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w 0. I n t r o d u c t i o n  
0.1. S u n m m r y  

The basic R i e m a n n - R o c h  problem is to  give, for a n y  sheaf $ of O x  modules on an  

algebraic var ie ty  X,  a formula for x(X, $), the  a l t e rna t ing  sum of the  ranks  of the sheaf 

cohomology groups H I ( X ,  $). Perhaps  the  most  s t r iking fact a bou t  x(X, $) is t h a t  i t  is 

cons tan t  in  a f iat  family: while the  individual  ranks  of the  H~(X ,  $) m a y  vary,  their  

a l te rna t ing  sum does not .  This  invar iance  unde r  deformat ion  leads one to suspect t h a t  

z(X, $) may  be a topological invar ian t .  I n  this  paper  we will present  the  R i e m a n n - R o e h  

Theorem as a t rans i t ion  from algebra to topology; one consequence will be a topological 

formula for x(X, $). 

(1) Research partially supported by NSF grants MCS 76-09817 and MCS 76-09753. 

11 -792908 Acta mathematica 143. lmprim6 le 28 D&:embr�9 1979. 
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One novelty of our approach is that we consistently emphasize the fundamental 

role played by this invariance under deformations. Deformation of a given imbedding to 

the imbedding in the normal bundle is the kernel of the proof. Explicit deformations are 

also used to verify the Riemann-Roch formula on projective space, rather than power 

series calculations with Chern classes as in former proofs. An extension of these ideas 

can be used [9] to characterize the arithmetic genus as the only deformation invariant: 

Suppose an integer I(X) is assigned to each non=singular projective variety X, which 

satisfies 
1(x) = 1{x,) + I ( X , ) -  1(z) 

whenever X is a divisor on a non.singular variety which can be deformed in a linear 

equivalence to a sum of two divisors X 1 and Xs which meet transversally in Z. Then 

I(X) is a constant multiple of z(X, Ox). 
Grothendieck enriched the Riemann-Roch circle of ideas to the study of two 

algebraic K functors./~~ is the Grothendieck group of algebraic vector bundles on X; 

it is a ring-valued contravariant functor. Ko~(X) is the Grothendieck group of coherent 

sheaves of Ox modules; it becomes covariant for proper maps f by sending a sheaf $ to 

the alternating sum of R~f.$. If ~ maps X to a point, S is sent to x(X, $)EZ --K0~(pt.). 

(The map X ~  which takes a vector bundle to its sheaf of sections is 

an isomorphism for non-singular varieties, so the original treatment could identify 

K~ and K~0. Since we are including singular varieties for which this Poincar~ duality 

isomorphism fails, we must keep them separate.) 

The main point of this paper is to use topological K.theory as the topological receiver 

for the Riemann-Roch information. For a topological space X, let /~p(X) be the 

Grothendieck group of topological vector bundles on X; K~ is a ringvalued contravariant 

functor. K~0 P(X) is defined to be the Grothendieck group of complexes of vector bundles 

on C n exact off X for some closed embedding of X in ~ ;  it becomes a covariant functor for 

proper maps by using Bott periodicity. (See [2] for a description of homology K-theory 

better suited to Riemann-Roch questions.) 

One of our aims is to emphasize the analogy between the algebraic and topological 

versions of K-theory. 

In each case there are: cap products KoX| X, with the usual projection 

formula; exterior products KoXI| 1 • and restriction homomorphisms 

KoX-~K o U for U open in X. (See w 3 for precise statements.) 

For any complex algebraic variety X there is a ring homomorphism 

�9 ":/Q~X ~ K~ 
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defined by taking an algebraic vector bundle to its underlying topological vector bundle; 

~" is a natural transformation of contravariant functors. 

The Riemann-Roch theorem we prove in this paper constructs, for each quasi- 

projective variety X, a homomorphism 

~.: K~'X -~/~o~X 

of abelian groups, which is covariant for proper morphisms, and is compatible with cap 

products, exterior products, and restrictions. In case X is non-singular, ~. takes the 

structure sheaf Ox of X to the K-theory orientation {X} of X determined by its complex 

structure. (See w for the precise statement of the theorem.) This Riemann-Roch 

theorem generalizes the theorem of Aityah and Hirzebruch [1] to possibly singular (and 

possibly non-compact) varieties. The class {X}c ~.[Ox] determines a K-theory orienta- 

tion even for a singular variety (see w 6). 

Riemann-Roch in terms of topological K-theory is certainly more natural than the 

previous versions using ordinary homology (or Chow groups or graded K-groups). No 

characteristic classes or formal power series calculations are needed for either the state- 

ment or the proof of the theorem; they are replaced by elementary geometric construc- 

tions. All the formulas are simpler in the K.theory version since no Todd class correction 

terms are necessary. The present theorem also includes torsion, which is lost in t h e  

homology version. 

For certain applications, however, it is preferable to use homology as the topological 

receiver of the Riemann-Roch information because of its computational facility. The 

homology version follows directly from the K-theory version using standard purely topo- 

logical techniques, as follows. 

The Chern character 
ch': K~ ; Q) 

determines a corresponding transformation of homology theories 

oh.: K~ ~ H.( ; Q) 

with values in homology with rational coefficients (Borel-Moore homology in the non- 

compact case). The composite 7. =ch.o~. is the Riemann-Roch mapping from K~0 to 

H.( ; Q) which was constructed in [3]; this generalized the Grothendieck Riemann-Roch 

theorem to singular varieties. When we map a projective variety X to a point, we recover 

a Hirzebruch-Riemann-Roch formula for singular varieties: 

7 (- l)' dim H'(X, E) =e(ch(E) n T(X)) 
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for an algebrai~ vector-bundle E o n  X.  Here e takes  the degree of the zero-dimensional 

component of a homology class, and ~(X)=~ch.{X) is the homology Todd class of  X; 

when X is non-singular, ~(X) is Poinear6 dual to the Todd class of t h e  tangent bundle 

to X, giving Hirzebruch's original formula. 

0.2. The Riemann-Roch map 

Here is a sketch of the construction of ~.[$] in  K~~ for a coherent sheaf $ on a 

p.rojective variety X. Choose a closed imbedding i: X - , Y  of X into a non-singular pro- . . . .  
jective variety Y. Choose a resolution of i , $  b y  a complex of algebraic vector bundles 

(locally free sheaves) E. on Y: 

0-~ Em-~ ... -~ E0-" i ,  5-~ 0. 

Choose a C ~ imbedding o f  ]r in a sphere S 9~r, and give the normal bundle 2V to ]7 in S~ r the 

complex structure induced from the tangent bundle to Y. Let  ~: N-* Y be the projection, 

and let A'*~Vv be the Koszul-Thom complex on N. Then ~*E. |  v is a complex of 

vector bundles on N which is exact off X, so by the difference bundle construction (or 

w 1) it determines an element in the relative (topological) K-group K~ N - X ) ,  which by 

choice of tubular neighborhood and excision is identified with K~ 2r, S ~r-  X). 

When we identify K~ gr, S2r -X)  with K~PX, we have the desired element ~.[5] in 

Kt~PX; much of the task of proving Riemann-Roeh amounts to showing that  ~.[5] is 

independent of all the choices. The element constructed in K~ ~r, S gr-  X) also determines 

an element in K~ zr) ~ Z by Bot t  periodicity, and this integer is the Euler characteristic 

Z( - 1) * dim H~(X, 5) of the coherent sheaf 5. 

0.3. Plan of the paper 

In the above description of the Riemann-Roch map there is a mixture of ingredients 

from algebraic geometry and topology. We have made an effort to separate the argument 

into its essential pieces. In  algebraic geometry and topology there are relative groups 

Kx ~g Y and K~ p Y for X a closed subvariety (resp. sub-space) of Y which are constructed 

out of complexes of algebraic (resp. topological) vector-bundles on Y that  are exact off X. 

Both those relative groups have natural pull-back maps and products, and most im- 

portant, "Thom-Gysin maps" from Kx Y to Kx Z for suitable imbeddings of Y in Z (w 1). 

The essential step in Riemann-Roch (w 2) is to show that  the natural map ~ from 

Kx~Y to K~ p Y--which takes a complex of algebraic vector bundles to its underlying 

complex of topological vector bundles--is compatible with these Thom-Gysin maps when 
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Y and Z are non-singular varieties. This being obvious when a neighborhood of Y in Z is 

algebraically (or complex analytically) isomorphic to the imbedding of Y in the normal 

bundle, we deform the given imbedding to t h e  normal imbedding, as in [3]. In w 2 we 

include an alternate description of this deformation, following [15]. Another innovation is 

the use of a concept of "transversality" suggested by the work in [11], which allows us 

to study how the relative K-groups vary in a family. 

In both algebraic geometry and topology there are duality or "homology maps" h from 

K x Y to K o X ,  at least when Y is non-singular, and the Riemann-Roch map ~. is then 

the composite 

h ~ h 
K ~ X  , K ~  8 Y , K ~  p Y ~ K~'PX. 

We have tried to make the paper quite self-contained. The resutts of [3] are not 

assumed. Two appendices are included to provide algebraic geometers and topologists 

with an elementary discussion of some standard, but rather inaccessible, results from the 

other field; the first relates the definition of Kx ~p Y using complexes of vector bundles on 

Y, exact off X, to a more common definition of K~ Y, Y - X ) ,  while the second discusses 

some homologieal algebra of complexes of sheaves. A third appendix describes an 

algebraic deformation of the diagonal in pn• p~ to its Kiinneth decomposition, which is 

used to show directly that  algebraic and topological K-theory assign the same genus to 

projective space. 

We point out several respects in which we have done more than  is required to prove 

the Riemann-Roch theorem. (1) We have formalized much of the arguments so that  it  

may be used in other instances where there are relative groups with properties analogous 

to those discussed here. In a following paper [4] this will be carried out to give a simple 

treatment of a Lefschetz-Riemann-Roch theorem for singular varieties. I t  is hoped 

that  the higher K-groups of Quillen, as well as the Chow groups, will have relative groups 

with similar properties, so that  the proof given here will apply without essential change 

to these situations. (2) Although we do not include complete proofs of the Riemann-Roch 

theorems for local complete intersections (w 4.2) the preliminaries are carried out in suffi- 

cient generality so that  such a proof can be completed along the same lines; primarily this 

means that  we allow the ambient spaces to have singularities, whereas for the main 

theorem they could all be taken to be non-singular. (3) The reader interested only in 

compact varieties could simplify some of the argument. An occasional vector bundle 

would have to be compactified, and the discussion of orientations in w 6 is a little more 

complicated if one cannot restrict to open subvarieties, however. 
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0.5. Convention 

We will use the word "variety" throughout to mean an arbitrary complex quasi- 

projective scheme, as in [12]. The reader may also take the word to mean reduced, 

irreducible complex quasi-projective variety, following Serre [13], with slight loss in 

generality, but with no change needed in statements or proofs. 

w 1. Relative K-groups 

In this chapter we define and study the groups K ~  Y and K~ p Y which play central 

roles in the proof of the Riemann-Roch theorem. 

l , l .  Definltions 

Let X be a closed algebraic subset of a variety Y. Consider complexes E. 

0 ,E= d= ~=_: dl ~o 0 

of algebraic vector bundles (locally free sheaves) on Y which are exact off X; thus the 

boundary maps are morphisms of algebraic vector bundles on Y, with dt_lod~=0 , and 

for all y~X, the induced complex on the fibres at y is an exact sequence of vector spaces. 

Define K ~  Y to be the free abelian group on the isomorphism classes of such complexes 

modulo the relations: 

(i) For each exact sequence 

O--, E . '  ~ E . - - ,  E~. ~ O 

of such complexes, set the class of E. equal to the sum of the class of E'. and the 

class of E.". 

(ii) For any complex E. that is exact on all of Y, set the class of E. equal to zero. 

Denote by [E.] the element in K ~  Y represented by a complex E.. 
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Let X be a closed subspace of a locally compact space Y. For simplicity we will 

always assume that  the pair ( y  c, X c) of one-point compactifications is homeomorphic 

to pair of finite simplicial complexes--an assumption tha t  holds when X is a subvariety 

of a complex variety Y. Consider complexes 

on Y which are exact on Y - X .  Define K~x p Y to be the free abelian group on the iso- 

morphism classes of such complexes E., modulo the relations (i) and (ii) as in the algebraic 

case, and 

(iii) If  E. is a complex on Y x [0, 1] which is exact off X x [0, 1], and E.(t) denotes the 

induced complex on Y = Y x {t}, set the class of E.(O) equal to the class of E.(1). 

Since an exact sequence as in (i) is homotopic to a split exact sequence, it is only 

necessary to include direct sums in relation (i). 

For any closed algebraic subset X of a complex variety Y we have a canonical homo- 

morphism 
~: ~ Y-~ ~T2 Y 

which is defined by taking a complex of algebraic vector bundles to its underlying complex 

of topological vector bundles. 

1.2. Pull-backs 

If X c  Y and X ' c  Y' are in w 1.1, and / :  Y'-~Y is a morphism such that  f--*(X)cX', 
there are pull-back maps 

/*: Kz Y -~ Kx, Y'. 

In the algebraic geometry setting / will be a morphism of varieties (schemes). If  E. is a 

complex on Y exact off X, then/*E,  is a complex on Y' exact off X', and 

r: K ~  r ~ ~ r' 

is determined by setting/*[E.] =[/*E.]. 

In topology / should be a continuous mapping. Then 

I*: ~'~x' r ~ .K~., r '  

is defined by the analogous formula r[E.] = [f*E.]. 
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In both cases the pull-back maps are/unctorisl ,  i.e., if we also have g: If"-+ Y' with 

g-l(X')cX", then (/g)*=g*/* as homomorphisms from K x Y  to Kx,, Y~. 

Here and in the  rest of the paper we use one statement with the notation K instead 

of two entirely similar statements for K al" and K t~ This is to emphasize the properties 

they have in common, as well as to avoid unnecessary duplication. 

1.3. Products 

If  Xzc  Yl and Xsc  Ys are a s / n  w 1.1, we have ezterior 1~rc4uct8 

Kx, YI| Y2-~Kx,• x Y,). 

In algebraic geometry if E 1 and E 2 are coherent sheaves or complexes on Y1 and Ys 

r* E 2. Note that  this respectively, then E 1 [] E 2 denotes the tensor product pr~ E 1 | on • r, P 

tensor product is exact in each variable, and that  a tensor product of complexe~ is 

exact where either complex is exact. The exterior product is determined by setting 

[E. 1] • [ES.]=[E 1 []E~.]' where ~ .  is a complex on Yj exact off X~. 

The same formula determines the product in topology. 

The exterior products are a~s~oc~tive: if at6Kx~ Y~, then (~, xa2) x a s = a  , • (s2 xas). 

The products are compoJible w4th pulLSsc~: if/~: Y;-~ Y~,/~I(X~)cX; as in w 1.2, and 

a~6Kx, Yi, then (/, x/2)*(a, xa2) =/~a, x/~a~. 
If X,  and X~ are closed in Y as in w 1.1, we define as usual internal cup products 

k./  
Kx, Y | Y ' Kxmx, Y 

to be the composite of the external product 

• 
Kx, Y| Y " Kx,• x Y) 

followed by the pull-back 

Kx,• • Y) ' Kxmx, Y 

determined by the diagonal mapping ~: Y-~ Y • Y. These internal products are also 

associative and compatible with pull-backs. 

1.4. Koszul-Thom classes 

Let E be a complex vector bundle (algebraic or topological) on Y (a variety or a 

topological space. Regard Y as a sub.space of E by the zero section. The KoszuLThom 
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class IE in K r E  can be described as follows, Let  d be the rank of E , g :  E-~ Y the projection.: 

The bundle ~*E has a canonical section, which determines a homomorphism from ~*E v to 

the trivial line bundle, and this determines a complex 

0 --, A~g*E ~ -+ A~-lz*E ~ ~ ... ~ A l z * E  ~ ~A~ ~ ~ O. 

This is a complex on E which is exact off Y, and the element of K y E  it determines is 

called the Koszul-Thorn class and denoted is .  

1.5. Thom-Gysin maps 

For X c  Y as in w 1, and suitably nice closed imbeddings i: Y-*Z we define Thom- 

Gysir maps 
i , :  Kx Y ~ KxZ. 

In  algebraic geometry we define these Thom-Gysin homomorphisms when i is a closed 

imbedding of quasi-projective schemes which is of / in i te  Tot dimen~/or this means t h a t  

the structure sheaf Or,  regarded as an Oz-module, has a finite resolution by locally free 

sheaves of Oz-modules. Two important  cases are when Z is nonsingular and Y is arbitrary,  

or when Y is a local complete intersection in Z. I f  E. is a complex of vector bundles on Y 

exact off X, extension by  zero gives a complex of sheaves i ,E.  on Z. The finite Tor 

dimension assumption implies tha t  there is a complex of vector bundles F. on Z and a 

surjective map of complexes F.--*i, E. whose kernel is an acyclic complex of sheaves on Z; 
equivalently the induced map Hl(F.)~H~(i ,E.  ) on the homology sheaves is an iso- 

morphism. We call F.-+i,E. a resolution of E. on Z. Any two such resolutions F. are 

dominated by a third, so [F.] is a well-defined element in Kax~Z. And an exact sequence 

of complexes on Y can be resolved by an exact sequence of complexes on Z, so the T h o m -  

Gysin map 
i , :  K ~  Y-* Kx~Z 

is determined by setting i , [E.]  = [F.] for E. and F. as above. See Appendix 2 for homo- 

logical details. 

In  topology we define Thom-Gysin  homomorphisms 

when i: Y-*Z is a closed imbedding a t  C ~ manifolds, and the normal bundle N to Y in Z 

has a given complex structure. Let  ~: N-*  Y be the projection, and let ~: Y-*N be the im- 
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bedding of Y as the zero section in N. We have the pull-back map z~*: Kt~ p Y ~ K~x~N 

(w 1.2), the Koszul-Thom class ~sqA~rPN (w 1.4), and the cup product 

(w 1.3), so that formula a~rt*a~N gives a homomorphism 

~,: K~ p Y ~/~x pN. 

If O: N ~ Z  maps N onto a tubular neighborhood of Y in Z, then the pull-back mapping 

0": K~Z-~ K~xPN 

is an isomorphism by excision (Appendix 1), and independent of 0: a homotopy 

H:N•  1]-*Z from one tubular neighborhood to another determines H*:Kt2PZ~ 

K~[I0.13(N • [0, 1]), and the result of specializing to 0 and 1 are equal by the relation 

(iii) defining K wp. Then the Thom-Gysin map i,: A~x p Y-*K~PZ is defined to be the 

composite 

K ~ y  ~. ~K~,~  (0") -~ , K~Z. 

Note that in topology the Thom-Gysin maps are always isomorphisms (Appendix 1). 

The Thom-Gysin maps are/unctor/a/: if X is closed in Y, and i: Y ~ Z  and j: Z-* W 

are suitably nice imbeddings as above, then joi  is also suitably nice, and (joi), and j , i ,  

define the same homomorphism from Kx Y to Kx W. Let us explain this. 

In algebraic geometry the assumption that i and j have finite Tor dimension implies 

that ~oi also has finite Tor dimension, and the proof that (joi), =~ , i ,  follows from the 

fact that ff E. is a complex on X, F.-*i,E. is a resolution on Y, and G.-*~,F. is a 

resolution on Z, then G.-+j,F.-*~,i,E. is a resolution on Z. 

In topology we assume that the normal bundle Nit to Y in W is given a complex 

structure so that the canonical exact sequence 

N, N, I Y 

is an exact sequence of complex vector bundles. The equation (~i),=j,i, can then be 

proved by choosing compatible tubular neighborhoods for the two imbeddings, and choosing 

a splitting of the exact sequence of normal bundles. Note that if N=NI~2V2 is a direct 

sum of vector bundles, then the Koszul-Thom complexes satisfyA'~*AF" = A'~* IVy' | A'~t~ AF~, 
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The Thom-Gysin maps are also com1~atible with products. If Xj is closed in Y j, and 

i~ Y ~ Z j  are suitably nice imbeddings as above, ] =  1, 2, then i 1 • i S is also suitably nice, 

and the diagram 
• 

Kx, YI | Kx, Y, " Kx,~ x,( YI • Y,) 

li*.| 1(i* x i,)* 
x 

Kx, Zx| Z~ , Kx,• 1 x Z2) 

commutes. In both cases this follows easily from the definitions. 

1.6. TransversaUty 

Let X be closed in Y, and let i: Y-~Z be a suitably nice imbedding (in algebraic 

geometry or topology) as in w 1.5. L e t / :  Z'-~Z be a morphism, and form the fibre square 

Y' , Z'  

I 
Y ,Z 

i 

If  / is suitably transversal to i, then i' will also be a suitably nice imbedding, and for 

X' =f-*(X), the diagram 

commutes. 

Kx Y ~ KxZ 

Kx, Y' ., ' Kx, Z' 

In  algebraic geometry the morphisms / and i are suitably transversal for this purpose 

ff / and i are Tor-~m~ei~e~,  i.e., To~J(Or,  Oz,)=0 for all k>0 .  If  i has finite Tor- 

dimension, it follows that  i '  also has finite Tot-dimension, and if E. is a complex of locally 
$ . t  

free sheaves on Y, and F . -~ i ,  E. is a resolution on Z, then / F . - ~ , ( ~ E . )  is a resolution on 

Z' (Appendix 2), from which the commutativity of the diagram follows. 

In topology we assume / is transversal to i in the sense of G Q~ maps of C ~ manifolds, 

so Y' is a submanifold of Z', and its normal bundle N' is the pull-back of the normal bundle 

N to Y in Z; we give N' the complex structure induced from that  on N. The Koszul- 

Thorn complex for N therefore pulls back to the Koszul-Thom complex for N', and the 

commutativity of the diagram follows easily. 
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w 2. Deformat ion  to the normal  Bundle 

I t  follows immediately from the definitions tha t  the canonical homomorphism 

T,~a~ ~ ._~ Zrtop 
~:  ~x~ .L .~x X Y 

of w 1.1 is compatible with t h e  pull-backs of w 1.2 and the products of w 1.3. The cor- 

responding assertion for Thom-Gysin  maps  is proved in the following theorem, which 

is the essential step in the proof of the Riemann-Roeh theorem. 

THEOREM. Let i: Y ~ Z  be a closed imbedding o/non-singular complex varieties. Then 

/or any closed algebraic subset X in Y, the diagram 

commutes. 

K ~ y  i* , Kx~Z 

1 
K~ p Y i ,  , Kt2p z 

We first note tha t  the theorem is true in case i is the imbedding of Y as the 

zero section of a vector bundle N on Y. I f  ~: N-}  Y is the projection, the Koszul-Thom 

complex A'~*N v is a resolution of the structure sheaf of Y on N; it follows tha t  if E. is 

a complex of algebraic vector bundles on Y, then ~*E.| v is a resolution of i . E .  

on N, so i , [E.]  = [~*E.|  and this agrees with the definition of the Thom-Gysin  

map in topology, 

For the general case we use the method of deformation to the normal bundle, as 

developed in [3]. Here we give a shorter construction of the same deformation space, 

following Verdier [15]. 

L E M M A .  Let i: Y'~Z be a c~osed imbedding o/non.singular complex varieties with normal 

bundle ~ .  Let ~: Y ~ N be the zero section imbedding o] Y in N. Let Jt : Y ~ Y • C be the 

imbedding given by ~'t(Y)= (Y, t). Then there is a non-singular variety W, with d i m  W = 

dim Z § 1, and a commutative diagram oj closed imbeddings: 

y Jl , y •  J0 . y  

Z kl , W,~-~--o N 

where the sguares are transversal--as squares oJ complex manijolds, and hence in both the 

algebraic and tolaological senses o /w  1.6. 
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Proof. Define W to be the f low-upof  Z x C along the subvariety Y x {0}. Since the 

normal bundle to Y • {0} in Z x C is N ~ I ,  the exceptional divisor of the blow-up is the 

projective completion P(N~ 1) of N; the map k 0 of the above diagram is the inclusion of N 

in P (NG1)  followed by the inclusion of the exceptional divisor in W. 

In, general if A c B c C  are elqsed imbeddings of algebraic varieties, the blow,up 

/~ of B along A is imbedded in the blow-up ~ of  C along A. If Es ,  Ec are,the exceptional 

divisors, there is a fibre square 

E~ , B  

1 
E~ , 

Since a local equation for Ec on ~ pulls back to a local equation for E B on J~, this square is 

always Tor independent. I f  A, B, and C are non-singular, all the spaces constructed are 

complex manifolds, and the square is transversal in the C ~176 sense as well. Note also that  if 

A is a divisor on B, the blow,up of B along A is trivial and one can identify B ~vith 

and A with Es. 

If these facts are applied to the inclusions 

y• Y•215 

we get an imbedding ~: Y • C-, W, and the right square of the desired diagram is the 

above blow-up diagram--except tha t  we have thrown away the complement of 2V in 

P(lV@ 1). 

The blow-down map from W to Z x C is an isomorphism off Y x {0}. In particular the 

restriction to Z x C*, C* = C - {0}, can be identified with an open set in W. The left square 

of the required diagram then comes from 

y ~I , Y x C * = Y x C  

Z , Z x C *  c W 

where Z is imbedded in Z x C by z~Cz, 1). 

Remark. The blow-down map W~Z x C followed by the projection to C gives a fiat 

family ~: W-~C, with a family of imbeddings 
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Y\xC ~0 , W  

0 

The imbeddings ~t of Y in Wt =~-1(t) are all isomorphic to the given imbedding for t:i:0. 

For t =0, W 0 is the union of P(A r ~ I) and the blow-up 2 of Z along Y, meeting transversaUy 

in P(N). For details of this description see [10]. 

We now prove that ~ is compatible with the Thom-Gysin maps. From the diagram 

constructed in the lemma we obtain diagrams 

KxY" j~ Kx•215 J~ , K ~ Y  

 xz -g-l XXXc w -  k.o . KxN 

in both algebraic geometry and topology; the horizontal maps are pull-backs, and the 

vertical maps are Thom-Gysin maps. The squares commute by the transvorsality pro- 

perties proved in w 1.6. We need two additional facts: 

(i) Jr is surjective in the algebraic geometry diagram; 

(if) Ker (/~) : Ker (k~) in the topology diagram. 

The first assertion follows from the fact that j~p*= (pojt)* is the identity, where lo 

is the projection of Y x C to Y. (In fact jr is an isomorphism.) The second follows most 

simply from the obvious fact that Ker (j~) =Ker (jr), and the fact that the vertical Thom- 

Gysin maps are all isomorphisms in topology (Appendix 1). (One could also use the fact 

that the family of imbeddings is topologically trivial near Y • C, as in [3] w 1.2.) 

Now consider the map that ~ induces from the algebraic geometry diagram to the 

topological diagram, regarding the two diagrams as vertical with the topological diagram 

behind the algebraic one. The top and bottom squares of the resulting double cube 

commute since a commutes with pullbaeks. The right side face commutes by the vector 

bundle case considered earlier. 

The proof can now be completed by a diagram chase. For 

= = - = 0 .  

From (if), this implies that k ~ ( ~ , - ~ 0 , a ) = 0 ,  and the same sequence of steps on the 

left side of the diagram shows that (o~i,-i,o~)j~=O. The desired equation ~ i , - i , ~ = 0  

follows from (i). 
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Remark. The same deformation can be used to simplify the proof of Riemann-Roch 

for imbeddings of complex analytic manifolds in [1]. 

w 3. K-eohomology and homology 

In w 3.1 we describe the K-cohomology groups KoX and K-homology groups KoX 

in algebraic geometry and topology. The relations with the relative groups of w 1 are 

discussed in w 3.2 and w 3.3. Poincard duality and a preliminary discussion of orientations 

are in w 3.4. 

3.1. Definitions 

If  X is an algebraic variety (resp. a topological space), K ~ X  (reap. K~ denotes 

the Grothendieck group of algebraic (resp. topological) vector bundles on X. That  is, 

form the free abelian group on the isomorphism classes of vector bundles, modulo the 

relations given by exact sequences of vector bundles. In each case K~ is a commutative 

ring with unit, the product given by tensor product of vector bundles, and K ~ is a 

contravariant functor on the respective category. In fact, K~ may be identified with 

the ring KxX of w 1. 

In each case there is a corresponding functor K 0, which is covariant for proper 

morphisms, with a carp product 

KOX | Ko X , KoX 

making KoX into a KoX-module, and satidying a projection/ormula 

/,(/*b,~a) = b ~f,a 

ff /: X-* Y is a proper morphism, bEKOY, aEKoX. We also have exterior product~ 

X 
KoX1 | KoX= ' Ko(X1 • X=) 

which are compatible with proper maps, i.e., 

(/1 x/2),  (al • al) =/1,(al)  • 

if/~: X, - ,  Izl is proper, a, EKoX ~. And each theory has restriction homomorphisms 

Ko X , K o U 
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ff ~: U ~ X  is the 'inclusion of an open subschemeor subspace U in X. Restriction maps 

are also compatible with pushing forward, cap products, and exterior products, but we will 

not need these properties. 

For a variety X, K81zX is the Grothendieck group of coherent algebraic sheaves on X; 

write [~] for the element in K ~ X  determined by a sheaf ~. The cap product is given by 

[El ~ [~] = [E| ~] for a vector bundle E (regarded as a locally free sheaf) and coherent 

sheaf F on X. The exterior product is given by the formula [~1] •  for 

sheaves ~i on X+, where the tensor product is the one discussed in w 1.3. The restriction 

homomorphism j*: Ko~X~Ko ~g U takes [~] to [~[ U], where ~[ U is the restriction of the 

sheaf ~ to U. If  f: X-~ Y is a proper morphism, then the homomorphism 

l , :  K~ lgX + K3 ~ Y 

is defined by setting l . [~]  = ~ ( -~ 1)~[R~]. ~], where the  R~f. ~ are Grothendieck's higher 

direct image sheaves: for an affine open subset U of Y, F(U, R~f.~)fH~(f-I(U),~).  

In topology we continue to work with locally compact spaces whose one-point 

compactification is homeomorphic to a finite simplicial complex. Such a space X may be 

imbedded as a closed subspace of some C" so tha t  (C ~, X) is a simplicial pair as in 

w 1.1; then K~~ may be defined by making Alexander duality a definition: 

K~0pX _- K ~ C -  

where the right side is defined in w 1, and discussed in Appendix 1. That this is independent 

of the imbedding follows from the Thom-Gysin isomorphism K~xPCnffi~Kx~PC n+l for the 

standard imbedding of C" in C n+t, together with the fact that  two imbeddings are 

isotopic ff n is large. 

To describe the cap product in K t~ let X c C" as above. For any neighborhood U 

of X in C", we have a product 

K~ U | K~ p U -" K~  ~ U 

from w 1.3. Since Kt~PU rtop+',,.. K~'top~F" ='~X ~ ='~0 ~ by excision (Appendix 1), and any element in 

K~top X extends to an element in K~ U for some neighborhood U of X, this determines the 

desired product K~topX | P X ~ K~P X. 

For the exterior product, let X~c C~; then the product 

.J~+~c"'. | '' • C') 

of w 1.3 translates to give the required product. 
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To describe / ,  for a proper mapping /: X-~ Y, note first that  when / is a closed 

imbedding with (Y, X) triangulable, and we imbed Y in some C n as above, we have a 
natural map ~top ~n~ ~to~ ~ top top ~ x  ~ ~ r  ~ by the pull-back of w 1.2, and this i s / , :  K0 X-~K0 Y in 

this case. In the general case / may  be factored as a closed imbedding i: X-~ Y • D, 

where D is a closed disk in some C m, followed by a projection 1o: Y •  Then 

/ ,  =1o,o~,, and 1o, may be identified with the isomorphism 

]*: KyxD(Cn x C m) -~KrC n 

where YcC" ,  ts and Jt is the imbedding v-+(v,t) of C" in CnxC m. 

For the restriction mapping from K~PX to tP0 ~ U, for Y open in X, imbed X in 

C n as above, and let V be open in C n with V N X = U. Then .~0 ~ U may be identified with 

K~ p V (see the more general duality in w 3.2), so the desired map is the pull.back ~ P C n - +  

K~ 'p V induced by the inclusion of V in C n. 

An alternate approach to K~~ p is to use the correspondence between cohomology and 

homology theories, as given by Whitehead [16]. For finite CW complexes K~ is the even 

part  of the cohomology theory determined by the unitary spectrum, and K~ ~ can be 

taken to be the even part  of the corresponding homology theory. For non-compact X, 

let X c = X  U {oo} be the one-point compactification, and define Ko~PX to be/C6~ P(X c, {oo}). 

The desired properties can then be reduced to standard properties for finite CW complexes 

given in [16]. See [2] for a geometric description more suitable to Riemann-Roch. 

3.2. Relative and absolute K-groups 

The algebraic and topological theories each have homo/~y maps 

h: Kx r-, KoX 

when X is closed in a suitable Y; these are compatible with the constructions of w 1 and 

w 
In algebraic geometry there is no restriction on Y, and h: K~ l" Y~KSo~X is defined 

by setting 
hCE.] = ~ ( - 1)'[H,(E.)] 

Here the H~(E.) are the homology sheaves of the complex E. of locally free sheaves on Y. 

They are coherent sheaves on Y which are supported on X and thus determine elements 

[H~(E.)] in K ~ X ,  (cf. Appendix 2). 

In topology we will define 
h: K~xxP Y-~ K~P X 

12- 792908 Acta mathematlca 143. Imprim~ le 28 D~:embre 1979. 
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under the conditions that Y is a C ~ manifold whose tangent bundle has a given complex 

structure, and X is a closed subspace of Y with (Y, X) triangulable as in w 1.1. Imbed 

Y as a closed subcomplex of some C". We have the Thom-Gysin isomorphism 

ATz ~ Y ~ ~ P  C", 

which is the desired map h when we identify the right side with K~0 P X. 

3.3. Properties o| the homology maps 

We need some basic properties of these homology maps h: Kx Y - ' K o X  in algebraic 

geometry and topology. 

Property 1. Let X be closed in Y, with Y, Z as above, and assume i: Y-*Z is a 

suitably nice closed imbedding as in w 1.5. In topology assume the complex structure 

on the normal bundle to Y in Z is compatible with the complex structures on the tangent 

bundles. Then the diagram 

Kxr-..  

commutes. 

This is obvious from the definition in algebraic geometry, and in topology it follows 

from the functoriality of the Thom-Gysin maps. The next five properties are likewise 

simple consequences of the definitions; for the last, in algebraic geometry, see Appendix 2. 

Property 2. With X,c Y, as above, the diagram 

• 
" K x ,  ~ x,( Y, Kx, Y, | Kx, Y, x Y2) 

/~oXl(~l~o X' ./v~o(XixX,) 
COmmutes. 

Property 3. Let X c  ]" as above, and let j be the inclusion of X in Y. Then the 

diagram 

Koy| ' KxY 

KoX| , Ko x 
commutes. 
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Pro~rty 4. Let X c y as above, let Yo be open in Y, and let X o = Yo N X. Then the 

diagram 
h 

Kx Y ' KoX 

Kx. Yo ' Ko Xo 

commutes, where the left vertical map is the pull-back (3 1.2), and the right vertical map 

is restriction (w 3.1). 

Property 5. If X'cXc Y is a sequence of closed imbeddings, with Y as above, then 

the diagram 
h 

K~.Y ,KoX' 

Ifx Y , KoX 

commutes, where the left vertical map is the pull.back of w 1.1, and the right vertical map 

is induced by the inclusion of X' in X. 

Property 6. The homology mapping 

h 
KxY ) KoX 

is an isomorphism, provided--in the algebraic case--that Y is non.singular. 

3.4. Poinear~ duality 

For any variety X, or any C | manifold X with complex tangent bundle we may 

apply the above homology mapping to the imbedding of X in itself. Since KoX=KxX  

in either case, there results the Po/ncar~ duality mo/p 

h: K~ KoX. 

This is an isomorphism in algebraic geometry ff X is non-singular (3 3.3 Property 6), and 

also in topology by the description of h in w 9.2. The image of 1 by the Poincar~ duality 

map will be called the /undwment~l c/asa of X. In K0 ~ X  it is [Ox], where Ox is the 

structure sheaf of X. In topology it is the K.theory orientation class, which we denote by 

{X}. See w 6 for a general discussion of orientations. 

The Poincar~ duality map takes an element in K~ to its  cap product with the 

fundamental class, as follows, e.g., from Property 3 in w 3.2. 
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w 4. The RiemRnn-Roeh theorem 
4.1. The theorem 

Let ~': K~ be the homomorphism which takes an algebraic vector bundle 

to its underlying topological vector bundle. This is a natural transformation of contra- 

variant functors from the category of complex quasi-projective schemes to rings. 

Define the corresponding homomorphism 

~.: K$I~ X--* Ko~P X 

as follows. Choose an imbedding of X in a non-singular variety Y; then ~. is the 

composite 
h ~ h 

, X ,  x p  r , 

Here h and a are the maps defined in w 3.2 and w 1.1 respectively. 

RIEMANN-ROCH THEOREM. The homomorph~ ~. i8 independent of the imbedding, 

and satisfies 

1. (covariance). For every proper morphism /: X-~X',  the diagram 

Ko~X or. , K~,o rX 

K ~  X'  ~" , K~'P X ' 

commutes. 

2. (module). For every X the diagram 

K~ X | Ko~ X 

KSI.X ~. 

, K~174 

commutes. 

3. (product). For any X 1, X I, the diagram 

~x 0 .Z~.lkS/.ex 0 .zl- 2 

1 
Kg~(X1 x Xs) , K~~ x Xs) 

commutes. 
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4. (restriction). II U is an open 8ubscheme o~ X,  then the diagram 

K3~ X a.  , KtoOpX 

K ~ "  U , K ~  ~ U 

175 

commutes. 

commutes; the vertical maps are the restriction homomorphisms. 

5. (orientation). I / X  is non-singular, then ~.([Ox])= {X} is the K.theory orientation 

cla88. 

The vertical maos in the above diagrams are de/ined in w 3.1, the K-theory orientation 

in w 3.4. 

Proof. Until we have proved that g. is independent of the imbedding, we denote by 

g.r the homomorphism from Ko~gX to K~~ defined before the statement of the theorem 

by imbedding X in a non-singular variety Y. Before giving the proof itself we prove 

several preliminary results. We emphasize the formal nature of the proof, assuming the 

results of w 1-3. 

(1) If X c y, and i: Y ~ Z  is a closed imbedding of non-singular varieties, then ~.r = a.z. 

This follows from the commutative diagram 

h / K ~ g  y a , Kt~p y \  

The square commutes by w 2, the triangles by Property 1 of w 3.3. 

(2) For any closed imbedding i : X ~ Y ,  with Y non-singular, and any beK~ 

aeKo~X,  a.r(i*b~a)=~*a'(b)~r.(a). This follows from Property 3 of w 3.3 and the fact 

that ~ is compatible with products (cf. w 2). 

(3) If X~c Y~, Y~ non-singular, then 

0 . # - l ~ ' t ' 0  x ' 2 - -  
/ ~ ' t o p ~  ~ / ~ t o p y "  

~gt. • .Ys 

K0~"(X1 x X2) - -  �9176 x X~) 
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This follows from Property 2 of w 3.3 and the fact that �9 commutes with products (w 2). 

(4) If X c  Y as above, and / :  X'-*X is a closed imbedding, then the diagram 

~Y 
E~'X' , K~~ ' 

~Y , K~~ 

commutes. This diagram is the outside of a diagram 

K~X h .K Y ~ ,K~ Y h ,K 

where the unmarked vertical maps are the pull-backs of w 1.1 The middle square com. 

mutes by w 2, the outside squares by w 3.3 Property 5. 

(5) Let q: Pn-~pt. be the map from projective n-space to a point. Then 

" 1  ~.~. I g" 
K~(pt.)  ~ K~0 P(pt.) 

commutes. 

Proo/. (For a proof using C~ classes and formal calculations, see [1]). Since 

Ko~P" is generated by the classes [Oh(d)] (of. [7]), it suffices to prove that the two routes 

around the diagram agree for them. Let p , - i  be the hyperplane in p,  defined by setting the 

coordinate Xo--0, and consider the exact sequences 

0-~ O . ( d  - 1) ~ Op.(d)-,  Op.-,(d) - ,  0. 

Assuming the result inductively for pn-1, and using step (4), it suffices to prove it for the 

one case d = O. This is done in Appendix 3. 

(6) Let X c  Y as above, and let Y0 be an open neighborhood of X in Y. Then 

~.r = ~.r0. This follows from Property 4 of w 3.3 and the fact that ~ commutes with pull- 

backs (w 2). 
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(7)lLet X =  r as above, and let P be a complex projective n-space, and let p: 

X x P-~X be the projection. Then the diagram 

O~ Y x P  

K ~ ( X  • P)  �9 , K~P(X • p )  

d ,, F 
Ko~,X--  , I~o DX 

commutes. Consider the commutative diagram (from (5) above): 

Ko~o X | Ko~o P 

1 @q*l 

ho~o X| 

o~Y | oF.. �9 K~,~ X | K~o ~ P 

~Y| _~oo ~x| (pt.) 

The exterior product maps this square to the above square. The sides of the resulting 

cube commute by w 3.1, the top and bottom by (3) above, and desired commuting of the 

back square follows from the fact that the product map K ~ X |  xP) 

is surjective ([7], Prop. 9). 

We now turn to the proof of the Riemann-Roch theorem. To show that ~. is inde- 

pendent of the imbedding, suppase X c  Y1 and X c  Ya were two imbeddings in non- 

singular quasi-projective varieties. By (1), we may assume Y1 and Y2 are open sub- 

schemes in complex projective spaces PI and Pa respectively. Consider the diagonal im- 

bedding i: X - * X  x P  2 given by z-~(z ,  x), the projection p: X xP2-*X, and the diagram 

~ x  , ATopx 

i*l ay, xp. I i~ 

K~(x x P~). , .~o "(x x P,) 

Ko~X , /~o 'X.  

The top map ~.r,• is equal to the map ~.r,• obtained by imbedding X in YlxP2 by 

(6), and then the upper square commutes by (4). The lower square commutes by (7). But 

since p . i .  is the identity on K 0 X this shows that ~.r~• r, ffi ~.r,, and hence that ~.r, _-~r, by 

symmetry. 

Since any morphism/: X-~ Y factors into an imbedding X-~ Y • pn followed by a pro- 

jection Y xP~-~Y, the covariance property 1 follows from (4) and (7). 
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The module property 2 follows from (2), and the fact tha t  for any algebraic vector 

bundle E on a projective variety X, there is an imbedding of X in a non-singular pro- 

jective variety Y so that  E is the restriction of a vector bundle on Y ([3], Appendix 

w 3.2). 

The product property 3 follows from (3), and the restriction property 4 from 

property 4 of w 3.3 and the fact that  ~ commutes with pullbacks. Finally, the orientation 

property 5 is obvious from the definition if we use the imbedding of X in itself. 

4.2. Complements 

The results sketched in this section are not essential to the rest of the paper. 

(1) Uniqueness. The functor ~ is uniquely determined by the covariance property 

1 and the orientation property 5. This follows from the  fact tha t  K~*gX is generated by 

elements of the form :z~[Ov], where V is a non-singular variety and :z: V ~ X  is proper. 

Note that  resolution of singularities is not used anywhere else in this paper. (See [3] for 

other uniqueness results.) 

(2) Local complete intersections. I f / :  X-+ Y is a morphism of algebraic varieties which 

is a local complete intersection, there are Gysin morphisms 

/ . :  K~ ~ K~ Y (for ] proper) 
and 

/*: K3 ~ Y - .  Ko~ X .  

For the case of a closed imbedding/.,  is defined as in w 1.5; f*[:~]--~ (-1)'[Tor~r(:~, Ox)]. 

(See [5] for general properties of these Gysin maps.) The analogous maps in topology were 

constructed in [3], w 4. 

Riemann-Roch theorem/or local eam1~lete intersections. Let / :  X-~ Y be a local complete 

intersection morphism of quasi.projective complex schemes. Then the diagrams 

X /~top X 

and 

K~" Y ~" , K~ 'pY 

r,, v o~ , K ~Op X 

commute. 
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These can be proved using the properties of K a~ and K t~ developed in w 1 and w 3, and 

the deformation construction o f w  2. The proof of (1) follows closely the proof of the 

theorem in w 2, and in fact they have a common generalization; (2) can be proved by an 

argument tha t  is nearly dual to the proof of (1). We omit the details. 

w 5. The Chern character 

The discussion in w 1 and w 3 concerning topological K-theory has a completely 

analogous, and better known, form for ordinary homology. Let  H'X  be ordinary singular 

eohomology with rational coefficients; only the groups of even degree need be included. 

If  X is closed in Y, let H'x Y = H ' ( Y ,  Y - X )  be the local cohomology of Y with support in 

X. This theory has pull-backs, products, and Thom-Gysin maps just as in w 1, satisfying 

the same properties. The homology groups H . X  can be defined to be Borel2Moore 

homology [6], but  it is more in keeping with our treatment here to define H t X  to be 

//)cn-fC n for a simplicial imbedding of X in some C n (our standing assumptions on our 

spaces making such an imbedding possible.) All the properties of w 3 are then valid, with 

the same hypothesis as for K t~ 

Let  ch': K~ �9 be the usual Chern character. This is a natural transformation of 

eontravariant functors from spaces to rings, characterized by the fact that  ch'(L)= 

exp ( c ) = ~  (1/n!)(c) n when L is a line bundle on X with first Chern class c in H2(X). 

There is a canonical extension of the Chern character to homomorphisms 

ch: Kt2p y-~ H'x y 

for X closed in Y, which is compatible with pull-backs and products; B. Iversen [13] has 

given a nice construction for this. Althoug h this local Chern character is compatible with 

pull-backs and products, it does not  commute with the Thom-Gysin maps. If i: Y ~ Z  is a 

closed imbedding of C ~ manifolds with complex normal bundle N, and X is closed in Y, 

then the diagram 
ch 

K ~  p Y , H'x Y 

l 
K~PZ ' H'x Z 

commutes only if the usual Thom-Gysin map i , :  H'x Y~H'xZ  is modified by defining 

~,(a) = i , ( td  (N) -1 U a), 
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where td (N) is the Todd class of N. (The Todd class of a vector bundle is a charac- 

teristic class---i.e, it is contravariant--which takes sums of vector bundles to products, 

and i f  c i s  the first chern class of a line bundle, its Todd class is c(1-exp (-c)) -x. I t  is 

also determined as the characteristic class which makes the above diagrams commute.) 

Note that the mnltiplicative property of the Todd class insures that these modified 

Thom-Gysin maps are also functorial. 

Corresponding to the cohomology Chern character ch" there is a homomorphism 

oh.: I~o~ X-, H.X 

such that such that oh" and ch. satisfy the obvious analogues of Properties 1-4 of the 

Riemann-Roch theorem in w 4. The analogue to Property 5 is that 

ch.{Y} = td (Tr)n [r] 

when Y is a C a~ 2n-manifold with complex tangent bundle Tr, and [ Y] is the fundamental, 

or homology orientation class, in H,n Y. We may define the homology Chern character by 

imbedding X in some C n, and then oh. is the composite 

K~o PX~=K~xP6 ~ , H'xC"~- H.X 

where the isomorphisms are the defining (Alexander) isomorphisms. 

Define 7": K ~ H "  to be the composite of the homomorphism u': K~176 and the 

Chern character oh': K~ ". Similarly 7.: K ~ H .  is defined by z. =ch.ou. 

The following theorem of [3] is then an immediate consequence of the theorem in w 4. 

THEOREM. The ~napp/ng 
T.: Ko~" X-~ H.X 

/s covar/ant for proper morph/~na, x" and r. are compatible with cap products, and x. i~ 

compatible with cartesian product~ and restriction to open subvarieties. I f  X is non.ainoular, 

T.[Ox] = td (Tx) I"1 [X]. 

Remark. (1) If one wants only this result, one may ignore topological K-theory and 

work directly with the composite Ka~-~H. This gives a simplification of the proof given 

in [3]. 

(2) I f / :  X-* Y is a local complete intersection morphism, it follows from the construc- 

tion of the Gysin maps ([3] w 4.4) that the diagrams 
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(1) 

and 

(2) 

K~ X , H" X 

/*l (T') u ) 
.Eol, ch" , . H ' Y  

IC~o P Y ) H. Y 

/*J ~h. J td(T')nP 
AToPX , H. X 

commute, where T I is the virtual tangent bundle of f. If  these diagrams are combined with 

the corresponding diagrams of w 4.2 we recover theorems of [3] w 4.3 and [15] w 10. 

Riemann-Roch without denominators, for values in cohomology with integer co- 

efficients, (cf. [3] 34.5) is similarly an easy corollary of diagram (1) in w 

w 6. Orientations 

We consider locally compact spaces X whose one-point compactifieation is homeo- 

morphic to a finite simplicial complex, so that  the homology K.groups K~~ are defined 

as in w 3.1. For  a point z in X, let 

j~T, (x ) ,  = tim ~ ~  
- 4 )  

where the limit is over the open neighborhoods U of z, and the maps are given by  restric. 

tions. If  X is triangulated near z, this is isomorphic to the homology K-group of the pair 

(St (z), Lk (z)) consisting of the star and lint: of z in X. 

At any point z at  which X is a topological 2n-manifold, K~~ ~(X)z is infinite cyclic. 

Definition. Assume X has a dense open set which is an even dimensional manifold. 

An element ~ in K~o pX is a Kt~ for X ff the image of ~ in /~o  P(X)~ is a generator 

for each manifold point z in X. (It evidently suffices ff this condition holds for a dense open 

set of manifold points in X.). 

If  X is a C ~ manifold with a complex tangent bundle, it is clear tha t  the orientation 

{X} defined in w 3.4 is a Kt~ for X in the above sense. 

For a quasi-projective variety X, the homomorphism ~. of w 4 takes the element 

[Ox] in K31"X to an element in K~)PX tha t  we denote by {X}: 

{ Z }  - ~.[0~3. 
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We deduce from the Riemann-Roch theorem the following facts about the orienta- 

tion class: 

(1) {X 1 xX~} = {Xl} • for any varieties X,, X~. 

(2) If U is an open subscheme of X, then {X} maps to {U} by the restriction homo- 

morphism from Kot~ to Ko t~ U. 

(3) If X is non-singular, {X} is the orientation class determined by its complex 

tangent bundle. 

The following proposition follows immediately from (2) and (3). 

PROPOSITION. For  any reduced quasi-projective variety X, {X} is a Kt~ 
/or X: 

We remark that  if ~: :~-~X is a resolution of singularities for X, then ~ . [0~]  differs 

from [Ox] in K$lgX by terms supported on the singular locus of X. Therefore ~.{:~} 

differs from {X} by a term--usual ly not zero--supported on the singular locus. (Thus 

resolution of singularities shows directly that  any complex analytic space has K t~ 

orientations. The Riemann-Roch theorem produces a canonical Kt~ at least 

for quasi-projective varieties. See [9] for an application of this idea.) 

I t  follows from the assertions of w that  ]*{Y}={X} for any local completion 

morphism/:  X-~ Y, where /*  is the Gysin homomorphism. 

If one defines H.(X)z analogously to the definition of K~~ the homology Chern 

character induces a homomorphism from K~~ to H.(X)z. If X is a 2n-manifold at  x, 

then K0t~ is mapped isomorphically to the integer homology in H2~Xm Q. I t  

follows that  if X is a 2n-circuit, an element ~EKto~ is a K-top-orientation for X if and 

only if ch,(~)EH~nX is an orientation for X as a 2n-circuit. 

For an algebraic variety X, the image ch.{X} =T.[Ox] in H.X is called the homology 
Todd class of X, and denoted ~(X). See ([3] w 4) for properties of the homology Todd class. 

When the Chern character is applied ' to the formula/*{ Y} = {X} for a local complete inter- 

section morphism, there results the formula 

td (Tr) rl I*~(Y) -- T(X) 

which was conjectured in [3] and proved by Verdier [15]. 

There are many even-dimens'onal C ~ manifolds which are orientable in the usual 

sense but which have no K~P-orientation. (This happens when the second Stiefel-Whitney 

class is not  the mod 2 reduction of any integral class; e.g., the Grassmannians of oriented 
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bp lanes  in R n, k, n odd, k~>3, n -k~>3 . )  In  contrast we have seen tha t  any complex 

quasi-projective algebraic variety, whether singular or not, has a canonical K t~ 

orientation. 

Appendix 1. Complexes o| vector bundles 

Let K ~  v Y be the group defined in w 1.1 f r o m  complexes of topological vector 

bundles on Y, exact off X; for simplicity, we continue to assume the pair of one-point 

compactifications (Y~ X0) is homeomorphic to a pair of finite simplicial complexes. Let  

K ~  ~ Y be the free abelian group on restricted complexes, i.e., complexes of length 2, 

O-* EI ~ Eo ~ O 

exact off X, such tha t  E 1 is a trivial vector bundle, modulo the same three relations as 

in w 1.1. 

LEMMA. The map /~s y~Kt~p y induced by inclusion on the object level is an iso- 

morphism. 

Proof. The main step is to show tha t  a complex 

0 ,E. d.,E._x , . . . . d l , E o ~ 0  

of length n > 1 is equivalent, modulo the three relations, to one of length n - 1. Pu t  metrics 

on the bundles E .  and E._ x. On Y - X ,  choose a mapping d; l :  E . _ I ~ E  n so tha t  d~lod, is 
the identity on En. For example, since d n imbeds E n in En-1 on Y - X ,  d~ x could be 

orthogonal projection. Let  the norm of d~ 1, denoted Id ; l l ,  be the continuous, positive 

real-valued function on Y -  X whose value a t  y E Y -  X is given by  

Id;ll(y)= max Id~l(v)l, 
Ivl-1 

veE.-l(~) 

Let ~: Y-~R be a continuous function so that e(y)>0 if yE Y-X, e(X)=0, and ld~11.e 

extends to a continuous function on Y which vanishes on X. For example let 

e(y) = rain (d(y, X), 
d(y, X)'~ 

I d-ll(y)/ 
where d(y, X) is the distance from y to X in some metric on Y. 

Now the given complex is equivalent to the complex 

o ";'Lo . . . .  
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where e means e times the identity. This is by using the first relation, plus the  fact  tha t  

0 

is homotopic to the exact complex 

0 

e 
, E~  , E~  , 0  

id 
' En , En , 0  

by the homotopy ( 1 - t ( 1 - e ) ) .  id. Now consider the following homotopy: 

r<':-, :] ~ z L- ted. E .  _ l 
E.  

Note tha t  ed~ z is a continuous vector bundle map  on all of Y, vanishing on X. At 

t = 0  we have the previous complex, while a t  t - -1  we have a complex which contains 

id 
0 'E~ 'E~  ' 0 

(with the first E n in the nth  position) as a subcomplex. Then the quotient complex has 

length n - 1 ,  as desired. 

To complete the proof of the lemma it suffices to show tha t  a complex 

0 ' h i  dl  ,E0 , 0 

is equivalent to a complex wi th the first bundle tr ivial. For this choose any vector 

bundle E so that Ez@E is tr iv ial ,  and take the direct sum of the given complex and 

0 , E  id , E  , 0. 

We list several consequences of this lemma. 

(1) Excision. I f  U is an open neighborhood of X in Y, then the restriction homo- 

morphism 
K~x ~ Y ~ K ~  ~ U 

is an isomorphism. For  any restricted complex on U has a canonical extension to one on Y. 

(2) Let  C be a closed subspace of Y contained in Y - X  such tha t  the inclusion of 

C in Y - X  is a deformation retract.  Then K~x p Y is canonically isomorphic to I~~ 

Elements o f / ~ 0 ( y ] c )  are determined by  vector bundles on Y which are trivialized near  

G. Such a trivialization can be extended to all of Y - X ,  and by  making the map  from 
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the trivial bundle to the given bundle vanish as we approach X (as in the lemma), we 

obtain a restricted complex on Y. 

(3) Them isomori~/~ism. If  E is a complex vector bundle on Y, there is a Them iso- 

morphism 
/ ~ ~  Y-~/~x ~ E. 

If 0z: R-+ Y is the projection, the map is given by a-+~*(a)U ~ where IE is the Koszul. 

Them complex (w 1.4). Choose a metric on E, and let D and ~ be the unit disk and sphere 

bundles in E. For any pair (A, B) of finite CW complexes in ( Y, Y -  X), the induced map 

K~ ~ K~ N zr-lA/(8 N zc-*A) O (D N ~-IB)) 

is an isomorphism by the Thorn isomorphism for finite CW complexes (cL [8], p. 45). Now 

choose (A,B) so that  B c C c  Y - X ,  with C as in (2), and so that  the map A / B ~  Y/C is a 

homotopy equivalence. Then we have isomorphisms 

~ , ~ J  , 

the first by (2), the second since/~0 is a homotopy invariant. Similarly 

~ o B  ~ , ~0(E/~-lc u ( E - i n t  (D))) ~ , ~0(D n ~-1A/(8 n ~-~A) U (D n ~-IB)) 
z 

so the result follows from the isomorphism for finite CW complexes. 

Appendix 2. Complexes of s h ~ v ~  

One may find generalizations of the results sketched here, e.g., in [5]. 

1. Resolutions 

Consider a complex of coherent sheaves E. on a quasi-projective scheme X: 

...-~ E . -* . . . -*  Eo-~ O. 

By a reso~ion of E. we mean a complex F. of locally free sheaves on X and a homo- 

morphism of complexes ~0.: F . -~E.  which is a q~.isomorphimn, i.e. ~. induces an iso- 

morphism HIF.~H~E. in homology sheaves for all i; for convenience we also require ~0. 

to be surjective. 
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That  such resolutions exist follows from the fact tha t  any  coherent sheaf is the image 

of a locally free sheaf. In  fact, choose any surjection F0-~E 0 to start,  and if F. has been 

constructed to the nth stage, let Z n be the kernel of the map  from Fn to Fn-l ,  and let 

K,+s = Ker  (Z, @ E,+I-~ E,),  

where the map  takes (zn, en+l) to q~n(z,)-d~+1(e,+1). Choose any  surjection of a locally 

free Fn+ 1 to K,+I to continue the complex one step further. 

To resolve an exact sequence of complexes 0-~ E: -+ E. -+ E'.'-->0, first choose a resolu- 

tion F".~E".~O, and then choose a resolution F. of the complex Ker (E . |  

Then F. resolves E. and maps onto F:', and the kernel of F.~F: '  gives a resolution of 

F: of E:. The same reasoning shows tha t  any  two resolutions of a complex can be 

dominated by a third. 

I f  the complex E. is bounded, i.e., E~=0  for i > 0 ,  and the sheaves E~ have finite 

Tor dimension, i.e., each Ei has a finite resolution by locally free sheaves, then the 

resolving complex F. m a y  be chosen to  be bounded. One way to see this is by induction 

on the length of the complex E., applying the result of the previous paragraphs to the 

exact sequence 
O-~ E ' .~  E. ~ E~. ~ O  

where E'. is the truncation of E. a t  term k, and E. ~ is the remainder. 

2. Tor independence 

Let 
Y' ] ,Z' 

'i V 
g ---=--~. Z 

$ 

be a Tor-independent fibre square, i.e. T o ~  s (Or, Oz,)--0 for all k > 0 .  Assume also tha t  i 

is a closed imbedding of finite Tor dimension, i . e . i .  Or  has a finite resolution on Z. The 

condition of Tor independence means tha t  ff s is a resolution of i . O r  on Z, then J*s is a 

resolution of j .  Or, on Z' .  I t  follows tha t  j is also a closed imbedding of finite Tor dimen- 

sion. I f  E. is a bounded complex of locally free sheaves on Y, then i . E .  has a bounded 

resolution F. on Z. We claim tha t  the canonical homomorphism from J*F. to ~,g*E. is 

a resolution. For  an induction on the length of E. as before reduces the assertion to the 

case where E. is a locally free module, and then by  restricting to open subsets to the 

case where E. is a free module, thence to E. = Or,  which finishes the proof. 
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3. Homology of complexes 

We first sketch the argument tha t  if X is a closed subscheme of Y, then K0 ~ X  can 

be identified with the Grothendieck group 'K0a~X of coherent sheaves on Y which are 

supported on X. Write O~= Or/Z, where I is the idea]sheaf of X. For  a coherent sheaf F 

supported on Y, choose a filtration F=Fo~F1D. . .DFn-~O so that  I.(FdF~+I)~O 

for all i; F~ ~-1iF is such a sequence. Then F~/F~+ 1 is a coherent sheaf on X, and the map 

[ F ] - ~  [F~/F~+I ] gives an inverse to the canonical map KS~X-~'Koa~X. The essential point 

is that,  by the usual Jordan-H61der argument, this is independent of the filtration. Then 

ff O - ~ F ' - ~ F ~ F ~ O  is an exact sequence of sheaves supported on X, we can give _~ and 

F ~ the I .adie filtrations as above, and F '  the filtration induced from tha t  on F; the fact 

that  the map "Ko~X-~Ko~X is well-defined follows easily. In  particular ff X is a non- 

reduced scheme, Ko~ X ~ K3~(Xr~d). 

Next, let ' K ~  ~ be the group constructed from all complexes F. :  

0-~ ~.-~...-~ Fo-~0 

of coherent sheaves on Y which are exact off X, dividing by relations for short exact 

sequences of such complexes, and for complexes tha t  are exact everywhere on Y, just as 

we did to construct K ~  Y from complexes of locally free sheaves in w 1.1. There is a 

homomorphism 'h: 'Kz  ~ lr-~'K0~X given by 'h[F.] - -~  ( -  1)~[H~(F.)], where HI(F.) are 

the homology sheaves of the complex. In  fact 'h is always an isomorphism; the inverse 

map takes a sheaf F to the complex F.  with F0ffiF, F t = 0  for i=~0. To prove this one 

uses an exact sequence (with the complexes written vertically) 

0-~ 0 -~ F,_I-~ F,_I-~O 

to show that  a complex of length n is equal to one of length zero plus one with H , - -0 ;  for 

a complex F.  of length n >0  with Hn--0,  consider 

0 - ~ ' ~ - ~ v ~  -~ 0 

0-~ 0 -~ F,_~'~ P~_2-~ O 

to see that  it is equivalent to a shorter one. 

1 3 -  792908 Acta mathematica 143. Imprim~ !r 28 Db~mbre 1979. 
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We now have a commutat ive  diagram 

'I I, 
K~I"X " 'A~o X 

We claim t h a t  the map  K~ ~ Y-~ ' ~  Y is an isomorphism when Y is n0n-singular; then 

h is also�9 an isomorphism when Y is non-singular. The inverse m a p  'Kz  ~ Y-~ Kx ~g Y is 

constructed jus t  as in w 9.1, mapping [F.] to [E.], where E.-~F.  is a resolution by  locally 

free sheaves on Y; note tha t  all the sheaves now h a t e  finite resolutions since Y is non. 

singular. 

4. Intersections and unions 

Let  X o ... . .  X ,  be closed subschemes of a scheme X,  defined by  ideal sheaves I o ... . .  I n. 

The union Xo U ... U Xn is the suhscheme of X defined by the ideal sheaf -To N ... N I,~ while 

the interaectiona X~ N ... N X~, are defined by  ideal sheaves If, + ... + I ~ .  

LEMMA. Assume that /or any two disjoint 8ubseta S, T o/ {0 . . . .  , n), i / d s = ~ , s  It,  

the ideal 8heaves ~atisfy 

(*) Js + N Ijffi O r + I,). 
JeT l e t  

Then 

in K~X.  

n + l  

[O~.u...u,j+ 2 ( -  1)~ 2 [O~,n...n~,,l=O 
k -1  t)<ft< , , ,  <|k 

Proof. The case n ~ffi 1 follows from the exact sequence 

0 ' OxouX, ~ ' Oxo| ~ 'Oxonx, , 0  

where ~ (resp./~) is a sum (resp. difference) of two restriction maps. Apply the case n = 1 

to the subschemes Y0ffiXo, Y I = X 1 U  0 Xn. The assumption implies tha t  

Yo N Y1 ffi (Xo N X1) U ... U (X o N X,),  

and the result follows by  applying the inductive case of n subschemes to X 1 ... . .  X ,  and to 

X 0 N X 1 .... .  X 0 N X,.  
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Remark. The equation (*)is satisfied whenever 10 ..... I n are ideals in a polynomial 

ring C[Z 1 .... , Zm] with each 1~ generated by some subset of the coordinate functions 

Z 1 ..... Z n, For then any polynomial can be written uniquely as a sum P + Q for P E,ls, and 

Q involving none of the variables tha t  generate Js; then P + Q  belongs to n (Js+I~)only  

if QE f l  It, which gives (*). 

The ideals in (*) always have the same radical, since the corresponding equation for 

algebraic subsets is a set:theoretic identity. The scheme-theoretic assumption of (*)fails, 

for example, for three lines in the plane which pass through a point. 

Appendix 3. The genus of projective space 

Denote by r(X) the integer that  topological K-theory assigns to a non-singular pro- 

jective variety by the process described in w 0.2. More generally, for any projective sub- 

scheme X of a non-singular Y, let xr(x)  be the image of [Ox] under the composite 

Ko~gX ~r. , ~or"t~ P* , K~OP(pt.)___Z 

where ~.Y is the map defined inw 4.1, and p maps ~ to a point. Set ~(X) =zx(x) ,  if X, is 

non-singular. I t  follows from the Riemann-Roch Theorem (w 4) that  ~Y and hence x Y is 

indepeildent of Y, and:that  in fact ~rcx ) is the arithmetic'genus of X, but as the results 

of this appendix are used in step (5) of ~ 4.1, we will use only results proved earlier. In 

particular, 

(i) ~Y(X)=x(X)  if X is non-singular. 

(if) ~(X 1 • Xs) ~ ( X 1 ) x ( X 2 )  if X1, X2 are non-singular; these follow from steps (1) and 

(3) of w 4.1 respectively. 

LEMMA 1. Le$ X c  Y • T be a ]amily o] closed subscheme8 of a non.singular projective 

variety Y, fla$ over a connected variet~ T. Then all She xr(:F~) are equal for SET. 

Proof. The structure sheaf O~ has a resolution by a complex of locally free sheaves E. 

on Y • T. The restriction ~.~ to the fibre over $ resolves Ox,, and therefore the associated 

complex E.t of vector bundles represents the image of [Ox,] under the composite 

The complexes E., all define the same element in K~? p Y=K~ Y (w 1.1, 3.1), and the 

desired result follows from the commutativity of 
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(w 3.3 Property 5). 

h 

.K~, r h ,  z~jor . .K~oO(pt.) 

We will use this lemma for a family in P"x pn which deforms the diagonal to its 

Kiinneth decomposition, to show that ~(p,)_ 1. The verification that this is a fiat family 

requires an algebraic lemma. 

LEMMA 2. Let I be the idecd in the polynomial ring C[X 0, .... Xn, Yo .... , Yn, U] 

generated by the polynomials 

X, Yj-UJ-'XjY,, O<i<j<~n. 

T~n the ring C[X, Y, U]/I i~ a torsion-free C[U]-m~. 

Proof. It  suffices to show that every element of C[X, Y, U]/I is uniquely represented 

by a linear combination of monomials of the form 

(*) r~ r~'. ... . r~x{,. ... . x{.u~. 

To see this, define the C.linear mapping L from C[X, Y, U] to itself which sends a monomial 

r S . . . . . ,  r ~ x ~ . . . .  . x ~ . v  o 

to the monomial of the form (*) determined by the following procedure: k is the largest 

integer with O~<k~<n and c~+...+a,>bo+... +b~.,, and 

o~,=a~+bi for i<k  

/~i ffi a j + b j  f o r i > k  

= (a~ + . . .  + an) - (b0 + . . .  + bk_,) 

~ ffi (bo +... +bk)-(a~+l ...+an) 

r ffic+ 7. (j-k)a~+ 7 (k-j)b,. 
J>k J>k 

A simple computation shows that L is a projection (L s =L), and that the value of L on a 

monomial is unchanged ff any Xi Yj which appears with i < j  is replaced by Xj Yi U j-i. 

I t  follows that L vanishes on I. For any P6C[X, Y, U], L(P) is a representative of P 

modulo I of the required form, and ff Q were another such representative, L(P)-Qff i  

L(P)-L(Q) =L(P-Q)=0,  showing uniqueness. 
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PROPOSITION. :FOr a// n>~0, x (P" )= l .  

Proof. This is obvious for n = 0 .  Assume t h a t  x(Pm)=l for all m<n. Consider the 

subscheme :~ of pn • pn • A* defined by the ideal I of Lemma 2, where A ~ = C is the 

affine line. 

This family of subschemes of Y =pn • pn is fiat over A 1 by Lemma 2, and so ur(:~l) = 

xr(:~60) by Lemma 1. Now ~61 ~pn is the diagonal subyariety of pn • and ~ is the 

subscheme defined by the ideal generated by all monomials X~Yj for O<<.i<j<n. This 

ideal may  also be written as the intersection 10 fi ... N l~, where 

Zk = (Xo . . . . .  X ~ - I ,  Yk-bl; ..... r n ) "  

Thus ~ is the union of the corresponding subschemes X 0 ..... Xn, with X ~ P  ~-~ x P  ~. 

Note that  any intersection X~, N ... N X~, with /c > 1 is a product pa • p~ wi th  0 < a < n, 

0 ~<b <n.  The lemma in Appendix 2.4 implies the equation 

n + l  

xr(~0)+ ~ ( - 1 )  ~ :~ xr(x,~N.. .NX~ k)=O. 
k -  1 |1< ... <tk 

The terms xr(xt~ N ... N Xik) are all known to be one by induction and equations (i), (ii), 

except for the terms ~r(X0) and x r (x , ) ,  which are x(pn). 

The left side of the equation simplifies to 

. n + l  

which gives the required equation x(P n) = 1. 

Remark. The same proof applies to the arithmetic genus, since it too is invariant in fiat 

families. 
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