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Introduction 

This paper concerns the interplay between the complex structure of a Riemann surface 

and the essentially Euclidean geometry induced by a quadratic differential. 

One aspect of this geometry is the " trajectory structure" of a quadratic differential 

which has long played a central role in Teichmfiller theory starting with Teichmiiller's 

proof of the existence and uniqueness of extremal maps. Ahlfors and Bers later gave 

proofs of that  result. In other contexts, Jenkins and Strebel have studied quadratic dif- 

ferentials with closed trajectories. 

Starting from the dynamical problem of studying diffeomorphisms on a C ~ surface 

M, Thurston [17] invented measured ]ol~t io~.  These are foliations with certain kinds of 

singularities and an invariantly defined transverse measure. A precise definition is given 

in Chapter I, w 1. This notion turns out to be the correct abstraction of the trajectory 

structure and metric induced by a quadratic differential. In  this language our main state- 

ment says that  given any measured ]oliation F on M and any complex structure X on M,  there 

is a unique quadratic diHerential on the Riemann surface X whose horizontal trajectory struc- 

ture realizes F. In particular any trajectory structure on one Riemann surface occurs 

uniquely on every Riemann surface of that  genus. 

In the special case when the foliation has closed leaves, an analogous theorem was 

proved by Strebel [15]. Earlier Jenkins [13] had proved that  quadratic differentials with 

closed trajectories existed as solutions of certain extremal problems. We deduce Strebel's 

theorem from ours in Chapter I, w 3. 

By identifying the space of measured foliations with the quadratic forms on a fixed 

Riemann surface, we are able to give an analytic and entirely different proof of a result of 

Thurston's [17]; that  the space of projective classes of measured foliations is homeomorphic 

to a sphere. This is also done in Chapter I, w 3. 
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An outline of the proof of the main theorem was published in [12] but  we stated the 

theorem only for foliations with closed leaves. In  fact, this paper  grew out of an a t tempt  

to find a more geometric proof of Strebel's theorem. 

Then in April 1976 we heard Thurston lecture on measured foliations and diffeo- 

morphism of surfaces and immediately realized our proof extended to any  measured folia- 

tion. 

Let F be any measured foliation and let Q be the vector bundle over TeichmfiUer 

space of all quadratic differentials and let E ~ c Q  be those which induce F. The main 

ingredients in the proof arc showing tha t  E~ is nonempty  and tha t  EF maps by  a local 

homeomorphism to TeichmiiUer space. To do the latter we use the implicit function theorem 

and thus we need to give equations for E F. This is fairly easy near a quadratic differential 

with simple zeroes, but  multiple zeroes introduce major  complications. What  is needed is 

a detailed local description of the deformations of multiple zeroes. A detailed outline 

appears in Chapter I,  w 2. 

We would like to thank the numerous people who have helped us while we wrote this 

paper. In  particular, D. Coppersmith helped with the topological structure of E~, D. 

Mumford and B. Mazur with the deformation theory and F. Laudenbach and Fat i  with the 

topology of measured foliations. 

Above all, A. Douady helped both with the outline and the details of many  proofs. 

The authors are thankful to NSF for financial help during the preparation of this 

work. 

CHAPTER I 

Statement and applications of the main theorem 

w l .  Measured |oliations 

Every  holomorphic quadratic form on a Riemann surface induces a measured folia- 

tion; in this paragraph we will define this concept. The definition closely follows Thurston's.  

A more detailed t reatment  will be given in Chapter I I .  

Let  M be a compact C ~ surface of genus g > 1, without boundary. A measured  ]olia. 

t ion  F on M with singularities of order/r -..,/r a t  x 1 ... . .  xn is given by an open cover Ui 

of M - ( x  1 ..... x,} and a non-vanishing C ~ real-valued closed 1-form ~l on each Us such 

tha t  

(a) ~ = _+~j on U~ N Uj. 

(b) At each x~ there is a local chart (u, v): V ~  R 2 such that  for z = u + iv, q~j = I m  (z~'/2dz) 

on V N Us, for some branch of z ~'12 in U~ N V. 

Such a pair (U~, ~ )  is called an atlas for F. 
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Fig. 1 

Example. Let X be a Riemann surface, and q a holomorphic~quadratic form on X, 

vanishing at x 1, ..., xn to the order k 1 ... . .  k~. Pick an open cover of X - { x 1 ,  ..., x~} b y  

simply connected sets, and in each one set ~ = I m  ~ ,  for some branch of the square root. 

Near xi a local chart z in which q=z~dz 2 satisfies condition (b). Holomorphic local co- 

ordinates z in which q=z~dz ~, kt >~0, are called canonical coordinates and always exist. 

The foliation induced by q is denoted Fq. 

I t  is almost but not quite true tha t  all measured foliations are of the type above (cf. 

Chapter I I ,  w 2). 

Away from the singularities a measured foliation clearly induces an ordinary folia- 

tion, tangent in Ut to the vectors in the kernel of qt. The leaves will be leaves in the ordinary 

sense (i.e., maximal  connected subsets of M -  {x 1 ... . .  x,} for the topology which in each 

open set Ut has as connected subsets the fibers of the map Ut-~R, x~-~S~ . ~l). However 

if a leaf emanates from a singularity, then we include the singularity in the leaf. 

The measure is the line element [r induced in each Us by I~0,]; condition (a) guaran- 

tees the measure is well-defined; we will say tha t  it measures a transverse length since it 

vanishes on vectors tangent to the leaves. 

Near a singular point of order k, a model for the foliated surface can be built by taking 

k + 2 rectangles [ -  1, 1] • [0, b]= R 2, follated by  dy, and gluing them together according 

to the pat tern  in Figure 1. 

A leaf of F is called critical if it contains a singularity of F. The union of the compact 

critical leaves is called the critical graph denoted by  F. An isolated multiple zero is con- 

sidered par t  of F. 

Let  F be a measured foliation on M, defined by  forms ~ on U~, and 7: [a, b]-->M 

a C 1 curve. Define/F(r)=Sa b I~v](7'(t))dt. 

I f  7 is a simple closed curve on M, define F(7 ) to be the infimum of all IF(71) for 71 

freely homotopic to 7" 
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Let S be the set of homotopy classes of simple closed curves on M. The construction 

above gives a map from the set of measured foliations on M to RS; we will call two measured 

foliations equivalent if their images coincide. This equivalence is clearly coarser than 

isotopy; we shall see that  it is the finest equivalence relation coarser than isotopy with a 

Hausdorff set of equivalence classes. 

In  fact, we will show in the course of the paper tha t  the set :~M ~ R s of equivalence 

classes of measured foliations on M is homeomorphie to B 6~-a- (0}. This was first proved 

by  Thurston [17]. 

w 2. The main result 

Let OM be the Teichmiiller space of genus g. Consider the vector bundle p: Q-')'(~M 
whose fiber above a point (X,/)  E OM is the space H~ ~| of holomorphie quadratic 

forms on X. The union of these spaces can be give n the structure of a vector bundle either 

by using the Serre duality theorem to claim that  H~ ~| is the dual of the tangent 

space to @~ at (X, / )  (cf. [11], Chapter IV, w 1, or [6]), and thus that  Q is the cotangent 

bundle to @M, or by invoking Grauert's direct image theorem (el. [11] for the special case 

needed here). 

Given any nonzero qeQ above (X,/) ,  we can consider/*FqE ~M" If 0 denotes the zero 

section of Q, the construction above defines a map Q - 0-~ :$M. For any F E :~M, let E ~ c  Q -  0 

be the fibre above iv. 

MAI~ THEOREM. The restriction E~,O| o/ p to E• is a homeomorphism. 

Chapters I I - IV  are devoted to the proof of this theorem. We will proceed in the 

following steps: 

(i) EF is not empty (II, w 2) 

(if) PI~,, is proper (II, w 7) 

(iii) PI~p is injective (IV, w 7) 

(iv) PlsF is open (IV, w 1 and 5). 

Chapter I I  is essentially concerned with the topology of measured foliations; many 

of the results are due to Thurston and are contained, explicitly or implicitly, in [17]. 

Chapter I I I  is a s tudy of the deformations of a multiple zero of a quadratic form, and 

is preliminary to Chapter IV. 

Chapter IV is primarily concerned with finding equations for E~ in Q. This works well 

in a neighborhood of a quadratic form which is not the square of a 1-form, but the case 
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of a square introduces serious difficulties that  require w 2-5. Point (iii) above then follows 

from combining Corollary II.9, a density statement analogous to that  in [5] and the Strebel 

Uniqueness Theorem [16]. 

w 3. Applications 

A holomorphic quadratic form q is called Strebel if its horizontal foliation has closed 

leaves. In that case the complement of the critical graph is a union of metric straight 

cylinders, with respect to the metric I q[ 1/2, each swept out by homotopic leaves. The 

leaves in different cylinders are not homotopic. 

Conversely, let C be a system of n simple closed curves on M, disjoint, not pairwise 

homotopic, and homotopically nontrivial. Let E z c Q  be the space of Strebel forms whose 

associated system of curves is homotopic to C. Denote H: EC~| • R~ the map whose 

first factor is the canonical projection p restricted to Er and whose second factor gives 

the heights of the cylinders. 

THEORV.• 2. The map 1-[: Ec~| • R~ is a homeomorphism. 

This theorem was announced in [10]. 

TH~.ORv.M 3. (Strebel [15, 16], Jenkins [13]). Let X be a compact Riemann sur/ace 

and let C be a system of curves as above. Let ml .... , m ,  be positive real numbers. Then there 

exists a Strebel ]orm q on X whose associated system o! curves is homotopic to C and such that 

the ratio M~ o/height to circum/erence (modulus) o/each cylinder satisfies M t = K m ,  where K 

is a constant independent o / i .  Furthermore q is unique up to a positive real multiple. 

Strebel also proved that  q v~ries continuously with the numbers mr, a fact which is 

close to the part of Theorem 2 which states that  q varies continuously with the heights. 

Both these theorems and the next will be proved in Chapter IV. 

Finally we give a new proof of a result announced by Thurston. 

T~.OR~.M 4. (Thurston [17].) The set y M ~ R  s is homeomorphic to R 6a-e- {0). 

Remark. The quotient P:~M of :~M by the positive reals acting by multiplication may 

be identified with the unit sphere in the space of quadratic differentials on any fixed 

compact Riemann surface. Thurston states in [17] that  PyM forms a boundary for Teich- 

miiller space in a natural way. By Teichmiiller's theorem the sphere in the space of quadratic 

differentials also forms a boundary for Teichmiiller space (depending on a choice of base. 

point). Kerckhoff [14] has shown that  these topologies on the union of Teiehmiiller space 

and P:~M do not coincide. 
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CHAPTER II 

Measured toliations and their realizations 

w 1. The orientation cover of a foliation 

Let  F be a measured  foliation on M,  with singular points  x 1 . . . . .  x~ of mul t ip l ic i ty  

kl . . . .  , kn. We will construct  a double cover 3~F of M ramif ied a t  the  singular points  of odd 

multiplici ty,  whose points  above  x correspond to the  two orientat ions of F a t  x. I n  var ious  

guises, the  surface 3 ~  will be an  essential tool th roughout  this paper.  

Le t  F be defined by  the forms ~s on Us, and  let U - - M -  (x 1 . . . . .  xn}. Consider the  sub- 

set  of the  co tangent  bundle T*U of all +_~s(x), which clearly forms an unramif ied  double 

cover of U. The  cover  is tr ivial  near  xs if and  only if ks is even so we m a y  eompac t i fy  it  

forming 3;/F by  adding one point  above  xs if ks is odd and  two points  if ks is even. Call 

~:/]i~F-+M and ~: 2~2F-~-~ F the canonical project ion and  involution.  

On -)~F, the  measured  foliation re*F is defined by  the " tauto logica l"  closed form ~, 

with zeroes only a t  the ~-a(x~). I t  is easy to check t h a t  the  index of such a zero is k~/2 a t  

both  of the  points  in r~-l(xs) if/c s is even, and  ]cs + 1 a t  the  point  ~-l(xs) if/c s is odd. 

A pa ramet r i zed  curve 7: [a, b ] - ~ F  is increasing if ~(7 ' ( t ) )>  0 for all t 6 (a, b). 

Remark. The surface ~ m a y  have  two connected components .  This occurs precisely 

if F is orientable,  i.e. F is defined by  a global closed one-form. 

The following result  is a first  use of - ~ .  

PROPOSITION 2.1. Every measured /oliation on M has 4 9 - 4  singularities counting 

multiplicities. 

Proo/. Suppose k 1 .. . . .  /c~ are odd and  k~+l . . . .  , k ,  are even. The R i e m a r m - H u r w i t z  

formula  gives 
Z(ffiF) = 2 ( 2 -  2g) - m .  

On the other  hand,  the  sum of the  indices of the  zeroes of ~ is 

(ks+ 1)+2 
S-1 J - m + l  

B y  the t t op f  index theorem for forms, 

(ks + 1) + 2 ~ /cj/2 = - Z(M~.) = 2(2g - 2) + m. Q.E.D.  
S=I ]-m+l 

This result  agrees of course wi th  the  fact  t h a t  a quadra t ic  differential has  4 g -  4 zeroes 

counting multiplicities. 



QUADRATIC DIFFERENTIALS AND FOLIATIONS 227 

Fig. 2 

w 2. Realizable |oliations 

I t  turns out that  there arc measured foliations which are not given by a holomorphic 

quadratic form. 

Example. Take two cylinders, foliated by  horizontal circles, and with the measure 

given by the height function, and glue them together according to the pattern in Figure 2. 

If this measured foliation were induced by a quadratic form q, the cylinders would be 

straight metric cylinders for the metric I qll/2; in particular the top and the bottom of each 

would have the same length. If one writes the corresponding equations for the lengths 

in Figure 2, one gets 

li +16 = 1 1 + 1 2 + 1 3 + 1 4  

14 + 15 ffi l~ + 18 + 15 + l e. 

This system has no positive solutions. 

Of course, there are equivalent metric foliations which are induced by quadratic 

forms; for instance that  obtained by collapsing l~ and 13 to points. The object of paragraph 

2 is to show that  this is always the case. 

If 7 is a critical segment of F (i.e. a compact critical leaf which is an interval, not a 

circle), we can choose a map ]: M ~ M  homotopic to the identity, which is a diffeomorphism 

on M -  7 and collapses 7 to a point x. The measured fo l i a t ion / ,  F obtained from _~ by 

collapsing 7 is defined by the open cover [(Ut-7) with the 1-forms ([-i)*~0~. If x x and x~ 

are the endpoints of 7, of order k 1 and k a respectively, it is easy to check that  the point 

x=/(7) becomes a singularity of order k 1 +k  s. 

Clearly [ .  _~ is equivalent to F; we shall see in Chapter IV that  the equivalence rela- 

tion we have put  on measured foliations is the minimal one under which isotopic foliations 

and those related by the collapse of a critical segment are equivalent. In  the mean time 

we will call this minimal equivalence relation strong equivalence. 
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Fig. 3 
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Fig .  4 

Given any measured foliation F,  we shall show that  there is a strongly equivalent 

one which is induced by a holomorphic quadratic form q (for some complex structure on 

M): we will say that  q realizes F. 

Let F be a measured foliation on M, and ~ the closed form defining n*F on Jit~. 

For any two points x and y in 2~t~ at which ~ does not vanish, we say x leads to y ff there 

exists an increasing curve 7: [0, 1]-~2~te such that  7(0)--x, 7(1)=y.  

P~OPOSITIO~ 2.2. Let JF be a measured ]oliation on M.  The ]ollowing conditions 

are equivalent: 

(a) F can be realized by a quadratic ]orm on M,  holomorphic /or some complex structure 

on M.  

(b) F can be realized by a q as above, whose vertical/oliation is Strebel. 

(c) Every point x leads to every point y in the same connected component o/-~I F. 

Proo/. (b) implies (a) is obvious. To see that  (c) implies (b), suppose first that  2~y 

is connected. Pair up the sectors in M at all the singular points, and for each pair pick for 

one the sector above it in ~ y  in which increasing curves leave the singularity, and for the 

other the sector above it in ~ F  in which increasing curves go to the singularity (Figure 3). 

For each such pair of sectors, choose an increasing curve 7 on ~ y  joining their singularities, 

starting in one sector and ending in the other. Consider the images of these curves in M; 

these are transverse to F. If any of these curves intersect (even themselves) at nonsingular 

points, they can be changed so as to be disjoint and simple and still transverse by cutting 

them and reconnecting them as suggested by Figure 4. In the process we may create some 

simple closed curves avoiding the singularities; if so, erase them. 

Let F ' c  M be the graph formed by all the curves drawn. Then M cut along F'  consists 

of surfaces with boundary, with a foliation transverse to the boundary, and without 

singularities. Then the double of each component must be a torus by Proposition 2.1, and 

so each component must be an annulus. 

For each such annulus, pick a measured foliation tangent to the boundary, and trans- 
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verse to the original foliation. The two foliations together define charts M ~ R  2 away 

from the singularities, and these charts are the canonical coordinates for a unique quadratic 

form on M, holomorphic for tha t  structure. 

In  case/~/F is not connected, ~v is defined by  a closed form ~ on M which orients F. 

At each singularity of F, the sectors fall into two classes according to whether increasing 

curves leave or arrive in tha t  sector, and there are the same number  of sectors in each 

class. Thus they can be paired up, and the proof continues as above. This shows tha t  (e) 

implies (b). 

Finally, let q be holomorphic quadratic form on the Riemann surface X = M, and x, y 

two points in the same connected component of 217/F such that  x does not lead to y. Consider 

the set IV of points to which x does lead. Then it is easy to see tha t  i V - ~ - l { x  1 ..... x ,)  is an 

open subset o f / ~ - ~ - l { x  1 ..... xn), whose boundary in ~ p  is a union of closed leaves. 

Clearly z*ff is the square of a complex valued 1-form eoa an -~F, such tha t  ~ = I m  wa. 

Define a vector field Z on ]7/~ by wa(%) = i. This vector field has poles at  the zeroes of eo~, 

so it only generates a flow almost everywhere, i.e., on the complement of the critical 

vertical leaves. Since it points into IV everywhere along the boundary, this almost every- 

where defined flow sends IV into its interior. This is incompatible with the fact tha t  it 

preserves the measure leoql 2. Q.E.D. 

We now come to the main result of this chapter. 

THEORE~ 2.3. For any mca~ured /oliation F on M, there is a strongly equivalent F' 

which can be realized by a quadratic ]orm. 

Proo/. Without loss of generality, we can suppose tha t  F has only ordinary singulari- 

ties, so tha t  -~F is connected. 

A non-empty open subset IV of -~/y-{x 1 ..... x,} will be called stable if yEIV whenever 

there is an x E IV which leads to y. A stable subset is minimal if it contains no smaller stable 

subset. I t  is easy to check tha t  except a t  singularities the closures of stable subsets are 

submanifolds with boundary of ~/r,  and tha t  the boundary is a subset of F. Moreover, 

every point of a minimal stable leads to every other point. 

LEMIVIA 2.4. Either there is only one minimal subset llTir, or ~: ~F--~ M maps the union 

o] the minimal subsets invectively onto M. The ]irst case occurs i[ and only i / F  is realizable. 

Pro@ The last s tatement  follows immediately from Proposition 2.2. Suppose IV1 and 

IV2 are two minimal subsets, and that  xE~(IV1) A IV2. Then for any  yEIV 1, y leads to ~(x), 

so x leads to T(y), so ~(iv1)c IVy. By symmetry,  Iv1 =v(IV2). But  this is clearly impossible 

if the boundary of IV1 is not empty,  i.e. if IVI~=/~/F. Q.E.D. 
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Fig. 5 

This lemma suggests that  we should t ry  to simplify the set of minimal subsets for F. 

In  order to make this precise, we shall say that  one foliation F with minimal subsets 
I hrl ..... Nn is better than another F '  with minimal subsets N~ ..... Nm if n <m, or n = m  and 

there are more elements of r~0(-~I~F-- F) which are subsets of U ~N~ than there are elements of 

z0( /~g-1  ~') which are subsets of U ~N~, or these numbers also are equal and there are more 

segments of I ~ contained in (J ~N~ than there are segments of F'  contained in U ~N~. This 

rather cumbersome definition does have the property that  if we can make a foliation better 

by contracting and expanding appropriate segments of its critical graph, then iterating 

the process will eventually make the foliation realizable. 

Suppose F is a measured foliation on M, and that  N is a minimal subset of ~F ,  with 

N .~ i~  F. Then there must be a segment F of F with extremity x such that  near x, g ( N ) =  

M - y  {see Figure 5). Indeed, if all other sorts of singularities were of another type, N 

could be contracted into itself, contradicting minimality, Let  F' be the foliation obtained 

by collapsing y and expanding it the other way; we shall show that  F' is better than F. 

Call A, B, C, D the components of M -  F near y, and let ./I, B, C, J~ by those corresponding 

components of ~/~ - F such that  ~,  J~, C c  N, and J~ is connected to B and C in 2~- re - l (~) .  

Label I, II ,  I I I  the cases when neither i )  or v(/~)c N, j ~ c  hr and v ( / ) ) c  h r. 

(a) In cases I and II,  suppose that  ~(D) leads to a minimal subset hr '~hr .  I t  is then 

easy to see that  for F' the minimal subset hr disappears (it empties into hr'), and that  no 

new minimal subset is created, so in this case F '  is better than F. 

(b) In cases I and II, suppose ~(D) leads only to hr. Let P be the set of points to which 

~(D) does lead. Call P' the corresponding subset for F' and let hr' be a minimal stable 

subset contained in P'. Then either h r '~hr  or h r ' ~ ( N ) ,  for otherwise hr' was a minimal 

subset for F. In particular hr' is the only minimal subset of P'. If h r '~  h r, then hr'~=N 

since hr is not stable for F', so hr' is strictly larger than h r and we are done. If hr' =~(hr) 

and T(D) leads to N, hr' contains points of hr and ~(hr) which is impossible unless hr' = 2~/~. 

(c) Case I I I  is easier: For F' the subset N is still a minimal subset, which contains one 

more segment of 1 ~ than before, and everything else is unchanged. Q.E.D. 



QUADRATIC DIFFERENTIALS AND FOLIATIONS 231 

e e r~ ! 

, t l l  I 

Fig, 6 

w 3. Quasi-transversal curves 

On the surface M consider a measured foliation F defined by  an atlas (U~, ~0~), and 

a closed curve 9/: [0, 1]-~M. Define the transverse length of 9/to be 

t~(r) ffi f~  1~'(9/'(t))l dr" 

Define F(9/) = inf  lp(9/1), where the inf is taken over all curves 9/1 homotopic to 7. 

I t  is not quite clear tha t  this inf is actually realized; since travel  along the leaves of 

the foliation is free, i t  is conceivable tha t  a very long pa th  homotopie to the original one 

might have arbitrarily small transverse length. 

Example. Consider the one form on a cylinder defined as the dot product with a unit 

vector field perpendicular to the vector field whose integral curves have the equator as 

limit cycle, as in Figure 6. Given points x and y on the two boundary components and 

any homotopy class of paths between them, the inf of the transverse lengths of curves 

from x to y in tha t  homotopy class is zero, even though no curve realizes it. 

Of course, in the example above, the form is not closed. The object of Proposition 2.5 

is to show tha t  such phenomena cannot happen for measured foliations. For this we need 

the concept of quasitransversal curves defined for curves tha t  are immersions except pos- 

sibly at  the singularities. A closed curve ~: S t e M  is quasitransversal to F if at  every point 

tES  1 either 9/(t) is a singularity of F or 7 is locally near t transversal to F or an inclusion 

into a leaf of F. I f  9/(t} is a singularity, then at  least an open sector on both sides must  

separate the incoming and the outgoing parts  of the curve. In  particular, at  a simple 

singularity, if 9/comes along one critical leaf it either leaves by another, or it leaves trans- 

versally in the opposite sector. 

P R O P O S I T I O N  2.5. 

(a) Every closed curve is homotopic to a quasi-transversal one. 

(b) I] 9/is quasi-transversal, l~(y) = F(9/). 

(c) 1] 9/1 and 9/3 are two homotopic quasi-transversal simple closed curves, then either they 

are both entirely formed o/leaves and are homotopic among such curves, or they include 

the same leaves and each transversal part o] 9/1 is homotopic with endpoints ]ixed and 

through transvereal curves to a transversal part o] 9/3. 
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Proo/. For part  (a) suppose first tha t  F is induced by a quadratic differential q. Then 

the geodesic homotopic to 7 for the metric I q] 1/3 is a quasi-transversal curve except at  

those singularities where it enters and leaves in adjacent open sectors. A small pertruba- 

tion near these points makes it quasi-transversal. (For details about  the metric I q 11/2 and 

its geodesics see [1], [3], [10].) By  Theorem 2.3 all we need to show is that  if 7 is quasi- 

transverse to F and F '  is obtained from F by  collapsing or expanding a critical segment, 

then there is a 7' homotopic to 7 which is quasi-transversal to P ' .  A few drawings will con- 

vince the reader that  this is so. 

(b) I f  lF(7)=0 we are done, so suppose not. Consider the covering space M r in which 

curves homotopic to 7 are the only simple closed curves; this covering space is homeo- 

morphic to an open cylinder, with ~, as an equator. In  this covering space any  non-critical 

leaf intersects 7 transversally at  most once. Indeed, if a leaf intersects 7 transversally 

twice, then the portion of the leaf between the intersections together with a segment of 7 

bound a disc. Doubling this disc along the quasi-transversal segment gives a foliated disc 

with the boundary a leaf. This is impossible. Thus every leaf which intersects 7 transversally 

either is critical or goes from one end of the cylinder M r to the other. Let  7 '  be a curve 

homotopic to 7, so it can be lifted to a closed curve on M r. Then every non-critical leaf 

intersecting 7 must  intersect 7', and it is clearly possible to choose such an intersection 

point in a piece-wise continuous way. This defines a piece-wise continuous map of the 

non-critical portions of 7 to 7'  which is an isometry of 7 onto a subset of 7'. 

(c) Keeping the notations above, suppose now that  ~,' also is quasi-transversal. Let x 

be an extremity of a leaf r162 at  which x becomes transversal. Then one of leaves emanat- 

ing from x must  intersect 7'; suppose it does so at  a point x'  ~x .  Define similarly y and y '  

for the other end of the leaf 0r Then the quadrilaterial formed of ~, the leaves xx' and yy' 

and an appropriate segment of 7'  is bounded by a leaf and a quasi-transversal segment, 

which is impossible, as above. So x=x',  y=y'  and ~ is included in both 7 and 7'. Thus the 

leaf segments of 7 and 7'  coincide, and sliding along leaves provides the desired homotopy 

between the transversal segments. 

Remark. I f  7 is a simple closed curve, it m a y  be impossible to choose a quasi-transversal 

curve homotopic to 7 which is simple. 

w 4. The set S iF)- 
In  this paragraph all homology groups will have real coefficients. I f  V is a vector 

space with an involution 7, we will denote V- the odd part  of V, i.e. V- = ker (T § Id: V-* V). 

For any  element 7 ES, define ~ EHI(21/p, I~y) in the following way: replace 7 by a quasi- 
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transversal curve in its homotopy class and orient the transversal segments of ~-*(~) so 

that  they are increasing. The sum of these oriented segments is a singular one-chain on 

~ whose boundary is in C0(F~), so the one-chain defines a class ~ 6HI(~F, l~F) which is 

well-defined by Proposition 2.5. Clearly 7 ,~  = - ~  so ~ 6 H t ( ~  ~, FF)-. 

Let T c S  be the set of homotopy classes of curves admitting a quasi-transversal 

representative ~ 6 M - P .  If F ( ? ) > 0  the construction above gives ~ 6 H I ( ~ - F F ) - ;  if 

F@) =0 and ~ is quasi-transversal then ~ is an equator of a cylinder foliated by closed 

curves: define ~ 6 H t ( ~  ~ -  FF)- to be ~-1(~) oriented so that  increasing curves cut it from 

right to left. 

PROPOSITION 2.6. 

(i) The classes ~ /or rES generate H,(~F, FF)-. 

(if) The classes ~ /or 7 E T generate HI(IVI ~ -  FF)-. 

Proo[. First replace F by an equivalent foliation which is realizable and has simple 

singularities. This is possible, because, if [: M--+M is a map collapsing a critical segment 

and F' = / ,  F, then ],: Hl(2i~t p, l~p) - ~H~(21itr,, I~F,) - is an isomorphism, and the lifts 2 and 

~' of 7 for F and F '  respectively correspond under 1. 

Now the exact sequence 

Hx(F~)-~ H x ( - ~ ) ~  H1(21~/~, ['~) "~ Ho(F~) 

gives a surjective map Ht(J;/r)--~HI(_~/~, Fr)- since each component of F contains a 

simple singularity, so its inverse image in ~ r  is connected and 7, is the identity on H0(I'r). 

Pick a simple closed curve ~ on _~tp and set ~ =  ~r The classes of such curves fl 

generate Ht(,371F, Fr)-. If ct had been put in general position with respect to 7(~) avoiding 

the singularities, the oriented curve ~ may fail to be simple but will have transverse self 

intersections. The trick of reconnecting the segments at intersections as in Figure 4 does 

not change the homology class. Thus we can suppose that  fl =fit U fl~ U ... U tim where the 

fl~ are disjoint embedded curves and each one has two connected components which are 

reversed by 7. 

Without loss of generality, we can suppose that  ~, = ~t(~) is connected and simple, that  

7 is formed of a sequence of transverse curves, and contains no singularities, i.e. 7 = ~t ~- 

~ e  ... ~eO~e~ where the ~ and ~/~ are transverse segments and ~- denotes juxtaposition. 

Moreover we can suppose that  in/3 the ~-~(~,) are increasing and the :t-x(~) are decreasing. 

For each ~ pick a transverse curve ~ with the same endpoints as ~ such that  ~ - ~ ;  

is a transversal closed curve. This is possible by Proposition 2.2 (e). Now the curve 7 ' =  

6, ~-~l-x- ... * ~  ~-~/~ is transversal and ~' differs from ~ by ~ ~ ~ .  
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Another use of the disconnecting and reconnecting argument will turn ~' and the 

~ - ~  into unions of simple closed curves. The simple closed curves cannot bound a disc 

as that  would result in a foliation of the disc with transverse boundary. This proves (i). 

For part (ii), it is sufficient to prove the result for each connected component of M - F .  

These are of two types: open cylinders foliated by compact leaves, for which the result is 

trivial, and open foliated surfaces with no closed leaves. For these the proof of part  (i) 

works verbatim, except that  the existence of the curves ~ needs a different justification. 

Let  N denote one such component of M - F .  We claim that  every point ~F leads to 

every other in the same component. Indeed if not, the set of points in _~F to which a given 

point does lead is a submanifold of ~F with boundary, and this boundary must consist of 

closed leaves, of which there are none. I t  is clear that  the endpoints of any ~ ,  lifted to 

~F so that  ~ leads from one to the other, are in the same component of ~F, therefore their 

images by ~ are also in the same component, and there is a path ~ leading from one to the 

other. Q.E.D. 

w 5. Polnear$ duality and HI(My, ry)-  

In this paragraph we begin to show that  if two measured foliations are equivalent 

they are strongly equivalent. We need to extract  some information about a measured 

foliation F from its image in R s. Specifically, we will "synthesize" Hi(~1p, FF)-. 

Recall that  Rr s is the set of maps S-~R with finite support, i.e. finite linear 

combinations of elements of S. 

The idea is to find the kernel of the map Rcs~-~H,(~F, I~) - defined by y-~2, a map 

which we have seen to be surjective. By Poincar~-Alexander duality [9] the algebraic 

intersection number gives a non-singular pairing of H I ( ~  F, FF) with H I ( ~  F -  F~), noted 

( ~ ) - ~ . ~ ,  and this is still true of the odd parts, as the odd part of one is orthogonal to 

the even part  of the other. Let  T c  S be as above the set of homotopy classes ~r such that  

~ c  ~ F - F F .  Using again Proposition 2.6, the argument above can be restated as follows: 

PROPOSITIO~ 2.7. The kernel o/the canonical map R(S)~Hl(/~/~, l~y) - is the kernel 

o/the map R(S)~R r de]ined by 7~(),' ~ . ~ ' ) .  

In order to use this proposition, we need to extract from the image of F in R s the 

following information. 

(a) When is an element of S in T? 

(b) If 716S and T2eT, what is ~1")%? 
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Let S'  be the set of homotopy classes of finite disjoint unions of simple closed curves. 

Recall [17] tha t  the geometric intersection number  i(~,/3) of two classes ~,/3 E S is the mini- 

mal number  of transverse intersections of curves in the homotopy classes of ~ and/3 re- 

spectively. Given ~,/3 ES with geometric intersection number n, we will define 2 ~ elements 

of S '  indexed by  (el ..... e~) where e~ = + 1. Suppose ~ N/3 = {x 1 ..... x~}. At each x~ label + 1 

(resp. - 1) the two opposite quadrants of M -  ~ U/3 in which ~ meets/3 on the left (resp. 

right); this labeling does not depend on orientations for ~ or/3 but only on the orientation 

of M. (See Figure 7.) Let 7 ......... be the element of S' which follows both ~ and/3 every- 

where, and which at  x~ turns off ~ onto/3 in both of the quadrants labeled e~. These elements 

of S' will be called the combinations of ~ and/3. Now the answers to the questions (a) and 

(b) are contained in the following proposition. 

PROPOSITION 2.8. Given teES, o~ is in T i / and  only il either 

(i) F(~r and /or all /3ES, there is a unique combination 7 ......... o/ o~ and/3 with 

F(~ ......... ) maximal. In  that case &.~=2  ~ e~. 

(ii) F(cr and there exists e > 0  such that/or all/3 with i(~r F(/3) >e. In  that 

m e  = 2i( , /3). 

Proo/. For both (i) and (ii) it is easy to see tha t  if ~ is in T, the conclusion is true. 

This will be shown in step I. I t  is harder to show tha t  if cr is not in T, then the conclusion 

is not satisfied. This will be shown in step I I .  

Step I .  (i) I f  ~ E T  and F (~ )>0 ,  we may  represent ~r by a curve transversal to F , /3  

by a quasi transversal curve such that  the intersections of ~r and/3 are transversal. Then 

Figure 8 makes it clear tha t  for exactly one e] ..... en is ~ ....... en quasi-transversal, and for 

all others the transverse length is less. 

Moreover, both inverse images of x~ E ~ N/3 contribute ~ to ~. ~. 

(ii) I f  ~E T and F(~) =0,  cr can be realized as the equator of a cylinder foliated under 

F by equators, and of transveise height h >0.  Then if i(~, ~ )=  n, ~ must cross the cylinder 

from top to bot tom n times, and F(/3) >~ nh > O. 
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Fig. 9 

Moreover, if fl is realized so as to intersect a transversely in n points, then each point  

of g - l ( a  f3 fl) contributes 1 to ~./~. 

Step I I .  We will need two facts whose proofs are left to the reader; the techniques of 

[7] can be used to prove (b). 

(a) Let  F be a realizable foliation, and ? a non-critical curve. Then either ? is closed, 

or 2 c M is a region whose boundary  is contained in F. 

(b) I f  a and fl are two transversal  simple closed curves on M, which intersect in more 

than  i(~, fl) points, then there is an  embedded disc in M bounded by  a segment of ~ and a 

segment of ft. 

(i) Let  a be a quasi-transversal curve homotopic  to a simple curve, with a f3 F~=O, 

and F (a )>O.  Then a mus t  cross a 1-cell of F, or follow one, or do both  of these things. 

Suppose there is a quasi-transversal curve fl homotopie  to a simple curve, transversal  

to a, which follows some 1-cells of F which cr crosses, or crosses some 1-cells of F which 

follows, or both, and  tha t  these are only points of ~ N fl f3 F. 

Consider the two combinations of ~ f~ fl obtained by  choosing the following quadrants :  

The unique choice which makes the combinat ion quasi-transversal, as in step I, a t  

points not  in F; 

The same choice + 1 or - 1 at  all points of ~ tq fl tq F. 

I t  is not  hard  to  show tha t  both  of these combinat ions are arbitrari ly close to quasi- 

transversal curves of maximal  length F(=) + F(fl). 

I t  remains to show tha t  such a fl exists. Suppose F realizable. 

If  a follows a 1-cell ~,, such a fl exists by  Proposi t ion II .2.  Indeed  a transversal  curve 

exists which leaves ~, on one side and returns on the other; such a curve can be made simple 

by  disconnecting and reconnecting at  the intersections. 

I f  ~ is transversal  to F, the a rgument  is more delicate. 

Let  ~, be a critical segment of F which ~ crosses; we need to  find a quasi-transversal  
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I 
~ o l h e r  lifts of *r 

Fig.  10 

simple closed curve which follows 7. Let  A and B be the end points of 7, which we may 

assume distinct. If the leaves in the sector opposite to ? at A are closed, the argument is 

easy, so suppose not. Then the critical ones among them are dense, so we may assume a 

neighborhood of 7 looks like Figure 9, where C is different from A or B. Follow the leaf 8; 

it is possible to return to C either along a critical leaf, or by following 8 till it returns near 

C and making a short transverse leap. In  either case there is a quasi-transverse path that  

leaves A, goes to C transversely, follows 8, returns to C as above, and returns to A trans- 

versely. 

Repeat the argument for B and patch the paths together. 

(ii) Now suppose r162 is in F, and not homotopic to the equator of a cylinder. Consider 

a covering space M of M in which a lift 02 of ~ is the only simple closed curve (remark 

that  02 actually is simple). 

If we draw the lifts of ~r "infinitesimally separated", 2kf might look like Figure 10. 

Statements about intersections are to be understood in the sense of this "infinitesimal 

separation", i.e. intersections are considered to exist only if they cannot be avoided by an 

arbitrarily small isotopy. In particular, there are distinct points 2{ and /~  on 02 from which 

critical leaves leave 02 on opposite sides, which do not intersect other lifts of ~ near 02. 

Let  $1 be the leaf leaving 2~. Then $1 can be joined to some other lift 2~' of A without inter- 

secting any other lifts of ~ by a path with either transversal length, or arbitrarily short 

transversal length, by fact (a). Pick a similar curve $~ leaving 02 from the point /~.  There 

are several cases to consider depending on whether the images 8 1 and 82 of $1 and $~ in M 

are simple or not, and intersect or not, and whether they return to the same side of ,r tha t  

they left ,r or not. If they are not simple, they can be made simple by  disconnecting and 

reconnecting. 

1 6 -  782905 Acta mathematica 142. Imprim6 le 11 Mai  1979 
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If  they intersect, it is possible to follow ~1 from A to the first point of intersection, 

then 8s back to B, and a segment of ~ from B to .4, to produce a simple closed curve fl on 

M with algebraic intersection ~./~= 1. If  ~1 (or ~)  returns to ~ on the opposite side from 

which it left, the same construction is possible. 

Finally if both ~1 and ~ are disjoint and simple, it is possible to follow ~1, a segment of 

~, ~2 and the other segment of ~ to produce a simple closed curve ~, with i(~, fl) =2 by 

fact (b). Indeed, the intersection points exist, and any disc bounded by a segment of 

and a segment of fl would be visible in M. Q.E.D. 

COROLLARY 2.9. I] 2' and 2; are two measured ]oliations on M with the same image 

in R s, then there is a unique isomor3phism 

H~(~, ~)- -~ ~ (~ . ,  ~)- 
such that the diagram 

commutes. 

R(s~S I 
~ H I ( ~ . ,  I~,~.) - 

Proo/. This is precisely the content of Proposition 2.7 and Proposition 2.8. 

w 6. Foliations with dosed leaves 

Although it seems quite difficul~ to get any precise geometric information about a 

measured foliation from its image in R s, this is not the case for foliations with closed leaves. 

In this paragraph we will see that  the image in R s determines the cylinders and their 

heights; this will be useful in Chepter IV, w 3. 

L~M~.~ 2.10. Let FF be measured ]oliation with closed leaves, and 2; another measured 

foliation with same image in R a. Then 

(i) 2,' also has closed leaves, 

(ii) For each cylinder/or 2, there is a corresponding one/or F' with homotopic equator, 

(iii) Corresponding cylinders have the same height. 

Proot. (i) Foliations with closed leaves are distinguished by the fact that  the image of 

S in R for such foliations is discrete. 

(ii) The equators of cylinders for 2, are homotopic to those simple closed curves ~, 

such that  F(7 ) =0, and for any ? such that  i(7 , 7')=~0, 2,(7') ~,=0. 
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(iii) We have seen that  the image of F in R s determines the homotopy classes ~l ..... 7n 

of the equators of the cylinders. I t  is not hard to see that  for any j =  1 ..... n there is a 

simple closed curve ~ such that  i(rj, 7~) = 1 or 2, and i(r~, ~ )  =0  f o r / ~ j .  Then the height 

of the cylinder with equator ~j is either F (~ )  or 1/2F(~) depending on the intersection 

number. Q.E.D. 

Remark. I t  is fairly easy to prove that  in this case F and F '  are equivalent. 

w 7. The map EF~ OM is proper 

L]:M~IA 2.11. The map Q - ( 0 } - ~ R  s de/ined by q~(7-~ Fq(7)) is continuous. 

Proof. In  each homotopy class there is either a unique geodesic in the metric I ql 1/2 

or an annulus swept out by geodesics. An application of Aseoli's theorem shows the trans- 

verse length varies continuously in Q - ( 0 } .  

LEMMA 2.12. The map p: Ef'->~) M is proper. 

Proof. Suppose K is compact in (~)M and qn E E~ N p-l(K) is a quadratic form on Xn. If 

][q, II = Sxn lq, I is not bounded above then since the images of qn in R s coincide, the images 

of q~ =qn/llqn]] in R s converge to zero. However q'n is in the unit sphere in Q which is proper 

over OM SO some subsequence converges to q0~=0. By the continuity of the map to R s, the 

image of q0 is zero. This is clearly impossible. A similar argument shows that  Ilqnll bounded 

away from zero. Therefore a subsequence converges to q0 and since E~ is closed, as it is 

the inverse image of a point, q0 G Ep. 

CHAPTER HI 

The space Eh 

w 1. A versal deformation of z tdz 2 

Let Pk be the space of quadratic differentials on C of the form (zk+p(z))dz ~, with p 

a polynomial of degree at most k - 2 .  We wish to show that  Pk is a universal deformation 

of z~dz2; this is ordinarily stated in terms of germs, but  we will prove a slightly stronger 

statement which pays attention to domains of definition. The germified statement follows 

from Proposition 3.1 by a straightforward inductive limit argument. 

Our proof rests on the inverse function theorem for Banach spaces. Let  U he a simply 

connected neighborhood of 0 in C, and let B(U) (resp. BI(U)) be the Banaeh space of 
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functions analytic and bounded in U, with the uniform norm (resp. analytic functions on 

U with bounded derivatives, with ]1/tl ~ sup~, u(]/(z) l + ]/'(z)[)). Similarly, let B(U, ~| 

(resp. BI(U, ~s2)) be the Banach space of quadratic differentials of the form ](z)dz 2 with 

] e B(U) (resp. ] e BI(U)). 

P R o P o s I w I O ~  3.1. There is a unique analytic map ~=(:r ~ )  ]rom any su]]iciently 

small neighborhood of zkdz 2 in B(U, ~ 2 )  to a neighborhood o] (id, zkdz 2) in Ba(U) • Pk such 

that 

Proo]. Consider the map F: BI(U) • ~| defined by (], q)~-->]*q. The map F 

is well defined as we can find a bound for ]*q in terms of a bound for q and a bound on 

both ] and ]'. 

We wish to compute the derivative of F. The tangent  space to BI(U) at  the identity 

should be thought of as vector fields Z(z)d/dz with Z E Ba(U), whereas the tangent space to 

Pk is the space Pk of polynomial quadratic differentials of degree at  most b -  2. An easy 

calculation shows that  the derivative of F at  (id, zkdz 2) is 

(Z, p(z) dz ~) ~-> Lx(zk dz 2) + p(z) dz ~, 

where L x is the Lie derivative. I f  we can show that  the linear map above is an isomorphism, 

the proposition will follow from the inverse function theorem. 

A calculation to first order shows tha t  Lx(z~dz2)-~k-Xg(z)+2z~Z'(z ). Thus we must  

show tha t  given any  ~ E B(U) there exist a unique g E BI(U) and p polynomial of degree 

at  most k - 2  such tha t  

kz~-~z(z) + 2z~z'(z) + p(z)  = ~(z). 

Clearly p must  be the k - 2  jet of ~ at  0; set y~(z) = (~(z) -p(z)) /z  k- 1, we must  show that  there 

is a unique solution Z e BI(U) to the differential equation k Z + 2z Z' = ~0. Using the integrating 

factor 1/2z ~/2-1, we find that  the unique solution analytic at  zero is 

I: Z(z)=z -~12 �89162162162 

I t  is dear  from the formula that  Z is bounded if ~o is bounded, and Z' = (2z) - I  ( ~ -  bZ) gives 

a bound for :~'. Q.E.D. 

w 2. Statement o| the main result 

Let E k be the set of q EPk such tha t  any  two zeroes are connected by  the critical 

graph Fq. Pick A > 0 on the real axis and let U c P~ be the set of q having all their roots in 
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the disc of radius A. We can define a continuous function s: E~ N U ~ R  by s(q) = I r a  Sa rq l/q 

since a branch of l/q can be chosen continuously at  A, and any  two paths from A to Fq 

differ up to homotopy by a pa th  in Fq which contributes only to the real par t  of the integral. 

We shall consider E k c P k  • R embedded by  q~-->(q, s(q)). (Actually, it is U which is embedded 

in P~ • R, but as the result we are after is local, we will frequently speak of E~ when we 

only mean a neighborhood of z~dz2.) 

The object of the rest of this chapter is to show tha t  E k is a C 1 submani/old o / P k  • R 

and to compute its tangent space at z~ dz ~. 

Example.  I f  k = 2, it is easy to show that  q = (z 2 + a) dz ~ is in E~ if and only if a is purely 

imaginary. In  tha t  case the critical graph looks like Figure 11, depending on whether a/i  

is positive or negative. The function s ( t ) = I m  S r '  Vz2+itdz  has an asymptotic  develop- 

ment s(t) = - �88 log I tl + O(t) and is not differentiable at t =0; its graph looks like Figure 12. 

Thus although E~ is a submanifold of both P2 and P~ • R, the induced C 1 structures 

do not coincide. 

We do not know whether Ek is in general a differentiable submanifold of Pk, but  if it 

is, the induced differentiable structure does not coincide with the one we shall describe 

here. The extra differentiable function s will be crucial for our purposes. 

Remark.  I t  appears likely that  for k >/4, k even, Ek is a topological submanifold of Pk 

with a tangent space at  each point which does not depend continuously on the point. 

THEOREM 3.2. (a) The space E k is near $kdz~ a C 1 submani/old o/Pk • R, o/real  dimen- 

sion k -  1. 

(b) The tangent space to E~ at zkdz 2 is the space o] pairs  (p, s) with p = (ak_2z ~-2 § ... q- 

ao)dz 2, such that a o . . . . .  aik_ 1 = 0  and s arbitrary, i ] k  is even; a o . . . . .  a~(k_3) = 0  

and s = I m  S ~ ( p / ~ ) d z ,  i / k  is odd. 
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Remark. If k is odd then Ek is in fact a submanifold of Pk. 

The proof of Theorem 3.2 will require the remainder of this chapter. The organizing 

principle is the following criterion. 

PROPOSITIOn 3.3. Let U c R  ~ •  'n be closed in a neighborhood o / 0  with U N ((0~ • 

R m) = (0} and satis/y 0 has a basis o/neighborhoods V in U such that 

(i) V - ( 0 }  is connected and =~(3. 

(ii) For all u E U ,  u=~O, U is near u the graph o / a  C 1 map Rm~Rm; 

(iii) limu_,0 T u U exists and is R n • (0); 

(iv} Either n >2 or the projection U ~ R n is injective. 

Then U is a C 1 submani/old o / R  n •  m near 0, and T o U = R  n • {0). 

Proo/. The projection map T: U - { 0 ) - ~ R  ~ is a local homeomorphism near 0 by (ii). 

Since U is closed and V fl ({0) • R m) = {0), it  is onto a neighborhood W of 0. Taking W 

small enough and V' the component of T-I(W) containing 0, the map V' - (0)-~ W -  (0) 

is a covering map. If n > 2, R ' - { 0 )  is simply connected so the covering space is trivial 

and single sheeted by (i). Condition (iv) guarantees that  the same is true if n = 2. Thus U 

is in a neighborhood of {0) the graph of a map / :  R ' -~R m which is C 1 in R" - {0). 

One form of L'Hospital 's rule says that  if /: Rn-~R m is continuous, differentiable 

except at  0, and limx-.0d,/exists, then ] is differentiablo at zero and do/=limx.~,odxt. By 

(iii), this result can be applied to the map ! above. Q.E.D. 

Remark. The curve y2 =x  3 in C l, with the projection (x, y)v-+x, shows that  (iv) is neces- 

sary if n = 2. 

For an appropriate decomposition of Pk • R, E~ will satisfy near (zkdz ~, 0) the condi- 

tions of Proposition 3.5. 

The justification of (ii) will be given in w 4, with preliminaries in w 3. The justification 

of (iii) will be given in w 5, and will follow easily from (ii) and a homogeneity property of E~. 

The justification of (i) will be given in w 6, and will require an entirely different approach 

to E k. We shall show that  Ek has a natural simplicial structure, and that  with this structure 

it  is a piecewise linear manifold. The study of E s needed to justify (iv) will be given in 

w 7, using elementary but  delicate analysis of the differential equation defined by a quadra- 

tic form. 

As the entire proof is by  induction on k, the following assumption will be in force till 

the end of the chapter. 

Inductive assum2ation: k is an integer > I, and the statement o] Theorem 3.2 is true ~or 

all k' < k. 
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Remark. The space E I ~ P  1 • R = R  is just the point 0, and Theorem 2.2 is true in that  

case. We have already constructed E~ in the example above, but the construction will in 

principle be repeated in the general proof. 

w 3. Prellmiuarles on the topology of Riemann surfaces 

In this paragraph we will collect three results that  will be useful in the proof of Proposi- 

tion 3.6 (which will be quite elaborate enough without interruptions). 

We will identify elements of Pk with the associated polynomials. All homology groups 

will be with coefficients Z, but cohomology groups will have coefficients in whatever 

sheaf is indicated. 

Let qoEPk be a polynomial. We will denote Xo, the curve in C 2 of equation y2=qo(z ). 

This curve is non-singular if and only if q0 has only simple zeroes. Denote )~qo the normaliza- 

tion of Xo0, and Xo0 the non-singular compactification of ~qo. In all cases, the projection 

on C will be denoted by g. 

Remark. (a) The Riemann surface .~q0 is "the Riemann surface of ~/q0", in particular 

it carries a canonical differential eoq0. 

(b) Xoo is obtained by adding one or two points at ~ to ~qo depending on whether k 

is odd or even; these will be denoted ~ or oo 1 and oo2 respectively. 

(i) Period matrices. 

The following fact is just one way of saying that  the imaginary part of the period matrix 

of a compact Riemann surface is non-degenerate. 

PROPOSITION 3.4. I] X is any coml:~,ct Riemann eurface, the map He(x, ~ x ) ~  

Horn (Hi(X); R) defined by 

is an isomorphism of real vector spaces. 

Proof. Recall from [10, p. 71] that  I-II(X, C)=II~ f~x)|176 ~x) under the de 

Rham map. The map described in the proposition sends ~0 to its imaginary part, i.e. 

~->�89 and is injective since the sum above is direct. Both spaces have real dimen- 

sion 2g, thus this map is an isomorphism. Q.E.D. 

COROLLARY 3.5. (a) I f  ~r is odd, t~e map 

H~ ~)  ~ Horn (Hl(~q~ R) 

defined in Propositicm 3.4 is an isomorphism. 
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(b) I / k  is even and ~(Roo) is ~he shea/ o/ meromorphic di//erentials on Xqo, holomorphic 

except at 001 and 0% and having there at most simple poles with real residues, the map 

Ho(Xqo, ~(Roo)) -~ Hem (Hl(Xqo); R) 

de/ined in Proposition 3.4 is an isomorphism. 

Proo[. Part  (a) is clear, since removing one point from a compact surface does not 

change its first homology group. 

For part  (b) suppose first that  q0 is a square. Then the result is trivial as both sides 

are 0. The case when q0 is not a square follows from the five lemma and the following 

commutative diagram (the subscript q0 is dropped for convenience) 

0 . . . .  H~  ' ,H0(X.,~(Roo)) res R ~0 

where the map res is ~o-~resoo,(~o)---res~o,(co); the bottom exact sequence is extracted 

from the transpose of the homology exact sequence of the pair (X ~, J~). The last two terms 

are computed by excision; the last map is addition and the map from Hem (Ht(J~); St) is 

onto the line x + y = 0. The vertical maps are given by the imaginary parts of integrals as 

in Proposition 3.4. The left.hand map is an isomorphism by Proposition 3.4, the right- 

hand map is an isomorphism onto x + y = 0  because the integral around a loop is 2~ri times 

the residue, so the map in the een~r  is an isomorphism. Q.E.D. 

(ii) The pair (~qo, gq,) 

Topologically, J~q, can be obtained from )~q, by identifying the pairs of points above 

the even zeroes of %. I t  is more convenient (and equivalent up to homotopy) to think of 

J~q~ as )~q0 to which line segments joining the above pairs of points have been added. Thus 

we can think of J~q. as a subset of i~q,. 

The long homology sequence of the pair looks rather different depending on whether 

qo is a square or not; in both cases ~qo is connected, but )~q~ has two connected (contractible) 

components if q0 is a square, and one otherwise. 

If qo is not a square, and has m even zeroes, the exact sequence 

0 --* Ht(~qo ) -~ Ht(fl2q~ ~ Z" -~ 0 

can be extracted from the long exact sequence, where Hl(J~q0 , J~qo) ~ Z m is computed by 

excision; the inclusion of the line segments described above can be taken as generators 

of Z m. 
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I f  q0 is a square and has m even zeroes (and no odd zeroes of course) the exact sequence 

0 -~ Hx(Xr176 ~ Z m ~ Z -~ 0 

can be extracted from the long exact sequence, where again the generators of Z m can be 

represented by the line segments, and, if they are all oriented going from one component  

of )?q, to the other, the last map may  be taken to be addition. 

(iii) Vanishing homology and the local system Hl(~qo ). 

Pick small disjoint discs D~ around the zeroes of q0 and consider the space UcP~ of q 

which vanish in each disc as many  times as qo (counting multiplicities). The HI(~q) form 

the fibres of a local system over U only if q0 has only simple zeroes. However, each ~Tq 

comes with a canonical homotopy class of maps to 2~q0 given by collapsing the inverse 

images of the discs Dt to points. The kernel in Hl(~q) of the induced map to Hl(~:q0 ) is 

called the vanishing homology, and the quotients of the Hl(:~q) by the vanishing homology 

do fit together to form a trivial local system over U, which we shall denote by  abuse of 

notation Hl(~q. ). 

w 4. Local  equat ions  for Ek 

The object of this paragraph is to prove tha t  Ek satisfies condition (ii) of Proposition 

3.3, for an appropriate decomposition of Pk • R. This will use the inductive hypothesis 

for k' the order of the zeroes of q0. The main tool in the proof is the non-degeneracy of the 

imaginary par t  of the period matr ix  for a Riemann surface; (i.e. Corollary 3.5) this is used 

in Lemma 3.8 and is the crucial computation to show tha t  the implicit function theorem 

can be applied. 

Because the statements for k even and odd are different, we shall frequently have to 

go through arguments twice; this seems to be inherent in the problem, as the arguments 

are sometimes different in essential ways. The case when q0 is a square will also require 

separate t reatment.  

Notation. I f  k is even, denote 

H k  = {zk +ak_~z~-~  + ... + a j ~ z l k }  xR 

Lk = { a l k _ l z t ~ - i  + ... +%}. 
I f  k is odd, denote 

Hk = (z k + ak_2z k-2 + . . .  + a(k_~)/2z (~-~)/2} 

Lk = (a(k_3)/2z (~-3)/2 + . . .  + ao} • R. 
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In  both cases, Pa • R = Ha • La. In  either case Hk is an affine space. Denote by  H~ the linear 

part.  The terms "high coefficients" and "low coefficients" will be used accordingly; the 

term "middle coefficient" will be used only if k is even, and refers to aik-1. 

PROPOSITION 3.6. For any qo E Pa di//erent /rom zk dz ~ but 8u//iciently close, Ek ~ Pa • R 

is locally near qo the graph o/a C 1 map H~-->L a. 

The proof is divided into two steps and will take the remainder of this paragraph. 

The first describes an intermediate space F k consisting of q EPk with a critical graph which 

is locally connected near the zeroes of q0 (see Figure 13). The second step deals with con- 

necting up the critical graph. 

Step 1. I t  is convenient to reformulate the inductive hypothesis to state: for all k' <k ,  

Tzrdz~Ek.={(p, 8)l~z---~-d z is holomorphic on J~zk'dz, and 8 is arbitrary} if k' is e v e n ;  

--- (p, 8) iv is holomorphic on )~,k'~z, and 8 = I m  P if is odd. 
~ - d z  

Indeed it is clear tha t  p/(]/~dz) is holomorphic ff and only if p vanishes at  least to the 

order k'/2 (k' even) or ( k ' - l ) / 2  (k' odd). 

Let q0 E E k be sufficiently close to zkdz 2, qo ~= zkdz2, and let x 1 ..... x n be the zeroes of 

%, of order k 1 ..... kn; suppose k 1 ..... km even and km+l ..... kn odd. Pick disjoint discs Dt 

centered at  x~ and points A~E~t-I(OD~ N I'q,). Let UcP~ be a simply connected neighbor- 

hood of q0 consisting of forms q with ks zeroes in Dt, i = 1, ..., n. 

By Proposition 3.1, there is an analytic map 

/: U--+ I~ Pk 
| - 1  

classifying the deformations of the zeroes of %. Denote still [: U • Rn-~yI~_l(Pa~ • R) the 

map above extended by  the identity on the second factor and consider 

n 

LEMMA 3.7. (a) Pk is a C 1 8ubmani/old o/Pk xR'~. 

(b) Tq.t'affi{(,,Ss, 8.)P_~H~ k ~' - 
. . . .  Vqo 2~ 8'=ImfA, p/Vq~ i----m-hi, . . . ,n  1 
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qo 

Fig. 13 

'2 

i/ k is even 

TqoF~={(p,s,, sn)l P- ~H~ f~'=p/l/qo, 
.... Vqo j .4, 

i/ k is odd. 

i=m+ 1, ..., n} 

Proo]. Statement (a) follows from the fact that  / is a submersion, which in turn comes 

from the fact that  there is no restriction on the zeroes of a polynomial. Par t  (b) follows 

from the (restatement of) inductive hypothesis, which says precisely that  p/Vqo is holo- 

morphie on ~q~ The computation of the order of the pole at oo is left to the reader. Q.E.D. 

Remark. Elements of Fk have critical graphs that  are locally connected near the zeroes 

of q0, cf. Figure 13. 

We shall denote Ft(q) the part of the critical graph of q E Fk which contains the zeroes 

of q in D~. 

Step 2. Recall the local system ~qo defined in w 3, (iii). Notice that  for any q in •,, the 

integral of o~r over a vanishing homology class is real. Thus the map 

g: F,-~Hom(Hl(i1~q,); R) given by g(q) :7~-~Imf o)r 

is well defined. The map g is C a because of the differentiable structure on tv~ (any time a 

loop goes through xl to get from one sheet of -~o to the other, the function st is called in). 

An essential remark is that  Ek=g-l(0). This is clear pointwise: for any two zeroes, 

x,, xj of q there is a cycle 7 going through both of them which covers a line in C once for- 

wards and once backwards. The integral S~ a)q is real, so F,(q)=Fj(q), and the critical 

graph of q is connected. However, this remark demands a bit of amplification. The space 

Ek of Theorem 3.2 lies in Pk • R, whereas g-l(O)cP, •  n. Pick curves ~, on Xq, joining 

A to At; ff they are chosen outside of g-l(D,)  they define unique homotopy classes of 
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curves on all ~q. Define differentiable functions h~(q) = I m  j'r, mq on P~. On g - l ( 0 ) ,  S t ~-h I - -  

s~+hj for all i, j. Therefore if Pa x R is embedded in Pz •  ~ by (q, s)~->(q, s-h i (q)  .. . .  , 

s-hn(q)), the space g-l(0) lies in the image. So in order to prove Proposition 3.6, it is 

enough to show tha t  g-l(0) is a C 1 submanifold of pk • R ., and that,  for Pk • R embedded 

in P~ • R" as above, H~ gives local coordinates on g-l(0). 

Let V=H~ ~(Rc~)) • Rmc Tq0F k. We remark tha t  if k is odd H~176 ~ ( R ~ ) ) =  

H~176 ~) as there is a single point at co. Suppose first k is even and q0 is a square. 

Consider the diagram 

0 , R  m , V  . . . .  0 

0 - , It + R m , Horn (Ht(Xq0); R). ,0 

where the bot tom exact sequence is described in w 3, (ii), and the bot tom inclusion R-*R  m 

is the diagonal map. The diagram commutes so dq0gl v is an isomorphism restricted to any  

subspace complementary to the diagonal. By  the implicit function theorem E~ is a 6 u 

submanifold of Pk and the high coefficients and s are coordinates on Ek near q0 since dqos 

does not vanish on the diagonal. Comparing with the remark made in the last paragraph, 

the vector in P~ • R with non-zero component only in the R direction is tangent  to E k to 

q0. This proves Proposition 3.6 if q0 is a square. 

Now suppose q0 is not a square. 

LEMM.~. 3.8. The map dq~ I v: V ~ H o m  (HI(:~q,; R) is an isomorphism. 

Proo]. Consider the diagram 

0 , R"  , V - -  , H0(X~~ ~(Roo)) , 0  

0 , R'* , H e m  (Hl(Rq0); R) , H e m  (Hl(J~q~ R) , 0  

where the bot tom exact sequence is the transpose of the one described in w 3, (ii) and the 

right-hand vertical map is the isomorphism described in Corollary 3.5. The diagram com- 

mutes by differentiation under the integral sign, and the lemma follows from the five 

lemma. Q.E.D. 

By the implicit function theorem, E~--r is a C 1 submanifold of Fk embedded in 

P~ • R" and any  set of coordinates complementary to V will be local coordinates on E k, 

in particular the high coefficients and the imaginary par t  of the middle coefficient if k is 
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even. This proves Proposit ion 3.6 if k is odd. I f  k is even, we need to show tha t  the imaginary  

par t  of the middle coefficient can be t raded for s as a coordinate. Lemma 3.9 and the 

implicit funct ion theorem allow precisely this. Let  h(q) =Im a~k_ 1. 

We note first t ha t  Ek has the following homogenei ty  property:  if 

q = (z -r l )  ... (z-rk)dz2EEk then  for t ~0 ,  qt__. (z_trl)(z_tr~) ... (z_trk)dz2EEk. 

We will speak of the line through q. 

L E M ~ A  3.9. Suppose k is even and q is not a square. I / q  is sufficiently close to z~dz 2, 

then ~s/~h:~O at q. 

Comment. The partial derivat ive is taken in the local system of coordinates above. 

Proof. Since q is not  a square it has an  odd zero. If  ~EHI(~q)  covers a circle of radius 

A, ~ o~q=2rd resoodoq, and the change of variables ~ = z  -1 and a power series develop- 

ment  of the square root  show tha t  res~o o~q = �89 + higher order terms in the high coef- 

ficients. But  a drawing shows tha t  ~ coq is real so g Re atk_l + Re (higher order terms) = 0. 

We conclude tha t  a (Re aik_l)/~h =0.  

Now suppose qn~zkdz 2, ~s/~h(qn)-~0. Let  z n be an  odd zero of q,. F ind ~, on the same 

line as q, so tha t  qn-'qo ~ z~ dz2" Also qn ^ ~" =qn , tn-~O. 

Case I. qo not  a square. Let  (~n(z), s) = (iz ~k-x + ... +ao, s) t angent  to E k at  qn. Then 

~.  converges. The vector p~(z)= (iztk-x +t,a~_~ + ... + t ~ - l a 0 ,  s~) is tangent  at  q, by  homo- 

geneity. The condition Os/Oh = 0 means sn = I m  ~ "  (pn(z)/q~2(z))dz = 0. Now p~(z)/qX,/2(z) 

converges to  i/z. This contradicts Fa tou ' s  lemma. 

Case I I .  qo is a square. Let  (p,(z), 1)=(ia~k_lztk-1 .. . . .  a 0, 1) tangent  to EL at ~,. Now 

t "~"/~" i~.(z) 
1 - - I m s  o ~ d z .  

Since (0 .. . . .  0, 1) is tangent  at  qo, the coefficients a~ all converge to  zero. Again (p~, 0)--  

(iai~_~zi~-~+t~ai~_~z~-2+ ... +t~ao, 0) is tangent  to E~ at  q,. Let  o~ ... . .  ~% be the set of 

zeroes of q,. Wi th  the subst i tut ion u = t,/z, 

1 i t  \ #~-i \ 
|ia~_, I~l +...I du 

0 =  Im f"_p~(z) dz= - -  I m  l u~tn \ \ u /  / 

Pllzn /a ) 
---- - I m  / | du 

a~.tA t u (1 - uo.h)~2... (1 - uw~) 1~2" 
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We break this up into two integrals, the first from 1]A to 1]~, the second from tn/A to 

1/A. The first integral is 1 by the change of variables z = 1/u. Therefore 

I m  - - - -  
a t,~ (1 - UO)l)l~ ... (1 - uw~) ~ -~ 1. 

The denominator has limit 1 as u-~0 and n ~  c~. 

Since a s goes to zero, 1 = l imn_~ f~zA j~,z~ [iai~_x/U ] du = - lim~..~ai~_~ log tn. We have 

0 = ( ~  - log t ,  p,(z) dz. 
J~ q~(z) 

But  - (log t~)pn(z)/q~n~(z) has limit i[z again contradicting Fatou 's  lemma. 

w 5. ~ e  ~ngent space to Ea at z a d z  ~ 

The object of this paragraph is to prove tha t  Ea satisfies condition (iii) of Proposition 

3.3. This will follow from Proposition 3.6, homogeneity, and the computations in the 

following two lemmas. 

L~MMA 3.10. For a su//ieiently small neighborhood V o/z~dz 2, i / ( p ,  1)= (/a~_lZt~-I + 

... +a0, 1) is tangent to Ez at q a non~quare, then ai~_~ <0. In  particular ~s/~h <0.  

Proo[. Let  eot ... .  , o~ be the roots of q, qt is the line joining q to zkdz 2. By Lemma 3.9 

the vector (p, 1)= (iai~_lzt~-I +ak_~ztk-2+ ... +%,  1) is tangent to E~ at  q for q near z~dz 2. 

By homogeniety there exists [(t)> 0 such tha t  1 = I m  rt~, j~ /(t)pd(qt) 1/~, w h e r e / ( 1 ) = l  and 

pt(z) =/a~k_lZt~-I + taik_l ztk-2 + ... + tJ~-lao. The change of variables u = t/z gives 

1/A /(t) ( ia~-X + ai~_2 § ... + ao u~-2)  
? 

1 =/(t) - I m |  du. 
j ~IA (1 - -  U ( D 1 ) I / 2  . . .  (1 - U ~ 0 k )  1 / 2  

The second term is of order aik_t/{t)log t. Since/{t) >0,  ai~_ 1 <0. Q.E.D. 

Lv.M•A 3.11. Suppose q,-~zk dz ~, q,~ not a square and (p, ,  1) is tangent to Ek at q~ where 

pn(z) =(iatk_lzik-l + ... +%). Then lim~..~a~=O; i=O ... . .  �89 

Proo/. Find ~ so tha t  q ~ = ~  and ~ q o ~ z ~ d z  2. Suppose o~ is an odd root of ~ and 

(~n, 1)=(idtk_lzJ~-l+.. .+do,  1 ) tangent a t  ~ .  Then again by homogeneity ajk_j= 

/(n)d~_jt~ -1, j =  1 .. . . .  �89 for some positive function/(n).  
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Assume first q0 is a square. Then the coefficients ~,~_~ go to  zero and comput ing as 

before, 

1 = / ( n )  + / (n)  log tndie_x +/(n) C(t~) 

where C(t~) ~ O. By Lemma 3.10, dt~_ 1 < 0. Therefore / (n)  is bounded and limn-,~opn(z) = 0. 

I f  qo is not  a square, the  coefficients converge; dtk-1 to  a nonzero limit. Again 1 = 

](n)+/(n) log tndik_l-/(n)dik_llog 1/A q-/(n)C(t~) where once again C(tn)-~O. This t ime 

limn_,co/(n) = 0  and the lemma is proved. 

PROPOSITION 3.12. The tangent space TqEk ~ H  k as q--*z~dz ~. 

Proo/. We start  with b even. Suppose q is no t  a square and v, tangent  at  q, has 0 in 

all components  of Rk except a 1 in the R direction. Then by  Lemma 3.11, the Lk com- 

ponents  go to  zero as q~zkdz 2. This automat ical ly  holds if q is a square as the L k direc- 

tions are already zero. Now we let (p, O)= (cz I §247 ... -l-a0, 0) be tangent  to E k at  

q where b-2>~l>~k/2. If q~O along the square locus the homogenei ty  shows tha t  the 

coefficients at~_ 1 .. . .  , a o go to  zero. Otherwise we pull back q as in the previous two lemmas 

by  a factor  lit to  ~ with odd root  o~ and we suppose ~ q e ~ z k d z  2. Let  (cz I +dtk_l ztk-1 + ... + 

do, 0) tangent  at  ~. The coefficients dtk_ 1 ..... d o are bounded. We compute  

Im  f~= (ezt + tt+t-~ktt'~q~,: ~ - t  + "'" + tld~ dz. 
8 ~  

By the change of variable u = t/z we find the above integral has limit 

since 

Now 

cA l- Ik~ 1 
I m  l _  �89 1' 

Im f :  (czl(~)'l:: d~ dz=O. 

(p ,  0) = (CZ ! + $Z+l-tkt~k_lZtk--1 -F . . .  + t t a a ,  8)  - -  (b~k_lz  ik-1 + ... + b  o, s)  

for some tangent  vector  (btk_lztk-l+ ... +b  0, s). By  Lemma 3.11 the coefficients bj go to 

zero since s is bounded. Therefore (p, 0) converges to  (cz t, 0). This proves the proposit ion 

if k is even. The proof is trivial for k odd as there is no middle coefficient. The tangent  

vector (alz t +ai~_a)/~z(~-3)/2 + ... +a0, s) converges by  the change of variables to 

at A l- jk-l~ 
a, z l, - I m  Q.E.D. ?=_ i / .  

We have justified (iii) of Proposit ion 3.3. 
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w 6. The slmplleial structure of Ek 

In  this paragraph we shall exhibit a simplicial complex Sn such tha t  Ek is the cone 

over Sk+2. Roughly speaking, q E E k lies in a low dimensional simplex if its zeroes are very 

degenerate; any  a t t empt  to draw deformations of critical graphs will make it clear that  

some such structure must exist. Then we will show tha t  Sn is homeomorphic to the sphere 

of dimension n - 4 ,  which justifies (i) of Proposition 3.3. 

The following elementary lemma from linear algebra will be necessary in Proposition 

3.14. The indices should be interpreted circularly, i.e. n + 1 = 1. 

LE•MA 3.13. Let  a i . . . . .  an be reals, such that ~ 1  ( - 1)~a~ = 0  i /  n is even. T h e n  there 

exist t 1 . . . . .  tn E R w i th  t~ >10 such that i / a s  = t~_i + t~, the system o / l i n e a r  equations x~ + x t+i = 

a~+ i can be so lved/or  real x i . . . . .  xn wi th  x~>~O, all i - - 1  . . . . .  n.  

Remark .  Of course, all the interest of the lemma is the positivity of the x~. 

Proo/.  Set (the upper indices refer to n odd, the lower even) 

2x i --- a i § a ~ -  a a + ... -T an 

2x~ = - a  z + a ~ + a  a -  ... -t-a, 
: 

2xn_ 1 ~ "~ a I --~ a~  . . .  + a n _  1 Jr a n 

2xn = • a i  -T a ,  ... - -  a n - i  + an. 

Adding successive equations shows tha t  we do have a solution to the system of equations; 

the last one says xn = 0  if n is even, so although the difference of the last and the first gives 

2 x l - 2 x n = 2 a l ,  it still works. Now increasing ti changes x~ by t~ without changing the x~, 

i 4 i .  Q.E.D. 

Let n I> 2 be an integer and let D be the closed unit disc in C; we shall be interested in 

closed graphs F c  D satisfying the following conditions: 

(i) F is contractible. 

(ii) The nth  roots of 1 are nodes of F, are the only points in 8D, and bound only one 

edge. 

(iii) Every  node in the interior of D is the boundary of at  least 3 edges. 

Remark .  Let  l ~ be the graph obtained by adding the unit circle to F. Parts  (i) and (ii) 

show tha t  g(i ~) = 1 - n ;  if c o and c 1 are the number  of nodes and edges of r ~, (ii) and (iii) 

show tha t  ci~>~c0, c0~<2(n-1), and c l < 3 ( n - 1  ). There are therefore in  the interior a t  
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Fig. 15 

most n - 2  vertices, and n - 3  edges which do not intersect the boundary. A few drawings 

will convince the reader that  these inequalities are true, and strict if and only if there is 

a vertex which bounds at least four edges. 

Two of these graphs r 1 and r s  will be called equivalent if there is a homeomorphism 

of D onto itself which is the identity on ~D and sends r I onto r 2. The remark above shows 

that  there are only finitely many equivalence classes; in the future when speaking of 

graphs, we will mean "equivalence classes of". 

Recall that  a finite simplicial complex X = ( V, ~) is a finite set V of vertices, and a set 

of subsets of V called simplices which contains the singletons, and contains every subset 

of a set in ~. The topological realization of X is the set IX I = {/E R v} such that  (i)/(v) >~ 0, 

(ii) ~.,~v/(v)=l, (iii) support /E~; with the induced topology from R v (which is a finite 

dimensional vector space). 

Define the simplicial complex Sn: The vertices are the n-graphs with exactly one 

interior edge, and the m-dimensional simplices correspond one-to-one with the graphs with 

m + 1 interior edges, its vertices being the graphs obtained by collapsing all but one edge. 

Example. The simplex of dimension 2 corresponding to Figure 14 has as its vertices the 

three graphs in Figure 15. 

Remark. A point of I Sn] is a graph F with interior edges ~'1 ..... Ym and homogeneous 

coordinates a 1 ..... am with a~ > 0 and F at = 1. 

Recall that  if X is a topological space, the cone CX over X is the quotient of X • [0, oo) 

by the equivalence relation collapsing X • {0} to a point. 

We shall now construct a m a p / :  Ek~C[S~+z I. Pick q~z~dz 2 in Ek and let 71 ..... ?m 

be the bounded segments of Fq. 

There is exactly one unbounded critical leaf asymptotic to each ray 0 =2~m](k+2),  

m = 0 ..... k - 1 .  Therefore the homomorphism z~->z/([z[ ~ + 1)~ of E onto the open unit disc 

maps the critical graph of q to a (k +2)-graph of the sort considered above. 

The cone factor of/(q) will be t = 5 ,  5r, Iql and the IS~+~[ factor will be the point 

17-782905 Acta mathern,,tica 142. Imprim6 |e I1 Mai 1979 
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lm, l,., lm~ 
- - 0  �9 �9 O - -  

Fig. 16 

of the simplex corresponding to the graph of q, with homogeneous coordinate (lr~ [q[1/2)] t 

for the vertex corresponding to ~ .  

We set/(z~dz 2) to be the summit of the cone. 

PROPOSITION 3.14. The map / :  E~-~C[Sk+~] is a homeomorphism. 

Proo/. The map / is clearly continuous: we shall show that  it is bijective. The continuity 

of the inverse follows from the homogeneity of both spaces. 

Pick a point (F, l)eC[Sk+~[ where F is a (b+2)-graph and 1 associates a homogeneous 

coordinate to each interior edge. We shall construct a Riemarm surface X r with a quadratic 

form q by gluing k + 2 copies Hm of the upper half plane according to the pattern (F, l). 

To be more explicit, for each m--  1 ..... k + 2 consider the injeetive path in the graph from 

e ~'tml(k+~) to e~m(m+l)/(~+~); this will go through interior edges Ym ...... Fm~ with homoge- 

neous coordinates 1 m . . . . . .  l~. Mark off on the real axis in H m contiguous line segments of 

length lmj . . . . .  lm, as indicated in Figure 16: 

In the union of the H~ identify isometrically the line segments that  correspond to the 

same edges of the graph Y (including the unbounded ones). 

The resulting space X r carries a unique structure of a Riemann surface restricting to 

the standard one in the H~, and a unique holomorphic quadratic form q restricting in each 

Hm to dz 2. 

LEMMA 3.15. The one point compacti/ication X r o/ X r  is con/ormally equivalent to 

the Riemann sphere. The quadratic form q can be extended as a meromorphic form to X r 

with a pole o/order k + 4 at in/inity. 

Fig. 17 
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Proo/. We shall need the following fact: if k is: even, (z~+ iaz i~-x) dz ~ is]in Ek; its critical 

graph for k =6  is drawn in Figure 17. For any 7 bounded segment of the critical graph, 

The idea of the proof now is to show that  the complement of a critical part  of U~ 

in X r is isometrically isomorphic to the complement of a compact part  of the critical 

graph of z~dz 2 if k is odd, and of (z~+/azt~-l)dz ~ for an appropriate value of a if k is even. 

If X is cut along the compact segments of Fa the result is a union of Hn each con- 

nected to the next  along some ray on the right of the real axis, the unattached part  is a 

segment of length Pm (lm,+ ... +lr~ in the above notation); clearly the lengths Pn com- 

pletely classify the complement of the critical graph. 

If k is odd, we wish to cut out further points Ym on the ruth ray of Pc, and out to 

points Xm on the ruth ray of z~dz ~ so that  the resulting surfaces with quadratic differentials 

will be isomorphic. Consulting Figure 19 we see that  this means Ym +Pro + Ym+l = Xm + Xm+l" 

Lemma 3.13 guarantees this can be done. 

Fig. 19 
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Fig. 20 

I f  /~ is even, a similar proof works, but  the fact tha t  one is now comparing to 

(z k + iaz �89 dz s allows one to subtract  

2 

from Pm for even m which makes the alternating sum vanish. Lemma 3.13 can then be 

applied by choosing a = ( l /z)  ~. (-1)~pt.  

Thus q can be written in the coordinate ~: Xr-% C as a polynomial quadratic differential 

of degree k. A unique translation will make the coefficient of the linear team vanish, and 

a multiplication unique up to a k + 2 root of 1 will make the leading coefficient 1. The root 

of one is uniquely specified by requiring tha t  the ray  of F~ previously going to 1 be asymp- 

totic to the positive real axis. Q.E.D. 

The next  proposition is purely topological; it requires only the definition of S~. In  

order to prove (i) of Proposition 3.3, all we need is tha t  S~ is connected, so we will be a bit 

sketchy on the full proof, as we get it also from the general inductive argument. 

PROPOSITION 3.16. The siraplicial complex Sn is homeomorphic to the sphere o~ dimen- 

sion n - 4. 

Proof. We shall construct a homeomorphism by  induction. Suppose tha t  Proposition 

3.16 is true for all n" < n. We shall give a decomposition of Sn into two "polar"  zones homeo- 

morphic to balls of dimension n - 4  and a " tempera te"  zone which is homotopy equivalent 

to S~-r  The polar zones U 1 and U S will be the closure of the stars of the two vertices v 1 

and v~ ch.awn below: 

Each of these is simplicially equivalent to the cone over Sn-1; recall tha t  the cone 

of summit v over a simplicial complex ( F, ~) is the simplicial complex ( V', ~') where V' -- 

g U {v), and a e ~ '  if and only if either ae~ ,  or a = T  U {v}, with ~e~. Indeed, each vertex 

of S~-i can be identified with a vertex of U 1 (resp. U~) other than  v 1 (resp. other than  v~) 

by joining the node where the edge coming from 1 meets the interior of the graph to e ~(~-1) 
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3// 

g 

1'" 
,,' Va 

Fig. 21 Fig. 22 

(resp. e -'~/(n-1)) and adjusting the positions of the points on the unit circle so that  they form 

the nth roots of 1 (keeping 1 fixed). Then the vertex v 1 (reap. v~) and the vertices of Sn 

constructed above clearly span a simplicial complex equivalent to the cone over S,_ 1. 

So by the inductive assumption U1 and Us are balls. 

Consider the simplicial complex S'~ found by removing the stars of the vertices v 1 and 

v 2 from Sn. 

Map S'~S,~_ 1 by simply erasing the segment joining 1 to the interior graph, and re. 

adjusting the roots rotating counterclockwise. This is well defined since there will still 

be at least one interior edge. In the topological realization, the fibres are easily seen to be 

intervals, sometimes degenerate (i.e. points). Collapsing these intervals gives a homotopy 

equivalence of S~ with the (n-4)-sphere, and a little extra work shows that  Sn is homeo. 

morphic with the sphere. (Topologically IS',[ = I S~ [ - (I ~1[ U I r I) is the complement of 

the open stars.) 

w 7. The space Es 

The object of this paragraph is to prove (iv) of Proposition 3.3, i.e. that  the map which 

sends (zS+az +b)dz~E E 3 to the linear coefficient a is single sheeted. The proof is nothing 

but a detailed look at the differential equation (zS§ using elementary 

techniques, mainly drawing the field of slopes. 

Essentially, everything can be deduced from the following two drawings: let a >0 be 

real, and consider the orthogonal families of curves 

Im (z 3 -az) = u 

Re (z a -  az) = v; 

they are represented in Figures 21 and 22, and the arrows on the first (second) correspond 

to increasing v (resp. u). 
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Fig. 23 Fig. 24 
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Remark. For any given value of u (resp. v) a curve of the first family generally has three 

branches, which are usually disjoint, but  sometimes degenerate. In  particular, for u = 0 ,  

the curve consists of the real axis and the hyperbola 3x 2 -  yS-~ a. 

PROPOSlTIOI~ 3.17. Let a > 0  be real. Then ( z S - a z - b ) d z  ~ is in E s if and only if 

bffi-  

Proo]. By symmetry, it is enough to prove the result ff Im b/> 0. The case when b is 

real will be left to the reader, and is in any case a straightforward limiting case of the case 

Im b >0. 

If  Im b >0,  there is exactly one root of the polynomial z S - a z - b  on each of three 

branches of the cubic Im (z a -  az) = Im b which in this case looks like Figure 23. Call the 

one in the second quadrant ~ the one with negative imaginary part  fl and the one in the 

first quadrant y. 

LEMMA 3.18. Re ~<Re fl<Re~. 

Proo/. Start  with b real, and follow the roots as the imaginary part  increases. A look 

at the arrows in Figure 22 shows that  for each of the possible initial positions of the roots, 

they evolve in such a way as to satisfy the lemma. Q.E.D. 

Now consider the differential equation ( zS -az -b ) ( z ' )2=l .  The slope field is drawn 

in Figure 23. I t  is clear that  the only way in which the quadratic form could have a con- 

nected graph is if both ~ and fl were connected to ~ by the critical graph. Thus two of the 

critical rays emanating from ~ should leave the first quadrant. But this does happen, as 

Figure 24, which gives all the possibilities for Z, should make clear. 
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CHAPTER IV 

Proof of the theorems 

In this chapter we will pull together the results of Chapters I I  and I I I  to prove the 

main result. 

w 1. The local homeomorphism 

Let qEQ be a holomorphie quadratic form on X, and F the underlying measured 

foliation. 

PROPOSITION 4.1. The projection p: Q-~O induces an open mapping E~-~O at q. 

Proof. In this paragraph we will prove the result only if q is not a square. The ease 

where q is a square requires different techniques, and will be treated in w 5 with prelimi- 

naries in w 2, 3, 4. We invite the reader to compare the present proof with that  of Proposi- 

tion 3.6. 

8tep 1. Suppose that  q vanishes at x I ..... xn to the orders k 1 ..... kn. Call .~.-~0 the 

universal curve over Teichmiiller space, and consider the curve p*~-~Q. This curve is 

smooth over Q, so for each x t there is a neighborhood Ut of q in Q, an open subset W i t  X 

with xtE Wt and an embedding ~t: Ut • Wt-~p*~ commuting with the projections to Q 

and which restricts to the inclusion W jc  X on {q} • Wt. 

The curve p*.~. carries the tautological relative quadratic form (the one which restricts 

to q on the fibre above q), and using the embedding Ut • W i s p  *.~., above this yields a 

family of quadratic forms on W~ parametrized by Ut. Choose a local coordinate z on W~ 

such that  q=zk'dz s in Wt. Proposition 3.1 gives a map f~: U~-~Pk~ for some U~ neighbor- 

hood of q in Ut classifying the deformation of z~'dz s given by the above family. 

Set U = fl U~ and consider the map f: U-~I~ Pk~ whose i th entry is ft; as a first step 

in constructing Er  we wish to consider f-1 (1-[i E~). Since Ek is not quite a submanffold 

of Pk ff k is even this is not the right thing to do; call still f: U • R~-~I-L Pk~ • R ~ the map [ 

above extended by the identity on the second factor. Now since E k is a submanifold of 

Pk x R, we consider Vc U x R ~ defined by V =f-i (I-L Ekl). 

Remark. Points of V correspond to quadratic forms q' near q whose critical graph is 

connected "near the zeroes of q". The drawing in Figure 25 illustrates what such a q and 

q' might look like. 
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Fig. 25 Fig. 26 

LEMM~ 4.2. (i) The set V is a C ~ submani]old o] U •  n, and the projection p: U ~ )  

induces a submersion V ~ O. 

(ii) The vertical tangent space Tv/| is the set o/ (q', s ) e ~ 2 ( X )  x R  n such that q'/eoq 

is holomorphic on ~q, 8, arbitrary. 

Proo/. This is an application of the implicit function theorem. Recall from Chapter 3, 

w 4, the spaces Hk, JLkCP ~ (resp. Pk • R if k even). Define JEa~P ~ (resp. Pz • R) as h-l(0) 

for an appropriate mapping h: Pz-~Lk (resp. Pk • R~Lk).  This is possible by Proposition 

3.6, and doh is the projection/~z • �9 

Now V is defined in U •  as (ho])-l(0). The lemma will be proved if we show that  

dq(ho/)[a| a. is surjective, and that  its kernel is our candidate for the vertical tangent 

space. By Proposition 3.1 dq/sends any q' to its (k t -2) - je t  at each x~ and is the identity 

on the second factor. The derivative of h further truncates q' to its [k,/2] - 1 jet at each x, 

and vanishes on the s,. 

Let Jk(x) be the space of k-jets at x of quadratic forms on X. We see that  dq(h o [) [ n| an 

is the map ~|215 R"-~ | which vanishes on the second factor, and sends 

q' E~| to its [kJ2] -1- je t s  at the x,. This part fits into the exact sequence 

Ho(X, ~'~| __. (~j[kdp]_l(x~) _. H i ( X ,  ~'~| _ ~ []Q/PJx~)) 

coming from the exact sequence of sheaves 

The above H 1 is dual to H~ Tx (~ [k,/2] x,) by Serre duality. If the sheaf T x (~ [k J2] x,) 

has a non-zero section g it is easy to check q =cz-~= (cl/2Z-1)~, and thus q is a square. This 

proves Lemma 4.2. 

Remark. (a) The one-form Z -1 is the unique one such that  Z-I(Z) = 1. 

(b) Although it is of course necessary that  the zeroes of q be of even order for q to be a 

square, it is not sufficient. The Strebel form in Figure 26 is a counter-example. Indeed the 

foliation is not orientable around the loop 7. 
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Step 2. Recall that  there is a local system over U with fibre Hz(i~q) , and it can of 

course be restricted to V. Define a map 

g: V ~ Horn (Hz(i~q); R) 

by the formula q'~->(~->Im Sr (%')" This map is well defined although ~, as a cohomology 

class on the Riemann surface above q', is only defined up to elements of the vanishing 

homology. This is true because in V the integrals of ~%, over such vanishing classes are real. 

Moreover g is of class C 1, for this is precisely the effect of adding the coordinates s~. 

LEMMA 4.3. Let W =g-~(g(q)); then W c  U N EF. 

Proo/. Given any ~,6S and any q '6U,  denote by ~6Hz()?'q., 1 ~) the lift defined in 

Chapter 2, w 4. Then the transverse length Fr is given by �89 S9 eor Clearly the values 

of such integrals are constant in W. 

Now clearly Proposition 4.1 follows from the following lemma. 

LEMMA 4.4. The map p: W ~ O  is a local homeomorphism at q. 

Proo/. First observe that  under the map q'~-~q'/e% the space of q' whose images are 

holomorphic on ,~q is identified with H~ ~) - ,  there is therefore a canonical isomorphism 

of the vertical tangent space to V with R ~ • H~ ~) - .  Consider the diagram 

0 ' R ~ " Tvlo, q , H~ ~) -  ~ , 0  

0 . R ~ . Horn (Hz( i~ , ) - .  R) . Horn (HI(~,)-. R) .0 

where the top line comes from the argument above and the bottom one from the homology 

exact sequence of the pair (Xq, 5~) as in III ,  w 3, (Hi). 

Exactly as in Proposition 3.6 the diagram commutes and the maps at the right and 

left are isomorphisms, so dqg is an isomorphism. Q.E.D. 

w 2. The  tangent  space to (2 

The proof given in the last section fails if q is a square as the map Ho(x, s | ~ (~P[kd2]-z 

is not onto. In fact we need to investigate the classifying m a p / :  U-~ (~Pk, more closely. 

In  order to do this we need to identify the tangent space to Q in terms analogous to the 

Kodaira-Spencer identification Hz(X, Tx)= TxOM (Tx is the sheaf of germs of holo- 

morphic vector fields on X). 

There are several ways of obtaining this isomorphism; one in terms of the Dolbeault 
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resolution was found by Earle and Eells and is described in [6]. The one in terms of Cech 

cohomology will be more convenient for our purposes; it  is less well adapted to actually 

constructing the various spaces, but as we already know that  Q exists, this will not  matter. 

The idea is to differentiate the change of coordinates with respect to the parame~rs.  

Let  l-I: ~M--~ OM be the universal curve over Teichmiiller space and 0 E 0M correspond to 

the Riemann surface X (in this discussion the Teiehmiiller marking is irrelevant). Since 

l-I is a submersion, every point xEX has a neighborhood U in X such that  there is an open 

neighborhood S of 0 in OM and an isomorphism ~: U • S ~  onto an open subset which 

commutes with the projections on OM. Such a pair (U, ~) is called a relative coordinate 

chart. 

Pick relative coordinate charts (U~, ~ )  such that  the U~ form a cover of X. Then for 

any V~j relatively compact in U~ N Uj= U~j the map ~j(s)=~j-1(8)o~(8): V~j~U~j can be 

defined for s sufficiently near 0. These ~j(s) are called relative change of coordinate maps. 

Since ~j(0) is the identity, the derivative of ~tj with respect to s at 8ffiffi0 is a vector 

field on V~j, and since V~s was arbitrary in U~j, we actually get a vector field Zi~ on U w 

These define a map TaOM~CI(U, Tx). 
One must check that  the image falls in the cocycles and that  it does not depend on the 

relative coordinate charts chosen. The first point is settled by differentiating the relation 

~ j ~ o ~ t j = ~ .  For the second suppose (Ut, ~ )  is another relative atlas (with the same sets 

Ut), and denote with a prime everything coming from the new atlas. Then if ~(8) = ~-l(s)o 

~(s) (defined on any relatively compact subset V~c U0, the derivative at 0 of the rela- 

tion fl~-l(s)o~(s)ofl~(s)=~(s) gives X~'~-X~=Z~-~, i.e. the cocycles X and Z" are co- 

homologous. The general case is deduced from this one by refining the covering. 

All of this gives a map TeOM-~H~(X, Tx). I t  is not quite obvious that  it is either 

injective or surjective, and both must be proved either from a construction of Teich- 

mfiller space or from functorial properties of the deformation functor. We will not do this 

here, but refer to [6] or [11] for detailed proofs. 

The analogous description of the tangent space to Q is slightly more difficult. We 

could describe a Riemann surface near a given one using the same charts, and slightly 

deformed change of coordinate maps, but  we cannot describe an arbitrary Riemann surface 

with a quadratic di/ferential near a given one by gluing together coordinate patches of the 

original Riemann surface by perturbed coordinate transformations which preserve the 

original quadratic form. The difficulty is that  we do not get enough points of Q this way, 

because the multiplicities of the zeroes of the oiiginal quadratic differential will be preserved 

by this operation, and we will not have allowed the deformations which break up a multiple 

zero into several less degenerate ones. 
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Thus to describe deformations of a Riemann surface with a quadratic differential we 

need to do the following operation: cover the original surface with coordinate patches, 

and vary both the quadratic differential in each patch, and the change of coordinate 

maps, subject to the obvious compatibility condition that  the deformed change of co. 

ordinate maps send the deformed quadratic forms into each other. 

The appropriate language for describing this construction is hypercohomology. The 

reader can find excellent treatments of the subject in [2] and [8]. We shall only develop 

what is strictly necessary for our purposes. 

Let X be a Riemann surface (as always, compact of genus 9' >~ 2) and q0 a quadratic 

form on X. 

Consider the complex of sheaves L': 

0 "Tx Lz,~ , 0  

where L x is the Lie derivative. The first hypercohomology group of this comPlex is our 

candidate for Tq, Q. 

In order to construct a map Tq, Q-~HI(L'),  consider the family p * E ~ Q ;  the fibre over 

(X, q) is the Riemann surface X, and carries the quadratic form q. Repeat the construction 

of the previous paragraph: above a small neighborhood S of q0 in Q pick relative coordinate 

charts (:q, Ut) and consider the pairs 

= . (s )  = = ; -1 (s )o=# ) ,  7~,(s) = = # ) * q .  

These satisfy the relations 

=;k(s)ooqj(s) = or ) and  oqj(s)*q~j(s ) =qh(a). 

If we let g~J = dqo o:, j, v 2, = dqov2= , the derivatives of the relations above give 

Ztj+Zjk=Zik and Lxuq0=v/t-~pj. 

Of course, all the computations above should be understood restricted to the appropriate 

domains. 

Thus we have an element (Z, ~v) E Ca(U, Tx)  ~ C~ ~| = Ca(L'), and the above rela- 

tions say exactly that  the image is a cocycle. 

PROPOSITION 4.5. The induced map TqQ~HI(L ") does not depend on the relative atlas 

(~, Us), and is an isomorphism. 
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Proo]. The first part is straightforward: pick another atlas (~,  U~) and denote with a 

prime everything coming from the new atlas. Define maps fi~(8)=~-l(8)o~(s), then we 

ha ve the relations 

fi~-1(s)o~,j(s)ofl,(s) = ~,'j(s) and fl,(s)*~,(s) =V~(s). 

Differentiating these relations with respect to s and setting z~=d~o fit, we get Zu-Z, ' j= 

ZJ-Zt and Lz~%§ This is just what is needed to claim that  (X, ~P) and (Z', ~o') are 

cobordant. 

The second part  comes from the exact sequence of complexes 

0 0 

0 , 0 , ~ x  ~  , 0  

1 1 
0 , T~ .__,. ~ 2  , 0  

J 1 
0 , T ~  , 0  , 0  

[ l 
0 0 

This leads tO the long exact sequence 

The two end terms are zero. I t  is clear from the construction that  the map H~ ~ 2 )  

HI(L ") is induced by  the inclusion of the fibre H~ ~ 2 ) _ . Q ,  and similarly that  the map 

HI(L')~HI(X, Tx) commutes with the derivative TqQ~ToO M of the natural projection. 

Since TO~)M=HI(X, Tx) , the result is proved. Q.E.D. 

Remark. I t  is clear that  a similar description is possible for the tangent  space to any 

universal space of compact manifolds with tensors. In general, the long exact sequence 

above does not have vanishing end-terms; in the general case the map H~ Tx) ~ H~ ~ 2 )  

expresses the fact tha t  the universal space is not the total space of the vector bundle but  its 

quotient by Aut (X). The map Hi(X, Tx)~HI(X,  ~ 2 )  measures the obstruction to ex- 

tending a tensor when the underlying manifold is deformed. 

There is a spectral sequence which relates hypereohomology groups of a complex of 

sheaves and the cohomology groups of the associated eohomology sheaves. 
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The kernel Aq~ of Lxq0: T x - + ~  2 is called the sheaf of locally cons tant  vector  fields. 

This terminology is justified by  observing tha t  if %=dz 2 in the local coordinate z and if 

Z =Z(z)d/dz then Lzq0=2X'(z)dz2, so Z is in the kernel if and only if •(z) is constant .  I t  is 

easy to  check tha t  there are no non-vanishing locally constant  vector  fields on a con- 

nected open set in which q0 has a zero. 

The cokernel of Lzqo: Tx -~~  2 is a skyscraper sheaf supported by  the multiple zeroes 

of %; this is the content  of Proposi t ion 3.1. I n  fact  the proposit ion tells us t ha t  the stalk 

of the cokernel at  a point  x where % has a zero of order k is the quotient  Pk(x) of the germs 

of quadrat ic  forms at  x by  those tha t  vanish at  least to  the order I t -  1. 

To be more precise consider the m a p / :  U ~  |  classifying the deformations of the 

zeroes of %. 

PROPOSITION 4.6. The map HI(L')-~Pk(x) induced by the shea/ map ~ - ~ P k ( x )  is 

the derivative o]] at qo. 

Proo/. This is just  a res ta tement  of Proposit ion 3.1. 

I f  % has zeroes x 1 ..... xn of order k I . . . . .  kn, we wish to see how HI(L ") is made up of 

HI(X, Aq0) and of the Pk,(x~). 

PROPOSITION 4.7. (a) I/  qo is not a square, the inclusion Aq-+ Tx and the projection 

~u-+Pk~(x~) induce an exact sequence 

0 -~ H~(X, A~~ -~ IP(L ' )  -~ | Pa(x~) -~ 0 
t 

(b) I/qo =q~ is the square o/ a one-/orm, the maps above induce an exact sequence 

0 -~ HI(X,  Aq.) -~ I t l (L ") -~ | Pk,(x~) -~ C -~ 0 
| 

Remark. Par t  (b) is what  is needed in the main  theorem. 

Proo/. There is a spectral sequence [8] with E~'q=HI(X, hq(L')) which converges to  

H~+q(L'). I n  our case, the E~ term looks like 

P~,(x,) ~ 0 0 

/ /~  Aq.) ~ H ~ ( X ,  Aq.) 0 

, p  
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I f  q0 is not a square, Aq0 is not orientable, so H2(X, A~o) = 0  and the terms along the anti- 

diagonal p +q  = 1 are the graded group for the appropriate filtration of HI(L'), giving the 

exact sequence and proving (a). 

If  q0 is a square, H2(X, Aq0) ~ C, so the derivative is onto a hyperplane. We compute 

the image of / by Cauchy's Theorem. 

Consider the map ~:  W ~ C  defined in a neighborhood of zk~dz ~ in P~, by  q~Sr, ql/2, 

where ~ is a circle of large radius and the branch of the square root along 7 which passes 

through zt~d~ is chosen continuously in W; this is possible because ks is even. 

Suppose q =72; the map f~: U~Pk~ depends on the choice of a local coordinate near x~ 

for which q =zk~dz2; pick one such tha t  also ~0 =z~dz  (half of the possible local coordinates 

will work, for the other half 9~ = -z~k~dz). 

LEMMA 4.8. The map/:  U ~ I ]  Pk, i8 a submersion onto the submani/old o~ rl  P~, de. 

fined by the equation ~ ~(q~)=0. 

Proo/. Pick small discs D~ around the x~, with boundary circles y~. I f  U is a sufficiently 

small neighborhood of q, then every q' E U has a square root in X - UD~ and we can pick 

the one which can be continued from ~. By Cauchy's theorem ~ J'n ]/~ = 0 which translates 

to ~ ~(q~)=0 when looked at  from the inside rather than the outside of the discs. By  

Proposition 4.7 (b), / must  be a submersion onto this submanifold. 

We see that  we must  understand the set Z ~ I ]  E~ defined by  ~ ~(q~)=0. 

w 3. Perverse maniIolds 

The space Z defined in the previous paragraph turns out to be a most peculiar object: 

a differentiable manifold which is not of class C 1. Such manifolds are badly behaved: the 

implicit theorem cannot be applied to them. In  fact, it is not quite clear what the right 

definition is, since the equivalence of the definitions of C t manifolds by  parametrizations 

and by equations uses the implicit function theorem. 

Definition. A subset X of R n is a differentiable manifold of dimension d if for every 

x E X  there is a neighborhood U of x in R n, an open subset V of R d and an injective map 

~: V ~ R  n, ~(v) =x, o~ has an injective derivative at  v, and o~(V) N U = X  N U. The tangent 

space at  x is the image of d v ~. A function on X is differentiable if it is the restriction to 

X of a differentiable function on a neighborhood of X. 

The manifold is called perverse if ~ is not of class C 1. 
S 

Example. Consider in R a the set defined by the equation z=e -alx'+~') V~.  The 

following drawing represents this surface; notice tha t  arbitrarily near 0 there are points 
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Fig. 27 

with vertical tangent space. Of course (x, y) parametrizes the surface, and z is a differenti- 

able (but not C 1) function of (x, y) at  0 so we do have a perverse manifold. No oblique 

linear projection onto the x - y  plane is injective near 0, even though such a projection is 

the identi ty on the tangent space at  0, so the inverse function theorem is false for this 

perverse manifold. 

Even for perverse manifolds, there is a weak sort of implicit function theorem. 

LEMMA 4.9. Let X be a di//erentiable mani/old and x E X ,  a n d / :  X ~ R  m a di//erentiable 

map whose derivative at x is sur]ective. Then / is open at x. 

Proo/. Using a local parameter  we can suppose tha t  / is a map defined on an open sub- 

set V c  R ~ with surjeetive derivative at  0. Pick a subspace E c  R d on which do/ is  an iso- 

morphism. I t  is enough to prove / [ vnE is open at  0. Now by  the definition of the derivative 

l(x) = 1(0) +d0/(x) + e(x) 

and for • sufficiently small, He(x)]] ~< []do/(X)H if IlzU <0. 

Therefore restricted to the sphere S~,, of radius ~' <0,  the map x ~ 1 ( x  ) - I (0 )  is homo- 

topic to the map x ~ d o l ,  as maps S~, N E-~R m -  (0}. But  this last map is of degree _ 1. 

Now it is a standard result in algebraic topology tha t  i f / :  Bm-~R ~, 1(0)=0, is a con- 

tinuous map such tha t  [[s,~-l: S ~ - ' ~ R  m -  {0) is of degree ~=0 for every sphere about the 

origin, then the image of B~ is a neighborhood of 0 for every ball B~. See also [4, p. 269]. 

w 4. The space Z 

P R 0 P 0 S I T I 0 N 4. lO. The set Z = I-I P~, • R n is a perverse 8ubmani]old at z k'dz 2 i = 1 . . . .  , n 

and the tangent space at that point  is the hyperplane defined in  l-I H k~ by the equation ~ ( k t + 2) = 0. 
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Proo/. As in Lemma 3.9 we let h(q,) be the imaginary  par t  of the middle coefficient of 

qn. The high coefficients on E~, are ak_2 ... . .  atk. We will solve for 8n on Z as a funct ion of 

the other variables. By  Lemma 3.10 on the complement  of the square locus of Eke, ~sn/~h < 0  

near z~'dz ~. Also the line (ak_ ~ .. . . .  atk) constant  in Ek, intersects the square locus in at  

most  one point  since the high coefficients of any  polynomial  determine the  polynomial  if 

it is a square. 

Now for q~=(Zk~+ak_2zk~-2+... +ao)dz 2, by  Lemma 3.9, ~ , ( q ~ ) = ~ h + r d R e a i k _ l +  

higher order terms in the high coefficients. Therefore ~n is differentiable and ~ccn/~h = ~. Then 

~__e~ = ~___~ ~h < 0 

on each line except possibly at  a square and ~n is a str ict ly decreasing funct ion of an. 

To make use of this information we make use of the fact  t ha t  for t ER, pt(z)= (zk+ 

itziZ-Z)dz2EEk. B y  tho change of variables ~ = l / z  and a Taylor  series expansion of the 

square root  near ~ = 0 ,  we find s = ( 1 / ( k + 2 ) ) t  log (t)+O(t) and  ~(p~) = ~ [ t  I. 

From the cont inui ty  of a .  and the monotonic i ty  on each line we conclude there is a 

neighborhood U • V of (0, O) f i r  x Rtk-z such tha t  for a = al + -" + ~.-~ E U and (a~_z ... . .  

atk) E V there is a unique s n and q,,EE~, with local parameters  (ak_9_ ... . .  at~, s.) such tha t  

~ (q , )  = - ~. 

I t  remains to  compute  the derivatives of sn with respect to the high coefficients of 

]-j;'-z E~ and sz, .,., sn-z. If  a~ is a high coefficient of 1-]'~s ~ E~, then forp=(z~+ta~z~)dz ~, 

~(p) = O{t2). The line (z ~- + it=z ~-~) in Ee~ gives ~n = -~tt~ and en = o(t = log (t~)). Thus  Os~/~a~ 

s'.(o) =o. 
The case where a~ is a high coefficient of E~, is somewhat  different. Since there is no 

variat ion in 1-]'~:~ Eel, g = a~ + ... + ~_~-= 0, and ~,  = O(t~). The compensat ing coefficient h 

is then also O(t~). But  now the Taylor  series for 

Vz ~. + ta~z ~ + ha ~ _~ z ~"-~ 

near z = ~ gives s ,  = O(h log ) = o(t~ log I t l ' )  and again Os,/Oa~ = O. 

Final ly the expansion s = (l/(k + 2)) t log [ t ] + O(t) and :t(t) = ~z [ t ] forp(z)  = (z ~ + itz ~-~) dz ~ 

shows tha t  ~sn/~st = (kt + 2)/(kn + 2). The tangent  space to Z is the image of the derivative,  

the hyperplane 1~-~ (kt + 2) s~ = 0. 

w 5. The map EF-* OM is open 

I n  this paragraph  we pull together  the results of the previous three paragraphs  to  

prove tha t  the map  E ~  ~M is open near a square. 

Recall f rom w 1 the space V c  U • R n. 
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PROPOSITION 4.11. (i) I] qo iS a square, V is at % a perverse submani/old o~ U x R  n 

and the derivative o[ the projection p: U ~ ) M  is surjective on the tangent space to V. 

(ii) The vertical tangent space Trio, % is the set of (q', s 1 .. . .  , sn)EH~ ~ )  x R ~ such 

that q'/enqo is holomorphic on ~qo and ~ 1  (/c~ + 2)st = 0. 

Proof. By Lcmma 4.8 the map / :  U • Rn-~l-I Pk~ • R ~ is a submersion onto the hyper- 

plane ~ ~(q) -~0 whose tangent space at zk~dz 2, i = 1 .. . . .  n is the hyperplane ~ a~k~-i =0.  

I t  is easy to see that  the inverse image of a perverse manifold by  a submersion is again a 

perverse manifold so V = / - I ( Z )  is a perverse submanifold of U • R n at (%, 0) and Tq0.0 V 

is the inverse image of ToZ under d<qo.O)]. By Lemma 4.2 the truncation map sends 
n a H~ ~ )  onto a hyperplane in | and that  hypcrplane must be ~ . z  ~_1=0 .  

Therefore Tcq0.0)V must map surjectively onto the tangent space to E)M. Part  (ii) follows 

immediately. 

We again define a map g: V-~Hom (HI(1~)-, R) by ~'~->(y, Im Sr cor and let W =  

g-lg(%). Then W = U N EF as before. Now g is merely differential at  (%, 0). 

L ~ M A  4.12. The map p: W-~{~ is open at (%, 0). 

Proof. We observe as in Lemma 4.4 that  there is a canonical isomorphism of the vertical 

to V with the hyperplane ~r-1 (/c~+2)s~=0 in R~• H~ ~) - .  Consider tangent space 

the diagram 

0 ' R ~-I' " Tv1o,r , H~163 ~-) ,0 

R A . R'~ , Horn (HI(Xao)-, R) . Horn (Hx(~.o)-, R) , 0  

Here the left hand vertical map is the inclusion map onto the hyperplane. The bottom 

sequence is the transpose of the homology exact sequence of (Xqo, ~qo) as in III ,  w 3 

(ii) and A is the diagonal map. The diagram commutes as in Proposition 3.6 and since the 

hyperplane ~ .  1 ( k~ + 2 ) st = 0 is complementary to the diagonal, d(q0.0) g is an isomorphism. 

Now the map V (~,o) OM • Horn (HI(Xq0)-; R) has surjective derivative so by Lemma 

4.9 it is open at (%, 0). Therefore p restricted to W is open. 

w 6. Strebers nniqueness theorem 

We present here a proof that  if F is a measured foliation on X with compact leaves, 

there is a unique holomorphic quadratic form on X inducing F. Strebel's theorem gives 

uniqueness, up to a real multiple, of a form with given moduli. Both results follow from 

18-782905 Acta mathematica 142. Imprim6 le 11 Mai 1979 
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Lemma 4.12. In  w 7, we will combine the first result with a density argument to prove 

uniqueness in the general case. 

Let  q be a holomorphic quadratic form on X which is Strebel, and C a cylinder for q 

with height h and circumference c. Let  C' an abstract straight cylinder of height h' and 

circumference c'. Let  ]: C'-~X be an injective holomorphic map. 

Lv.~MA 4.13. (Strebel [15, 16]). I / the  equators of/(C') are homotopic to those o/C, then 

f/( h'c2 
C') 6 

Equality is realized only if / is an inclusion of a subcylinder of C. 

Proof. The proof is an application of the length area method. By a change of scale on 

C' we can suppose v=c'. For any 7 equator of C', the length of / (7)  is ;*c, since c is the 

length of the geodesic in its homotopy class. Picking coordinates x 6 R/cZ, y 6 [0, h'] on C', 

this can be written 
/8/ 81\ 1.12 

Introducing a factor of 1 in the integrand, we get from the Schwarz inequality 

of, /of 

Since / is holomorphic, I q(8//Ox | 8f/Ox) l = I q(~/[Sx | ~f/0y)] by Cauehy-Riemann. There. 

fore, 

�9 8/ 8/ dx) dy>lch'. 

This proves the first part  of the lemma. In case equality is realized, there must be 

equal signs throughout the proof, and in particular/(7) must be a geodesic, so f must send 

equators to equators, and since f is holomorphic it  must be an isometric inclusion. Q.E.D. 

For a cylinder with circumference c and height h define the modulus M to be h/c. 

The following uniqueness theorem is an easy consequence of Lemma 4.13. 

PROPOSITION 4.14. Let q be a holomorphic form on X wish underlying foliation F 

with closed leaves and q another holomorThic quadratic form with underlying foliation F'. 

(a) If  the images o / F  and F' in R s coincide, then q=q'. 

(b) (Strebel). I f  F' also has closed leaves with cylinders homotopic to the cylinders o / F  

and if M~ and N~ are the moduli o /q  and q' then max Nt/M~>~ 1, max M~/Nt> 1, 

equality holding in either case q and only i /q '=  rq /or r 6 R. 
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Proo[. For the proof of (a) we recall from Lemma 2.9 tha t  F '  also has closed leaves, 

and that  if C1 ..... Cn arc the cylinders for F, with heights h~ and circumferences c~, then 

the cylinders for F '  can be indexed Ct .... , C' ' n so that  equators of C~ are homotopic to 

equators of C~. Moreover the height of ~ is h~; call c~ the circumference of C~. 

Applying Lemma 4.13 to the inclusion [~: C~-~X and the cylinder C~, we get 

and summing over ~" this gives 

get 

e~ 

Similarly, applying Lemma 4.13 to the inclusion [j: G~-~X and C~ and summing, we 

cj 

Set uj=hjcj and vj :hjc'j; by adding the inequalities above we get 

\vj u d 

But for any positive reals u and v, we have u+v<~u~]v+v~/u with equality only ff u=v, 

since uZ[v + vZ/u - u -  v = (1 [u + 1/v)  (u - v)  2. 

Therefore %=vj and cj =c'j for all i. Moreover applying the second part of Lemma 

4.13, we see that  Cj=C'j and thus q=q'. Q.E.D. 

t 2 t t t Part (b) is easier and follows from the inequalities ~ hjcj>~ (h~cj)[cj and ~ h~ c~ >i 

(hji~)/cj. 

w 7. The uniqueness theorem 

In order to apply Strebel's uniqueness theorem in the more general situation, we 

need a density statement analogous to that  in [5]. If q is a quadratic form on X, we denote 

Xq: Hl(~q) - ' * R  the canonical element 7~+Im S~eoa. This also gives X,: HI(Xa, l~q) --~R. 

Furthermore there is a canonical map Ht (~ ) - -*HI ( :~  ~, r~)- given by erasing any seg- 

ment joining even zeroes (cf. I I I w  3 (if)). 

L~.MMA 4.15. Let q be a holomorphic quadratic form on X. For any sequence X, o! ele. 

ments o /Horn  (H1(1~r F,)-; R) converging to Zr there is a sequence q~eHo(X, ~| /or i 

large, converging to q, such that the diagram 
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commutes where the map Hl(,~q~)---~Hl(~q)- i8 induced by a map ~qd->Xq collapsing the 

vanishing homology. 

Proo/. This is an immediate consequence of the fact that  the map V N H~ g2~2)~ 

Horn (Hl(~q)-; R) which is the restriction of g (cf. IV, w 1) is open. But this follows from 

the implicit function theorem and Lemma 4.4 if q is not a square, and from Lemma 4.12 

if q is a square. 

PROPOSITIO~ 4.16. I / q  and q' are holomorphic quadratic/orms on X with underlying 

measured foliations F and F', and i/ F and F" have the same image in R s, then q = q'. 

Proo/. By Corollary 2.9 there is a canonical isomorphism HI(,~ q, l~q) - =HI()~ ~, Fq,)-. 

Pick sequences Z~ and Z~ in Hom (Hz()~q, Fq)-; R) and Hem (Hz()~q,, I~q,)-; R) converging 

to •q and gq, resp., commuting with the isomorphism above and formed entirely of homo- 

morphisms of rank one. Then by Proposition 2 of [5] the sequences qt and q~ determined 

by  Lemma 4.15 are entirely formed of quadratic forms whose horizontal foliations have 

closed leaves. Moreover the images of q~ and q~ in R s coincide by Corollary 2.9. Therefore 

q~=q~ by Proposition 4.14 and q=q'. Q.E.D. 

w 8. Proof of the Theorems 

In this paragraph we pull our results together. 

Proo/o/the Main Theorem. By Lemmas 4.4 and 4.11 the map Ep-~(~M is open. More- 

over, if q, q'E E~ lie on the same Riemann surface, by Proposition 4.16 they must be equal. 

Therefore the map is one-to-one, open, and therefore a homeomorphism onto its image. 

However E~ is proper over OM by Lemma 2.15 so the image must be closed. 

Proo/o/ Theorem 2. I t  is not hard to construct a measured foliation F with closed 

leaves homotopic to the curves C and with the given heights. This can be done by a down- 

ward induction on the number of curves starting with n = 3 g - 3 .  In that  ease the comple- 

ment of the curves is union of spheres with three holes. The critical graph is drawn according 



QUADRATIC DIFFERENTIALS AND FOLIATIONS 

~a 

Fig.  28 

273 

to Figure 28. Once a measured foliation with k cylinders has been eonstructued, collapsing 

an appropriate cylinder gives a measured foliation with ]r 1 cylinders. 

Now the main  theorem shows tha t  E~ maps homeomorphically to OM. Then E c maps 

bijectively onto 0M • R~ and it is clear tha t  it is continuous in both directions. 

Proo/ o/ Theorem 3. The uniqueness is of course Proposition 4.14. For the existence we 

proceed by induction on the number  of cylinders p. The case p = 1 is true by  Theorem 2. 

Assume the theorem true for k - 1  cylinders. Let Y~ be the open first quadrant  in R k, Y~ 

its closure minus the origin. Each vector h = (h 1 ... .  , hk) in Y~ determines a unique quadratic 

form q with height vector h and cylinders homotopic to the curves ~ .  Let (l 1 ..... lk) be the 

corresponding circumference vector and consider the map 

. . , ~  

The length of a geodesic in a fixed homotopy class is continuous on H~ ~2)  so the 

map extends to Y~. We restrict the extension to the intersection of YZ with the sphere 

S ~-1 and follow with the map to S k-1 which is a retraction along lines. By  Proposition 

4.14 (b) the composition is injective. The restriction to ( y k _  y~) N S k-1 is a homeomorphism 

onto itself by  the induction hypothesis as we are reduced to considering k - 1  cylinders. 

But  yk N S k-1 is a disc and ( Y ~ -  Y~) N S k-1 is the boundary. An injeetive mapping of a 

disc which is a homeomorphism on the boundary is also a homeomorphism. The theorem 

follows. 



274 J. HUBBARD AI~D H. MASUR 

Proo] o /Theorem d. By Proposition 4.16, for each Riemann surface X, H~ ~ ,2)  _ {0} 

maps injeetively into R s. The main theorem associates equivalence classes of measured 

foliations with H~ ~ '2 ) .  Therefore the map of measured foliations to R s is an injec- 

tion and the image is homeomorphic to R 8a-8- ~0}. 

We also obtain the following purely topological result, originally due to Thurston. 

P R 0 ~ 0 81T I 0 N 4.17. Equivalent measured/oliations are strongly equivalent. 

Proo]. We actually showed (in Prop. 4.1 and Lemma 4.12) tha t  the map p: E ~ E ) M  

is open under the hypothesis of strong equivalence; the injectivity of p (Prop. 4.16) was 

shown for (weak) equivalence. The result follows immediately. 
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