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0. Introduction 

In his classical paper [11] (1927) Marcel Riesz proved a theorem on linear operators 

mapping Lp spaces on one measure space onto Lq spaces on another measure space. In 

the case when the underlying measure spaces are / ini te  sets it can be stated as follows. 

Let T be a linear operator mapping /unctions on one /inite set onto /unctions on another 

/inite set (in other words: an n • m matrix) and denote by M~q the norm o/ T considered a8 an 

operator T: Lp"+ iq where p, qfi[1, c~], p<~q. Then log M~q is a convex/unction o~ the "pair 

(l/p, l/q). Several years later his student Olof Thorin [14] (compare also [15]) found a 

very nice proof based on function theory (three line theorem of I)oetch). I t  works in the 

complex ease only but removes the restriction p ~<q. Accordingly the theorem is now 

known as the Riesz-Thorin theorem. I t  has become a standard tool in many branches of 

analysis and it has been generalized in many directions (see e.g. [17], chap. 12). The current 

text-books always give Thorin's proof and Riesz's original proof has fallen into oblivion. 

The purpose of this paper is to reinterpret Riesz's proof in the light of the theory of 

interpolation spaces. 

To show how this is done, we shall first sketch Riesz's proof. Putting M0=Mp,.q,, 

MI=M~,.q, and M=M~.q,  where 1/p=l/pe=(1-O)/po+O]pl and analogously for q, it 

suffices to show that  M<~M~-~ for some 0e(0, 1). Riesz does this by choosing aEL~, 

and fleLq. ( l /q+ 1/q'= 1) with unit norms such that  M =<Ta, fl> and combines this choice 

with suitable HSlder inequalities. (Since we are presently dealing with/ ini te  dimensional 

spaces, the question of existence of a and fl does not cause any difficulty. Elements of dual 

spaces we usually denote by Greek letters.) The details can be arranged as follows. By 

Lagrange multipliers, say, we find Ta = M grad [lflll q' and Ttfl = M grad I la l Iv so that  in par- 
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ticular II T~II~ = II r~flll,' = M ,  where I lah = 11~11~ 
Dr.v,: L r  v and Dq=DL~: Lq~ Lr  where 

D,.~x = �89 grad limitS.(= II~IIW I ~1"-' sgn ~) 

and analogously for Dqb, we can rewrite this as 

etc. Introducing the duality maps De = 

Ma = D~,. Ttfl, Mfl = Dq Ta. (o.]) 

The H61der inequalities in question can be stated as 

0/(1-D) O~ (1-20)/(1-0) O~ < 1 

(1-0)/0 (20-1)/0 1 IIDqbll~;-< Ilbllo, Ilbll~ , - < o. q 

(0.2) 

A straightforward verification reveals that  if Po ~< qe, Pl ~ ql then there exists indeed a 0 

such that  1/q~<0~l/p so that  both inequalities (0.2) are applicable. Take now ~=  Ttfl, 

b = T a  in (0.2) and use (0.1). The result is the two inequalities 

M1 ~176 < M; llPlf~0,~ M . - 1  , 
1 - 0  1 - 0  1 - 2 0  M~ Mo Ilall.. M 

Forming their product, the desired inequality M~<M01-~ follows. 

The idea of this paper is now to use inequalities like (0.2) to associate with each 

Banach couple ~=(A0 ,  A1) spaces R~(z~) and R0(z[ ). In this way one gets two new 

interpolation methods which we jointly refer to as the Riesz method. Since we now want to 

deal with infinite dimensional spaces certain technical difficulties arise (connected with 

the existence of a and ~ in the above proof), which we have not entirely overcome. 

Under suitable additional assumptions we can, however, prove that  if ~ and B are two 

Banach couples and T: ~I-~/~ a bounded linear map then T: R~(.~)-~ R0(/~ ). In particular 

if we here t a k e / I  = (L,,, Lp,), B = (Lq,, Lq,) (the underlying measure spaces are now general) 

we have L ~  zK~(.~) and R0(/~)~L~ so formally we get back Riesz's theorem. 

Rather  surprisingly, the Riesz method in turn is related to a new method (the method 

o/quadratic means) recently discovered by Pusz-Woronowicz [10], and by Uhlmann [16], 

in the context of Quantum Theory, and studied in some detail in an unfortunately un- 

published preprint by Simon [12], and by Grahame Bennett  [1]. On the other hand the 

latter [2] has also been able to extend the Riesz-Thorin theorem to the case when la < 0 

(with a convenient interpretation). A closer examination quickly reveals that  indeed 

Riesz's proof too yields a result of the Bennett  type. 
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Our investigation is organized as follows. 

In  section 1 we define the method Ro and develop some of its very simplest properties. 

In  section 2 we do  the same for the dual method R~. 

In  section 3 we put  together the results of section 1 and section 2 and establish a 

general interpolation theorem (the one just described) which might be thought  of as an 

abstract  version of Riesz's theorem. (For the proof we need a slight extension of a 

theorem of Lindenstrauss [7] which we have deferred to an appendix.) 

In  section 4 we give some concrete illustrations of the previous developments. As we 

have already seen we get of course back Riesz's theorem but it is perhaps again a surprise 

tha t  the same proof lends itself to a derivation of a version of Marcinkiewicz's interpolation 

theorem [8]. Another two cases which we can cover are interpolation with change of 

measure (Stein-Weiss [13]) and finally interpolation between a space and its dual 

(Girardeau [4]). 

In  section 5 we quickly develop the theory of the method of quadratic means, mainly 

following [12] and [1], and make a comparison with the Riesz method. 

In  section 6 we make an a t t empt  to merge Bennett ' s  point of view (interpolation 

between a space and "the dual of a space which does not exist" [2]) with the theory of 

K- and J-spaces (see [3]), introducing new functionals called H and I .  (In another 

appendix we outline also an abstract  formulation of Bennett ' s  theorem [2].) 

Finally, section 7 is devoted to various comments on the previous discussion. 

Wha t  we do in the two appendices we have just told. 

I t  is assumed tha t  the reader has some familiarity with the theory of interpolation 

spaces. Regarding terminology we have tried as far as practicable to follow [3]. For the 

reader 's  benefit we recall here briefly some of the basic definitions. 

By a Banach couple ~ = (A0, A1) we mean two Banach spaces which are continuously 

imbedded in some Hausdorff topological vector space (usually unspecified). We put  

A = A(~) = A 0 fl A 1 (intersection) and ~ = ~(~I) = A 0 + A 1 (hull). In  A and ~ respectively 

we have the following two one-parameter families of norms (with rE(0, oo)): 

J(t, = m a x  tll ll ,l, 

and 

K(t,a)= inf (ll oll o+tllaltl ,l, ae . 
a - t t o + a l  

With the aid of J we can define the J-spaces ~or and with the aid of K the K-spaces 

-~o~:E. In  particular by definition a E.~0q: x if and only if a fi Z and 

dt\ l/~ 
( f:( t-~ < oo. 
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Here 0G(0, 1), qE(0, c~]. These are examples of interpolation spaces. One can show that  

they actually coincide up to (quasi-)norm (equivalence theorem) so we can drop the final 

subscripts writing simply -~0a. Besides the "real" spaces -40q we have also the "complex" 

spaces [.~]0. :For more details see [3]. 

Some auxiliary notation (which we have already made use of above): If P0, Pl are 

real numbers~=0 and 0E(0, 1) we define Pe by the formula I/pe=(1-O)/Po-t-O/p 1. This 

notation will appear in section 4 and section 5 chiefly. We likewise define p '  (the conjugate 

exponent) by 1]p+l/p'=l. T t denotes the transpose of the operator T, A' the dual of 

the space .4. 

Acknowledgement. I would like to thank Barry Simon and Grahame Bennett  for 

interesting correspondence, and for sending me their unpublished manuscripts. Without 

their interference this paper would never have been written. I also express my gratitude 

to the editors for suggesting several improvements of the original version, including a 

change of title. 

1. The  spaces Ro 

Consider a Banach couple ,~=(A0, .41). For simplicity I assume that  A = A ( ~ )  is 

dense in both A 0 and A 1 so that  one can speak of the dual couple ,~'= (A~, A~). Consider 

pairs (Y, v) where Y is a Banach space and v: A-~ y a continuous linear map. Let  Dr  be the 

duality map associated with Y, i.e. Dr  is a set-valued function defined on Y taking as 

values subsets of Y' such that  B E Dry if and only if 

<v,  y >  = Ilyll  = Ilnll ,. 

I t  is clear that  Dry is convex and non-empty. (Moreover we have 

On, i.e. ~/-- �89 grad I ly l IL  

if the norm in Y is differentiable so that  Dr  is single-valued in the latter case. We then 

write abusively ~ = Dry when B E Dry.) I say that  ( Y, v) satisfies the condition (Re), where 

0E(0, 1), if for every aEA holds vt(Drv(a))cA~ and 

(1 O)/O (20 1)/0 
Ilall .- I1 ( )11  - i f  ~EDyv(a). (1.1) 

(Again if the norm in Y is differentiable (1.1) simply means that  

(1 0)10 (20 1)10 
< Ilall . - II ( )ll  - �9 
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In praxis v is often an injection and A a dense subspace of Y.) Now define a norm denoted 

by Ilall~o,X,, or simply IlalI~0, by setting 

IialI~0= snp II~(a)U~ (1.2) 
(Y.v) 

where ( Y, v) runs through all pairs ( Y, v) satisfying the condition (Ro). The completion of 

in the norm Ilall~0 I denote by Ro(~ ), or simply Ro. 
We begin by comparing Ro(~) with the K- and the J-method. 

PROPOSITIO~ 1.1. We have the inequalities 

IlaU~0 ~< t-~ t, a) 

K(t, a) < tOllall~ o 

It [ollows that ZtolC Ro~ ~or 

i[ aEA, (1.3) 

i/aERo. (1.4) 

Proo[. Since 

Ilv(a)ll~ = <7, ~(a)> = <r a> < I1r Ilall~, ~ a~A~, ~EDrv(a ) 

(1.1) gives 

o r  

(1 0)10 (20 1)lO I[v(a)ll~< IIalh.- Ilall~,llv(a)]l,  - 

IIv(a)llr~ Ilallh: fllall~= 

(provided v(a)~=0; if v(a)=O there is nothing to prove). Therefore by (1.2) 

Ilall~o < ]laJI~: ~ Ilall~, < t-~ t, a) 
proving (1.3). 

(1.4): Take Y = R  and v(a)=<cc, a> where aEA(~') .  Then, identifying Y' and R, 

~eDry  if and only if ~ = y  and vt(~)=~a. Thus (1.1) means that  

(1 0)10 (20 1)/0 I<~,a>lll~lI~:<~ Ilgl~; t<~,a>I - 
o r  

Ilgl~:l<~, a>l '-~-< Ilal12 ~ 

This clearly implies 

11~115o ~11~11~: ~ 1. 

On the other hand the latter inequality is fulfilled if toJ(t -1, a )~  1. Since K and J are 

dual norms this gives (1.4). [] 

Next we come to the interpolation property. 
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PROPOSITION 1.2. R o is an interpolation space o] exponent O. 

Proo]. Given two Banach couples .~ and /~ and a bounded linear operator T: .~-~/] 

we have to show that  T: Ro(.~)~Ro(B) with M<M~-~ (Here M0=HT[[Ao.S 0, etc.) 

Let (Y, v) be any pair satisfying the condition (Ro) with respect to /~, i.e. 

]]vt(~7)]]n; ~< ]]bJJ~-~176176176 if ~leDrv(b). 

We apply this with b replaced by Ta 

On the other hand 

II T*v'(,7)[[,: <. MIlI,,*(~)H,,,. 

With no loss of generality we may assume that  M~-~ I t  then follows that  

(Y, roT) satisfies the condition (Re) with respect to .~. Thus we have by (1.2) 

II"(Ta)ll ~ < Ilall,0,~,. 

But since (Y, v) satisfies the condition (Ro) this inequality combined with (1.2) once 

more gives 

IITall.0(", < Ilall.0,~, or M ~  1. [] 

2. The spaces R~ 

Let again A be a Banach couple, with A-~A(,~) dense in both A 0 and A1, and consider 

now pairs (X, u) where X is a reflexive Banach space and u: X - ~  --~(~)  a continuous 

linear map. I say tha t  (X, u) satisfies the condition (R~), where 0s 1), if for every 

~E(Z(.~))'~A(.~') holds u(Dx.ut(o~))CAo and 

0/(1-0) . t l ~  (1-20)/(1-0) Ilu(x)ll~.< ~ ,  , , ~ , ~ , , , , .  if xeDx,,,'(~,). (2.1) 

Now let IlallR$,~, or simply ][a][.~ be the greatest norm on A(,~) which is ~< all pseudo- 
norms of the type 

I(a, ~>t sup 
o,,,~(~., Ilu'(~)ll,. 

where (X, u) is a pair satisfying the condition (R$), i.e. we have 

IlallR~-ira Y~ sup I<a,,~>l (2.2) 
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where the infimum is taken over all families (a~)~az and (Xt, u~)~ez such tha t  s---~ a~ and 

(X~, u~) satisfies the condition (R~). The completion of A(.~) in the norm Ha[[R~ I denote 

by R~(~I) or simply R~. 

Parallel to Proposition 1.1 we now have: 

PROPOSITION 2.1. We have the inequalities 

<t-~ t, a) if aGA, (2.3) 

It /ollows that _~oi c R~ c -~o~. 

Proo]. (2.4): We have the formula 

K(t, a) = sup /1 " 

~ Jt~, ~ ) 

Now repetition of the argument of the proof of (1.3) gives 

ff (X, u) satisfies the condition (R0). Therefore 

t-~ a) < sup I(a, ~>l ll '( )lix. 

from which (2.4) follows from the definition of HaHsp 

(2.3): Now we take X = R  and u(x)=:ca with aeh .  An argument similar to the one 

of the proof of (1.4) shows that  ff t-oJ(t, a) ~< 1 then (X, u) satisfies the condition (R~). Since 

obviously ut(~)ffi;~, a) this gives in the said hypothesis Ilalla$< 1. [] 

We further have corresponding to 1.2. 

PROPOSITION 2.2. R~ is an interpolation space o/ exponent O. 

Proof. By a routine argument similar to the one of the proof of Proposition 1.2. []  

B. The main result 

The purpose of this section is to establish the following result, which thus may be 

conceived as an abstract generalization of M. Riesz's theorem. I t  is the main result of this 

paper. 
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THEOREM 3.1. Let ~ and B be two Banach couples and T: .~ ~ B a bounded linear map. 

Assume that: (*) there exists a sequence (T.) o/ bounded linear maps Tn: ~ ~ B such that 

Tn: Z(.~)~A(/~) which approximates T in the sense that 

lira I[Tna- Tal[a(~ }=0 i /aeA(. ,~) (3.1) 
n--~oo 

and moreover holds 

lim llTnII~.,s~ = ]]TI]a~176 (3.2) 
n--~oo 

lim IITn]IA,.81 = ]]TIIAI, B ~. 
n-~oo 

Then holds T: R~(fl t)~Ro(B ) together with the convexity M <~M~-6M~ (where again M0= 

li TII~.,B. etc.) 

Proo/. I t  suffices to prove the theorem under the additional hypothesis that  

T: Z(zI)-+A(/~). For if the theorem is true in that  special case we can apply it to each of 

the operators T~. The convexity inequality together with (3.2)then gives for any s > 0  

and large n 

IITna[[no,~, <~ (M~-~ ~ + e)I]alIR~ (~}. 

Again using (3.1) and (1.3) this plainly yields 

HTallno{,} < ,  7.,,,,-o ,Are 

M <~Mo M1. which implies ~-0 0 

Assume thus from now on that  T: Z(~I)-*A(B). 

Let (X, u) be any pair satisfying the condition (R$) with respect to ,~ and similarly 

let (Y, v) be any pair satisfying the condition (Re) with respect to /]. 

We wish to show that  

IlSxl[r<M~-~176 for xeX,  with S = v o T o u .  (3.3) 

Indeed assume that  (3.3) holds true. Obviously we can here replace 

[<x, ~>l 
IIxL= sup I~IIT, 

by 
I<x, u'(~)>l I<u(x), ~>l 

sup ilu,/~)ll~ ' = sup ]lu,/~)l l~ ' 

Thus with a =u(x) (3.3) gives 

II~(Ta)ll~-< Mg-~ sup I<a, ~>1 
Iluq~)ll/ 
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(We notice that  in view of Hahn-Banach if the right hand side is < co then a certainly 

can be represented in this form.) In  view of the definition of the norms IlbllR0(~) and 

Ila[IR~(~ this clearly gives M "  ~xl-0 ~%0 "~. AV./. 0 .~.v~ 1 �9 

Replace now Ao by Ao+e-lA1, A 1 by e-IAoq-A1,  B o by BoNs 1, B 1 by sBoN B 1. 

We are then in a situation when A o =A1 =Z(~) ,  B o = B 1 =A(/~), algebraically. I t  suffices 

to prove (3.3) in the latter case. Indeed (X, u) still satisfies the condition (R~') with respect 

to (A0q-s-lAi, e-IAo+A1) and similarly (Y, v) satisfies the condition (Re) with respect 

to (BoN sB1, eBo~ B1). Moreover we have 

HTHm+~-,A,.son~s, ~< max (HTHm.eo, s[[T][a,.s,, ~HT][Ao.B,, e2[[TI[A,.S,) 

and a similar estimate with ]1TH~-'Ao+A,.~BonS," We can therefore afterwards safely pass 

to the limit e-+0. 

We can therefore from now on assume that  A 0 = A  1 = Z ( ~ )  = : A, B 0 = B 1 = A(/~)= : B, 

algebraically. 

By the extension of Lindenstrauss's theorem given in Appendix I we can assume that  

S attains its norm. We can find x e X  and ~ e Y '  with I]xHx=ll~llr.=l such that  N =  

( ~ , S x ) = ( S t ~ ,  x) with iV=]IS]Ix, r. We then must have N~TeDrSx , N x e D x S ~ .  Also 

IlSxllr= llS'~ll~.,=~. From (1.1)--applied to the couple B now follows 

Nlle(~)ll~: < IIT(u(~))ll~, -~176 ~-~''~ M'o 1-0)'~ -~176 

and from (2.1) 

NII~(~)II~. < II T'(v'(n))ll(~ -~ I1~'~11~ ,-','~ < ~,o,,,-o, ,,.,,_,,O,,l-O,~v,l-.,,,~-o, X ' ~ l  l i  v ~~llllS] 

We raise the first inequality to power 0 and the second one to power 1 -  0 and multiply 

together. Then results N~M~-~  which is the same as (3.3). [ ]  

From Theorem 3.1 follows at once 

COROLLARY 3.1. Let ~I=/3 and assume that (*) is ]ul/illed with T=id].  Then holds 

~ ( ~ )  = Ro(,I). [ ]  

4. Illustrations 

In this section we will find what the spaces R o and R~ are in several concrete cases. 

1 ~ L~ spaces. This case has essentially already been discussed in the introduction. 

Consider the couple (Lp., Lm). We want to compare Ro(Lp~ , Lm) and L~ where P=Po, 

0E(0, 1). To this end we take Y=L~ and v=id. Then as is well-known 

DLpy = ly[ ~-1 sgn y/HyH~- 2, yELp. 

6 - 792907 Act,, mathematica 143. Imprim6 le 28 Septembre 1979 
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Thus (1.1) becomes 

o r  

Ih,ll(1-O)/O 11.,11(20-1)/0+~-2 

..,,IlylIL~;(~_z~ < y" ~0(1-~ y" L~(~ 

which is H61der's inequality if the exponents are in (0, 1), i.e. we get the condition 

0 >1 lip. Thus we conclude that  

Ro(L~.,L~.)=L~ ~P=Po, 0>1 ]-. (4.1) 
P 

In the same way utilizing (2.1), with X=Lj,, u=id, we find 

L, ct~(L~o,L~,) if p=P0,  0~<-.1 (4.2) 
P 

If  we now apply Theorem 3.1 to the couples (Lro, Lrl ) and (Lqo, Lql)--assumption (*) is 

certainly fulfilled and use (4.1) and (4.2) we get a proof of M. Riesz' theorem; in fact this 

is essentially the original proof (compare the introduction). Notice also that  (4.1) and (4.2) 

put  together yield 

L~ = Ro(Lr~ Lp,) -- R~(Lpo, Lv,) ff P =Po = 1/0. (4.3) 

2 ~ L~q (Lorentz)-spaces. Exact ly  the same calculations can be made for the couple 

(L~~ L~,q,). Of course we won't  get the constant 1 in the inclusions corresponding to 

(4.1) and (4.2), because the constant in the "Lorentz-H61der" inequality is not 1 either. 

Thus Riesz' original proof can indeed be used to prove (a version of) Marcinkiewicz 

theorem [8] too. 

3 ~ Interpolation between a space and its dual. Consider the couple (Z, Z') where Z 

is any reflexive Banach space imbedded as a dense subspace of a Hilbert space H so that  

H can be imbedded into Z'; we thus have the situation Z c H c Z ' .  (Notice the special 

case when Z too is a Hilbert spacel) We take Y = H  and v=id. Now (1.1) with 0=�89 is 

just Hallz <~ ]]allz, thus trivially fulfilled. In the same way taking X = H  and u - - /d  we see 

that  (2.1) too is trivially fulfilled. We conclude that  

H R1/2(Z , Z ' )  = R1/2(Z , ), (4.4) 

which in particular generalizes (4.3) with 0 = lip =�89 Obviously (4.4) corresponds to the 

interpolation theorem of Girardeau [4]. (Girardeau considers general locally convex spaces.) 
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4 ~ Interpolation with change of measure. Let  L~(h) denote L~ with the original 

measure d/~ replaced by hd/2, h a positive #,-measurable weight function; i.e. the norm 

in L~(h) is 

],al,~.(~. ( f  la(u)l~h(u) \~'~ = r  . 

Thus we have 

for the duality 

Notice also that 

D ~ , a ) a =  [a[ ~-1 sgn ah'/llallE~3~) 

<~,a>=f~(u)a(u)~(u). 
(L,,(h))' = L~,,(h') with h' _-hV(~-*~ = h ~'-1. 

Now consider the couple (Lro(ho), L~,(hO) and take first Y = L r ( h )  and v = i d ,  with 0 as in 

1 ~ Then (1.1) becomes 

III [ 11 ~< a (1-O)JO ~ ( p o - 1 ) / O  

This is HSlder's inequality if also 

h = h~ (x - ~176 
Thus we conclude that  

R0(L,.(ho), L~.(h3) = L~(h). 
In  the same way using (2.1) we obtain an inclusion in the opposite sense. We can use this 

to prove the interpolation theorem of Stein-Weiss [13]. We also find 

Lp(h) = Ra(L~,.(ho), L2,,(hO) = R;(L~o(ho), L~,,(h~)) (4.5) 

i f  p = p o  = 1[0 which thus generalizes (4.3). 

5. On QM and QM* 

As already told in the introduction this section mainly reproduces results drawn 

from unpublished work by Simon [12] and Bennett  [1]. 

Let  us return to the situation of section 1. (2[ is thus a Banach couple etc.) We 

now modify the definition of the condition (Re) in the sense that  we restrict Y to be a 

Hilbert space, with scalar product (Y]Y')r or simply (YlY'),  and we further specialize to 

0 = �89 We then get the inequality 

II~'~l~)]],; -< DII,.. (5.1) 
Equivalently 

[ (~(~) [ ~(.')) [ ~ [[. h .  D '  [[~, (5.1') 
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where we of course identify Y and Y'. I f  thus (5.1) holds for any aEA, or (5.1') for any  a, 

a'EA, we say tha t  (Y,v)  satisfies the condition (QM). We now imitate the definition of 

the Riesz method and get the space QM(,~I) or simply QM. 
By a dual procedure (the one of section 2) we get also spaces QM*(.~) or QM*. 
Let us now investigate to what extent the properties of R8 extend to the spaces QM. 
Proposition 1.2 can be generalized so tha t  we have notably .,~i.I~QMc .,,~.~. Here 

the second inclusion follows also from the observation tha t  obviously QM~ R~. (If a pair 

( Y, v) satisfies condition (QM) then it  satisfies a fortiori the condition (R�89 However  as 

to the first inclusion we have a much stronger result, namely 

~t..~ N [ti]+ c QM. (5.2) 

(Notice that  .,~oxC.~ov and A01=[A]0; see [3], p. 44 and p. 102. [-~]0 are the complex 

spaces.) This depends on multi-linear interpolation. To fix the ideas let us here consider 

the real case only. (It  is the complex case tha t  is t reated in [12].) Consider the bilinear 

mapping L: (a, a')~(v(a)[v(a')). Then we have 

L: A o • A 1 -* R,  

L: A 1 • Ao-+ R. 

Interpolation now yields (see [3], p. 76, excercise 5). 

L: (Ao, A1)op • (A1, Ao)o q -~ R, 
1 1 
- + - > / 1 .  ( 5 . 3 )  
P q 

Noticing the symmet ry  (Ao, A1)ov=(A1, Ao)]_o. ~ and taking 0=�89 p = q = 2  we get from 

(5.3) 
{L(a, a')[ < C{[a{Ix+,:[[a'{{z+.: 

which (take a=a' and maximize) gives 

Ilallo~, < CIlall~+.:. 

This proves the par t  of (5.2) we were interested in. We can also prove a result on reitera- 

tion, viz. 

QM(.~oz,, -~-o, ~) : QM(.,t). (5.4) 

Jus t  use (5.3) with general parameters.  Since [~]o= .~o~ we have m particular 

QM([~]0, [2~]1_ #) : QM(.~) 
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which is the case considered in [12]. Finally it is clear tha t  Proposition 1.2 too can be 

generalized: QM is effectively an interpolation space. 

The spaces QM* have analogous properties. Also the proof of Theorem 3.1 gives the 

following generalization of Corollary 3.1: QM*c QM, in the same assumptions on ~ .  

We next consider QM in some concrete cases: 

Examples. 1 ~ L~ spaces. We have (Lp., L~,)~,2 =L~ and [L~0, Lp,]t=L ~ w i t h p  =p~. Thus 

(5.2) gives at  once L~,m~(~.p)~QM(Lpo, L~,). A closer examination reveals tha t  we can 

here replaces c by = .  For 2 ~<p < c~ this was done in [12]. This is very easy. The idea 

is to use for a given the scalar product 

(5.5) 

with HSlder's inequality. We leave the details to the reader. The case l < p < 2  was 

treated by Bennett  [1] with a quite different technique. We offer here a proof more 

along the lines of [12], though valid only when P0 and Pz > 1. I t  is no essential restriction 

to take the measure space to be R* (with d#(t)=t-ldt). Now we use instead of (5.5) the 

scalar product 

C t C t - -  dt 

Since everything is rearrangement invariant we can assume tha t  a is nonincreasing. We 

then have IlallLp~ <~Cllall r which will imply 

IlallL   < CllalloM, 

if we can also show tha t  (5.1') is fulfilled (possibly with a constant.) To this end we first 

prove, using a technique which ought to be familiar to the readers of [3], tha t  

I(yLy')l cllyllL ..llly 

We then again apply (5.3) with general 0 and p=q=2. 
2 ~ Hilbert spaces. I f  A 0 and A 1 are both Hilbert spaces we know tha t  -~j.2 and 

[-~]t too are Hflbert spaces--actual ly they coincide up to equivalence of norm. I t  is easy 

to see tha t  the scalar product on this space fulfills condition (QM). In  view of (5.2) we 

thus get in this case QM=~.a = [-~]~. 
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6. The functionals  I and H 

As was mentionned in the introduction Grahame Bennett  [2] has extended Riesz-  

Thorin to " the  case p <0" .  The precise meaning of this is the following. I f  T is the linear 

operator to be interpolated then the condition T: ~ - ~ L  q with p or q < 0  is interpreted as 

Tt: L q" -~ I_2" provided this is a meaningful s ta tement  which is the case ff p '  and q' are 

both > 0. (Also the author of [2] restricts himself to discrete measures.) In  this way 

Riesz-Thorin gets generalized to the region ~ which is the image of the usual "posit ive" 

quadrant  ~ of the (lip, 1]q)-plane under the map (I/p, 1]q)-~(1/p, 1]q). The proof depends 

on the three line theorem in  conjunction with a certain factorization theorem due to 

Maurey [9]. In  [2] a short direct proof of the special case of Maurey's theorem needed is 

reproduced. 

I t  is not difficult to formalize Bennett 's  argument  [2], although it seems difficult to 

imagine a non-trivial situation other than  the L~-case where one has such a factorization. 

For the reader 's  benefit a brief sketch of this will be given in Appendix I I .  

Here we t ry  instead to establish a connection with the J -  and K-spaces. 

Consider thus the following situation. There is given a quasi-Banach space A 0 and 

another one A~ "which is the dual of a space which need not exist", In  order not to enter 

into too many  technicalities let us only t reat  the / in i te  dimens ional  case: I.e. A 0 is a finite 

dimensional vector space V equipped with a quasi-norm and A~ its (algebraic) dual V* 

equipped with a quasi-norm. 

We now define the /-functional I(t, a) by the formula 

m ,  = sup I[v( )ll 

Here the sup goes Over all pairs (Y, v)--wi th  Y and v as in section 1---subject to the 

following restriction. 

HaHA, <~ ]Iv(a) Ilr, ~ e Drv(a) =~ Hvt(~)HA; <. tllv(a)ll y. (6.1) 

We can then define/-spaces ~0a:z in the obvious way (imitating the construction of the 

J-spaces ~0q:~, [3], p. 42). 

Let us see what this gives in the "classical" case, i.e. A~ is effectively the dual of a 

space A I. (Since we are dealing with the finite dimensional case this means that A I is our 

V equipped with a quasi-norm, in general different from the one defining A0. ) We have 

y> = llyll = II II  (see section 1). This gives 

o r  

[[v(a)[[r < J(t, a) if [[alia o ~< llv(a)llr. 
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Thus l(t, a) <<.J(t, a). But (A o r tA1, id) obviously satisfies (6.1). Therefore we have in fact 

equality. In  the classical case the I-functional coincides with the J-functional. In  particular 
the I-spaces are the same as the J-spaces. 

Returning to the general case we notice tha t  (6.1) is int imately related to (1.1). 

In  fact  it is a kind of limiting case of the latter. We see also tha t  condition (Re) implies tha t  

(Y, tOv) fulfills (5.1). This gives 

t llv(a)llY I(t, a) 
which again implies 

IlallRo( , I 

This again shows, with the same proof as for J-spaces ([3], p. 44), tha t  we have the im- 

bedding ~01:~c Ro(.~ ). 
In  a dual manner  we can define the H-functional. In  the classical case we have again 

K(t, a) =H(t, a) and in the general case the inclusion R ~ ( ~ ) c  ~I0oo:u. Maybe one also has the 

estimate 

H(t, a) ~ min (1, ;) l(s, a) 

(analogous to the one for K and J ;  [3], p. 42) which would imply the imbedding 

~ov:l ~ ~ov:n (half of the usual equivalence theorem; [3], p. 44). Since we are in the finite 

dimensional case in this context means just tha t  we have a "universal" estimate for the 

norms. 

7. Comments 

1 ~ I do not like at  all the ad hor restriction made in section 2 tha t  X should be 

reflexive. Perhaps one should instead take X (as well as Y) finite dimensional. This would 

also avoid the use of Lindenstrauss'  theorem [5]. On the other hand this complicates the 

t reatment  of the examples (section 4). 

2 ~ More generally, when dealing with the Riesz method or the method of quadratic 

means, one could--in the spirit of Bennett 's  paper [2]; see section 6 of the present p a p e r - -  

allow quasi-Banach spaces. I.e. as in section 6 we take one quasi-Banach space A o and 

another one A~ which need not be a dual space. In  particular in the L~ case Riesz' proof 

thus permits to extend his interpolation theorem to the whole region (p ~< q). 

3 ~ The spaces QM can also be defined when both A o and A 1 are quasi-Banach spaces. 

(No need for duals, provided one uses (5.1') rather than  (5.1)I) As a generalization of (5.2) 

one can now prove ~}.rcQM(z~) where r~<l is a number depending on the moduli of 
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concavity (in the sense of Rolewicz; see [5], p. 165) of the spaces involved. On the other 

hand we have in general no inclusion in the opposite sense. Indeed we may  even have 

I[a[lr =O for all aEA; IlalIQ~ need therefore not be a norm, although it is always a semi- 

norm. Take A 0 =Lp., A t =Lr, with 0 <P0, Pl < 1 and the theorem of Day (to the effect tha t  

L'v=O if 0 < p < l ;  see [5], p. 161-162}. 

4 ~ Inequali ty (1.1) can be generalized in the following direction: 

[[vt(~/)ll~; [[vt(~)ll~; ~< Hal[~~ IlaH~, IIv(a)II~r =k-m (7.1) 

where ~, ~t, k, m are ~> 0 with $ +/x = 1. In  this way A 0 and A 1 get treated in a symmetric 

way. However this excludes the generalization of type 2 ~ above. 

5 ~ I have no single example with Ro(~)#:R~(.~). 
6 ~ Perhaps one can prove under not too restrictive assumptions on z[ a duality 

theorem, viz. (Ro(~))' ~ R~(z~'). 
7 ~ The construction leading to the Riesz method and the method of quadratic means 

can be formalized as follows. Let  us imagine tha t  one has for each Banach couple ~ a 

family Y(A) or simply ~ of pairs (Y, v) where Y is a Banach space and v: A(~) - ,  y a 

continuous linear map which depends functorially on ~ in the following sense. I f  T: ~ -+ B 

has norm(s) < 1 and if (Y, v) belongs to ~(B) then (Y, vo T) belongs to Y(~). Then we 

get an interpolation space S~=S~(.~) by taking the completion in the norm 

Ilalls,--- sup IIv(a)lIy, aEA(z~). 
(Y.v)E~ 

As yet  another example of this general construction let us mention the case when 

:~(.~) is the family of pairs (Y, v) such that  

with a fixed number  0fi(0, 1). Indeed in this ease as is readily seen S~(~)=.,~or As is 

well-known it is this inequality which has been the point of departure of much of the 

early work of S. G. Krein and his associates; see e.g. [6]. 

Appendix I. On operators which attain their norm 

Let X, Y, A, B be Banach spaces and u: X-*A and v: B-~ Y bounded linear operators. 

With every bounded linear operator T: A-~ B we can then associate the bounded linear 

operator S: X-~ Y defined by S = vo To u. Here is the relevant commutat ive diagram: 
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T 
A , B  

X , Y  

Assume that  X is reflexive. Then we have the following result which is an immediate 

extension of a theorem by Lindenstrauss [7] (the case X = A ,  Y = B ,  u=id~, v=idr): 

THEOREM. Every bounded linear operator T: A ~ B can be approximated (in L(A, B)) 

by bounded linear operators ~: A ~ B  such that the corresponding operator ~: X ~  Y attains 

its norm (in L(X, Y)). 

For the reader's benefit we reproduce here the essentials of the 

Proo/. I t  suffices to find for every e>0  an operator s such that  (i) [[T-~[[A.s<e 

and (if) [~/j(Sxk) ] > ]lSllx. r - e ,  for k ~ j  where (ej) is a sequence of positive numbers tending 

to 0 and (xj) and (~?j) sequences in X and Y' respectively with [[xj[[x= [[~j][ r.= 1. Indeed 

since X is reflexive (if) entails that  $ attains its norm ([7], Lemma 1). Again to fulfill (if) 

it suffices to find a sequence of operators (Tj) with ~ = l i m  Tj such that  (if') 

]~j(S,xk) ] > ]]S,l[x.r-e , for k>~j. We define T, recursively by 

T~+,a = Tja +e,~j(v(Tja)) T,(u(x,)), a s A (1) 

with T 1 = T and set ~ = l i m j ~  Tj (if the limit exists). This is indeed the case under the 

restriction IIx,llx= II~?,Ur.~l provided e, decreases sufficiently fast and then obviously 

(i) too can be made to be true. (1) gives 

Sj+~x = S jx  +ef lb(S jx)S jx  . x e X .  (2) 

Therefore we get by the triangle inequality taking x =xk 

~,l~,ls,~k) l lls,II + IIs,II >> IIS,§ >~ llSka~ll- LIs~- s,~lll >~ ILs,§ �89 J> ~, (3) 

provided S k is made to converge sufficiently fast, and also IIS~II ~ IIS, II if j > k. Now select 

x, and 7, such that  ~7~(S,x,)= US,x,[[, which is possible in view of Hahn-Banaeh, and 

IIsJ~,ll sufficiently close to IISjlI. Then by taking x=xj  we get 

IIS,+~ll >~ IIS,+,~ll = IIS,~,ll (1 +~jilSj~,ll)>~ IIS, ll +~,llS, l l -  �89 (4) 
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which in particular entails IlS,+dl >1 IIS,1l. (3) and (4) together give 

which again gives (ii'). [] 

Appendix II. Abstract version o| Bennett's theorem 

Let A 0 and A~ be as in section 6. Let  B0 and B~ be another two spaces in a similar 

relation (i.e. B 1 is a finite dimensional vector space W equipped with a quasi-norm and 

B~ is the dual W* equipped with a quasi-norm). Let T be a linear operator with T: Ao-~B o 

and Tt: B~-~ A~. We wish to establish a result of the type T: A - ,  B along with the inequality 

M <~M~-~ where 

Mo=[]TItA~ M1=llTlla,.v,=]lTtll.;,ai, M=IITIla,B. 

Here A is V equipped with a quasi-norm (other than the one for Ao) and B is W equipped 

with a quasi-norm (other than the one for B0). 

We assume tha t  1 ~ there exists for each bE W a linear co: B ~ B  o such tha t  

Ilbll. = II~(b)ll.., II,o"%... < 

and tha t  2 ~ there exist linear operators w: AI-~A and S: A-~B I such tha t  

T = Sow, S wO/(1-o) (1-o)/o ~< A.Ba A. Ao ~ MI, 

with some interpretation of the fractional powers of ~ and w. (In the concrete case of 

L~ spaces 1 ~ is just HOlder's inequality while as 2 ~ is Maurey's theorem [9].) We con- 

sider the function 

We also assume tha t  the three line theorem applies to F. Obviously we have 

~(0) = II Tail~, 

~ (0  + it) ~ li Tw"'-"~lt . .  ~< M011w~ II~liA. 

~(X + i t ) <  ll~"'Sall~. = llSlIA.., ll~llA 

so the three line theorem gives (use 2 ~ once morel) 

][ Tall-  ~< m~-oM~ HaHa 

thus establishing our goal. 
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