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w 1. In t roduc t ion  

A rat ional  function / of the form 

_ s z n + a 1 z n-i + . . .  + a n 
/(z) q(z) zn + bl zn-l + + bn ' (1) 

where a, and b t are complex numbers,  defines a continuous map  of degree n from the 

Riemann sphere S2=CtJ  co to itself. I f  the coefficients (a 1 .. . . .  an; bl . . . . .  bn) va ry  con- 

t inuously in C 2" the m a p  ] varies continuously providing the  polynomials p and q have no 

root  in common; but  the topological degree of the map  / jumps  when a root  of p moves 

into coincidence with a root  of q. 

Let  F* denote the open set of (~" consisting of pairs of monic polynomials (p, q) of 

degree n with no common root. F* is the complement  of an  algebraic hypersurface,  the 

"resul tant  locus", in (~2~. On the other  hand  it can be identified with a subspace of the 

space M~* of maps  $ 2 ~ S  2 which take  c~ to  1 and have degree n. I n  this paper  I shall prove 

tha t  when n is large the 2n-dimensional complex var ie ty  F* is a good approximat ion  to 

the homotopy  type  of the space M*, or, more precisely 

PROPOSIT IO~  (1.1). The inclusion Fn Mn is a homotopy equivalence up to dimen- 

850n n. 

Equivalent ly  one can consider the space F n of rat ional  functions of the form 

aoz~+ ... +a~  
b o z  n + . . .  + b n '  

where again the numera tor  and denominator  have no common factor~ and ao and b 0 are 

not  both  zero. This space is the complement  of a hypersurface in p2n+l. I t  can be regarded 

as a subspace of the space M~ of all maps  $ 2 ~ S  2 of degree n. Proposi t ion (1.1) implies 

at  once 
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PROPOSITION (1.1'). The inclusion F , ~ M ,  is a homotopy equivalence up to dimen- 

sion n. 

The preceding results can be generalised in two directions. First we can consider 

maps S~-~P m, where pm is m-dimensional complex projective space. I f  M*(S2; pro) denotes 

the space of base-point-preserving continuous maps S2-~P m of degree n, and P*(S~; pro) 

denotes those of the form 

z ~ ( p o ( z ) , . p l ( z )  . . . .  , p , . ( z ) ) ,  

where T0 .... .  Pm are monic polynomials of degree n, then we have 

PROPOSITION (1.2). The inclusion 

F*(S~; p~) _~ M*(S~; pro) 

is a homotopy equivalence up to dimension n ( 2 m -  1). 

Again there is a version of this without base-points. 

Secondly we can consider rational functions on a compact Riemann surface X of genus 

g. I f  F , (X;  pro) is the space of rational algebraic maps of degree n, and Mn(X; pro) is the 

corresponding space of continuous maps,  we have 

PROPOSITION (1.3). I~ g > 0  the inclusion 

Fn(X; pro) _~ M.(X; Pro) 

is a homology equivalence up to dimen~ion ( n - 2 g ) ( 2 m - 1 ) .  

This result even extends to the case when the Riemann surface X has singularities. 

I t  seems likely tha t  the homology equivalence is actually a homotopy equivalence up to 

the same dimension. 

I am confident tha t  the methods of this paper  suffice to t reat  the case of rational 

maps from a Riemann surface to a class of algebraic varieties which a t  least includes 

Grassmannians and flag manifolds. I think there is even some hope tha t  analogous results 

hold when the dimension of the domain of the maps is greater than one, but the present 

methods do not apply to tha t  ease. 

One reason for expecting tha t  Proposition (1.1') might be true was pointed out to me 

by  M. F. Atiyah. I t  is known [6] tha t  when ~ is given its usual Riemannian structure the 

"energy"  function 

E(II- 

on the space M~ m of smooth maps S~-*S ~ of degree n has no critical points apar t  from the 

rational maps Fn, on which it at tains its absolute minimum. (Critical points of E are called 
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harmonic maps.) An extrapolation of Morse theory might lead one to hope tha t  F n is a 

deformation retract  of M~ m. Proposition (1.1') shows tha t  this is false, but  tha t  nevertheless 

it becomes approximately true as n-~ cr Unfortunately there does not seem to be a simple 

physical interpretation of the "energy" E, so one's intuition is unreliable as a guide. (A 

discussion of a closely related question of infinite dimensional Morse theory can be found 

in [1 a].) 

The Morse theory point of view applies also to maps X ~ S  ~ when X is a compact 

Riemann surface of genus g, for again (cf. [6]) the only harmonic maps of degree n are the 

rational maps, providing n > g. The case of Pm when m > 1 is more problematical. 

Partial  results about  the space F* have been obtained by  J .  D. S. Jones, and his 

work stimulated me to prove (1.1). In  particular he proved that  ~I(F*) ---Z, a result which 

I shall use in my  argument. (I give his proof in w 6.) But  my  attention was first drawn to 

the space by It. Brockett, who was interested in it because of its role in control theory. 

He was concerned with the real par t  RF~* of F~, i.e. the functions of the form (1) with a l 

and bt real. These functions belong to the space RM* of base-point-preserving maps $ 2 ~ S  2 

of degree n which commute with complex conjugation, and they induce maps of the real 

axis S 1 = R U ~ -~S 1. Brockett  [2] showed tha t  RF* consists of n § 1 connected components 
R * F~. ~ distinguished by the degree r of the restriction to S 1, which is congruent to n modulo 

2 and varies from - n to n. I shall reprove tha t  in w 7 of this paper, and a t  the same t ime 

shall prove 

PROPOSITION (1.4). The inclusion RFn*r--~RM*r is a homotopy equivalence up to 

dimension � 89  ]r] ). 

Here RM*~. ~ is the space o] base-point-prceervin~. 1 maps S ~-~ S 2 o] degree n which commute 

with complex con~uga$ion and have degree r when resSricted $o She real axis S 1. 

In  view of the theorem of [8.] the two Propositions (1.1) and (1.4) are together equiva- 

lent to the assertion tha t  * * F n ~ M n  becomes an equivariant homotopy equivalence (with 

respect to complex conjugation) as n-~ oo. 

A rational function of the form (1) is determined by its sets ~ and ~ of zeros and poles. 

These are sets with multiplicities: one should think of them as elements of the free abelian 

monoid A(C) on the set C. I shall refer to them as (positive) divisors in C. I f  ~ = n l z  1 § ... § 

n~z~ is a divisor, with n~EZ and zleC, I shall write deg (~) for the degree, or cardinality, 

nl + ... + nk. Thus F* can be identified with the space Qn of pairs of disjoint divisors (~, n) 

of degree n in C. 

I t  is known [15] tha t  there is a relation between the space Cn of unordered n-tuples 

of dis$inct points of C and the space of maps M~*. In  fact there is a map E: C ~ M * ~  which 
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is a homology equivalence up to dimension [n/2]. This map is not a homotopy equivalence 

in any range: indeed g~Cn--0 when k > 1, while the fundamental group of Cn is by defini- 

tion the braid group Br, on n strands, and that  of M* is Z. One construction of E: C ~ M *  

is to assign to an n-tuple ~ = (z 1 .. . .  , z~) the map/~ given by 

/~(z)= l + ~ z 1 = 1+  v/'~(z) 
- z~ ~ ( z ) '  

where y~(z)=YI (z-z~). Thus E factorizes through Qn, taking ~EC n to (~, ~)EQn, where 7 

is the set of zeros of ~p~ +yJ~. But of course E does not extend from Cn to the contractible 

space A~(C). 

Up to homotopy one can think of Q~ as a subspace of Q~+I. To do so, replace Q~ by 

the homeomorphic space Q~ of disjoint pairs of divisors ($, 7) which are contained in the 

region {Re (z)< n}. Then Q~ can be embedded in Q~+I by multiplying by (z-xn)/(z-y~),  

where xn and y~ are distinct points satisfying n ~<Re (x~), Re (Yn)< n + 1. Doing this sug- 

gests introducing a stabilized space ~. Consider all disjoint pairs (~, 7) of formal infinite 

positive divisors in C, and let ~ consist of those pairs (~, 7) which "almost coincide" with 

(t0, 7o), where ~:o = ~>~0 x~, ~0 = ~k>~c Y~, and "almost coincide" means tha t  ~ - ~0 and 7 - 70 

are finite, but not necessarily positive, divisors. The space ~ has Z • Z as its set of con- 

nected components. A point (~, 7) belongs to the (m, n)-eomponent if deg (~ -~0)=m and 

deg ( 7 - 7 0 ) = n .  The (0, 0)-component is precisely (Jn~0 Q~, and the other components are 

homeomorphic to it. 

The idea of our method is to deduce Proposition (1.1) from the following apparently 

rather different result. 

PROPOSITION (1.5). There is a homotopy equivalence 

~ ~ ( P  V P), 

where P is in/inite-dimensional complex projective space, and ~2 denotes the second loop.space. 

This is closely related to Proposition (1.1), because the connected components of the 

space ~2S2 and ~2(p v P) are homotopy equivalent. The equivalence is induced by a map 

q: S ~ P  V P which makes S 2, up to homotopy, a bundle over P ~/P whose fibre is a circle. 

The map of Proposition (1.5) can be understood geometrically as follows. Recall tha t  

the infinite symmetric product of $2= C 0 ~ ,  with ~ as base-point, can be identified with 

P. Given a point (~, 7)EF* we assign to it a map/E.~: C-~P VP obtained by scanning C 

with a microscope of large magnification and very small field of vision. When one centres 

the microscope at  a point x E C one sees either nothing or else an enlarged fragment of 

or of 7, but not  of both. An enlarged fragment of ~ or of 7 can be thought of as an element 
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of the infinite symmetric product of C (J ~ ,  i.e. as a point of P. One defines/~.,(x) ~P V P 

by assigning it to the left- or right-hand copy according as it belongs to ~ or to ~7. I f  x is 

far from the origin one sees nothing, so [~.~ defines an element of ~2(p V P). 

The reason tha t  ~ ( P  V P) arises in the proof rather than  ~2S2 is tha t  the rational 

functions are really a fibre bundle over the space of pairs of divisors (~, ~?) with fibre C • 

- - though  that  is obscured by normalizing the functions as 1 at  ~ .  Locally a rational function 

has a value belonging to C U ~ = S  ~, and locally a configuration (~, 7) has a germ belonging 

to P V P. In  fact we shall see (Proposition (4.8)) tha t  if F(U) is the space of non-zero mero- 

morphic functions on the open unit disk U then the map F(U)~  F(U)/C • is homotopically 

just the above map S~-~P V P. 

The proof of (1.5) follows the lines of [11], but the details are somewhat different, and 

some new points arise. One must  beware, of course, of thinking of a pair of divisors as a 

configuration of particles and antiparticles: here the two kinds cannot annihilate each 

other. 

To t reat  maps S2-~P ~ is no harder. The base-point-preserving holomorphic maps of 

degree n are given by  (m + 1)-tuples of monie polynomials of degree n, and hence by (m + 1)- 

tuples of divisors (t0, ~1 .... .  ~m) of degree n such tha t  ~0 N ~1 N ... N ~m=O. They form a 

space Q(~). Given (~0 ..... ~m) eQ(~ ~) one can define a map X-+ Wm+IP by  "scanning", where 

W~+ 1P is the subspace of the (m + 1)-fold product P • ... • P = ~-~+1 p consisting of (P0 ..... P~) 

such tha t  at  least one p~ is the base-point in P. (Wm+IP is sometimes called the (m § 1)- 

fold " fa t  wedge" of P.) Generalizing (1.5) we have 

PROPOSITION (1.6). There is a homotopy equivalence 

Q(m)~ ~2(Wm+l P). 

Here Q(m)ffi Un~oQ(~). 

The connected components of ~2(Wm+IP ) are homotopically the same as those of 

~2pm, for we shall see that  there is a map q: pm_~ Wm+IP whose homotopic fibre is a torus 

Tm. (A better  way to express this is as follows. The projective transformations of pm which 

leave fixed the vertices of the simplex of reference form the group (C• m. The homotopical 

orbit space of the action of (C• m on pm is Wm+tP.) 

The proof of (1.3) is considerably harder than tha t  of (1.1), as rational functions can 

no longer be identified with pairs of divisors. A pair of divisors (~, 7) on X comes from 

a rational function only if ~ and ~ have the same image in the Jacobian variety of X. 

In  the case of Riemann surfaces with singularities the generalized Jacobians of Rosenlicht 

[ 14], [16] must  be used. 
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The plan of the work is as follows. 

w 2 describes the maps q: Ss-*P V P and q: pm_~ Wm+tP. 

w 3 gives the proofs of (1.3) and (1.5). This is very simple and geometrical, but  it uses 

the result tha t  ~I(F~) ~ Z. 

w 4 treats the corresponding result for Riemann surfaces X of higher genus. This in- 

volves analysing the relation between rational functions and pairs of divisors. 

w 5 discusses the stability of the homology of the spaces F* and Fn(X; pro) as n in- 

creases. (This completes the homologieal part  of the proofs of (1.1) and (1.4).) The method 

here was introduced by Arnol'd [1] in connection with the braid groups, but  I have simpli- 

fied it so as to show that  it applies to a considerable variety of situations. As an example 

of this there is an appendix to w 5 proving the homological stability of the configuration 

spaces of a general manifold, obtaining a more precise result than that  of [11]. w 5 also 

contains a splitting theorem for the homology of F*. 

w 6 completes the proof of (1.1) by studying the action of the fundamental group of 

F* on its higher homotopy groups. This amounts to finding the monodromy of the "result- 

an t"  map Fn*-~C x, which is given by a weighted homogeneous polynomial. I have in- 

cluded here Jones's proof that  ~I(F*) ~ Z. 

w 7 treats the case of real coefficients, and proves (1.4). 

w 8 extends the results to Riemann surfaces with singularities. 

In w167 3, 4 and 5 it makes very little difference whether one is considering maps into S ~ 

or into pro. As the case of S ~ is simpler and clearer I have treated it first, and then indicated 

the changes needed for pm at  the end of each section. 

In  writing the paper I have been much helped by discussions with M. F. Atiyah, R. 

Brockett  and J. D. S. Jones, and I am very grateful to them. 

Note. To say that  a map ]: X-* Y is a homology or homotopy equivalence up to dimen- 

sion n is intended to mean that  the relative homology Hi( Y, X; Z) or homotopy ~t( Y, X) 

vanishes when i~n,  or equivalently tha t  Ht(X)-*H~(Y) or rq(X)-*~zi(Y) is bijective for 

i < n and surjective when i =n.  This is the case, for example, if Y is a CW complex and X 

is a subcomplex with the same n-skeleton as Y. 

w 2. The fibration sequenee 

T m _, pro7 Wm+IP _,~m p. 

When m = 1 one can see these fibrations very directly. Consider the standard circle- 

bundle S~~ whose total space is the infinite-dimensional sphere, which is contractible. 

If one attaches together two copies of this along a fibre one obtains a circle-bundle on 



T H E  T O P O L O G Y  O F  S P A C E S  O F  R A T I O N A L  F U N C T I O N S  45 

P V P whose total  space consists of two contractible pieces intersecting in a circle. This 

gives 
T-~ S~-~p Vp. 

Now consider the S2-bundle on P associated to the principal T-bundle S~176 by the 

action of T on S 2 which rotates it about  its poles. The total  space is made up of two disk- 

bundles (corresponding to the hemispheres of S 2) intersecting in a circle-bundle. The disk- 

bundles are each homotopy equivalent to P, and their intersection is S ~176 which is con- 

tractible. This gives 
S ~ P V P ~ P .  

As P is the classifying-space of the group T this asserts tha t  the homotopical orbit- 

space SS//T = S s x TET of the action of T on S ~ is P V P. Thinking of S 2 as p1, and observing 

tha t  the action of T extends to an action of •x, we can say equivalently tha t  P1//Cx = P  V P. 

Of course C x is precisely the group of projective transformations of p1 leaving fixed 0 and oo. 

Passing to the general case, observe tha t  the group of projective transformations of 

P= which leave fixed the vertices of the simplex of reference is G =  (Cx) m. The classifying 

space BG can be identified with the m-fold product P x ... x P = I - I m P .  Let  U~ (O<~i<<.m) 
be the par t  of pm where the i th homogeneous coordinate is non-zero. Then {U~} is an open 

covering of pm by G-invariant open sets. The bundle E on BG with fibre pm is therefore 

covered by m + 1 open subbundles E~ whose fibres are the U~. Because Ut is contractible 

E,  ~I-[ m P. Now U u fl ... N U t ~ T  k, so E u N ... N Etk~l-I  m-k P. Inspecting the inclusion 

maps shows tha t  E ~ Wm+x P. 

To describe the map  q: Pm-~w~.IP explicitly it  is best to replace Wm+xP by  the 

equivalent open subspace W~+IP of FI m+x P consisting of all (P0 .... .  Pro) such tha t  the first 

coordinate of a t  least one p~ is non-zero. (Here P is thought  of as the projective space 

of C~176 Let  A: pm_~p= be the map which permutes the homogeneous coordinates cyclically, 

i.e. 
A(;to ..... ;t~) = (~:, ;t~ ... . .  ~ ,  ;to). 

Then the desired map q: pm_~ W ~ I P  is given by p~-->(p, Ap, ASp ..... Amp), where pm is 

regarded as a subspace of P. 

w 3. The homotopy equivalence (~-* f~2(p x/p) 

For any space X let A(X) denote the free abelian monoid generated by the points of 

X. I f  Y is a closed subspace of X let A(X, Y) denote the quotient monoid of A(X) by the 

relation which identifies the points of Y with zero. Thus if Y is non-empty A(X, Y) is the 



4 6  G. SEGAL 

infinite symmetric product of X~ Y. By the theorem of Dold & Thom [5] one knows that  

in this case rek(A(X, Y)) "~Hk(X, Y) if X is connected. 

The space A(S ~, ~) can be identified with the infinite-dimensional complex projective 

space P formed from the vector space C[z] of polynomials by mapping the divisor ~. n~zt, 

where z~ = (u~: v~)EP 1= S ~, to the polynomial I-I (ut- v~z). 
Let Q(X, Y) denote the subspace of A(X, Y) • A(X, Y) consisting of pairs of divisors 

with disjoint support. (The support of ~ n~z, means the set of z~ in X -  Y such that  n~ >0.) 

The space Q(X, Y) depends only on X~ Y. The space iv* we wish to study is the connected 

component of Q(C) consisting of pairs (~, ~) with deg (~)=deg (~)= n. I shall write Qz.~ 

for the component with deg (2) =m and deg (~)=n, and Q= for Q~.~. The case m # n  is not 

very interesting, as Q~.~---Q~.~ x C ~-~ if m ~>n. (For if m > n  a rational function p/q, where 

p and q are monic polynomials of degrees m and n, can be written canonically as h+r/q, 

where h and r are monic of degrees m -  n and n.) 

PROrOSITIO~r (3.1). P V P ~ Q ( S  ~, ~) .  

Proo/. The map is the inclusion of the axes in 

Q(S", oo) c A(S2, ~)  • A(S~, ~) = p x P. 

Let  Q~ be the open set of Q(S ~, r consisting of pairs (2, U) such tha t  either ~ or ~ is 

disjoint from the closed disk of radius e >0  about the origin. Radial expansion defines 

a deformation retraction of Qe into P v P, so Q~-~P v P. But  Q(S 2, ~)  is the union of the 

Q~ for e>0 ,  so Q(S 2, ~ ) ~ - P y P  also. 

Now let X be the closed square [0, 1] • [0, 1] in R~=C, and let Y=[0,  1] • {0, 1} be 

a pair of opposite edges of X. 

PROrOSITION (3.2). Q(X, Y) ---~(P V P). 

Proo/. Let R be the rectangle [ -  1, 2] x [0, 1], and let ~R be its boundary. Then R = 

X o U X U X 1, where X0= [ -  1, 0] • [0, 1] and X 1 =[1, 2] • [0, 1]. Consider the quotient map 

re: Q(R, aR)~Q(R, ~R U X). Each fibre of ~t is homeomorphie to Q(OR U X, ~R) =Q(X, Y). 

On the other hand Q(R, aR U X)=Q(Xo, OXo)x Q(Xp OX O. If we assume for the moment 

tha t  n is a quasifibration then Proposition (3.2) follows at once. In  fact Q(R, ~R) and 

Q(X0, ~X0) and Q(X1, ~X1) can each be identified with Q(S 2, oo), and then the maps 

Q(R, ~R)~Q(Xt, aXe) are homotopic to the identity. But  for any space Q the homotopic 

fibre of the diagonal map Q~Q • is the loop-space ~Q, for Q~Q • is equivalent to the 

restriction Map ([0, 1]; Q)-~Map ({0, 1}; Q). Thus in the present case Q(X, Y) "~Q(S ~, ~)  

g~(P v P), providing we prove 
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LEMMA (3.3). Zt: Q(R, ~R)~Q(R, ~R U X) is a quasi/ibration. 

Postponing the proof of the lemma, we complete the proof of Proposition (1.5) by 

repeating the previous device. 

Let S denote the pair of opposite edges { -  1, 2} • [0, 1] of R. Consider this time the 

quotient map 
z~': Q(R, S) -+ Q(R, S U X). 

Each fibre of r is homeomorphic to Q(X). On the other hand Q(R, S IJ X) -=Q(X0, Y0) • 

Q(X1, Y1), where Y~ = S [J (X N X~). By Proposition (3.2) we know that  Q(R, S) ~-Q(X~, Y~) ~- 

g2(P v P), so if :t' were a quasifibration we could conclude that  Q(X) - ~ ( P  v P). Of course 

Q(X) "Q(C), so this would be too much: we need to stabilize the space Q(X). 

First we replace R by the half-open rectangle R ' = [ - 1 ,  2] • 1). We write S ' =  

S N R', X' = X  N R', etc. Then we choose disjoint sequences ~0 and ~0 in R' tending, say, 

to (�89 0) E~X. Let 0~(R, S) denote the stabilized version of Q(R, S) consisting of pairs (~, ~) 

of formal infinite divisors which almost coincide (in the sense described earlier) with 

(~0,~o)- We still have a projection ~': (~(R', S')~Q(R', S' U X'); but now each fibre is 

homeomorphic to ~(X'), which is essentially the same as the space ~ of (1.5). So the proof 

of (1.5) will be complete when we have proved 

LEMMA (3.4). ~t': O(R', S')~Q(R', S' U X') is a quasi/ibration. 

The proof of this uses Jones's result that  ~I(F*) --- Z. 

Remark. The preceding argument has been formulated in a way that  does not 

make it obvious that  the map F-~)z(PVP)  obtained is essentially the composite 

av,*c ~ 2 S ~ - ~ ( p  v P) mentioned in the introduction. I t  is not hard to verify this, but 

we shall leave the question for the moment, as it will be discussed fully in the next sec- 

tion (el. Propositions (4.7) and (4.8)). 

I t  remains to prove the lemmas. 

Proo] o/Lemma (3.3). We use a technique devised by Dold & Thorn [5] to prove the 

corresponding assertions for the infinite symmetric product, and used again in [10] and 

[11]. The following argument is so close to those in [11] that  I shall give it fairly briefly. 

L e t  us write Re=OR O X. We filter the base-space B=Q(R, Re) by an increasing 

family of closed subspaces {Br,q}. Br,q consists of those pairs (~, ~) such that  

deg (~ fl ( R -  R0) ) -< p and deg (~/I3 (R - R0) ) ~< q. 

Over B'p.q=B~.q-(B~_LqU B~.q_ x) the total space ~t-X(B'~.q) is the product B'p.~ • 

Q(X, Y), and hence a fibration. Using (3.3) of [11] (cf. [5] (w 2) and [10] (p. 62)) what 
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needs to be checked to show that  ~ is a quasifibration is that  the map Q(X, Y)I~Q(X, Y) 

which takes (~, ~7) to (~+P,  ~7'), where P E ~ X - Y ,  and ~7' is ~/ slightly shrunk so that  it 

lies in (e, 1 - e )  • [0, 1] and avoids P, is a homotopy equivalence. This is true because P 

can be moved continuously to a point of Y, where it becomes zero. 

Proof of Lemma (3.4). Similarly here it is enough to show that  the map (~(X')~(~(X') 

again defined by (~, ~)F§ +P ,  ~') is a homotopy equivalence. This is however not homo- 

topic to the identity: on the set Z • Z of connected components it is (m, n)~->(m + 1, n). 

But if one thinks of O(X') as Z • Z • li__,m Qm.n its restriction to Qm.n is homotopic to the 

stabilization map Qm.n~Q,,~.l.n. This implies that  it is a homology equivalence. I t  does not 

by itself imply that  it is a homotopy equivalence (cf. the example of the shift map of B ~  

discussed in [12]). But in the present case we know that  nl(Qm.n) is abelian, and that  

~l(Q~.n)-~nl(Qm+l.n) is an isomorphism. This allows us to conclude that  (~(X')~(~(X') is 

a homology equivalence with any twisted coefficients, and hence a homotopy equivalence. 

To conclude this section let us observe that  the preceding arguments apply without 

any change at  all to prove Proposition (1.6) also. One has only to replace pairs of disjoint 

divisors by (m+l)- tuples  of divisors (~0 ..... ~m) such that  ~0 N ... n~m=O, and P VP by 

Wm+IP. The case m >  1 is actually easier, as then the spaces Q~)(C) and M*(S~; P~) are 

both simply connected, the first because it is obtained by removing a variety of complex 

codimension m from C m, and the second because its fundamental group is ~3(Pm). 

w 4. Riemann surfaces of higher genus 

As in the preceding section we shall begin by discussing maps into S 2. 

Let X be a compact Riemann surface of genus g. The rational (i.e. meromorphic) 

functions on X form an infinite-dimensional field K x. For a fixed positive divisor ~ = 

~. nlz~ of degree n on X the rational functions which have poles of order at most n~ at  zl 

forms a complex vector space K~ in K x which (by the Riemann-Roch theorem) has dimen- 

sion n - g  + 1 providing n >~2g-1. As ~ varies over the n-fold symmetric product An(X), 

which is a compact non-singular variety of dimension n, one obtains all the rational func- 

tions of degree ~< n. They form an (n - g  + 1)-dimensional algebraic vector bundle on An(X). 

The functions with exactly n poles form a Zariski open set Fn(X) = Fn(X; p1) which is the 

complement of a hypersurface in this vector bundle. Fn(X) is the space of all holomorphic 

maps X ~ S  2 of degree n. If Mn(X) is the space of all continuous maps X ~ S  ~ of degree 

n we have 

PROPOSITIOl~ (4.1). The inclusion Fn(X)-~Mn(X) i8 a homology equivalence up to 

dimension n -  2g. 
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Let  us choose a base-point x 0 in X, and let F*(X) (resp. M*(X)) denote the rational 

(resp. continuous) functions ] such that  /(Xo)=1. Proposition (4.1) is equivalent to the 

assertion that  Fn(X) Mn(X) is a homology equivalence up to dimension n-2g, as one 

sees from the Wang sequences associated to the fibrations Fn(X)~S ~ and Mn(X)~S ~ 
with fibres F*(X) and M*(X). 

A meromorphic function on X is determined up to a multiplicative constant by its 

divisors (~, 7) of zeros and poles. Let  X'  = X - x 0 ,  and as before let Qn(X') denote the space 

of disjoint pairs (~, 7) of divisors of degree n. The manifold X' is parallelizable. Let  us 

choose a definite parallelization. Then, just as when X = S  2, a configuration (~, 7) looks 

locally like a point of P VP, and there is a map S: Qn(X')~Map* (X; P V P )  defined by 

"scanning". (Map* denotes the space of base-point-preserving maps which have degree 

n on to each copy of P. To see that  scanning a configuration ~ of degree n gives a map 

X-~P of degree n it suffices by continuity to consider the case where the points of ~ are 

distinct. But then the map factorizes X-+S 2 V ... V S2-~P, where X-~S 2 V ... V S 2 col- 

lapses the complement of a neighbourhood of ~, and each S~-~P is the standard inclusion 

of p1 in P.) I t  will turn out tha t  this map is a homology equivalence up to dimension 

n -  2g + 1; but  before seeing that  we need to construct a stabilized space like that  of Propo- 

sition (1.3). 

Let  {U~} be a contracting sequence of closed disk-like neighbourhoods of x 0 in X, 

with intersection z 0. Write X~=X-Uk. Then Q(X~) is homeomorphic to Q(X'). Embed 

Q(X~) in Q(X~+I) by (~, 7)~->(~ +x~, 7 +Y~), where x~ and y~ belong to U~-  U~+ 1. The union 

of the Q(Xk) is ~(X'), and can be thought of as the space of pairs of disjoint infinite divisors 

which almost coincide with a standard pair (~0, 70). The scanning process defines a map 

S: Q(X~)-~Map* (X; P V P) for each k, and there are homotopy commutative diagrams 

S Q(Xk) , Map* (x; P v P) 

Q(Xk§ ,- Map* (X; P V P), 

where ~k is a homotopy equivalence which increases the bidegree by (1, 1). We can obtain 

from them a map S: ~(X' )~Map* (X; P v P). (Strictly speaking, it is unique up to phantom 

homotopy; but  the non-uniqueness does not matter.) In analogy with (1.5) we have 

PROPOSITION (4.2). S: {~(X')-+Map* (X; P V P) i8 a homotoFj equivalence. 

Postponing the proof of (4.2), let us pass on to discuss the relation between the space 

Qn(X') of pairs of divisors and the space F*(X) of holomorphic maps X--,S ~. 
An arbitrary pair (~, 7) will not usually he the zeros and poles of a rational function 
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on X. Let  us recall tha t  there is a complex torus J, of complex dimension g, associated 

to X, called its Jacobian variety, and a holomorphic map  j: X ~ J  taking x o to O. The map  

j extends to a homomorphism ]: A(X, Xo)-~J, where A(X, xo) is the infinite symmetric 

product of X with x 0 as base-point. 

I t  may  be worth recalling the definition of the Jacobian. Let  V be the g-dimensional 

complex vector space of holomorphic 1-forms on X. An embedding Hi(X; Z)-~ V* is defined 

by  the pairing HI(X ) x V-~fJ given by 

(r, ~) ~j~ 
I t s  image is a lattice L ~ Z ~g. One defines J = V*/L. To define ?': X-~J  choose for each x in 

X a path  ~x from x 0 to x. Then ?'(x) is the linear form ~ ~->J'r~ ~ in V*, which is well-defined 

modulo L. 

The following facts are well-known. 

PROPOSITIO~ (4.3). (a) A pair (~, ~?) in Q,(X) arises/rom a rational/unction on X 

i/ and only i~ ](~) =i(~). 

(b) The map ]: An(X)-~J is a smooth/ibre bundle with/ibre the projective space P'-g i/ 

n>~2g-1. 

(c) The map ]: An(X')-~ J is a smooth/ibre bundle with/ibre the a//ine space C "-g i~ n >~ 2g. 

In  fact (a) is Abel's theorem, (b) is proved in [9], and (c) follows from (b) because 

A,(X') is the complement of An_I(X ) in An(X ). 

I t  follows from assertion (a) that  the rational functions F*(X) are precisely the fibre 

a t  0 of the map ?': Qn(X')~J given by (~, ~)~->j(~)- ?'(~). We know something about  Q,(X') 

from Proposition (4.2), and we know the homotopy type  of the Jacobian J .  To be able to 

draw a conclusion about  the homotopy type of F*(X) we need to know tha t  the map  

Qn(X')-~J resembles a fibration to some extent. I t  is certainly not a fibration: for example 

if X is a torus (i.e. g-~l)  we can identify X with J so tha t  ~ is the identity. Then _F*(X) is 

empty,  for an elliptic function cannot have just one pole. But  every other fibre of Qn(X')-~J 

is isomorphic to X'-(point}.  (These fibres are the spaces of theta functions with a given 

automorphy factor, i.e. the spaces of meromorphic sections of the line bundle corresponding 

to the point of the Jacobian.) In  fact it is easy to see tha t  the fibres Q~(X')~J never be- 

come homologieally equivalent to each other even for large n. In  view of this we have to 

generalise the concept of homology fibration introduced in [12]. 

De/inition (4.4). A map p: E-~ B is a homology/ibration up to dimension m if each b E B 

has arbitrarily small contractible neighbourhoods U such tha t  the inclusion p-l(b')-~p-l(U) 

is a homology equivalence up to dimension m for each b' in U. 
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The essential property of such homology fibrations is tha t  the fibre p-l(b) at  any 

point b of the base is homology equivalent to the homotopic fibre at  b up to dimension m. 

In fact the proof of Proposition 5 of [12], which asserts this when B is paracompact and 

locally contractible, applies without change when the words "up to dimension m" are 

inserted. (See the note at the end of this section.) 

In the next section I shall prove 

PROPOSITION (4.5). The map ]: Q,(X')--+J is a homology ]ibration up to dimension 

n - 2 g .  

Assuming (4.5) and also (4.2) I shall now complete the proof of (4.1). 

For some integer N choose a rational function ] on X which has a pole of order _N at  

x0, and no other poles. Define ~A =1-1(A) for any A in C. This is a divisor of degree h r in 

X', and its image in J is independent of A. Then define a new stabilization map i: Q(X') 

Q(X') by 
(~, n)~+(~+~A, v +~_,) 

where A = 1 + sup {]/(x) l : x e~ 0 ,/). 

We have a commutative diagram 

, i , i 
q , ( X  )-----+ Q,+N(X ) 

J , J 

i 
, Qn+2N(X') . . . .  

l; 
, J , ..., 

where the maps in the bottom now are the identity. Each map j is a homology fibration 

up to dimension n - 2 g  at least, and by the stability theorem (5.2) which will be proved 

in the next  section each map i induces a homology equivalence ]-l(a)_+]-l(a) of the fibres 

at any point a of J up to dimension n - 2 g .  So by Proposition 3 of [12] the map of telescopes 

induced by the diagram is a homology fibration up to dimension n -  2g. On the other hand 

homotopically the map of telescopes is a map ~: r where 0n(X') is one connected 

component of 0(X') .  Now we need 

LEMMA (4.6). There is a homotopy commutative diagram 

On(X, ) S , M a p * ( X ; P V p )  

J , Ma N (X; P), 

in which the map S is that o/(4.2), the map D is an equivalence, and the vertical map o.r~ the 

right 18 subtraction P V P c  p • p-+p in the H.space P. 
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This lemma identifies the homotopic fibre of ~ with that  of the right-hand map, which 

is the desired space Map* (X; S 2) in view of the fibration sequence 

S~--.p V p-~ p. 

The proof of (4.1) would now be complete but that  we have not shown that  the map 
$ * Fn(X)-~Mapn (X; S 2) which arises is the natural inclusion. So we must prove in addition: 

LEMMA (4.7). There is a homotopy-commutative diagram 

=~*(X) , Map* (X; S ~=) 

1 1 
Q,(X') S ::Map* (X; P V P), 

in which the top map is the inclusion. 

This reany does complete the proof of (4.1), as the homotopy classes of maps F*(X)-+ 

Map* (X; S 2) which make the diagram commute differ among each other only by the action 

of the group ~1 Map* (X; P) =[X; S1]=HI(X; Z) on Map* (X; S~), and so if one is an 

equivalence up to a certain dimension then the others are too. (The indeterminacy group 

IX; S 1] appears here because the scanning map was defined by choosing a parallelization 

of X', and the possible choices of that  arc an orbit of the group [X; $I].) 

Now we shall prove Lemmas (4.6) and (4.7), and then return to the proof of (4.2). 

Proo/o[ (4.6). First observe that  the space Map~ (X; P) is, up to homotopy at least, 

a connected abelian group with homotopy groups ~, =[StX; P] =/~-~(X; Z). Thus homo- 

topically it is a toms with fundamental group HI(X; Z). On the other hand the Jacobian J 

is a toms with fundamental group Hi(X; Z). These are canonically identified by Poincard 

duality, and this defines the map D in the diagram. 

As to the commutativity, it is enough to consider the diagram 

S 
Qn(X') . Map* (X; P V P) 

J D ~ Map~ (X; P). 

This is the restriction of a diagram 

An(X' ) x A,(X') S x S Map* (X; P x P) 

1 1 
J D , Ma N (X; P), 
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in which the top map is defined by scanning zeros and poles separately, and the right- 

hand vertical map is subtraction in the H-space P. So it suffices to show that  

S 
A.(X') �9 Map* (X; P) ,%/~ 

commutes up to homotopy. That  is the fundamental ssertion that  "scanning" defines the 

S-duality of X with itself. As ], D, and S are all H-maps it is enough to see that  

S 
X'  , Map~' (X; P) 

commutes. I t  suffices to consider the effect ol the maps on HI(X') and I shall leave that  

to the reader. 

Proo! o[ (4.7). For any open Riemann surface Y let F(Y) denote the space of non- 

zero meromorphic functions on Y. This is the space of all holomorphic maps Y--*S 2 with 

the two constant functions 0 and oo omitted. We give it the compact-open topology (which 

is quite different from the topology it acquires as the multiplicative group of an infinite 

dimensional field). 

Let  U be the open unit disk in C. Because the punctured Riemann surface X'  is paral- 

lelizable one can define a map ~: X ' -*Emb (U; X') from X'  into the space of holomorphic 

embeddings of U in X': for any x in X', a(x) is an embedding with centre x and small radius. 

As Y~->F(Y) is a continuous contravariant functor with respect to open embeddings the 

map ~ defines by adjunction a map 

2~: F(X')-+ Map (X'; F(U)). 

Now the scanning map S: F(X')-*Map (X'; P VP) is obtained by  composing Sr with a 

standard map z: F(U)-*P VP. On the other hand the embedding F(X ' )cMap  (X'; S 2) 

is the composite of Sp with evaluation at  the origin e: F ( U ) ~ S  2. So it is enough to prove 

PROPOSITION (4.8). There is a homotopy commutative diagram 

F(U) ~ S' 

F(U)/C x --. P V P 

in which the rows are homotopy equivalences and the map q is that described in w 2. 
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Proo/. The map $ is a homotopy equivalence because the space of all holomorphie 

maps U-~S 2 is obviously equivalent to S ~ (for U is holomorphically contractible), and 

deleting two points from an infinite dimensional manifold does not change its homotopy 

type. 

The map ~: F(U)/C• V P is the composite of the map div: F(U)/C• U-�89 

which assigns to a function its divisors of zeros and poles, with the equivalences P V P-~ 

Q(S 2, ~)~Q(U,  U-�89 described in w 3, To see that  div is an equivalence we observe 

that  

(i) C • acts freely and principally on F(U), 

(ii) F(U)=F 0 0 Foo, where Fa is the open set {/eF(U):/(0)4=2}, 
(iii) F 0 and F ~  are contractible, and e: F o N Foo-~ C • 

(iv) Q(U, U-�89 o u Q~ correspondingly, where Q0 and Qoo consist of the pairs 

(~, ~/) such that  0 E~ and 0 e~/respectively, and 

(v) Q0 and Qoo are each equivalent to P, and their intersection is contractible. 

To see that  the diagram commutes up to homotopy, observe that  the evaluation map 

e has a homotopy inverse v2: S2--*F(U) given by 

y)(~) = (z + ~)/(1 + ~z). 

The composite S2--*F(U) div , Q(U, U-~U)  is exactly S 2 q ~P v P o Q ( U ,  U-�89 

Proo/ o/ Proposition (4.2). The open manifold X' can be formed by taking an open 

disk Y and attaching to it 2g handles A l ..... A2o each homeomorphic to [0, 1] • (0, 1). 

(See Figure 1.) (The boundary ~A~ =(0,  1} • (0, 1) of each At is identified with part  of the 

boundary of Y.) 

The case g = 1 ~ " " ~  /A 

i r i 

Fig. 1. 
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Consider the map ~: Q(X')~Q(X', Y), where Y denotes the closure of Y in X'. Each 

fibre is homeomorphic to Q(y), which we know approximates to ~ ( P  V P). On the other 

hand Q(X', Y) is the same as 1-I Q(At, OAf), and we know that  Q(At, OAf) ~ ( P  V P) from 

(3.2). The map g will not be a quasifibration, so we stabilize Q(X') by replacing it by the 

space ~(X')  of pairs (~, 7) of infinite divisors which almost coincide with a fixed pair 

($0, 70) in Y which tend to the boundary of Y but remain distant from the handles A v 

Then, just as in Lemma (3.4), we shall have a quasifibration with fibre O(Y). So we have a 

fibration sequence 
O~( r) --.'(2(X') ~ I-I Q(A,, OA,) ... (~) 

(For the inclusion ~ ( Y ) c ~ ( Y )  is a homotopy equivalence). 

We should like to compare (~) with a corresponding sequence of mapping spaces. 

The union ]_[A~ is a closed subset of X',  so its one-point compactification (I_IAt)+= VA~" 
is a closed subset of (X')+=X, and there is a eofibration sequence VA+~X.-*-Y +. This 

leads to a fibration sequence of mapping spaces 

Map* (Y+; P 'r --,-Map* (X; P VP) --"I-I Map* (A~; P VP) ... (M) 

The sequence 
Q(Y) ~ Q(X') ~1-[ Q(A ~, OA 0... (Q) 

almost maps into (M). To get a good map one must make some slight adjustments. Choose 

a complete metric on X'. Then replace Q(X') by its subspaee consisting of pairs of divisors 

(~,7) which are separated by at least e>O. Do the same for Q(A~, OAt) and Q(Y), and 

further restrict the divisors in Q(Y) to be separated by at least e from At. Finally, replace 

Map* (A~+; P VP) by Map* (A+; P VP), where At is the closed subset of A~ consisting of 

points distant at  least e from 0A ,. None of these changes affects the homotopy type; but 

now scanning with a disk of radius e defines a map from the sequence (Q) to the sequence 

(M). We still need to stabilize this map. But  the stabilization affects the configurations 

and maps only in a region well separated from the handles A t, so the construction described 

before the statement of (4.2) can be carried out to obtain the desired map (~)-~(M). We 

know from (3.3) and (3.4) tha t  the maps of base and fibre are homotopy equivalences 

(observing that  A~ ---S 1 and Y+---S~), so we can deduce that  ~(X' )~Map* (X; P V P) is a 

homotopy equivalence. 

Maps into P" 

As was the case in w 3 very few changes are needed to pass from p1 to pro. No change 

at all is needed to show that  there is a homotopy equivalence 

Qc~(X') ~ Map* (X; W,,~IP). 



56 o. S~.O~L 

A collection of divisors (~o ..... ~m) in X '  with empty  intersection corresponds to a 

base-point-preserving m a p / :  X ~ P  m if and only if all the ~ have the same image in the 

Jacobian J .  In  one direction this is obvious: when / is given the ~ are the inverse images 

of hyperplanes of P~, and so are l inearly equivalent divisors. On the other hand if the ~ 

are equivalent there is a line-bundle L on X with sections s~ such tha t  ~ is the set of zeros 

of s,. One can suppose tha t  s0(x0) . . . . .  s~(x0) ~=0. Then 

x ~  (80(x) . . . . .  8~(x))  

is the desired map  X ~ P  m. (Although the st(x) lie in Lx their ratios are in C.) 

Thus F*(X; pro) is the fibre a t  0 of a map  ]: Q(m~(X')-+jm which takes (~0 .. . .  , ~m) to 

(](~0)-](~*), ](~1) -?(~2) . . . .  ). I t  turns out tha t  this is a homology fibration up to dimension 

(n - 2g) (2m - 1). 

Apart  from this only the generalizations of (4.7) and (4.8) deserve comment.  In  the 

proof of (4.7) one replaces F(Y) by F{m}(Y), the space of holomorphic maps y_}pm whose 

image is not contained in one of the coordinate hyperplanes. Evaluation a t  the origin still 

defines a homotopy equivalence 
~: Ftm,(u) _.pro, 

for again the space of all holomorphic maps U-* pm is equivalent to pro, and the par t  deleted 

from it has infinite codimension. A homotopy inverse to e is given by 

:p ~-> {z ~-->p + zAp + z2A2p +... + zmAmp} 

in the notation of w 2. The (m + 1)-tuple of divisors associated to the last map is (~0 .... .  ~m), 

where ~, is the set of zeros of the polynomial 

P i  + zP~+l + ... + z m P l - i  �9 

The only common zeros of these polynomials are roots of unity, so (~o ..... ~m) defines a 

point of Qcm~(U, U-�89 When one identifies Wm+IP with Q(m~(U, V) as in w 3 the com- 

posite map 

p,n ~ F(m,(U)~Q~m~(U, U- �89  

is exactly the map q: pm_~ Wm+IP described in w 2. 

Note. D. B. A. Epstein has pointed out to me tha t  the proofs of Propositions 5 and 6 

of [12] are not quite adequate. I used the followed result: 

Let  S be a partially ordered set, and {U~}~,s a collection of open sets of a space X 

indexed by 2, such tha t  



T H E  T O P O L O G Y  O F  S P A C E S  OF R A T I O N A L  lvUNCTIONS 57 

(i) ~<~fl~ U~c Up, and 

(if) if x E Ua N Up then x E Ur, where ~ < ~ and ~ <ft. Then there is a simplicial space 

Y with 
Y~ = I_I v~o, 

~ <~... < ~  

and a spectral sequence with E~=Ha(Y~) which converges to H,(X) .  

If sheaf cohomology is used instead of singular homology then this is classical. To 

obtain it for singular homology one must observe that  by [1ha] there is a spectral sequence 

with E~q = g~(Y~) which converges to H,( [  Y I), and by the appendix to [15 b] the natural 

map ]YI-~X induces an isomorphism H,([Y]) -+H,(X) .  The hypothesis of paracompact- 

hess in the two propositions is thus quite unnecessary. 

w 5. Stabilization 

As in the last section let X be a compact Riemann surface of genus g with a base- 

post x0, and let X ' ~  X - % .  X'  will be fixed throughout this section, so I shall write An 

for the n-fold symmetric product An(X'), Qn for Qn(X'), and so on. 

The discussion of stabilization is best carried out using cohomology with compact 

supports. Recall that  if Y is a locally compact space one defines Htcpt(Y) as the reduced 

cohomology/~f(Y+) of the one-point compactification Y+ of Y (with c~ as base-point). If 

Y is an orientable open manifold of dimension N the Poincar4 duality theorem asserts 

tha t  H~cpt(Y) ~ HN_~(Y). 

We have seen that  there is a stabilization map Q~-~Qn+1 which takes (~, 7) to (~+x, 

+y), where x and y are distinct points of X'  near x 0. (One can suppose that  (~, 7) in Qn 

is constrained to lie outside a small neighbourhood of x 0 containing x and y.) Let  Vx and V~ 

be very small disjoint disks in X'  with centres x and y. The closed embedding Qn-*Qn+a 

extends to an open embedding Qn • Vz • Vy~Qn+l given by ((~, 7), x', y')~->(~ + x', ~ +y'). 

~Ilopt (Qn). The stabilization Now Qn is an open manifold of dimension 4n, so H~(Qn)'" 4n-i 
H ~  ..~ I+4 HI(Q.)~HI(Q.+I) corresponds to the map c~t(Q.) Hcpt(Q.+x) which is the composite of 

the suspension isomorphism H~pt(Q.)~HJc~(Qn • V~ • V~) and the natural map induced by 

the embedding Qn • Vx • Vy~Qn+l. (The functor Htc~t is covariant for open embeddings 

because one.point compaetification is contravariant for open embeddings.) Now we can 

prove 

PROPOSITION (5.1). The stabilization map Qn---~Qn+l i8 a homology equivalence up to 

dimension n -  a, where a = 0 i] g ~-0 and a = 2 g - 1  i]g > O. 

Proo]. Let P~=A~ • A~ be the space of pairs of divisors (~, ~) of degree n, not neces- 

sarily disjoint. P~ is filtered by closed subspaces 
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Pn = Pn,o ~ Pn,1 ~ ... ~ Pn,n = A n ,  

where Pn,~ = {(~, ~7): deg (~ fl ~) ~>k}. 

Clearly Pn.~ -Pn .~+ l  =Qn-~ • A~. 

The open embedding Qn • V~: • Vu ~Qn+ 1 extends  to an open embedding  Pn • V:~ • V u ~  

P~+t, which takes  Pn.~ • Vz • Vu into Pn+x;~ for each k. 

Proceeding inductively,  let  us assume 

(*)n: if m < n then  H~(Qm) ~H~(Qm+~) is bijective when i < m - a, and surject ive when i = m - a. 

The s t a t emen t  (*)1 is certainly true.  B y  Poincar~ dual i ty  (*)n is equivalent  to  

(*)',: ff m < n  t h e n  I-I~r i s  bijective when ~ > 3 m + a ,  and surjective when 

] = 3 m  +a.  

I shall abbrev ia te  the last  conclusion to "... is s table for ~ ~> 3m + a " .  

F rom (*)'n we deduce 

(~)n: if k > 0  then  ~ -~ ~+~ Hc~t(Pn.~) Ho~(Pn+I.~) is s table for ~ >~ 3 n -  k + a. 

This is p roved  by  downwards  induction on k. I t  is t rue  when k = n  because then  

] >/2n = dim (Pn. n) and 7" + 4 >/2n + 4 = dim (Pn+l, n). One passes f rom k + 1 to k by  apply ing  

the  5-1emma to the  d iagram 

H~-p~(Pn.~+l) ~ H~r • At,) -----+ J ,. H j / p  ~ _____+ uJ+l,r~ Hr r n.k+l, ""optv~n-k • Ak)  

which arises f rom the pair  (Pn.k, Pn.~+l) because P n . ~ - P n . k + l = Q n - k •  (Because 

dim (Ak)=2k  the  hypothesis  (*)~ implies t ha t  H~pt(Qm •  j+4/~ x Ak) is s table Mr cpt ~Srn+l  

when j > ~ 3 m + 2 k + a ) .  

Now consider the pair  (Pn, Pn.1). There  is a d iagram 

Ht- l l  r,, �9 y-1 (~ 

--* H ;hPn+l.1) H ; (On,O 1). 

But  Pn = A n  x An,  and when n > a  we know t h a t  An is a fibre bundle over  the  torus  J with 

fibre C n-~ So by  the  Thom isomorphism theorem ,~TJJ-I[ ]oopt; kJt n) ~ ~ K l J - l - 4 n + 4 g l  ~.t cp$ I.~ X J )  =~HJ+SIP~pt ~ n+lJ~. 

Thus  ( t )n~  (*)n+l if n > a .  But  if n < a  then  (*)n+l is t r ivia l ly  true.  So a l together  we have  

shown (*)n ~ (*)n+l, and the  proof of (4.1) is complete.  
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Proo/ o/Proposition (4.5). I t  turns out tha t  exactly the same argument suffices to 

prove Proposition (4.5), asserting tha t  the map j: Q,(X')--*J is a homology fibration up to 

dimension n -  2g. 

The map j extends to j: P=--*J. I f  a is any subset of J let P~, Pg.k, Qg denote the parts  

of P~, Pn.k, Q= lying above 0. Proposition (4.5) amounts to the assertion that  if a E J  and a 

is a small contractible open neighbourhood of a in J then the inclusion Q~c Qg is a homo- 

logy equivalence up to dimension n -  2g. For any subset a we have 

Pg = P..0 ~ Pg.1 ~ ... P. .  n, 

a (T and P..k--P..k+x =Qn-k • A~. 

We make the inductive hypothesis 

(*)n: if m < n then H~(Q,~)~H~(Q~) is stable when i ~<m-2g, or equivalently, since Q~ and 

Q~ are manifolds of dimensions 4 m - 2 g  and 4m respectively, 

(*)': if m < n  then J " J+2o Hc~t(Qm)--*Hc~t (Qm) is stable when ~ >/3m. As before we deduce first 

Hcpt(Pn.~)--*Hcpt (Pn.k) is stable when ] ~>3n - k, (~)n: if k > 0  then J ~ j+2g 

and then show tha t  ( t) ,  implies (*),+r Of course the essential input for the argument  is 

the fact already pointed out tha t  j: P n ~ J  is a fibre bundle when n >~2g. The difference be- 

tween the stability ranges in (5.1) and (4.5) arises at  the bot tom of the induction: in the 

former case (*)~ is trivially true for n < 2g - 1, and in the latter case only for n ~< 2g. 

By this point it will be clear tha t  the proof of (5.1) works equally well for Qg when a 

is an arbi trary subset of the Jacobian, providing we use the stabilization map i described 

in w 4 which has the property tha t  ji = ]. 

{7 _~ r PROPOSITION (5.2). The stabilization map i: Q~ Qn+N is a homology equivalence up 

to dimension n - 2 g  /or any subset a o / J .  In  particular i induces a homology equivalence 
* * 

_Fn(X)-~ F~+N(X) up to dimension n - 2g. 

Before leaving the subject of stabilization it may  be worth describing briefly another 

approach to the question, which, though it does not lead to an explicit stability dimension, 

proves more in another respect. This is the method used by Dold [4] for the symmetric 

groups, and applied also in [11]. We shall consider only the case of the rational functions 

Am* on the Riemann sphere. 

-Fn_l'* Fn makes H.(-F*_I) a direct summand in PROPOSITIO~ (5.3). The embedding * * 

H .( F*~ ). More precisely, there is a sequence o/graded groups (Kin) and a canonical isomorphism 

H.(F*) ~ Ko |1 7 4  ... $ K ,  

compatible with the embeddings 2'~--* F*/or m < n. 
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Proof. Let Qm.n denote the space of pairs of disjoint divisors (~, 7) in C such that  

deg (~)=m and deg (7)=n.  If p ~<m there is a "many-valued map" from Qm.~ to Q~.n which 

assigns to (~, ~7) the collection of (~) pairs (~', ~), where ~' runs through the collection of 

subdivisors of ~ with degree P. Such a many-valued map induces (cf. [11, p. 103]) a transfer 

rm.~: H,(Q~.~)-,H,(Q~.~), which clearly satisfies the identity 

rm+l.~i m = rm.~ + i~_l rm.~_l, 

where ira: H,(Q~,.~)~H,(Qm+I.,) is the natural map. I t  follows from [4] (Lemma 2) tha t  

H,(Q~.n ) can be decomposed as the sum of m + 1 pieces, of which the first p + 1 form the 

image of H,(Qz.n). One can similarly decompose H,(Qm.n ) into n + l  pieces by breaking 

up the second divisor in the pair. The two decompositions commute, giving a decomposi- 

tion of the form H,(Qm.n)= | But  Kn.q=0ifp~=q, for we saw in w 3 that  

O~,q~-O~.p if p<q.  

Proposition (5.3) implies tha t  H,(F*~) is independent of n when n is large, as we know 

that  li__m n H,(F*) is finitely generated. 

The same argument gives a splitting of H,(Qn(X')) for any punctured Riemann sur- 

face X'; but it does not seem obvious that  there is an induced splitting of H,(F*~(X)). 

The case o/Q~m)(X'). No essential changes are needed in any of the preceding discus- 

sion to treat  (m + 1)-tuples instead of pairs of divisors. But then in the fundamental filtra- 

tion 
Pn = Pn.o D Pn.I D Pn.n =An,  

where Pn.k= {(~0 ..... ~m): deg (~o N ... fl ~m)~>k}, each layer has complex codimension m in 

its predecessor. This leads to a higher stabilization dimension. We have 

~(m)_,r~(m) is a homology equivalence up PROrOSITION (5.1'). The stabilization map ~n ,e~+x 

to dimension ( n - a ) ( 2 m - 1 ) ,  where a =0 if g =0, and a = 2 g - 1  if g >0. 

Similarly the generalization of (4.5) is 

PROI'OSITION (4.5'). The map 

i: Q~n'n)(X') ~ Jm 
defined by 

J(~:o, . . . ,  ~,,,) = ( J ( ~ o ) - i ( ~ )  . . . .  , J ( ~ , ~ - 1 ) - i ( ~ , , , ) )  

is a homology fibration up to dimension (n - 2g)(2m-1) .  

w 6. The action el nl(F~) 

We now return to the rational functions on the Riemann sphere. From what has 

preceded we know that  the inclusion of the rational functions ~'* in the space of maps M* 
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is a homology equivalence up to dimension n. J .  D. S. Jones has proved tha t  ~I(F~*)~-Z 

Fn ~ Mn induces an isomorphism of funda- (I shall recall his proof below), so we know tha t  * * 

mental  groups as well. We should like to show tha t  it is actually a homotopy equivalence 

up to dimension n. To do so we must  show tha t  the space F~* is simple up to dimension n, 

i.e. tha t  ~tl =z l (F*)  acts trivially on ~k(Fn*) for k < n. (The space M~* is simple because it is 

homotopy equivalent to M0*, which is an H-space.) I t  suffices to show tha t  ~1 acts trivially 

on Hk(l~* ) for k < n ,  where P* is the universal covering space of t~*; and in fact [7] it is 

even enough to show tha t  ~t 1 acts nilpotently on Hk(P*), i.e. tha t  H~(Pn*) has a ~rl-stable 

filtration such tha t  ~1 acts trivially on the associated graded module. To prove this we 

consider the map R: Fn*-~(J • which assigns to a rational function f = p / ! / t h e  "resul tant"  

Rv. ~ of the polynomials p and q. 

Recall tha t  if p(z) =z  n +alz  n-1 + ... +an and q(z) =z  n +blz n-1 + ... +b n are two monic 

polynomials with roots ~1 ..... ~n and ~1 .... .  fin their resultant Rr.a is 1-It.r (~-/~r a poly- 

nomial in a~ ..... an and bx ....  , bn which is homogeneous of weight n ~ when a~ and b~ are 

assigned weight k. Rr, ~ vanishes if and only if p and q have a common root, so F* is precisely 

the space of pairs of polynomials (p, ~/) such tha t  R~.r The homogeneity means tha t  if 

C• acts on F~* by acting on the roots of the polynomials, i.e. by 

X. (a  I . . . . .  an; b 1 . . . . .  bn) : (~a 1 . . . .  , ~nan; ,~b I . . . . .  ,~nbn), 

then Ra.(r.r ) =~tn'R(~.r This implies 

PROPOSITION (6.1). (a) R: F*-~C x is a fibre bundle with non-singular fibres and struc. 

rural group {~ fi C: ~n, = 1}.  

(b) The monodromy T: R- I (1)~R-I (1) ,  i.e. the action o/the generator ol the structural 

group, i8 given by 

(al ..... an; bl ..... bn) -~ (~al ..... ~nan; ~bl ..... ~nbn), 

where ~ is a primitive root of unity of order n ~. 

Because R is a fibration and (as we shall see) induces an isomorphism of fundamental  

groups the fibre R-l(1) can be identified up to homotopy with the universal cover _~*, 

and the action of ~t 1 is given by the monodromy. 

PROPOS~TIO~ (6.2). The monodromy T, :  Hk(R-I(1))~Hk(R-I(1))  is "nilpotent" when 

k < n, in the sense that it preserves a filtration of H,(R-I (1) )  and acts as the identity on the 

associated graded module. 

COROLLARY (6.3) .  Fn* i8 a nilpotent space up to dimension n. 
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Proo/o] (6.2). Because the fibre Y = R - I ( 1 )  is non-singular one can identify H~(Y) 

with H 4n-2-~+opt ~ Y~j. Let  us filter Y by  closed subspaces: 

Y = Y ~  Y~_I~ . . .~ Y1D Y o = ~ ,  

where Ym consists of the rational functions where the denominator has a t  most m distinct 

zeros. This filtration is preserved by the monodromy. Because of the exact triangles 

.._> ~c ... Hept( Ym - Ym-l) ~ H'r + Ym) ~ Hckpt(Ym-*) "* cpt~ ... 

k it will be enough to show tha t  the monodromy acts nilpotently on Hcpt(Ym-Ym-1) for 

each m when k < 3n - 2. 

The space Y n -  Yn-1 is fibred over Cn, the space of distinct n-tuples in C, with fibre 

(C• ~-1. For if p/qE Y ~ -  Yn-1, and q has roots fll . . . .  , fin, then p is completely determined 

by  P(fll) ..... P(fln) in C • which are arbi trary except tha t  their product is R~. q = 1. In  general 

Ym-Ym-1 has one connected component for each partition of n into m pieces, and the 

component corresponding to n = k 1 + ... +km is fibred over Ck, the space of distinct m- 

tuples in C which are unordered but  are labelled with the multiplicities k 1 ..... kin. The 

fibre is Gk, the kernel of the homomorphism (C• • given by (~1, ..., ~m)~->~'~ ' ... ~ .  

For if p/qE Ym - Ym-1 and q(z) =1--[ (z -fl~)~' then p is determined by giving 

p(~0 ,  p'(/~0, ..., p<~'-l'(f~l); ...; p(~m), p'(~m) . . . . .  p<~-l>(flm), 

which are arbi trary except for the constraint R, .q=l-I  p(fl~)k,_ 1. 

Thus Y n -  Yn-1 is the quotient of Zn = (C• n-1 x 0n, where Cn is the space of ordered 

distinct n-tuples in C, by a free action of the symmetric group ~n. (Think of (Cx) n-1 as 

{(~1 ....  , ~n)E (Cx)n: ~1~ ..- ~n = 1}.) The monodromy T is induced by 

~ :  ( $ 1  . . . .  , S n ;  2:1 . . . .  , Zn)i'O'(~n~l . . . . .  ~n$n; ~Zl . . . . .  ~Zn) 

on Z.  (where ~n. = 1), which commutes with the action of ~n. Now k~ acts as the identity on 

H*pt(Z.)--in fact it is homotopic to the identity, though not equivariantly with respect to 

$n--so one can conclude from the spectral sequence 

H*(Sn; H*pt(Z~))=~ H*p t (Y , -  Yn-1) 

tha t  T acts nilpotently on Hcpt(Yn- Y~-I). 

The case of Ym-  Ym-1 for m < n is similar. One considers the connected components 

separately. For the component corresponding to the parti t ion k = (k~, ..., kin)= (U 'a  a' ...) 

the group ~n is replaced by  ~a, • ~ ,  x ... = ~m. The action of T comes from the map  

~: Gk • Ck-~Gk • ~kdefined by s ...,$m;fl~ .... ,tim) =(~'$~ .... ,~n~;~fll ..... $flm),where~ n '= 

1. This will be homotopic to the identity providing (~" ... . .  ~n) is in the identity component 

of Gk. But  Gk is connected--in fact is isomorphic to (C• ~-~ - unless the integers (k~ ..... /r 
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have a common factor. There can be no common factor unless/c~ >/2 for all i, in which ease 

m <~ n/2. But  the complex dimension of Ym is m + n -  1, so Hckpt( Y m -  Ym-1) = 0 if/c > 2m + 

2 n - 2 ,  and if m <. n/2 there is nothing to prove. 

The preceding proof was suggested by Jones 's  proof tha t  g l ( F * ) -  Z. For complete- 

ness, and because it fits in naturally here, I shall give his argument.  

PROPOSITION (6.4). z~I(F*)~Z, and is generated by the loop which moves one zero 

o / a  rational/unction once around one pole. 

Proo/. Let U be the par t  of F* consisting of all rational functions p/q such tha t  q has 

n distinct roots. Because the complement of U in F* is of eodimension 2 (it is an algebraic 

hypersurface) we know tha t  zel(U)-*~1(F* ) is surjective. But  from the preceding discus- 

sion we know tha t  U is fibred over C~ with fibre (C• and the fibration has a cross-section. 

Hence Z~l(U) is the semidirect product B% • Z ", where Br~ =z~l(C~) is the nth braid group, 

which acts on Z n via its homomorphism B r ~ .  Let V be the par t  of U consisting of all 

p/q such tha t  the roots of p are in the upper half-plane and those of q are in the lower half- 

plane. Then z l ( V ) =  Br~. On the other hand the inclusion V-~F* is evidently homotopie 

to a constant. Hence g1(F*) is a quotient of Br~ • Z ~ by a normal subgroup which con- 

tains B%. The biggest such quotient is Z. But  we know tha t  gl(F*) cannot be smaller 

than Z because of the map R: F*-~ C • 

w 7. The real  case 

Let  RF~* denote the rational functions of the form 

zn + ax zn-l + ... +as  
z" + b 1 z "-1 + ... + bn 

with a~ and b~ real. These define maps C U cr tJ cr which are equivariant with respect 

to complex conjugation and preserve R U cr We shall see tha t  the degree of the restriction 

to R (J ~ = S 1 is congruent to n modulo 2 and lies between - n  and n, and tha t  the space 

RF* has n + 1 connected components R * Fn.r indexed by  this degree. This was proved by 

R. Brockett  [2]. More precisely one has 

PROPOSITION (7.1). R * F..r is homeomorphic to the space o/ complex rational/unctions 

Fp, q, where p + q = n and p - q = r. 

Here FT, q is the space of functions of the form I/g, where / and h are monie complex 

polynomials of degrees p and q respectively. 
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P~oo/. If/~R~n$ let ~ =/-1(i), a divisor in C. The function / is completely determined 

by ~: in fact if r is the monic polynomial with ~ as roots then 

Re (~) + Im (~) 
! = ~ e  (~) - I m  (~)" 

The divisor ~ is disjoint from ~ = f - l ( - i ) ,  and hence from the real axis, but is subject to 

no other constraints. Write ~--~+ +~_, where ~+ is in the upper half-plane H+ and ~_ is in 

the lower half-plane. Then (~+, ~_) determines ~, and is an element of Q(H+), which is 

homeomorphie to Q((~). The degree o f / [ S  1 is the winding number of 

~ l ( z )  - i 

about the origin when z runs around the boundary of the upper half-plane, i.e. it is the 

difference between the number of zeros and the number of poles of ( f - i ) / ( f+ i )  in H+, 

i .e. it is r = d e g  (~+)-deg ( ~ _ ) = p - q  if (~+, $_) belongs to Qp.q(H+). 

Now let R * M,. ,  denote the space of equivariant maps S~-~S 2 which have degree n, 

take ~ to 1, and have degree r on S 1. 

PROPOSITION (7.2). The inclusion Rh'*~n.r__~RM*...n.r is a homotopy equivalence up to 

dime~io. �89 I r I)" 

Proof. An equivariant map S ~-~ S 2 is determined by its restriction to the closed upper 

half-plane H+. Because the space of baaed maps St-~S 1 of degree r is contractible, and S 1 

is contractible in S:, the space of maps (H+, S 1)-~ (S ~, S 1) with degree r on S 1 is homof~py 

equivalent to ~2S~. Thus, using (7.1), one knows that  RF*, and a * . Mn.r have the same 

homotopy type up to dimension rain (p, q)= �89  ). To see that  the inclusion actually 

induces this equivalence, consider the homotopy commutative diagram 

R * R * Fn.r ~ Mn.~ 

l l 
Q,.q(H+) ' Mr, 

where M, is the space of maps H+-~81 which take S 1 into 82-{ / ,  - i }  with degree r. The 

left-hand vertical map is that  of (6.1). The right-hand vertical map is restriction, and is a 

homotopy equivalence on to a connected component. The bottom map takes (~x ... .  , ~ ;  

81 ..... ~a) to f, where 
f(z)  - i = ( z -  ~ )  . . .  ( z -  ~) 
l(z) + i ( z - / ~ ) . . .  ( z -  p~)" 
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If p =q then r=O, and this is an equivalence with one component of M r ~ 2 S 2  by Proposi- 

tion (1.1). If p~=q one reduces to the previous case by multiplying by z q-~. That  completes 

the proof. 
w 8. RiemAnn surfaces with singularities 

If X is a compact Riemann surface with singularities (i.e. an algebraic curve with 

singularities) one must distinguish between t h e  holomorphic maps X ~ S  2 and the field 

K x of rational functions on X. For example, let X be the plane cubic curve with a double- 

point at the origin whose equation is y2=x2(x§  Then t = y / x  belongs to Kx (indeed 

K~=C(t), for x = t  2 - 1  and y = t ( t  2 -  1), but t does not define a map X ~ S  2 because it tends 

to the two distinct values _ 1 as one approaches the origin along the two branches of the 

curve. In  fact in general K~ consists precisely of the holomorphie maps ) ~ S  ~, where 1~ 

is the desingularized curve of which X is a quotient. I shall write F , (X)  for the holo- 

morphic maps X-~ S 2 of degree n. 

PROPOSITION (8.1). I /  X is a compact Riemann sur/ace with singularities the inclu- 

sion Fn(X)c  Map, (X; S 2) is a homology equivalence up to dimension , - 2 ( r e - k  § 1), where 

is the numerical genus o / X  (c/. [16] p. 73) and k is the number o/singular points. 

The numerical genus of X is the dimension of Hi(X; O), where O is the sheaf of holo- 

morphie functions on X. 

I think it is worth discussing explicitly the two most obvious particular cases--the 

cubic curve with a double point and the cubic curve with a cusp--before passing to the 

general proof. 

(a) The cubic curve X with a double-point at x o 

X can be obtained from the Riemann sphere S ~ by identifying two distinct points, 

say 0 and ~ .  Let  p: S 2 ~ X  be the quotient map. Then F,(X)=(/eF, (S2): / (0)=/(oo)} ,  

and Map, (X; S ~) = ( / eMap ,  ($2; S~):/(0) =/(co)}. Clearly it is enough to show that  F* ( X) c  

Map* (X; S 2) is an equivalence up to dimension n -  2, where * indicates the maps taking 

x0to  1. 

The elements / of F*(X) correspond to pairs of divisors (~, 7) in X '  = X - x o = S  ~ -  

(0, c~)=r  But conversely if ~= (~1 .... , ~,) and ~ =(ill ,  ..., fin} are in C x then the corre- 

sponding rational function 
/(z)  ( z -  ~1) . . .  ( z -  ~) 

(z - ~ )  . . .  ( z -  ~.) 

such that  ](oo) = 1 satisfies/(0) = 1 if and only if al ~2... a ,  =fl, fl2.., ft,. Thus if j: Q,(C• C• 

is defined by (~, ~)~->(~a~.... g,)(fl~fl2 ... fl,)-~ then F*(X) is the fibre of i at 1 in C • In 

this case the group C • is the "generalised Jacobian" of X. 

5 - 792907 Acta m~hematica 143. Imprim$ le 28 S e p t e m b r e  1979 



66 G. SEGAL 

On the other hand there is a homotopy equivalence ~(X')-~Map* (X; P V P). This is 

not quite a particular case of (4.2), for the open surface X'  now has two ends rather than 

one, but the argument of (4.2) applies without change. (In fact X '  is obtained from an 

open disk by attaching one handle.) 

I t  is easy to see that  there is a homotopy commutative diagram 

Qn(X') ~ Map* (x; P v P) 

,1 1 
ex , Map~' (X; P), 

in which the bottom map is an equivalence: notice tha t  homotopically X is S 2 V S 1. So to 

complete the proof of (8.1) in this case we need to show that  j is a homology fibration up 

to dimension n - 2 ,  and that  Qn(X')-*~n(X') is a homology equivalence up to the same 

dimension. 

(b) The cubic curve X with a cua~ at :v o 

This case is easier than the preceding one. Again the desingularization of X is S 2, but  

now the quotient map S~---,X is a homeomorphism. Let  us suppose it takes ~ to %. Then 

Fn(X)c  Mapn (X; S ~) is an Fn(X) ={/eFn(S2):/'(oo) =0). Again it is enough to show that  * * 

equivalence up to dimension n - 2 .  Now X ' =  C, and F*~(X)c Qn(C). On the other hand if 

= {~, ..... ~ }  and ~ = {/~1 ..... fin) are divisors in C then the corresponding rational func- 

tion / satisfies f ( o o ) = 0  if and only if ~1 + ... + ~ =fix + ..- +fin. In this case the generalised 

Jacobian is C, and j: Qn(X')-*C is 

(~, ~ ) ~  ~1 + ... + ~ n - 8 1 -  ... - ~ n .  

But now ~n(X ) -Mapn  (X; S 2) because X is homeomorphic to S 2, and we know al- 

ready that  Qn(X')c{~n(X' ) is an equivalence up to dimension n. So we have only to show 

that  j: Qn(X')-*C is a homology fibration up to dimension n - 2 .  Its fibres are hyperplane 

sections of the complement of the resultant locus in C 2n. 

From the two examples (a) and (b) it is clear how to t reat  the next case. 

(e) A curve X with just one singular point z o 

There is a generalised Jacobian J which is the quotient of the dual of the ~-dimen- 

sional complex vector space of regular differentials on X by the lattice Hx(X'; Z) (cf. [16] 

p. 108). F*n(X) is the fibre of j: Qn(X')-,J at identity. On the other hand~(X')~-Map* (X; 

P V P) by the argument of (4.2). 

The space Mal~ (X; P) is homotopically an abelian group, and 7~ Map~ (X; P) 

/~- l (X;  P)=/~c~(X') .  Thus it is a torus with fundamental group 1 , Hopt(X ), which is 
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canonically isomorphic to HI(X' ) by Poincar$ duality. So there is a homotopy equivalence 

D: J-~Map~ (X; P), and, just as in w 4 a homotopy commutative diagram 

Qn(X') , Map~* (X; P V P) 

;1 1 
J D ' Map* (X;P). 

The whole proof will proceed just as in w 4 if one proves the two stability theorems: 

(i) Qn(X')~n(X'  ) is a homology equivalence up to dimension n-2zc,  and 

(if) i: Qn(X')-*J is a homology fibration up to dimension n-2z~. 

These results in turn are proved as in w 5. The only new ingredient needed is the fact 

that  the n-fold symmetric product An(X') is a fibre bundle over J with fibre C n-~, providing 

n>~2zr. This follows essentially from the Riemann-Roch theorem for singular curves 

([16] (p. 80)) in the same way that  (4.3) (e) follows from the usual Riemann-Roeh theorem, 

for again An(X')---An(X)- An_l(X). 

(d) The general case 

I t  turns out that  this does not now need anything new. Let S be the set of singular 

points of X, and define ~7 =X/S, a curve with just one singular point which has numerical 

genus ~z- k + 1. We shall prove 

PROPOSITION (8.2). The map e: Fn(X)--*(82) s which assigns to a/unction its value 

on the set S is a homology fibration up to dimension n ' - - n - 2 ( z e - k  + 1), where k=card  (S). 

This implies the desired result (8.1), because the fibre of e at (1, 1 ..... 1) is F,*(X), 

M * which coincides up to dimension n' with apn (il~; 83) by the result of case (c); while 

Map~ ()~; S 3) is the fibre of the evaluation map Mapn (X; 82)~(82) s. 

Proof of (8.2). Let F~(X) denote the holomorphic maps X-~82 which have neither a 

zero nor a pole in B. I t  is enough to prove tha t  the restriction 

e: F*. (X)  -* (C• s 

is a homology fibration up to dimension n', for the translates of (CX) s by SL2(C ) form an 

open covering of ($2) s. 

Let O f be the generalized Jacobian of X. If  X' = X - S  the fibre of i: Qn(X') -+J is the 

space F,*(X). Let p: ~ - ~ X  be the desingularization of X, and ~ =p-a(8). There is an exact 

sequence of groups 
0-~ K-* of-~ J -+  0, 

where J is the Jacobian of ~ .  The space ~-i(K) can be identified with F~(~)/C x, where 

F~(i~) denotes the rational functions on ~ which have neither zeros nor poles on ~, and 
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the composite map F~(~)-~j-I(K)~K measures the obstruction to such a function's  

belonging to F~*(X). From [16] we know tha t  K is a quotient-group of 

( l ]  K,)/Cx, 
se,~ 

where K8 is the group of k,-jets of maps ~ - *  C x for some integers k s. But  the space Ft,(X)c 

F~(~) is defined by a condition on the same jets. In  fact there is an embedding (CX)Z/CX-~K 

such that  Ft~(X)/C x is precisely j-l((CX)S/CX). Obviously it is enough to show tha t  

j: F~(X)/C x ~ (CX)Z/C x is a homology fibration up to dimension n'. But this map is just a re- 

striction of j: Q~(X')-~], for which the property is known; and it follows from Propositions 

5 and 6 of [12] tha t  a homology fibration whose base is a manifold remains one when it is 

restricted to a submanifold of the base. 

Remark. I t  is worth emphasizing tha t  the proof of (8.2) did not use the fact tha t  S 

was the set of singular points of X. I t  holds, for example, if X is non-singular and S is an 

arbi trary finite subset of X. This is an interesting strengthening of the classical lemma on 

the independence of valuations. 

Appendix to w 5. The homological stability of configuration spaces 

The argument  used in w 5 was invented by Arnol'd [1] to prove the stability of the 

homology of the braid groups. I t  applies more generally to the configuration spaces Cn(M) 

of unordered n-tuples of distinct points of an arbi trary open manifold M, as I shall now 

explain. But  Arnol 'd 's argument  in [1] is more complicated than the following version, 

and seems to involve considerably more ingredients. As I understand it, the essential 

point is to reduce the problem for configuration spaces to the analogous one for the sym- 

metric products An(M). The lat ter  problem was trivial in Arnol 'd 's  case, as An(C)-~C n. 

But  in any case An(M) depends only on the (proper) homotopy type of M, so it is more 

accessible than Cn(M). 
We define a map Cn(M)~Cn+I(M) by adding a point to the configuration in a standard 

way "near infinity". (Up to homotopy there is one such map for each end of M. Of course 

we are assuming M is connected.) 

PROPOSITION (A.1). Cn(M)~Cn+I(M) is a homology equivalence up to dimension 

d, = [n/2]. 

From now on I shall write Cn for Cn(M). The argument depends on Poincar6 duality: 

Cn is a manifold, but it is orientable only if M is orientable and even-dimensional (or 
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dim (M)= 1). Proposition (A.1) is true in all cases, but  the proof is much more straight- 

forward when the Ca are orientable, so I shall assume tha t  a t  first, and shall indicate a t  the 

end how to t reat  the general case. 

The map C ~ C n + t  extends to an open embedding R q x C~-~Cn+ t, where q is the dimen- 

sion of M. By duality (A.1) is equivalent to 

(*)~: Rq• Cn-->Cn+ 1 is a compact cohomology equivalence above dimension (n+  1 ) q - d n .  

(This means of course tha t  the map induces an isomorphism of H~cpt when i > (n + 1) q - dn, 

and a surjection when i -- (n + 1)q-tin.) 

Arnol'd introduces the following filtration of the n-fold symmetric product An of M. 

Any SEAn can be written uniquely in the form ~ = 2 ~  +~, where the points in ~ all have 

multiplicity 1. Then 

A n = An.0~ A~.I -~ A n , ~  ..., 

where An.k consists of the divisors $=2~/+~ with deg (~)>~k. Of course An.k=O if 2 k > n .  

We have A , , . ~ -  An.~+I = A~ • Cn_~. 

The exact sequences corresponding to the cofibrations 

(R q • A n , k + , )  + "~ (R q • An.k) + --* (R q x A~ x Cn_2k) + 

and 
An+l.k+l A~+l.k (AnxC~_~+l)+ 

show, by downwards induction on/c, tha t  if (*)m holds for m < n  then 

(t)n.k: Rq • is a compact 

q(n - 2k + 1) - d~_2~ = (n + 1) q - dn 

holds providing k > 0. 

But  in view of the diagram 

(R  ~ x Am) + 

l + 
Aa+l 

cohomology equivalence above dimension qk + 

, ( R  q x Ca)  + , S ( R  ~ x A , . 1 )  + 

T l + + 
' ( ~ a + l - -  " S ( A n + I . 1 )  

we find (t)n,1 ~ (*), if the result corresponding to (A.1) holds for the symmetric products, 

i.e. if we prove 

PROPOSITION (A.2). R ~ x A, '~An+1 is a compact cohomology equivalence above dimen- 

sion (n + 1)q - d  n. 

Proo/. Here the assertion involves only the homotopy-type of M +, for An(M)+= 

A~(M+)/An_I(M+ ). There is clearly no loss of generality in assuming tha t  M is the interior 

of a compact manifold with boundary. In  tha t  ease M + can be obtained by attaching a 
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q-cell to a compact space M~ of dimension q - 1 .  (M 0 is a closed set of M.) We shall in- 

troduce a new filtration of A n =An(M): 

A ,  = A o . . .  A ;  +1 = 

where A~affi{~EA, �9 deg (~ I~ M0) >~k}. 

Then ~ ~§ A n -  Am = Ak(Mo) • An_k(U), where U = M -  M 0 ~ R q. 

The stabilization map R q • A~-~An+I takes R q • A~ into A~+I. If we assume 

(*) R q x Am(U)--~ Am+l(U) is a compact cohomology equivalence above dimension (m + 1 ) q -  

din, for all m 
/~ k + l  k A k + l  then Rq• ( A n - A m ) ~ A n + l - - ~ . + l  will be a compact cohomology equivalence above 

dimension 
k ( q -  1) + ( n -  k + 1)q-dn_~ = (n + 1 ) q - k - d n _  k <~ (n + 1 ) q - d , .  

This will be true for all k, so the desired result (A.2) follows at once. I t  remains to justify 

the assumption (*), i.e. to prove the following particular case of (A.2): 

PROPOSITIOn (A.3). R ~ x A,(R~)-~An+I(R q) is a compact cohomology equivalence above 

diraension (n + l ) q - d , ,  when q is even. 

Proo[. I do not know a "geometrical" proof of this, but  as the cohomology H*vt(An(Rq)) 
has been calculated by Nakaoka [13] the result can be checked directly. Nakaoka's theorem 

seems to me very beautiful, so I shall explain it briefly. 

We write An =An(Rq). Notice that  A , = A . ( S  q) -An_t(Sq). NOW the infinite symmetric 

product Aoo(S q) is an Eflenberg-MacLane space K(Z, q). Its filtration by the An(S q) splits 

it homologically (by the argument given at the end of w 4), i.e. 

H*(K(Z, q)) ~ * ffi | Hopt(A,) 
n~O 

canonically as rings. The multiplication on the right is given by the transfer H*pt(An • Am)-~ 

Hopt(An+~). 

The map of (A.3) can be identified with the multiplication It~"pt(An)~H'~q(An+x) by 

the generator of H~pt(Ax) in this ring. I t  is enough to prove the assertion with coefficients 

in every prime field Fp. Let  us take the case p =2. Then it is well-known that  H*(K(Z, q)) 

is a polynomial algebra on certain generators ~ql'Sql' ... Sqtkeq, where eq is the fundamental 

class, and 
i~ < ij+l +ij+2 + ... +i~ +q 

for each j. Nakaoka proves that  this generator lies in H*pt(An) where n =2 k. In particular 

eq is the generator of H*pt(A1), and is a polynomial generator. Furthermore the dimension 

of any polynomial generator lying in tt*cpt(A,), if n =2 k, is at  most 

q + ( q -  I) + 2 ( q -  1) + ... + 2~-t(q- 1) = n ( q -  1) + 1. 
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To prove (A.3) we must show that  any element of H~t(An+x) is divisible by ee if 

m>~ (n+l):t-dn. But  if a monomial in H~*~t(An+~) is a product of generators coming from 

A~, .4 . . . . . . .  An,, where n x +n~ + ... + n , - - n  + 1, then its dimension is at most 

m - - ~  (n~(q--1)+l) = ( n + l ) q - ( n + l - r ) .  

If m>~(n+l)q-dn then r>~n+l-dn. But if eq is not a factor then all n~ are >/2, so r~< 

[(n + 1 )/2]. Then dn >~ n + 1 - [(n + 1)/2], a contradiction�9 

The argument for the other primes is exactly similar. 

The proof is now complete when M is even-dimensional and orientable. If it is even- 

dimensional but  not orientable one does not need to make much change. Poincar$ duality 

tells one that  H~(Cn)'~H~(Cn; On), where On is the orientation bundle of Cn. But  On 

extends to a bundle on An, and if m<~n the bundle O~ on AmcAn is the restriction of On. 
So one can carry through the whole preceding argument using twisted coefficients. 

If M is odd-dimensional, however, the orientation bundle of Cn does not extend to A,,  

and one needs a new device. I t  suffices to consider the cohomology with coefficients in F~ 

where p is odd, for no questions of orientability or even-dimensionality arise if p - 2 .  We 

let X,  denote the quotient of the product M n by the alternating group on n letters, and 

let ~n denote the double covering of Cn contained in ~ , .  The spaces . ~  and Cn have obvious 

involutions, and Poincar~ duality asserts tha t  H.(Cn)~H*~t(~)o~a, where the subscript 

"odd"  indicates the - 1  eigenspace of the involution. We write ~n.~ = ~ - ~ n .  There is an 

exact triangle 

. . . .  Hcnt(~n)oad , Hc~t(.2~n)oad /-/cpt(~n. 1)odd . . . .  

�9 . * ~ ~ H *  But ~ ,  1=An 1, so the involution acts trivially on it, and Hc~t( n)od~ = cpt(~n)odd. 

We reduce the stability of Hcpt(.~n(M))o~d to that  of H*~t(~n(Rq))odd by writing M = 

M 0 O U as above. I t  is not hard to see that,  in obvious notation, 

H ,  ~#k ~Tk+l~ ,~, * 

I t  remains to prove the analogue of (A.3). I t  turns out tha t  (~ n~O Hc*pt(Xn(Rq))odd, al- 

though it can no longer be interpreted as the cohomology of a space, forms a ring very 

similar in structure to ~ ~0  H*Dt(An(Rq)) when q is even. In particular the generator e~ 

of H*pt(R q) =H*pt(Al(Rq))odd is, although odd-dimensional, a polynomial generator, and 

the other generators are obtained by applying "twisted" Steenrod operations to e~. So 

the argument runs as before. Of course in this case it actually determines the homology 

of the configuration spaces completely: 
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PROPOSlTIOX (A.4). I / q  i8 odd then the Pontrjagin ring ~n>~o H.(Cn(Rq); F~) is the 

/tee anticommutative algebra on a /amily o/ generator8 {Q~eo} , where the multi-index J =  

( ] i , . - -  •) aatis/ies 
]~ =- 0 or - 1 modulo 2p - 2, 

it <~ Pie+l, 
i :  > ( p - 1 ) ( j 2 +  ... + s  

s ~< (p--  1)(n--  1). 

The element Q~e o belongs to  HIjI(C~), where [g] = J l §  ... +Jk. This result is well- 

known to experts: el. [3]. 
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