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1. Introduction 

In several classical textbooks on Algebraic Topology and Discontinuous Groups [el. 

7, 12] one finds the technique of cutting and pasting finite polygons to a canonical form. 

With Theorem 1 available we can use this classical technique to prove some important 

classical theorems in the theory of fuchsian groups as well as prove some interesting new 

ones. Thereby, we not only gain new insight into the theory of fuchsian groups, but also 

unify part  of the classical theory. 

Most of our applications will be to infinitely generated fuchsian groups. We do, 

however, prove some missed theorems about finitely generated groups along the way. 

We should like to mention here tha t  the techniques in this paper, especially Theorem 

1, have many more applications to infinitely generated fuchsian groups whose detail is 

currently being worked out. 

The author would like to thank Prof. Ch. Pommerenke for pointing out a gap in the 

original manuscript as well as for making other helpful suggestions. Also, the author is 

grateful to the Alexander yon Humboldt  Foundation for their support. 

2. Definitions 

A /uchsian group F will be a group acting discontinuously on the unit disk A. A 

set o/generators for F will be denoted by (A1, A~ ... .  }. In this case we write F =(A 1, A~ ...). 

A fundamental domain for F is a domain D ~ ,  the closure of A, such that  (1) ~D is 

accessible (accessible means that  one can draw an arc from a point in D to any point in 

0D, where OD is the boundary of D); (2) OD N A can be written as the union of a countable 

(possibly infinite) number of Jordan arcs, which are identified in pairs by elements of F; 



234 1~. PURZITSKY 

(3) V(D)N D = O  for all VEF and V~eI, where I(z)ffiz for all z; (4) for each point zEA 

there exists a VEF such that  V(z)E~. The Jordan arcs in (2) will be denoted by  the set 

(~t, ~'t)t, where i runs through a subset of the positive integers and the arc labeled ?'t is 

related to the arc Yt by ~'~=A(zt) for some AEF.  The arcs ?t, ~ for i = 1 , 2  .. . .  are 

called sides of~D. 

P is a f~amen~al  polygon if (~l) P is a fundamental domain; (2) each 7~ or 7~ is a hyper- 

bolic line or line segment; (3) P is hyperbolically convex. A group F is said to be of 

classical Schottky type if there is a fundamental polygon for 1" whose only vertex cycles 

(see [7], for the definition) in A are cycles of exactly one elliptic fixed point. Such a 

polygon will be called a Schottky polygon. We say that  a generating set (A l, A 2 .. . .  } for F 

is a classical Schottky generating set if there is a Schottky polygon P for F such tha t  the 

set (A~ :1, ...) is precisely the set of elements of F which identify pairs of sides of P.  A 

Schottky pair of sides for F is a pair of sides identified by some A e F which begin and end in 

~A, when A is not elliptic, or, if A is elliptic, then one endpoint is the elliptic fixed point 

of A and the other endpoint lies in OA. 

If  A EF and is elliptic, then An= I for some positive integer n. The smallest positive 

integer for which A ' = I  is called the order o / A .  A is of minimal rotation if ]tr (A)I 

2 cos (n]n) for some n>~2. Note n in this case is also the order of A. A/ tee  hyperbolic 

trans]orma~ion H E F is a hyperbolic transformation in which one of the two open intervals 

of ~A determined by the two fixed points of H lies in the set of ordinary points of F. 

Let S=(A~, As, ...} be a set of transformations in SL(2, R). We denote by  n~ the 

order of A~, where n~ = + oo if A is not of finite order. Calling the elements of S letters, 

we define the lenqth of a word W in the letters from 8 by first writing W in reduced form: 

w = A~: . . .  A ~ ,  (*) 

where 0 < ] a j ] < ~ n , j  ( i = 1 , 2  ...... /r and t , .Aj ,+l  for r = l , 2  .... , k - l .  Then L( W), the 

length, is defined by L(W).=E~.I ]aj]. We note tha t  if At,---I, then nt,--1, and hence 

g~--0. So L(W) is well defined. In the case (A 1 ...) = ~ t(At),  where ~ t (At)  denotes the 

free product of the cyclic groups (At),  L(W) is the length of any element of (A 1, A2, ...) 

with respect to the generators {Ax, A ~ .... }. Finally set ea(W)--ZA~j.agj for each 

AE{A t ..... A~, ...} and WffiI, if L (W)=0 .  

3. The basle theorem 

THEOREM 1. Leb {C~, C~}, be a collection of circles perpendicular to ~A which are 

e~erior to each other except for poasible e~ernsl ~ngcncies and the possibility that 
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C~ N C~ N A~=O. Let F be a fucheian group/or which to each C~ there exists an AtEF such 

that A,(C~)=C~ with the outside of C~ being mapped by A~ onto the inside o/C'~. I f  an A~ is 

elliptic, then we assume it i~ o/minimal rotation and that C~ N C~ N A is the fixed point of A ~ in 

A, when nt~2, and that Cj=C~, when nf=2. Then the polygon P formed by the intersection 

of A with the region exterior to all the circles from {Ct, C~}~ is a fundamental polygon/or F if 

and only if 

(1) the group (Ax, A s . . . .  ) = r ,  and 

(2) F has no intervals o/discontinuity on OA, or P N OA contains a fundamental set/or 

the ordinary points, ~r ,  of F in OA. 

Remarks. (1) In the proof it will be clear tha t  when there are ordinary points on 0A, 

then a fundamental set of F in 0A in P N 0A will be expressable as a disjoint union of 

intervals of positive length. 

(2) A similar theorem can be proved for the case where we allow accidental or more 

general elliptic vertex cycles in A. The proof, however, is not as easy as the one given 

here for a weaker, but  for our purposes sufficient, Theorem 1. 

(3) Theorem 1 is in some sense a generalized Klein's combination theorem [2]. I t  is 

known that  Klein's combination theorem is not true if one allows the circles which are 

exterior to each other to have tangencies. Also, Klein's theorem does not make any 

assertion in the case there are infinitely many circles. Theorem 1 gives precisely the 

condition for the images of the polygon P exterior to the {C~, C~}~ in C=CU {oo} to be a 

covering of the set of ordinary points of F = (A 1, ,4~ . . . .  ). Although Theorem 1 deals only 

with the fuchsian group case, Lemma 1 and Lemma 2 below are still valid in the general 

case and hence so is the proof of Theorem 1. This means tha t  P is a fundamental domain 

of F if and only if C ~  Uv , rV(P )  does not contain a nontrivial disc. The problem with 

Theorem 1 is essentially the same problem tha t  one has with Maskit's version of the 

Poincar~ Theorem [11], and Theorem 1 is in a way a special ease of the Poincar~ Theorem. 

In both theorems there is no way to check the conditions which make P a fundamental 

polygon, except in the most trivial cases. However, Theorem 1 has the advantage of 

saying how far one can carry the ideas of cutting and pasting. 

(4) At the suggestion of the referee we now give an example to show that  condition 

(1) and (2) of Theorem 1 are independent. We choose a trivial example to keep these 

remarksshor t .  L e t A ~ ( 0  p 0 ) p-1 and r = ( A ) .  L~t C = { [ z - l [  =1} and C'=A(C). Then 

the polygon P in H+={z:  Im (z)>0} determined by C and C' satisfies (1) but  not (2). If  

we set Cl={Iz I =1} and C~ =A2(C1), then the polygon determined by C1 and C~ satisfies 

16-792908 Acta mathematlca 143. lmprim6 Iv 28 D b ~ m b r e  1979.  
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(2) but not (1). So in neither case do we have a fundamental polygon of 1". This brings us to 

an interesting question. Suppose P satisfies (2) in a nontrivial way, i.e. f lrN 3A~=~ and 

except for at  most countably many points X ~ r f l 3 A ,  the V6F  for which V(x)~P is 

unique. Does P then also satisfy (1)? If P is finitely generated the answer is yes. There 

are examples in the infinitely generated case to contradict this conjecture. 

Before proving Theorem 1 we must first prove some lemmas and introduce some 

notation. For each C6{C,, C~} we let D(C) be the closed bounded disk determined by C. 

We now define a collection of arcs {~,, ~;}, by ~ = C ~  and ~; =C~, when .4, is not elliptic, 

~nd, when A~ is elliptic, we set/3~ =C~ U C~[D(C~)~ D(C~) ~ and ~ =O,  where S ~ is the 

interior of S, T \ S = { x e T :  x~S}, and ~ is the empty set. Now let D(fl) be the closed 

bounded region determined by 8, where f l~{~,  fl'~}~, fl~=~. 

LV.MMA 1. Let {C,, C~}, and {A,}, be as in the hypothesis o/Theore~n 1. Set G=(A 1 .... ). 

Then the following are true. 

(1) For any two words V, W in the letters/ram {A,}, we have tha~ V(P)fi W(P)=~O 

i /and only i/L(W-1V)=O; hence G =  ~,<A,> and is a ]ucheian group. 

(2) For V, WeO, W(flt)fl V(flj)fl A=~O i /and only if i=~ and either W=V,  or, At is 

elliptic and W = VA~ /or aome integer q. 

(2') For V, WeG, W(fl~)fl g(fl;)fl A=~O if and only q i=i, W= V, and W is not 

d/@tic. 

(3) For V, WeG, W(~lJfl V ( ~ ) f l A 4 0  if and only if i f j  and W=VAt ,  where Af 

is not elliptic. 

(4) .For ~E{~l,/~}~, ~ 0 ,  VEG, and zED(V(fl))~ there exists a WE(~ such that 

W(P) c D(V(~)) and either z E W(P) or z E D(W(~))= D(V(~)) /or some u E {~, ~}~, o ~ .  

Proo]. (1) is just the discontinuous part of the Klein combination theorem, which is 

proven in [7, 2]. 

To prove (2) it suffices to show W(~)/1 ~k fl A~=O implies W = I ,  if Aj is not elliptic, 

and W=A] ,  if A is elliptic. Considering W (see (*)) as a reduced word of positive length, 

we have from [7,2] that  W(P) is contained in D(Ci,) or D(C~I), as ~1<0 or ~1>0, 

respectively. Hence ~/j---~i, or ~--i 1. If .4 is not elliptic, then ~1<0. Moreover, since 

.4;I(C~)=Cj, we have W(~j)~_D(Cj) ~ except when L(W)=0.  Hence, W = I  and i=~. 

If  .4j is elliptic, then we observe that  .4~(]~(D(Cj)U D(C~)))c_D(Cj) ~ for O<~<nj/2, 

and .4~(~(D(C#) U D(C~)))~_ D(C'j)~ for 0 > ~ ~> - nil2. Hence W(~,) fl ~j fl A ~=O if and 

only if W=.4~ and ~i--~j- 

The proof of (2') is similar. 
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The proof of (3) is very similar to the proof of (2). Since either W(P)c_D(C~,) ~ or 

W(P)c_D(C~,) ~ and /3~=0, if Aj is elliptic, i t  follows tha t  the only possibility for 

W(/3~)n/3'jn A~=~ is tha t  Aj is not elliptic and W(fl~)=/3'j. Hence, W=Aj  and i - - l ,  as 

claimed in (3). 

We now prove (4). Let  zED(V(/3))~ [A. Now V(/3)N Z~ is either a side or the union 

of two sides of the polygon V(P). I f  V(fl) is a side,.say/3=C~, then either V(P)c_ D(V(/3)) ~ 

or VA7I(P)c_D(V(/3)) ~ Let W be the transformation such tha t  W(P)c_D(V(fl)) ~ Here, 

we note tha t  for either choice of W, V(/3) is a side of W(P). Since z r V(/3), we have either 

z ~ W(P) or z belongs to one of the connected components of the compliment of W(P) 

with respect to Z~ which lie in D(V(/3)). Hence, if z(~ W(P), then zED(W(~))~ D(V(/3)) 

for some cr {/3,,/3;}. A similar argument  holds for/3 = O;. 

In  the case /3=[3~ is the union of two sides of P,  we have Ai is elliptic. Now if 

lz(P) fl D(V(fl))=O, then D(V(/3))= V(D(/3)). This last s tatement  is easily seen from the 

fact tha t  V(D(/3)) is either D(V(/3)) or C~D(V(/3)) andV(O)Eff',,D(V(/3)).Writing 

D(fl)= U~L-I 1 D(A~(/3)), we see that ,  since V(D(A~(/3))) is bounded for k - - l ,  2 ... .  n ~ - l ,  

V(D(fi)) = U ~:~ V(D(A~(fl))) = U ~:~ D( VA~(/3)). Hence z E D(VA~(/3)) for some k. Moreover, 

VA~(P) ~_ D(VA~(fl)). Thus we have tha t  either z E VA~(P), or there exists an arc a E {/3~, fl;}, 

~ O ,  such tha t  z E D(VA~(a)) c D(VA~(/3)) c D(V(/3)). Q.E.D. 

COROLLARY. D(W(oI)) in (4) can be chosen to be hyperbolically convex. 

Proo]. The only case tha t  need be considered is ~=/31 and A l is elliptic. The proof 

of (4) for this ease can be used here to choose D(W(~)) convex. Q.E.D. 

Let  
1 /" d ~ [  

and n(z)=Y.v.~n(V(fi),z), where V runs through (A1, A 2 . . . .  ) and /3  runs through the 

set {~,}, and zSUv.~V(/3). 

LEMMA 2. n(z) i8 finite i/and only i / z  18 in an image o /P  under the group {A I .... ). 

Proof. Suppose n(z) is finite, then z is contained in only finitely many  sets D(V(/3)); 

where VE(A1, As .... ~ and/3E{/3~,/3~}~,/3*0. I f  n(z)=O, then it is clear zEP. I f  n(z)>0,  

let V0(/3~) be such tha t  zED(Vo(/3~) ) and has minimal Euclidean area. We choose a 

W E (A 1 ... .  > so tha t  either z E W(P)_c D(Vo(/3~) ) or z E D(W(~)) c D(Vo(/3~) ). I f  z ~ W(P), 
then D(W(~)) has smaller area than  D(Vo(fld ). 

Now let z E W(P) for some W E (A 1 ... .  ~. We proceed by induction on L(W). I f  L ( W ) = 0 ,  
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then W : I and it is clear tha t  n(z) : 0 .  Suppose the assertion is true for all words of length 

less than n. Let  L(W) = n + 1. We write W in reduced form. Let  W = VA~, where s = • 1 and 

L(V) = n, be an abbreviation of W. Since V(P) and W(P) share a common side ~, we see 

tha t  V(P) and W(P) both lie in D(V(~)) unless ~___ V(~). From (2) and (3) of Lemma 1 we 

see tha t  there can be at  most only a finite number  of V(~) which contain y. Hence n(z) 
and n(VA;eV-l(z)) are both finite or infinite together. Nothing VAT~V-I(z)E V(P), we see 

from the induction hypothesis n(z)< ~. 

Proo/o~ Theorem 1. Suppose z E)~ is an ordinary point of F and P is a fundamental  

domain of F. I f  

zr U v(P), 
ga<A,, ...> 

then with the aid of Lemma 1 par t  (4) we can inductively choose an infinite sequence 

D(V(fl)j) (VE(A I . . . .  )) such tha t  (l) D(V(fl)~) is convex, (2) zED(V(fl)j) ~ (3) there exists a 

Wj E (A, . . . .  } such tha t  Wj(P) c_ D(V(fl)j) and z E D(V(~)j+I) = D(Wj(~)) c D(V(fl)~). Set 

o0 

f f i  n 
J - 1  

Now there are two necessary conditions stated in Theorem 1. Assuming P is a 

fundamental  domain, we must  show ~A 1 ....  } = I  ~ and P N ~A contains a fundamental  set 

for r in ~A. We show first (A 1 . . . .  } = r .  Here we choose the point z =  V(0), where VEI ' .  

Now ii zEW(P) for some Ws 1 . . . .  }, then because P is a fundamental  domain for I ' ,  

we have W = V. So we need only to show 

z e  U W(P). 
We (At, ...) 

I f  z is not in the above union, then we choose a sequence (D(V(~)j)}j as above and 

consider DeAA=~O. Since DeAA is neither O nor A, ~D~AA4:O. Let  wE~DzNA and 

B E t  be such tha t  B(w)E_P. In  each case possible, B(w)EP, B(w)EOP, or B(w) is an 

elliptic fixed point, we can construct a connected open neighborhood of B(w) by taking 

the interior of the union of a finite number  of copies under <A 1 .. . .  > of P .  Call this open set 

0. Then 0 i=  B-l(0) intersects infinitely many  aD(V(f~)j)ffi V(~)p In  view of the facts tha t  

(1) every V(/~)j N/X is the image of a side or two adjacent sides of P under a transformation 

from <A 1 ....  >__1", and hence V(~)j cannot pass through any image of P,  and (2) each 

V(fl)jN ~ begins and ends in ~A, we see tha t  B(w)r and tha t  each V(fl)j which passes 

through 01 must  pass through one of the finitely many  images of sides of P which inter- 

sect 0x (actually these sides lie in 01 except for the endpoints in OA). From Lemma 1 parts  (2) 
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and (3) it follows tha t  only finitely many  V(fl)j can pass through 01. Hence we have a 

contradiction and V(0) E W(P) for some W E (A 1 ... .  ) .  

I n  the proof of the second condition we choose any  ordinary point z E~A and assume 

tha t  there is no V E r = (A 1 ... .  ) such tha t  V(z)EP. Then n(z)= + vo. Now as before we 

choose our nested sequence D(V(fl)j) of compact sets and form D,. Now let I j =  D(V(~)j) N ~A. 

Then zE riP-1 I j = D z N  ~A. I f  I={z} ,  then we consider the sequence {Wj(0)}j, where Wj is 

as above. Noting tha t  Wj(0) .W,(0)  if i , j  and I Wj(0) I -~1 as ~ - ~ ,  we have Wj(0)-~z, the 

only point in I .  Thus there exists a w*z in I. Consider the circle C perpendicular to ~A 

through z and w. Since both w and z are both in D(V(~)j) for all j" and D(V(~)j) is convex, it 

follows tha t  the inside of C is in each D(V(~)j). Therefore, the inside of C is in D,. For these 

points q we have tha t  n(q) = + ~ .  Thus by Lemma 1 P is not a fundamental  domain of 1 ~. 

This contradiction proves the necessity of (2) in Theorem 1. 

To prove the sufficiency of (1) and (2) we need only show tha t  A =  UvErV(P).  The 

condition V ( P ) N P = O  for all V E r ~ { I }  was proved in Lemma 1 par t  (1). Let zEA. I f  

z r V(P) for all V E r ,  then n(z) is defined and n(z) = + ~ .  We next choose a nested sequence 

D(V(~)j), as before, and consider I = Dz ~ ~ .  I f  D, n ~/k contains a t  least two points, then 

by the argument in the previous paragraph D z contains the inside of a circle C perpendicular 

to ~A. Now every point, including those in ~A, which lies inside C is not a limit of any  

sequence of the form {Bk(0)}~~ where BkEI' .  Here we note 0EP.  Hence ~A N D(C) ~ is an 

interval of ordinary points of 1 ~ in 8A such tha t  n(w) = + ~ for each wE~A N D(C) ~ Thus 

by Lemma 1 each wEaA n D(C) ~ cannot be mapped by an element of (A t .. . .  ) t o P .  Hence, 

either (1) or (2) does not hold. So, it remains to show tha t  I contains a t  least two points. 

Here, we consider two cases. The first is tha t  infinitely many  of the V(~) are circles, 

say the subsequence { V(~)j.}n. By the nesting property D, = I1 ~-1 D(V(~)j,). In  this case, 

since z E D ( V ( ~ ) j ~ ) n / k  for each n = 1, 2 . . . .  , we have I contains an interval of ~ of positive 

Euclidean length. If  there are only finitely m~ny circles in the sequence { V(~)j}j, then all but  

finitely many  V(~)j contain elliptic fixed point~ of transformations from r .  We may  assume 

tha t  each V(~ ) contains an elliptic fixed point e~ in A. Then an easy calculation shows 

le, l-*l as ~-~o~. Let {p,,q~}=V(~)~A. Considering a subsequenee ff necessary, let 

~ p ,  q~q, e~e, as ~-~oo. I f  p . q ,  then I has at  least two points and hence P is a 

fundamental  polygon of r .  Otherwise, p =~ =e. We now claim tha t  if iv =q  =e  =~,  then 

D(V(~)~) does not contain z for ~ large enough. To see this we consider an open disk ~ which 

contains x but not z and whose boundary is a circle perpendicular to ~A. For ~ large 

enough p~, q~, e~,E0. From the convexity o~ both 0 and D(V(~)~), one easily verifies tha t  

D(V(~)~) ~ 0. Hence I contains at  least two points and we have P is a fundamental  polygon 

for 1". Q.E.D. 
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4. Fundamental domains 

In  the papers [3, 6, 9] concerning Theorem 2 one imposes certain extra conditions on a 

fundamental domain D. The first is tha t  D is locally finite, i.e. every compact subset of A 

intersects only finitely many 1 ~ images of D. This property was proven by A. Beardon [1] 

to follow from the definition of a fundamental domain. The property of local finiteness 

has two important consequences. If  we define S(D)=~A 61": there exists a side with the 

label y~ for some i such that  A(7~)=7~), then ( S ( D ) ) =  r .  The second consequence is that  

if ~fij}j is a sequence of sides and the corresponding sequence of AjE1P, for which Aj(fij) is 

also a side of D, is a sequence of distinct transformations, then the ~j's can accumulate 

only in ~A. That  is, for each rE(0, 1) there is a J0 such that  for ~'>~'0 we have 

~ j~  A ~ { 0  ~ I z ] ~< r~. This is clear, since if x =limj_,~ x j, xj 6~j and x E A, then every compact 

neighborhood of x intersects infinitely many Aj-I(D), j = 1, 2 . . . . .  

The second assumption is that  each transformation of r pairs at most a finite number 

of sides. Now, it is clear tha t  one can take a particular side, say 71, and partition it into 

subarcs, say ~i, a2, ..., and call each at a side. Then if A(71) =7~, we have that  A pairs as 

many sides as there are ~/s, when we consider the a /s  as sides and not 71. We leave as a 

conjecture but claim that  it can be shown that  except for this artifically created situation, 

each A ES(F) can identify at  most one pair of sides. We claim the techniques in Section 5 

as applied in this paper almost show this assertion for the noncompact fundament a 

domains. However, in the following we will assume, when it is not automatic, that each 

A ES(D) identifiers exactly than one pair of sides. In the proofs of Theorems 3 and 4 we can 

actually start  with fundamental domains which have this property. That  any side can be 

identified with at  most one other side by at  most one A 6 F is trivial. 

5. Applications of Theorem 1 

With Theorem I proved we can apply the techniques in Section 6 of cutting and pasting 

to prove the theorem listed below. 

THEOREM 2. Every fundamental domain o/a finitely generated fuvkslan group is finite 

sided. Thus, the covering A over A/F has at most only a finite number ol branch points and 

A/F is o/finite type. 

THEOREM 3, Every finitely generated/uchsian group which is a free product of cyclic 

subgroups is of classical Schottky type. 
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THEOREM 4. Every infinitely generated fuchsian group P is of classical Schottky type. 

Hence, F is a free product of cyclic subgroups. 

THEOREM 5. Every fundamental domain D o /an  infinitely generated group for which 

OD fl A has finite hyperbolic area is of infinite hyperbolic area. 

THEOREM 6. Let D be a fundamental domain of a finitely generated fuchsian group P. 

Let {A~ .... , An} be a subset of S(D) such that F = ~e T~x(A,). Then the set {A~ .... , An} is a set 

of classical Schottky generators. 

THEOREM 7. Let F be the free product of cyclic m~bgroups. Let 0 be the set of all possible 

orders of elements of F. Then F has a torsion free subgroup of finite index if and only if 0 is a 

finite set. ]n 1oarticular, every infinitely generated group satisfies the Fenchel coniecture if and 

only q 0 is finite. 

Remark. Theorems 2 and 5 are classical. For Theorem 2 see [3, 6, 9]. For Theorem 5 

see [15]. Theorem 4 was the original theorem to be proved. The motivation came from 

the result of Macbeath and Hoare [8]: every infinitely generated noneuclidean crystalo- 

graphic group is algebraically the free product of cyclic subgroups. In the case of a fuchsian 

group Greenberg [4] has also shown this to be true. Theorem 4, however, shows that  for 

fuchsian groups, F is also "geometrically" a free product. The reader should also note tha t  

Theorem 7 is an extension of a theorem of Fox [5] but  not  of the Selberg extension [14]. 

6, s  and pasting 

Let  D be a fundamental domain of P. Recall S(D) is precisely those transformations in 

P which maps a side of D labeled 71 to its corresponding image 7'1. A cross cut of D is a 

Jordan arc ~ _  D such that  ~ N 0D is precisely the two endpoints of ~. We now define a 

cutting pasting of D and the effect it has on S(D). First we choose a side 7 = ~ .  of D. Let  

A(7) =7 '  ~7~0, where A ES(D). We next  draw a cross cut ~ of D such that  D ~  = D 1U D 2, 

where D 1, D~ are disjoint subregions of D and 7 ~  ])1, Y' c JS~. Then a cutting and pastin9 o] 

D along o~ by A is the new fundamental domain D'--[DstJ A(/~x)] ~ I t  is classical [7] tha t  

this new region is in fact a fundamental domain. The effect of this cutting and pasting can 

be described as follows. For  XES(D) ,  X4 :A ,  let X(~) --~', where 8' =71 for some i ~ i  o. We 

remark here tha t  it is easily seen that  i - - i  o if and only if X = A .  Then AsXAaES(D') ,  

where e, ~ = 0, • 1 accordingly to the following rules: 
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R(1) 
R(2) 
R(3) 
R(4) 
R(5) 

ff 8, 8'-c/-)~, then e--O--0; 

ff 8 ~ D 1  and 8'___/~2, then 8=0,  ~ = -  1; 

ff 8'___/')1 and 8_~/)2, then e = l ,  8=0;  

if 8, 8'-c/)1, then e = 1, 8 = - 1; 

if 81 =8  N/)1 and 82 = 8  fi/)~ are arcs, then we split 8' into two corresponding 

arcs 81 and 8~, respectively, and apply the rules (1)-(4) to X twice: once considered as the 

transformation which identifies 81 to 81 and the other as the transformation which identifies 

toSS. 
Finally, it is clear tha t  A ES(D'). In this case we say e--0--0.  A cut and paste by A -1 

can be similarly defined. 

This brings us to the group theoretical aspects of cutting and pasting. Let  {A~, ...} 

generate r .  Then it is clear tha t  the set {A~'A~A~' ..., A~ .... At~A,A~ . ...} also gener- 

ates F. 

Any finite combination of replacements of this form is called a Nielsen transformation. 

In  our situation we shall need only consider the cases where ej, 8j assume only the values 

0, 1, - 1 .  From the above considerations we see that  if S(D) generates F, then so does 

~(D') for any cutting and pasting D' of D. 

In  our application~ aituation R(5) above will never arise. We will eUminate accidental 

cycles in A a~l  R(5) creates them. We next  describe the three types of cutting and pasting 

that  will be used in this paper. 

Type 1. Let 1) be a fundamental domain and A ES(D). Suppose 7 =7~o, A(7)=F'- If 

we can, we draw a cross cut a which begins and ends in 0A and which separates ~ and y'. If A 

is elliptic with fixed point p, {p} =~ N ~', then p is an endpoint of ~ and the other endpoint 

lies in OA. We remind the reader tha t  ~, and ~' are to be in different connected components 

of / ) ~ g .  Then we cut and paste D along a by A. (See diagram 1.) In the resulting 

domain A identifies a Schottky pair of sides. 

Type 2. If we cannot draw ~, then by the remarks in Section 4 there exist a finite 

sequence of sides which to avoid a double subscript we simply denote by 80 -- ~, 81 ..... 8~+1 - ~' 

such that  8jNSj+IN A~=O, for j-~0, 1 ..... n. The Type 2 situation is when 8J for some ?" is 

identified with 8~, and 8~ is not a 8k for any k=0 ,  1 ..... n + l .  Then we draw a cross cut ~1 

from a point in aA to the endpoint of 8~ chosen so that  one can cut and paste along ~1 by 

A i  I, where A~(Sj ) =SJ. This cutting and pasting yields a fundamental domain D 1 in which 

and ~' are sides identified by A, but  they are now of Type 1. Now we apply the cutting and 

p~sting described in Type 1, first to A and then to A t. (See diagram 2.) 
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Type 3. If 1', ~" are connected by a finite sequence as in the Type  2 situation, but is not 

of Type 2, then each fl~ is a flk in the sequence 80 =7,  81 ..... 8,,+1 =7'-  We let {P0} =80 N 81 

and q E~A N/). Draw ~ from q to P0 and cut and paste long ~ by A. In  the resulting domain, 

which we call D again, A identifies ~ and ~' =A(~r Note tha t  81 .. . .  8n remain fixed. We 

prove a lemma below which will be the Type  3 cut and paste sequence. Let  A j E F, A J(8J) =8~. 

Recall 8'J =Sk for some k = 1, 2 ..... n and tha t  ~, ~' each have one vertex in aA. 

The following lemma describes a cutting and pasting which can be applied to any 

finite sided noncompact polygon in which the sides are paired. This lemma actually proves 

Theorem 3. I t  has application to the infinitely generated case when geometrically speaking 

the sides of the fundamental domain are arranged so tha t  1 ~ is the free product of the group 
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generated by a set of elements which pair sides whose union is the border of a polygon 

which contains all the "other"  sides, and the elements which pair the "other"  sides. 

LEMMA 3. Let D, o~=~o, o~' =fl~, A =A o, (flj}~-i be as above, except that here we allow 

the {~j (~ = 0, ..., n) to have one or both endI~olnts in aA, whereas above we assumed that both of 

the endlooints of flj, j = 1 ..... n were in A. Then there exists a cutting and pasting of D to D' 

such that (1) S(D)~S(D' )=(A~ ...... A ~ } - - T ;  (2) each A~eS(D') identi]ies a SchoUky l~air 

of sides o] D'; (3) either S(D')~_S(D) and T~_ ((Ao, A1 ..... An} fi S(D')) or S (D ' )~S (D)  = 

(B1 ..... Br} and T_~ ({A0, A~ ..... A~, B~ .. . .  , Br} ~ S(D')), where each B,, i = 1, 2 ..... r, 

identqies a Schottky pair o/ sides. 

The proof is by  induction on the number  of pj 's  in A which are par t  of a vertex cycle of more 

than one point. I f  no such pj 's  exist, then we already have the conclusion of our lemma. 

Assume the lemma is true for n -  1 or fewer such pj 's  in A. We may  without loss of generality 

assume Pc is a point in A which is par t  of a vertex cycle of more than  one point. Then 

pn=Ao(po) is also such a point. We draw a cross cut 0 from q E ~ A ~ 0  to the endpoint of 

~1 which is not P0. We cut and paste along 0 by A 1. In  the resulting fundamental  domain 

there are fewer p l s  in/k which are par t  of a vertex cycle of more than  one point. Now apply 

the induction hypothesis. Q.E.D. 

Notation. We set U(A) to be either the set (A 0 ..... An} N S(D'),  (A 0 ..... An, B 1 ..... B~} N 

S(D'), whichever occurs in (3) of Lemma 3, (A, A j} of the Type 2 cutting and pasting, or (A}, 

as dictated by the type of cutting and pasting. 

Remark.  I t  should be noted here tha t  all the sides of D which are not an ~, ~' or 

flj, fl~ (j = 1 ... . .  n) remain on D '  unaltered, i.e. we have cut and pasted around these sides. 

Also, when applying Lemma 3 to A, we have A r 

We remark here tha t  for any simply connected domain D and any  cross cut ~ in D 

we have D~o~=D10 D~, where D 1, D~ are disjoint simply connected subregions of 

D [cf. 13]. Tha t  every fundamental  domain is simply connected follows from the argu- 

ments in [1]. 

L~MMA 4. Let D be a/undamental domain. Let 11, 12 ..... In be a/inite set o/ disjoint inter. 

vals contained in ~A • ~D and (71, 7~ .... .  7~, 7~} = S be a finite subset o] sides o] D, where each 

},~, ~ i= l . . . .  , p is a Schottky pair o] aides. Let ~, ,~ '6S be a pair el iden~i]ied sides o] D. 

Let A e F  be such tha~ A(~) =~'. Then each o~ in each step o] each type o] cutting and l~sting 
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above can be chosen so that 7t, 71 ..... 7u, 7~ are sides o/D' ,  the resultin~ ]undamental domain 

a[ter cutting and pasting along ar by A, and I x ..... In are intervals contained in ~A fl 8D'. 

Proo[. We proceed by induction on 2p + n. If 2p + n = 0, then we have nothing to prove. 

Suppose the lemma is true for 2p + n - 1  sides and intervals. Then there exists an ~ so 

that  D~o~=-D x U Da, where Dx, D~ are disjoint subregions, 7---/3x, 7 '-C/)a, and I s ..... I~, 

71, 71 ..... 7~, 7~---/3~. If  I x_/3~, then we can cut and paste along ~. So we assume 

ItN Dx~=O. We remark that  if n=O, we assume 71~/')x and the proof is similar. Let  

z 0 e ~ fi D. Let  Bit be a cross cut in Dt which begins at  z o and ends at  one endpoint of the 

interval I x N Dt. Then D~'-,~8 x = R~ U Ra, where R x and Ra arc disjoint subregions of Dx. 

Let  7___R~. If  I~N Dx~Rz then we cut and paste along ORtO D = f l t ~  ,, where ~ ,  is tha t  

part  of ~ which begins at the endpoint of ~ in Rx ends at  z 0, and the multiplication is the 

usual product of two arcs [see 12]. If, however, Ixfi Dt__ R~, then we draw/~,  a cross cut 

of R~, from z 0 to the other endpoint of I t fl Dr. Then Rx",,fla =0~ tJ 0~, where 0x and 0a 

are disjoint subregions of Rx. Now, since the interval I t N D t and the arcs fit, flz bound a 

subregion of R~, we see that  if, say, 7___0x then 11N D x N Ox=O. Hence, we cut and paste 

along 80 x ~ D =f12~0. Q.E.D. 

7. Proofs of Theorems 2-7  

In this section we begin by introducing an algorithm of cutting and pasting which 

can be directly applied to prove Theorems 2, 3, 4. 

Let  D O be a fundamental domain. Enumerate the pairs of sides of Do, say, {71, 7~)1 

and S(Do) by S(Do)ffi{Ai} t, where A~(7~)~7;. Also enumerate the disjoint intervals of 

~A N ~D which are of more than one point, say 11, I s . . . . .  Consider A 1 and 7x, 7x, where 

Ax(71) =71. We cut and paste D O as determined by 7x, 71 in such a way that  Ixc_ D 1 fl 8A, 

where D 1 is the resulting fundamental domain. Let  St--  U(A1). Now we must enumerate 

S(Dx), but  the enumeration must be the derived enumeration from S(D0). To be precise, 

we first note that  each pair of identified sides ~, ~' of D x are of the form ~ = W(Tt), 8' = V(7~) 

for some pair of sides 7~, 7~ of Do, where W, VE(S1). Then the sides ~l, ~ will he the 

unique pair of sides of D 1 which arc of this form. We remind the reader that  rule R(5) of 

Section 6 is never used, and thus the uniqueness of ~t, ~ .  We enumerate S(Dx)=(X~}t, 

where Xt(~l)=~. Note X t = V A j W - L  I t  may happen that  for a particular i no such 

pair ~ ,  ~ exists. Then in this case the W and V satisfy the equation W(~l)= V(~) and 

V A i W - I = I .  In this case the A~E(S~) and, of course, the integer i disappears from the 

indexing set of S(Dx). Let  Q1 be the sides of D 1 corresponding to generators in S 1 and 

T1 = {Ix, -/~}, where 1~ = W(12)--_ 8D1 for some W E ($1). We remark here tha t  it is possible 
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tha t  the points equivalent to I s in 8D 1 N OA may  no longer be expressable as one 

interval. This difficulty can be avoided by simply never choosing any endpoint of any  

of Section 6 to be an interior point of any I t. That  this choice is possible is easy, in 

fact a par t  of the proof of Lemma 4 can be applied. Now let i 1 be the smallest index among 

the generators of S(D1)~S r Now cut and paste D 1 as dictated by fib,, fl~, so tha t  the 

sides of Q1 and intervals of T 1 are sides and intervals of /92, where D 2 is the resulting 

fundamental  domain, and the intervals Is, 14 ... .  have corresponding intervals in /~2. 

Now given D n we set Sn=Sn_IU U(A~_I ). Also, Qn is the set of sides corresponding to 

, r~2) <n) 7(J) Wj(Ij), WjE(Sj~, j = l ,  n; the generators of Sn; Tn = {11, 12, -s ..... In+l}, where ,j+~ = ..., 

and i ,  is the smallest index of the generators of S(Dn)~Sn, where S(Dn) has the enumera- 

tion derived from S(D,_I). Now cut and paste as dictated by the sides ~ ,  ~n of D n with 

the above restrictions to obtain D,+~. 

Let S= U~n.lSn and Q =  U~-lQn. Since for any  finite set {X1, Xi, ..., Xn} from S there 

exists a Du such tha t  each X~ (i = 1 ..... n) identifies a pair of Schottky sides, we have 

(S)=-)exes(X). Also, it is obvious tha t  each A~E(S~). Hence ( S ~ = ( A  1, A~ .. . .  ). 

Now we consider Q. Each pair of arcs 7, 7 'E Q correspond to an X E S in the sense 

tha t  X(~)=~ ' .  Also, either 7 and ~' begin and end in ~A, or ~/1 ~'N A = {p} is the fixed 

point of X in 5, and one endpoint of both 7, ~' is in OA. In  the first case, if ~ ' ,  we 

define the outside o / 7  to be tha t  component of A ~ y  which contains A N 7'. Similarly, 

the outside of ~' is defined. In  the second case we rotate 7 by an angle of g around the 

elliptic fixed point p. Let g(7) be the image of ~ under this rotation and we see tha t  

z~(7) U ~ can be expressed as an arc which begins and ends in ~A. Now, since X is a rotation 

about  p, we see tha t  ~'N g (7 )=  {p}. We define the outside of ~ to be tha t  component of 

A ~ [ ~  U ~(~)], which contains A N 7 '~{P} .  Similarly, the outside of ~' is defined. I f  ~ = ~', 

then we de/ine the outside of ~ to tha t  comI~onent of A ~ 7  which contains the other arcs 

from Q. The inside of ~ will be the complementary component of the outside. 

Finally, a few remarks about  T = U~n-~ Tn are in order. In  particular, each I ~ T is 

outside each ~, 7 '~  Q. Moreover, each point x~ (in In is equivalent under (S )  to a point in 

UleT I. 

Proo[ o/ Theorem 2. Let D O be any fundamental  domain of F with infinitely many  

sides. Then the above algorithm yields infinitely many  generators in S. Thus F is the free 

product of infinitely many  cyclic subgroups and hence not finitely generated. 

Proo! o/ Theorem 3. We choose a Diriehlet polygon P for F. We note P is not 

compact in A, but  it is finite sided from Theorem 2. We apply the above algorithm and 

after finitely many  steps we exhaust  the set of sides and intervals of positive length, if 
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any. So now we have Dn, Sn=S(D~), and Q.. We now replace each pair Y, 7'6Qn by the 

geodesics Cv, C W which begin and end at the endpoints of 7, 7', respectively. For the 

inside and outside o/C v, C~,, O~,, Or,, below we use the definition given in this section, which 

may disagree with the normal definition. Now, if X(7 ) =7", X maps the outside of C v onto 

the inside of Cv.. This is most easily seen by considering the action of X on aA. Thus, if 

we replace Cv, C v, by the full circles 0r ,  0 r, corresponding to Cv, C~. then we see that  for 

all pairs 0v, 0r.  , where 7, 7' 6Q, the outside of 0 r is mapped by X onto the inside of 0 r. 

From the remarks in the development of the algorithm at the beginning of section we see 

that  the region P in A outside all the circles 0r ,  0 r, satisfies all the hypothesis of 

Theorem 1, except possibly 0 CP. After a conjugation of F by V6SL(2, R) so that  06 V(P), 

we see that  V(P) is a fundamental domain of VF V -1. Thus P is a fundamental domain of F. 

Proof of Theorem 4. We proceed as in the proof of Theorem 3. Starting with a 

Dirichlet fundamental polygon, we apply the above algorithm. Only in this case the 

algorithm does not stop and we obtain infinite sets S= UnS~, Q = U~Qn, T = UnTo, then 

replace each 7, 7 '6  Q by 0 r, 0 r, as defined above. Then with the same observations and 

arguments as above, we see that  P, the exterior in A of all the 0 r, 0r., where 7, 7' 6 Q, 

is a fundamental domain for F. 

Proof of Theorem 5. I t  is clear tha t  the P in Theorem 4 has infinite area. Let  D be 

any fundamental domain such that  aD 0 A has finite hyperbolic area m(aD (1 A). Then 

co = re(P)  = m( U P (1 V(D)  U U P (1 V(aD (I A)) 
Vii" Vei` 

<~ ~ m(P (1 V(D)) + ~ m(P 0 V(aD fl A)) 
Vii" VeF 

< ~ m(V-~(P) n D)+ y. m(V-~(P) naDn A) 
VII`  Vai` 

ffi re(D) + mCaD n A). 

Hence re(D)= + oo. 

Proof of Theorem 6. Let  D be a fundamental domain, (A 1 .... , An} be transformations 

in F which identify certain sides of D and such that  F = ~-~-l(Ai). We note immediately 

that  there are no cycles of fixed points of elliptic transformation from P which are of 

more than one point. If there are no accidental cycles on aD, then we replace each pair 

of sides 7, 7' by 0~, 0r,. If the finite sided polygon P, formed from the exterior to all 

0 r, 0r., where 7, 7' axe sides of D, is not a fundamental polygon, then from the Poineax6 

Theorem [11] we have that  there is a vertex v on ~P which is the fixed point of some 

hyperbolic element of F. Let  v 6 0  B (1 O~ (1 aA be the fixed point of H 6 F ,  and let p, the 
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other fixed point of H, belong to the inside of ~ .  I t  is easy to see that  p is inside either 

~ or ~ .  Here inside and outside are defined as above in this section. Let  x belong to the 

open interval I determined by I0 and v which lies inside ~ .  Now draw the circle C, 

perpendicular to ~A through x and the endpoint of ~ which is not v. Let  A ( ~ )  = ~ , .  Then 

A(O) intersects the circle adjacent to ~ , .  This is easily seen from the fact that  A(I )  lies 

in this circle. From A(x) repeat the above construction and continue. Since the polygon 

is finite sided we eventually, after a finite number of steps, map x back into I .  In fact, 

following v through this construction we see that  x is mapped back into I precisely when 

v is mapped back to v. Thus H(x) or H-l(x)  is the image of x referred to above. Since there 

is no normalization with regard to H, we may assume t t(x) is the image of x in I referred to 

above. Then noting that  H ( ~ )  is inside ~p we conclude that  v is the attractive fixed point 

of H (i.e. l im~ooH'(0)  =v). Thus the above construction yields a new finite sided hyper- 

bolic convex polygon, whereby the fixed point v is replaced by an interval of discontinuity 

and the A~'s pair Schottky sides. We do this for each hyperbolic fixed point in P .  After 

all hyperbolic fixed points have been eliminated, the resulting polygon will satisfy the 

hypothesis of the Poincard Theorem. 

If  D has accidental cycles in A, then the set S ( D ) ~ ( A  1 ..... An}~:O. Write S ( D ) ~  

~A~ ..... A,~)=~B~ ..... B,). We see that  in a vertex cycle relation a letter X appears 

twice, once as X and then as X -1, precisely when the endpoints of the sides identified by 

X are both in the same cycle. We assume for the moment tha t  each B~ appears twice in 

any possible vertex relation in which it is found. Since D is not compact, in every vertex 

cycle relation at  least one generator must appear only once. Let  the word W in the letter 

from S(D) be a relation derived from an accidental cycle in A. Since all the Bj's tha t  

appear in this accidental cycle relation (and there may not be a Bj in this relation) appear 

twice, an A ~ must appear once. We now call this letter A. Then qa(W) = _+ 1. Writing the 

B~'s as words in the letters A 1 ..... An, we see that  W is a non-trivial relation between the 

letters A 1 ..... An. This contradicts the assumption that  F =  ~-~-l(At~. 

So we now know that  at  least one B~ = B identifies sides whose endpoints are in two 

different vertex cycles and at  least one of these vertex cycles is in A. 

The next  lemma will essentially finish this proof. 

LEMMA 5. Let D and B be as above. Then there exists a D' such that S( D ) --S( D') U { B }. 

Pro(>]. We proceed by induction on the number k of vertices in the 8hottest nonempty 

accidental cycle in A to which the endpoints of the  sides 7, ~' identified by B arc members. 

We note tha t  accidental cycles in A of fewer than three points are artificial in the sense of 

the example in Section 4 and by a relabeling of the arcs we may assume that  such a 
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cycle does not exist. So we star t  with k = 3. Let  p, q be the endpoints of 7 and say q is 

the point in an accidental cycle of three vertices. Now draw ~ from p to the other endpoint 

of the side fi adjacent to 7 a t  q. Let  X(fi) =~ ' .  Cut and paste along ~ by  X. In  the resulting 

fundamental  domain D' we see tha t  S(D')= [ S ( D ) ~ B ) ]  U {BX-I}.  However, considering 

the accidental ver tex cycle to which X(q) belongs, we see tha t  there are fewer than  three 

points in this cycle. Hence BX-1ES(D) and the lemma is true for /r 

To go from k points in a vertex cycle to k - 1  points the same construction is used. 

Q.E.D. 

To conclude the proof of Theorem 6 we just note tha t  with Lemma 5 available we can 

use induction on the number  of Bj's which identify a pair of sides whose endpoints are in 

two different vertex cycles, one of which is in A. 

Proof of Theorem 7. I t  is clear tha t  if the set of orders of elements in P is infinite no 

subgroup of finite index can be torsion free. So assume tha t  nl ..... n~ are the only finite 

orders possible. Let  G be the abelian group freely generated by  {B 1 ... . .  Bk}, where, nj is 

the order of Bj. Write P =  ~-~(A~). Then define a homomorphism ~: r - * G  by  ~: A~-*B~ if 

and only if order A l f o r d e r  B,=n~ and otherwise Al-~l ,  the identi ty element of G. 

We take the kernel of ~ as the subgroup of finite index which is torsion free. Q.E.D. 

Remarlr The author would like to thank Prof. L. Greenberg for this proof of Theorem 7, 

which is shorter than the one he originally had. 
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