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w 1. Introduction 

Let P be the set of all (positive rational) prime numbers, and let E be an arbi trary 

nonempty  subset of P. Throughout this paper, let p denote a general member  of P,  and 

for non-negative integers a, write palIn if pain  and pa+lXn. For each positive integer n, 

define 
co(n;E)= ~ 1, ~ ( n ; E ) =  ~ a. 

Pln,l)eE ~paHn,peE 

We usually write co(n; P)=co(n), ~2(n; P ) = ~ ( n ) .  In  a previous paper [37], we obtained 

sharp inequalities for the frequencies of large deviations of co(n; E) and ~(n; E) from 

their normal order of magnitude. Those inequalities included refinements of a special case 

of a general theorem due to Elliott [11, Theorem 6] concerning large deviations of/(g(n)), 

where / is a strongly additive arithmetic function and g(n) is a positive-valued polynomial 

in n with integral coefficients. Elliott 's result was in turn a refinement (under stronger 

hypotheses) of a theorem of U~davinis [55]. (The result of U~davinis is stated as Theorem 

3.3 in Kubilius [28].) 

The methods used in [37] were "almost"  elementary. Here we shall use more difficult 

methods to obtain asymptotic  formulas for large deviations of co(n; E) and ~(n;  E). We 

shall also generalize some of the results of [37] and give some applications. For a partial  

survey of the literature in this area, see [39]. 

In  order to state our main theorems, it is necessary to introduce further notation 

which will be used throughout this paper. First, we define 

(1.1) Q(t) = t -  (1 + t) log (1 + t) for real t > - 1, 

Q ( - 1 ) = - I =  lim Q(t). 
t - - ~ - l +  
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Note tha t  

(1.2) 

Next,  if v, fl are real, let 

( - 1 ) . - ~ t  . 
Q(t)= 

n-2 ~' ( n - 1 ) n  
for Itl < 1. 

(1.3) tl~(fl) = exp {vQ(flv-J)} for v > 0, fl t> - O ,  

(1.4) G(fl) = (2zr) -~ f:oo exp ( -t~/2)dt, 

(1.5) Fv(fl) = e x p  (fl~/2)G(-[fll)Rv(fl) for v > 0 ,  fl > - O .  

Now define 

(1.6) E(x)= ~ p-1 (x real). 
p~xopeE 

In  [37], it was observed tha t  if E(x)~  + oo as x-~ + 0% then both the average order and 

the normal order of co(n; E) are equal to E(n), and the same s ta tement  holds for s E). 

However, it is often more convenient to discuss the distributions of co(n; E) and ~(n;  E) 

when n ~< x in terms of some approximation to E(x) which is more elementary or easier to 

calculate than E(x) itself. For example, if E = P ,  one usually uses log 8 x = l o g  log x as an 

approximation to E(x) and considers the size of co(n) - log~ x or ~(n)  - log 2 x for values of 

n~<x. In  this paper, we shall compare the sizes of co(n; E) and ~(n; E) (for n<~x) with a 

number  v which we think of as an approximation to E(x). The degree of approximation 

will be specified in the theorems. We assume throughout tha t  

(1.7) x, v, ~ are real with x ,> l ,  v > 0 .  ~ is a nonempty  set of primes, to be regarded as 

arbi t rary unless further assumptions are stated. (E may  depend on x or on various 

parameters.) 

(In many  applications, it is convenient to take v to be a functional value v(x; E), the func- 

tion being defined for all x ~> cl(v). ) Lastly, we define 

(1.8) A =A(x ,  v; E) = m a x  {2, I E ( x ) - v l } .  

We can now state our first main result. 

THEOREM 1.9. Assume (1.7), and let 

(1.10) 
g(n) = re(n; E) (/or a/l n) or 

g(n) --- Q(n; E) (/or all n). 
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De/ine 

(1.11) Tv(x, fl; E, g) = x -1 card {n: n <~ x and g(n) <~ v +flvt}, 

where card B means the number o/members o~ the set B. Suppose that 

(1.12) v/> A 4 

and that 

(1.13) Ifi[ < A-~vt" 

1! fl <~ O, then 

(1.14) T,(x, fl; E, g) = F , ( f l ) - (2g ) - t {E(x ) -v}R , ( f l ) v - i+O(R~( f l ) v -~ ) ,  

and il fl >10, then 

(1.15) 1 - T,(x, fl; E, g) = F~(fl)+(2~)-J{E(x)-v}R,(fl)v-J+O(R,(fl)v-i). 

In  (1.14) and (1.15), the constants implied by 0 are absolute. 

By (4.7), the right-hand sides of both (1.14) and (1.15) can be written in the slightly 

less precise form 
FJfi) {1 + O(A{I~I + l}v-J)}, 

so that Theorem 1.9 actually gives asymptotic formulas for Tv(x, fl; E, g) if v and fl are 

functions of x such that v-~ + oo and fl =o(A-20) as x-~ + oo. It also gives sharp upper 

and lower bounds for T~(x, fl; E, #) if [fll A2v-i is less than a sufficiently small absolute 

constant. For somewhat less precise upper and lower bounds holding over larger fl-intervals 

(roughly ]~1 <O), see w 3, Theorem 4.27, and [37]. Upper bounds valid for even larger 

values of fl can be obtained in the same way as [37, (5.15) and (5.16)]. 

Theorem 1.9 is best possible in a rather strong sense. The error terms in (1.14) and 

(1.15) cannot be improved. Furthermore, the functions F~(fl) (for fi~<0) and 1-Fv(fl)  

(for fl>~0) are essentially the best possible continuous approximations to T~(x, fl; E, g), 

since the latter (considered as a function of fl) has a jump discontinuity of size >Rv(fl)v -~ 

when v +flvt is a positive integer and [fl] is not too large. (For a more precise formulation, 

see the end of w 5.) 

Theorem 1.9 is of "large deviation" type, so called because it gives precise approxima- 

tions when fl is allowed to range over a rather large interval whose size may vary with x. 

Asymptotic formulas for large deviations of additive arithmetic functions have been ob- 

tained previously by other authors, but Theorem 1.9 and its proof differ significantly 
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from their work. In  the special case E =P ,  g(n) =co(n), v --log2 x, the result is due to Kubilius 

[28, Theorem 9.2]. I t  was later extended by Kubilius [31] to real-valued additive functions 

/(n) of a somewhat more general type than co(n), and LaurinSikas [32] obtained Kubilius's 

conclusions for such functions under weaker hypotheses. However, both Kubilius and 

LaurinSikas assumed t h a t / ( p )  is very near a fixed number 2 for "most"  primes p. Con- 

sequently, a result like Theorem 1.9 (or Theorem 4.27 below) does not follow from their 

theorems unless the set E satisfies a condition somewhat stronger than 

p - l l o g p N  ~ p - l l o g p  a s x - ~ + o o .  
p~x.peE p~X 

Furthermore, it seems doubtful that  our theorems could be obtained by their methods, 

due to the possibly irregular distribution of E (see the comments on p. 168 of [28]). 

Whereas Kubilius and LaurinSikas used probabilistie methods, our proof of Theorem 

1.9 does not require the use of any idea from probability theory. One reason for this is 

the availability of powerful results of Hals [18], [19] on the local distribution of o~(n; E) 

and ~(n; E), the proofs of which require only classical real and complex analysis and some 

prime number theory. We obtain Theorem 1.9 by combining his results with certain 

estimates for partial sums of the exponential series (Lemma 4.20). As we showed in [38], 

the latter estimates can be obtained by an elementary ad hoc method. However, it was 

also shown in [38] that  they can be derived (in a slightly weaker form) from the difficult 

Cram~r-Petrov theorem on large deviations of sums of independent random variables. 

Thus there does exist a connection between the present work and probability theory, and 

Theorem 1.9 (slightly weakened by the requirement of additional assumptions that  v = 

v(x; E ) ~  + co and fl=o(O) as x-~ + ~ )  can be regarded as apparently the first applica- 

tion of the Cram~r-Petrov theorem to number theory. 

Theorem 1.9 will be derived from Theorem 4.27 below, in which the hypotheses and 

conclusions are slightly weaker. We shall show that  the following result is also a corollary 

of Theorem 4.27: 

TH~.OREM 1.16. Assume (1.7) and (1.10). I/ Ifll <~min (v ~, A-IO), then 

(1.17) TJ~, ~, E, g) = G(~) + O (exp ( - ~ / 2 )  { ~  +A}v-~), 

and hence i / f l  is any real number, we have 

(1.18) T~(x, fl; E, g) = G(fl) + O(Av-t). 

In  (1.17) and (1.18), the implied constants are absolute. 
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Since Lemma 4.4 shows that  

1 - G ( ] f l ] )  = g ( -  I 1) exp as § 

(1.17) gives an asymptotic formula for T,(x, fl; E, 9) whenever v and fl are functions of x 

such that  v-~ + ~ and fl =o  (rain {v ~, A-iv�89 as x--> § ~ .  The estimate (1.18) is much 

weaker than (1.17) (if ]fl] is moderately large) but holds without restriction on ft. Results 

like (1.18) have been obtained by many authors beginning with Erd6s and Kac [151, who 

showed that  if v = E ( x ) ~  + oo as x-~ + c~, then for each fixed real fl, Tv(x, fl; E, g)~G(fl) 

as-x-~ + c~. They actually proved a more general result on the distribution of values of 

additive functions, but they did not estimate the difference Tv(x, fl; E, 9)-G(fl). The 

latter quanti ty was estimated in various ways by LeVeque [33], Kubilius [26], [27], Barban 

[3], U~.davinis [56] (cf. Kubilius [28, pp. 108, 113]), and Barban and A. I. Vinogradov [4]. 

R6nyi and Turhn [47] were the first to obtain an error term like that  in (1.18) for the 

special case E = P  (and also in a somewhat more general result on additive functions which 

does not include (1.18)). Certain generalizations of (1.18) for additive functions, with error 

terms of similar strength, were obtained by N. M. Timofeev [541 (whose proof was incom- 

plete), Elliott [12] (whose result essentially implies (1.18) for 9(n)=co(n; E) but not for 

g(n) =~(n ;  E)), Dubovik [101, and Popov [451. In his book [13, Chap. 20J, Elliott obtains 

a very general theorem on additive functions which implies (1.18) with v = E(x)and either 

choice of 9. For further discussion and other references, see Norton [39]. 

We now indicate several applications of our main results. 

THEOREM 1.19. Let x, u, fl be real numbers with 3~u<~x, write log log u= log  2 u, and 

define 
A(x,u,  f l )=x -1 card {n:n<-..x and ~ l <~log2u+fl(log2u)~}. 

p[n,p<, u 

1/ (  - 1) (log~ u)i <~fl <.0, then 

(1.20) A(x, u, fl) = G(-] f l l )  exp {fl~/2§ (log2u)-t)}{1 +O({]fl] § (log2u)-t)}. 

When O <~fl <~ �89 (log s u)t, (1.20) still holds i /A (x ,  u, fl) is replaced by 1 - A ( x ,  u, fl). In  both 

cases, the implied constants are absolute. 

To prove this, let E = { p :  p ~<u}, take v =log s u, and note tha t  0 < E ( x ) - v < 2  (see 

Rosser and Schoenfeld [49, (2.10), (3.19), (3.20)]). Hence A =2,  and the result follows from 

Theorem 4.27. Theorem 1.16 can also be applied here; it shows, for example, that  

A(x, u, fl) = G(fl) +0  ((log 2 u) -t) 
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if 3 ~<u ~< x and fl is real. Such results yield interesting estimates for the sizes of certain 

prime factors of n. This will be the subject of a later paper. 

The special case u =x, fl =o ((log S x)*) of Theorem 1.19 is due to Kubilius [28, Theorem 

9.2] (as mentioned above, his result was extended by Kubilius [31] and Laurin6ikas [32], 

but their extensions do not include Theorem 1.19). Novoselov [40, p. 266] obtained a 

weaker version of another special case by showing that  for each fixed real/~, A (x, log x, 8)-~ 

G(fl) as x-+ + oo. His method was quite different from ours (he used topological ideas and 

Liapounov's central limit theorem), and he did not estimate the rate of convergence. 

Several other authors have used probabilistic methods to obtain results which are super- 

ficially related to Theorem 1.19. For example, if q denotes a prime, then (see Billingsley 

[6, p. 765]) 

(1.21) lim x - l c a r d { n : 3 < ~ n ~ x  and 

max ( Z 1-1og,  q)~fl(log~n)t}=2G(fl) - 1 
q~n pln,p<.q 

for each fixed fl > 0. For theorems of the same type as (1.21) (some of them stated in greater 

generality), see Kubilius [28, Theorem 7.3], Bahu [1], [2, p. 331], Billingsley [5, pp. 1113- 

1114], and Philipp [43, pp. 235-236]. (None of these authors estimated the rate of con- 

vergence in results like (1.21).) 

Another application of Theorems 1.9, 4.27, and 1.16 concerns prime factors lying in 

various arithmetic progressions with the same modulus. I t  is an easy consequence of the 

following result: 

LEMMA 1.22. Let b be a positive integer, and let L be a nonempty set o/integers such that 

/or each 16L, we have 1 <~1<]r and (]r l)= l. Write card L=;t ,  and let 

Then/or x >t 2, 

E = U {p: p - l(mod k)}. 
l e L  

E(x) = 2~(k)-* Iogix + ~ p-1 + O(29~(k)-, log (3/r 
p<~x,p~L 

where the implied constan$ is absolute, qJ is Euler's /unction, and log~ x =log log x. Also, 

p-* -<< log,(3~) + O(1). 
~<~Z, pEL 

This lemma is due to the author [37, Lemma 6.3], whose proof depended on the 

Brun-Titchmarsh and Siegel-Walfisz theorems. We refer to [37, pp. 698-701] for back- 
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ground and remarks on how to improve the result in certain cases. I t  should be noted 

that  the special case ~ = 1 of this lemma was discovered independently by Pomerance [44]. 

A somewhat weaker version of this special case was obtained earlier by Rieger [48, Hilfs- 

satz 1]. 

Lemma 1.22 leads immediately to applications of Theorems 1.9, 4.27, and 1.16 with 

v =)t~v(k) -1 log2 x. (Note the importance here of the second-order terms in (1.14) and (1.15).) 

As a rather special illustration, we mention here the following consequence of (1.18) and 

Lemma 1.22: if k and I are positive integers with (k, l )=  1, then for all real x, fl with x/> 3, 

we have 

(1.23) x -1 card {n: n <  x and ~ 1 
p]n.p~l(modk) 

< ~(k) -~ logs x + fl(~(k) -~ log~ x)~} = c ( ~ )  + O({~(k)/log~ x}~), 

the implied constant being absolute. The error term here is best possible when/3 is near 0, 

and this result improves a theorem of Gyapjas and Khtai [17], who obtained (1.23) with 

the error term O(c(lc) (log~ x)-t),  where c(k) is an unspecified function of k. (It should be 

noted that  Gyapjas and K~tai obtained some similar results which do not follow from 

ours. Also, Mai-Thuk-Ngoi and Tuljaganov [36] apparently announced without proof an 

estimate for the left-hand side of (1.23), but  their work has been unavailable to the present 

author.) 

There are also applications to prime factors in arithmetic progressions with different 

moduli. For example, suppose that  k 1 ..... kT are positive integers which are pairwise 

relatively prime, and suppose 11 ..... Ir are integers such tha t  1 ~<lj~<kj and (k s, lj)=l for 

1 <j<<.r. If 

E = b {P: P -  6( rood kj)}, 
1-1 

then by successive application of the inclusion-exclusion principle, the Chinese remainder 

theorem, and Lemma 1.22, we obtain 

E(x)-~{1- I-I (1-q~(k~)-l)} l~ + O(2r) j-1 for x>~3, 

the implied constant being absolute. This can be combined with Theorem 1.9, Theorem 

1.16, or Theorem 4.27 in an obvious way. 

For a final application, suppose that  whenever m, n are positive integers, din(n) denotes 

the number of ordered m-tuples (t 1 ..... tin) of positive integers such that  t 1 ... tm= n. (Thus 
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d~(n)=d(n) is the number of distinct positive divisors of n . ) T h e n  m~(n)<.dm(n)<~ma(n) 

(see [37, pp. 683-684]), and hence our main results give asymptot ic  formulas for large 

deviations of log dm(n) from its normal order (log m) log 2 n. This application is not new, 

since it follows from Kubilius's theorems on large deviations of co(n) and ~(n)  (see [28, 

Theorem 9.2] and [31]). However, our proof is quite different from his (in particular, it 

requires no probabili ty theory). The result on log dm(n ) which can be obtained from (1.18) 

is due to Rdnyi and Turs [47]. I t  improves earlier work of Kac [25], LeVeque [33], and 

Kubilius [26], [27]. See [37, pp. 683-684] for further information on the distribution 

of dm(n ). 

I t  seems appropriate to indicate the limitations of our main results. Our methods 

depend heavily on the properties of the particular functions co(n; E) and ~(n; E), and we 

have nothing new to say about  other additive functions. Furthermore,  we are unable to 

prove similar results concerning the distribution of w([/(n)]; E) or ~(] / (n)  l ; E) (where / 

is a polynomial with integral coefficients), nor can we deal with the joint distribution of, 

say, w(n; E) and eo(n + 1; E), nor with the distribution of a sum of such functions. Finally, 

we have not been able to obtain asymptot ic  formulas for T,,(x, fl; E,  g) in larger fl-intervals 

than  those indicated in our main theorems, nor can we derive asymptot ic  expansions. 

See [37, w 7] for a few additional remarks along these lines and some references. Further  

discussion and references will appear in [39]. 

This work was begun while I held a visiting research position in the Mathematics 

Depar tment  of the University of Geneva. I am grateful to Professor John  Steinig, who 

arranged my visit and helped to make it a pleasant one. The work was continued at  the 

Mathematics Depar tment  of the University of York (England), where my  visit was financed 

by a grant from the Science Research Council of Great Britain. I extend my sincere ap- 

preciation to Dr Maurice Dodson for arranging this grant. Finally, I thank Professor 

P. D. T. A. Elliott for stimulating and informative conversations about  various aspects of 

this research. 

w 2. Notation 

The symbols k, l, m, n always denote positive integers, while p always means a prime. 

v, x, y, a, fl, ~, 5, e denote real numbers. [x] means the largest integer ~<x, and log 2 x means 

log log x. E m p t y  sums mean 0, empty  products 1. The notation x 1 ... xm/yl ... Yn is some- 

times used instead of (x 1 ... Xm)(Yl "" Yn) -1" 

In  this paper, the notations O (without subscripts), < ,  :~ always indicate implied 

constants which are absolute. (Thus A = O(B) is equivalent to A < B . )  The notation O~ ...... 

indicates an implied constant depending at most on 5, e ..... For i = 1 ,  2 ..... c~(5, e ... .  ) 
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means a positive number depending at  most on ~, e . . . .  , while c~ means a positive absolute 

constant. 

Most of the remaining symbols and functions were defined in the first few paragraphs 

of w 1 (prior to (1.12)). A few further notations will be introduced as needed. 

w 3. Upper and lower bounds for Te(x, ~; E , g )  

To avoid constant repetition, we assume throughout this section that (1.7) and (1.10) 

hold. Our concern here is to obtain upper and lower bounds for Tv(x, 8; E, g) which gener- 

alize somewhat the main results of [37]. Although the inequalities of this section are not 

quite as precise as our main asymptot ic  formulas, they  are of interest in themselves be- 

cause they are valid over larger fl-intervals and because their proofs are simpler. Further- 

more, some of these inequalities will be used in deriving the asymptot ic  formulas. 

Instead of dealing directly with T,(x, 8; E, g), we shall find it more convenient to 

consider (as in [37]) the related functions 

Lv(x, 5; E, g) = card (n: n ~< x and g(n) ~< (1 -(~)v}, 

Rv(x, ~; E, g) = card (n: n ~< x and g(n) >1 (1 § 

where ~ is real. (There should be no confusion between Rv(x, ~; E, g) and the function 

R~(fl) defined by (1.3).) 

Since we shall often make use of the function Q(t) (defined by  (1.1)), it seems ap- 

propriate to state here the following simple lemma (cf. [37, Lemma 2.1]): 

LEMMA 3.1. Q(t) is strictly increasing on [ - 1 ,  0] and strictly decreasing on [0, + c~) 

(thus Q(t) <0 /or t:~O). Also, 

- t  ~<Q(t )<- t~/2  /or - l  < t  <O, 

-t~/2 <Q(t) < (1 -21og  2)t ~ < ( - 0 . 3 8 6 ) t  2 for O <t  < l. 

Now define 

(3.2) 2~(m, x; E, g) -- card {n: n ~< x and g(n) = m} 

for m =0,  l, 2 . . . .  We refer to the problem of estimating Iv(m, x; E, g) as the local distribu- 

tion problem for g. Note the obvious formulas 

(3.3) L~(x, ~; E, g) = ~ N(m, x; E, g), 
0~m~(1-6)v 

(3.4) R~(~, ~; E, g)-- ~ iV(m, ~; E, g). 
rn~>(l+~) 

2 - 792907 Acta mathematica 143. I m p r i m 6  le 28  S e p t e m b r e  1979 



18  K . K .  NORTON 

In order to use these formulas to estimate L~(x, (5; E, g) and By(x, ~5; E, g), we need the 

following remarkable result of Halgsz [19]: 

L ~.MMA 3.5. Let 0<0-<2. I / 0 < m - < ( 2 - ~ ) E ( x ) ,  then 

(3.s) E ( x )  ~ ~(~, 
iV(m,x;E,g)<c~(O)X--m~-e- '. 

Furthermore, i/ E(x) >1 ca(O ) and 0 <~ m <~ (2 - 0) E(x), then 

(3.7) iV(m, x; E, g) + N (m + 1, x; E, g) >i e4(~ ) x E(x)m e -E<~). 
m! 

In [19], Halgsz proved Lemma 3.5 only for g(n)=~(n;  E). His proof can be extended 

to the case g(n) =co(n; E); see Norton [37, pp. 687-689] for a few remarks on this extension 

and on the literature dealing with such results, and see also the remarks below and in w 4. 

(In [37], the hypothesis E(x)>~c3(0 ) was replaced by a less general condition.) I t  should 

be noted that  Sgrk6zy [51] has recently improved (3.7) by showing that  the left-hand side 

can be replaced by iV(m, x; E, g) when ~E(x) <~ m <~ (2 - ~) E(x). We shall not need SArk6zy's 

result in this paper. 

The first uniform upper bounds like (3.6) were proved by Hardy and Ramanujan [23] 

(reprinted in [46, pp. 262-275]) for the special case E = P  (the set of all primes). Since 

their results have been stated and applied incorrectly several times in the subsequent 

literature, it seems appropriate to mention here that  they proved the sharp estimate 

(3.8) N(m,x;P ,  co)<<, cSx(l~ for x~>2, m = l , 2  . . . . .  
( m -  1)l log x 

but they observed that  an inequality of this strength does not hold for N(m, x; P, fl) with- 

out some restriction on the size of m. In [23, Lemma C], they obtained an inequality for 

N(m, x; P, ~)  which is more complicated than (3.8); from this, it can be deduced that  if 

z>~3 and ~>0,  then 

(3.9) N(n~, x; P, ~) ~ "~ O-x x(l~ + c.)"-I for l < m <.(lO/9-~) log2 x. 
(m - 1)I log x 

An inequality similar to (3.9) (with cT~ -1 replaced by c~(~)) was later shown by Sathe [52, IV, 

p. 77, (iv)] to hold over the wider range 1 ~<m~<(2-~)log S x. Sathe actually obtained an 

asymptotic formula. Selberg [53] gave a different proof of Sathe's result and showed [53, 
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p. 87] that  such an upper estimate for N(m, x; P,  ~)  does not hold if (2 +~)log~ x ~<m ~< 

c10 log s x. 

The Hardy-Ramanujan  estimates (3.8) and (3.9) have recently been generalized in 

one sense by Warlimont and Wolke [57], who estimated from above the number of integers 

n such that  y < n ~< y § x and o~(n) = ~(n) = m. Upper bounds for the local distribution of 

more general additive functions have been given by ErdSs, Ruzsa, and Ss [16] and 

by Halhsz [20] (see also Ruzsa [50] for related work, and see w 4 below). 

The first uniform lower bounds like (3.7) were obtained independently by ErdSs and 

S. S. Pillai for the special case E =P. Pillai's work was done about 1940 but apparently 

was never published; the standard reference for a statement of his results is [22, p. 56]. 

Erd6s [14] actually obtained asymptotic formulas for N(m, x; P, w) and N(m, x; P, ~)  in 

the range I m- log~ x I <Cll (log s x)~. For further comments on asymptotic formulas for 

local distribution, see w 4 below. 

In order to use (3.3) and (3.4), we first obtain a more convenient form of Lemma 3.5. 

(Recall that  A is defined by (1.8).) 

Lv.M•A 3.10. Let 0<fl~<(~<2. I /  

(3 .11)  

then 

(3.12) 

Furthermore, if E(x)~> cls(t3 ), if 

(3.13) 

and if (3.11) hob/s, then 

(3.14) 

0 < m  < (2-0)v ,  

N(m, x; E, g) <~ vm -v+A cls(/~) x ~ e . 

v >i 3fl-~A, 

N(m, x; E, 9') -t- .N(m + 1, x; E, g) >i c14(• ) x ~ e -v-A. 

Proo/. Write E(x)= v § z, so I z] ~ A. First we assert that  

(3.15) 0 ~ m  ~ (2- f l /3)E(x)  if (3.11) and (3.13) hold. 

For we have E(x) >t v - A 1> (3f1-1 - 1) A, so v ~ E(x) + A ~ 3(3 - fl)-i E(x), and (3.15) follows 

easily from the inequality 0 ~ m ~ (2 - fl) v. 

Assume in this paragraph that  (3.11) and (3.13) both hold. By (3.15) and (3.6), 

~m 
N(m, x; E, g) < c2(fl/3 ) x~.v. e-V(1 + z]v)m e -z. 
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But 

by (3.13), so 
e z/" >1 1 +z/v >~ 1 - A / v  >1 1/3 

(1 + z/v)rne-z < e ~(m/v-1) < e A. 

Hence (3.12) follows in this case. Furthermore, if E(x)~>c3(fl/3 ), then by (3.15) and (3.7), 

V m 

N(m, x; E, 9) + N(m + 1, x; E, g) ~ c,(fl/3) x~.p. e-V(1 + z/v)'ne -z. 

We now apply the inequality log (1 +y)>~y(1 +y) - i  (valid for y > -  1). Since z/v>~-2/3, 

we get 

m l o g ( l + z / v ) - - z > ~ z  - 1  =z  

By (3.15), z (m/E(x ) -1 )>~-A ,  and (3.14) follows. 

I t  remains to be shown that  (3.12) holds under the assumptions (3.11) and 

(3.16) 0 < v < 3fl-lA. 

If m=0 ,  then (3.12) follows directly from (3.6), so we assume m>~ 1. I t  may not be true 

that  m < ( 2 - e ) E ( x )  for some e>0 ,  so we can no longer use (3.6). However, we assert tha t  

ymN(m,x;E,g)< ~yg(")<c]~(fl)xe (~'-1)~(z) for 0 < y < 2 - f l .  
n ~ x  

The first of these inequalities is trivial, while the second follows for y < 1 from an elementary 

result of Hall [21] and for 1 <y--<2-f l  from Norton [37, Lemmas 3.10, 3.11] (or from a 

much more general and difficult result of Hals [18, Theorem 2]). From this, we immedi- 

ately obtain 

N(m, x; E, g) < c15(fl ) x exp ((y - 1) v - m log y + [y - 1 [A} 

for 0 < y  < 2 - f l  and any m. The right-hand side is approximately minimized by taking 

y=m/v  (which is permissible by (3.11)). Using this value of y and applying Stirling's 

formula, we obtain 

(3.17) N(m,x;E,g)<<.cle(fl)x--~,e-~m~exp - - 1  A 
V 

Considering separately the cases 1 < m < v ,  v < m < ( 2 - f l ) v ,  and using (3.16), we find that  

(3.12) follows from (3.17). Q.E.D. 
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THEOREM 3.18. I /  0 < ~ < 1 ,  then 

Lv(x , ~; E, g )~ -1 (1  -~)-�89189 Q(-~)v§ 

Proo/. Combine (3.3) and (3.12) (with f l = l  and ~ replaced by ~ '=1+~) .  The result 

then follows immediately from [37, Lemma 4.5J. Q.E.D, 

THEOREM 3.19. Suppose that E(x) >~Cl~, v ~ 3A, and v-t ~5 <~ 1 - 3v -1. Then 

L v ( x  , (~; E ,  g) ~'~-1(1 - - ~ ) t x v - � 8 9  Q(-o)v-A. 

Proo/. Define n = [(1 - (5) v] - 1. By (3.3), 

L,(x, ~; E, g)>~ ~ {N(m, x; E, g) + 2r + 1, x; E, g)}. 
m=0 

We combine this with (3.14), taking f l = l  and replacing ~ by ~ '=1 +~. The result then 

follows from [37, Lemma 4.6]. Q.E.D. 

THEOREM 3.20. I/  0<~</~<1 ,  then 

R~(x, & E, g) <, els(fl)~5-1xv-~e ~)~+A. 

Proo/. Use (3.4), (3.12), and the method of proof of [37, Theorem 5.12]. Q.E.D. 

THEOREM 3.21. Suppose that 0 < f l < l ,  E(x) >~elg(fl ), v~>4(1-fl)-lA, and v-i <~O <~fl. 

Then 
RJx, & E, g) >i e~o(fl)5-1xv-te ~(~)~-A. 

Proo/. Write n=[(1 +(5)v] + 1, ~ =(2vt) -1. By (3.4), 

(3.22) R,(x, ~; E, g)>. Z {N(m, x; E, g) + N(m + 1, x; E, g)}. 
n<~rn<~(1 ~ ~,)n 

Since v>4A, we have E(x)~<v+A<~v. Also, v~>~O. Hence if c19(/~ ) is sufficiently large, 

(1 + 7) n < v{ 1 + ~ + v -1 + (2v5) -1 + (2v) -1 + (2v~) -1 } 

< v{1 +~ + ~ (1 -fl)} = v{2-  ~ (1 -~)}. 

We apply Lemma 3.10 with fl replaced by fl' =~(1- f l ) ,  and we assume Clg(fl ) >~cla(fl' ). 

Since v 1>4(1-fl)-lA >/3(fl')-lA, it follows from (3.14) that  

V m 
N (m, x; E, r + N (m + 1, x; E, g) >~ Cl4(fl' ) x~.~ e -v-h 
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for each m such that  n ~<m ~< (1 +7)n.  Substituting this estimate in (3.22) and using [37, 

Lemma 4.8], we get the result. Q.E.D. 

In order to obtain the asymptotic formulas of Theorem 4.27 and Theorem 1.9, we 

need the following slight sharpening of the upper bounds given in Theorems 3.18 and 3.20: 

THEOREM 3.23. I] 0<~< �89  and 

(3.24) 

then 

(3.25) 

(3.26) 

v/> 3(~-1A, 

Lv(X, ~; E, g) ~ - l x v - i e  Q(-'~)v+oA, 

R~(x, & E, g) "<~-:xv-~e Q(~)~+~'. 

(3.27) 

s o  

(3.28) 

Define 7 and e by 

(3.29) 

s o  

(3.30) 

By (3.27) and (3.24), 

(3.31) 

Hence 

(3.32) 

(3.33) 

Proo/. Write E (x )=v+z .  By (3.24), 

v >/6A >/61z I, 

5v/6 < E(x) <~ 7v/6. 

(1 -~)v  = (1-7)E(x) ,  (1 +O)v = (1 +e)E(x), 

7 = ~ + (1 - O) z(v § z) -1, ~ = ~ - (1 + ~) z(v + z)-L 

] (1 + ~)z(v + z) -~ ] < t ]z ] (5v/6) -1 < 3(5/5. 

2a/5 < 7 < 8~/5 < .}, 

20/5 < e < 8~/5 < -}. 

Now by (3.29), (3.3), and (3.4), 

(3.34) L~(x, ~; E, g) = Ls(~)(x, F; E, g), 

(3.35) R~(x, ~; E, g) ~ Rs(~)(x, ~; E, g). 
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We apply Theorem 3.18 and use (3.32) and (3.28) to get 

(3.36) L~(x)(x, y;  E, g) < y-lxE(x)- i ee(-r)E(z) < (5-1XV-�89 eQ(-r)s(x). 

Now if a > - 1 and b > - 1, Taylor's theorem yields 

(3.37) Q(b) = Q(a)+ ( a - b )  log (1 + a ) -  (a-b)~/2(1 + ~), 

where ~ is between a and b. We take a =  - ~ ,  b = - ? ,  and use (3.30) to get 

Q ( - ? )  ~< Q(-~)  + (1 -O)z(v  +z) -1 log (1 -~) .  

By (1.1), it follows that  

(3.38) Q( - ?) E(x) = Q( - ?) (v + z) < Q( - (~) v - & <~ Q( - ~) v + 8A. 

Combining (3.34), (3.36), and (3.38), we obtain (3.25). (3.26) can be obtained in the same 

way from (3.35) and Theorem 3.20. Q.E.D. 

The next  theorem is not needed later but  is an interesting complement to Theorem 

3.23. 

THEOREM 3.39. Suppose that E(x)>~c21, v>~ A 2, and v-J<<.~<�89 Then 

(3.40) Lv(x, ~; E,  g) > ~- lxv- te  Q(-~)"-~A, 

(3.41) R~(x, ~; E,  g) > (~-lxv-le ~(a)'-2~A. 

Proof. Write E ( x ) = v + z .  We shall show tha t  the theorem holds if we take 

(3.42) e e l  = m a x  (Or/, (~19(~), 42}. 

First suppose that  3v -~ <~--<�89 The hypothesis v>~A 2 then shows that  (3.24)holds. 

(3.27) and (3.28) follow, and if we define ? and e by (3.29), so do all of the remaining steps 

in the proof of Theorem 3.23. By (3.32) and (3.28), 

? >i 2~/5 >~2v - t  > E(x)-J.  

We apply Theorem 3.19 with v replaced by E(x),  A = 2 ,  and ~ replaced by ?. (3.42) and 

(3.32) show that  the hypotheses of Theorem 3.19 are satisfied, and the result is 

(3.43) LE(x)(x, ?; E,  g) > ? - l x E ( x ) -  ~ e Q(-r) ~(x). 
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We now apply (3.37) with a =  - 8 ,  b = - ~ ,  then use (3.30) to get 

Q( - ?) = Q( - 8) + (1 - 8) z(v + z) -1 log (1 - 8) 

where ~ >~ - ~ .  By (3.27) and (3.24), 

(1  - 8 ) ~ z  ~ 

(v + z) 2. 2(1 + ~)' 

SO 

(1 - -  8)2z  2 3A2v -1 ~< 8A, 
2(v + z) (1 + ~) < 

Q( - 7) E(x)  = Q( - ~) (v + z) >1 Q( - 8) v -  28A. 

(3.40) follows from this and (3.43), (3.34), (3.28), and (3.32). Still assuming tha t  3v - t  <0  ~ �89 

we can derive {3.41) in the same way from Theorem 3.21 (with fl = ~). 

Finally, suppose tha t  v-J ~<0 <3v - t  =00. (Note tha t  00< �89 by (3.28) and (3.42).) Using 

what  we have just  proved and the fact tha t  Q(t),<t ~ for Itl ~<1 (see (1.2) or Lemma 3.1), 

we find tha t  
Lv(X, 8; E,  g) >~ Lv(X , 80; E, g) ~ x ~" 8-1xv - t  e Q(-~)v-2~A, 

and similarly for R~(x, 0; E,  g). Q.E.D. 

w 4. Prel iminary asymptot ic  formtdas  

We assume throughout this section that (1.7) and (1.10) hold. Up to this point, our work 

has been based on Hal~sz [19] and Norton [37] and has been essentially elementary. How- 

ever, the upper  and lower bounds given in w 3 are so near to each other as to suggest the 

existence of asymptot ic  formulas, and in order to obtain such formulas, we need to use 

the more difficult results of Hal~sz [18]. These we shall combine with one of the main 

theorems of Norton [38], which is essentially a special case of the Cram6r-Petrov theorem 

of probability theory but  which can also be proved in an elementary way (as was shown 

in [38]). Before beginning this work, we state here two easy lemmas from [38, w 2]. (Recall 

tha t  G(fl) is defined by (1.4).) 

L•MMA 4.1. For any positive real numbers v and z, define 

(4.2) h~(z) = e-'(ev/z)Zz - t  = z - i  exp {vQ(zv - 1 - 1 ) } .  

Then /or  any positive integer m, we have 

(4.3) (2~t)-~h~(m) (1 - 1/12m) < e-~vm/m! < (2rt)-~hv(m). 
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LEMMA 4.4. For real y=~O and n = 0 ,  l ,  2, ..., we have 

(4.5) 

where 

(4.6) 

Hence 

exp (y2/2)G( - [Yl) = T~(y) .4- 0 ( 1 . 3 . 5 . . .  ( 2 n -  1)]y[ -2~-1), 

T n ( y  ) = ( 2 ~ ) -  �89 ~ ( - -1)m-11  " 3" 5"  �9 " ( 2 / - - 3 ) [ y [ - 2 m + l .  
ra=l 

(4.7) 1 < exp (y~/2) G( - l Y[) (lYl .4-1} < 1 for all real y. 

We need the following deep and beautiful result of Hals [18], which should be 

compared with Lemma 3.5 above. 

LEMMA 4.8. Let 0 < ~ < 1 .  If  E(x)~>2 and (~ E(x) < m <.(2-~) E(x), then 

E(x)me-s~x){10~(ImE(x) -~ -  11§ N(m, x; E, g) = x ~ -4- 

In [18], Hals proves Lemma 4.8 only for the function g(n)=~(n; E). The proof is 

based on Theorems 2 and 3 of [18], which we need not state here. These theorems give 

estimates for ~n<x/(n), where / is a complex-valued completely multiplicative function 

(i.e., /(mn)=/(m)/(n) for all positive integers m, n). In his application to Lemma 4.8, 

Hals takes /(n) to be z a(n:s), where z is complex. In order to establish Lemma 4.8 for 

g(n) =co(n; E), one needs to consider z "(n:s) instead of z a(n:s), and hence it is necessary to 

generalize Halhsz's Theorems 2 and 3 to the case in which / is merely multiplieative. This 

can be done by considering the completely multiplieative function ]* determined by 

defining f*(p)=f(p) for all p. Let  h be the multiplicative function determined by taking 

h(pc)=f(pC)-f(p)/(p c-1) (for each prime p and c=l ,  2 .. . .  ). I t  is then easy to verify tha t  

f(n) =~l~  h(d)/*(n/d) for all n (each side of this identity is a multiplicative function). If 

x >/y >/1, it follows that  

(4.9) ~/ (n )= ~ h(1)f*(m)= ~h(1) ~ f*(m)+ ~ h(l) ~ f*(m). 
n<~x Im<.x I~Y m~x/l y<l~x m<~xll 

I t  is convenient to take y=xt.  Then the inner sums on the right-hand side of (4.9) can be 

estimated by using Theorem 2 or Theorem 3 of [18], and it turns out that  if ~ 1  [h(1)[1 -~ 

converges for some a < 1, each of those theorems has a generalization of the desired type 

{i.e., for functions which are multiplicative but  not completely multiplicative). The details 

are elementary but  a bit lengthy. Finally, the proof of Lemma 4.8 for g(n)=co(n; E) is 

completed as in [18, pp. 230-232]. 
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The first uniform asymptotic formula similar to Lemma 4.8 was obtained by ErdSs 

[14] for the special case E = P  (the set of all primes). He showed that  

N(m, x; P, o)) = (1 + o(1)} x(l~ x)m-1 
( m - 1 ) ! l o g x  a s x ~ + c ~  

for ] m -  log2 x I ~< cll (l~ x)t, and he remarked that  his methods establish the same result 

for N(m, x; P, ~). Erd6s's results were improved by Sathe [52, IV, pp. 77, 79], who obtained 

the formula 

�9 x(log, x) m-~ {1 + 0~(lo---o ~x) } N(m, ~; P, g) = Bo(m/log, ~) (~-:_ i~ i ~ - ~  

for ~>0, 1 ~<m~(2-~) log 2 x, where 

and F is the gamma function. I t  is easy to see that  these results of Sathe imply a slightly 

more precise form of Lemma 4.8 when E =P,  the error term O~(E(x)-J) being replaced by 

O~(1/log 2 x). Sathe's proof was essentially elementary but very lengthy and complicated. 

A simpler but nonelementary proof was given by A. Selberg [53], whose analytic method 

formed the basis for nmeh of the later work in this area. Delange [8] stated without proof 

a generalization of the Sathe-Selberg formulas to the case in which P is replaced by the 

set E 1 of all primes in a union of finitely many arithmetic progressions. He stated also an 

asymptotic expansion for N(m, x; El, g), provided m is ]ixed. (In a later paper [9, w 6.5], 

Delange obtained general theorems which he asserted were enough to prove all of the 

results in [8].) 

Levin and Fatnletb [35, Theorem 2.2.3] obtained an asymptotic expansion of 

card {n: n ~< x and h(n) = m} for fixed m, where h is an additive function which takes positive 

integer values and the numbers h(p) are distributed fairly regularly. (See also Delange 

[9, w 5.1 and w 6.5] for results on this problem.) The theorem of Levin and FaInleib applies 

to h(n)=eo(n), for example, but not to h(n)=re(n; E) unless E has sufficiently regular 

distribution. (The same comment applies to Delange's results in [9].) 

Kubilius [29] derived asymptotic formulas and asymptotic expansions for card (n: 

n ~< x and/(n)  = m} which are uniform in m, where / is an integral-valued additive function 

such t ha t / ( p )  is "usually" equal to 1. In particular, his Theorem 3 leads to a slightly 
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more precise version of Lemma 4.8 under the rather restrictive conditions ~ t E  1 ~ log T < 

+ oo and m~log~ x (as x-~ + oo). 

Many other authors have contributed results on N(m, x; E, g) and similar functions, 

although none except S&rkSzy [51] has achieved the generality with respect to E that  

is evident in Hals theorems (Lemmas 3.5 and 4.8 above). For references to some of this 

related work, see Norton [37, p. 688]. Additional work (not mentioned in [37]) concerning 

asymptotic formulas for local distribution of additive functions has been done by S. Sel- 

berg (1940, 1942, 1943, 1947, 1951), Richert (1953), Rdnyi (1955), Hornfeck (1956), Delange 

(1957), Rieger (1958), Lu Hong-Wen (1964), Kubilius [28], Kalecki (1965), K~tai (1969), 

Fainleib (1970), Kubilius (1970) and [30], and Lucht (1970). Specific references for the 

papers listed only by date can be found in LeVeque [34, Sections N24, N28, N60]. 

The form of Lemma 4.8 is a little awkward for our purposes. The following corollary 

will be more convenient: 

Lv.~MA 4.10. I /  

(4.11) v/> 3A ~ 

and 

( 4 . 1 2 )  Im--v[ <~ A-iv, 

then 

(4.13) 

and hence 

(4.14) 

V m 
N(m, x; E, g) = x-~! e-V{1-4- O(h{Imv -1 - 11 + v-~})}, 

N(m, x; E, g) = (2~tv)-tx exp {vQ(mv - 1 -  I)} {1 + O(A{Imv-1 - ] [ + v-t})}. 

Proo/. Write E(x )=v+z .  By (4.11),' 

(4.15) v 1> 6A >/6]z], 

SO 

(4.16) 10 ~< 5v/6 <~ ECx) <~ 7v]6. 

By (4.12) and (4.16), 

3E(x)/7 < v/2 < m < 3v/2 < 9E(x)/5, 
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so we can apply Lemma 4.8 with ~ = }. Observe that  by (4.11), 

I / -  E(x)l ~< l / - v l  §  < l / - v l  +v,, 

so by  Lemma 4.8 and (4.16), 

(4.17) N ( m ,  x; E ,  9) = x ~ v  " c- ' (1 § z/v)me-~{1 + O ( { m v - '  - 1{ + v- 

Using (4.15), (4.12), and (4.11), we get 

m log (1 § z / v ) -  z = m{z l v  + O(z2/v~)) - z  

= (my - 1 - 1 ) z + O ( z ~ / v )  < A (  [my -1 - 11 + v  - t )  "< 1. 

I t  follows tha t  
(1 +z/v)me -~ = 1 + O ( A { J m v - X -  11 +v-t}) ,  

and thus (4.17) implies (4.13). Finally, (4.14) follows from (4.13), Lemma 4.1, and the 

fact tha t  
m - t  = {v(1 + m v  - 1 - 1 ) } - t  -~ v-t{1 +O(Imv - 1 -  l I)}. Q.E.D. 

We need to state one more preliminary result. When v and ~ are real numbers with 

v > 0, we write 

(4.18) 

e-v vm 
(4.19) s~(~)= 7. m! 

O~m~vfl 

Recall tha t  the functions Rv(fl), Fv(fl) are defined by (1.3) and (1.5), respectively. 

(4.21) 

I 1 0 < ~ f l < v t ,  then 

(4.22) 

L ~.M M A 4.20. Let  v, e be real wi th  v >1 10, ~ ~ e <~ 1 - v - t .  I1 - ev ~ <~ fl <~ O, then 

I s~(D) - F~(/~) I < 0.8(1 - ~)-J R o @  v-t.  

[ 1 - S ~ ( f l )  - .F,(fl)[ < 0.7R~(f l )v  - t .  

This is Theorem 1.8 of Norton [38], where an elementary proof was given. As was 

observed there, the constant factors 0 .8 (1-e )  - j  and 0.7 are not far from best possible, 

but their values are irrelevant for our present purpose (in view of the undetermined con- 
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stants in Lemmas 3.5 and 4.8). When v is large and fl =o(vt), a slightly less specific version 

of Lemma 4.20 can be derived from the Cram~r-Petrov theorem on large deviations of 

sums of independent random variables. For proofs of the Cram~r-Petrov theorem, see 

Cram~r [7], Petrov [41], [42, Chap. 8 and p. 323], and Ibragimov and Linnik [24, Chaps. 

6, 7, 8]. For an expository account of the Cram~r-Petrov theorem and its connection with 

Lemma 4.20, see Norton [38, w167 3, 4]. 

LEMMA 4.23. Define T,(x, fl; E, g) by (1.11). I /  - A - l v t < ~ < ~ < 0 ,  then 

(4.24) T~(x, fl; E, g) - Tv(x, ~; E, g) = F~(fl) - F~(~) + O(AR~(fl)v-�89 

I / 0 ~ / ~ A - l v  j, then 

(4.25) T,(x, fl; E, g ) -  T,(x, ~; E, g) = F , ( ~ ) -  Fv(fl) + O(ARv(~)v-J). 

Proo/. First suppose that  v < 3 A  ~. By (1.2) (or Lemma 3.1), Q(t)~t ~ for It[ <1.  Hence 

if ~ is real with [~[ ~<A-lv �89 we have vQ(~v-t)~l ,  so l ~ R v ( ~ ) ~ l  and l~Fv(~ , )~ l .  Thus 

(4.24) and (4.25) both follow from the trivial inequalities 0 ~< T~(x, ~; E, g) <~ 1. 

For the remainder of the proof, assume that  v >/3A 2. Our starting point is the obvious 

formula (el. (4.18)) 

(4.26) T~(x, f l ;E,g)~ ~ x - lN(m,x ;E ,g ) .  
0<m<v~ 

We shall prove only (4.24), since the proof of (4.25) is almost identical. Let k=[vr + 1, 

1 = [vz]. Suppose that  - A-iv t ~< a ~< fl ~< 0, so v(1 - A -1) ~< v~ ~< v B ~< v. I t  follows from Lemma 

4.10 that  for k<ra<<.l, 

e-V vm 
x- iN(m,  x; E, g) = ~ {1 + O(A{1 - my -~ + v- t})}. 

If  k ~<l, it follows from this, (4.26), and (4.19) tha t  

! 

Tv(x, fl; E, g) - Tv(x, ~; E, g) = ~ x - iN(m,  x; E, g) 
m~k 

/ fe-~v Z e-Vvk-1 

Furthermore, by Lemmas 4.1 and 3.1, e-"v'/l!.<R,,(fl)v-J. By (4.7) and (4.21), S,,(fl)~<Rv(fl). 

Thus if k ~< l, we get 

T~(x, fl; E, g) - T~(x, :r E, g) = S,(fl) - S,(~) + O(AR,(fl) v-t), 
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and this is trivial if ]r > t (in which ease k = 1 + 1 and 

T~(x, 8; E, g ) -  T,(x, :r E, g) = 0 = S , ( f l ) -Z , (a ) ) .  

Finally, we apply (4.21) and use the inequality R~(~)<R,(fl), which follows from Lemma 

3.1. We obtain (4.24). Q.E.D. 

We now come to the main result of this section. I t  can be viewed as a preliminary 

version of Theorem 1.9. Note, however, tha t  in the following theorem, there is no assump- 

tion like (1.12) about the relative sizes of v and A (we merely assume (1.7), as always). 

Also, the assumption here about the size of Ifll is slightly weaker than (1.13). 

THEOREM 4.27. I /  -A-lvJ~</9~<0, then 

(4.2s) T~(x, 8; ~ ,  g) = Fo(~)+O(bRo(~)v-J) = F~(~) {1 +O(A{l~] + 1}v-~)}. 

I] O<fl <~A-lO, then 

(4.29) 1 - T~(x, 8; E, g) = F~(fl) + O(AR,(fl) v-t) = F~(fl) (1 + 0(A{~ + 1 } v-J)}. 

Proo/. If v <3A 2, the results are trivial (see the first paragraph of the proof of Lemma 

4.23, and note (4.7)). For the rest of this proof, assume v/> 3A ~. 

To derive (4.28), we apply (4.24) with g = - A - I v L  Note that  by (4.7) and Lemma 3.1, 

F~(~) <[~1-1R~(~) = AR~(~)v-J < AR~(fl)v-J. 

Furthermore, in the notation defined at the beginning of w 3, Tv(x, a; E, g) = x-lLv(x, A-l; E, g), 

and hence Theorem 3.23 and Lemma 3.1 yield Tv(x, a; E, g)<AR~(fl)v-J. Thus the first 

part  of (4.28) follows from (4.24). The second part  of (4.28) follows from the first part  

and (4.7). 

We now prove (4.29) with ~ replaced by a (for convenience). We take 0 ~< a ~< A- iv  j =8  

and use the identity 

(4.30) 1 - Tv(x, ~; E, g) = 1 - Tv(x, 8; E, g) + T~(x, 8; E, g ) -  T~(x, ~; E, g). 

First observe that  

(4.31) 1 - T~(x, 8; E, g) = 1 - [x]x -1 "~- [~]gg--1 - -  T v ( X  ' 8 ;  E, g) 

< x -1  + x - l R , ( x ,  A- l ;  E,  g), 

in the notation of w 3. By Theorem 3.23, 

(4.32) x-lR~(x, A-l; E, g)<AR~(fl)v- ' .  
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Next, we assert that  

(4.33) x -1 < Rv(fl)v-J. 

To prove this, first note that  since v ~> 3A 2 1> 6A, we have 

v<~E(x)+A< ~ n - l + A < l o g x + A < l o g x §  
2~n~x  

so x -1 ~<exp (-5v/6). On the other hand, Lemma 3.1 shows that  

v-tRy(S) > v-t exp {vQ(1)) > exp { - 0 . 4 v -  �89 log v}/> exp ( - 0 . 4 v -  (1/2e)v} > exp {-0.7v}, 

and (4.33) follows. (4.31), (4.32), and (4.33) yield 

( 4 . 3 4 )  1 - T,(x, fl; E, g) <AR~(fl)v-i. 

Now, Fv(fl)<fl-lRv(fl) by (4.7), and Rv(fl)<~R,(a) by Lemma 3.1, so (4.30), (4.34), and 

(4.25) combine to give the first part of (4.29) (with fi replaced by a). The second part of 

(4.29) follows from the first and (4.7). Q.E.D. 

I t  is possible to rewrite Theorem 4.27 in various less precise forms. For example, 

Fv(fl) can be rewritten by expressing the factor exp (f12/2)G(-[fll) in the form (4.5). I t  

is also possible to rewrite Fv(fl) by using partial sums of the series (1.2) to obtain a represen- 

tation of the factor exp (fl2/2)Rv(fl). We shall prove here only one relatively simple result 

of the latter type, namely Theorem 1.16. 

Proof of Theorem 1.16. First assume tha t  Ifll <~min {v t, A-lvt}. Since Q(0 = -tz] 2 + 

O(Itl s) for Itl ~<1 (by (1.2)), we have 

Re(D) = exp {-#2/2 + 0(1~ 18~')}, 
SO 

F~(#) = a ( -  I~1) {1 + O( I~ I,~-~)). 
Using (4.7), we get 

Fo(~){1 +O(i{ l f i l  + 1}v-J)} - -a ( - I~ l )+o  (exp (-fl2/2)(fl2+h)v-i). 

(1.17) now follows from Theorem 4.27 and the identity G(fl)+ (7(-fl) = 1. 

We now prove (1.18) for all real ft. This is trivial when v ~<A 2, since Tv(x, fl; E, g) = 0(1) 

and G(fl)=O(1). Suppose v > A  2, and define y = A - i v  ~, so 1 < y < A - l v  t. If Ifll ~<Y, then 

(1.18) follows from (1.17). Now suppose that  Ifll ~>Y" Then by (4.7), 

a ( -  I~l) = 1 -a ( l f i l )  < 1 - a i r )  = a ( - r )  <r-*  exp ( - r* /2 )<r -8  = Av-t.  
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I t  follows that  if fl ~< -9', then 

0 < T~(x, fl; E, g) <<. T~(x, - 7 ;  E, g) = G ( - 7 )  + O(Av-t)<Av-~, 

while if fl >~ 9,, then 

0 < 1 -  T,(x, fi; E, g) <~ 1 -  T,(x, 7; E, g) = 1 -  G(7)+ O(Av-t)< Av-J. Q.E.D. 

w 5. Proof of Theorem 1.9 

In order to derive Theorem 1.9 from Theorem 4.27, we need the following lemma: 

L~.~MA 5.1. De/ine ](y)=exp (y2/2)G(- [Y[) /or all real y. I[  fl, 9, are real with fi=#O 

and fl7 >~ O, then 

(5.2) /(7) =/ (~)  +(9,- /~){p/(/~)-  (2~)-~ sgn/~} + 0({9,-/~}2{l~[ + 17-#1 +1}).  

I]t3:#0 and fl7 <.O, then 

(5.3) I(7) = I(~) + (2g)-I  (fl + },) sgn fl + o(fi2i lZ I + 1} + 7~{ I r l  + 1}). 

Proo]. Consider the functions 11, 12 defined by 

]j(y) -- exp (y~/2)G((- 1)Jy) (i --- 1, 2; y real). 

Note that  for each j and y, 

/~(y) = ( _  1)J(2~)-i +y/j(y), /~'(y) = ( _ 1)J(2~)-jy +y2/j(y) +/j(y). 

If f l<0  and 7--<0, or if f l>0  and 9,>~0, we can use the Taylor expansions of/I(Y) and/2(Y) 

to obtain 

f(7) = ](fl) + (7 - f l )  (fl/(fl) - (2~) -t sgn fl} + �89 (7 _fl)2 { _ (2~)-J Ill +~2/(~) +/(~)}, 

where ~ is between fi and 7" By (4.7), 

(5.~) - (2~)-~ Ill +~V(~) +/(~) < It[ + 1, 

and since [~-fl[  ~< [7-f l [ ,  we obtain (5.2). 

Now suppose that  fl < 0 and ~ >~0, or that  fl > 0 and 7 ~< 0. We cannot apply Taylor's 

theorem directly to /(9,)-/(fi) since / is not differentiable at 0. However, we can apply 

Taylor's theorem to/I(Y) and/2(y) at y = 0 ,  then use (5.4) and the fact tha t / (0)  =�89 to get 

(5.5) /(y) = �89  I +o(y2{lyl +1})  (y real). 

Using (5.5) to estimate/(~) and/(7), we obtain (5.3). Q.E.D. 
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Prooj o~ Theorem 1.9. Throughout this proof, we think of x, v, fl, E as being arbitrary 

but  fixed, subject only to the assumptions (1.7), (1.12), and (1.13). Write E ( x ) = w = v + z ,  

so Izl ~<A and w>~A~-A~>14. Define 7 by the equation 

(5.6) 

so  

(5.7) 

From (5.6), we obtain 

(5.8) 

v +flvt = w +~wJ, 

TJ:~, ~; E, g) -- Tw(x, 7; E, g). 

7 = w-~(~v~- ~). 

From (1.12), it follows that v >~ 8A, so v ( 1 -  2A -~) >~v/2 >t 4A, and hence (1.13) implies that  

2[fl[O<~2A-~v<v-4A. Thus (5.8) yields 

21rlw~ < 21~lv~+2A <v-2A <w,  

so [7[ <�89 Hence we can apply Theorem 4.27 with v replaced by E(x)=w, A replaced 

by 2, and fl replaced by 7. Combining the result with (5.7), we get 

(5.9) T~(x, ~; E, g) = ~w(7) +ocRw(r )w- ' )  if 7 <-< O, 

(5.10) Tv(x, fl; E, g) = 1-Fw(7)  +O(Rw(7)w -j) if r >~ o. 

The idea of the proof is now very simple: we must estimate Rw(7) and F~(7) in terms 

of Rv(~) and Fv(~). Because of the somewhat complicated nature of these functions, an 

extended series of calculations is needed to finish the proof. First, 

(5.11) w - t  = (v+z) -t  = v-t{1 + O(Av-1)} -- v -~ § 0(Av-t) .  

Hence by (5.8), (1.13), and (1.12), 

(5.12) F = f l -  zv-t + O(v-~). 

Next, we apply (3.37) and recall that  [7[ < ~wt to get 

(5.13) Q(rw -t) -~ Q(flv-~) + (flv-t -TW-J) log (1 +fly-J) + O({flv-J - 7w-J}~). 

By  (5.12), (5.11), (1.12), and (1.13), 

(5.14) 7w-t = f l y - t -  zv-1 + O(v-1). 
3 - 792907 Acta mathematlca 143. Imprim6 le 28 Sep t embre  1979 
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Using (5.14), (1.13), and the estimate log (1 + y ) = y + O ( y  ~) (for [y[ ~<�89 we obtain 

(5.t5) (/~v-~-~w-~) log (1 +/~v-J) =/~v-  t + o(l~ i v-t). 

Utilizing (5.13), (5.15), (5.14), (1.12), (1.13), and the estimate Q(t)~t  2 for It[ ~<1 (see (1.2)), 

we get 
wQ(yw-J) = (v + z)Q(•w-J) = vQ(flv -t) + flzv - j  + O( ]fl[v-J + v-t). 

Exponentiating this and using (1.13) and the estimate e ~ = l + y + O ( y  ~) (for y ~ l ) ,  we 

obtain 

(5.16) R~(r) = R,(fl) {1 +flzv-J + O([fl[v-J + v-t)}. 

In particular, 

(5.17) Rw(y) "< R,(fl). 

Now define [(y)=exp (y2/2)G(-[y[)  for all real y, so F~(r)=/(r)Rw(~,). We shall 

apply Lemma 5.1 to estimate/(~).  For the remainder of this proof, write (2z) - t=c  for 

simplicity. First suppose that  

(5.18) / / 4 0  and/~7 ~> 0. 

We apply (5.2), using (5.12), (1.13), (4.7), and (1.12) to estimate 7 - f l  and the error term. 

The result is 

(5.19) [(7) = [(fl) + {c sgn fl-fl[(fl) } zv-J + O(v-J). 

Multiplying the expressions (5.19) and (5.16), noting the cancellation of the terms 

+_fl[(fl) Rv(fl)zv -t ,  and simplifying by the use of (5.17), (4.7), (1.13), and (1.12), we get 

(5.20) Fw(~') = Fv(fl) + cRv(fl) zv-J sgn fl + O( R~(fl)v-t) 

if (5.18) holds. 

Now suppose that  

(5.21) 

If ~ < 0  and 7>~0, then by (5.8), 

7~<0. Thus by (5.12), 

(5.22) 

/~=~0 and fl~ ~< 0. 

Ifll ~<Av-J, and the same inequality holds ff f l>0 and 

Ifll ~<Av-j and I~ ' l~Av-t"  
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We combine (5.3) and (5.12), then estimate the resulting error term by using (5.22) and 

(1.12). The result is 

(5.23) /(?) =/(fl) + c(2fl- zv-~) sgn fl + O(v-t). 

Observe that  (5.22) and (1.12)imply Iflzl <~ IfllA~<l, so (5.16) becomes 

(5.24) Rw(? ) = Rv(fl) + O( Rv(fl) v-t). 

Multiply the expressions (5.23) and (5.24), then use (4.7), (5.22), and (1.12) to estimate the 

error terms. The result is 

(5.25) Fw(r) = Fv(fl) + c(2fl- zv-~) Rv(fl) sgn fl + O( R~(fl)v-~) 

if (5.21) holds. 

We need to deduce from (5.25) an appropriate expression for 1 -  Fw(7). Recall that  

Q(t)<t ~ for Itl <1. Hence if lyl <1,  we have 

R,(y) = exp {vQ(yv-i)} = 1 + O(y ~) = 1 + O(y~R~(y)). 

From this and (5.5), it follows that  

F~(y) = �89 R~(y) - c l y  I R,(y) + O(y~R~(y)) = �89 - c l y  I Rv(y) + O(y~R,(y)) 

if I Y l ~< 1, and in particular, 

(5.26) FJS)  = �89 - ~lSI RJS) + O(R~(8) v-~) 

if (5.21) holds, by (5.22) and (1.12). From (5.25) and (5.26), we obtain finally 

(5.27) 1 - Fw(r) = Fv(8) + cRy(8) zv-~ sgn 8 + O(R,(8) v-t) 

if (5.21) holds. 

Now by (5.17) and (5.11), the error terms in (5.9) and (5.10) are both O(R,(8)v-i ). 

Hence if 8~=0, we can derive (1.14) and (1.15) immediately from (5.9), (5.10), (5.20), and 

(5.27). 
Finally, consider the case 8 =0. If 81 <0 <8~, then 

T~(x, 81; E, g) < T~(x, 0; E, g) < T~(x, &; E, g). 

If we use (1.14) and (1.15) and let 81 and 8~ tend to 0, we get 

T~(x, 0; E, g) = �89 czv-~ + O(v-t), 

and hence (1.14) and (1.15) both hold for 8 =0. Q.E.D. 
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Theorem 1.9 and Theorem 4.27 are best possible in a ra ther  strong sense. To see this, 

suppose tha t  c2~ is a sufficiently small (positive absolute) constant ,  and assume t h a t  

, >max {c L 3A }, I/ 1 is a positive integer, and is positive 
and sufficiently small. Then by  (4.14), 

(5.28) Tv(x , fl; E, g ) -  Tv(x, a; E, g) = x - iN(m,  x; E, g) ~ R~(fl)v-i. 

Keeping x fixed, let Hw(7) be any  real-valued funct ion which is defined for w >/max ( c ~ ,  3A 2} 

and  7 in the  interval  (~, fl] and which has the proper ty  t h a t  for each fixed w, H~(7) is left- 

continuous at  7 =ft. I t  follows easily f rom (5.28) t h a t  

] T,(x, 7; E, g)-H~(7) ] >i c~3R,(7)v-J 

for some 7 E (~, flJ. Thus  (for a ny  f ixed x) Theorems 4.27 and 1.9 show t h a t  in this sense, 

the functions F,(fl) (for fl ~<0) and 1 -  F~(fl) (for fl >t0) are essentially the best  possible 

continuous approximat ions  to  T~(x, fl; E, g). Likewise, (1.18) is best possible if fl is near  

zero. 
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