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l ,  Problem and main results 

The classical work of R. Courant and H. Lewy has initiated the study of minimal 

surfaces with free or at  least partially free boundaries on prescribed, not necessarily planar 

surfaces. During the last decade, several authors including S. Hildebrandt, W. J~ger, 

J. C. C. Nitsche, K. H. Goldhorn, F. P. Harth and J. E. Taylor have investigated the 

boundary behavior of a minimal surface on its free boundary; see in particular [6], [11], 

[12], [16], [17], [19]. A survey of the results up to 1975, with an appended bibliography 

can be found in chapter VI.2, pp. 447-474, and on p. 707 of [18]. 

Let us consider a typical problem. Given a configuration in Euclidean 3-space R a 

consisting of a smooth 2-dimensional surface $ and of a smooth Jordan arc 1 ~ having its 

end points P1 and 1>2 on $, but no other points in common with $. We introduce the class 

(~ =~(F,  $) of all surfaces x f x (w) - - ( x l (u ,  v), x2(u, v), ~(u,  v)) in CON HI(B, Ra), w-~u+iv ,  

which are parametrized over the semi-disc B = (w; I wl < 1, v > 0) and are bounded by the 

configuration (F, $~ in the following sense: 

Denote by C the closed circular are (w; Iwl =1, v ~ 0 )  and by I the open interval 

(w; l ul < 1, v = 0). Moreover, fix a third point P ,  on F, different from PI and Pz. Let x c 

and xl be the L2-traces ("boundary values") of xEH~(B, R 8) on C and I,  respectively. Then, 

for any surface x in ~ we assume tha t  xv maps C continuously and in weakly monotonic 

manner onto F such that  xc( - 1) =P1, xc(i) =Pz and xc(i ) =Pa, while x1(w)E $ almost every- 

where on I .  

We look for a surface x(w) which minimizes the Dirichlet integral 

in the class ~(F, $). I t  is well known that  this variational problem, to be denoted by 

~)(F, $), always has at least one solution x E ~, The position vector x is  real analytic in 

17- 792908 Acta mathematlca 143. Imprim~ le 28 D6cembre 1979. 
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B and satisfies there the conditions 

Ax = 0 ( 1 . 2 )  

and 

(1.3) 

In  other words, every solution of ~)(F, $) is a minimal surface which is bounded in a weak 

sense by the configuration <F, $). I t  is a mat te r  of record tha t  z(w) also minimizes the 

area functional 

= ffB ]z,~ A x~,[ duav  
A(x)  

in the class ~(P, $); see [6], [16]. 

There exists satisfactory information concerning the  boundary behavior of a solution 

of ~)(F, $) near the "f ixed" boundary; see [18], chapter V.2.1, pp. 281-325. In  particular, 

if r is a regular arc of class C 8+~, a = l ,  2 ..... 0 ( ~ ( 1 ,  then xECS+~(BUC0, R 8) where 

C 0 = in t  C = (w ; Iw  I =  1, v >0) .  However, the investigations regarding the behavior of a 

solution surface near the free par t  of its boundary and the nature of its trace have not 

yet  reached a final stage. For the present, the best result is the following ([17], [19]): 

Every  solution of ~)(r, $) belongs to the class C~+~(BU I ,  RS), provided tha t  $ is a 

regular surface of class G s+*, 8 = 1, 2 . . . .  , 0  ~ 1, without boundary and satisfies a local 

chord-arc condition. 

That  is, $ can be for instance a sphere, a torus or a plane, but  the theorem generally 

does not apply to surfaces $ with boundary. A typical example of such a surface is the 

finite portion of a plane. On the other hand, these are just the examples with which the 

experimenter is often confronted; cf. figures 1-3(1). I t  is the aim of the present paper to 

supply a regularity theorem for the solutions of ~)(1", $) yielding regularity up to the free 

boundary even in cases when the boundary of the supporting surface $ is non-void. For  

this we shall assume tha t  $ is a par t  of a larger complete surface ff without boundary which 

is obtained from ff by  finitely many  cuts along closed and mutual ly  non-intersecting 

Jordan curves F1, F2 ..... rN. As examples we can consider the finite simply-connected 

portion of a plane, or a hemi-sphere $ as par t  of a sphere cut out by an equator F1, or a 

triply-connected plane domain $ which is cut from a plane ff by three closed curves 

r l ,  1"~ and I~3 (figures 1, 2). Our approach consists in t rea t ing  ~)(P, $) as a Signorini 

problem, tha t  is, as a variational problem with a " thin obstacle" on the supporting sur- 

(1) In experiments with the configuration of figure 2 one may observe occasionally also a three- 
sheeted surface system having two free traces which follow either side of "hole"~ as well as a branch line 
along which the three sheets meet at an angle of 120 ~ . Such an aggregate of minimal surfaces is not 
a solution of problem ~}(r, S), but can be transformed into one if one of the surfaces is broken. 
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Fig..I. 
P 

Fig. 2. 

face 7 ,  the obstacle being formed by the curves r 1, P~, ..., FN. For scalar equations the 

Signorini problem has been studied by many authors; cf. [3] and [4] for a bibliography. 

We know that  under natural conditions on the variational problem there exist Lipschitz 

continuous solutions. The results include the case of harmonic functions and that  of 

non-parametric minimal surfaces. In two recent papers [3], [4], J.  Frehse found an im- 

portant improvement. By a remarkable combination of Widman's .hole filling technique 

and Moser's iteration procedure he proved that  a Lipschitz continuous solution of a 

scalar Signorini problem is in fact of class C u up to the thin obstacle. C. Gerhardt [5] has 

considered the problem for non-parametric minimal surfaces. The results mentioned do 

not apply to the problems considered in the present paper, however, since we deal with 

parametric minimal surfaces, that  is, with systems of differential equations. We shall 

prove an analogue to Frehse's result proceeding in four steps: 

First, we prove that  every solution x(w) of ~)(r, S) satisfies a Morrey condition on 

B U I. From this it  ~ollows tha t  z is H61der continuous in B U I. This fact is already 

contained in [11], [16], but  for the sake of readability we include a self contained proof. 

We then apply the technique of [10] to derive L~-bounds for the second derivatives of  z 

on every compact subset of B U I. The crucial step is the third one. Introducing new 

Fig, 3. 
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coordinates in R a near $, which are chosen in an appropriate way, we are able to split off 

from the variational inequality for ~)(F, $) a boundary value problem for only two func- 

tions which can be treated by  potential  theoretic means. The derivatives of the third co- 

ordinate function are connected with the derivatives of the two other coordinate functions 

via certain conformality relations. In  this way it will be seen tha t  x belongs to the 

regularity class C a . In  the final step we discuss the differential geometric behavior of the 

trace curve x(u, 0), u E I ,  along which the minimal surface x intersects the supporting 

surface $. Adapting an idea from [8], [9], [15] and using the well known asymptot ic  formula 

due to Ha r t m an  and Wintner [7], we obtain an asymptot ic  representation for x w on I 

which in turn yields the desired properties of the trace. We find tha t  the trace is a regular 

Cl-curve except in the (isolated) branch points of odd order where the non-oriented 

tangent  is still continuous, but  the tangent  direction jumps by 180 degrees. Both pheno- 

mena occur in the experiments, as can be seen from figures 1 and 3. 

Nevertheless, it is interesting to describe conditions on F and $ which exclude the 

appearance of cusps in the trace. This mat te r  will be discussed in a forthcoming paper  

of the authors. 

An explicit example of a minimal surface whose trace has a cusp on the boundary of 

$ can be obtained from Henneberg's  surface ([18], w 154): 

Z 1 = 2 s ~ l h  '~ COS ~) - -  ~ sinh 3u cos 3v 

x ~ = 2 cosh 2u cos 2 v - 2  

= 2 sinh u sin v + ~ sinh 3u sin 3v. 

This surface intersects the plane ~- - -0  in Nefll's parabola 9(xl)2 = (x2) a. Figures 4, 5 depict 

two views of parts  of Henneberg's  surface.(1) The par t  in figure 4 corresponds to the 

domain {w; ]w I 40.64, v~>0} with the square  IxXl ~<1, ix2-11 41  in the plane : ~ = 0  as 

supporting surface $. The ~-axis  is a line of symmet ry  for the surface, and the arc 

F image of ~w; I w I= 0.64, v >/0}--has a closed convex curve as its projecs onto the 

(x ~, ~)-plane.  In  view of a new uniqueness theorem, to be published elsewhere, the surface 

is, in fact, a solution of problem ~)(F, $). For small values of the variable w we have 

expansions 

x l=Re{-sSurS+. . .} ,  x ' - - S e { 4 w ' + . . . } ,  z a = R e { - 4 i w ~ + . . . }  (1.4) 

from which it is seen tha t  w = 0 is a branch point of order one on the minimal surface. 

We wish to point out tha t  our technique works as well in the case of minimal surfaces 

(1) Figure 5 was kindly prepared by Dr. I. Haubitz at the Rechenzentrum of the University 
Wtirzburg. 
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Fig. 4. Fig. 5. 

which may assume a completely free boundary on a surface $. A typical example is 

shown in figure 6 where $ has the shape of a distorted napkin-ring. 

Finally, we mention that  the actual minimum property of a solution of ~)(P, $) is 

only used in the first step, while the other steps of the regularity proof rest merely on 

the assumption that  x is a stationary minimal surface bounded by the configuration ~F, $~. 

2. Growth o! the l)idehlet integral o! a solution ot ~)(F, S) 

Definition. A set $ in R s is said to satisfy a (local) chord.arc condition ff there exist 

constants M >/1 and ~ > 0 such that  any two points z 1 and x a on $ of distance ] x 8 -  x 11 ~< ~ 

can be connected in $ by  an arc whose length is bounded by M i x  ~ - z l l .  

r~ 

PI 

Fig. 6. 
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I t  is not difficult to see that  every compact regular Cl-sufface, with or without 

boundary, satisfies a chord-arc condition. On the other hand, an unbounded surface will 

in general not satisfy such a condition, even if it is of the regularity cIass C ~. 

The aim of the present section is the proof of the following result: 

THEOREM 1. Suppose that x=x(u, v) is a solution o/ the problem ~)(F, $). Assume that 

$ satis[ies a chord.arc condition with constants M and O, and set e =inf {D(z); z E~(l', $)} >0. 

Let d be a number in the interval O < d < l ,  and Zd=(wEB; ]w] < l - d } ,  Br(wo)= 

{w; I - 01 <r}, e ery Woeg  and r in we ha e 

where 
f f BnB,(,Oo) I Vx]' dudv ~< (2r/dfU D(x) (2.1) 

p : min {I/(I § ~2/(~e)}. 

_It/oUows that x(u, v)eC~ a, Ra). 

(2.2) 

Proo I. A solution x of ~)(r, $) is harmonic in B and satisfies there the conformality 

relations (1.3), as well as the condition 

D(x) = e. (2.3) 

For any point w o E B we define 

We shall prove first that,  given any dE(O, 1), the inequality 

r Wo) <~ (r/d)s~@(d, wo) (2.5) 

holds for all rE[0, d] and for every WoEI satisfying I w~] ~< 1 -  d. 

For this purpose we fix an arbitrary woE I With ]Wo] ~ 1 - d  and introduce the 

abbreviations Br= Br(Wo), /~= B(~ B,(Wo), ~( r )=~( r ;  Wo). Introducing polar coordinates 

r, 0 around' w 0, we write x(w) = x(w o + re ~~ = ~(r, 0). 'Then 

r {fo odO}do. (2.6) 

There is a 1-dimensional null set ~/such that  

f:l ,(r,O)NO< for" redo, d ) -  o o  

and that  the absolutely continuous function @(r) satisfies 
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for rE(0, d ) -  ~.  In .particular, the limits 

xl(r)= lim ~(r,O), x~(r)--- lim ~(r,O) 
~ - 0  0-~,~+0 

exist for rE(O, d ) - ~ .  On account of (1.3), w6 have rl~rl = I~01, ~,.~0=0, so that  

yo' ~P'(r)f(2/r) I~o(r,O)NO for r~(O,d)-n. (2.7) 

Consider an arbitrary r E [0, d ] -  ~ / for  which 

fo I ~0(r, 0 ) ( 2 . s )  I' dO 
Since 

ixl(r)_x,(r)l<~ ffl~o(r,O)l~O<. V~[fol _ 11,, {~dr,0)12d01 , (2.9) 

we see that  
[xdr)-xdr)l ~ ~. 

Since the supporting surface $ satisfies a chord-arc condition, there exists a rectifiable arc 

= {~7(s); 0 ~a ~l(~)) on $ which connects the points Hi(r), xs(r ) and whose length is subject 

to the inequality 
l(r ) ~< MlXl(r ) -x,(r)  l. (2.10) 

If s is chosen as parameter of the arc length on y, then ]~/'(s)] = 1 almost everywhere on 

[0, 1(7)]. Introducing the reparametrization of 7, 

~(0)-- ~ ( ~ - ~ / ( , ) ) ,  ~<0~<2~,  

we obtain 
I~o(0)l = const  ffi l (~) /~  a.e. on [~, 2~] ,  

and also Y2" z(~)ffi I~oldO. 

This implies that  
/ r2a \~ 

From (2.9)-(2.11) it can be concluded that  

fj'[~a['dO<~ M~ fo I~'(r'O)['dO" (2.12) 

Consider the harmonic function h(w)=h(u, v) on Br with the boundary value function 

H(O) =h(wo+re*a ) which is defined by 

l ~(r,O) 0<~0~, 
tt(0) -- for 

t ~(0) ~ ~,0 ~ 2~. 
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The function tt(0) is absolutely continuous on [0, 2g] and periodio: / / (0)=/ / (2g) ,  and, 

by (2.12), 

ff"lttol'dO <~ (1 + M') f :  I~o(r,O)l'dO. (2.13) 

l~urthermore, 

f :B, [Vhl~du dv <~ :~lHo(O)l~dO (2.14) 

(el. [14], Lemma 9.4.2, p. 375). Combining this inequality with (2.7) and (2.13), we find 

fs, [Vh['dudv ~ (1 + M')  (r/2) (I)'(r). (2.15) 

We now consider the function y=y(u, v)=y(w) on B O B~ which is defined as x(w) for 

w E B -  Br and as h(w) for w E Br. Clearly, y(w) is of the regularity class C o f~ Hi  on B 0 Br. 
Let ~ be the homeomorphism of B onto ]~-'0-B-, which maps B eolfformally onto B 0 Br 

leaving the points 1, - 1 ,  i fixed. Then, the composition z = y e t  is in ~(I a, $), that  is, z 

is a comparison surface for the minimum problem ~)(F, $) so that  

ff lvxl'dudv  ff lvzt'dudv. (2.16) 

By virtue of the conformal invariance of the Diriehlet integral, 

f f. IVzl'dudv= f f, on ivui'duav. (2.17) 

Because of the definition of y, (2.16) and (2.17) imply that  

O(o= f fs IVxl'dudv~ f ~ lvhl'du,tv. (2.18) 

From (2.15) and (2.18) we derive the relation 

~(r) -<< �89 +MU)r~'(r) (2.19) 

for every rE(O, d ) - ~ / f o r  which (2.8) is satisfied. 

On the other hand, if for some rE(O, d ) - ~ /  

~ [*e(r, O ) >  ~'/~, (2.20) t'do 

then, trivially, 

O(r) ~< D(x) -- e < ea:O -~ ['"l ~e(r, O) i,ao. 
do 

Hence, (2.7) yields the estimate 

O(r) ~< �89 (2.21) 
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Defining/~ as in (2.2), we finally obtain the estimate 

2/~(1)(r) ~< r(I)'(r) for re(0,  d ) -  ~1. (2.22) 

I t  follows by integration that  

r < (r/d)2#r or re[0, d], (2.23) 

thus (2.5) is proved. 

Next, we choose Wo=Uo+iV o with Vo>~R and ]Wo] < I - R  for some Re(0, 1). Then we 

have (cf. [14], Lemma 4.9.2, p. 375) 

r wo,= f f2"l o,r ,,, (2.24) 

for almost all r e (0, R), so that  

rb(r, Wo) <<. ( r / R ) ~ ( R ,  Wo) for re[0, R]. (2.25) 

Finally, let w o be an  arbitrary point in Za, for some de(0, 1), i.e., w0e/]and,  

[ w o [ < 1 - d. We distinguish two cases. 

Gaze 1. d/2 <~v o. 

With the choice R=d/2,  (2.25) implies that  

ep(r, Wo) < (2r/d)2 D(x) for O<.r<d/2. (2.26) 

Case 2. 0 <<. v o < d/2. 

(a) If Vo<~r<~d/2, then Br(wo)cB2,(Uo). Then 

O(r, Wo) ~ ~(2r, Uo). 

On the other hand, (2.5) implies that  

(1)(2r, %) <~ (2r/d)~t~#P(d, Uo), 
and therefore, 

In particular, we note that  
r WB) <<. (2rld)2t' D(~r 

qJ(Vo, wo) <<- (2vo/d)2~' D(x). 

(b) If 0 ~ r < v  o, we may apply (2.25) with R--v o to obtain 

~(r, wo) < (r/vo)~(Vo, wo) 
and, combining this with (2.28) 

�9 (r, wo) ~ (r/%) ~ (2%1d)~ D(x) 

< (2r/d)~ D(x). 

(2.27) 

(2.28) 
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Thus inequality (2.27) is established also for the subcase 2(b). 
The above discussion of the two eases 1 and 2 yields tha t  

r  wo) <. (2r/d)2~D(z) for O<~r<.d/2 (2.29) 

and for all WoEZ d. This in turn implies the estimate (2.1). 

I t  is a consequence of the Morrey condition (2.1) that  x(u, v)satisfies a uniform 

HSlder condit ion in Zd with exponent p (the proof is similar to the proof of Theorem 

3.5.2 on p. 79 of [14]). 

Theorem 1 is proved. 

3. L~-estimates o|  the second derivatives up to the free boundary 

We repeat some notations: w=u+iv=(u,  v), B={w; [w[ <1, v>0}, I={w; [u[ <1, 

v=O}, ga={weB; Iw] < l - d } ,  Br(wo)f{w; [W-Wol <r}, Sr(Wo)=BN B~(wo). 
The first aim of this section is the proof of the  fact tha t  every solution x-~x(u, v) of 

~)(F, $) belongs to the regularity class H~ on Z a for every d <  1. For this purpose it is 

clearly sufficient to prove that  for every woE I, there is a number r 0 >0  such that  the 

second derivatives V2x of x are square integrable on Sr,(Wo). 
Suppose now that  $ satisfies a chord-arc condition, and is a part  of a regular C 3- 

surface ~ in R 8 without boundary which is cut out  of ~ by finitely many closed regular 

non-intersecting Jordan curves F1, I~z .... , Fs  of class C 3. In the previous section 2 it has 

been shown that  x(u, v) satisfies a HSlder condition on Z~ for every d < 1. Therefore, the 

following discussion can be carried out locally, tha t  is, around small pieces of $ which 

can be flattened. 

Consider an arbitrary point w o E I,  and set x o = x(wo). Then, x 0 6 $. If x o ~ U~- 1 l'j, tha t  

is, XoEint $, we may find a number ~ > 0  such that  the image of {wEI: [w-we] <~} 
under the mapping by the vector x(u, v) is contained in int $. Hence, we can infer tha t  x 

belongs to the regularity class C 2 on ~ for every r0E(0, ~); see [17]. 

In view of the above, it  suffices to consider the case that  xoE0$- -F I+Fa+ . . .  +FN. 

Assume that  x o is a point on Fk. We shall linearize the boundary conditions by "flattening" 

the supporting surface $, and by "straightening" the obstacle curve Fk. This is done in 

the following way: 

There is a 3-dimensional neighborhood U(x0) of x0, and a CS-diffeomorphism g: x-*y 

of R 8 onto itself mapping x o onto Yo, and U(x0)onto the open ball :7(~(yo)=(yERS; 
lY- Y0[ < R}, such that  ff N U(xo) is mapped onto {y; yS = 0, l Y - Yol < R}, $ N U(xo) is mapped 

onto the convex set CR-- {YERS; YX >/0, ys__0, lY-Yol < R} and F~ n U(x0) onto the interval 
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(Y; Y~=Y a=O, ]Y:--Yo] <R} on he y2:axis. Since x(u, v) is continuous on B U I, there is a 

>0 such that  ~ is mapped b y  x(u, v) i n t o  U(x0). 

Let h be the inverse of g. The transformed surface with the position vector y(u, v) = 

g(x(u, v)) is connected with the minimal surface by virtue of the relation 

x(u, v) = h((y(u, v)) 

from which it follows that  
[ 0  0~, 

Vx = H(y) Vy, V = ~Ou' ~v] 

Therefore 

where we have set 

~h 
H(y)=~y.  

IWl = t vl = 

q(y) = H r ( y ) , H ( y )  = (gjk(Y)), 1 <i ,  k-<<3. 

Let us introduce the new functional 

D*(z) = I I {z,," (~(z) z,, + z~. (~(z) zv} du dv. 
.I JB 

Then, 
D(x) = D*(y). 

Let eo be a positive number, and cp=q~(u, v)=(q~l(u, v), opt(u, v), q~a(u, v)} a RS-valued 

function on B with the property that  

ze fh(y-eq~)E~(F,  $) for all e in the interval (0, So). (3.1) 
Then, 

D(z,) = D*(y - eq~), 

and the minimum property of x implies that  

D(x) <~ D(z,) for 0-<e<eo. 
Consequently, 

D*(y) <. D*(y-eq~) for 0 ~ e < e  o, (3.2) 
and, therefore, 

lira 1 [D*(y- e~) - D*(y)] >t 0. 
8--~+ 0 8 

If ~(u, v) is essentially bounded and of the class H~ on B, this limit exists, and is 

-~D*(y,q~) where 8D*(y, cp) is the first variation of the.functional D* in y, in direc- 

tion of the vector field r Thus we infer that  

f fB + y q v]dud,,< + (3.3) 

for all admissible test functions r u), that  is, for vector functions cpEH~NL~(B, Rat 

which satisfy (3.1)for soma e o =eo(~) >~ 0. 
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Since x(u, v) is harmonic in B, we know tha t  y(u, v) is  of class Ca(B, Ra). By virtue 

of the fundamental lemma of the calculus of variations, we infer from (3.2) and (3.3) 

that  y(u, v) satisfies in B the Euler  equations 

av' + r~(v) { v ' ~  + v'y~} "- o (3.4) 
where 

The conformality relations (1.3) are transformed into 

Yu" O(Y)Vu =Y~" O(Y)Y,, V,," O(Y)Yv =0.  (3.5) 

Now we choose some rE(O, 0/2), and some "friend" ~/=~(w) in C~c(B~r(Wo), R a) satisfying 

z/(w)=l for wEB~(wo), and IVy/{ <~k/r, 0 ~ 1  on C, Moreover, let us denote by A~ the 

tangential difference quotient which, for a function ~(w) =v?(u, v), is defined by 

1 ( h ~ )  (w)-- ~ [~(u + 4,  v)  - ~,(u, v)] 

= i [~(w + h~) - ~(w)] 

where h#O, and ~=(1, 0). 

We claim that  
~0 - - A_a(~f Aay } (3.6) 

is an admissible test function for (3.3) provided tha t  I hi is sufficiently small  In fact, 

is clearly in L~n H~(B, R 8) for smaU Ihl, and 

y(w) - e~(w) = y(w) + e A_h(~2(w ) ( Ahy) (w) } = 21 y(w + h~) + ,~ y (w-  h~) + [1-21 - ~] y(w) 

where 
'~1 = (*lhi)~(w),  ;t~ = ( , lh2)~ ' (w-h~) .  

Hence, for 0 <e < h~/2, we have that  

0 <21,2~ ~< �89 

Thus we infer that,  for every w E B U I,  the difference y(w)-eqp(w) is a convex combination 

of the three points y(w+h~), y(w), y(w-h~). 

Since ~(w)=0 for {w-wol >t 2r, we get ~l(w)=0 and A,(w)=0 for Iw-wol >~2r+ Ih]. 

Therefore, 
v(w) - ~ (w)  = v(w) for I w -  w0l > 2r + 141. 

If Iw-wol  < ~ r +  141, we obtain Iw_+h*-w01-<<2r+2lhl. I-Iene., for 141 <012-, and 
IW-Wol < 2 r +  Ihl, it  is seen tha t  w and w+h~ are in 8o(wo), and, therefore, x(w) and 

x(w+h~) are in U(z0). Thus, the points y(w) and y(w+h~) are contained in Ca provided 
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that  w E I and ]w" w0] < 2r + ]hi, so tha t  also y(w) - e~(w) E CR, since CR is a convex set. 

We note  that  SN U(xo)=h(CR). Thus we have proved that  

h[y(w)-eq~(w)]E$ for wEI and 0<s<h~/2  

provided that  Ihl <~/2-r. 
Now it follows immediately that  the test function ~ defined in (3.6) will satisfy (3.1) 

for e0=h~/2. I t  follows that  ~ is admissible in the variational inequality (3.3). From this 

point on, we may proceed as in [10], section 7. Inserting (3.6) into (3.3), and choosing 

r >0 sufficiently small, we obtain an estimate of the form 

f f B~' , V Ahy]' dudv <. c (3.7) 

with a bound c independent of h as h-~0. The main difficulty in deriving (3.7) consists in 

proving an estimate of the type 

f f / I  vyl'l   yl'du v   (r)ff (IW yl'dudv+ c'(r) (3.8) 

where e(r) and c*(r) are numbers independent of r such that  e(r)-~0, c*(r)~oo as r-*0 

(of. [10], inequality (7.9), p. 66). The proof of (3.8) can be based on a reproducing property 

for the Morrey norm due to Morrey [14] (cf. Lemma 5.4.1, p. 144). The essential ingredient 

is the growth property (2.1) of the Dirichlet integral of x proved in section 2 which 

implies a similar property for the Dirichlet integral of y, taking into account that  

I Vx] ' ffi y, . ~(y)y, + y, " q(y)y, 

and that  the matrix ~ is positive definite. For h-*0, the estimate (3.7) implies that  

ffB~' I Vy,]z du dv < (3 G. o9~ 

Hence Yuu and y , ,  are in L a on Sr(Wo) for sufficiently small r > 0. Furthermore, (3.5), (3.8), 

and (3.9) yield the estimate 

f fa~ 2 [Vyl" dudv~ c'. (3.10) 

Solving equation (3.4) for Yvv and using (3,9), (3.10), we finally obtain 

f f ,flyv, l~dudv<, c", (3.11) 

Thus we infer that  V~y is in L~ on S~(Wo), for sufficiently small r >0. Since x(w)--h(y(w)), 
the chain rule and VyEL 4, V~yEL~ on S~(Wo) imply that  also V2x is in L~ on S~(Wo). 

For the details of the proof, the reader is referred to [10], sections 2, 6, and 7. 
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Hence we have proved tha t  xEH~(Ze, R 8) for every d < l .  By virtue of 8obolev's 

lemma, also xEH~(Z,~, R s) for every p < r  and' each d < l :  Let  I d = ( w E I ;  ]w I <d}: A 

well known imbedding theorem (cf. [14], Theorem 3.4.5, p. 76) implies tha t  x u and x~ 

have an L2-trace on I~. Analogously, y,,, y~ EL~(Id, R s) for d < 1. If we perform in (3.3) a 

partial integration, and take into account (3.4) as well as the regularity results, which 

were stated before, we arrive at  the inequality 

f~o(~,.) y~ q~ du >i O, (3.12) gjk(Y) 

where Ie(wo)=I N Bq(wo)=(wEI; ]W-WoI <q} and WoEI, and ~(w)=(~(w),  ~(w) ,  r 

is an arbitrary admissible test vector of the class CT(Bo(wo) , Ra). 

By our construction, .~2 is free on Io(wo), while ~1 is free only on the open part  

�9 (wEIo(wo); yl(w) >0}, and ~0 a has to be zero on Io(wo). Thus we conclude from (3.12) tha t  

g j~ (y )~=0  a.e. on I,(wo)N (yl(w)>0}, 
(3.13) 

g~(y)~  = 0 a.e. on Io(wo). 

Now, that  we have proved that  x(u, v) is in H~(Zd, RS), we observe that  it suffices to 

assume that  g is a C2.diffcomorphism to obtain (3.4), (3.5), and (3.13). Then, we have the 

following: 

THEOREM 2. Suppose that x=x(u ,  v) is a solution o/ ~)(r, $) where S saris/Me8 a 

chord.arc condition and is a l~art o / a  regular Ca-sur/ace • in R a without boundary which is 

cut out o/ ff by/initely many, closed, regular, non.intersecting Jordan curves F 1 ..... FN o/ 

the class C a. Then, x(u, v) is in H~ N H~(Zd, R a)/or each d < 1 and every p < ~ ,  and xu and xv 

have an L2.trace on every compact xubinterval o/ 1. 

Let woE I, and x o =X(Wo)E $, and suppose that U(xo) is mapped into a neighborhood 

a/ the origin by a Ca.dif/eomorphism g: U(xo)-~ V(O) which maps YN U(xo) into the plane 

{yERa: ya=0} such that g(xo) =0. I] x0EF k/or  some k, we assume in addition that g maps 

FkN U(x o) into the y~.axis, and tN  U(xo) into the hal/plane {yERa; yX~>0, y3=0}. Finally, 

let ~ > 0  be so smaU that z(u ,v)  maps So(Wo) into U(xo). Then, y(u, v)=g(x(u,v))  is in 

C2(Sq(Wo), R a) as weU as in H~N H~(So(Wo), R a) /or .each pE(1, ~) ,  and satis/ies (3.4) and 

(3.5) on Sq(wo). Moreover the normal derivative Yv has an L~-trace on Io(wo) = {w E I; ] w - w o [ < 

~}, and satisfies the /ollowing boundary ~nditions: 

g j , (y )g  = 0 a.e. on Z0(w0)n {yl(w)>0} 

gj~(y)g = 0 a.e. on Io(wo) (3.14) 

= 0 o n  Zo(wo). 
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4. Cont inui ty  of  the  der iva t ives  at the t ree  b o u n d a r y  

Le t  w 0, %, ~, and  g be chosen as in Theorem 2, and  let h be the  inverse of g. To  

s implify the  bounda ry  conditions (3.14), we now choose the  d i f feomorphism x=h(y)  in a 

special way. Consider a Gauss representa t ion  

t(~, ~7) = (t~(~, ~), t2(~, ~), t3(~, 7)), 

I~1~+ Ivl~<R ~, o~ a piece f in  U(xo) of ff a round  x0, by  a Ca-function t(~,~). Set 

and  let 

t~ A t~ 

be the  associated uni t  normal  vec tor  on 7. Moreover,  set  

and  

W=ltaAt, I = ~ ,  

L = - t ~ .  ng = n .  t~  

M = - �89 n~ + t~.n~) = n .  t~  

N = - t~. n~ = n .  t~ .  

The  Weingar ten  equat ions are 

1 
ng= -~i { (FM - GL)tg + ( F L -  EM) t . }  

1 
n~ = - ~  { (FN - GM) tg + (FM - EN)  t,}. 

We m a y  choose ~, ~ as or thogonal  coordinates on 7, t h a t  is, F = 0  and  in such a way  t h a t  

the  pa r t  F~N U(xo) of the  "obs tac le  curve"  Fk on ff is represented  b y  {~=0},  while the  

"admissible  doma in"  SN U(xo) on f in  U(xo) is described by  {~>0}.  

Set 

and  define x =h(y)  by  

yl = 6, Y~ = 7, yS = ~, y = (yl, y~, yS), 

Then,  the  ma t r ix  elements  

z = t(~, n) +r 7). 

8h 8h 
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of O(y)=Hr(y)H(y), H(y)=Oh/Oy, are computed  a s  

g n  = l h t [  ' = E-2~L+~=[ngl= 

g== = Ih, I = = a -  2 ; ~  + ~= l - , l "  
g ,~= Ihr  I ,~1,=  1 

g~3 = ga~ = h~. h~ = t~. n + ~n~. n = 0 

g~a = ga~ = h~. h~ = t~. n + ~n v �9 n = O. 

I n  view of the relation E = O  and of the  Weingar ten  equations, we find 

gn=E-2~L+~'{L---E + ~  -} 
~= [ M ~ ~ 1  

gs3=l, g i a = g a l = O ,  g=a=ga~=O. 

We see t h a t  ~ = 0  lies on ~'f] U(xo), and  t h a t  

where E(~, ~ ) ~ 0 ,  end 

(3.14) reduce to  

o ( ~ , ~ )  , 

0 
O(~,~)~=O, since W==EG=#O. Hence, the  boundary  

~v = 0 a.e.  on  Io(wo) fl {~(w) > O} 

~v = 0 a.e.  o n  Iq(wo) 
= 0 on Io(wo) 

for the  t ransformed minimal  surface 

conditions 

(4.1) 

Fur thermore,  

for  1~<1~<3, and 

and 

y(u, v) = h(x(u, v)) = (~(u, v), ~(u, v), ~(u, v)). 

~u '= - r~(u) { g ~  + u '~}  in S.(wo) 

IVy]=ELp on So(Wo), for each p e  (0, 1). Thus,  we obtain  

A~lE.Lz,(So(wo) , It), ~k=O on Io(wo) for e a c h p E ( 1 ,  r 

A~ELv(So(Wo), It), ~ = 0  on Io(wo) for e a c h p E ( 1 ,  r 

(4.2) 

(4.3) 
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We]] known potential-theoretic results yield that  ~7(u, v) and ~(u, v) are in H~ on S~(wo) 

for each rE(0, Q), and every pE(1, ~) .  Then we infer from Sobolev's embedding theorem 

that  ~(u, v) and ~(u, v) are of the regularity class Cl+~(Sr(wo), R) for each aE(0, 1), and 

0 < r < ~ .  

We still need an information about the first derivatives of ~(u, v), however. We 

know that  
A~EL~(So(wo), R) for allpE(1, cr 

and that  
= 0 on/'0(w0), ~ =0 on I'Q'(wo), 

where 

g ( w o )  = $ , , w ) = o } ,  . / ; ' (wo) = 

While it seems to be impossible to draw any conclusions from these relations, we can 

fortunately still exploit the conformality relations (3.5) which can be written in the form 

a 1 /a  
q(Y)Yw=~ Uw = (4.4) 

Since 
g la  = g31 = g~a = 9'8= = O,  g ~  = 1 ,  

(4.4) becomes 
2 

g11(Y)~w + 2gl=(y)~ ~ ~ �9 ~7,~ + g==(y),Tw +~, , ,  = o .  (4 .5 )  

If  Q>0 is sufficiently small, then y(w) is sufficiently close to (0, 0, 0); consequently, 

gll(y(w)) is close to E(~ (w),~(w)), and therefore, gn(y(w))>~c>O for some number c, 

provided tha t  w E ~ .  

Set 

We see from (4.5) that  

+ gx:(Y).. 
/(w)=~w gn(y--~)qw, y=y(w) .  (4.6) 

2. w,=[g12(y)  ]=_g22(Y) ~ _  1 2 
( ) I,~11(Y)~Wj' ~11(Y)~ w ~ 1 ~  w. (4.7) 

Since 7= and ~= are continuous on St(we) for 0 < r < ~ ,  (4.6) and (4.7) imply that  [(w) is a 

complex valued, continuous function on the open, connected set ~ = St(we) and that  the 

square of/(w) is continuous on ~.  With the help of the following lemma of E. Heinz 

(cf. [8], [9]) it will be seen tha t / (w)  is continuous in the closure ~ .  

LEMMA. Let ](W) be a complex valued continuou~ /unction on an open connected set 

in C, such that ]=(w) ~ s  a continuous extension to ~ .  Then also ](w) can be extended con. 

tinuously to ~2 provided that ~ ~ is non-degenerate, that i s , /or  every woEO~ there exists a 

> 0 ~ch  that f~(Wo)= ~ n B~(wo) is connected. 

18 -792908 Acta mathematica 143. lmprim6 le 28 D6cembre 1979. 
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Proof. Let w o be an arbitrary point on ~ ~ .  Then, there exists an ~r such that  

/S(w)~o~ as w ~ w  o. If ~ = 0  then ]t(w)lS-~0, and also l(w)-.-O as w ~ w  o. If ~=~0, set ~ = ~  

for some ~EC, ~=0 .  Pick an e > 0  such that  0 < e < ] ~  I. There is a ~ > 0  such tha t  

~(w0) is connected, and tha t  ](w) maps  the set ~o(w0) into the disconnected set 

Be(~) + Be(-~) .  Since/(w) is continuous on ~ ,  the image s e t / [~ (w 0 )  ] is connected, and 

therefore already contained in one of the discs B~(fl), Be(-f l) .  Thus, limw-~w~ exists and 

is equal to ~ or - f t .  We now define a function F(w) in the following way: 

l(w), w6a 
F(w)=/~ml(~), wEa~ 

This function, an extension of/(w),  is continuous in ~.  The lemma is proved. 

:From the continuity of/(w) it now follows from (4.6) that  Sw is continuous in St(w0). 

Thus y(w) belongs to class C 1 in ST(Wo). Since w 0 is an arbitrary point on 1, we finally see 

tha t  x(w)ECa(B U I, R3). 

We summarize the results of section 4: 

THEOREM 3. Suppose that the assumptions o/ Theorem 2 are satls/ied. Then every 

solution o/problem ~)(F, $) belongs to the regularity class CI(B U I, Rs). 

5. Asymptotic expansions around branch points on the free boundary 

We continue to employ the notations and assumptions of section 4. 

I t  follows from (4.6) and (4.7) that,  for sufficiently small Q>0, there is a number 

c o > 0 such that  

IVC:l'-< o{IV,71 + IVClq (5J) 
By virtue of 

therefore also 

t t 
ay'= - + yog}, 

on ~(57~0). 

1<l~<3, 

o n  ~ ,  + c {IV l'+ IV lq (5.2) 

where c >0 denotes another suitable constant. 

Moreover, from (4.1), 

~ = 0  and ~ = 0  on 1Q(Wo). (5.3) 

Denote by @ = u - iv the image point of the point w = u + iv under a reflection on the real axis. 

We know that  ~/and ~ lie in Gn(So(wo), R 8) provided tha t  ~ > 0 is sufficiently small. Thus it  
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follows from (5.3) tha t  ~(w) and ~(w) can be extended as C*-funetions H(w), Z(w) across 

the real axis onto BQ(wo) by the definitions 

H(w) = l ~(w) 
/~(~,) 

and 

The vector valued function 

if wESQ(wo) , 

if @ E SQ(w0) , 

Z(w) = I ~(w) 
if wE J.,~Q(Wo)~ 

[ -  ~(~) if ~ESq(w0). 

r(w) = (H(w), Z(w)) 

has continuous first derivatives on BQ(w0), and continuous second derivatives on 

BQ(wo)- IQ(wo). The second derivatives are in L~ on Bq(wo) for each p E (1, ~ ) .  (5.2) implies 

tha t  Yw~ = ~A y is essentially bounded on Bo(wo) , and that  

I rw~l ~<kl r~l  on Bo(wo)-IQ(Wo) (5.4) 

for some constant k >0, 

On the other hand, a well known application of the Gauss integration formula yields 

the identity 

~o r~.~dw= ~ (Y~.~+ Yw~.q~)dudv (5.5) 

for each domain ]0 in Bo(w o) with piecewise smooth boundary, and for all ~ E Cx(O, i32). 

On account of (5.4), we derive from (5.5) the inequality 

I~vYw.q~dwl<~2~,Yw,{ ,q~,+k,q~,}dudv for all ~ECx(~,C').  (5.6) 

As in [8]. p. 103 or [15]. p. 331 the technique of P. Har tman and A. Wintner [7] can be 

applied to (5.6). Hence, if Y,~(Wo) =0, and if Y,~$O, then there exists a vector A = (a2,a 8) EC ~ 
with A # 0, and an integer v/> 1 such that  

r.(w) = A(w-wo)" +o(lw-wol') a s  w-+w o. (5.7) 

Let us consider now a boundary branch point WoE ! of x(u, v), tha t  is, 

x=(wo) = 0 and x~(wo) = O. 

Then y~(wo)=0, and in particular, Y~(wo)=0. 
Since the branch points wEB of x(u, v) are isolated, we have xw~O on each open 

subset of B. I t  follows from (4.5), tha t  also Yw ~ 0 on each open subset of BQ(wo). Thus 

the Har tman-Wintner  device can be applied, to obtain (5.7). 

We now consider the function 

It(w) = ( w -  wo)-'/(w); 
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h(w) is cont inuous on {w; 0 < I  w - w  o I <e} ,  ](w) being defined by  (4.6). Note  t h a t  y(Wo)=0, 

and t h a t  

(i~ 0(o)  = a 

0 1 -o.,=o. 

I n  view of (4.7) and  (5.7) the l imit  limw-,w, h2(w) exists. Applying  the  l emma  of section 4, 

we see t h a t  also limw_~0 h(w) exists. Set 

a 1=  lira h(w)-- lira (w-Wo)-~w(w).  
Y)'~WO ~ W 0  

(5.8) 

Then it  follows f rom (4.7) and  (5.7) t h a t  

yw(w) =a(w-wT +o(lw-wol') a s  w-.'Wo ( 5 . 9 )  

where a = (a  1, a 2, a s) =~=0 is a vec tor  in C a which satisfies 

gjk(O) aJa s' = O. 

Since 

x,~f  H(y)y,~, H -=O--h 
ay' 

(5.10) 

(5.11) 

we obtain  the  following result: 

T H E O REM 4. Suppose that the assumptions of Theorem 2 are satisfisd. Let w o E I be a 

branch point o /a  solution x(u, v) =x(w) of ~)(F, $) on the free boundary. Then there exist a 

vector b=(b 1, b s, ba)EC s with ]b i --*0 and 

b.  b = 0, (5.12) 

and an integer v >11, such that 

x~(w) =b(w-Wo)" +o(lW-Wol" ) as w--*w o. (5.13) 

A geometr ic  consequence of (5.13) is the  following. Le t  

2b = a- i f l ,  where ~, t iER s. (5.14) 

B y  (5.12), 

[~l=l~l+o,  ~.~=o.  (5.15) 

For  w o = u o E I and  w ~ w  o we have  

x~,(w) = ot Re (W-Wo)" + fl I m  (W-Wo)" +o ( [W-won" ) (5.16) 

x~(w) = - o~ Im (w-  Wo)" +fl Re ( w -  Wo)" + o ( [ w -  Wo[" ) 
and therefore 

�9 =(w) ^ ~(w)  = ( ~ ^ ~ ) I w - w o l ~ , + o ( l w - w o l 2 " ) .  (5.17) 
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Denote by 

!~(w)- x~(w) A x0(w) [x~(w)Ax~(w)[' w:~Wo, (5.18) 

the unit normal vector of the minimal surface x(w). Then ~(w) converges to a limit vector 

as w ~ w  o. In fact, 

A ~ (5.19) lim ~ ( w ) - [ ~ A  fll" 
W--~)o 

Therefore, the tangent plane of the minimal surface x(w) tends to a limiting position 

as w tends to the branch point w 0 on the free boundary w 0. 

We further consider the trace x(u, 0) on the supporting surface $. By (5.16), 

xu(u, O) = o:(U-Uo)~ +o(]U-Uol  ~) as U-~U o. (5.20) 

Then we obtain for the tangent vector 

~(u)= x,,(u,o) (5.2D 

of the trace curve x(u, 0) the asymptotic representation 

~ [ U-Uo  ~" 
~(u) = ~ ~r~--~l / + o(1) as u-.-~u o. (5.22) 

Therefore, the non-oriented tangent moves continuously through a boundary branch point 

while the oriented tangent is continuous for branch points of even order v, but, for 

branch points of odd order, the tangent direction jumps by 180 degrees. 
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