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1. In troduct ion  

I t  is a well known consequence of the Hardy-Lit t lewood Circle Method tha t  a diD. 

phantine equation 
a l~  +... +a.z~. --0 (1.1) 

has a nontrivial solution in nonnegative integers x x ... . .  x,, provided only tha t  s ~cl(k ) and 

tha t  the coefficients a 1 . . . .  , as are not  all of the same sign. In  the first paper  [4] under the 

present title, the author proved tha t  if e > 0 ,  and if a t  least c~(k, 8) of the coefficients are 

positive and a t  least c2(k, e) are negative, then the equation has a nontrivial solution in 

nonnegative integers with 
]~l] ~ A  (ilk)§ ( i--1,  .... s) (1.2) 

where 

A - - m a x  (I ,  la d ,  ..., I,~,1). (1.3) 

In  the equation b1(x~x + ... +x~t)- b2(x~t+1 + ... +z~t )=0  where bl, b s are eoprime and positive, 

every nontrivial solution in nonnegative z I . . . . .  x~ has some z t ~ ( B / t )  x/~ where B ffi 

max  (bl, b2). This shows tha t  the exponent in (1.2) is essentially best possible. 

In  particular, it follows tha t  if k is add,  if a~>2c~(k~ e ) a n d  if a I . . . . .  as have arbi t rary 

signs, then there is a nontrivial solution of (1.1) in integers zl, ..., z s (not necessarily 

nonnegative) with (1.2). This lat ter  result had also been shown by  Birch [1]. Bu t  much 

more is true, We will show tha t  if k is odd and if s>~cs(k, e) where e>O, then (1.1) has a 

nontrivial solution in integers z v .... z, with 

I~,l ~,4.  ( i -I ,  . . . .  ~). (1.4) 

(1) Written with partial support from NSF grant NSF-MCS 78-01770. 

15-792908 Acta mathematica 143. Imprim6 le 28 D~eembre 1979. 
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I t  is well known (see the remark in [1]) tha t  this result has applications to diophantine 

inequalities involving forms of odd degree with real coefficients; more about  these 

applications will be said in subsequent work. 

The example given above shows tha t  a similar result canno t  be true if k is even. 

The trouble is tha t  the values of ~ cannot be negative in this case. To help such k over- 

come their handicap, we replace powers z ~ by  a ~  where a may  be 1 or - 1. We then have 

the 

THEOREM. ~tJ/rloOSe k, 8 are natural numbers with s>~e4(k, s) where s>O. Then given 

integers a~ . . . . .  as, the equation 

alal~+... + a , a , ~ ,  = 0 (1.5) 

has a solution in numbers al . . . . .  a,, x 1 ..... x,, where each at is 1 or - 1, and where the x~ 

are integers, not all zero, with (1.4). 

Our proof employs the Circle Method but  is no straightforward application of this 

method. I t  is similar to the proof in the first paper [4]. We will again use a result of 

Pi tman [3], but  with the expection of two lemmas the present paper  is independent of 

[4]. Our method allows in principle to compute explicit values for c4(k, s), but  the values so 

obtained would be extremely large. 

2. Pre l iminar ies  

We are dealing with additive forms 

A = A ( x )  = A(Zl  . . . .  , x,) = a l ~ + . . .  + a , ~  

with integer coefficients in vectors x = (xl ..... , xs). I f  A is not identically zero, put  

A '  = ( a ~ l d ) ~  + ... + ( a s l d ) ~ ,  

where d > 0  is the greatest common divisor of al . . . . .  as, and if ~4 is identically zero, put  

M ' f A .  Pu t  
IA!  = m a x ( l ,  la ,  l . . . . .  la,  l), 

and denote the number  of variables of A by  s(A) .  

When k is odd set X ffi Z, the ring O f integers. When k is even, let X be the set of 

products u~ where u E Z and where r is a (2k).th root of unity. In  either case we see tha t  

= [x [~ or ~ = - ]x ]e for each x E X ,  and both possibilities actually do occur. X is closed 

under multiplication. Let  X a consist of vectors x ffi (x~ . . . . .  xs) with components in X; 

for such x set 

Ixl = m a x  (Ix l, ..., I sl). 
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For xfiX s, ~(x) is always a rational integer. We say that  J4 represents an integer z if 

there is a nonzero xEX a with ~(x)-~z. We write A-~z in this case, and we put 

~(Alz)  = rain I xl,  

where the minimum is taken over nonzero xEX a with j4(x)=z. I t  is clear tha t  A-~0 is 

equivalent to ~ ' - ~ 0  and that  

~(A[O) = ~(A' l 0). (2.1) 

Our theorem may now be formulated as follows. 

I f  A is a form with ~(A)>~c4(k, e), then 

~(AI ~ < I A I'. (2.2) 

Put  x A u if xtu~ =0  for i = 1 ..... s. We say that  M represent8 a form B =  B(Yl  . . . .  , Yt) i f  

there are x 1 ..... x t in X 8 with xtN:0 (1 ~<i~<s) and xtAx~ ( l ~ i < j < ~ s )  such that  

13(yl . . . . .  Yt) = .d(Yl xl  + ... +Yt  xt)- (2.3) 

This equation means that  

7B(y~ . . . . .  Yt) - =  b l ~  + ... + b t y f  (2.4) 

where b,=M(x~) ( i=1 ..... t). Whenever A--;B put  

~,(.,41 s ) = m a n  (max ( Ix, I, ..., Ix, I)), 

where the minimum is over t-tuples x 1, ..., x t as described above which have (2.3). If  

A - ~  and B-~z then A-+z, and in fact 

~(A I z) < ~(A ] B)~(~lz). (2.5) 

3. R e d u c t i o n s  

In  all tha t  follows, k will be fixed and we will not explicitly express the dependency 

of constants or of sets on k. Let A be the set of numbers p >0  such that  there is a 

c5--c5(p) with the property that  every form A with s(~4)>~% has 

v(A[o) < [A[.. (3.t) 

By the work of Pitman [3], A is n,,t empty. Let A be the greatest lower bound of A. 

By [1] or [4], ~<<.l/k. Our goal here will be to showlthat  

;t = 0. (3.2) 

We will suppose that  ~ > 0  and ~:e will reach a contradiction. 
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The polynomial g(~)=A+Ic~Y-l~2~,lc~A20- 0 has g(2)=-/c~Aa<O; 

pick 0 with 

O < q < A  

and g(o)<0, i.e. with 

Pick r > 0 so small tha t  

(i) 

(ii) 

(iii) 

Finally pick p with 

~i§ 8 ~  <~[, 

< 1/5, 

< ~/10. 

Hence we can 

(3.3) 

(3.4) 

(3.5) 

max (0 +8g~, ~ -  �89 </~ <~. (3.6) 

We will show that  pEA,  and this will be the desired contradiction. We will show tha t  

(3.1) holds whenever 8(A) is large. We clearly may suppose that  no coefficient of J4 is zero. 

Suppose we can show that  (3.1) holds whenever both IA] and a(A) are large. A short 

reflection shows tha t  (3.1) is true when IAI is under a fixed bound and when a(A) is 

large. Hence it then follows that  (3.1) is true if just a(A) is very large. Thus it will suffice 

to show the validity of (3.1) when both [A[ and s(A) are large. 

Pick ~ with 
max (0 § ) [ -  �89 < v  < p  (3.7) 

and choose ~ > 0 so small tha t  

(1 + ~) ~ + (2~/k) < p. (3.8) 

Divide the interval 0~<x~ 1 into a finite number of subintervals I of length not ex- 

ceeding ~. If ~ is large, one of these subintervals will be such that  many of the coefficients 

a, will have [a,I = ]AI ~' with ~,EI .  We may suppose that  the first coefficients a~ .. . . .  a, 

have I~,/~,1 < lAP IX <r j <0 where t is large. Pu t  A* = I ~4l # max ( la ,  I ..... I a,I)' L e t  

P1 ..... lot be the largest integers with 

I~,lp~<A*. 

~ o w  a*/ l~, l  ~>lAI ~ (r ..... 0, and ~ I~ l  is large (which w e  may suppose), then 
lh>~2-~tk(A./la~[)l/k, so that  

�89 ~ la~p~l ~ A* (i ffi 1 ..... t). (3.9) 

We have ~4~alp~+ ... + a t P ~ - -  ~, say, with 

v(A I ~) < max (pl . . . .  , p,) < I A I"/~ and I ~1 < A* < I A 11+'. 
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I f  we can show tha t  

~(~lo) < I~1 ~, 
then 

v,(AIo) <~(AI ~)~,(~1o) -<< I~,1 ~'/~'+~":'', < lAP 

by (3.8), which is what we want. 

What  is special about B is tha t  by (3.9) each of its coefficients has absolute value a t  least 

equal to �89 B [" Hence it will suffice to show tha t  i / , ,4 ffi a l ~  § § a~ x~8 i8 a form such that 

and i / a  = s(A) >~ce, then 

�89 ( i - -1  ..... s), (3.10) 

~(A[O) ~ I.,41 ~. (3.11) 

Of course % depends on k and z, but  since k, 2, ~, ~, p, z will be fixed, we will not  

indicate the dependency of % (and of subsequent constants) on these parameters.  

PROPOSITION. l/ S(A)>~Cv and if (3.10) hoMs, then eitI~r (3.11) ~ true or there ~s a 
z with 

,4-*=, I=I < IAP" ,,,a ~o(Al=) < IAP. (3.12) 

This proposition appears to be too weak, but  in fact is all tha t  we need. For note tha t  

22>~ and tha t  %(2~) is defined; in fact we may  suppose it to be an integer, and similarly 

we may  take % to be an integer. Now if s(~4)~>c~%(22), then we may  write 

A(x) = A1(xx) +... + At(xt) 

where t = %(2~) and where x -- (x 1 ... . .  xt) and each x t has % coordinates, so tha t  8(A,) -- % 

(i--  1 . . . .  , t). I f  some A~ has ~(A~[0)~< [A~[ T ~< [~4]L then we are done. Otherwise, the 

proposition tells us tha t  ~t-~zt ( i = 1  .. . . .  t) with (3.12) for each i. Thus A - * z x ~ + . . . +  

a , ~ - - ~ ,  say, where 

[B[~[A[", ~(A[~)~<[.,4[e and s(B)--t=%(2;t). 

I t  follows tha t  ~ (B[0 )~  ] ~ [ ~ ,  whence we get 

~o<Alo) ~ ~o(~I ~)~o<Slo) ~ I~41 * I~I ~ ~ IAI ~,~, ~ IAI �9 

by (3.7). 

We will now proceed to prove the proposition. 
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4. The Circle Method 

We may suppose without loss of generality that  s is even and that  half of the 

coefficients of ~4 are positive and half are negative. For a given form ~ we put 

a = ]AI;  (4.1) 

then (3.10) may be rewritten as 

�89  l ~ a  ( i=I  .... ,8). (4.2) 

Let H, H be the integer parts of a c, a 4", respectively, Then 

�89 Q < N ~ A ~, �89 n < H ~ a 4~ (4:3) 

if a ~ I ~ ] is sufficiently large. The proposition will certainly be true for A if we can solve 

the equation 

al~+... +as~- z  = 0 (4.4) 

in integers z 1 ..... z,, z subject to 

l ~ z t ~ N  (i--1, ..., a) and l ~ z ~ H .  (4.5) 

The number Z of such solutions is given by 

= f~l(~) d~ (4.6) Z 

where 
N N H 

/(~)= ~ ... ~ • e(~(ax~+.. .+a,~-z))  (4.7) 
xz-I  x , - I  z - I  

and where e(z)fe ~'~. We are finished if we can show tha t  Z>O. 

We define the Major Arcs to be the intervals modulo 1 of the type 

~ :  ] ~ -  ~l < A-~+'2V-k, (4.8) 

where 
l ~ < q < A  v and g.c.d. (q, u) -- I. (4.9) 

These arcs do not overlap, at  least when A is large, since their centers have mutual  

distances ~>a -2v > 2 a  -1+~ by,(3.5 ii). The complement of the major arcs constitutes the 

Minor Arcs. 
For later reference we state the following 
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L E M M A  1. Suppose t ~  7>0,  that N~>cs(7)--cs(]r end that C>~N 1-(ill:)+'1 where 

K = 2 k-1. I f  ~ is such that 

then there is a natural 

q < ( N / c ) ~  ~th 11211< ( N / C ) ~  ~-~, 

~her~ I1" II de~ote~ the d i ~ e  to the ,~ar~,t i~teger. 

Proo/. This is the corollary to Lemma 1 of" [4]. I t  is an easy consequence of the "Weyl 

Inequality". 

5. The Minor Ares 

L E M M A  2. S u p p o s e  8 ~ c 9 ,  a~l]  8~tppose oc lie8 in  a Minor  Arc. Then either 

II(~)J < HN'-~,4 -~, (5.1) 
or ~2(A[0)<AL i.e. (3.11) ho/d~. 

Proof. We may suppose that  0~<~<l .  Choose 7 with 

0 < 7  <Clo, (5.2) 

where Clo is a constant (depending on k, ~, Q, ~, p, T) to be determined later. The quanti ty 

cs(~t+7) is well defined and may be taken to be an integer. Set 

n fcs(~t+7), h f n  s. 

Choose c 9 so large that  8 ~>c9 implies 

Since by (4.3), A < h  r~/~ ff A is large, we have 

(NkAl)  11(~- ~+1) < hn~+('l~))/(~-~+1) ,< N ~" 

Now if (5.1) fails to hold, then the sums 

N 
S,(~)  = ~ e ( ~ a , ~ )  (i = 1 . . . . .  s) 

' Z-1 

satisfy 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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If, say, ISI(~)I>~...>J[S,(~)[, then ,the left hand side of {5.6)is bouhded by 

IS~(~)['-h+IN h-z, and ISh(~)l and therefore ISt(~)l for/=I, ..:,,h satisfy 

I= N(_~rUAS)-II(,-~+ 1) > Nl-n 

by (5.4). The hypotheses of Lemms I are satisfied by C--A rl-n, since NI-n>N 1-(lIK)+n by 

(5.2), ff cx0 is small enough. Lemma 1 yields the existence of natural numbers ql .... , qh with 

q,~<N s~" and [[~,qtII~<N -k+2~:~ (i=I ..... h). (5.7) 

I t  follows that  

There are integers u I .. . . .  % with 

I~,~,-~,l ~<~v -~+~ (i=1 ..... h). (5.8) 

We obtain 

<~ 2N-~+~'TAN ~'7 (I ~< i, ] ~ h). 

Thus the integer vectors 

a, = (ate, ~t) (i = I, ..., h) (5.9) 

satisfy 
Idet (at, a~) I ~<2A-V -e+'~s (1 ~<i, ~h) ,  (5.10) 

Write a~ = rb where b is primitive, i.e. a vector with coprime integer components; say 

b==(q,u) with ~>0  and g.c.d. (q,u) = 1. (5.11) 

Now (5.8) yields l ~ l  ~<2]a~]~, so that  I~I ~<2g and Ibl ~<2~, which in turn yields 

I~l = I~l/Ibl ~ ~/(2lb[)~ ~/(~) .  (5.12) 

Choose e such that  b, e becomes a basis for the integer vectors. Then I det (b, e) l = 1 and 

each at may be written as 
at ffi= v t b + w t e  (iffil ..... h) 

with integers ~t, wv In view of (5.10) and (5.12) we have 

I~,l = [ det  (a,, b)[ = I,I -~ Idet (a,, s~) I 

~< 1 ~ 1 - ~ . 2 ~ - ~ + ~  
~< ~/~-~+~ = M, (i =I ..... ~) (5.~3) 

say. 
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6. The Minor Arcs, continued 

We now distinguish two cases (I) and (II). 

(I) M ~ I .  This is the fun case. Recall from (5.3) tha t  h~-n 2. We now replace the 

indices i = l  ..... h by double indices ~', 1 where l~<j,l,~<n; So, f0r example, a 1 ..... a~ are 

now written as ali, ..., aln , ..., an1, ..., ann. Introduce the forms 

~tj -- A,(xj~, ..., x ~ ) -  w j ,~+ . . .  + w j ~  ( j = l  . . . . .  ~ ) .  

We have ]~j] ~ M  by (5.13) and since M ~ I .  Further  since n=cs(~+~)  by (5.3), we have 

~(Aj(0)  < (~4~[~+~ ~+~ ( j = l ,  ..., n). (6.t) 

Choose nonzero vectors xj = (~jl ..... xjn ) E X n with A j(xj)~- 0 and I x, [ --~(~4jl0 ) 0"-  1 ..... h). 

Then the two dimensional vectors 

b~=~aj~+...+~aj. 0"=1 .... ,,n) 

are integer multiples of b, and hence the first coordinate bj of each bj is divisible by q. We 

observe that  
b~ = a j ~ , ~ + . . . + ~ j ~ , ~  (j=l, ..., ~), (O.2) 

whence it follows that  J4-* ~ where 

B = bly~ +.. .  + b.y~n. 

We note that  

by (5.7), (6.1) and our choice of the x r In view of (6.2) it  is c lear , that  

[~[ ~ ~ . 4 ( ~ M ~ + ~ )  ~ = n A ~ Y ~ M  ~§ (6.4) 

Observe again that  n=%(~+~) ,  so that  ~-~0 and 

~(~1o) --~{~'1 o) < I ~'1~+~ < (max (1, I ~1/~))~. (6.5) 

This is true if 3 = 3' =0 and [~']= 1, and also if 3'~=0, ~inbe each coefficient of 3 is 

divisible by q and therefore ]~']  ~ J~l/~ in this case. Combining (6,3) ~nd (6.5) we obtain 

~(.4] 0) < - ~  (max (M, M I ]BJ/f))~+~. (6.6) 

Now q, being s divisor of ~ ,  ~tisfies 

q < A_N ~s~" (0.7) 
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by (5.7). Thus from (5.13), 
M < 8 A N  -~§ (6.8) 

Since by (6.7), q does not exceed the right hand side of (6.4), we have 

max (M, M[ 9]/q) <~ MnAN2kX~M~a+~/q, 

and by (5.13) this is 
< 8N-k*4~X~nAN2kK~M~+~ 

= 8nAN-k+ekK~M~+~. 

Observing (6.8) we obtain 

max (M, M 191/q) < 8nAN-~+ekx~8k~+~A~+k~N-k'a+e~:~ck~+kn~ 

< Al+k~+k';N-k-~s~+TkK'l(l+2~) 

if A is large and if ~ <~. But  z/<~ can be made true by choosing the constant clo in (5,2) 

sufficiently small. If we substitute this into (6.6) we get 

with a certain constant c n independent of 7. In view of (4.3) we have 

~(A I0) < lAP +~'-~-~''*+~~ (6.9) 

Now if the constant Cxo in (5.2) is sufficiently small, the exponent in (6.9) is less than ~ by 

(3.4), hence is less than T by (3.7). So we get ~p(~410)~< 1~4[~1 i.e. the desired (3.11). 

(II) M < 1. This case resembles the situation in [4]. We revert to the original notation 

with indices i = 1, ...1 h. We have w~ =0  by (5.13), and hence each vector at (i = 1 ..... h) is 

a multiple of b. Therefore q divides each a ~  (i= 1 ..... h). We have ~4- '9  where 

= ~ + . . .  + ~ 1  
and 

~(AI9)  < ~ ~ ,  }91 < A ~ v ~  (6.1o) 

by (5.7). We have s(9)=h=nZ>~n:ce(;t+~) by (5.3), and 

w(sl0)  = ~(9'10) -< IS'l a+~ -< (I st/q) ~ - ,  

since each coefficient of 9 is divisible by q. Thus from (6.10) and (4.3), 

v, fA l o) < ~(A 19) ,u o) < N'~'(I 9 I/~)"+" 
.~"~(A.,~'z'~)a+'~ q ~'~ ~< A,~+,~,~x,~" "~a)q -~. 

<~ Aa+n+~xona +*~a) q-a <~ Aa+(~a/~)q-a 
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ff # is sufficiently small by (5.2). Now ff q>~A ~, then 

~(,410) -< 1,41 ~- ' ' ' ,  ~ [,4 l" 

by (3.7). We may thus suppose that  q<A', so t h a t  (4.9) holds. (5.8) yields 

u ua 

<~ 2A-XN-~+~ < A - I + ' N  -t~ 

ff~7 is small and ,4 is large. So ~lies in a Major Arc. We have shown that  ff (5.1) is false then 

either (3.11) holds or u lies in a Major Arc. Lemma 2 follows. 

7. The Major Ares 

From here on a>--c s will be fixed. We will employ the O-notation, with explicit con- 

stants which may depend on k, ~,/~ ..... s only, but  not  on A. We will assume A to be large. 

We will suppose that  (3.11) is false, so tha t  by Lemma 2 we have (5.1) unless u lies in a 

Major Are. We obtain from (4.6) that  

Z-  ~. ~ /(oQdu§ (7.1) 
q < A  v u - 1  lm 

,~. q )  - I 

where 

LEMMX 3. For  = = ( u / q ) + / ~  we have 

8,(=)=q-x#,(~) l~(~) + O(A~') ( i -1  . . . .  , s) (7.2) 

q 

Proof. Write xfqz +y. Then 

~'(~)= y-x~e ~ y~) ~ e(a,,(qz+y)~), (7.4) 

where the sum over z is over integers z in 1 ~< qz + y ~< N. We endeavour to approximate the 

sum over z by the integral of e(a,~(q~ + y)~) with respect to ~ in the interval determined by  

0 ~< q~ + y ~< N. The funetion 

has 
Ig'(C)l ~<2~la,~l~ N~-x, Ig(C)l ~<1 
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in this interval, which is of length N/q. Therefore 

] ~. e(a, fl(qz + Y f ) -  f e(a, fl(q$ + y)*) dr [ 

< (~V/q)(2=~la, Pl~"") + 3< ~:~kN*AIPI+ 3 

<<. 2~kA" + 3 --- O(A'), 

since Ifl{ <'A-l+vN-k" Taking the sum over y in (7.4) we obtain 

The change of variables ~ =qr + y  yields the desired result. 

Let Y(r) be the "singular integral" defined by 

where 

LEMMA 4. 
Z~ -- a~/A (i-- 1 ..... s), 

F o r  

2lsm ~Bz I < 2~ IP~ I < A~N -', whence 

and 

~1(') "" ~s(~ e(- q-z)- q-'~l ( ~ ) ' "  ~. (~)e (--~z)I i ( f l ) . . .  I,(,)+O(_,V'-XAr 

Taking the sum over z we obtain 

H 
l(~) ffi ~ ~1(~)... Ss(~)e(--az) 

z-1 
u /"/ 

(7.5) 

.... ,~ u " + O(HN,_,,_IA_I+8, ) 

Proo[. Since ]S,(a)] ~<N, the preceding lemma shows that  for o t = ( u / q ) + f l e ~ , ,  

S,(~) ... S,(~)ffi q-'~a ( q ) . . . ~ , ( ~ ) I , ( 3 ) . , . 1 , ( f l ) + O ( N ' - a A " ) .  

1 _<:,,.<a4, I f lz[~A-a+'N-*A*'~A'N - '  by (3.5 ii), so that  [e(flz)-l[ ~<z-~-~.~ we have = 
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Since 7 ~  is of length 2A-I+~N -~ we infer that  

where 

3(-- f I1(~) .... I.(fl)d~. 
J I~I<A- I +7'N-~" 

Put  ~t=N~; ( i=1,  ..., s), f l = A - X N ~  '. Then 

a , ~ =  (a~Nk/ANk) fl '~k= 9~t~'~ ~ (i = 1 . . . . .  s). 

We now have I/3'[~<A', and if ~=~,  in the definition (7.3) of I,(fl)ranged in 0~<~<N,  

then ~'~ ranges in 0 ~<~'l ~< 1. Thus after a change of notation we see tha t  

X =--,Y'-~A-I:7(-~'). 

8. Conclusion 

Recall that  a t  the beginning of w 4 we made the convention that  s be even and that  

ha]f of the coefficients as be positive, the other haft negative. Hence half of the X~ are 

positive, half are negative. Moreover we have 

� 8 9 1 6 2  ( i - -1 ..... s) (8.1) 
by (4.2) and (7.5). 

LEMMA 5. Under the conditions just stated, and assuming s>k ,  the limit o/ ~I(7) as 

7--*oo exist.s; denote this limit by ~J(oo). Here :7(7) and ~1(~) depend on Zx ..... Za, but the 

convergence to the limit is uni/orm in Z1 ..... Z~ subject to (8.1). Moreover, 

3(~176 >/c12(k, 8) > 0. 

Proo]. This was shown in [4, w 7], which i n  turn had a reference to [2].(1) ̀  

Since the number of summands on the right hand side of (7.1) is < A2L Lemma 4 yields 

Z = N ' ~ A - I S ~ ( A ' )  + O(HN'-~A -s + HN'-~-aA-  1+6,), (8.2) 

where S is the "singular series" 

(x) Added in ~ o o / .  There is a minor mistake in [4]. The integral in formula (7.3) of [4] should 
be replaced by I= ~(u) (sin 2~mu/~u)du, where = = - ~v ~v, ~ "  ~T Qv- Two lines below, ~(co) should 
be ~(u). 
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) SffiS(A',H)= ~ ~ . . .  (a  z . . .  ~-~< ,4 ,  , ,- i  , ,-~ , q - ~ e  ~ +  + a , ~ - z )  . (8.3) 
( u . q ) - I  

The summands q = 1 give the contribution H to the multiple sum on the right hand side. 

When q > 1, 

so tha t  the summands with fixed q > 1 contribute O(q2). Taking the sum over q in 1 < q < A" 

we get a total  contribution O(AS'), which is of smaller order of magnitude than  H by  

(4.3). Hence if A is sufficiently large, 

Isl >�89 

On the other hand by  Lemma 5, 

if A is large. Hence the main term in (8.2) will be 

> (C12/4) H N s - k A  -1. 

This is for large A of a greater order of magnitude than the error term, since 

H N~-k-  Z A .- X + ~, = O( H IVS-~- X A-1Ns"IQ ) = O( H NS-~-(zl2) A-X ) 

by {4.3) and (3.5 iii). Thus Z > 0  if A is sufficiently large. Our proof of the proposition 

and hence of the theorem is complete. 
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