{A B D}$, where $O_{A D}$ (resp. $O_{A B D}$ ) denotes the class of Riemann surfaces without nonconstant $A D$ functions (resp. nonconstant bounded $A D$ functions).

Proof. Let $f$ be a nonconstant $A D$ function on $R$. Choose a point $\zeta$ on $R$ so that $(d f / d t)(\zeta) \neq 0$ for some local coordinate $t$ defined in a neighborhood of $\zeta$. Then the kernel function $M(z ; \zeta, t, R)$ is nonconstant. Theorem 2.3 further implies that $M$ is bounded.

Corollary 2.5. A Riemann surface $R$ is not of class $O_{A D}$ if and only if $\operatorname{dim}_{\mathbf{C}} A D(R)=\infty$.

Proof. It is sufficient to show that if there is a nonconstant $A D$ function on $R$, then $\operatorname{dim}_{C} A D(R)=\infty$. Let $f$ be a nonconstant bounded $A D$ function on $R$. Let $P$ be a polynomial with complex coefficients. Then $P(f) \equiv 0$ if and only if $P \equiv 0$. Hence bounded $A D$ functions $f^{n}, n=0,1,2, \ldots$, are linearly independent, and so $\operatorname{dim}_{\mathrm{C}} A D(R)=\infty$.

Corollary 2.6. Let $A B D(R)$ be the complex linear space of bounded $A D$ functions $f$ on a Riemann surface $R$ and set $\|\|f\|=\| f\left\|_{\infty}+\right\| f-f(\zeta) \|$, where $\zeta$ is a fixed point on $R$. Then $A B D(R)$ becomes a Banach algebra with the norm $|\|\cdot\||$ and dense in $A D(R)$ in the
sense that for every $f \in A D(R)$ there is a sequence $\left\{f_{n}\right\} \subset A B D(R)$ such that $f_{n}(\zeta)=f(\zeta)$ for every $n$ and $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. The first assertion is evident. To prove the second assertion it is sufficient to show that $A B D(R, \zeta)$ is dense in the Hilbert space $A D(R, \zeta)$, where $A B D(R, \zeta)$ denotes the linear space of functions $f \in A B D(R)$ such that $f(\zeta)=0$. Choose a sequence $\left\{\zeta_{n}\right\}_{n=1}^{\infty} \subset R$ so that $\lim \zeta_{n}=\zeta$ and let $t$ be a fixed local coordinate defined in a neighborhood of $\zeta \cup \bigcup_{n=1}^{\infty} \zeta_{n}$. Then $\left\{M\left(z ; \zeta_{n}, t, R\right)-M\left(\zeta ; \zeta_{n}, t, R\right)\right\}_{n=1}^{\infty}$ is complete in $A D(R, \zeta)$. In fact, if $f \in A D(R, \zeta)$ satisfies $\left(f(z), M\left(z ; \zeta_{n}, t, R\right)-M\left(\zeta ; \zeta_{n}, t, R\right)\right)=0$ for every $n$, then $(d f / d t)\left(\zeta_{n}\right)=0$ for every $n$. Hence $f \equiv 0$. By Theorem $2.3 M\left(z ; \zeta_{n}, t, R\right)-M\left(\zeta ; \zeta_{n}, t, R\right)$ is bounded, and so we have the corollary.

Remark 1. It is easy to show that $\left\{M\left(z ; \zeta^{n}, t, R\right)\right\}_{n=1}^{\infty}$ is also complete in $A D(R, \zeta)$ (for the definition, see § 3).

Remark 2. From Corollary 2.6 we know that the maximal ideal space of $A B D(R)$ will be useful to study functions of class $A D(R)$.

## §3. Representing measures of the functional $\varphi \rightarrow \varphi(0)$

The valence function $v_{M}$ of the kernel function $M(z ; \zeta, t, R)$ satisfies

$$
f^{\prime}(0)=\frac{1}{\int v_{M} d m} \int_{M(R)} f^{\prime} v_{M} d m
$$

for every analytic functions $f$ on $M(R)$ such that $\int_{M(R)}\left|f^{\prime}\right|^{2} v_{M} d m<\infty$, namely, $\nu_{M} d m$ is a representing measures of the functional $\varphi \rightarrow \varphi(0)$ defined on the space of analytic $L^{2}\left(\nu_{M} d m\right)$ functions $\varphi$ on $M(R)$ with single-valued integrals. In this section, we generalize Proposition 2.2 and prove Proposition 3.2 below.

First we give notation. Let $R$ be a Riemann surface and $\zeta$ a point on $R$. Let $\nu$ be a measurable function on $R$ such that $\nu(z) \geqslant c$ a.e. on $R$ for a positive number $c$. We denote by $A D_{\nu}(R, \zeta)$ the complex linear space of analytic functions $f$ on $R$ such that $f(\zeta)=0$ and $\int_{R}\left|f^{\prime}(z)\right|^{2} v(z) d x d y<\infty$, where $z=x+i y$.

An inner product on $A D_{\nu}(R, \zeta)$ is defined by

$$
(f, g)_{\nu}=\frac{1}{\pi} \int_{R} f^{\prime} \bar{g}^{\prime} v d x d y
$$

for every pair of $f$ and $g$ in $A D_{\nu}(R, \zeta)$. With this inner product $A D_{\nu}(R, \zeta)$ becomes a Hilbert space. Set $\|f\|_{\nu}=(f, f)_{v}^{1 / 2}=\left(\int_{R}\left|f^{\prime}\right|^{2} \nu d x d y / \pi\right)^{1 / 2}$.

Let $t$ be a fixed local coordinate defined in a neighborhood of $\zeta$. Since the functional $f \mapsto(d f / d t)(\zeta)$ is bounded, there is a unique function $M_{\nu}(z)=M_{\nu}(z ; \zeta, t, R)$ such that

$$
\frac{d f}{d t}(\zeta)=\left(f, M_{v}\right)_{v}
$$

for every $f \in A D_{\nu}(R, \zeta)$. We call $M_{\nu}$ the kernel function of $A D_{\nu}(R, \zeta)$. The kernel function $M_{\nu}(z ; \zeta, t, R)$ is identically equal to zero if and only if $(d f / d t)(\zeta)=0$ for every $f \in A D_{\nu}(R, \zeta)$.

The following proposition is a generalization of Theorem 2.3.
Proposition 3.1. The kernel function $M_{v}(z)=M_{v}(z ; \zeta, t, R)$ is bounded and satisfies

$$
\left\|M_{\nu}\right\|_{\infty} \leqslant\left\|M_{\nu}\right\|_{\nu} / \sqrt{c}
$$

Proof. We may assume $M_{\nu}(z) \neq 0$. Suppose that $\nu$ is lower semicontinuous on $R, \nu(z)$ is a natural number for every $z \in R$ and $\nu(z) \geqslant n$ on $R$ for a fixed natural number $n$. Set $W=M_{\nu}(R)$ and $\mu(\omega)=\sum_{z \in M_{v}^{-1}(\omega)} \nu(z)$. Then $\int_{R}\left|M_{\nu}^{\prime}\right|^{2} v d x d y=\int \mu d m<\infty, \mu$ is lower semicontinuous on $\mathbf{C}, \mu(\omega)$ is a natural number not less than $n$ for almost all $\omega \in W$ and $\mu(\omega)=0$ on $W^{c}$.

Now we construct a Riemann surface $S$ and $F \in A D(S, \eta)$ for some $\eta$ on $S$ such that
(1) The valence function $\nu_{F}$ of $F$ is equal to $\mu$ a.e. on $\mathbf{C}$.
(2) $(d F / d \tau)(\eta) \neq 0$ for some (and hence every) local coordinate $\tau$ defined in a neighborhood of $\eta$.
(3) For every $g \in A D(S, \eta)$, there is a function $f \in A D_{\mu}(W, 0)$ satisfying $g=f \circ F$.

Set $U_{j}=\{\omega \in \mathbf{C} \mid \mu(\omega) \geqslant j\}, j=1,2, \ldots$ Then each $U_{j}$ is open and satisfies $U_{j} \supset U_{j+1}$. For every $j \geqslant 2$, let $U_{j, k}, k=1,2, \ldots, k(j), k(j) \leqslant \infty$, be connected components of $U_{j}$. For each $j \geqslant 2$ and $k$ with $1 \leqslant k \leqslant k(j)$, take a point $p_{\text {j,k }}$ and a neighborhood $V_{j, k}$ of $p_{j, k}$ so that $V_{j, k} \subset U_{j, k}, 0 \notin \mathrm{U}_{j} \mathrm{U}_{k} V_{j, k}$, and $V_{j, k} \cap V_{t, h}=\varnothing((j, k) \neq(i, h))$. Let $s_{j, k, l}, l=1,2, \ldots$, be mutually disjoint closed slits in $V_{j . k}$ converging to $p_{j . k}$.

Let $S_{1}$ be a copy of $U_{1}-\bigcup_{k} U_{l} s_{2, k, l}=W-U_{k} U_{l} s_{2, k, l}$ and let $S_{j}, j=2,3, \ldots$, be copies of $U_{j}-\bigcup_{k} \bigcup_{i} s_{j, k, l}-\bigcup_{k} U_{i} s_{j+1, k, l}$. We joint these copies along their common slitsidentifying the upper edges of the slits of $S$, with the corresponding lower edges of the slits of $S_{j+1}, j=1,2, \ldots$, and vice versa. This gives a ramified covering surface $S$ of $W$.

Let $F$ be its projection mapping and let $\eta$ be a point of $F^{-1}(0)$. Then these $S$ and $F$ satisfy (1) and (2). It is easy to show that for every bounded analytic function $g$ on $S$ there is a bounded analytic function $f$ on $W$ satisfying $g=f \circ F$ (cf. Myrberg's example,
e.g. [5, pp. 53-54]). By Corollary 2.6, every $g \in A D(S, \eta)$ can be approximated by bounded analytic functions on $S$, and so (3) is satisfied.

By virtue of (2) we can choose $F$ as a local coordinate defined in a neighborhood of $\eta$. Set $M(w)=M(w ; \eta, F, S)$. Then, for every $f \in A D_{\mu}(W, 0)$, we obtain

$$
\begin{aligned}
f^{\prime}(0) \frac{d M_{v}}{d t}(\zeta) & =\frac{1}{\pi} \int_{R}\left(f \circ M_{v}\right)^{\prime} \overline{M_{v}^{\prime}} v d x d y \\
& =\frac{1}{\pi} \int_{W} f^{\prime} \mu d m \\
& =\frac{1}{\pi} \int_{S}(f \circ F)^{\prime} \overline{F^{\prime}} d u d v \quad(w=u+i v) .
\end{aligned}
$$

In particular, by taking $f(\omega)=\omega$, we have $\left(d M_{\nu} / d t\right)(\zeta)=\left\|M_{\nu}\right\|_{\nu}^{2}=\|F\|^{2}$. Hence

$$
\frac{d g}{d F}(\eta)=f^{\prime}(0)=\frac{1}{\pi} \int_{s} g^{\prime} \frac{\overline{F^{\prime}}}{\|F\|^{2}} d u d v
$$

for every $g=f \circ F \in A D(S, \eta)$, and so $M=F /\|F\|^{2}$. Therefore, by Proposition 2.2, we have

$$
\left\|M_{\nu}\right\|_{\infty}=\|F\|_{\infty} \leqslant\|F\| / \sqrt{n}=\left\|M_{\nu}\right\|_{\nu} / \sqrt{n}
$$

Suppose next that $\nu$ is lower semicontinuous on $R$, that $\nu(z) / \varepsilon$ is a natural number for some fixed $\varepsilon>0$ and for every $z \in R$ and that $c / \varepsilon$ is a natural number. Set $\nu_{\varepsilon}(z)=\max \{\nu(z) / \varepsilon$, $c / \varepsilon\}$. Then $M_{\nu}(z ; \zeta, t, R)=M_{\nu_{\varepsilon}}(z ; \zeta, t, R) / \varepsilon$ and $\nu_{\varepsilon}$ satisfies the above assumption. Hence

$$
\left\|M_{\nu}\right\|_{\infty}=\left\|M_{\nu_{\varepsilon}} / \varepsilon\right\|_{\infty} \leqslant \sqrt{\varepsilon / c}\left\|M_{\nu_{\varepsilon}} / \varepsilon\right\|_{\nu_{\varepsilon}}=\left\|M_{\nu}\right\|_{\nu} / \sqrt{c}
$$

Finally, we consider an arbitrary measurable function $\nu$ on $R$ such that $\nu(z) \geqslant c$ a.e. on $R$. We can construct measurable functions $\nu$, on $R, j=1,2, \ldots$, such that
(1) $0 \leqslant v_{j} \leqslant \nu_{j+1}$ a.e. on $R$ and $\lim \nu_{j}=\nu$.
(2) $\nu_{j}(z) \geqslant c$ a.e. on $R$.
(3) $\nu_{j}$ is lower semicontinuous on $R$.
(4) $\left(2^{j} / c\right) \nu_{j}(z)$ is a natural number for every $z \in R$.

It is easy to show that $M_{v_{j}}(z ; \zeta, t, R)$ converges to $M_{\nu}(z ; \zeta, t, R)$ uniformly on every compact subset of $R$ and $\left\|M_{\nu_{j}}\right\|_{\nu_{j}} \rightarrow\left\|M_{\nu}\right\|_{\nu}$ as $j \rightarrow \infty$. Since $\left\|M_{\nu_{j}}\right\|_{\infty} \leqslant\left\|M_{v_{j}}\right\|_{\nu_{j}} / \sqrt{c}$ by the above argument, we have $\left\|M_{\nu}\right\|_{\infty} \leqslant\left\|M_{\nu}\right\|_{\nu} / \sqrt{c}$. The proof is complete.

Let $E$ be a compact set in the plane $C$ and $U$ be a domain containing $E$. We say that $E$ is removable with respect to $A D$ functions if every $f \in A D(U-E)$ can be extended
analytically onto $U$. We denote by $N_{D}$ the class of compact sets which are removable with respect to $A D$ functions. A set $E$ is of class $N_{D}$ if and only if $E^{c}$ is a domain of class $O_{A D}$, namely, there are no nonconstant $A D$ functions on $E^{c}$ (see e.g. [5, p. 261]). By using this notation we have

Proposition 3.2. Let $W$ be a plane domain containing the origin 0 . Let $v$ be an $L^{1}$ function on $\mathbf{C}$ such that $\nu(z) \geqslant c$ a.e. on $W$ for a positive number $c$ and $\nu(z)=0$ a.e. on $W^{c}$. If

$$
f^{\prime}(0)=\frac{1}{\int v d m} \int_{w} f^{\prime} v d m
$$

for every $f \in A D_{\nu}(W, 0)$, then $W \subset \Delta_{r}(0)$, where $r=\left\{\int \nu d m /(c \pi)\right\}^{\ddagger}$. The equality

$$
\sup _{z \in W}|z|=r
$$

holds if and only if $v(z)=c$ a.e. on $W$ and $W=\Delta_{r}(0)-E$, where $E$ is a relatively closed subset of $\Delta_{r}(0)$ such that $E \cap K \in N_{D}$ for every compact subset $K$ of $\Delta_{r}(0)$.

Proof. From the uniqueness of the kernel function $M_{\nu}(z ; 0, z, W)$, it follows that $M_{\nu}(z ; 0, z, W)=\left(\pi / \int \nu d m\right) z$. Since $\left\|M_{\nu}\right\|_{\nu}=\left(\pi / \int \nu d m\right)^{4}$, by Proposition 3.1, we have $W \subset \Delta_{r}(0)$. Thus the first assertion has been proved.

To show the second assertion, we assume $\inf _{z \in \Sigma} v(z)>c$ for a compact subset $K$ of $W$ with $m(K)>0$. Let $d=d(K, \partial W)$ and define a bounded nonnegative $L^{1}$ function $\nu_{1}$ on $\mathbf{C}$ by $\nu_{1}=M_{d / 2} \mu$, where $d \mu=(\nu-c) \chi_{S} d m$ and $\left(M_{d / 2} \mu\right)(z)=\mu\left(\Delta_{d / 2}(z)\right) /\left\{\pi(d / 2)^{2}\right\}$. Then there are a disc $\Delta_{1}$ and a number $\alpha_{1}>0$ such that $\overline{\Delta_{1}} \subset W$ and $\nu_{1}(z) \geqslant \alpha_{1}$ on $\Delta_{1}$. Let $\Delta_{j}, j=2, \ldots, n$, be discs with centers at $p_{j}$ such that $p_{n}=0, \bar{\Delta}_{j} \subset W$ and $p_{j} \in \Delta_{j-1}$ for every $j$. Assume that there are a bounded nonnegative $L^{1}$ function $\nu_{j-1}$ on $C$ and a number $\alpha_{j-1}>0$ such that $\operatorname{supp} v_{j-1} \subset W, \nu_{j-1}(z) \geqslant \alpha_{j-1}$ on $\Delta_{j-1}$ and $\int h v_{j-1} d m=\int h \nu_{1} d m$ for every harmonic function $h$ on $W$. Let $\Delta$ be a disc with center at $p$ such that $\Delta \subset \Delta_{j-1}$. Then

$$
\begin{aligned}
\int h v_{j-1} d m & =\int h\left(v_{j-1}-\alpha_{j-1} \chi_{\Delta}\right) d m+\alpha_{j-1} \int_{\Delta} h d m \\
& =\int h\left(v_{j-1}-\alpha_{j-1} \chi_{\Delta}\right) d m+\alpha_{j-1} \frac{m(\Delta)}{m\left(\Delta_{j}\right)} \int_{\Delta_{j}} h d m
\end{aligned}
$$

for every harmonic function $h$ on $W$. Set $\nu_{j}=v_{j-1}-\alpha_{j-1} \chi_{\Delta}+\left(\alpha_{j-1} m(\Delta) / m\left(\Delta_{j}\right)\right) \chi_{\Delta_{j}}$ and $\alpha_{j}=\alpha_{j-1} m(\Delta) / m\left(\Delta_{j}\right)$. Then $\nu_{j}$ and $\alpha_{j}$ satisfy the above conditions for $j$. Thus, by induction, we can construct $\nu_{n}$ and $\alpha_{n}>0$ such that supp $v_{n} \subset W, v_{n}(z) \geqslant \alpha_{n}$ on $\Delta_{n}$ and $\int h v_{n} d m=\int h v_{1} d m$ for every harmonic function $h$ on $W$.

Set $\delta=\alpha_{n} m\left(\Delta_{n}\right) / \int \nu d m$ and $\nu^{*}=\nu-(\nu-c) \chi_{K}+\nu_{n}-\alpha_{n} \chi_{\Delta_{n}}+\delta \nu$. Then $\nu^{*}(z) \geqslant(1+\delta) c$ a.e. on $W, \nu^{*}(z)=0$ a.e. on $W^{c}, A D_{\nu^{*}}(W, 0)=A D_{\nu}(W, 0)$ and

$$
f^{\prime}(0)=\frac{1}{\int v d m} \int_{W} f^{\prime} v d m=\frac{1}{\int \nu^{*} d m} \int_{W} f^{\prime} \nu^{*} d m
$$

for every $f \in A D_{p^{*}}(W, 0)$. Hence $\sup _{z \in W}|z| \leqslant r / \sqrt{1+\delta}<r$.
Therefore if $\sup _{z \epsilon W}|z|=r$, then $v(z)=c$ a.e. on $W$ and $m(W)=\int \nu d m / c=\pi r^{2}=m\left(\Delta_{r}(0)\right)$. This implies that $\chi_{W}=\chi_{\Delta_{r}(0)}$ a.e. on $\mathbf{C}$ and $M(z ; 0, z, W)=z / r^{2}$. By Theorem 1 of the author's paper [4], we see that $W$ is a domain mentioned above.

Conversely, if $W$ is a domain mentioned above and. $\nu(z)=c$ a.e. on $W$, then every $f \in A D_{\nu}(W, 0)$ can be extended analytically onto $\Delta_{r}(0)$, and hence

$$
f^{\prime}(0)=\frac{1}{c \pi r^{2}} \int_{\Delta_{r}(0)} f^{\prime} c d m=\frac{1}{\int v d m} \int_{W} f^{\prime} v d m
$$

for every $f \in A D_{\nu}(W, 0)$. Thus we have proved the second assertion.
Corollary 3.3. The equality sign in (2.2) of Theorem 2.3 holds if and only it either
(1) $M(z ; \zeta, t, R) \equiv 0$, or
(2) $R$ is conformally equivalent to $\Delta_{1}(0)-E$, where $E$ is a relatively closed subset of $\Delta_{1}(0)$ such that $E \cap K \in N_{D}$ for every compact subset $K$ of $\Delta_{1}(0)$.

Remark. If $R$ is of finite genus, then $M(z ; \zeta, t, R) \equiv 0$ if and only if $R \in O_{A D}$, namely, there are no nonconstant $A D$ functions on $R$ (cf. [5, pp. 50-52]).

For a natural number $n$, set

$$
A D\left(R, \zeta^{n}\right)=\left\{f \in A D(R, \zeta) \left\lvert\, \frac{d f}{d t}(\zeta)=\ldots=\frac{d^{n-1} f}{d t^{n-1}}(\zeta)=0\right.\right\}
$$

This is a closed subspace of the Hilbert space $A D(R, \zeta)$ and there is a unique function $M(z)=M\left(z ; \zeta^{n}, t, R\right) \in A D\left(R, \zeta^{n}\right)$ such that

$$
\frac{d^{n} f}{d t^{n}}(\zeta)=(f, M)
$$

for every $f \in A D\left(R, \zeta^{n}\right)$. Next we show
Proposition 3.4. The function $M(z)=M\left(z ; \zeta^{n}, t, R\right)$ is bounded and satisfies

$$
\|M\|_{\infty} \leqslant\|M\| .
$$

The equality holds if and only if either
(1) $M \equiv 0$, or
(2) $n=1$ and $R$ is a planar surface mentioned in (2) of Corollary 3.3.

Proof. Assume $M \neq 0$, set $W=M(R)$ and let $\nu$ be the valence function of $M$. Since $f \circ M \in A D\left(R, \zeta^{n}\right)$ for $f \in A D_{\nu}(W, 0)$, we have

$$
\begin{aligned}
f^{\prime}(0) \frac{d^{n} M}{d t^{n}}(\zeta) & =\frac{d^{n}(f \circ M)}{d t^{n}}(\zeta) \\
& =\frac{1}{\pi} \int_{R}(f \circ M)^{\prime} \overline{M^{\prime}} d x d y \\
& =\frac{1}{\pi} \int_{W} f^{\prime} \nu d m
\end{aligned}
$$

for every $f \in A D_{\nu}(W, 0)$. Hence

$$
f^{\prime}(0)=\frac{1}{\int v d m} \int_{w} f^{\prime} v d m
$$

for every $f \in A D_{\nu}(W, 0)$ and so the proposition follows from Proposition 3.2.
For a fixed local coordinate $t$ defined in a neighborhood of a point $\zeta$ on $R$ we define $c_{D}\left(\zeta^{n}\right)$ and $c_{B}\left(\zeta^{n}\right)$ by

$$
\begin{aligned}
& c_{D}\left(\zeta^{n}\right)=\sup \left\{\left.\left|\frac{d^{n} f}{d t^{n}}(\zeta)\right| \right\rvert\, f \in A D\left(R, \zeta^{n}\right),\|f\| \leqslant 1\right\} \\
& c_{B}\left(\zeta^{n}\right)=\sup \left\{\left.\left|\frac{d^{n} f}{d t^{n}}(\zeta)\right| \right\rvert\, f \in A B\left(R, \zeta^{n}\right),\|f\|_{\infty} \leqslant 1\right\},
\end{aligned}
$$

where $A B\left(R, \zeta^{n}\right)$ denotes the complex linear space of bounded analytic functions $f$ on $R$ satisfying $f(\zeta)=(d f / d t)(\zeta)=\ldots=\left(d^{n-1} f / d t^{n-1}\right)(\zeta)=0$ (cf. [6, pp. 256-257]). We denote by $N_{B}$ the class of compact sets which are removable with respect to bounded analytic functions.

Finally we show
Corollary 3.5. $c_{D}\left(\zeta^{n}\right)$ and $c_{B}\left(\zeta^{n}\right)$ satisfy

$$
\begin{equation*}
c_{D}\left(\zeta^{n}\right) \leqslant c_{B}\left(\zeta^{n}\right) \tag{3.1}
\end{equation*}
$$

The equality holds if and only if either
(1) $c_{B}\left(\zeta^{n}\right)=0$, or
(2) $n=1$ and $R$ is conformally equivalent to $\Delta_{1}(0)-E$, where $E$ is a relatively closed subset of $\Delta_{\mathbf{1}}(0)$ such that $E \cap K \in N_{B}$ for every compact subset $K$ of $\Delta_{1}(0)$.

Proof. Assume $c_{D}\left(\zeta^{n}\right)>0$, and let $F \in A D\left(R, \zeta^{n}\right)$ be the extremal function such that $c_{D}\left(\zeta^{n}\right)=\left(d^{n} F / d t^{n}\right)(\zeta)$ and $\|F\|=1$. Then $F=M /\|M\|$, where $M(z)=M\left(z ; \zeta^{n}, t, R\right)$. Hence, by Proposition 3.4, we have $\|F\|_{\infty} \leqslant\|F\|=1$, and so $c_{D}\left(\zeta^{n}\right)=\left(d^{n} F / d t^{n}\right)(\zeta) \leqslant c_{B}\left(\zeta^{n}\right)$.

Obviously either (1) or (2) implies $c_{D}\left(\zeta^{n}\right)=c_{B}\left(\zeta^{n}\right)$. Assume $c_{D}\left(\zeta^{n}\right)=c_{B}\left(\zeta^{n}\right)>0$. Then $\|F\|_{\infty}=\|F\|$. By Proposition 3.4, we see that $n=1$ and $M$ is univalent. Hence our assertion follows from [3].

Remark. For the case of a plane domain and $n=1$, (3.1) was obtained by Ahlfors and Beurling [1]. This is also obtained by the relation of the Szegö and the exact Bergman kernel functions.

## References

[1]. Ahlfors, L. \& Beurling, A., Conformal invariants and function-theoretic null-sets. Acta Math., 83 (1950), 101-129.
[2]. Burbea, J., Capacities and spans on Riemann surfaces. Proc. Amer. Math. Soc., 72 (1978), 327-332.
[3]. Sarat, M., On constants in extremal problems of analytic functions. Ködai Math. Sem. Rep., 21 (1969), 223-225, 22 (1970), 128.
[4]. - On basic domains of extremal functions. Ködai Math. Sem. Rep., 24 (1972), 251-258.
[5]. Sario, L. \& Nakai, M., Classification theory of Riemann surfaces. Springer-Verlag. Berlin, 1970.
[6]. Sario, L. \& Oikawa, K., Capacity functions. Springer-Verlag, Berlin, 1969.
[7]. Scuffrer, M., The span of multiply connected domains. Duke Math. J., 10 (1943), 209-216.
[8]. Schiffer, M. \& Spencer, D. C., Functionals of finite Riemann surfaces. Princeton Univ. Press, Princeton, 1954.

Received July 5, 1977
Received in revised form May 5, 1978

