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The explicit linearization of the Korteweg--de Vries equation [10, 18] and the Toda 

lattice equations [10, 12, 22] led to a theory relating periodic second order (differential 

and difference) operators to hyperelliptic curves with branch points given by the periodic 

and antiperiodic spectrum of the original operator. As a result the periodic second order 

operators with a given spectrum form a torus (except for a lower dimensional submanifold) 

which is the Jacobi variety of the defining curve. Krichever [15, 16, 17], motivated by further 

examples in the work of Zaharov-Shabat [30], showed how curves with certain properties lead 

to commuting differential operators reconfirming forgotten work by Burchnell and Chaundy 

[6]. Inspired by Krichever's ideas, Mumford [24] establishes then a dictionary between 

commutative rings of (differential and difference) operators and algebraic curves using 

purely algebraic methods. As an example, the Hill's operator whose spectrum consists 

of a finite number of non-degenerate bands leads to a finite number of independent 

differential operators commuting with the original Hill's operator and this commutative 

ring defines a curve of finite genus. However, the generic Hill's operator has an infinite 

number of bands and must be analyzed in terms of a hyperelliptic curve of infinite genus; 

see McKean and Trubowitz [21]. These analytical techniques have not yet been extended 

to higher order differential operators so that  the correspondence between differential 

operators and curves, generically of infinite genus, is far from being understood. In view 

of this, it is important to discuss in detail the correspondence between periodic di//erence 

operators and algebraic curves (of finite genus). In the second order case, the periodic 

difference operators are good approximations of the periodic differential operators and 

(1) Research for this paper was partially supported by NSF Grant No. MCS-75-05576 A01. 



94 P. VAN M O E R B E K E  AND D. MUMFORD 

the corresponding curves are also hyperelliptic (see MeKean and van Moerbeke [20]). 

Hopefully periodic differential operators will lead to infinite genus versions of the curves 

suggested by the difference operators. 

In  this work, we show that  every so.called regular periodic difference operator of any 

order and not necessarily symmetric leads to a spectral curve ~ of a given type and a 

"regular" point on its Jacobi variety Jac (~) and vice-versa. The regularity is a condition 

on the "symbol" of the difference operator, which in turn provides information about the 

infinite points of the spectral curve. Except  for a finite number of translates of the theta- 

divisor, every point of Jac (~) is regular. As a consequence, the isospectral class of regular 

difference operators C of a given order with a given h-spectrum for all Floquet multipliers h 

parametrizes the regular points of Jac  (~). This is the content of w 2. 

How does a linear flow on Jac (~) translate in terms of an isospectral deformation 

of the difference operators C? I t  translates into a system of ordinary differential equations, 

given by Lax-type commutation relations on the original difference operator: ~ = [C, A+], 

where A + is the upper-triangular part  of some operator A, constructed as follows: the linear 

flow above picks out a specific meromorphic function on ~, which is holomorphic on the affine 

part; this function then maps into the difference operator A. However there is more to it: 

these flows all derive from Hamiltonians and a symplectic structure reminiscent of the 

Kostant-KiriUov method of orbits for the group of upper-triangular matrices; for this 

method, see Kostant  [14] and Abraham-Marsden [1]. I t  can be summarized as follows: 

the usual Bruhat  decomposition of SL(n, R) leads to a natural symplectie structure on the 

orbits in ~l* in sl(n, R)* under the action of the triangular subgroup _N; this fact does not ap- 

ply as such because of the periodic and not necessarily symmetric nature of the difference 

operators, but it is nevertheless suggestive. The result is that  the coefficients of the 

algebraic expressions for ~ can be regarded as Hamiltonians (depending on the difference 

operator C) in involution for the symplectie structure above; they lead to Hamiltonian 

flows, each of which is linearizable on Jac (~); moreover all linear flows on Jac (~) derive 

from such Hamiltonians. Its proper group-theoretiinterpretcal ation relates to the Kac- 

Moody extension of sl(n, R), which will be developed, also for other classical groups, in a 

forthcoming paper by Adler and van Moerbeke [3]. For relations of this symplectic 

structure with the Gelfand-Dikii [8] symplectic structure and its group theoretical 

content, consult Adler [2]. All these considerations specialized to hyperelliptic curves leads 

then to the explicit linearization of the periodic Toda lattice equations. 

In w 3, we deal with a number of interesting special cases. Whenever the curve ~ comes 

from a symmetric difference operator, it carries a natural involution, which, in turn, defines 

a linear subvariety of Jae (~), called the Prym variety of R. Then the manifold of 

isospectral symmetric operators coincides with Prym (~) and all linear isospectral de- 
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formations are generated by meromorphic functions on ~, holomorphic on the affine part, 

as above, and moreover invariant under the involution. A similar statement holds for 

curves ~ defined by seli-adjoint operators. 

The entries of the difference operators can be regarded as Abelian functions on the 

Jacobi variety of the corresponding curve; then, using classical formulas (see Fay [11]), 

the entries can be expressed as quotients of theta functions (w 5). Most of the results sketched 

above relate to periodic difference operators; its periodic nature is responsible for the 

division properties of the curve, as will be explained in w 2; in the Toda hyperelliptic case 

the latter amounts to the existence of two points P and Q on the curve, such that  some 

integer multiple of Q-P vanishes on Jac (~). When the division properties do not hold and 

for a somewhat more restricted class of divisors, the associated difference operators are 

merely almost periodic. I t  remains an interesting open question to characterize those 

almost periodic difference operators which lead to finite genus curves; this is unknown 

even for the second order difference (and differential) operator case. Results close to those 

in paragraphs 2, 3 and 5 have been obtained by Krichever [16]. 

The relation between difference operators and curves (special curves) have been 

extended by Mumford [26] to a connection between two-dimensional difference operators 

and algebraic surfaces (spectral surface). As pointed out for one-dimensional operators, its 

"symbol" is a zero-dimensional difference operator and it defines the non-affine part of 

the curve; in the same way, in two dimensions, the "symbol" will be one-dimensional 

and the "symbol of the symbol" zero-dimensional; they lead to the non-affine behaviour 

oi the spectral surface, which is crucial in the study of the Picard variety for the spectral 

surface (analogous to the Jacobi variety for curves). In fact, unlike for spectral curves, the 

spectral surface has trivial Picard variety, so that  generic periodic two-dimensional 

difference operators do not admit isospectral deformations; for a fairly elementary exposi- 

tion of Mumford's result, see P. van Moerbeke [23]. 

The first author thanks Professor P. Deligne for many helpful conversations, espe- 

cially with regard to w 4. 
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w 1 .  I n t r o d u c t i o n  

Let / be an infinite column vector ] = (... ]-1, 1o,/1 . . . .  ) T  Let  D operate on / as the 

shift D/k =/~+r Consider the difference operator C defined by  

(C/)== Y~ c~,.+~/=+k= c..=+~D k /=, c,.j~C; 
k = - M "  k ~  

C acts on / as an infinite band matr ix  (c~j) acting on/ ,  zero outside the band - M '  ~< i -  j < M; 

C is said ~o have support  [ - M ' ,  M]. Assume C to be periodic of period/Y, i.e. c~,r 

this amounts to the commutat ion relation C S = S C ,  where S = D  N. Let  (M, N ) = n  and 

(M', ~ ) = n ' ;  let M l n = M  , M ' l n ' = M '  and N l n = N ,  2V~n'=N. 

A difference operator C will be called regular, if the n quantities 

( 7 |  ~ C~ .  t ~ i _ M C i + M ,  t + 2 M  " "  Ct+(Nt--1)M. l+/q, M, 1 ~< i <~ 

are all different from zero and different from each other and the same for the n '  quantities 

a~ = c~. ~-M' C~_M,, ,--2M . . . .  C~_(N~_I) M'. *--N~ M', 1 < i < n' .  

They involve only boundary elements, i.e., elements on the outer diagonals. Note tha t  
t r 

(rt+n =a~ and ~+n' = ~ ,  

A square matrix Ch of order N will be used throughout this paper. I t  is constructed 

as follows: if N > M + M '  consider the square matrix of order N taken from C, having Clx for 

upper left corner and cur for lower right corner, pu t  the upper-left and lower-right 

triangular corners (see Figure 1) respectively in the upper-right and lower-left corner of 

the square block after multiplication by h -x and h. In  general, we write: 

+ ~  

(Ch),.j = ~ h k" c , . ,k~ 
k - - r 

In  fact Ch contains all the information contained in C. Also observe tha t  ChDa = (CD)h 

for any two difference operators C and D. The determinant  of Ch - z I  is readily seen to be a 

polynomial expression in z, h and h -1, which has the form 

F(h, h -1, z) = det (Ch - - z l )  

= A o h M + Al(z) h u-x +... + AM(z) + Au+x(z) h -1 +... + AM+M,h -M' = 0, 

where 
N n 

Ao = ( -  1)u(N-~)1-] Ok.k§ ~ = (-- 1)u(~-~)N ~, # 0, 
k=l  f=l  
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and 

N' n' 

AM+~, = (-- 1)M'(N-M') I-I Ck,k-M, = (-- 1)M'(N-M') I-I a~ 4:0 
k = i  i ~ l  

AM(Z) = ( -- 1)NzN+ .... 

Further information about the polynomials A j(z) is contained in Lemma 1, w 2. 

For later use, we introduce some geometrical notations. Let R be an algebraic curve 

of genus g. We will allow R to be singular and even reducible, but we will always require 

R to be connected and reduced, i.e., no nilpotents in its structure sheaf. We also require 

tha t  its singular points will be loca]ly isomorphic to singular points of plane curves. In 

the singular case, the genus g will be the "arithmetic genus" of R, i.e., dim Hi(OR) or 

dim H~ where w~ are the 1-forms ~ on R with poles only at singular points P of R and 

at those points 
r e s r ( /~ )=0  all /EOl,.n. (0) 

Branches y 
of R at P 

At each singular point P, there is a 1-form ~ with "highest poles at  P" ,  i.e., every other 

1-form r/' satisfying (0) equals [~/, for some /EOu.n (ef. 8erre [28]). Let  Jac (R) be the 

Jaeobian variety of R (the generalized Jacobian [27, 28], if R is singular). We will be 

interested in positive divisors D on R of degree g which are sufficiently generic. If R is 

smooth, a positive divisor D is just ~a_l h,  h E R. In the singular case, D is given by such 

7 -  792907 A c t a  m a t h e m a t i c a  143. Impr im6  le 28 Sep tembre  1979 
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an expression and if/c of the vt's equal a singular point P, then in addition to P occurring 

in ~0 with multiplicities k, we must also give a k-dimensional space of "allowable" poles at  

P, i.e., a module Mp(~) over Oe.R such that  

0~.~ c M~,(D) c C(~) 

with C(7~) being the field of meromorphic functions on ~ and such that  

dim M1,(~)/Oe,n = k. 

A general divisor O is an expression Z +vl, plus for all singular points, a finitely generated 

Oe.~-module Me(Z)) c C(~) such that  if P occurs with multiplicity k in Z), then 

k = dim (Me+ Op/Oe) - dim (M:,+ O~]Mp). 

For every such /), we define the space of functions with poles at /)  as: 

s = { t  ~ C(~) 1 (t) + 0 ~> 0}. 

Here if ~ is singular, then at  every singular point P, (/)+D~>0 at P means I~M~,(D). 
We define the space of differentials with zeroes at  ~ as 

~( - ~0) = {meromorphie differentials ~ on 7~] (7) ~> Z)}. 

Here at singular points P, (~)>~0 means that  for all IEMe(Z~) 

resv (~) = 0; 
Branches F 

o f  R a t  P 

the Riemann-Roch theorem tells us as usual that  

dim JC(~0)-dim f l ( -  Z)) -- deg ~ 0 - g +  1. 

Now let Z) be a positive divisor of degree 17. ~ is general if dim s  1, i.e., 

dim ~ ( -  ~0)= 0. Z) will be called regular with regard to two infinite sequences of smooth 

points {P~}~,z and {Q~}~,z if(1) 

k k 

| - 1  1 

= 0 ,  / r  

- - P o - P - x - . . . - P k + x  fo r  k a - 1  
k k 

m o r e o v e r  ~ Q t - ~ Q , ,  k > / 0  
| - 0  0 

- 0  k= -1 
= - Q - I - Q - 2  . . . .  -Qk+l for k ~ - 2 .  
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w 2. The correspondence between difference operators and curves 

THEOREM 1. There is a one-to-one correspondence between the two sets o/data: 

(a) a regular di[ference operator Co[ support [ - M ' ,  M] and period N, modulo con- 

jugation by dia~7onal periodic operators. 

(b) a curve ~, (n + n') points on ~, a divisor ~) on R and two/unctions h, z on ~ subject 

to several conditions. 'R may be singular, but always has genus: 

( N -  1 ) ( M + M ' ) -  (n+n ' )+2  
g= 2 

The (n+n') points P, ..... P,  and Q1 ..... Qn' are smooth and have a de[inite ordering. We 

de/inc P,(reap Qt) /or all iEZ by Pt+,=Pt (resp Q~-n, =Qt). ]0 has degree g and is regular/or 

these sequences. The/unction8 h and z have zeroes and poles as [ollows: 

and 

n' 

(h) = -N~ ~ P~ + N~ Y. Q~ 
i - I  i - I  

n" 

(z) = - M  1 ~ P , -  M[ ~ Qt + a positive divisor not containing the P,'s and Q,'e. 
i - I  t - 1  

Finally, ZN'h -M' (reap. zlq~ h M~ ) should take on distinct values at the Pt's (reap. the Q/s). 

Re,hark. The condition that  ]0 be regular reduces in this instance to the vanishing of 

a finite number of determinants involving differentials. 

Proo], We first give the entire proof of this theorem, assuming for (a)~ (b) that  

F(h, h -1, z) defines a non-singular curve in C* • C and for (b) ~ (a) tha t  ~ is non-singular. 

Mter  we add a few words on the modifications necessary to deal with the singular case. 

First we show that  (a) implies (b). The eigenvalues z and h such that  

C[=zf  and S[=h[  (1) 
satisfy 

M 

Z c...+~/.+~=z/., 1 < n < N  (2) 
k - - M '  

with 
/.+~ = h~/.+~_~ (3) 

where ~ is the integer such that ~ < n + k < (~ + I) N. So, (2) can be rewritten 

M 

k - - M '  
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or, wha t  is the  same 
ej= t 

where f=(/~ ..... /~)~. Therefore the eigenvalues (z, h) of ( l) satisfy 

det  (Ch--zI)  = F(h, h -1, z) = O, (4) 

which determines an algebraic curve over  C; vice versa,  a n y  couple (z, h) sat isfying this 

algebraic relat ion provides a couple of eigenvalues for (1). Since A 0 and  AM+ M, in (4) are 

nonzero, the  funct ion h has  its poles or zeros only a t  z = ~ .  Therefore  F(h, h -1, z) with 

z, h and h -1E C, defines the  affine pa r t  ~0 of an algebraic curve ~.  The  equat ion 

G(h, z) =- hM'/(h, h -1, z) 

shows t h a t  ~ is an M + M ' - s h e e t e d  covering of C. 

We now turn  to the  behaviour  of the curve a t  the boundary .  For  this, we need to 

analyze the  coefficients Aj(z) of h ~- j  in F very  closely: 

L~MMA 1. The /unctions Aj(z) are polynomials in z o/degree kj satis/ying 

N1 0 < i < M  kj..< ~r- '  

and 

N j  M '  

with equality i / and  only i / the right hand side is an integer, i.e., when ] = 0, M x, 2M 1 .. . . .  n M  1 = 

M in the first case and when ~'=0, M'I, 2M'~ . . . . .  n'M'l = M '  in the second ease. For ~=~M1,  

0 ~.- ot < n, the coe/]icient o/ 
zkIhM-t ~ z~N1 h(n-a)M, 

in F(h, h -1, z) =0 is the symmetric polynomial o/ degree n - ~ in ai de/ined as 

v~= ~ IX a,, 0 - < ~ < n .  

Likewise, /or j = o~M'l, 0 ~ o~ <~ n', the coeHicient o/ 

is the symmetric polynomial o/ degree n' - ~ in a~, defined in a similar way as above. 
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Proo/. I t  proceeds by induction. Let Tt  be a typical term of det (Ca-zI) =0, containing 

h' and consider how many  times it appears in the determinant of Ca - zI. Clearly T O = ( - z) N. 

A term T I of maximal degree in g is formed by picking one of the entries ( N - k l +  1, k2), 

i.e., CN-k,+l.N+k~h with 1 ~<k~<M and k l + k 2 < M + l  and keeping the largest possible 

number of entries on the diagonal of Ch--zI. This choice excludes the entries (kl,/c2) and 

( f i - k l  + 1, f i - k  1 + 1) of the diagonal and forces one to take the elements of the upper 

outer-diagonal. Since every column must  have a representation in T1, take the entry 

( f i - k l + l - M ,  f i - ] c l + l  ) of the upper outer-diagonal, which excludes the entry 

( f i - k l  + 1 - M ,  f i - l c  1 + 1 - M )  of the diagonal. More generally, if T~ contains the entry 

( N - k l + l - i M ,  N - I c l §  i t  does not contain the entry ( N - k l + l - i M ,  

N - k  I + 1 - i M )  of the diagonal, as long as 1 < i  ~<i0, where i 0 is the largest i such tha t  

N -  k 1 + 1 - iM >1 k2. Two cases must  now be distinguished: (a) if N -  k~ q- 1 - ioM = k 2 the 

process is terminated and at  least i 0 + 1 number  of elements of the diagonal have been 

excluded and the degree of z in T 1 is bounded above by 

N -  io-  l = N -  l - [ f i -  k l~  k~ + l] ; 

(b) if f i - k l + l - i o M > k u ,  the elements (k~,/c2) and ( f i - k i + l - i 0 M ,  f i - / c 1 + l - i 0 M )  

of the diagonal must  be excluded, so tha t  the degree of z in T 1 is bounded above by 

f i _  io_ 2= f i _  2_  [ f i -  lcl- Ir + l] 
M 

In  either case, these estimates will be maximal provided k 1 +k~ assumes its largest 

possible value M + l, so tha t  the degree kM-1 of z in T,  is bounded by fir_ filM. 

The rest of the argument goes by induction: if kM_j<~zV(M-~)/M, then kM_~_l<~ 

f i (M - i -  1)/M; this is done using the same method as above; pick the entry (fi  - k, + 1,/~2) 

in det (Cn-zI) containing h which does not appear yet in T~; this excludes a number of 

diagonal entries, bounded below by f i /M, so tha t  the degree ICM_~_l of Z in Tj+I is bounded 

above by 
fi] N 
M M" 

I t  remains to establish the second par t  of Lemma 1. Whenever Nj/M is an integer, this 

estimate is exact: kj=fi]/M. I t  is done by  exhibiting the term of exact degree f i j /M in 

z and M - ~  in h. Consider the expression denoted by a~ in C; let Of be the expression obtained 

in the same fashion in Ch. A factor C~+aM" l+(~+l)M yields an h in d~ as soon as i + ~M ~< 

kN < i  + (:r § 1)M for some integer k. Therefore ~ will be of degree 
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#{~EZ; 0 < ~ N I - 1  such tha t  I + ~ M ~ < / c N < I + ( ~ + I ) M  for some integer b} = M  1 

in h. But  ~ can be completed to a term in det (C~-zI) by multiplying ~ by the maximal  

possible elements of the diagonal. Every  factor C~M.  ,+<~+X)M in a~ excludes exactly one 

diagonal element, because the integers {i + 0~M[0 ~< ~ ~< N 1 - 1  } are all different modulo N. 

Therefore det (Ch-z!)  contains a term of degree N - N  1 = ( n - 1 ) N  1 in z and M 1 in h. All 

possible such terms are obtained by making a sum over the index i from 1 to n. 

Moreover every term in det (Ch--zI) of degree tiM 1 (1 ~<fl~<n) in h and ( n - f l ) N  1 in z 

is obtained in a similar way from considering a~, ... a~# and the corresponding combination 

~ ,  ... ~ in C~ and to complete it with diagonal elements of C ~ - z I  to form a term in 

det (C~-zI). This finishes the proof of Lemma 1. 

We now turn to the behaviour of the curve a t  the boundary: the ]emma implies 

tha t  there are n distinct points P~ .. . .  , P ,  covering z = 0% where h = ~o and n '  other points 

Q~ ..... Q~, covering z= 0% where h =0.  To check this fact, define a local parameter  t near 

each point P~ as follows 

z f t  -M' and h=C~t-~'+ . . . .  where C M ' = I .  (5) 

Near each point Qt, define another  local parameter  t such tha t  

t ~ l  M' t z f f i t - ~  and h - - C i t  N~+ ....  where ~'t lffiat. 

A typical term of F = 0  containing h M-j (0~<~<M) looks like 

0 ~< i ~< kj ~< N_~; hu-J with 

expressed in the local parameter  / it appears as t-u't-m<M-J); the exponent satisfies 

M l i  + N l ( n -  ~') ~< N 1M with equality if and only if i = kj with ~" = aM1, ~ ~ 0, 1 ..... n. There- 

fore F can be expressed near (z, h ) -~ (~ ,  ~ )  as 

~ ( - 1)~Z~V'hCn-~)M' + lower order terms. 
~ - 0  

Then 

z-NF(h,h -1, z)= ~ ( - 1)~r~ + lower order terms 

=YI/h ' ) t-1 ~ '  - 1 + lower order terms, 

which implies tha t  h M' z-N, assumes n distinct values 1~argO. Therefore the point a t  (z, h) -- 

( ~ ,  cr separates into n distinct points P1, ..., P~. 
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The same analysis can now be applied to the point (z, h)=  ( ~ ,  0); there the upshot is 

tha t  hM'~ zN~ assumes n' distinct values ~'c =~0 and therefore the point at  (z, h) = (co, 0) separates 

into n' distinct points Q1 ..... Q~.. Let  Qc correspond to ~ .  I t  follows that  

and 

(h) = - -  N 1 Pc + N~. Y. Q, 
C ~ I  Of  1 

n" 

(z) = - M 1 ~ Pc - M~ ~ P~ + (a positive divisor on }~0). 
C - I  C=I  

(6) 

We are now in a position to compute the genus of ~ from Hurwicz's formula. 

Relation (6) implies at  once that  the ramification index of R~ffi R\P~o equals 

V~o -- n (M1-  l) +n'(M' l -  1); 

whereas the ramification index V 0 of R0 is given by the number of zeros of the different 

A = G'h(h, z) or what is the same, by the number of poles of A. Near the point P~, A behaves as 

M,d A --~ constant ( * O) • h -dh 1-I (~c hMl -- z~v') § lower order terms 

= constant ( *  O) x hM'+M'-lz (n-1)N~ + lower order terms 

= constant  ( * O) • t -NI(~'+M'-I)-MIN'("-I) + lower order terms, 

and, using a similar argument, near Qc 

A -- constant (~=0) • t-Ni + lower order terms. 
Therefore 

ro = N(M + M') 
and 

Vo+Voo ( M + M , ) + I = ( N - 1 ) ( M + M ' ) - ( n + n ' ) + 2  
g= 2 2 

The eigenvectors / common to C and S can be regarded as column vectors of mero- 

morphic functions; using the normalization/0 = 1, [--(/1,/~,/s ..... /N-l, h) T. Since f satidies 

(Oh- zI) f = O, 

/~ can be expressed as follows 

AI ~ A2 ~ AN ~ .  t,, 1 i,k N 
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where A t . j = ( - - 1 )  t+~ • (i, ?')th minor  of C a - z I .  I n  par t icular  

AN k A k  k 

which expresses each ]k as a ra t ional  funct ion in z and  h. In  order to find the  divisor D on 

R, it is i m p o r t a n t  to invest igate  the  na ture  of the  poles and  zeros of these funct ions on ~ .  

LV, MMA 2. The meromorphic ]unctions ]k satis]y the ]ollowing conditions at in]inity, 

(i) at Pk, order(]k~+--~t)~>--~,  withequality i] i=O 

(ii) at Qk, o r d e r ( ~ ) > ~ ,  withequali tyi]  i=O. 

Proo]. I n  order to invest igate  the  poles a t  P = UPs,  consider the  new set of coordinates 

= z~'h -M' and fl = zth ~' 

with 7Nt  + OMt = - 1 with N~ > ~/> 0. ( I t  is a lways possible to find two such integers ? and 

~, since N 1 and M 1 are re la t ively prime.) These coordinates are most  convenient ,  because 

near  a point  P~, ~ and fl behave  as follows. 

= a ,  + O(t)  

fl = cons tant  ( #O) t  + O(t2). (7) 

The meromorphic  functions ~r and fl can also be regarded as the  eigenvalues of the  com- 

mut ing  opera tors  A = CN'S -M' and B =  C~ ~ with entries a~j and b~j respectively.  In  fact  

A is a lower t r iangular  difference opera tor  (i.e., a~j=0,  for i < j ) ,  whereas B is a str ict ly 

lower t r iangular  difference operator ,  whose first  non-zero subdiagonal  is a t  - n  (i.e., 

b~=O for i - n < j ) .  Moreover  akk=ak, because akk is obta ined f rom C and S as 

C~.k+MDMck.k+MDM... Ck.k+MDMS -M1 = ~kD~ 

therefore A has an n-periodic diagonal  with entries ~k=#0 different f rom one another .  The  

fact  t h a t  A and B commute  induces relat ions between the  a~/s and  bt/s.  The  first  one 

expresses t h a t  a~k=ak+n.k+, which is the  same as ak=crk+ ~. From (7), fl itself can be used 

as a local pa rame te r  near  Pro; let ~ admi t  the  following Taylor  expansion in fl near  Pm 

=~zc~f i t  with ~0=~m. 
~-0 
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Express the fact that  B / = f l / a n d  A / =  :of starting with/0: 

�9 .. + b o . - n - d - n - ~  + b o . _ n _ d _ n _ i  + b o , _ d _ n  =/31o 

"'" -]- b-1. -n-2/-n-2 § b-1,-n-1 l--n--1 : ill--1 

... + b_~,_~_~l_n_~ = ~1-~ 

etc. 

and 

... + a o . - j - n  

�9 . .  a - l ,  - n  f - n  

�9 . .  a _ 2  _ n ~ _  n 

+ a o . - n + J - n + :  +. . .  + a o , - ~ / - 2  

+ a - L - , , + : l - n + :  + "" + a - 1 , - 2 / - ~  §  

+a_2._n+ll_n+: +... +an-21-2 

�9 "" + a - n + L - n / - n  + (rl l-n+: 

�9 .. + % / _ , ,  

105 

+ ao._l 1-~ + an 1o = (~o + ~:fl + ~d ~ +. . . )  1o 

= (~o + ~,/~ + ~/~'  + ...) 1-1 

= (~0 § ~1~ § ~2~ 2 §  

= (,~o + a:,8 + a~,8~ + . . . )  f-n+,. 

to wit, 

then the same inequality holds for i ~ 1. 

Suppose the contrary; then the second system of equations leads to an homogeneous 

triangular system of n - 1  equations in n - 1  unknowns ]~]), 1 < ~ i < ~ n - 1 ,  where 

/-(~+~)=/(k~)fl~, + lower order terms with ]r < k, 
]-~n 

-an)  l_~ =0,  1<. n 
t - n - 1  

Its  only solution is given by /~J)=0 (1 < ~ < n - 1 ) ,  since its determinant equals 

n - i  
I-[ (~n-~-  ~ )  4 0 .  

S t e p  1 

In the proof of this lemma, the following statement will be used at several occasions: 

fix kEZ, k~<l; if at Pn 

o r d e r ~ / - ~ / > i k  Vi>/n 

This is in fact a finite system of equations, because multiplication by h-: shifts all the 

indices by - N. First consider the point Pn, where ~ = an. The result of this lemma will be 

established in this case; the extension to the other points P~ will then be straightforward. 
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Step 2 
Next, we show that  at  P .  

order (/-(.~+o~ \ for i>~l, 

with equality if i = n. 

In view of Step 1, it  suffices to show the statement for i>~n. Suppose the contrary; 

then for some 7 ~> n 

/-(~n+r) /r -k + lower order terms, f--gen 

with k~>0 and 7~>n and with/r Then fl]-(a~+v)/=~n is of order - b + l  and the 7th 

equation of the first system tells you tha t  for some Yl >~ 2n, 

order \ ~ ]  -- - k + 1, 71/> 2n 

and by induction 

o r d e r \ ~ /  - b + i  forsome 7 ~ > ( i + l ) n  with i>~l. 

In particular for i=Nl -1 ,  we find some 7~>N so that  

order~/-'~"+~"~= - k + N , -  1 
\ f_,,,, / 

This is a contradiction, because for k ~>N, 

orderl~ ~_--]~. ] order~ ~ ] / > - k + N  1. 

To show the equality in Step 2, when i=n, notice that  for b~>l 

i'I-,.+,,.-4__ 1'/-,~ o r d e r \  ~ -] order - -  +order  /> 2. 

But in order to satisfy the ~nth equation of the first system (which is analogous to the first 

one of the same system), you must have 

t/-,-+',4 order \--/-----~n---n ] = " 
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Step 3 
I t  is now straightforward to extend Steps 1 and 2 to the other points Pj. More 

specifically, at  the point Pn-t (where a0 = ~ - 1 ) ,  divide both systems by the function ]_t. 

Then the systems so obtained are the same as the ones above, in which ]-k is replaced by  

so tha t  at  Pn-t 

k f-k-| 

~ I N  
order/ ' - ( '~+ '+ 'Z/>~l  for j ~ l  with equality if j=n.  

t,/-c~,.,+o / 

By multiplication of the numerator  and denominator with the same power of h, one 

observes tha t  the result holds for any ~ E Z. Therefore at  Pk, letting k - - n - i ,  0 ~< j ~ n - 1  

order )tk+Pn+' [/-t-(p+~),+,+(n-,)~ = order 
\ l-c-n+, l 

-- order []-t-(P+,),,+,+(,,-,),'~ +,8+1~ order [1-,-(,~+1),,+,,'~ 

~>1-(p+1)-- -,8 

with equality ff j = 0. 

A siinflar analysis can be made near the points Qx .... .  Qn', by considering the new 

coordinates 
~r and fl=z~'h y' 

p s t t where 7 N I - 8  MI=I .  Near a point Q~, ~ and ~ behave as follows 

~' = ~; + O(t) 

= constant ( # O)t + O(t~); 

the operators CNIS M' and Ca'SY are both upper triangular with eigenvalues ~' and 8'  and 

with a nonzero diagonal in the first case and with a nonzero n ' th  subdiagonal (above the 

main diagonal) in the second case. This establishes the result of Lemma 2. 

Define now ~ to be the minimal :positive divisor on ~ such that(x) 

k k - 1  

( s  ~ Q~ for all keZ .  
t - 1  t -O 

(1) Recall the convention in the footnote of w 1. 
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I t  is finite, since it suffices to consider the functions ]1 ..... ]N-I only. Note that, by Lemma 2, 

in the kth inequality above, the 2 divisors have equal orders at Pk and at Qk. 

LF~MMA 3. ~) is a divisor o/order g. 

Proo]. In  a first step, one shows that  every function / in 

L = {/ meromorphic with (/)+ ~0 >~any linear combination of 

P~ and Qt with coefficients in Z} 

can be expressed as a linear combination of functions/k. Let L I be the linear span of the 

functions /k and define the ring 

R = C[h, h -1, z]/F(h, h -1, z); 

h• R contains z and h. The space L1 is an R-module, because /k=l~N and z/k=(C])~. 

Moreover L1D R, because /a~=h ~ and z=-Z/o=(C/) o. If L I ~ L ,  then there is a maximal 

ideal m in R such that  
L 1 c mL; 

a maximal ideal m in R is naturally associated with a point pERo (i.e., R\,UP~\UQ~) 

such that 
m = {g e R Ig(p ) = 0}. 

In fact ]O-p~>0; because if not, all functions in L 1 would vanish at p; but this is a 

contradiction, since the functions h and h -1 have no common zeros on ~ and they both 

belong to L 1. Therefore every function /k would be such that  

k k-1 

(/k)+(O-P)~>--~P,+ ~ Ql 
i-,l i=O 

VkEZ. 

This contradicts the fact that  ]0 is minimal. Therefore L =L r Choose integers k 1 and k s 

such that  k 1 +ks+orde r  ( ~ ) > 2 g - 2 .  In  this next step, the dimension of 

( k~l kl-  1 ) 

s 1 6 3  P*+ Z Qt+O 
i |~0 

will be counted in two different ways: on the one hand using the Rieman-Roch theorem (1) 

dim s = kl + ks + order (~0) - g + 1 (11) 

(1) Since o r d e r  (~ )  > 2g - 2, d i m  ~ (  - ~ )  = 0. 



THE SPECTRUM OF DIFFERENCE OPERATORS AND ALGEBRAIC CURVES 109 

and on the other hand in a direct way to be explained below. Any function ~ in I::(E) can 

be expressed as a linear combination q~=~l-~,  al/~. To prove this, let ~ have a pole of 

maximal order(I), say fl, among the points P~ and let Pj  be the one with maximal index. 

Then subtract from ~ an appropriate multiple of/n(p-1)+~; the latter belongs to the space 

s since n ( f l - 1 ) +  ~ < k 1. The new function obtained in this way belongs to /~(E-Pk,).  

The same procedure can now be repeated over and over again until you get a function 

~0 = [ ~  - some linear combination of /k ( - k2 ~< k < kl) ] E/~(/9) ~ L. 

Since L =L1, ~o is a linear combination of the functions/kEL1; but  no k ~ 0  can occur; indeed 

considering the form/k with I kl maximal which occurs and considering the pole at Pk (if 

k>0)  or at Qk (if k<0) ,  we find ~vr163 Therefore ~o=eonstant=eonstant  • This 

shows that  cf = ~ a~[~ where the summation ranges from - k2 to k 1. But every/ j  ( - k~. < ] ~< kl) 

is in E(~) and they are independent. Therefore, this second count yields 

dim s = k l + k 2 + l .  (12) 

Comparing (11) and (12) leads to the conclusion that  

order (/9) = g. 

L EMMA 4. /9 is a regular divisor. 

then 

because 

Then 

Proo/. Firstly, one shows t h a t / 9  is general. Consider an integer k 1 such that  k 1 > g -  2; 

dim s  + ~IP , )  = ks + 1 

d i m e  19+ P~ -<_j+l for l ~ < j ~ k  1 

because s P,) is strictly larger than C ( / 9 + ~ - 1 P , ) ,  because [J+l belongs to the 

first space and not to the second. Therefore letting the index j go down by one lowers the 

dimension by at  least one unit. I t  follows that  

1 < dim s ~< 1. 

This is to say that  /9 is general. 

(1) Here  th i s  s t a t e m e n t  m u s t  be u n d e r s t o o d  as  follows: ~0 h a s  a pole of order /~  a t  Pk  if t h e  ac tua l  

order  of pole a t  Pk is fl + ~  where  ~, is t he  n u m b e r  of t imes  Pk occurs  in ]0. 
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I t  remains to be shown that  ~ is regular. To do this, it suffices to show that  

For k~0 ,  we have that  
dim E(]O) = 1 

and 
s  .= t::(~O) 

since the function [0 = 1 belongs to the second space, but not the first. For the induction 

step note that  

. - P ~ -  Q~ + 1 = 1  dim s D + ~-x ~ P~ t-0 Q~ ~< dim s O + ~- t-0 

(because dim E(E) increases by at  most one when you allow one further pole). Since f~+x 

belongs to s ~ P , - ~ - o  Q,) but not to s  +1 Q,), we also have that  

/ k+a k+lQ\) 
dim s  ~1P'-,~-o =0 .  

This ends the proof that  (a) implies (b). The converse statement (that (b) implies (a)) 

derives from the following observation. 

From the Riemann-Roch theorem, from the fact that  allowing one extra pole 

increases dim s by at most one, and from the regularity of ~) (in that  order) one has 

~ Q, ~< dim s D + ~ P , -  ~ Q, + 1 - -  1. 1 ~< dim s - P~-  ~ ~-1 i-o 

Let /~ be the unique element of 1 : ( ~ 0 + ~ . 1 P ~ - ~ . ~  Q~) up to scalars. I t  is clear that  h 

is the unique function in s  1Q~). Normalize/k such that  hf~=f~+N for every 

/r 

L~.MMA 5. 1/ 
$ - 1  

then / is a linear combination o/ f~ (s <~ k <~r). 

with r>~s, r, aEZ 

Proof. If r =8, the result is trivial. Suppose r >8; then, since 

r 8 - 1  

(f,) >--- - D - ~ P , +  2 Q,--~ 
1 0 
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and since no meromorphic function has a divisor > ~  +Pr, the function [r has a pole at Pr 

of exact order equal to 

(# of P, appearing in t~ P,) + (# of P,  appearing in ~O). 

The function [ has at Pr a pole of order, at worst, the integer given above. Therefore for 

some constant c r 

l-c,l,es D+ ~ e~- ~ Q, �9 

~ 1  i=O 

The same argument can now be applied over and over again so as to find constants ck 

such that  

This implies that  

r / r - 1  s - 1  

I -  s +,.':. o, ) �9 

[ -  ~ ~1~=o 
k - s  

which establishes Lemma 5. 

The rest of the proof is now straightforward. Consider any meromorphic function u, 

holomorphic on 7~0. Then, for K and K'  large enough 

1-1 t 

admits an expansion as above. In particular, 

so that  

M M ' - I  

(~)= = - Y. P ~ -  E Q, 
t=1 | - 0  

M 

i - - M '  

with C~.k+M and Ck.k_M,~:0. Moreover, the difference operator C = (cu) is regular by the last 

hypothesis of (b). C is periodic as a result of the normalization h[k=/k+n. The functions 

/k (0 ~< k ~< n -  1) are defined up to some nonzero multiplicative constant. Such a change of 

basis, due to multiplying /k with some nonzero constant, amounts to conjugating U 

with a diagonal operator of period Z r. 
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As promised at  the start  of the proof, we want to add a few words on the modifications 

necessary to deal with the singular case. In  general, we can always define ~0 to be the 

affine scheme given by F(h, h -1, z)=0.  Since, near h= cr F can be re-written: 

/ hM' -- 1) + lower order terms, z-N F = i-I ~a, ~7 

it follows tha t  even if F is reducible, F can have no multiple factors as long as the a~ 

remain distinct. Then as above we get a reduced algebraic curve ~ with n smooth points 

over h= ~,  n' smooth points over h=O. Next, this }~, although possibly reducible, is at  

least connected. To see this, note by the constructions already given tha t  any polynomial 

F subject to the restrictions of Lemma 1 arises from an operator C. Thus for generic choices 

of C, ~ is certainly irreducible. If  you approximate an arbi trary C by a sequence C~ whose 

curves ~ are irreducible, ~ appears as the limit of the ~t 's.  Thus R must  be connected. 

In  the singular case, the genus g of ~ is to be interpreted as the arithmetic genus, i.e., 

g = dim Hx(On) = dim ~,  and 2 g -  2 is the degree of the divisor of any differential (~). Then 

the calculation of g by Hurwicz's formula can be interpreted as calculating the degree of 

the divisor of (dz), and as such works in all cases. Next,  in the definition of the divisor 9 ,  

we must  be careful what we mean at  singular points P: at  each such P,  the "mult ipl ici ty" 

of D is given more precisely by a module Me(P). In  our case, we define Me(P) to be the 

On-module generated by the functions/k.  Thus the space L in the proof of Lemma 3 is 

by definition 
L =  U M~(D), 

PERo 

and the rest of the argument  goes through without change. For instance, the Riemann-  

Roch theorem is valid over any such singular ~ so the dimension counts all work as 

before. Q.E.D. 

Note that  in the correspondence of the theorem, the spectrum of the operators Ca 

determines the curve ~, together with the points P1 ..... Pn, Q1, ..., Qn', and the functions 

z and h on it. The divisor D plays the role of the auxiliary parameters which must be given 

ill addition to the spectrum in order to fully recover the operator C. If  ~ is non-singular, 

the set of all regular O's is given by a Zariski-open subset of the Jacobian Jac  (~) of /~. 

When ~ is singular, however, one must  distinguish between those operators C which 

correspond to divisiors D which are principal (i.e., for all singular points P, the module 

Mp(D) has one generator) and those C corresponding to non-principal 9 .  The first set is 

again parametrized by a Zariski-open subset of the so-called generalized Jacobian, Jac  (~), 
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an algebraic group which is an extension of an abelian variety part, and a part  isomorphic 

to Cn• (C*) m (cf. Serre [28]). The second set is harder to parametrize: it corresponds to a 

Zariski-open set in the boundary of the compac~i/ied Jacobian Jac  (~) (cf. DeSouza [7], 

Altman-Kleiman [4, 5]). I t  can be shown that  the operator-theoretic meaning of this distinc- 

tion is that  ~) is principal if and only if for those h for which Ca has a multiple eigenvalue, 

the minimal polynomial of C a is still its characteristic polynomial (see Mumford [25]). 

For  use later, we will say that  C is o/pr incipal  type if the divisor ~ is principal. (Note 

tha t  this always holds if }~ is non-singular.) 

Besides the divisor D and the points P~, Q~, the curve }~ has various other elements 

of structure on it which are important for later analysis. One of these is the holomorphic 

differential form 
dz dh 

hOF hOF" 

Clearly, when ~ is non-singular, OF/Oh and OF/~z have no common zeroes on ~0, so ~ has 

neither zeroes nor poles in no. When ~ is singular, the same thing holds if we interpret 

zeroes and poles in the sense described in the introduction. Otherwise put, ~ is a generator 

on }~0 of the sheaf of 1-forms ~ satisfying, for all PE  n0: 

r e s r ( ] . ~ ) = 0  , all JEOp. 
Branches 
of  ~ at  P 

LEMMA 7. 1] o~=NM1-Mx-1, od=NM~-M~-I,  then 

n n t 

(~)=~ Y P,+~' Y q,. 
i - I  I-1 

Proo[. To study the order of zero or pole of ~ at Pi, we use the expansion 

~aQ-~- / hM' ) 
z-" lh, _ 1 + lower orde  t erms  

| -1  

described above. Since at  Pt, in terms of a local parameter t, 

z = t  -Mr-}-..., h = C I $  - N ' + . . . ,  

we calculate from this formula that:  

OF 
0-h = (constant). z ~-~'. h M'-x + lower order poles 

= (constant). t -M'~+~' + lower order poles. 

8 - 792907 Acta mathematica 143. Imprim6 le 28 Septembre 1979 
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Substituting into the formula for ~, one checks tha t  ~ has an ~-fold zero at  P~ as required. 

The proof for the Q,'s is similar. 

L'~MMA 8. The /oIlowing inequality holds: 

(5n~ho >I -P1-Q1. 

Proo/. Consider the minor A n obtained by removing the first row and the first column 

from C a - z I .  The computation of A n follows the same argument as in Lemma 1, w 1; 

the only difference is tha t  all the terms involving ~1 in det (Ca-z I )  are absent. Therefore, 

the leading terms in A n will be 

n--1 n 
~. ( -- 1 ) ~ Z  ~v'-lh("-l-a)M' =Z-1 r I  ((T,h M' -zN,) 

~ - 0  f - 2  

where ~a denotes the symmetric polynomial of degree a in (as ..... an) (instead of ~1 ..... ~, 

as in Lemma 1). From the expression for the leading term one reads off that  A n will have 

a pole of order MI(IV-1 ) at  worst if h-M'zN'=al (i.e., at  P1) and M l ( h r - 1 ) - I  at  worst 

if h'-M'z ~' =~j, i=~l (i.e., at P ,  with i=~1). An analogous statement can be made about the 

points Q~. 

P a 0 P 0 S I T I 0 ~; 1. Every regular dif/erence operator lead8 to 2N regular divisors O(1 ~) and 

~ ' )  ( I < i < N )  o[ degree g (where D-~ ~ N~) having the prol~erty that/or 1~<i, i~<N: 

f , - 1  

1 7 - ~ - 2 P ~ +  2 Q~ q i > i  
kaJ k l J + '  

,f-1 ] 
~)(I) -I_ 'J~(D .J_  

k - i + 1  k - ,  

(t) f) 701+ 7D(~ - P , - Q ,  if iffii  

is the divisor of some meromorphic di//erential o~ w Then 

Moreover~  

o~,j = h j , ~ .  

k k - 1  

(I4) ffi Oi ~) - Z ) -  Z P, + • Q,. 
f - 1  , - 0  

Proof. Since/)~m = 0 is general 

0-<<dim s  s  1 <0 .  
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Therefore by the Riemann-Roeh theorem 

dim ~(--~0+PN*QN) = 1. 

Let O~NN be the unique differential, up to some multiplicative constant such that  

(o~N) >1 Z)--PN--QN. 

This differential has poles at PN and QN, otherwise (0~NN)~>~0--PN or ~>~0-QN which 

would contradict the fact that  O is general. Define the positive divisor ~)~m such that  

(OJNN) = g i  N)-  P N - Q N  + l)(~ m (13) 

and the meromorphic differential 

(l)kN ~ /k(1)NN. 

These differentials enjoy the property that  

k k - 1  

(oJ~v) i> DV ) - 7. P, + ~. Q, (14) 
t -O t - 1  

and they are the only ones with this property. Define the positive divisor ~)[k) such that  

k k - 1  

(o~,~) - Z)i ~ ) -  Z P, + Z '~ + ~(~) 
| - 0  t - 1  

From (13), it follows also ~0(~ N) is general and since oJ~ satisfying (14) is unique, ~)(k) is 

also general. Therefore we may define o~k~ to be the only differential such tha t  

and ~k) such that  

(~k~) = Dik)_pk_ Q~ + Di~). 

So far we have defined the last column and the diagonal of ~=(oJt~ ). The remaining 

differentials oJ~ are defined such that  

~.ONJ O)NN" 

The next step is to show that  o~ll=At~ up to some multiplicative constant, to begin with 

for i = N .  By the uniqueness it suffices to prove that  

(AN~) I> DI~)-PN-Q~. 
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Any regular divisor D(1 m can be approximated by regular divisors in ~0. The corresponding 

operators also approach the original one. Therefore it is legitimate to assume D(m in ~o. 

By Lemma 8, 
(AN~v~)oo ~ - P ~ - Q m  (15) 

the zeros of A ~ $  on Ro come from zeros of ANN, since ~ never vanishes on Ro (by Lemma 7). 

Since 

Am Au 1 ~< i ~< N ,  / ' =  A,,-G h = A,---N h, 

since Amh never has any poles on R0 and since every point of D<a u> appears as a pole of 

some [~, the minor AN~ vanishes at each of the points of Dim; 

combined with (15), leads to 
(ANN)o >/D~% 

(AN~) >/DI~)-PN-QN. 

To show this statement for 1 ~< i < N -  1, shift the matrix Cn - zI  up i levels and to the left i 

steps(x) and call (]~o ..... ]~-1, h) its eigenvector. Then 

k+! k+f -1  
[<kO=[k+,[i -~-A''~+' and ( [ ( o ) = ~ , ~ o _ ~ o _  ~ p j+ ~ Qj. 

l~l,t t-t+1 1--1 

Clearly the shifted operator is also regular, leads to the same curve and defines the points 

Pt  and Qi in the shifted order P ~ I  ..... Pn, Px ..... P~ and Ql+l ..... Qn, Qx ..... Qt. The functions 

]~o define a regular divisor of order 9, which from the relation above must be D~). 

Therefore assuming again that  by some small deformation ~)~l) is in ~o, 

But,  since 

it follows that  

(A,)o/> DT. 

(A,~) > /D~)-P , -Q~.  

Therefore A . ~ = o h e  This establishes the fact that  AT~=~. 

To show that  every divisor ~ m  is regular, consider the transposed difference operator 

C ~r. I t  leads to the same curve and the eigenvector is given by 

, A~v -x = Akk h-1  = oJ~  h_ 1 I,~ = h---N h , 'X~ a,,,,,,,, 

(~) T h e  d i a g o n a ]  e n t r i e s  of  t h e  n e w  m a t r i x  a r e  t h e n  (c~+1, t+t - z ,  .... c~w v - z ,  c a ~ -  z, ..., c u - z ) .  
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with divisor 
k k - *  

(/;) = ~ - D~ N~ - 2 Q~ + 2 PJ; 
1 0 

hence D~ N) and therefore every ~ )  (1 ~< i ~N)  is regular. 

This last part of the above proof may be rephrased as asserting that  if in the cor- 

respondence of Theorem 1, the 2 sets of data: 

{~, {P~}, {Q~}, z, h, Z)(~ N)} and C 

correspond to each other, then the modified data 

{R, {Q,}, {P,}, z, h -x, DIN,} and C T 

also correspond to each other. 

Also note that the definition of D as the least positive divisor such that 

k k - 1  

(s - 7 P, + 7 Q, 
t - 1  ~ -0  

shows immediately that  the set of d iv i sors /~)  (k 6 Z) have no common points; the same 

holds for the divisors D~k) (k6Z). 

Finally, in case )~ is singular, we must make the definition of D~N) more precise: (*) 

D~ m = set of points where (O~NN) >. 70~ N) -PN-QN,  

and if P is a singular point in this set, then 

Mp(D~ m) = module of meromorphic functions f such that  for all 

g eMe(D~N'), if" g" 0~NN) >/0 at  P. 
I t  follows that: 

Me(t)<1N)) = module of g such that  for all f s Me(~m), ( f .g .  O~NN ) >/0 at  P. 

So the relation between D~ m, D~m is symmetric and we still write this 

(C0NN) ffi V~ N> + V[ m -P~- QN- 

(1) In  the language of coherent sheaves, 

0(~D~ N)) = Horn (0(~)~N)), n(PN+QN) ). 

In  checking the above proof for the singular case, one must  use Serre duality for ~ .  For torsion 
free sheaves ~ ,  it says 

�9 Exd(~,~)=0, i>0 

H~(~) dual to /_/I-I (Horn (~, ~)). 
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w 3. Symmetric and seli-adjoint difference operators with examples 

There are two interesting special cases of difference operators: the symmetric and 

self-adjoint difference operators. They both lead to curves with involutions and to divisors 

with special properties. This is the topic of this chapter. At the end of it some examples 

will be discussed with applications to inverse spectral problems. 

THEOREM 2. There is a one-to-one correspondence between the ]ollowing sets ol data: 

(1) a regular, symmetric di]]erence operator Co] support [ - M ,  M] o] ~eriod N, modulo 

conjugation by periodic diagonal operators, with entries • 1. 

(2) a curve ~ possibly singular o] genus 

g = M ( N - 1 ) - n + I  

with ordered smooth l~oints Px ..... Pn and Qx ..... Qn, two meromorphic ]unction~ h and z 

with the properties given in theorem 1 with N 1 =N1 and M 1 =M~ and a regular divisor ~). 

Moreover, ~ has an involution v such that h T =h -x, z �9 =z, r =Qk and Z) has the property that 

D+t)~-P~-Q~ 

is the divisor o/some di//erential co on R. 

Proo/. This theorem results from combining Theorem 1 with the last remark of the 

previous section. We are simply dealing in (1) with a regular difference operator C rood 

conjugation by periodic diagonal A, such that  C T = A . C . A  -1. In fact, any such C is 

conjugate to a symmetric C' and this C' is unique up to conjugation by a A with entries _ 1. 

In (2), we are dealing with data (R, (P~ ,  {Q~}, z, h, l)} such that  R has an automorphism 

T carrying this data to ~ ,  (Q~, ~Pl~, z, h -x, ~'~. 

I t  is useful to see more explicitly how ~ arises. In fact, since C is symmetric, the 

algebraic equation 
F(h, h -x, z) = det (Ch--zI) 

is symmetric with regard to h and h -1, i.e., F is now a function of h+h -1 and z. Hence, 

the map 
(z, h)~ - (z, h -1) 

maps ~ into ~ and is an involution since T ~ =identi ty.  The formula for the genus with 

M = M '  and n - -n '  simplifies to the one above. Note that  a t = a '  and that ,  because 

zN~h -u' has value ai at  Pt  (resp. zNlh M~ has value ~ at  Qt), therefore ~(Pt)=Qt. 
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Finally, because C is symmetric it follows that  

A,j(z,/~) -- Aj,(z, h- l )  

i.e., as a function on R, A,joz=Ajt.  Therefore by Proposition 1, w 1, for all i and j, ~ acting 

on the divisor of o, j  is the divisor of o~,, i.e. 

1.12 "7- U 1  �9 

Since the 

particular 

divisors ~[J) have no common points, this implies that  (D[t))~=/)[o and in 

/)  + / ) "  - P .  - Q. -- (omv). 

Renmrle. Let R have an involution "c and let O be some origin in Jac (R). Then the 

Prym variety Prym (R) of R over $ (quotient of ~ by z) may be defined as the set of 

principal ~ E J a c  (R), /) a divisor ~ - z  ~l considered modulo linear equivalence, such that  

f~'O + ~ f"~o=O, (rood periods). 
~-1 j0~ ~-1 d0~ 

I t  is a linear subvariety of Jac (R). Moreover every holomorphic differential on $ can be 

lifted to a holomorphic differential on R which is invariant under 7. Therefore it is possible 

to find a basis 001 ..... o~ such that  oT - w t f or  1 ~ i ~ 90 and oT = - o ,  f o r  go < i ~ 9.  Since the 

relation above is trivially satisfied for o ' s  such tha t  w T = - o ,  it, in fact, reduces to g0 

conditions 

~ f i ' o ~ - - O ,  (modperiods), l < b < 9 0 .  

We show that  the regular part of Prym (R) can be parametrized by symmetric regular 

difference operators of principal type (p. 123). 

The symmetric regular difference operators of principal type lead to curves with an 

involution and to a principal divisor DEJac  (R) such that  

Z) + / ) ~ - P , , - Q ~  

is the divisor of some differential o0=AN~;  ANN is a meromorphic function having for 

divisor 
n n 

(ANN) = (Oo) -- (r = / 9  + Z)" --  = ~ P ,  - P .  - = Y Q, - Q . .  
1 1 
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Choose the origin to be ~ ~ P i + P n ;  then Abel's theorem tells you t h a t / g E P r y m  (~); 

a l so /9  is regular. Conversely, consider a regular principal d iv isor /9  in Prym (~), defined 

with regard to the origin a ~ P~ +P~. This implies the existence of a meromorphic function 

A having for divisor 

lg + TO*-:r ~ P , -  Pn-o~ ~. Q , -  Q,. 
1 1 

Then, co o = A~ satisfies 

(Wo) = O + D~-Pn-Q,~ 

and therefore /)  leads to a symmetric principal difference operator. 

The next  theorem deals with self-adjoint difference operators: 

THEOREM 3. There is a one-to-one correspondence between the /oUowing set o/ data 

(a) a regular sel/.adjoint di//erence operator C o/support [ - M ,  M] o/period N 

(b) a curve, possible singular, o/genus 

g= M ( _ ~ - l ) - n +  l 

with ordered smooth points P1 . . . . .  Pn and Q1 ..... Qn', two meromorlghic /unctions h and z 

with the properties given in Theorem 1 with N~ = N 1 and M 1 = M~ and a divisor l )  o/degree g. 

Moreover R is endowed with an antiholomorphic involution ~ /or which ~ \ ~ R  = ~+ U "R_ 

(disconnected) (de/ine ~ R = { p f i ~ l ~ = p } ) ,  such that P~=Q~ with P~e~+ and Qte~_,  and 

such that i] ~0*(P)=~0(P), then hh*=l and z=z*. The divisor 7D has the property that 

l~ + f ) -  P. -Q. 

is the divisor o/some di//erential on ~, which is real positive(x) on ~a. 

Remark. Note tha t  the regularity of ~0 is not assumed. In  this case, we will prove it 

using the relation 
~ +  t ) - P . - Q .  = (~) 

where o)>/0 on ~a.  

The proof of this s ta tement  goes in two steps: f i r s t / )  is shown to be general. Indeed, 

since co ~> 0 on ~ R ,  
? a  

R e s p .  o )  = - -  2~i Reso. o~ = l co 2~i > 0; 
R 

(1) This makes sense because ~R inherits a natural orientation as the boundary of the oriented 
surface ~+. 
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Pn and Qn are poles of o~ and therefore neither Pn nor Qn appears in D or ~ .  To show that  

is general, it suffices to show that  E(~)-Qn)={0) .  Suppose l~(~-Qn)~{0} and let 

satisfy (~) >~ - ~) +Q~; then (~v) = - ~) +Qn + E for some positive divisor ~ and 

(~*~) = - ~ + Q . +  ~ -  Z)+P. + s + D +  Z ) - P . - q .  
=~+~, 

contradicting 

f~R ~ * m  = f~R 1~[2c~ > O. 

In the second step we show that  

by induction. According to Step 1, this holds for k = 1 and h r. So, assume that  

k 

This fact and the Riemann-Roch theorem imply that  

( "I dims D+ ~P,-  ~ Q, =1. 

Let  ]k be the unique function in this space. Define 

Then in Jae  (R), 

This implies tha t  

and, hence 

k k -1  

1 0 

k - I  k - I  

Z) ~ - P ~ - / )  + 5" P , -  2 0,. 
1 0 

dim s162 = 1 

dim s  (k) -P k )  = O, 

since Pk does not appear in ~<k); indeed/~]~eo>~0 on }~n and 

*CO 

so that  the integral of/k/~o~ over ~R is strictly positive and therefore/k/~co must have at  

least one pole, the only possible ones being P~ and Qk. 
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This also implies that  neither Pk, nor Q~ ever appear in D (~) and, in particular, O does 

not contain Pn or Qn. 

Proof o[ Theorem 3. Given a self-adjoint operator C, we construct a curve ~ with the 

given properties. Since C is self-adjoint, 

det (Ch- zI) = F(h, h -1, z) = 0 

has the following form: 

M 
A o h M -I- ~o h-M-I- ~ (A t(z) h M-~ "}- (At(5)) h -(M-O) ---- 0. (16) 

Therefore, the map 
": (z, h) -~  (~, I; -1) 

defines an anti-holomorphic involution from ~ into ~. But  if [hi= 1 the finite matrix 

Cn is self-adjoint and therefore has a real spectrum. Therefore the fixed points ~n for 

this map are given by 

= {(~, h)[ Ih[ =1}  
a n d  

R\RR = {Ih l> l }U ( Ih l< l }  = ~+u R_ 

with ~+BP~ and ~_3Q~; this defines two distinct regions ~+ and ~_, whose boundary is 

given by ~R and therefore ~R is homologous to zero. ~R will consist of possibly several 

circles #j with a definite orientation as noted in the footnote above. Since ~ = ~ ,  we have 

P~ =Q~; moreover this involution extends to the field of meromorphic functions as follows 

and to meromorphic differentials as follows: 

With this definition 
(~od~)* = ~o*d~v*. 

h* = h -1 and z* = z. 

By Theorem 1, the difference operator C maps into a regular divisor ~ such that  

(co) = (O~NN) = (~A~N) = D + D '  - P n - Q ~ .  

Next, we show that  ~ ) ' = ~ .  But, because C is sell-adjoint, i t  follows that  

(17) 
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Therefore, by Proposition 1, for all i and ~, ~ acting on the divisor of co u is the divisor of 

colt , i.e., 

~i " -  ~`' ,  = ~" + ~ i  '> "1- L/2 

Since the divisors ~)(1 j) have no common points this implies tha t  ~)(1 *) = 9(2 t) and in particular 

~=~. 
Finally, we show that  o~ ~> 0 on ~n for some appropriate normalization of ~. To do this 

take the differential of F: since z only appears on the diagonal C a - z I ,  

N h ~F dh 
- ~ A . d z +  ~ - ~ = 0 .  

t - 1  

Using this relation, and choosing ~=- idz (hSF/Oh)  -1 and using Proposition 1, 

dz - i dh/h - i dh/h - i dh/h 
co = ~ ANN = -- iANN - -  

= - i d h / h  Z~--ANt [AN,~* (since A*,= A~, l~<i~<zY) 

1_, h-22 ~h-22 
- ~ h / h  
N 

~1,1" 
t - 1  

Note that  this formula shows that  o~* -- o~. We now show that  co >/0 on )~n. Indeed on Rn 

N 

~. I i i* = ~11,1~>~ o.  
I - I  

To show that  - idh/h>~O on Rn, let h=oel~ at  all but  a finite number of points, h is a 

local parameter on R, and 0 is a local coordinate on Rn. Since - i dh/h = dO, co >1 0 at these 

points, hence by continuity, at  all points. 

Consider now the converse. The curve R has the properties listed in (b), in particular 

it has an antiholomorphic involution p -*  l~ such that  P , = Q v  The curve of fixed points 

R n = { p l p = ~ )  divides R into two distinct regions R+ and )~_, the first containing the 

points P~ and the second the points Qv The curve Rn can thus be regarded as the boundary 

of R+ or R_, (thus Rn is homologous to zero). 
Choose any r e g u l a r / )  such that  

O + ~ - P n - Q .  =(co) 
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where co =o)* and it is real positive on Ra. This means tha t  if z0E RR and t is a local para- 

meter  at  z o where t is real on 7~a, I m  t > 0  on ~+, I m t  < 0  on ~_, then 

~o=a(t)dt, a(l)=a(t), a(t)>~O iftER. 

Let [~ be the usual meromorphic functions associated to ~), i.e., such tha t  

Let  

k k - 1  

(/k) ~> - • P , +  5 Q,-~O. 
1 0 

k k - 1  

O~- (I~) + D + Z P , -  • Qk-1. 
1 0 

Normalize ~ as before such tha t  l~+~ = hlk. We now define a scalar product between the 

[k's, i.e., 

When/r (/k, [z)=O; indeed, for Ic>l 

k k - 1  l l - 1  

(I~/*w)=Dk-D-SP,+ 5 Q,+~,-~)-SP, + ~: I~ ,+O+~-P. -Q.  
1 0 1 0 

k k - 1  

=Ol,+O,- ~.P,+ ~. Q,; 
1 1+1 

it tells you t h a t / k / ~ o  has no other poles but  at  some of the points P~, i.e., in the region ~+ 

only. Since ~R is the boundary of tha t  region and homologous to zero and since 

Res/k  f* eo = 0, 
Pi 

the conclusion above follows. A similar argument  proves the assertion when k < 1. For k = l, 

again because on ~s ,  m is non-negative. 

Since 

2~iRes,k(/k/~ )= I/ 1' o>o 
R 

the [~'s can be multiplied with positive real constants such tha t  

(s = - i .  Resp k * (20) 
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This is compatible with the normalization h h * = l ;  it suffices to multiply co with a real 

multiplicative constant (which can still be done) such tha t  

R e s p  n ( m )  = - i .  

Consider now ~ such tha t  ~* =~.  The matr ix  of the operator C[~] associated to ~ is 

defined by: 
~]k = ~ a~/l.  (21) 

l 

Now 

Also 

Resp, (~/k/~ co) = E ak, ~ Resp, (/,/~ (o) = - ia~ j .  
I - 1  I I - I  

(22) 

~--I i-i 

~-1 

- 2 Rese, (~]j/~'co) 
= ia m. 

Therefore gk~ = ajk, i.e., the operator C[~] associated to ~ is self-adjoint. In  particular, z* = z; 

therefore the operator C is self-adjoint. The rest of this chapter will be devoted to the 

application of these theorems to a few examples. 

1. Consider a second order symmetric  difference operator(1) of period N,  i.e., 

(O/)s, - b~,-, lk-1 + a~/k + b~,/k+l with a~+N = a~, bk+~ = bk E C. 

Here M = M ' = I  and n = l .  I t  is regular as soon as bk*0  (l~<b~<N). Then 

C h - z I  

- a l - z  bl 0 . . .  b s h  -1" 

b~ aa - z b2 

0 b~ aa - z 

�9 _ " o .  

a~-s  - z blv-s 0 

bN-s aN-1 -- z bs_ 1 

bNh . . .  0 b~- i  a N -  z 

(1) Observe that any second order difference operator can be symmetrized by conjugation with 
a diagonal matrix. 
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is a t~idiagonal period matrix, with determinant 

F(h, h -1, z)=(-1)N+l(~lbl(hq-h -1) -- P(z)) = 0, 

where P(z) is a polynomial of degree N with leading coefficient = 1. Setting 1-I N bl =A ~=0 

1 
h(z) = -2A (P(z) +_ l / ~  - 4A 2) 

1 (P(z) T- UP(z) ~ - 4A 2) 
2A 

Therefore the curve is hyperelliptic of genus g =_N-1 with two points P and Q at infinity; 

besides (h)= -_NP + NQ. Moreover, switching the sign of the radical in the formula above 

amounts to changing h into h-l; therefore the involution ~ coincides with the hyperelliptic 

involution. The fixed points for this involution are given by the 2N points where 

h =  •  i.e., the branch points. Let ~ and ~ be homology cycles (1 ~ i ~ g ) ;  then the fact 

tha t  ( h ) = - N P + N Q  implies the existence of a closed loop ~ nt~t+mtfl~ such that  

~n~ o ~ + ~ m  I oJ=N o~ 
1 1 J ,6~ 

for every holomorphic differential. This amounts to g relations between the branch points. 

So, any hyperelliptic curve coming from such a tridiagonal matrix satisfies these relations 

and vice-versa. 

The inverse problem, as discussed in [ 12, 22], is an immediate consequence of Theorem 2. 

Let the spectrum of C1 (i.e., Cn for h = 1) and I-IN bt be known. Let also the spectrum of the 

matrix C O be known; C O is formed from C 1 after removal of the last row and column. Then, 

the matrix C is completely known up to at most 2 N-1 ambiguities. 

Indeed, the knowledge of A =I-IN b~ and the spectrum of Cx determines the equation 

A (h + h -1) - P ( z )  = 0 

and therefore the hyperelliptic curve ~. The matrix C O has N - 1  =g spectral points in C. 

They can be lifted up to j~ in 2 g different ways, if no one of them coincides with the branch 

points and if no two of them coincide. Each of these ways leads to a regular divisor ~ of 

order g such that  

D + D ' - P - Q  m \Vp(z)~_4A~ /"  
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Each one of the regular divisions ~) determines in a unique way a periodic tridiagonal 

matr ix  C modulo conjugation by  diagonal matrices with entries ___ 1, such tha t  the 

spectrum of C O is the one given above. Observe also tha t  P rym ( R ) = J a c  (R). 

2. Let  C be a self-adjoint periodic difference operator(1) 

(C])h=$k-xfk-~ +aJ~ +bJk+t with ak+N=akER, bk+N=b~#O. 
Then 

iV(h, h -1, z) = ( - 1) N+I (Ah-t- A h - s - P ( z ) )  = 0 

where P(Z)=zN+... is a real polynomial of degree iv. This defines a hyperelliptic curve 

whose branch points are located a t  the values of z where h(z)= +_ I A I /A ;  for each of these 

values of h, the matr ix  C n - z I  is self-adjoint. Therefore the branch points are real. The 

involution ~ transforms a point of R as follows: take the complex conjugate in C and 

flip sheets. 

3. Next  consider a symmetric fourth-order difference operator 

(Cf)k = ck-jk-~ + bk-x/~-i + a~s + b~/k+l + c~f~2 

with a~+N=a~, bk+N=bk and c1,+N=%. Here M = M ' = 2 ,  so tha t  (iv, M ) = n = l  or 2; so, a 

distinction must  be made between iv odd and iv even. When iv is odd, the regularity 

reduces to the condition tha t  % # 0  (1 ~<k~<iv) and when iv is even, it reduces to ck#0 

(1 --<k--<iv) and 
ctcsc5 ... cN-x ~c~c4c6 ... oN. 

I n  either case 

i V ( h ,  h -1, Z) = det (Ca - zI) = A(h + h-X) 2 + Pl(z) (h + h -t  ) + P2(z) 

with Ps(z)= (-z)N+ ... and deg Pt(z)~< [N/2] with equality ff N is even. This implies that R 

is a double covering of the hyperelliptic curve $, defined by 

Ag 2 + Pt(z)g + P~(z) = 0 

ramified a t  the 2N points on $ where g = h + h - X = + 2 ,  i.e., where h = + l .  When N is 

odd, $ is ramified at  infinity, so tha t  R has two points P and Q covering z = ~ .  I f  iv is even, 

S is not ramified a t  infinity, so tha t  R has 4 points P1, P2, Qt and Qs covering infinity. 

Then 
(h) =- - IVP + ivQ N odd 

iv iv 
"= - - ~  (PI + P 2 ) + ~  (QI+Q2) iV even. 

R has genus g ~ 2 i v - 2  or 2 N - 3  according to whether N is odd or even. 

(1) Unlike in the symmetric case, a second order difference operator cannot necessarily be made 
self-adjoint by conjugation with a diagonal matrix. 
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The inverse problem can now be formulated as follows. From the knowledge of the 

spectrum, the antiperiodic spectrum of C and `4 = l -~  c~, you can reconstruct the curve }~. 

A generic set of g points in C leads to 4 g regular fourth order difference operators. 

Indeed from .4, from the periodic and antiperiodic spectrum of C you know the 

polynomials 
4_.4 + 2 P  l(z) +P~(z)  = ( - z) N +. . .  

and 
4.4 - 2P1(z ) +P~(z)  = ( - z) N +. . .  

Therefore P1 and P~ are known; this defines R completely. The generic set of g points in C 

can be lifted up to ~ in 4 g ways, defining 4 g different divisors ~ .  Each one of those leads to 

a fourth order periodic difference operator which is not necessarily symmetric. Only, 

when D is in Prym (~), C can be made symmetric by conjugation with a diagonal 

operator. This imposes g o = [ ( N - 1 ) / 2 ]  conditions on the choice of the g points in C, ex- 

pressing the fact that  they must be roots of the function A~N(z); the latter is symmetric in 

h and h -I if it is to come from a symmetric operator. 

w 4. Flows on the Jaeobi variety and symplectie structures 

As a result of w 2, the Jacobi variety (except for a lower dimensional manifold) can be 

parametrized by difference operators of a given order with the same h-spectrum. Therefore 

the linear flows on Jac (~) (with regard to the group structure) can be regarded as 

isospectral flows on the space of difference operators. This section shows that  these flows 

can be expressed in terms of Lax-type commutation relations. Let  A denote the ring of 

meromorphic functions on ~, holomorphic on n0. Since z, h, h -1 are affine coordinates on 

}~o, .,4 is the ring of polynomials in z, h, h -1. Let  {e%~ be a basis for the space of holo- 

morphic differentials. 

THEOREM 4. E v e r y  l i n e a r / l o w  on Jac  (~) 

is  associated wi th  a ]unction u = P ( z ,  h, h -I) in  A such that 

a~-- ~ Resp~ (c%u). 
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This ~low ks equivalent to the system o I di//erential equations, given by(1) 

0 = [c[u]+, C] or 0 - [C[u] c+~, O] 

where C[u] =P(C, 8, S-x). 

These two equations give flows in the space of periodic difference operators tha t  

differ by conjugation by a periodic diagonal A(t). 

This theorem is equally valid whether ~ is singular or not. I t  is important  to realize 

that  by considering integrals of the differentials ~] fi~, we get for singular ~ also an Abel 

mapping from principal divisors mod linear equivalence to points of the generalized 

Jacobian variety. A good reference for this is Serre [28] or Rosenlicht [27]. 

In  the proof of the theorem, to avoid questions of convergence, it is best to ap- 

proximate the given ~ by divisors ~(s) made up of smooth points of ~, and correspondingly 

approximate C by C(s). If the flow through C(s) is given by our formula, then by passing 

to the limit, so is the flow through C. We first prove 2 simple lemmas: 

LEMMA 1. Let 19 = ~ v, be a regular laoint ol Jac (~). Let 19(0 = ~ v ,(t) and O'(t) = ~ v~ (t) 

be in a small enough neighborhood o/ 19, such that 

and 

then 

and 

~. f'r l < j < g  
I -1  d'e~ 

o(t'), .< j.< g 
( -1 J ~,~(t) 

s - /~ = o(t) 

s /'~(t) = o(t,) 

unilormly over any open V such that V c  no\D, where/k,/~(t) and/'~(t) ~orrespond to D, 

D(t) and D'(t) respectively. 

The proof follows at  once from the fact tha t  the functions /k depend analytically 

on their poles. This dependence will be made explicit in w 4, where/k will be expressed as 

quotients of theta functions. 

(1) For any difference operator C, define 

C~-Otj  i f i < j  and 
=0 i f i > j  

Define C- in the same way and C [-3= C -  C t+l 

(O[+])a j = Ctj if i < j 
-~Ot~ ififfij 
=0 if i>j.  

9 - 792907 Acta mathematlca 143. Imprim6 le 28 Septembre 1979 
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L v, M M A 2. Consider a point P E C, a holomorphic di]lerential eo = q~dz in the neighborhood 

V o / P  and an analytic/unction u in V with a pole o] order n at P. Consider t E C small enough, 

so that the n points P=(t), where u(P=(t))+t-l=O, belong to V. Then 

d n fPc,(t) 
lim~.o -dr =~=i JP o~ = - Resp ~ou. 

Proo]. Let  eo =d~ with ~(P) =0.  Then for any path r~ enclosing the zeros P~(t) of u + t  -1, 

1 n l'P~(t) 1 
-t,.xJp ~ o~ = ~ ~ v/(P,(t)) 

1 u '  
= t ~ R e s e ' ( ~  1 ~ 

t 
t 

= ~  ~ .  

When t tends to zero, the right hand side tends to 

'L u'~o dz = - 2"~-~i u ~ o  = - Rese ( u ~ o )  

Proof of Theorem 4. Consider u E A. Assume D in ~o; the proof extends easily to the 

case where D is not in n0. Then u splits into two functions g+ and g_ according to 

Then, since 

we have tha t  

and 

o K 

~ = , # o  = Y~ c,.,l,= Y. ~,.,1,+ ~ ~^, . , l ,=g-+g+.  
1- -K'  | -  -K'  ~-i 

( g + ) > ~ - Y P , + Q I - O  and (g_)>~ - ~ Q , - O  (25) 
1 - i  

1) ~ 
g+ + ~ = - ~ P, - 19 + ~ P,(t) +/gCt) (26) 

g _ -  = -  Q, -D+Y.Q, (O+/9 ' (O 
-1 -1 

where D(t) (resp. D'(O) is a divisor of order g, near D and each P,(0 (resp. Q,(0) is near 

P~ (resp. Q~), as near as you wish by choosing t small enough. Let  ~ ) - - ~ t ( 0 ) = ~ ,  
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D(t) = ~ [  rt(t) and ~0'(t) = ~ v~(t). Then vl(t) as a function of t, is holomorphic in t, because 

near ~, the function g+ behaves as 

=5_1+ ... 
g+ b o q-- b 18 -{- 

8 

in the local parameter s. Putt ing g+ + t -1 = 0 leads to an expansion of s as a power series in t. 

Using Abel's theorem 

(27) 
dVt I--I ~IJ1[ {--1 d Q{ 

for every holomorphic differential to. From Lemma 4 it follows that  

1 E re,(t) 
' ~  ~t~1 JPl ('O~ -- |-1 ~ ReSpI (o~g+)" ( 2 8 )  

The same argument applies to the function g _ -  t -1, yielding 

lim 7 ~ to = Resr ( ~ g - ) .  
t - ~  ~ I -1  JOr t - 1  

Observe the change in sign with regard to (28), as a result of considering the function 

g _ - t  -1. In view of (27), (28) and the fact tha t  ~9 belongs to )~0, we conclude tha t  

and 

Therefore also 

co = - t Rese, (~ou) + O(r ~) (29) 
t - 1  dye I - I  

f"". ,- ,   oso, o<, 1 
t - 1  .y~,r I - I  

Y ~=0(t~). 
J ~dt) 

Since the regular divisors form an open subset in Jac ()~), take t small enough, such that  

~0(t) and ~'(t) are still regular. Denote by tk(0 (resp. [~(t)) the unique meromorphic func- 

tion corresponding to ~(t) (resp. ~ ' (0) .  Then 

k K k -1  K 

((z + tg+) s > / -  2 P, - 2 P , -  ~ + 2 Q, + :~ P,(t) 
1 1 0 1 
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and 
k-I -K" k --E" 

((1-tg_)l'~(t))>~ 2 Q , -  2 Q , - D - Y . P , +  Y. O,(t). 
0 -I X -I 

From Lemma 5 (w 1), it follows tha t  (1 +tg+)]k(t) and (1-tg_)/k(t) have an expansion in 

terms of the ]=(0)'s 
(1 +tg+)lk(t) = ~ as 

and 

(1- tg_) l '~( t )= ~ a~(t)l,(O). 

The difference of these two equations reads 

(as -a;~(t)  ) t ,(O ) = tk(t) - /'k(t) + t(g+t~( t ) + g_l'k(t) ) 

= tuldO) + tu(l~(t) -/,,,(0)) + (t~(t) - l 'k(t))(1 -tg_) 

= t Y~ C[u]~,l,(O)+O(t =) 

uniformly over any open set such tha t  lTc Ro\D. Since the functions/,(0) are independent, 

we conclude tha t  
a ~ ( t ) -  a~(t) - tC[~]k, + O(t~). 

Since ]k(t) is defined up to multiplication with some function of t, it can be determined such 

tha t  a~k(t) = 1 + O(t 2) or a~k(t) = 1 + �89 + O(t2). Therefore a~(t) = O~t + tC[u]~l + O(t 2) or 

a~(t) = ~k, + tC[u]~ + O(t~). 

Finally write the column vector (1 +~+)zj(t) in two different ways, using the results 

above. On the one hand 

( l  +tg+)zl( t)  = (t + tg+ )c (o  1(0 = c ( o ( t  +tg+) l(O 

= C(t) (1 + tC[u]+ + O(t=))1(0) 
and on the other hand 

z(1 + tg+)l(t) = z ( I  + tc[u]+ + O(t~))I(O) 

= ( I  + tC[u] + + o(t=)) c (o)  1(o). 

Both relations are valid for all (z, h) E V. In  each of the cases C[u] + m a y  be replaced by  

C[u] E+~. Then also 

(I + tC[u] + + O(t 2))-x C(t) (I  + tO[u] + + O(t=))/(0) = C(O) I'(0). (30) 
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So, the dependence of ~0(t) on t given by (26) (at least for small enough t) can be expressed 

equivalently as (29) or (30). Differentiating both (25) and (30)with regard to t and letting 

t40, we conclude that  the flow 

0 = [O[u]+, O] or O = [O[u] t+~, O] 

is equivalent to the motion 

~(0) o~O't(O)) ~ -- ~ Res~y (mu) for every holomorphic co. 

The proof of Theorem 4 is finished, if every flow is shown to occur in this fashion. 

I t  suffices to show that  the mapping 

u-~ ~ Resp I (o)~u) 
t = l  

maps A onto C e. Observe that  it is possible to find a function in ~4 with arbitrarily 

prescribed polar parts at all of the points P~, provided arbitrarily large poles are allowed 

at  the points Q~. But  the power series expansions of co 1 ..... eo e at P1, say, are linearly inde- 

pendent, so their Nth  order truncations are independent for N ~ 0 .  Thus a suitable u with 

Nth  order poles at  P1 and regular at the other Pt  will give any sequence of g constants 

Ress, Cook u). 
r  

I t  is useful to have an explicit basis for the space of holomorphic differential forms 

on ~. The result is this: the forms 

h k z ~ ,  i>~O 

k N  1 + i M  1 ~ o~ = N M  1 -  M 1 - 1 

- k N ' l  + i M ' l  <~ ~ '  - N M ' ~  - M'I  - 1 

are such a basis. One way to check this is to note tha t  these forms are linearly independent 

and to prove there are g of them, using a counting argument. Another method comes 

from the toroidal embedding. We explain both methods. The first one is based on a 

combinatorial lemma: 

LEMMA 3. 

#(i, k>~l such that  Nlk+Mli~N1Mln-1}=2(nN1M1-N1-MI-1)+I 
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k-axis 
line -- N~n 

, line k = M 1 n 

/-axis 

Figure  2 

Proo/. In Figure 2, we observe that  

# lattice points on T1U T20 d = ( N l n - 1 ) ( M l n - 1  ) 

# lattice points on T I =  # lattice points on T2, because (i, k)-~ ( N l n - i ,  M l n - k  ) 

interchanges them. 

# lattice points on d = n - 1 .  

The result follows at  once from this count. 

The rest of the argument goes as follows: the set of (i, k) such that  

i >~O, k N  1 + i M  1 <~ n N  1M~ - M 1 - 1 

- kNi  + iMi  <~ n'lVi M i  - M~ - 1 

can be decomposed into 

and 

(i~>0, k>~l such that  

(i i> 0, k ~< - 1 such that  

{i >i0, such that  

kNl  + (i + 1) M1 <~ nN1 M1 - 1 }, 
- k ~ r  + (~ . . . .  + 1)M1 <~n N1M1 - 1} 

(i + 1)M 1 <~nN1M 1 - 1 }  

whose total cardinal according to Lemma 3--equals 

t 
( n N 1 M  - N 1 - M I -  l ) +  1 +-~ ( n ' N ~ M ~ - N ~ - M ~ -  1)+ 1 + N -  1 

As announced, the second method comes from the theory of toroidal embeddings 

(Kempf et al. [13]). We merely sketch this. The idea is to embed all the Riemann Surfaces 
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asociated to C with fixed N, M, M'  in one rational surface X, and to write holomorphic 

1-forms on ~ as residues of 2-forms on X with poles along ~. More precisely, X is the union 

of 3-affine pieces: 
Xl--SpecC[ .... z'/~ ~ .... ] ~>o 

X z = Spec C[ .... z~h ~ . . . .  ] ,>to 
- M,  t -  N ,  k>~O 

X 3 ffi Spec C[ .... z'fi ~ . . . .  ]-M~,+N~k~>0. 
- M ,  ~ - N , / c ~ > 0  

X contains the affine surface Spec C[z, h, h -1] which contains the affine curve n0. I t  is not 

hard to check that  the closure of J~0 in X is precisely ~ and that  ~ misses the singular 

points of X. The maps z~-~z, h~-~ph extend to automorphisms of X, so X is a " torus 

embedding" in the sense of [13]; in fact  in the notation of the book, it  is the one associated 

to the simplicial subdivision of the plane into the 3 sectors: 

/ 
/ 

J 
/ 

/ ( -MI , -N1)  
/ 

Figure 3 

If  co(~) is the sheaf of meromorphic 2-forms on X, holomorphic outside the singular points 

of X except for simple poles at  ~,  then residue sets up an exact sequence: 

HO(~) ~ r(~o(Tl)) ~ r C ~ )  -~ m ( ~ )  

and as H'(o~), H2-'(O,) are dual and H*(O,) •H2(O,) •0 (cf. [13], p. 44), it follows that  

res: lP(co(~)) ----} F(~/u). 
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Explicitly this means that  every holomorphic 1-form on ~ is uniquely expressible as 

ReS~ ( F ( ~ , ' d z  A dh 
S j . 1,) 

where g=g(z ,  h, h-*) is chosen so that  the 2-form in parenthesis has no poles other than  

F = 0 .  There are 3 possible curves: (1) hEC*, z=0,  (2) hU~.zN'lEC *, h==0, (3) hM'z-N*6C *, 

h - I=0 .  Checking the order of pole at  each of these, we find that  if 

g = 7. a~hkz  ' 

then a~k~=O only if 
i>~l  

- i M ;  + khr~ >1 1 - NM'x  

- i M  x - k N  1 >~ 1 - N M  1 . 

Theorem 4 shows that  the isospectral flows for difference operators (written in the 

Lax form) can actually be linearLzed: they are linear flows on the Jacobi variety of the 

corresponding curve. In the second part of this section, we show that  these flows derive 

from Hamiltonians according to a co-symplectic structure on the space of all periodic 

difference operators suggested by group-theoretical considerations. Consider the group G 

of lower triangular invertible matrices (including the diagonal) of order h r. Let g be the 

Lie algebra of lower triangular matrices and g' be its dual, namely the space of upper 

triangular matrices, g and g' are paired by the trace of the product. Let ~6G, X 6g and 

f Eg'; the adjoint action amounts to conjugation a. X =a-XXa and its coadjoint action 

amounts to conjugation and projection on g', i .e .a . /=(a-X[a)-(a-1]a)  -. Fix an element 

/Eg' and consider the orbit G . f c g '  of f under the action of the group G. According to a 

theorem by Kirillov and Kostant  [14] the orbit G . / i s  endowed with a natural symplectic 

form, i.e., an alternating two-form in the tangent plane T~ to the orbit G-f at  a given 

point h. Since G acts on g' by conjugation, 

Th = (locus of points ~nA, A Gg, where ~hA =[h, A ] - [ h ,  A]-}; 

let ~nA and ~hB6Th; then 

oJ(~hA, ~hB) - T r  (h[A., B]) 

is a non-singular alternating 2-form, so that  the orbit G . / i s  even dimensional. Instead 

of introducing a skew-symmetric form on the tangent planes to each orbit G.~, it  is 

completely equivalent to introduce a skew-symmetric form on the co-tangent planes. 

Such a form is just a skew-symmetric Poisson-bracket on pairs of functions on G.], whose 
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LEMMA 5. { ,  } satisfies the Jacobi identity. 

Proo�91 In general, when we are dealing with a Poisson bracket structure on a vector 

space, we can make a preliminary reduction in the proof of Jacobi's identity as follows: 

write 

{t,g}(~)=5.&,(~) ox, ,~.," 
Then 

0 ~ .-.OA. ~l ~(l,g~:z~ ~+A.. off og Ox~ax~ . _~xj+ A~j. ~x~" 02g b~"  Ox~ 

We claim that  when you evaluate {[, {g, h}} + {g, {h, ]}} + {h, {[, g}} the terms involving 

the 2nd derivatives of 1, g and h always cancel out. This is easy to check directly, and it 

also follows because Jacobi's identity is equivalent to &o = 0, eo the dual 2-form; and dec = 0 

is automatic when the coefficients A ~ are constant. 

In our case 

and 

~c{F, G} = (2nd derivative terms)+ L\oC! ' koc/  ] - [~oC/ ' k ~ !  ] 

[laF M taaV+q (~C{F,G})[+]=(2nd derivative terms)+ L\~/ ' \~/ J 

(since neither of the Lie bracket terms have any diagonal entries). Thus 

{H, {F, G}} = (2nd derivative terms) 

~r/OH\ t§ rp_FW ioaV+q r  Hv-, [{oFV-'   aV-'ll & - /  

Writing this out for {H, {F, G}}, {F, {O, H}}, {G, {H, F}} and summing, the right hand 

side is zero by the usual Jacobi identity for Lie brackets. 

THEOREM 5. The linear !lows on Jac (~) are Hamiltonian flows with regard to She 

Poisson bracket { ,  }. In  particular, in Poisson bracket notation, a typical/low 

0 -- [0,  (S-~Vz) t§ 
can be written as 

e~j = {F, c,,} 
w h e r e  

F(C) = ~ Tr (S-kC~§ 
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Proo/. To begin with, 

~ T r  = (l+ 1) (s-~o,+l) (s-~o,) ~. 

Indeed, by direct calculation, 

k /+1 ~ - -  ~--- Tr (S- C )= Zc~ ~ c,.,,%.,.... C,,_1.,~C~,.~+kN 

where the sum extends over 1 < i <N,  l i -  i 1 [ ~< K, ] i , -  i 21 ~ K ..... and l i , -  (i + kN)[ < K, 

l 

= ~ ~ct.t,c~,,~, . . .  c ~ m _ l . , , c ~ . , , ~ + ~  . . .  ~,.~+~N 
m=O 

the latter sum extending over 1 <i<.2Y, l i- ix[ <K, [ i1- i , [  < K ,  ..., l im_l-xl  ~<K, 

Ifl-i,,+2] <~g, ..., l i , - ( i+kN)[  <.g 

l 

= ~ ~c#.~+, ... C,,.~+kNCt+k~.,,+kN ... C~_,+kN.~+~N 
m--O 

= (1 + 1) (S -* .  CZ)~,,. 

Let E,~ be the "elementary" matrix 

1 if (k, 1) = ( i + l N ,  ~+l~), some 1EZ 

(E~j)~.z= 0 otherwise. 

We check that  the derivative of the fuhetional C ~ c ,  is given by: 

~ (c.) : E, .  

Thus we can calculate {F, c~j}: 

{F, %} = <[((S-*. C')~) t§ El; ]] - [((S-*. C')~) [-], EF]], C>. 

If i< ] ,  E[7]=O, E[~]=E,~, so 

{F, c,} -- <[((S -~" C')~-~) ~, E~], C> 

= <[(S -~. C') [-~, C], E,~> 

= [(8 -~- C') [-], C],~ 
If i> ] ,  ~ H _ n  [-] ~ U  --v, ~ | t  = E~t , SO 

{F, %} = - <[((S -~- C~)[+]) ~, E,~], C> 

= -<[(S -~. C') t+~, C], E,,> 

= - [(S -~. Cq m, C],~. 

1 0 - 7 9 2 9 0 7  Acta mathematica 143. I m p r i m 6  le 28 S e p t e m b r e  1979 



140 P.  VAN M O E R B E K E  A N D  D .  M U M F O R D  

If i =],  we get the sum of half of each. Using the fact tha t  C commutes with S-kC ~, we find 

[(8 -k. CZ) t-J, C] = - [(8 -~. Cz) M, C], 

so in all cases, we get 

{/~, c,,} = - [(8 k. Cz) m, C],, = [C, (8 ~" C~)H],j 

as asserted. 

THEOREM 6. Any  two lunctionals Tr (S-kC l+*) have Poisson bracket zero: i.e., we have 

a set o/Hamiltoniana in involution. I1 to every C 6 ~ we associate the coe//icients o/hkz ~ in 

det (C a -  zI), these ]unctionals are also in involution and through each C, generate the same set 

o//lows. 

Proo/. The first step is to show that  any two expressions of the form 

H, = Tr (S-~C '+I) (32) 

commute with one another for the symplectic structure. Consider the Hamfltonian vector 

field X~ derived from H ,  acting on dffferentiable functionals: 

x,(r = (a,, r  

Theorem 5 tells you that  this vector field acts on C as fo|lows. 

0 = [C, (S-~Cz)m]. (33) 

This flow preserves the h-periodic spectrum of C (i.e., the spectrum of Ca) for every 

h6C. Therefore it preserves Tr  (Ch)a--Tr (Ca)a for every non-negative integer ~, and in 

particular the coefficient of h$ in Tr  (Ca)a, namely Tr  (8-#Ca). Therefore this flow leaves 

invariant every H~, i.e., {H~, Hi} =0; also, the Lie bracket {X~, Xj} vanishes, because 

{X. X,}F = (X,Xj-XjXJF 

= (H,(H,,  r  ( a , ,  ~}} 
= ((H,, a,}, F} 

=0 

using Jacobi's identity. Finally the coefficient of z N-z in det (Ch- z I )  is a polynomial in 

Tr  (Ca) l for 1 ~<i ~ l  and Tr  (Ch) l is a polynomial in the coefficients of z N-*, 1 ~<i ~/.  There- 

fore the coefficient of h~z I in det (Ca- z I )  will be a polynomial in the coefficients of h k in 

Tr  Ca for 1 ~<i~<l; i.e. in the quantities Tr  S-kC ~. This proves the second assertion of the 
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theorem. Observe that  since Ch is N x N ,  the expressions Tr (Ch) t for i > N  are linear 

combinations of Tr (Ch) ~ with i <N.  So, no new functionals arise by considering Tr S-kC t 

for i >N.  

Re,hark 1. Some of the coefficients appearing in det ( C h - z ] ) = 0  lead to identically 

zero vector fields. For instance the coefficients of z ~-1 equal Tr C; but  since ~(Tr C)/~C = I ,  

its Hamiltonian vector field vanishes. 

Re,hark 2. Consider the special case of symmetric difference operators. Let Aoc  A 

be the subring of functions u such that  u ~ -  u. The functions of ~o lead to linear flows in 

Prym (~), because for 1 ~<k~<g o (for which en~=r 

and, moreover 

Therefore 

Rese, (wku)= ~ Resr (to "u*k ) = ~ Resr (wku) 
t - I  t -1  iffil 

n 

Resp, (oJku) + ~ ResQ, (e%u)=0. 
- I  | - I  

~. ' [  •O for l~<k<~ 
f 

oJk g,. 
Jo, i - 1  

Since • is the polynomial ring in h, h -I and z, the ring ~40 is the polynomial ring in h + h -I 

and z. Therefore all the flows in Prym (~) translate into flows of the type 

0 = [C, ((~k + 8-~)Cq+] 

= �89 ((~k+S-~)C')+- ((S~+S-~)Oq-]. 

Notice that  if C is symmetric, ( S ~ + S ~ ) C  ~ is also symmetric and the flow above is 

generated by an antisymmetric operator, which indeed preserves the symmetry of C. 

Examples.  

1. Let C be an infinite (generic) tridiagonal matrix of period N. Let 7~ be the hyper- 

elliptic curve associated with it; let P and Q be the two points at infinity. Moreover, with 

the notation used in Example 1 (w 2), a basis of holomorphie differentials is given by 

Z k-1  d z  
where R(z) = P(z) 2 - 4A ~. 

Moreover, since the order of zero of e% at P or Q equals g - k ,  

ak=Re%(mkzt )=0  f o r k < g - j + l  l~<~<g 

# 0  f o r k = 9 - ~ + l  l~-j<~g. 
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Therefore a complete set of flows is given by the functions z, z 2, ..., z g, so that the most 

general isospectral flow for C (i.e., leaving the spectrum of C and A unchanged) is given by 

a polynomial P(z) of degree at most g: 

= �89 P(C)+-P(C)-]. 

The Poisson Bracket between two functionals F and G has the simplified form 

O F  ' 

Ob / 

where @F/~a and ~F/~b are the column vectors whose elements are given by @F/@at and ~F/Sb t 

respectively and J is defined as the 2n • 2n antisymmetric matrix 

where 

0 
_BT 0") 

I b 1 0 0 ... --bN \ 

) - b 1 b~ 0 i 

B - -  2 0 - b2 b3 

0 ... - bN-1 b~ 

The symplectic structure is given by 

N 

The g independent quantities in involution, leading to g independent flows, are given by 

~ ..... fix, where 
N 

det (c '~-  zx)]~., = Al(z) = ( -  1)Nz~+ ~ ~,~-'. 

An equivalent set is given by N -  1 points chosen from the spectrum of C1 or C_ 1 (i.e., N -  1 

branch points of the hyperelliptic curve) or, alternatively, by the quantities 

Tr C ~, 2 ~ k <~ N. 



THE SPECTRUM OF DIFFERENCE OPERATORS AND ALGEBRAIC CURVES 143 

2. Consider the symmetric fourth order difference operator 

(C])~ = c~_~ ]~_~ + b~_ 1/k-x + aJ~ + bk/~.. 1 + C~]y,+ 2 

and assume N odd. Then ~ is a double covering of the hyperelliptic curve 

_F(g, z) ~: Ag ~ +Pl(Z)g +P2(z) --- O, 

where deg PI<~(N - 1)/2 (genetically, =) and deg P ~ = N .  The differentials on n0 or the 

symmetric (sheet invariant) differentials on ~ are given by linear combinations of 

N - 1  
O J k = z k - l ( ~ t o ) - l d z ,  l ~ k ~ = g o ;  

this basis can be completed with the antisymmetric (for the involution 7) differentials 

( i = 0 ,  l ~ k ~ N - 1 .  

o r  

Since the dimension of the Prym variety equals ~(N-1), one expects to find ~(N-1) 

functions in d0 leading to independent flows in Prym ()~), namely 

and 

Z, Z2~ . . . ,  Z N - I  

(h .~_ ~-1)  z(N+I)I2 . . . . .  (~ .~_ h-I)zN-1.  

The second sequence starts with the power (N+l)/2 in z, because this is the smallest 

possible power for which h-lz (N+a)/2 has an upper triangular part. This set can be completed 

to a set of flows spanning the whole of Jac (~), by adding (N-1)/2 independent flows 

transversal to Prym (~); they are generated by the functions 

h - l z (N+ l)12 ~ - I z N - I "  , .o.~ 

Finally, a set of integrals in involution spanning out all the linear flows in Jac (R) is 

given by the coefficients of hkz ~ in the algebraic expression F(h, h -x, z) =0: the ( N -  1)/2 

coefficients of Pl(z) (except for the highest order coefficient, which leads to a zero vector 

field) counted twice (once as coefficient of hz ~ and once of h-lz ~) and the N -  1 coefficients 

of P~(z) (except for the coefficient in z N and z N-l, which again lead to zero vector fields). 
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3. A symmetric sixth order difference operator leads to a double covering of the curve 

�9 '(g, z) = A g  8 +P~(z)g~ +P~(z )g  + P d z )  = O. 

Assume that  h r is not a multiple of 3. Then all the flows in Prym (R) are given by linear 

combinations of the functions 

z, z 2 . . . . .  z N-1 , (h + h -s) z '~ .... (h + h -1) z N-1 , 

where i 0 is the smallest integer > N/3, and 

(h + h-1)2z ~', .... (h +h-1)2z  N-l, 

where i 1 is the smallest integer >2N/3, and the flows in Jac (~) by these and the trans- 

versal flows to Prym (~) generated by 

h - l z  t~ ..., h - l z  ~-1 

and 
h-2z ~, ..., h-2z N-1. 

w 5. Theta functions and difference operators 

Certain theta-identities allow us to provide explicit formulas for the operator C in 

terms of the curve ~. They are very similar to Cor. 2.19, p. 33 in Fay  [11]. To fix notations, 

we assume a basis {oJ~} of holomorphic 1.forms chosen; we write Abel's mapping from 

the curve ~ to its Jacobian Jac (~) by 

f" 
J Po 

We fix anodd theta characteristic ~ ]  such that  the theta function 0 ~ ]  does not vanish 

identically at all points 

Yi~ 
(this exists; cf. Fay [11], p. 16). We write{} for0[~ 1 for short. The theta-identity we want 

L~J 
is this: 

P R o P o s I T I o ~ . T h e r e i s a c o n s t a n ,  c l d e ,  e n d i n g o n l y o n ~ a n d ~ ] s u c h t h a t / o r a U  

xl ..... xM, P1 ..... P~, Q1 ..... Q~- le~ ,  eeC  g 



T H E  S P E C T R U M  O F  D I F F E R E N C E  O P E R A T O R S  A N D  A L G E B R A I C  C U R V E S  145 

We have 

det li 
l < t , J < M  [. \ J P t  / 

l~<t<t<M \ a  z~ / X<O<~<M \Q Q a / J ~..~ P~ / 

The proof follows the standard classical procedure (cf. Fay  [11], Prop. 2.16 and the  

references given there): we check that  the right hand side of the equation and all terms 

in the determinant on the left hand side are in the same line bundle over ~SM-1 •  (~) 

and that  they have the same zeroes. To see the first, we assume more generally tha t  we have 

3M variable points of Jac (~) and consider both sides as sections of a line bundle on 

Jac (~)SM: these bundles are products of pull-backs by linear maps Jac (~)SM_~ Jac (~) 

of the standard line bundle with section 0, and to check they are equal it suffices to check 

the corresponding assertion for the Hermitian forms representing the 1st Chern class of 

these bundles. If B is the Hermitian form of the standard ample bundle on Jac (~), this 

comes down to checking that  all the bilinear forms 

e+Xo,- P~+ 2 Q~ + 2 B(Xo,-Q~)+ B(x~,-P~) , 
I--1 ~ml OC--1 g--1 ~g--r 

any permutation of {1 . . . . .  M} 
and 

~-IB e -  + Q~ + ~ B(x t - x j ) +  ~ B(P ,~ -Q p )+B e -  x~ 
t - 1~ f<,t<N l<f l<~c~M f 

are all equal. This is elementary. As for the 2nd step, fix Pl, QJ and e and consider as 

functions of x E ~: 

Let  0 be some origin on ~. Then recall (for instance from Siegel [29]) tha t  for some 

constant e (Riemann's constant): 
O ( t -  e) = 0 

if and only if 

t =  2 ,Io (mod. periods) 
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for some positive divisor ~ ~/t of order g - 1 .  Moreover the g roots ql ..... qa of 

0(; 1 t o - s - e  - - 0  

satisfy the relation 

~ ( ' r t o  = s (rood. periods). 
1J0 

The vector e E C ~ defines a divisor ~[  qt -O of degree g - 1  and hence a line bundle Le 

if we write 

e + e  ~ tO. 
1 

Then the zeros of 

satisfy the relation 

~ ; ' 1  to--~-e-~Jv, to~-'r~ + f O " t o -  e (rood. periods), 

i.e., this'function is a section of L e ( ~  P ~ - ~ - I Q ~ ) .  Moreover x will be a zero ff and only if 

f, e +  ~. t o +  t o ~  t o ,  
1 k 

i.e., if and only if (by Abel's theorem), 

/ 1~ ~-I r[L.[Ze,-  ~., Q,- ~)) �9 (o). 

Similarly for any point R E ~, 

0(;) 
is a section of Lo(R ). But  as 0 is an odd theta function, 0(0) =0; and this section of Lo(R) 

is zero at  R, i.e., L 0 itself has a section ~ with g -  1 zeros l~0 and the function O(S~ to) has its 

zeros at  ~)o + R. Thus  ~k is a section of 

- Y 0 (~o + |  (Do + 
~ r  - �9 1 
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In fact, the last ( M - 1 )  factors all vanish on Do, so ~ comes just from a section of 

This bundle has degree g - 1  +M,  so by Riemann-Roch, we may expect ~vl ..... ~v M to be 

a basis of its sections. Now det (~v~(x~))=~0 if and only if no linear combination of the 

sections ~2~ is zero at all the points x 1 .. . . .  x~. Consider the various ways the left .hand side 

can be zero: 

1. If 0(e + ~ - 1  ~ :  to)=0,  then by formula 45, Fay [11], one sees that  

Q~ x tO o§ )o(rSo) 
and 

O(e+ to) 
are linearly dependent. (Take Fay's  e to be our (e + ~I ~ tO), and take his y to be suitably 

general.) Thus ~o~ and y~+: are linearly dependent and the determinant is zero. 

2. If O(~ tO) =0, then either x~=xj and the determinant is zero or x~ED0. The left. 

hand side vanishes to order M - 1  along the divisor x~ E Do, but  so does the whole ith row 

of the determinant. 

3. If a~tP~' to)=O, then either P~,=Qp, or P~,ED0 or Qp, EDo. If P~=Qp,, ~1< ~1, vkJQ~L 

then every section ~/k vanishes at P~,. If e is sufficiently general, this means that  all y& 

are sections of 
L,( ~ P~) 

of degree g -  2 + M, hence with only M -  1 sections, hence the ~ ' s  are linearly dependent 

and the determinant is zero. For special values of e, but  P~, ~Qp,, the determinant is still 

zero by continuity. The left-hand side vanishes to order ~1 -1  along the divisor P~, E ~)0, 

but  (~1-1)-columns (given by ~+ 1 ~ 1 )  of the determinant also vanish here. 

4. Finally, if 0(e + ~M x, ~e, to)=0,  then Le(~MPa--~Mxl) has a section. To show the 

determinant is zero, we may assume 0 ( e + ~ :  to)~=0, i.e. I ' (Le(PI-Q1))=(0 ). But  then 

M 

dim 1-' Le P~ ~ dim ~L,(p 1 
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So either the ~0k are linearly dependent and we are done, or they span F(L.(Zf P~)). 
In  this case, some combination is zero at  all the points xx, ..., XM, SO again det ~0~(x~)=0. 

This proves the proposition because the divisor of the left-hand side is greater than  

or equal to tha t  of the right, but  both divisors come from zeroes of sections of the same line 

bundle. Renumbering the Pa's, Qa's from - M '  to M instead of 1 to M, and shifting e by  

the formula reads: 

C O R O L L A R Y .  

det {O(e+ t-1 I'Oa J - l [ f x t \  f;'o) _,,..~,,,. " .~,, .~ 
I~I~M+M'+I 

M-a / J oo,,_~ot.+~r~ ~ o(r~/�9 r~ o(r~o~)o(o+r ~+'~, o) 
Now we apply this to our curve • with given points P1 . . . . .  Pn, Qx . . . .  , Qw and func- 

tion z. By  assumption 
n rt ~ M + M '  

(z) = - M~ Y P , -  M,  7. q, + Y R, 
I-1 t-1 I-1 

for some set  of points /~i  . . . . .  R~+M.. In  this case, the function z can be expanded: 

*'-~ olr Oifo  )) , , .  ,, 
where c2 is a suitable constant. Moreover, ff D is a regular divisor of degree g and we 

define 

fD  Q~176 
e =  r 

then we claim tha t  for suitable constants ~tk: 

~ ?.: ; :~  
oi.+s ) 
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(Here k>~l; an obvious modification holds if k~<0.) In fact, it is immediate by the 

functional equation of 0 that  this is a meromorphic function on ~. The factors on the 

right give it zeroes at  Q0 ..... Q~-I and poles at  P1 ... .  , P~. The other factor in the 

denominator satisfies 

which is zero if x E ]0 because then 

x + D o -  ]0 --- D0-  positive divisor of degree g -  1. 

These properties characterize /k up to scalars. Now apply the Corollary replacing e by 

e +  ~k-1~-1 S~  to, renumbering P~, Q~ by P~k,  Q~+k, letting x~=B~,  I < ~ i < . M + M '  and 

XM+M,+I ~-X, and expanding the determinant along the 1st row: 

,__~.+~ + �9 ,~. Y o ( r ' 4  

{( - f,'o). I. o(L-o)} 
- M ' + k ~ l ~ M + k  ~ - I  iPo~ ,~ - -M'+k  \ # ~ r  I ~ - I + I  

t*1 

=~cxt--M'+~l--I 0 e +  ~lai ,  e / I~I<,f<M4M' \~].R~ / I-1 \JIQ / 

o( f%).o(o+ a' ~ ' f: ~) • r  

o r  

M+R: 
~(:~). s = ~ jc,  ~,~ ,__M.+,,(- I) ;, ~, 

. . , , , o  "~176 ' ' .  
X M + k - 1  i s 

n o~+t ,-~,f~ n o(f',,,/, r1 o ( f%)"~)  
I -  - M ' + k  JPr ] I~I<]~M+M" \ J R ~  / -M*+k.~<g~M+Ic "JQ,8 / 

Thus the operator (7, up to a constant and suitably conjugated is given by 

THEOREM 7. 
[ t-1 Pca~ 

I ~ M + M "  

OkJ ~ M+/r 

,_i , .  olr ,o) 

l 

n o~+y,f~ n o(F',~) 
| - - M ' + , k  dPt~ / -M'+k:~O<~;M+Ir  \ J Q ~  / 
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w 6, .Almost periodic difIerence operators 

Non-singular curves ~ with the properties listed in Theorem 1, but  without the 

existence of a meromorphic function h, lead to almost periodic difference operators, in the 

following sense: for every e>0 ,  there is an integer T > 0  such that  for every interval 

/ ( T ) _ Z  of length T you can find a E I ( T )  with the property 

ICk.k+~--C~.~+~+~l < e  Yk, k + i E Z .  

Considering the Jacobian Jac (~) as a moduli space for divisor classes of degree g - I ,  

the Theta-divisor O c J a c  (~) is the subvariety of positive divisors in Jac (~) of order 

g - 1 .  Whenever one considers a regular divisor ~), the corresponding sequence of mero- 

morphic functions f~ and the associated sequence of regular divisors 

k k - 1  

Z ) k = ( / ~ ) + O + Z P ,  - Z Q,, kEZ, 
1 0 

then 
s = {0 }  

or what is the same 

where {Ok}E Jac (}~) is the point corresponding to ~)k. 

Now, we define a uniformly regular divisor ~) with regard to the same sequence to be 

a regular divisor, with the property that  

s  = {0 }  

for every k (1 <~k<~n) and for every: 

{D'}e u 
pGZ 

or, equivalently, for every /c (1@/c~<n'), 

(0 + Q~) fi U {Dk+~} = 0. 
pGZ 

As we shall see later, there are many such uniformly regular divisors. 

T~EOREM 8. Let ~ be a non-singular curve with points 1)1 ..... P~ and Q1 ..... Q~,; let z be 

a function on ~ aub~eet to 

(z) = - M,  Z P, - M'~ Z Q, + d, 
1 1 

where d is a positive divisor not containing the P / s  and Q/s. Then every uniformly regular 

divisor O determines an almost periodic difference operator C. 
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Proof. Let v be the 1.c.m. of n and n'. Observe that  in Jac (R), 

r~ n* 

Ok+~--]ok -= -- ~P,-- - ~ Q,. 

Let ~ be the divisor on the right hand side. The divisors ... ]ok-~, ]ok, ]Ok+ .. . . .  form a 

linear sequence of points in Jac (R). The transformation obtained by adding ~) to a given 

point on the toms is periodic or almost periodic. If this transformation would be periodic, 

it would imply the existence of a meromorphic function h having for divisors some multiple 

of ~). If we fix some measure of distance on Jac (R), then at  least we can say that  for any 

e > 0, there is a positive integer T such that  for every interval I (T)  of length T there is an 

integer PEI(T)N Z with the property that  in Jac (R) 

=lpPl<  vk z. 

Consider the closure {pp} of the sequence of points p~) in Jac (R): this will be the union 

of a finite number of cosets of the real subtorus P c J a c  (R). We wish to prove first that ,  

with a suitable choice of A- and B-periods on R, P is contained in the real sub-toms given 

by the A-periods alone. In fact, our hypothesis that  D is uniformly regular means that  

certain cosets of P are disjoint from O. This means that  the cohomology class of 0 

restricted to P is zero. But  we have 

Hi(P, Z ) c  H 1 (Jae (R), Z ) ~  Hi(R, Z) 

and the cohomology class of 0 on Jac (R) is just given by the 2-form: intersection product 

(a, b)-~ (a.b) on Hi(R, Z). Thus this triviality means Hi(P, Z) is an isotropic subspace. 

Any maximal isotropic subspaee of Hi(R, Z) can be taken as the set of A-periods, so 

this proves our assertion. This choice of A-periods means that  0 is a periodic function in 

the P-coordinates, hence for any e, the values 

for all 1 are equal to their values in some compact fundamental domain mod periods. This 

plus the explicit formula for c~j in the last section proves Theorem 8. 
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THEOREM 9. Consider a curve )~, 2n points P1 ..... P , ,  Q1 ..... Qn on ~, a meromorphic 

/unction z having the properties above with M 1 = M~. Let ~ be an antiholomorphic involution 

/or which R \ ~ a = R + U  ~_ where }~R={pE~l~=p}  such that ~,=Q~ with P~E~+ and 

Q~'R_ and such that z(p)=z(~). Consider a divisor ~) having the property that 

~) + ~) - P . - Q .  

is the divisor o/ some di//erential on ~, which is real positive on ~n. Then I) determines a 

sel/.ad]oint, almost periodic di//erence operator C, whose L2-spectrum is the set o/ values o/ 

Z on ~R.  

LEMMA. Any divisor 70 on the curve ~ satis/ying the conditions o/Theorem 9 is uni/ormly 

regular. 

Proo/. Recall from the proof of Theorem 3 that  

D ck~ + ~ = P~ + Q~ + (a,k), 

for some 1-form o~k, with o~k~>0 on ~n. Therefore all the divisors ~)=~)~+~), p EZ, 

satisfy: 
~)'+~)'=Pk+Qk+(W), os~O on ~a. 

Passing to the limit of any sequence, it follows that  this condition still holds. But by the 

argument in Theorem 3, any such w must have a non-zero residue at  Qk, hence Qk doesn't 

occur in the divisor ~)', hence D ' - Q k  r | 

Proo/ o~ Theorem 9. From the Lemma it follows that  ~) is uniformly regular; by 

Theorem 3 (w 2) and 8 it maps into a self-adjoint almost periodic difference operator C. 

Consider now the space of meromorphic functions 

s  {/n(h> - ~ ) - ~  ]r 1,Q, with /r l~EZ arbitrary). 

A n y / E s  maps into a sequence An, zero for almost all n (Lemma 5, w 1) such that  

oo 

1= E ;tJ,. 
t - -oO 

Let ~) not contain any point of ~ .  Then using the inner product defined in Theorem 3, 
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s is a space of complex-valued functions on ~n, separating points and closed under 

conjugation, so by the Stone-Weierstrass theorem the space s naturally completes to 

the space L2(~R) of L2-complex valued functions on ~R; the space of almost everywhere 

vanishing sequences completes to/~(Z) = {{2,} J ~ ] 2 ,  ]~ < co}. A basis for the space L2(~R) 

is given by the functions I~. This defines now a unitary transformation from/2(Z) to L2()~R). 

The difference operator C acts on/2(Z) as follows 

r~+M n+M 

l ~ - n - M  k - n - M  

and C acts on L 2 ( ~ )  as a multiplication operator. Indeed f o r / = ~  2 j n  

o1 = E 

= z, 1 .  

This operator is bounded and self-adjoint, since ~n does not contain P~ or Q~. The 

spectrum of this operator is the range of z, defined on the cycles ~R. 

If ~ contains a point of ~s,  we may argue by a limiting process that  the theorem 

still holds, or ,  noting that  eo has zeroes where ] has poles, we replace L ' (~n)  by the space 

of functions I on ~ B - ~  N ~R such that  

f.R Itl'  < 
Then the proof goes through as before. 
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