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1. Introduction 

In J. J. Schiller [4] the equation 

lk+2~+. . .+xk  = y  m (1) 

is studied. Sch~ffer proves that  for fixed k > 0  and m > 1 the equation (1) has an infinite 

number of solutions in positive integers x and y only in the cases 

(I) k = l , m = 2 ;  (II) k = 3 ,  me{2 ,4) ;  (III) k = 5 ,  m - - 2 .  

He conjectures that  all other solutions of (1) have x = y = l ,  apart  from k = m = 2 ,  x=24,  

y=70 .  In [1], the present authors have extended Seh~ffer's result by proving that  for 

fixed r, bEZ, b # 0  and fixed k>~2, k~{3, 5} the equation 

lk+2k+ ... + x ~ + r  = b!f (2) 

has only finitely many solutions in integers x, y >~ 1 and z > 1 and all solutions can be 

effectively determined. In this paper we prove a further generalization. 

THEOREM. Let R(x) be a /ixed polynomial with rational integer coe//icients. Let b~O 

and k >12 be /ixed rational integers such that k r 5}. Then the equation 

1 k § 2 k +... + x k + R(x) = by z (3) 

in integers x, y >~ 1 and z > 1 has only / in i te ly  many solutions. 

The proof of our theorem differs from our proof in [1] in quite a few respects. We 

combine a recent result of Schinzel and Tijdeman [5] with an older, ineffective theorem 

by W. J. Le Veque [2]. Thus, we can determine an effective upper bound for z, but  not 
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for x and y. However, we think tha t  it is possible to prove an effective version of Le 

Veque's theorem. By such a theorem one could determine effective upper bounds for x. 

and y, like in [1] for the equation (2). 

In  section 2 we quote the general results mentioned above; in section 3 we formulate 

a special lemma and prove tha t  this lemma implies our theorem. In  section 4 we shall 

prove our lemma, thus completing the proof of the theorem. In  section 5 we show tha t  

our theorem is not valid for kE(1, 3, 5} and discuss the number  of solutions in integers 

x, y~>l of (3) for fixed z > l  and fixed kE(1, 3, 5}. 

2. AnYillary results 

LEMMA 1. 1 k + 2 ~ + . . .  + X k = (Bk+l(X + 1) - Bk+x(O))/(Ic + 1), where 

is the q-th Bernoulli polynomial. 

Proo/. Well-known (see e.g. Rademaeher  [3], pp. 1-7). []  

LEMMA 2. (Le Veque.) Let P(x)e  Q[z], 

P(x) = a o x N + a 1 z r x + . . .  + a~ --- a o ~ (x - ~,)r,, 
1-1 

with ao # 0  and oh :~ otj /or i & j .  Let 0 :# b E Z, m E N and de~ins st: = m/(m, r t). Then the equation 

P(x)  = by" 

has only finitely many  solutions x, y E Z unless {sx ..... s,} is a permutation o/ one o/ the 

n.tuples 

(i) (s, 1 ..... 1} ,s>~l ;  (ii) (2 ,2 ,1  ... . .  1}. 

Proo/. This follows from Le Veque [2], Theorem 1, giving the stated result in the 

ease b = 1, P E Z[x]. Let  d be an integer such tha t  dP(x)EZ[x].  Then bm-ldmP(x) is a poly- 

nomial with integer coefficients, satisfying 

b'~-ld'P(x) = (bdy) ' .  

According to Le Veque's theorem there are only finitely many  solutions x and bdy. [] 
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LEM~A 3. (Sehinzel, Tijdeman.) Let O . b  E Z and let P(x )E  Q[x] be a polynomial with 

at least two distinct zeros. Then the equation 

P(x) = by ~ 

in integers x, y >  1, z implies that z < C, where C is an e]]ectively computable constant 

depending only on P and b. 

Proo]. See Sehinzel & Tijdeman [5]. For a generalization compare Shorey, van der 

Poorten, Tijdeman, Schinzel [6], Theorem 2. [ ]  

3. A lemma~ ]}roof of the theorem 

From section 2 it is clear that  we have to prove that  the polynomial 

P(x)  = B~(x) - Bq + qR(x - 1) 

satisfies the conditions in Lemmas 2 and 3 with respect to the multiplicity of its zeros, 

unless qE{2, 4, 6). We shall formulate such a result, postponing its proof for the time 

being, and show that  this result implies our theorem. 

L E M M A 4. _For q >~ 2 let Bq(x) be the q-th Bernoulli polynomial. L e t  R*(x) E Z [x] and set 

P(x) = B~(x)-  B~ + qR*(x). (5) 
Then 

(i) P(x)  has at least three zeros o[ odd multiplicity, unless q E (2, 4, 6}. 

(if) _For any odd prime p,  at least two zeros o[ P(x)  have multiplicities relatively prime to p.  

Proo[ o] the Theorem. Let R ( x - 1 ) = R * ( x ) .  We know from Lemma 4 that  the poly- 

nomial 

1 
1 k + 2 ~ + . . .  + x ~ + R(x) = ~ (Bk+l(X + 1) -- Bk+l + (k + 1) R*(x + 1)) 

has at least two distinct zeros. Hence it follows from the equation (3) by applying Lemma 3 

that  z is bounded. We may therefore assume that  z is fixed. So we have obtained the 

following equation in integers x and y 

P(x)  = by m, (6) 

where P is given by (5) with q = b  + 1. Write P ( x ) = a  o 1-I~-l(x-~)r , ,  where a0~=0 , ~ l ~ j  

if i ~ j .  If p I m for an odd prime p, then by Lemma 4 at least two zeros of P have multi- 
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plicities prime to p,  so we m a y  assume tha t  (rl, p) = (r~, p) = 1. Setting s~ =m/(m, r~), we find 

tha t  p lsl and piss. I f  m is even, then by  Lemma 4 at least three zeros have odd multi-  

plicity, say rl, r 2 and r a are odd. Hence sl, s~ and s s are even. Consequently,  the  exceptional 

cases in Lemma 2 cannot  occur and thus (6) has only finitely m a n y  solutions for a n y  

m > 1. This proves the theorem. [ ]  

4. P roo t  of L e m m a  4 

B y  the Staudt-Clausen theorem (see Rademacher  [3], p. 10), the denominators  of the 

Bernoulli numbers  BI, Bzk (k = 1, 2 .. . .  ) are even bu t  not  divisible by  4. Choose the minimal 

dEN such tha t  dP(x)EZ[x], so 

q-1/q\ 
ee(x)=e o (z) B'x~ + eqR*(x) e z[ l; 

I f  d is odd, then necessarily (~) and  

for k= 1.2  . . . . .  [ �89 1)]. 

( : k )  mus t  be even for k = l , 2  .. . .  , [ �89  Wri te  

q=2~r, where$>~l andr i sodd .  Then (q~)isodd, g i v i n g a c o n t r a d i c t i o n u n l e s s r = l .  So 

If  q~=2z for any  ~t~l  then 

d is odd ~ q = 2 z for some 2 ~> 1. (7) 

d - 2  (rood4). 

We distinguish three cases 

A. Let  q>~3 be odd. Then d - 2  (mod4)  and  for l=l ,  2, 4 . . . . .  q - 1  

Now 

Hence, 

dP(x)=-x q-l+ ~ x q-2~ (mod 2). 
~ 1  

d(P(x) +xP'(x)) = x q-1 (mod 2). 

(s) 
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Any common factor of dP(x) and dP'(x) must  therefore be congruent to a power 

of x (rood 2). Since dP'(O) -qdBq_l - 1 (mod 2), we find tha t  dP(x) and dP'(x) are relatively 

prime (rood 2)..So any common divisor of dP(x) and dP'(x) in Z[x] is of the shape 2S(x) + 1. 

Write dP(x)= T(x)Q(x), where T(x)=l-It Tt(x)k~EZ[ x] contains the multiple factors of dP 

and Q E Z[x] contains its simple factors. Then T(x) is of the shape 2S(x) + 1 with SE Z[x], so 

Q(x) - dP{x) = x ~-1+... (rood 2}. 

Thus the degree of Q(x) is at least q - l ,  proving case A ]f~q>3. I f  q=3 ,  then 

2P(x) ~ 2 x S + x = - 2 x ( x + l ) ( x - 1 )  (mod3),  

showing tha t  P has three simple roots, which proves Lemma 4 if q is odd. 

B. Suppose q = 2 4 for some 2 ~> 1, so d is odd. We first prove (i) so we may  assume 

that~>~3. N o w ( q k )  i sd iv i s ib leby4unless2k=�89  Similarly,(:k) isdivisibleby 

8 unless 2k is divisible by 2 ~-2. We have therefore for some odd d', writing v=�88 

dP(x) =- dx 4~ + 2x s~ § d'x ~ + 2x v (rood 4). (9) 

Write dP(x)=T~(x)Q(x), where T(x), Q(x)eZ[x] and Q contains each factor of odd 

multiplicity of P in Z[x] exactly once. Assume tha t  deg Q(x)~<2. Since 

T2(x)Q(x) ~ x 4~ + x 2~ = x ~"(x 2~ + 1) (mod 2), 

T~(x) must  be divisible by x z,-~ (rood 2). So 

T(x) = x~-lTl(x) +2T2(x ), 

T~(x) = x~"-~T~(x) +4T3(x), 

for certain Tx, T2, TaE Z[x]. I f  q > 8, then u > 2 so the last identity is incompatible with 

(9) because of the term 2x~. Hence deg Q/> 3, which proves (i). If  q = 8, then d = 3 and 

dP(x) - 3xS+2x6+x4+2x 2 ~ -x2(x+ 1 ) ( x -  1)(x~+ 1)(x2+2) (mod 4). 

All these factors--except  x2~are  simple, so degQ>~6>3 if q=8, proving (i) in ease B. 

To prove (ii), let 1o be an odd prime and write dP(x)=(T(x))~Q(x), where Q, TEZ[x]  

and all the roots of multiplicity divisibly by  10 are incorporated in (T(x)) ~. We have, 

writing/~ = �89 

dP(x) = ( T(x) )2'Q(x) = x~(xt' + 1) = x~(x + 1)~ (mod 2). 

Since tt is prime to 10, Q has at  least two different zeros, proving (ii) in ease B. 
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C. Suppose q is even and q~=2a for any ~. Then d---2 (rood 4) and hence 

dP(x)- -  ~. x ~ k -  ~ x Z - ( x + l )  " -  

Write q =2~r, where r > 1 is odd. Then 

dP(x) =- ( x + l ) q - x g - 1  = ((x +1) '  -x~ -1)2~ 

x q - 1  (mod2).  

(rood 2). 

Since r > 1 is odd, (x+ 1 ) ' - x ' - 1  has x and x + 1 as simple factors (rood 2). Thus 

dP(x) - x2~(x+ 1)2~H(x) (rood 2), 

where H(x) is neither divisible by x nor by x + 1 (rood 2). As in the preceding case, 

P(x) must have two roots of multiplicity prime to p. This proves par t  (ii) of the lemma. 

In order to prove part  (i) we may assume that  q~>10, because q=2,  4, 6 are the 

exceptional cases and q = 8 is treated in section B. Now d and q are even, so dq is divisible 

by 4 and, in view of (8) 

Write dP(x) = T~(x)Q(x), where T, Q 6 Z[x] and Q(x) contains each factor of odd multiplicity 

of P exactly once. Let  

T(x) = x a' + x  ~' +...  + x  ~" (rood 2), 

where ~1>~2>... >Am~>0. Then 

T2(x) =-- x ~' + x ~'  + . . .  + x 2x" + 2~, Pl xl (rood 4), 
1 

where Pl is the number of solutions of l t + t j = / ,  l~<l j ,  i, ~6{1 ..... m}. 

Assume that  deg Q < 3. Let  

Q(x) = ax'  + bx +c. 

If a is odd, then T~(x)Q(x)=-ax~l+2+... (rood 4), which is incompatible with (10). If 41a , 

then T2(x)Q(x)=bx2~'+i+ ... (rood 4) so 4[b. By the definition of d, dP(x) must have some 

odd coefficients, so c must be odd. Hence T~(x)Q(x)=vx~ '+ ... (mod 4), which is again 

incompatible with (10). Thus a---2 (rood 4) and ~1 = �89 By comparing the coefficient 

of x r in (10) and in T~(x)Q(x), we find that  b=-q (rood 4), so b is even and c must be odd. 

So Q(x) = 1 (mod 2) and 

dP(x) - T2(x) - x 2~1 + x TM + ... + x 2a" (rood 2). 
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Let A=(~tl, ~t 2 ..... 2m}- We have by (10) that 

( q ) - - - 1  (mod2). (11) 2~EA ~ 2 < 2 2 ~ < q - 2  and 22~ 

Since �89 we have that (q2) is odd, so q - 2  (mod 4), whence b=2 (mod 4). Thus 

dP(x)-- ~ (2X 2~'+2-F 2X 2)~+1 + CX 2&) ~- 2 ~  p! X l (mod 4). 
&cA Z 

If 2~ E A and ~t t < �89 then by (10) the coefficient of x ~  +1 in dP(x) must vanish, so 

2~eA } 
2, < �89 2) ~ p2~+1 is odd. (12) 

Observe that by q>~10 we have �89 

Now (q) is odd, so l  EA by (11). Thus P3 is odd by (12)and hence, by the definition of 

even by (11). Thus q - 6 - 0  (rood 16), so (:0) -- (:2) -- (:4)-~0 (rood2). HenceS~A, 6~}A 

and 7~A. So p~=0. But since 3EA, p~ is odd by (12). This gives a contradiction, so 

deg Q~>3 if q~>10. The proof of Lemma 4 is thus complete. [] 

5. On the eases k = 1, 3,  $ 

Consider the equation (3) for fixed kE(1,3,5} and fixed z f m > l .  Let R*(x)ffi 

R(x-1)  and q = k + l .  Then (3) is equivalent to the equation 

P(x) ffi by 'n, (13) 

where P(x)=Be(x)-Bq+qR*(x), qE{2, 4, 6} and b=~0 is a fixed integer divisible by q. 

If q=2, then P(x)=xS-x+2R*(x). P(x) has two zeros of multiplicity 1, since 

P(x)--x(x-1)  (rood 2). In view of Lemma 2, (13) has a finite number of integer solutions 

z, y unless m=2. In the case m=2  we can choose R*(x)=(x2-x)(2SZ(x)+2S(x)) for any 

S(x)EZ[x]. In that case (13) becomes 

(x ~ -x)(2S(x) + 1) ~ = by ~, 
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which amoun t s  to  Pe l l ' s  equat ion ,  hav ing  an  inf ini te  n u m b e r  of solut ions in  integers  

x, y/> 1 for inf in i te ly  m a n y  choices of b. 

I n  the  case q = 4 we have  P ( x )  = x 4 -  2x a + x 2 + 4R*(x). Since P(x) = x2(x -  1)3 (mod 2), 

b y  L e m m a  2 the  equa t ion  (13) has  inf in i te ly  m a n y  solut ions only  if m = 2  or m = 4 .  I f  th is  

is the  case, there  a re  inf in i te ly  m a n y  choices for R*(x) and  b such t h a t  (13) has an  inf ini te  

number  of solutions. W e  m a y  t ake  R*(x)=x~(x-1)2(4Sa(x)+8S3(x)+6S2(x)+2S(x)) for 

a n y  S(x)EZ[x] and  from (13) we ge t  

x2(x-1)2(2S(x)§ ~, m = 2  or m=4.  

Both  for m = 2  and  for m - - 4  this  equa t ion  has  an  inf ini te  n u m b e r  of solut ions in  

integers  x, y t> 1 for inf in i te ly  m a n y  choices of b. 

I n  the  case q = 6 ,  (13) is equ iva len t  to  

2P(x) = 2x 6 - 6x 5 + 5x 4 -  x 2 + 12R*(x) --- x~(x-  1)2 (2x2 _ 2x - 1) + 12R*(x) = by", (14) 

where 12lb. Since 2P(x)=2(x-1)2x2(x+l)2  (mod 3), b y  L e m m a  2 the  equa t ion  (14) has  

inf in i te ly  m a n y  solut ions  in integers  x, y t> 1 only  if m = 2. F o r  inf in i te ly  m a n y  choices of 

R*(x) and  b there  is an  in f in i te  number  of solut ions x, y if m=2.  We m a y  then  choose 

R*(x)=x2(x-1)2(2x2-2x-1) (3S2(x)+2S(x) )  for a n y  S(x)eZ[x] a n d  (14) m a y  be wr i t t en  

in the  form 

x2(x - 1)2 (2x ~ _ 2x - 1) (6S(x) + 1)2 = by2. 

Consequent ly ,  (14) has  an  inf ini te  n u m b e r  of solut ions in in tegers  x, y~> 1 for inf in i te ly  

m a n y  choices of b. 
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