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w 0. Introduction 
0.1. The fixed point problem 

Let k be an algebraically closed field, and let n be an integer prime to the characteristic 

of k. By an equivariant variety we shall mean a quasi-projective scheme X over k together 

with an automorphism x: X - + X  such tha t  xn=id.  The fixed point scheme will be denoted 

IX I, and its automorphism will be the identity. All morphisms f: X-~ Y are assumed to 

be equivariant, i.e., yof  = fox ,  and the induced morphism of fixed point schemes is denoted 

I/I: IXl-+lrl. 
An equivariant aheaf on X is a coherent sheaf ~ of Ox modules together with a homo- 

morphism 

of sheaves of Ox-modules. 

The Lefschetz Fixed Point Problem is to calculate, for an equivariant  sheaf ~ on a 

projective equivariant variety X, the alternating sum of the traces of the induced maps  

on the cohomology H'(X,  ~), as a sum of contributions from the components of IX[ .  

We prove a general Lefschetz-Riemann-Roch theorem which solves the fixed point 

problem when X is mapped to a point, just  as the Hirzebruch-Riemann-Roch formula 

follows from a general Riemann-Roch  theorem [4];. 

(1) Research partially supported by the National Science Foundation. 
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In this situation, our theorem extends known results ([2], [7], [10]) to singular varieties, 

and improves the results announced in [4]. Explicit calculations of the local contributions 

are given for local complete intersections which generalize in a rather surprising way the 

Woods Hole Formula for the non-s~gular case. Both the statement and the proof of the 

theorem become particularIy natural by using the formalism developed in [5]. 

0.2. K-groups 

A morph/sm ~0: ~-~ 0 of equivariant sheaves is a homomorphism of Ox-sheaves such 

that ~0o~ =qoo~(~0). The equivariant sheaves on X form an abelian category. I f / :  X-~ Y 

is a proper morphism of equivariant varieties, and ~ is an equivariant sheaf on X, then 

the higher direct image sheaves Rt/.(~) are equivariant sheaves on Iv" [7]. Define K~qx 

(resp. K~eqX) to be the Grothendieck group of all equivariant sheaves (resp. locally free 

sheaves) on X. Let [~] be the element in K~qX (resp, Ke~ represented by an equivariant 

sheaf (resp. locally free sheaf) ~. The tensor product makes K~eqX into a ring, and deter- 

mines a cap product 

K~,Q X | K~r X ~ K~q X 

making K3qX into a K~ The structure sheaf Ox, together with its canonical 

endomorphism, represents the element 1 in K~ and a [um~ttmental class [Ox] in K~qX. 

H f: X-~ Y is a morphism, there are induced morphisms/*: K~r Y-~/ t~X given by 

/*[~]--[f*E]; /t~eq is a contravariant functor from eqnivariant varieties to rings. If / is 

proper, define/ , :  K~qX-+_K~qY by l . [ ~ ] = ~  (-1)t[R~,~t];  K~ q is covariant for proper 

morphisms. There is the usual projection formula 

/,(/*b~a) = bf~/,a 

for bE/~eq Y, aEK~qx. Note also that exterior powers AtE of an equivariant locally free 

sheaf are naturally equivariant (K~eqX is a k-ring). 

0.B. Trivial action 

In case X is projective and the automorphism x is the identity, any equlvariant 

sheaf ~ on X is a finite direct sum of sheaves ~a, for a fi k, such that the endomorphism 

q~-a I  is nilpotent on ~a. This determines canonical homomorphisms 

O) 

KSq X .-, KSb'| Z[k] (2) 
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taking [~] to ~ [~a]| Here K~ (rcsp. K~b'X) is the Grot~endieck groups of locally 

free (resp. coherent) sheaves on X, without endomorphisms, and  Z[b] is the free abelian 

group on the elements of b. By considering the filtration on the sheaves ~ given by the 

kernels of ( ~ - a I ) ' ,  one sees that (2) is always an isomorphism. If X is singular, however, 

(1) may fail to be an isomorphism. 

0.4. The coefficient ring 

It  follows in particular that for a point, 

K~oq (Spec (b)) = Z[b]; 

the product in the ring Z[b] is induced by the multiplication in b. Fix a commutative 

Z[k]-algebra A such that for each nth root of unity aEk, a * l ,  the element [1]-[a]  be- 

comes invertible in A. Any finite dimensional vector space H over k with a k-linear endo- 

morphism determines an element in K~ (Spee (b)), and hence an element in A by the 

homomorphism from Z[b] to A. We write tr (H) for this element in A. Note that we may 

take A--b, and this is the usual trace. If the characteristic is positive, A may be taken 

to be the Witt ring of b, a ring of characteristic zero, and tr becomes the Brauer trace 

(d. [7], [14]). The strongest results are obtained by t~l~ing A to be the localization of Z[b] 

at the multiplicative set generated by the above elements. 

0,5. A local i n v a d a t  

If V is a component of [XI (or a union of several connected components), and X is 

non-singular in a neighborhood of V, then V is also non.singular, and the conormal sheaf 

to V in X is an equivariant locally free sheaf on V. Then ~ (-1)t[AITi] determines 

an element in /~q  F, which by the homomorphism (1) of w 0.3 and base extension from 

Z[k] to A determines an element 

~vX in K~.b, V| 

Since the eigenvalues of the endomorphism on ~/are non-trivial nth roots of unity, our 

assumption on A makes ~vX invertible in/~a~ V| (d. [7], 4.3 and [6], VI 6.3). 

0.6, The Theorem 

Let X be an equivariant quasi-projective variety and assume that IX I is projective. 

There is a canonical homomorphism 

L... K~ | 
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obtained by composing the restriction (or pull.back) homomorphism from K~ to t~eq ] X~ [ 

with the homomorphism (1) of w 0.3 from ~ q l X  I to ~ I X l  | and then makl.g 
the base extension from Z[k] to  A. This L" is a natural transformation of contravariant 

functors. 

LEFSCHETZ-RIEMANN-ROCH THEOREM. For each equivariant quasi.pro~ective 

variety X such that IX I is pro~e~tive, there is a homonmrphism 

L.: Kgq X-*  K~b'IXI |  

which is covariant /or proper morphisms and compatible with cap product~. For each com- 

ponent V o/I X I contained in the non.singular locus o/ X,  the component oiL.[ O x] in K3 bg V | A 

is (2vX)-l~[Ov], with ,~vX ~ in w 0.5. 

In general, write L.[Ox] as a sum of terms L r X  in K3 b' V|  corresponding to the 

decomposition of K~ ~] X I into the direct sum of K8 b' V, as V varies over the connected 

components of IX[. If E is an equivariant locally free sheaf on X, and X is mapped to a 

point, the covariance and cap product assertions in the theorem give a formula for 

( -  1) t tr  (Hi(X, E)) as a sum of terms obtained by restricting E to V, capping with 

LvX,  and mapping V to a point. For example, ff each V = P  is an isolated fixed point, and 

E(P) is the fibre of E at  P, with its induced endomorphism, we have the following corollary. 

COROL/~XRY. ~, (  -- 1)' tr  (H'(X, ~)) ffi ~p,  lXl tr  (E(P)) �9 LpX. 

In the non-singular case, this contains known formulas (cf. [2], [7], [15]) with the 

improvement that  the equality takes place in the ring A. I t  is desirable to have an explicit 

computation of LpX in case P is an isolated singular point. 

We give such a formula in case X is a local complete intersection at  P in w 3; the ex- 

pression has a denominator of the expected form, together with an interesting numerator 

which may well be zero (cf. [3] for further discussion of these numbers). The theorem in 

w 3 also gives information about L r X  in case V is not a point. 

The complete statement of the theorem in w 2 includes the fact that  the contribution 

at  a component Y of IX[  depends only on a neighborhood of V in X. 

0.7. The construction 

We describe the construction of L.[:~] in K~bu[X[ |  for an equivariant sheaf  :~ 

on X. Imbed X equivariantly in a non-singular Y, and resolve :~ by an equivariant complex 

~. of locally free sheaves on Y. The restriction of ~. to [ Y[ is exact off IX[, so the alternat- 

hag sum of homology sheaves 
Y ( -  1)q~,(,~. by,)] 
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defines an element in Kg'lxl, or an element W in K~'lxl | applying homomorphism 

(2) of w 0.3. Then 
/-'.[:~] = [i[*(;~m r)-t,--, ~ 

where Iil is the inclusion of IX I in I r l ,  and 2lrt r is the element defined in w 0.5. As in 

[5], the essential step is to prove that this element is independent of the choices. 

0.8. Related results 

The Lefschetz-Riemann-Roch maps 

and 
L: KI~X ~ KI"I x'l |  

may be composed with non-equivariant Riemann-Roch maps 

and 
�9 ": ~b,  IXI |  |  

T.: ~b'lXI |  H.IX I |  

constructed in [4] and [5]. We may take H" and H. t o b e  (1) singular cohomology and 

homology, if k = O and A is a Q-algebra, or (2) the Chow rational equivalence homology- 

cohomology theory, for any k, if A is a Q.algebra, or (3) topological K-cohomology and 

homology, if k=O and A is any algebra satidying the condition in w 0.4. In (1) and (2) 

~" is the Chern character. In each case, the compositions give homomorphisms 

and 
~ o X  ~ H'IXI |  

K~*X-~H.IX[ | 

satisfying the same formal properties as in the main theorem in w 2. I t  is these versions of 

Lefschetz-Riemann-Roch that were referred to in [4]. They specialize to Riemann-Roch 

when the automorphisms are all identity maps. They were originally proved by making 

all the arguments of [4] equivariant, a task that is quite straightforward except perhaps 

in case (2). B. Moonen has also carried out part of this program in case (1). Cases (1) and 

(2) extend Donovan's work [7] to singular varieties in the same way that [4] extended 

Grothendieck-Riemann-Roch to singular varieties. 

Note that in the ease of  isolated fixed points, the use of the (trivial) Riemann-Roch 

theorems only weakens the result, in cases (1) and (2), by throwing away torsion. 
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In [11] i t  is proved that  L. induces an isomorphism 

X | A -* KS " I X l | A. 

The inverse is induced by the inclusion of [ X [ in X. The Lefschetz-Riemann-Roch theorem 

we prove in w 2 can be deduced from this localization theorem. A similar localization theorem 

was first found in the non-singular case by Nielsen [i0], where the result was combined 

with Riemann-Roch on the fixed point variety to obtain fixed point formulas. 

0.9. G-varieties and sheaves  

If  a finite group G acts on a variety X, one may form the Grothendieck group KoGX 

(resp. K~ of coherent (resp. locally free) G-sheaves on X. As long as the order of G 

is prime to the characteristic, there is no difficulty in extending our results to this situa- 

tion. We refer to [3] for a discussion which emphasizes this point of view, and the relation 

of these groups to equivariant topological K-theory. When G is cyclic, the fixed point 

theorem we prove in this paper is stronger, however, since we do not  require the liftings of 

the actions on the sheaves to have finite order. 

In w 4 we apply our results to calculate the homology Todd class of a quotient variety 

X/G in terms of data on the fixed point schemes in X of the action of the elements of G. 

The formula is particulary explicit for varieties arising from quasi-homogeneous poly- 

nomials. 

There are other situations where questions regarding more general group actions are 

reduced to questions about the action of one automorphism (cf. [2]). On the other hand, 

it is not clear how to extend our results to endomorphisms of varieties which are not of 

finite order (see [8] for the case of the Frobenius, and [15] for non-singular complex mani- 

folds, however). 

0.10. Conventions 

All varieties, morphisms, and sheaves ~d_ll be assumed to be equivariant unless other- 

wise stated; adjectives such as non-singular, local complete intersection, proper, locally 

free, etc., refer to the underlying non.equivariant varieties, morphisms, or sheaves. As 

in [5], we use the word "var ie ty"  for "quasi-projeotive k.scheme". 
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w 1. Equivariant K-groups 
1.1. Definitions 

Let X be a closed (equivariant) subscheme of Y. Consider complexes E. of locally 

free sheaves on Y, exact off X, equipped with a homomorphism of complexes ~e.: Y*~.-* ~..  

Define K~  Y to be the free abelian group on the isomorphism classes of such complexes, 

modulo relations [~.] = [~.'] + [~."] for each exact sequence 

0 -,- ~.' -,- ~. -,- ~." ~ o 

and [~.] =0  if ~. is exact on all of Y; [~.] denotes the class in K ~  Y determined by the 

complex E.. The definitions and basic properties are the precise analogues of those given 

in [5], w 1, for the non-equivariant case, so we include only a brief summary. 

I f / :  Y'-~ Y is a morphism, a n d / - z ( X ) c X ' ,  there is a 10u//-bae/c homomorphism 

/*: K ~  Y -" K~  Y' 

defined by/*[~.]  = [f*~.]. If  X t c  Y~, there is an external product 

K ~  YI| K ~  ]r 9 ~ K~x x,( Yz x Ys) 

defined by [E.z] x [~.2]=[~.z ~ . 2 ] ,  and the corresponding internal products. If i: Y ~ Z  

is a closed imbedding of finite Tor dimension, and X is closed in Y, there is a Thom-Gyein 

homomorphism 

i ,:  K~ Y --, K ~ Z  

defined by i . [~ . ]=[~. ] ,  where ~.-~i .  ~. is an equivariant resolution, i.e., a resolution in 

the non-equivariant sense which is also a morphism of equivariant complexes of sheaves 

on Z. The existence of equivariant resolutions follows exactly as in the absolute case [5], 

App. 2 and from the fact that  an equivariant sheaf on a quasi-projective scheme is the 

image of an equivariant locally free sheaf (cf. [7], 2.2). 

There is also a homo/ogy map 

h: K~ Y --, K~ X 

defined by h[~.] - -~ ( - l)~[~/l(~.)], where ://~(~.) are the homology sheaves of the complex 

~. (with the induced equivariant maps); we have used the fact that  K~qX may be identified 

with the Grothendieck group of equivariant sheaves on Y which are supported on X. 

The six properties of [5] w 3.3 are equally valid in the equivariant case. 



200 P. BAUM ~.T AT.. 

1.2. Eq~dvarla,  t vector hmdles  

An equivariant vector bundle E on an equivariant variety X has a morphism e: E-~ E 

so that  the diagram 
e 

E , E  

+1 l + 
X =~X 

commutes, where z is the vector  bundle projection. The morphism e must respect the 

vector bundle structure on E; equivalently, if ~ is the locally free sheaf of sections of the 

dual  bundle E v, e determines a morphism ~ from x*~-~E making ~ into an equivariant 

locally free sheaf in the  sense of w 0.1, b u tw i th  the additional condition that  ~ "=  1. 

Important  examples of equivariant + vector bundles are normal an d  tangent bundles, 

and their exterior powers. If  X is a local complete intersection in Y, t h e  normal bundle 

N =Nx.  r is an equivariant vector bundle on X, and the conormal sheaf ~/x. r is an equi- 

variant locally free sheaf. If Y is a non-singular variety, its tangent bundle T r  is an equi- 

variant bundle, and the cotangentsheaf  ~lr is an equivariant locally free sheaf. 

Since n is prime to the characteristic, the restriction of E to IX] splits canonically 

into a direct sum of vector bundles J~(~, for aEk, a n=  1, such that  ~ is multiplication by 

a on E r L e t  E ( • ) be the direct sum of the E r for a ~= 1, so that  ~ I Ixl - ~(1) ~ ~(• 

When E is regarded as an equivariant Variety, the fixed point scheme I EI may be 

identified with E '1), and the bundle E r • measures the extent  of non.transversality in the 

square 

Ixl I /I lil 
1 ,  
X , E  

where the horizontal maps are zero-section imbeddings. The Koszul-Thom complex 

A'~*~ gives an equivariant resolution of i .  O x  on E. This restricts to the complex 

A" I=l* I= I" 
on I E I" I t  follows that  the Thom-Gysin maps can only be compatible with the restriction 

to fixed point schemes if they are modified as in the following section. 

1.3. Modified maps 

The groups K ~  Y are all modules over K~+q (Spec (k)) = Z[bJ. When A is a Z[k] algebra 

as in w 0.4, set 
K ~  YA = K~ Y | 
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Let i: Y~Z be a closed imbedding of non-singular equivariant varieties. If  X is 

closed in Y, define modi/ied Thom-Gysin maps 

. �9 _.~ eq 

by the formula ~,(~) = l i l ,  r ~,x,. ~) where I i l ,  are the Thom-Gysin maps of w 1.1, 

is the conormal sheaf to Y in Z, and ;L171 (• =~ ( -  1)'A'~ <• in K~q[ Y[. 

These modified Thom-Gysin maps satisfy the same properties as before. The func- 

toriality follows from the equation 

i_~(~ ~)) = ~_i(~I X)) .I_,(E~, ~>) 

for an exact sequence 0-~ E,-~ E~--* E a ~ 0 of equivariant vector bundles. 

The homology maps must be modified to be compatible with the modified Thom- 

Gysin maps. If X is a closed subscheme of a non-singular .Y, ~: X-~ Y the inclusion, and 

t X I is projective, define the modified homology map 

by the formula 
~: KI,~, I YI^ ~/~b' IXl  | 

~(~) = l/l* Ix, rl Y)-] ~ h(~). 

Here h is the unmodified map of w 1.1, and we have identified K~IxIA with K~b'lxl | 
by w 0.3; ;[Irl Y is the invertible element in /~b,]  Y] |  constructed in w 0.5. 

I t  is easy to verify tha t  the modified homology maps also satisfy the six properties 

in [5], w 3.3. The compatibility of ' the modified homology maps with the modified Thom- 

Gysin maps, for example, uses the standard exact sequence relating the tangent and 

normal bundles of an imbedding of non-singular varieties--which is the reason for the 

modification. 

1.4. Deformation 

Define the homomorphism 

for X closed in Y, to be the pull-back homomorphism induced by the inclusion of I Y I 

in Y, followed by the base extension from Z[k] to A. It is obvious that L commutes with 

pull-backs and products. For the Thom-Gysin maps we have the following lemma. 
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MAIN LEMMA. If i: Y ~ Z  is a closed imbedding o] non-singular varieties, X is closed 

in Y, and I X I is projective, then the diagram 

L 
r , Kr~ll r l^  ,] �9 l~'l 

c o m m u t e ~ .  

Proof. Construct the deformation diagram of [5], w 2, i.e., 

y Jl , Y x A 1 ,  Jo y 

l 1' 
Z ,W ,  N 

kl ko 

and note by its construction that all the varieties and maps are equivariant; here A 1 is 

the affine line over k, with the identity automorphism. The induced diagram of fixed point 

schemes is 

Irl IJ, I, Irl • A~, I~ol 

[ z l ~ l w l ~ l N I  

which is the deformation diagram for the inclusion of [Y[ in ]Z[. All the squares of the 

above diagrams are transversal (Tor independent). The proof now concludes precisely as 

in [5], w 2. (Note that we have already checked the compatibility of L with the modified 

Thom-Gysin maps for the normal bundle situation.) 

2. The Lef~ehetz-Riemann-Roeh theorem 

Definition 2.1. Let X be a quasi-projective, equivariant scheme such that I XI is 

projective. Define a homomorphism 

L: E ~ x  ~ ~ l x l  |  

as follows. Choose an equivariant imbedding of X in a non-singular quasi-projective Y 

(d. Lemma (i) below), and then L. is the composite 

 o,x L,  Kr ,lrlA K "lxl| 

where L, h and ~ are defined in w 1. 
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THEOREM 2.2. The homomorphism L. is independent of the imbedding, and satis/ies: 

1 (eovariance). For every proper morphism/: X--,X', the diagram 

K~.x L., K~'IxI | 

K~x' L.. K~,Slx, l| A 
commutes. 

2 (module). For every X, the diagram 

K~.o X | K3"X 

Kg"X 

L" |  <~ [x l  | | | 

L. [!~| �9 K~o bs 

commute& 

3 (product). For every X x, X s, the diagram 

~#X1 @ K~qXi 

Ko(Xx x X l )  - 

L.| (K3b.lXII| ' ,^(Ka~.IX.I| 

• 

L. 

commutes. 

4 (restriction). I/]: U-+ X is the inclusion el an open equivariaut subscheme in X, then 

the diagram 
M, 

goX . ~o~'[Xi| 

KoU L" , K ~ I U I |  
c o m m u t e s .  

5. I!  X is ~-singular, then 

L.[Oxl : ( ~ m  X ) - :  ~ [01x l ]  

where XixiX is the da~s defined in w 0.5. 

6. I/the a)~)morplgam x o/ X is the ~Ientity, then L.: KS"X-~KSb*]X[ @A/8 the homo. 

~rphism (2) &/i~ in w 0.3. 

14 -792908 Acta nmthematica 143. Imprim6 Io 28 D6cembro 1979 
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The proof is entirely analogous to 'the proof of the Riemann=-Roch theorem in [5], 

w 4. Only in steps (5) an4(7) ,  and the proof of the module property in that, proof were 

facts required tha t  did not follow formally from the general properties. The analogous 

facts needed for Lefschetz-Riemann-=Roch are given in Cbe following lamina, parts (iii), 

(ii), (iv) respectively. 

Lv.MMA 2.3. (i) I / X  is an equivariant quasi.projectiVe variety, then there is a projective 

space p=pN,  whose automorphism is given by a diagonal matrix, an open equivariant sub~ 

variety U o/P, and a closed equivariant imbedding o / X  in U. 

(ii) With P as in (i), and any equivariant variety X, the product mapping 

• 
KSqX | KSqP , Kgq(X • P) 

is an isomorphism. 

(iii) With P as in (i), and ] the mapping o / P  to a point, the diagram 

i .  K$qP , K~?'IP I |  

~q(pt . )  L. , K~b,(pt. ) |  

commutes; the horizon~l maps L. are defined by imbedding the varieties in themselves. 

(iv) I / ~  is an equivariant locally/tee shea/ on an equivariant variety X, there is a non- 

singular equivariant variety Y, with an equivariant locally/tee shea/ ~ on Y, and an equi- 

variant morphlsm /: X ~  Y such that/*~ and ~ are isomorphic (as equivariant locally/tee 

sheaves). 

Proof. Parts (i)-(iii) are variations of rather standard facts. We sketch the proofs in 

geometric language, and refer to the literature for alternative descriptions. 

For (i), choose a (non-equivariant) closed imbedding of X in an open subvariety V 

of a projective space Q. Let Qt =Q and V~ = V for i = 1, ..., n, and define an automorphism 

on the product QI x ... xQn by sending (Pl ..... Pn) to (P~,Pa ..... Pn, Pi). Imbed X equi- 

variantly in V1 • ... x Vn by sending p E X  to (x(p), x2(p) ..... xn(p)). Use the Segre imbed- 

ding to imbed Q1 • ... x Qn in a projective space pN. The above aut0morphism extends 

canonically to a linear automorphism of order n on pN, and there is a canonical open set U 

of pN that  intersects Q1 x ... • Q. in V1 • ... • Vn. The automorphism is diagonizable since 

n is prime to the characteristic. 

A simple proof o f  (ii) can be obtained by following Quillen ([12], w A matrix for 

the automorphism p of P gives a homomorphism from p*O(1) t o  O(1), so all the sheaves 
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O(k) become equivariant. As in [12], we can confine our attention to those equivariant 

sheaves :~ on X • P such that H~(:~(- i))= 0 i > 0; such sheaves have canonical resolutions 

o ~  T~(:~).| 0(-~)--,- ... ~ To(:~) |  0 ~ : ~ o  

for coherent sheaves T,(~) on X. The T~(~) are ext~ct functors of ~, from which it follows 

that the above is an equivariant resolution of ~ (by coherent sheaves). If ~ is locally free, 

then the T~(~) are locally free on X. Thisproves (if), This same argument gives the ex- 

pected relation between K~q(P(E))(resp.  K~qP(E)),and KSqX (resp. K~qX) for any equi- 

variant vector bundle E on X. 

When X is a point, this shows that K3qP is generated over Z[k] by the elements 1 ~, 

t=[O(1)] ,  i=O,  1 . . . . .  1~. 

Let ~ be the inclusion of ]PI in P, and consider the homomorphisms 

K~qlpi h e, , rzeCv ~ r,'o ~* ~,-o -'A=~"~,,~PA" ,Ko~ 

of free A-modules of rank = N  + 1; the unnamed isomorphisms are Poincard duality iso- 

morphisms. We have seen in w 1.4 that the composite is multiplication by the unit ~ttelP. 

Therefore ~. and ~* are isomorphisms. To prove Off), consider the diagram 

KSqlp] ~* , K3qp [* , K~q(pt.) 

K 3 b ' I p I |  id . ,K~q[pl |  I/I, K~b,(pt.)| 

where the vertical maps are defined by using the imbeddings of the varieties in themselves. 

The left square commutes by the analogue of Step (1) of [5], w 4, and the outside rectangle 

clearly commutes. The desired commutativity of the right square follows from the sur- 

jeetivity of ~., after base extension from Z[k] to A. (One can also prove (iii) by the de- 

formation argument of [5], Appendix 3.) 

To prove (iv), choose a (non-equivariant) non-singular variety Q with a locally free 

sheaf :~, and a morphism g: X ~ Q  such that g*:~ = ~ ([4] Appendix w 3.2). Replace Q by 

the equivariant variety Q1 • ... • Qn just as in the proof of (i), and :~ by pr* (:~), where pr n 

is the projection to the last factor. Thus we may assume g: X-*Q is an equivariant morphism 

g*:~-- ~, but :~ is not yet equivariant. 

Now let Ht be the vector bundle on Q whose sheaf of sections is 

://, -- ~/om((,/')* :~. (,/,-t). ~) 
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for i = l ,  2 ..... n, and let 

be the fibre product, with projection ~: Y-~Q. The canonical isomorphisms ~/~-~ q*~/~-I 

determine an automorphism of Y permuting the factors H~, so that ~ is an equivariant 

morphism. There is a canonical homomorphism from q*~ to ~ when these sheaves are 

pulled back to Hi; since ~ factors through the projection from Y to//1, this makes ~ =~*~ 

into an equivariant sheaf on Y. Since the homomorphism ~e: ~*~-~ ~ determines homo- 

morphisms (x~-l) * (~e): (x~)* ~-~ (x~-l) * ~, the mapping g: X~Q factors through Y, g =~o~, 

in such a way that [*~ is equivariantly isomorphic to ~. 

2.4. Uniqueness 

Property 6, which has no analogue in the non-equivariant case, follows immediately 

from the construction of L.. For a general projective X, ff ~ is the inclusion of I X [ in X, 

it follows from Properties 1 and 6 that L. o~, is the homomorphism K~q[X[ -*K~b'[X[ |  

of w 0.3. Since ~. becomes an isomorphism after base extension to A [11], it follows that 

L. is the only homomorphism satisfying Properties 1 and 6 of the theorem. 

w 3. Local invariants 

3.1. Local complete intersections 

Let I r be a connected component of IXI, and let LvX be the component of L.[Ox] 
in K~ b' V| (cf. w 0.5). We will describe LvX in ease X is a local complete intersection in 

a neighborhood of V. By Property 4 of the theorem, LvX depends only on an equivariant 

neighborhood of V in X, so we may assume X is itself a local complete intersection, and 

that V = IX[. For any equivariant imbedding of X in a non-singular Y, there is an equi- 

variant homomorphism 

d 

of locally free sheaves on X; ~ is the conormal sheaf to the imbedding i of X in Y. Define 

J~V x = '~'-1(~*~"~ 11 '( • ) ) / '~-1( '~"~ ( • )) 

in K~abB V | A, and define an integer 

evX =rank ~/(1)-rank (~.~1))+dim V, 
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where the superscripts (1) and ( •  the trivial and non-trivial eigenspaces of the 

restrictions of the bundles to V, as in w 1.2. The usual proof of the uniqueness of  the co. 

tangent complex ([6], VIII  2.2) extends immediately to the equivariant case to show that  

these invariants are independent of the imbedding in Y. 

PROPOSITION 3.2. (i) evX>~O. 

(ii) I f  evX=O, then V i8 a local complete intersection in [ Y[ ol codimension equal to 

the rank of ~(1), and 
L v X  = (~vX)-l ~[Ov]. 

(iii) I f  evX >O, then LvX  belonq8 to the s?~bmodule o/K~ b8 V |  generated by sheave8 

whos~ sup'port has dimension < dim Y. 

Proof. We first assume there is an equivariant bundle E on Y of rank equal to the co- 

dimension of X in Y, and an equivariant section s o f ,E  which vanishes precisely (scheme- 

theoretically) on X. Since this is always the case locally on Y, th is  case suffices to prove 

(i), (iii), and the first assertion in (ii), as well as the entire proposition if V is a point. 

Let ~ be the sheaf of sections of E v. The section s determines a Koszul complex 

A ' ~  which is an equivariant resolution of Ox on Y. Corresponding to the decomposition 

E[trl=Ea)@E(~), the restrictions of o to Y decomposes into s(1)(~s (~). Then s(• 

since a is equivariant and s a) vanishes precisely on X , ~ ] Y [  = V. I t  follows that  

codim (V, ] Y[)-.<rank E (~). Since ~]z=  71, inequality ~" (i) follows. The Koszul c0mplox 

A ' ~  restricts to the tensor product of A" ~(• and A" E (1) on~ Y]. The complex A" ~(l) is 

the Koszul complex determined by the section 8 (~), while A" ~(• i s a  complex of locally 

free sheaves with zero boundary homomorphism. 

If evX =0, the complex A" ~cl) is a resolution of Ov on ] Y[, and (ii) follows from the: 

definition of L. Ox. If evX >0, however, the alternating sum of the homology of the com- 

plex A" ~(1) is zero when localized at  a generic point of a top-dimensional component of V 

([13]), from which (iii) follows. 

We sketch the proof of the formula in (ii) in the general ease. Consider the fibre square 

I r l  , 

and deform both inclusions X c  r and IX I c I y l  to the normal bundles N and N'  re- 

spectively, by the process of w 1.4. In general we have an inclusion of N'  in N <1), but under 

the assumption evX =0, the previous local description:shows tha t  N ' - - N  <1). We must 
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therefore show that  if we resolve Ox on Y, and restrict to ] Y I, we have the same alternating 

sum of homology as when we resolve Ox on N and restrict to N'; in symbols, 

~. ( - l)'[Tor~ Ox)] = ~. ( - I)' [Tor~(O~ ,, Ox)] 

in KSQ]XI. This is the equivariant analogue of the formula proved in [9] w 6, and it is 

proved in the same way. 

3.3. Isolated fixed points 

In case P is an isolated fixed point in X, and X is defined in a non-singular Y by a 

regular sequence of functions fl ..... It, we may assume Y*(fD =btft for some nth roots of 

unity b 1 ..... b r. Let  a 1 .. . . .  am be the eigenvalues, counted with multiplicity, of the induced 

action on the tangent space to Y at  P.  Then 

eeX = :~:{ilb, = 1}-@{~la ,  = 1} 

and the local invarlant is given by the formula 

0 if e r X > O  

x - J  l-I' irlj- Eb,J) 

where the products are over the indices corresponding to eigenvalues which are not one; 

we have identified K~bs(P)| with A and used the same notation [c] for an element in 

Z[k] as for its image in A. 

This generalizes the Woods Hole Formula det (1 -dfe) -1 to the singular case. See [11] 

for examples where LeX --0. 

w 4. Group actions 
4.1. Quotient varieties 

In this section 0 will be a finite group of order n prime to the characteristic of the 

ground field k; the coefficient ring A will be k if char (k)= 0, or the quotient field of the 

Wit t  ring of k if char (k)~0. 

If G acts trivially on a projective scheme ~ ,  and ~ is a coherent G-sheaf on X, then 

n[~  ~ = Y [:~(g, a)]| (1) 

in K 0 ~ |  Here ~o denotes the G-invariant subsheaf of ~, ~(g, a) is the subsheaf of 

on which g acts by  multiplication by a; the sum is over all g in G and all nth roots of 
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unity a in k. When X is a point, this amounts to a welLknown formula for (Brauer) char- 

acters of G (cf. [14], Chap. 18.1 (ix)); the general case follows formally from this as in w 0.3. 

Now let G act on a projective scheme X, with quotient X = X / G ,  and quotient map 

n: X-~X. For each g in G, let X e be the fixed point subscheme of the action of g on X, 

and let ~f: X~ be the induced map. Let L(Y ) denote the transformation constructed in 

w 2 for the endomorphism g on X (or ,~). If (1) is applied tO the sheaf ~ . O x ,  it gives 

n[O~] = 7. L<.~ (2) 
g a g  

By the covarianee of L(Y ), this implies the formula 

n[O~] ffi 7 =',L(~ (3) 
gGG 

i n KoX|  where L ( ~  K0(Xg)@A. This is similar to the procedure- 

followed by Zagier [16]. 

If T: K o X ~ H .  X is one of the Riemann-Roch transformations constructed in [4], [5], 

with H. either ordinary homology or Chow theory (or topological K-theory), ~ may be 

applied to (3) to give a formula for the homology Todd class (or K-theory orientation 

class) of X: 

T(X)ffi-* 7~ ~.T(L~X). (4) 
~b g t o  

This gives a Riemann-Roch formula for the Euler characteristic of locally free sheaves 

E on X in terms of invariants of the actions of 0 on X. For example, if the hypotheses of 

Proposition 3.2 (if) are satisfied for each g in O, the formula 

1 
(- 1)'dim H'(X, E)=-" ~ | chC~*E)~ch(Ix, X)-*~td(T~,) 

i ~to,o J x g  
(5) 

results. Here X ~ is a local complete intersection with virtual tangent bundle Tx,, and the 

integral takes the degree of the cohomology class Of highest codimension. 

4.2. Weighted homogeneous varieties 

Fix positive integers m 0 .... , m,. Grade the polynomial ring k[zo, ..., z,] by giving z t 

the degree rot. A homogeneous ideal I in this ring has polynomial generators f such that 

f(e~Zo ... . .  t"'z,) ffi ~'/(zo ..... z,) 
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for some d. The multiplicstiVe group Gm sets on b r+x by t.(% ..... zr)ffi(ffa~ ...;tm'zr), 

preserving V-- V(/), and the quotient X--V-{0}/Gin  is a projective scheme: 

X = Proj (k[z 0 ..... z~]/I). 

Let ~: kr+I-'k r+x be the map ~(z 0 ..... xr) ffi(~o' ..... x~nrO. Then ~*] is a homogeneous 

ideal in k[z0, .,,, zr] with its usual grading, and hence defines a projective scheme X;  

induces a morphism ~: X-~X. 

Let  G--ff~ • ... • be the product of the groups of ~n,th roots of unity, acting as 

usual on b~+l; ~ may  be identified with the quotient map from b~+l to kr+l/G. Then G acts 

on X, and X = X/G, with quotient map ~. 

If  I is generated by a regular sequence o~ weighted homogeneous polynomials, then X 

will be a complete intersection in pr. The fixed point subschemes of the various g in G 

are the intersections of X with projective subspaces of pr obtained by setting some of the 

coordinate functions equal to zero. The calculation of the L(~)X may be made as explicitly 

as desired. 

For example, if I is generated by a single weighted homogeneous polynomial/ ,  and 

Jf(Pl) =~0, where Pi  is the point with a 1 in the ith place and 0 elsewhere, then each of the 

coordinate subspaces meets X properly, and the last formula of w 4.1 holds. In particular 

may be the "Brieskorn polynomial" 

/=z~.+~,-... +~. 

In this ease, when k = C, Atiyah [1] has an interesting Riemann-Roch formula identifying 

the Euler characteristics of the sheaves Ox(m) with the index of an elliptic operator on 

the Brieskorn manifold obtained by" intersecting V with a sphere E ~r+x. 
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