ON THE DIOPHANTINE EQUATION $1^{k}+2^{k}+\ldots+x^{k}+R(x)=y^{z}$

BY
M. VOORHOEVE,

Mathematisch Centrum	University of Debrecen	Rijksuniversiteit
Amsterdam, Netherlands	Debrecen, Hungary	Leiden, Netherlands

1. Introduction

In J. J. Schäffer [4] the equation

$$
\begin{equation*}
1^{k}+2^{k}+\ldots+x^{k}=y^{m} \tag{1}
\end{equation*}
$$

is studied. Schäffer proves that for fixed $k>0$ and $m>1$ the equation (1) has an infinite number of solutions in positive integers x and y only in the cases

$$
\text { (I) } k=1, m=2 ; \quad \text { (II) } k=3, m \in\{2,4\} ; \quad \text { (III) } k=5, m=2
$$

He conjectures that all other solutions of (1) have $x=y=1$, apart from $k=m=2, x=24$, $y=70$. In [1], the present authors have extended Schäffer's result by proving that for fixed $r, b \in \mathbb{Z}, b \neq 0$ and fixed $k \geqslant 2, k \notin\{3,5\}$ the equation

$$
\begin{equation*}
1^{k}+2^{k}+\ldots+x^{k}+r=b y^{2} \tag{2}
\end{equation*}
$$

has only finitely many solutions in integers $x, y \geqslant 1$ and $z>1$ and all solutions can be effectively determined. In this paper we prove a further generalization.

Theorem. Let $R(x)$ be a fixed polynomial with rational integer coefficients. Let $b \neq 0$ and $k \geqslant 2$ be fixed rational integers such that $k \notin\{3,5\}$. Then the equation

$$
\begin{equation*}
\mathbf{1}^{k}+2^{k}+\ldots+x^{k}+R(x)=b y^{z} \tag{3}
\end{equation*}
$$

in integers $x, y \geqslant 1$ and $z>1$ has only finitely many solutions.
The proof of our theorem differs from our proof in [1] in quite a few respects. We combine a recent result of Schinzel and Tijdeman [5] with an older, ineffective theorem by W. J. Le Veque [2]. Thus, we can determine an effective upper bound for z, but not
for x and y. However, we think that it is possible to prove an effective version of $L e$ Veque's theorem. By such a theorem one could determine effective upper bounds for x. and y, like in [1] for the equation (2).

In section 2 we quote the general results mentioned above; in section 3 we formulate a special lemma and prove that this lemma implies our theorem. In section 4 we shall prove our lemma, thus completing the proof of the theorem. In section 5 we show that our theorem is not valid for $k \in\{1,3,5\}$ and discuss the number of solutions in integers $x, y \geqslant 1$ of (3) for fixed $z>1$ and fixed $k \in\{1,3,5\}$.

2. Auxiliary results

Lemma 1. $1^{k}+2^{k}+\ldots+x^{k}=\left(B_{k+1}(x+1)-B_{k+1}(0)\right) /(k+1)$, where

$$
\begin{equation*}
B_{q}(x)=x^{q}-\frac{1}{2} q x^{\alpha-1}+\frac{1}{6}\binom{q}{2} x^{\alpha-2}-\ldots=\sum_{l=0}^{q}\binom{q}{l} B_{l} x^{\alpha-l} \tag{4}
\end{equation*}
$$

is the q-th Bernoulli polynomial.

Proof. Well-known (see e.g. Rademacher [3], pp. 1-7).
Lemma 2. (Le Veque.) Let $P(x) \in \mathbb{Q}[x]$,

$$
P(x)=a_{0} x^{N}+a_{1} x^{N-1}+\ldots+a_{N}=a_{0} \prod_{i=1}^{n}\left(x-\alpha_{1}\right)^{r_{i}}
$$

with $a_{0} \neq 0$ and $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$. Let $0 \neq b \in \mathbf{Z}, m \in \mathbf{N}$ and define $s_{i}:=m /\left(m, r_{i}\right)$. Then the equation

$$
P(x)=b y^{m}
$$

has only finitely many solutions $x, y \in \mathbf{Z}$ unless $\left\{s_{1}, \ldots, s_{n}\right\}$ is a permutation of one of the n-tuples

$$
\text { (i) }\{s, 1, \ldots, 1\}, s \geqslant 1 ; \quad \text { (ii) }\{2,2,1, \ldots, 1\} \text {. }
$$

Proof. This follows from Le Veque [2], Theorem 1, giving the stated result in the case $b=1, P \in Z[x]$. Let d be an integer such that $d P(x) \in Z[x]$. Then $b^{m-1} d^{m} P(x)$ is a polynomial with integer coefficients, satisfying

$$
b^{m-1} d^{m} P(x)=(b d y)^{m}
$$

According to Le Veque's theorem there are only finitely many solutions x and $b d y$.

$$
\text { ON THE DIOPHANTINE EQUATION } 1^{k}+2^{k}+\ldots+x^{k}+R(x)=y^{z}
$$

Lemma 3. (Schinzel, Tijdeman.) Let $0 \neq b \in \mathbf{Z}$ and let $P(x) \in \mathbb{Q}[x]$ be a polynomial with at least two distinct zeros. Then the equation

$$
P(x)=b y^{2}
$$

in integers $x, y>1, z$ implies that $z<C$, where C is an effectively computable constant depending only on P and b.

Proof. See Schinzel \& Tijdeman [5]. For a generalization compare Shorey, van der Poorten, Tijdeman, Schinzel [6], Theorem 2.

3. A lemma; proof of the theorem

From section 2 it is clear that we have to prove that the polynomial

$$
P(x)=B_{q}(x)-B_{q}+q R(x-1)
$$

satisfies the conditions in Lemmas 2 and 3 with respect to the multiplicity of its zeros, unless $q \in\{2,4,6\}$. We shall formulate such a result, postponing its proof for the time being, and show that this result implies our theorem.

Lemma 4. For $q \geqslant 2$ let $B_{q}(x)$ be the q-th Bernoulli polynomial. Let $R^{*}(x) \in \mathbb{Z}[x]$ and set

$$
\begin{equation*}
P(x)=B_{q}(x)-B_{q}+q R^{*}(x) \tag{5}
\end{equation*}
$$

Then
(i) $P(x)$ has at least three zeros of odd multiplicity, unless $q \in\{2,4,6\}$.
(ii) For any odd prime p, at least two zeros of $P(x)$ have multiplicities relatively prime to p.

Proof of the Theorem. Let $R(x-1)=R^{*}(x)$. We know from Lemma 4 that the polynomial

$$
1^{k}+2^{k}+\ldots+x^{k}+R(x)=\frac{1}{k+1}\left(B_{k+1}(x+1)-B_{k+1}+(k+1) R^{*}(x+1)\right)
$$

has at least two distinct zeros. Hence it follows from the equation (3) by applying Lemma 3 that z is bounded. We may therefore assume that z is fixed. So we have obtained the following equation in integers x and y

$$
\begin{equation*}
P(x)=b y^{m} \tag{6}
\end{equation*}
$$

where P is given by (5) with $q=k+1$. Write $P(x)=a_{0} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)^{r_{i}}$, where $a_{0} \neq 0, \alpha_{i} \neq \alpha_{\text {, }}$ if $i \neq j$. If $p \mid m$ for an odd prime p, then by Lemma 4 at least two zeros of P have multi-
plicities prime to p, so we may assume that $\left(r_{1}, p\right)=\left(r_{2}, p\right)=1$. Setting $s_{i}=m /\left(m, r_{i}\right)$, we find that $p \mid s_{1}$ and $p \mid s_{2}$. If m is even, then by Lemma 4 at least three zeros have odd multiplicity, say r_{1}, r_{2} and r_{3} are odd. Hence s_{1}, s_{2} and s_{3} are even. Consequently, the exceptional cases in Lemma 2 cannot occur and thus (6) has only finitely many solutions for any $m>1$. This proves the theorem.

4. Proof of Lemma 4

By the Staudt-Clausen theorem (see Rademacher [3], p. 10), the denominators of the Bernoulli numbers $B_{1}, B_{2 k}(k=1,2, \ldots)$ are even but not divisible by 4 . Choose the minimal $d \in \mathbf{N}$ such that $d P(x) \in \mathbf{Z}[x]$, so

$$
d P(x)=d \sum_{l=0}^{q-1}\binom{q}{l} B_{l} x^{\alpha-l}+d q R^{*}(x) \in \mathbf{Z}[x] ;
$$

hence $d\binom{q}{l} B_{1} \in \mathbf{Z}$ and

$$
\binom{q}{2 k} d B_{2 k} \in \mathbf{Z}, \quad \text { for } k=1.2, \ldots,\left[\frac{1}{2}(q-1)\right] .
$$

If d is odd, then necessarily $\binom{q}{1}$ and $\binom{q}{2 k}$ must be even for $k=1,2, \ldots,\left[\frac{1}{2}(q-1)\right]$. Write $q=2^{\lambda} r$, where $\lambda \geqslant 1$ and r is odd. Then $\binom{q}{2^{\lambda}}$ is odd, giving a contradiction unless $r=1$. So

$$
\begin{equation*}
d \text { is odd } \Leftrightarrow q=2^{\lambda} \quad \text { for some } \lambda \geqslant 1 . \tag{7}
\end{equation*}
$$

If $q \neq 2^{\lambda}$ for any $\lambda \geqslant 1$ then

$$
\begin{equation*}
d \equiv 2 \quad(\bmod 4) \tag{8}
\end{equation*}
$$

We distinguish three cases
A. Let $q \geqslant 3$ be odd. Then $d \equiv 2(\bmod 4)$ and for $l=1,2,4, \ldots, q-1$

$$
d\binom{q}{l} B_{l} \equiv\binom{q}{l} \quad(\bmod 2)
$$

Now

$$
d P(x) \equiv x^{q-1}+\sum_{\lambda=1}^{\ddagger(\alpha-1)}\binom{q}{2 \lambda} x^{\alpha-2 \lambda} \quad(\bmod 2) .
$$

Hence,

$$
d\left(P(x)+x P^{\prime}(x)\right) \equiv x^{\alpha-1} \quad(\bmod 2)
$$

$$
\text { ON THE DIOPHANTINE EQUATION } 1^{k}+2^{k}+\ldots+x^{k}+R(x)=y^{z}
$$

Any common factor of $d P(x)$ and $d P^{\prime}(x)$ must therefore be congruent to a power of $x(\bmod 2)$. Since $d P^{\prime}(0) \equiv q d B_{q-1} \equiv 1(\bmod 2)$, we find that $d P(x)$ and $d P^{\prime}(x)$ are relatively prime $(\bmod 2)$. So any common divisor of $d P(x)$ and $d P^{\prime}(x)$ in $Z[x]$ is of the shape $2 S(x)+1$. Write $d P(x)=T(x) Q(x)$, where $T(x)=\prod_{i} T_{i}(x)^{k_{\varepsilon}} \in \mathbf{Z}[x]$ contains the multiple factors of $d P$ and $Q \in \mathbf{Z}[x]$ contains its simple factors. Then $T(x)$ is of the shape $2 \mathrm{~S}(x)+1$ with $S \in \mathbf{Z}[x]$, so

$$
Q(x) \equiv d P(x) \equiv x^{q-1}+\ldots \quad(\bmod 2)
$$

Thus the degree of $Q(x)$ is at least $q-1$, proving case A if $q>3$. If $q=3$, then

$$
2 P(x) \equiv 2 x^{3}+x \equiv 2 x(x+1)(x-1) \quad(\bmod 3),
$$

showing that P has three simple roots, which proves Lemma 4 if q is odd.
B. Suppose $q=2^{\lambda}$ for some $\lambda \geqslant 1$, so d is odd. We first prove (i) so we may assume that $\lambda \geqslant 3$. Now $\binom{q}{2 k}$ is divisible by 4 unless $2 k=\frac{1}{2} q=2^{\lambda-1}$. Similarly, $\binom{q}{2 k}$ is divisible by 8 unless $2 k$ is divisible by $2^{\lambda-2}$. We have therefore for some odd d^{\prime}, writing $v=4 q$

$$
\begin{equation*}
d P(x) \equiv d x^{4 \nu}+2 x^{3 \nu}+d^{\prime} x^{2 \nu}+2 x^{\nu} \quad(\bmod 4) \tag{9}
\end{equation*}
$$

Write $d P(x)=T^{2}(x) Q(x)$, where $T(x), Q(x) \in \mathbf{Z}[x]$ and Q contains each factor of odd multiplicity of P in $\mathbf{Z}[x]$ exactly once. Assume that $\operatorname{deg} Q(x) \leqslant 2$. Since

$$
T^{2}(x) Q(x) \equiv x^{4 v}+x^{2 v}=x^{2 v}\left(x^{2 v}+1\right) \quad(\bmod 2)
$$

$T^{2}(x)$ must be divisible by $x^{2 p-2}(\bmod 2)$. So

$$
\begin{aligned}
T(x) & =x^{\nu-1} T_{1}(x)+2 T_{2}(x) \\
T^{2}(x) & =x^{2 \nu-2} T_{1}^{2}(x)+4 T_{3}(x)
\end{aligned}
$$

for certain $T_{1}, T_{2}, T_{3} \in Z[x]$. If $q>8$, then $\nu>2$ so the last identity is incompatible with (9) because of the term $2 x^{\nu}$. Hence $\operatorname{deg} Q \geqslant 3$, which proves (i). If $q=8$, then $d=3$ and

$$
d P(x) \equiv 3 x^{8}+2 x^{6}+x^{4}+2 x^{2} \equiv-x^{2}(x+1)(x-1)\left(x^{2}+1\right)\left(x^{2}+2\right) \quad(\bmod 4)
$$

All these factors-except x^{2}-are simple, so $\operatorname{deg} Q \geqslant 6>3$ if $q=8$, proving (i) in case B.
To prove (ii), let p be an odd prime and write $d P(x)=(T(x))^{p} Q(x)$, where $Q, T \in \mathbf{Z}[x]$ and all the roots of multiplicity divisibly by p are incorporated in $(T(x))^{p}$. We have, writing $\mu=\frac{1}{2} q$,

$$
d P(x)=(T(x))^{p} Q(x) \equiv x^{\mu}\left(x^{\mu}+1\right) \equiv x^{\mu}(x+1)^{\mu} \quad(\bmod 2)
$$

Since μ is prime to p, Q has at least two different zeros, proving (ii) in case B.
C. Suppose q is even and $q \neq 2^{\lambda}$ for any λ. Then $d \equiv 2(\bmod 4)$ and hence

$$
d P(x) \equiv \sum_{k=1}^{p(q-2)}\binom{q}{2 k} x^{2 k} \equiv \sum_{i=1}^{q-1}\binom{q}{l} x^{1} \equiv(x+1)^{q}-x^{q}-1 \quad(\bmod 2) .
$$

Write $q=2^{\lambda} r$, where $r>1$ is odd. Then

$$
d P(x) \equiv(x+1)^{q}-x^{a}-1 \equiv\left((x+1)^{r}-x^{r}-1\right)^{2^{\lambda}} \quad(\bmod 2)
$$

Since $r>1$ is odd, $(x+1)^{r}-x^{r}-1$ has x and $x+1$ as simple factors ($\bmod 2$). Thus

$$
d P(x) \equiv x^{2^{\lambda}}(x+1)^{2^{\lambda}} H(x) \quad(\bmod 2)
$$

where $H(x)$ is neither divisible by x nor by $x+1(\bmod 2)$. As in the preceding case, $P(x)$ must have two roots of multiplicity prime to p. This proves part (ii) of the lemma.

In order to prove part (i) we may assume that $q \geqslant 10$, because $q=2,4,6$ are the exceptional cases and $q=8$ is treated in section B. Now d and q are even, so $d q$ is divisible by 4 and, in view of (8)

$$
\begin{equation*}
d P(x) \equiv 2 x^{q}-q x^{a-1}+\frac{1}{8} d\binom{q}{2} x^{q-2}+\ldots+d B_{q-2}\binom{q}{2} x^{2} \quad(\bmod 4) . \tag{10}
\end{equation*}
$$

Write $d P(x)=T^{2}(x) Q(x)$, where $T, Q \in \mathrm{Z}[x]$ and $Q(x)$ contains each factor of odd multiplicity of P exactly once. Let

$$
T(x) \equiv x^{\lambda_{1}}+x^{\lambda_{1}}+\ldots+x^{\lambda_{m}} \quad(\bmod 2)
$$

where $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{m} \geqslant 0$. Then

$$
T^{2}(x) \equiv x^{2 \lambda_{l}}+x^{2 \lambda_{l}}+\ldots+x^{2 \lambda_{m}}+2 \sum_{l} p_{l} x^{l} \quad(\bmod 4)
$$

where p_{l} is the number of solutions of $\lambda_{i}+\lambda_{j}=l, \lambda_{i}<\lambda_{j}, i, j \in\{1, \ldots, m\}$.
Assume that $\operatorname{deg} Q<3$. Let

$$
Q(x)=a x^{2}+b x+c
$$

If a is odd, then $T^{2}(x) Q(x) \equiv a x^{2 \lambda_{1}+2}+\ldots(\bmod 4)$, which is incompatible with (10). If $4 \mid a$, then $T^{2}(x) Q(x) \equiv b x^{2 \lambda_{1}+1}+\ldots(\bmod 4)$ so $4 \mid b$. By the definition of $d, d P(x)$ must have some odd coefficients, so c must be odd. Hence $T^{2}(x) Q(x) \equiv c x^{2 \lambda_{2}}+\ldots(\bmod 4)$, which is again incompatible with (10). Thus $a \equiv 2(\bmod 4)$ and $\lambda_{1}=\frac{1}{2}(q-2)$. By comparing the coefficient of x^{a-1} in (10) and in $T^{2}(x) Q(x)$, we find that $b \equiv q(\bmod 4)$, so b is even and c must be odd. So $Q(x) \equiv 1(\bmod 2)$ and

$$
d P(x) \equiv T^{2}(x) \equiv x^{2 \lambda_{1}}+x^{2 \lambda_{1}}+\ldots+x^{2 \lambda_{m}} \quad(\bmod 2)
$$

Let $\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$. We have by (10) that

$$
\begin{equation*}
\lambda_{i} \in \Lambda \quad \Leftrightarrow \quad 2 \leqslant 2 \lambda_{i} \leqslant q-2 \text { and }\binom{q}{2 \lambda_{i}} \equiv 1(\bmod 2) . \tag{11}
\end{equation*}
$$

Since $\frac{1}{2}(q-2) \in \Lambda$, we have that $\binom{q}{2}$ is odd, so $q \equiv 2(\bmod 4)$, whence $b \equiv 2(\bmod 4)$. Thus

$$
d P(x) \equiv \sum_{\lambda_{l} \in \Lambda}\left(2 x^{2 \lambda_{l}+2}+2 x^{2 \lambda_{i}+1}+c x^{2 \lambda_{l}}\right)+2 \sum_{l} p_{l} x^{l} \quad(\bmod 4)
$$

If $\lambda_{i} \in \Lambda$ and $\lambda_{i}<\frac{1}{2}(q-2)$, then by (10) the coefficient of $x^{2 \lambda_{i}+1}$ in $d P(x)$ must vanish, so

$$
\left.\begin{array}{l}
\lambda_{i} \in \Lambda \tag{12}\\
\lambda_{i}<\frac{1}{2}(q-2)
\end{array}\right\} \Rightarrow p_{2 \lambda_{i}+1} \text { is odd. }
$$

Observe that by $q \geqslant 10$ we have $\frac{1}{2}(q-2) \geqslant 4$.
Now $\binom{q}{2}$ is odd, so $1 \in \Lambda$ by (11). Thus p_{3} is odd by (12) and hence, by the definition of the numbers $p_{l}, 2 \in \Lambda$. So $\binom{q}{4}$ is odd, thus $q-2 \equiv 4(\bmod 8)$. Then also $\binom{q}{6}$ is odd, so $3 \in \Lambda$ by (11). Since $2 \in \Lambda, p_{5}$ is odd by (12). But if $\{1,2,3,4\} \in \Lambda$, then $p_{5}=2$. So $4 \notin \Lambda$ and $\binom{q}{8}$ is even by (11). Thus $q-6 \equiv 0(\bmod 16)$, so $\binom{q}{10} \equiv\binom{q}{12} \equiv\binom{q}{14} \equiv 0(\bmod 2)$. Hence $5 \ddagger \Lambda, 6 \notin \Lambda$ and $7 \notin \Lambda$. So $p_{7}=0$. But since $3 \in \Lambda, p_{7}$ is odd by (12). This gives a contradiction, so $\operatorname{deg} Q \geqslant 3$ if $q \geqslant 10$. The proof of Lemma 4 is thus complete.

5. On the cases $k=1,3,5$

Consider the equation (3) for fixed $k \in\{1,3,5\}$ and fixed $z=m>1$. Let $R^{*}(x)=$ $R(x-1)$ and $q=k+1$. Then (3) is equivalent to the equation

$$
\begin{equation*}
P(x)=b y^{m} \tag{13}
\end{equation*}
$$

where $P(x)=B_{q}(x)-B_{q}+q R^{*}(x), q \in\{2,4,6\}$ and $b \neq 0$ is a fixed integer divisible by q.
If $q=2$, then $P(x)=x^{2}-x+2 R^{*}(x) . P(x)$ has two zeros of multiplicity 1 , since $P(x) \equiv x(x-1)(\bmod 2)$. In view of Lemma 2, (13) has a finite number of integer solutions x, y unless $m=2$. In the case $m=2$ we can choose $R^{*}(x)=\left(x^{2}-x\right)\left(2 S^{2}(x)+2 S(x)\right)$ for any $S(x) \in \mathrm{Z}[x]$. In that case (13) becomes

$$
\left(x^{2}-x\right)(2 S(x)+1)^{2}=b y^{2}
$$

which amounts to Pell's equation, having an infinite number of solutions in integers $x, y \geqslant 1$ for infinitely many choices of b.

In the case $q=4$ we have $P(x)=x^{4}-2 x^{3}+x^{2}+4 R^{*}(x)$. Since $P(x) \equiv x^{2}(x-1)^{2}(\bmod 2)$, by Lemma 2 the equation (13) has infinitely many solutions only if $m=2$ or $m=4$. If this is the case, there are infinitely many choices for $R^{*}(x)$ and b such that (13) has an infinite number of solutions. We may take $R^{*}(x)=x^{2}(x-1)^{2}\left(4 S^{4}(x)+8 S^{3}(x)+6 S^{2}(x)+2 S(x)\right)$ for any $S(x) \in Z[x]$ and from (13) we get

$$
x^{2}(x-1)^{2}(2 S(x)+1)^{4}=b y^{m}, \quad m=2 \text { or } m=4
$$

Both for $m=2$ and for $m=4$ this equation has an infinite number of solutions in integers $x, y \geqslant 1$ for infinitely many choices of b.

In the case $q=6,(13)$ is equivalent to

$$
\begin{equation*}
2 P(x)=2 x^{6}-6 x^{5}+5 x^{4}-x^{2}+12 R^{*}(x)=x^{2}(x-1)^{2}\left(2 x^{2}-2 x-\mathrm{I}\right)+12 R^{*}(x)=b y^{m} \tag{14}
\end{equation*}
$$

where $12 \mid b$. Since $2 P(x) \equiv 2(x-1)^{2} x^{2}(x+1)^{2}(\bmod 3)$, by Lemma 2 the equation (14) has infinitely many solutions in integers $x, y \geqslant 1$ only if $m=2$. For infinitely many choices of $R^{*}(x)$ and b there is an infinite number of solutions x, y if $m=2$. We may then choose $R^{*}(x)=x^{2}(x-1)^{2}\left(2 x^{2}-2 x-1\right)\left(3 S^{2}(x)+2 S(x)\right)$ for any $S(x) \in \mathbf{Z}[x]$ and (14) may be written in the form

$$
x^{2}(x-1)^{2}\left(2 x^{2}-2 x-1\right)(6 S(x)+1)^{2}=b y^{2}
$$

Consequently, (14) has an infinite number of solutions in integers $x, y \geqslant 1$ for infinitely many choices of b.

References

[1]. Györy, K., Tijdeman, R. \& Voorhoeve, M., On the equation $1^{k}+2^{k}+\ldots+x^{k}=y^{2}$. Acta Arith., 37, to appear.
[2]. Le Veque, W. J., On the equation $y^{m}=f(x)$. Acta Arith., 9 (1964), 209-219.
[3]. Rademacher, H., Topics in Analytic Number Theory. Springer Verlag, Berlin, 1973.
[4]. Schäffer, J. J., The equation $1^{D}+2^{D}+3^{D}+\ldots+n^{D}=m^{q}$. Acta Math., 95 (1956), 155-159.
[5]. Schinzel, A. \& Tijdeman, R., On the equation $y^{m}=P(x)$. Acta Arith., 31 (1976), 199-204.
[6]. Shorey, T. N., van der Poorten, A. J., Tijdeman, R. \& Schinzel, A., Applications of the Gel'fond-Baker method to Diophantine equations. Transcendence Theory: Advances and Applications, pp. 69-78, Academic Press, 1977.

Received August 22, 1978

