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1. Introduction and main results

In what follows the term operator will mean a bounded linear operator 7 which acts
on some infinite dimensional complex Banach space B. The spectrum of 7' will be denoted
by o(T'). An invariant subspace for T’ will always mean here a closed subspace M <B such
that TM < M. We say that M is hyperinvariant for 7' if it is invariant for every operator
that commutes with 7. A subspace M is called nontrivial if M=={0} and M=B.

J. Wermer [27] proved that if 7 is an invertible operator which satisfies

L log||T™

(1) nzm 1g4|-| n? ” =0
and ¢(7T') contains more than one point then 7' has a nontrivial hyperinvariant subspace.
In the case where o(T") consists of a single point ,, the existence of nontrivial invariant
subspaces was proved in [27] only for invertible operators 7' which satisfy ||7™| =
O(]n|*), n— + oo, for some integer k>0, by noticing that in this case, a theorem of Hille
[14] (see also [15, p. 60]) implies that (7'—1,1)*** =0 where I is the identity operator.

We prove the following result-which is also valid in the case where (') consists of a

single point:

THEOREM 1. Let T be an invertible operator which satisfies the following conditions:
2) | T"|| = O(n¥), n— oo for some integer k>0
(3) [|I77]| = O (exp ¢|n[?), n— — oo for some constant ¢>0.

Then T has a nonirivial invariant subspace. Moreover, if T is not a scalar multiple of the

identity operator, then T admits a nonirivial hyperinvariant subspace. If o(T) consists of a
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single point Ay then either (T —AyI)***=0 or T admits an uncouniable chain of hyperin-

variant subspaces.

If ¢(T) contains more than one point, then the conclusion of Theorem 1 follows from
the above mentioned theorem of Wermer. Actually Wermer does not state in [27] the
existence of hyperinvariant subspaces but this follows easily from his proof. This fact is
also proved in [6, p. 154, Corollary 3.3]. We also give a short proof of Wermer’s theorem
in section 6 which establishes this fact. In the case that ¢(7') consits of a single point, we
prove the existence of invariant subspaces by showing first that there exists a function
{0 bounded and analytic in the open unit dise, such that f(7') =0. This fact is also true

in the more general case when ¢(7) consists of finitely many points. More precisely we have:

TareoREM 2. Let T be an operator whose spectrum o(T') is a finite set and which satisfies
conditions (2) and (3). Then there exists an analylic function f(z) =D a,2", =0 such that
Do |an|nF<co and ((T)=37%oa,T"=0. More concretely if o(T)={z, ..., 2,}, one can

choose | to be the function

v

=TT e—zpesp (a 3 %)

g=1 2" %4

with m=4k+5 and a=2c? where ¢ is the constant in (3).

We note here, that using the spectral radius formula, one can easily see that if 7' is an
invertible operator which satisfies (1), then ¢(7T') is contained in the unit circle. Thus in
Theorem 2, we have |z;| =1, j=1, ..., ».

If ¢(T) consists of a single point A, and T satisfies (2) and (3), it is not true in

general that T'— 1, 7 is nilpotent. However if we replace (3) by the stronger condition:
4) |7 = O(exp &|n|¥), n— —co for every >0,

this is the case.

More generally we can deduce from Theorem 2 the following:

COROLLARY 1. Let T be an invertible operator such that o(T) is a finite set {z,, ..., 2,},
and assume that T satisfies condition (2) and condition (4) (for every £>0). Then of p
denotes the polynomial p(z) = [Tj-1(z—2;)"*", we have that p(T')=0; that is, T is an algebraic
operator. (For such operators, see [24, p. 63].)

This extends the above mentioned theorem of Hille [14] and is used in section 6

to obtain and extension of a theorem of Nagy, Foiag, and Colojoara [22, p. 54] and [6,
p. 134].
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In trying to extend Theorem 1 to operators 7' which satisfy less restrictive conditions
than (3) by producing a nontrivial analytic functions f such f(1') =0, we found, somewhat
surprisingly, that condition (3) is necessary for the existence of such a function. Moreover,
it turns out that condition (3) is a necessary condition for the existence of such an
annihilating functions for a large class of operators, including all C, operators in
Hilbert space [22, p. 114] whose spectrum is contained in the unit circle.

Before stating our results in this direction we introduce some notations and defini-
tions. -

If f is an analytic function in the open unit disc D ={z: |2]| <1} and w€ D, we shall
denote by L,f the analytic function in D defined by

Ly fz)= , 2€DN\{wh

f(2) — f(w)
z—w
Definition 1. A Banach space A which consists of analytic functions in D will be cal-
led admissible if:

(i) For every w€ D the evaluation map f-f(w), f€A, is a bounded functional on A.
(ii) For every f€A and we€D, L,f€A.

If A is an admissible Banach space, we shall denote, for every w€D, by L, the
operator on A defined by f—L,f, fEA.

We give now some examples of admissible Banach spaces, some of which, will be used
in the sequel.

1. Let H® denote as usual the space of bounded analytic functions on D, and for a
positive integer k, let H3 denote the space of functions f in H® such that f¥€H,
i=1,2, ..., k. We also adopt the notation Hf =H®, With norm
||

[
o 7!

X

=

I

(where || ||, denotes the sup norm on D) the space HY forms an admissible Banach space,
and it is easy to verify, that in this case, ||L,|| =0((1— [w])™*?), |w|—>1—.

2. The usual Hardy spaces on D, H?, 1 <p < oo, are admissible Banach spaces and
for all of them,

3
”qugm, w€D.

3. If (p,)i—0 is an increasing sequence of positive numbers, then the space of all
functions f(z) = 3.0 a,2", 2€ D such that ||f|| = %o |a,|p, <o, is an admissible Banach

space and a simple computation shows that in this case |[L,]| <(1—|w|), Yw€D.
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If f(z) =270 @,2", 2€D, is an analytic function in D, and 7T is an operator with
o(T)< D, then the spectral radius formula implies that for every 0<p<1, the series
Sn0a,0"T" is convergent in the operator norm, to an operator which we denote by
floT). If lim,,; f(oT) exists in the strong operator topology, we shall denote this
operator by f(T).

Definition 2. If A is an admissible Banach space and 7 is an operator with o(7')< D,
acting on a Banach space B, we shall say that A operates on 7' if lim,,;_ f(oT') exists for
every f in A, and the mapping f—f(T) from A into L(B) (the Banach space of all bounded

linear operators on B) is bounded.

Definition 3. If A is an admissible Banach space which operates on an operator T,
we shall say that 7T is in Cy(A), if there exists a function f =0, €A, such that f(T')=0.

Remark. According to Definition 3, every C, contraction in Hilbert space [22, p. 114]
is in Cy(H™).
We recall that a function f which is analytic in D is said to be of bounded charac-

teristic, if

sup J‘ log™ |f(re?®)|df < 0.

O<r<l

THEOREM 3. Let A be an admissible Banach space, and T an operator in Cy(A). Then:

(a) If the set W =0(T)N D is not empty, it is at most countable and consists of eigenvalues
of T.

¢
(b) 1t | Lull=0 (exp =), lul1-
for some constanis ¢>0, k>0, and
2 log |||
ngo l+n2 <°°,

then.:

(by) If o(T) is contained in the unit circle 8D, then T ts a W unitary operator in the
sense of [6, p. 127], thus in particular T is decomposable [6, p. 30].

(by) If o(T') contains more than one point, then T admits o non-trivial hyperinvariant
subspace.

(e) If A consists of functions of bounded characteristic and

c

1l =0 (exp =) Jwl1-

for some constant ¢>0, then:
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(e1) If o(T) is contained in 0D, then T satisfies condition (3).

(cg) If the set W =a(T)N D is not empty, i is at most countable, consists of eigenvalues
of T and Diew (1—|A])<co.

(d) If A satisfies the hypotheses of (c) and ||T™|| =O(n*), n—co for some integer k=0,

then T admits a non-trivial invariant subspace.

CoROLLARY 2. If T is an operator in Co(HY) (for some £>0) then:

(a) T admits a non-trivial invariant subspace.

(b) If the set W=a(T)(O D is not empty, it is at most countable, consists of eigenvalues
of T and Yrew (1—|A]) <oo.

(¢) If o(T)< oD, then T satisfies condition (3), and is U unitary (thus in particular

decomposable).

Remarks. 1. For C, contractions in Hilbert space, conclusions (a) and (b) of Corollary
2 are proved in [18, Cor. 5.2 and Th. 6.3] by methods which are different from ours.
These methods are not applicable to the classes Cy(HY) for £>0.

2. By conclusion (c) of Corollary 2, every (), operator with spectrum in ¢D is 11
unitary. In this connection we mention that C. Foiag [10] proved that all C; operators are
decomposable.

The following is an immediate consequence of Theorem 3 and Theorem 1:

COoROLLARY 3. Let T be an operator with o(T)S D and let (p,)2-0 be an increasing
sequence of positive numbers such that || T =0(p,), n—oo. Suppose that there exists
function f(z)= 5o a,2", 2€D, f==0 such that D50 |a,|p, <o and f(T)=0. Then:

1) T satisfies the conclusions of parts (a) and (c) in Theorem 3.

2) If p,=0{n¥), n—>o0 for some integer k=0, then T admits a non-trivial invariant
subspace.

3) If Swoylog ||[T7||/n2<co and oT) contains more than one point, then T has a

non-trivial hyperinvariant subspace.

Under some assumptions on an admissible Banach space A, one can deduce that if
T is a Cy(A) operator, then o(7')N 6D must be in a certain sense a thin set. This is the

content of the next result.

THEOREM 4. Let A be an admissible Banach space, such that every funciion f in A
kas a continuous extension to D. (We shall denote this extension also by f.) Assume also that
the polynomials (in z) are dense in A and that for every w€ D the evaluation map f-> f(w),
1€A, is a bounded functional on A. If T is in Cy(A), then the set B =o(T)N D is of measure
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zero (with respect to Lebesque measure on D). If in addition the functions in A satisfy a
Lipshitz condition on 8D, then E is a Carleson set (that is, [, |log o(¢”, E)|df < oo where
o(e®®, E) denotes the distance of ¢ from E).

CoROLLARY 4. If T satisfies the hypotheses of Corollary 3, then o(T') 1 8.D is of measure

zZero.

The organization of the paper is as follows:

In section 2, we prove the results stated in this section.

In section 3, we prove some lemmas which are used to prove the theorems in section 2.

In section 4, we consider invertible operators 7' such that ¢(7)={1} and [[T"| =
O (exp ¢|n|*), n — = oo for some ¢ >0 and 0 <a<1. We show that the problem of existence
of nontrivial hyperinvariant subspaces for these classes is equivalent to their existence
for a single class determined by some o €(0, 1). We also show that if T satisfies the above
conditions for some 0 <« <}, then 7 admits a nontrivial analytic annihilating function.
However, we are not able to deduce from this fact the existence of nontrivial invariant
subspaces for these operators.

In section 5, we prove the existence of nontrivial invariant subspaces for some
classes of quasinilpotent operators, by using the results of Section 1 and Section 4. We
obtain, in particular, an extension of a result of Isaev [17].

In section 6, we extend a result of Nagy, Foiag, and Colojoara mentioned before,
and give a short proof of Wermer’s Theorem [27].

In section 7, we use the results of sections 1 and 4 to prove some results on closed
primary ideals and restriction algebras of some Banach algebras of continuous functions on
the unit circle. We thereby obtain in particular an extension of the results of [18] and [1].

In Section 8, we mention some extensions of the results of section 1 and pose some
problems.

For various results on invariant subspaces for operators on Hilbert space, including
extensions of the above mentioned result of Wermer, we refer to [24]. The basic
reference for results on contractions on Hilbert space is [22]. For results on invariant
subspaces for operators on Banach spaces, which are related to the results of this paper, we
refer to [6].

2. Proofs of main results

We shall now state several lemmas and use them to prove the theorems stated in
section 1. In section 3 we shall prove the lemmas.

If T is an operator we shall denote its resolvent (1'—zI)™1, z ¢éo(T), as usual by B(T, z).
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Lemma 1. Let T be an operator with o(T)< D and assume that A is an admissible
Banach space which operates on T. Let f€A and set G(T, 2)=(L,H(T), 2z€D. Then the
identity

3) HT)R(T, 2)— () B(T, 2) = KT, 2)
holds for every z€ D\ o(T).
Lemuma 2. Let T be an operator with o(T)<=oD. Then

(a) If there exist constants ¢>0 and 0 <o <1 such that

(6) |77"|| = O (exp (cn*)), n-—> oo,
Then

d
) | R(T, 2)| =0(6XP m), |2|>1-

where B=af(1—a) and d=458cF,
(b) If (7) holds with some constants d>0 and B>0, then (6) holds with «=g/(1+p)
and ¢=3d*"P.

Remark. Part (b) of Lemma 2 is proved in [6, p. 155] with different relations between
the constants ¢ and d. Since we will need in the sequel the more precise relation between

these constants, we shall include the proof.

Leuma 3. Let E be a finite set contained in 8D, and let ¢ be an analytic function on
O\ E with values in some Banach space. Assume that there exist constants M >0, N>0,
K>0 and d>0 such that

(8) le@)| < M exp l—_dm, 2€D  and

9) le@] < K(|z] =1)7", for |2]>1.
Then there exist constants M,>0, K;>0 and b>0 such that

(10) o) <My exp {bo(z, E)'}, z€D and
(11) le@l < Kotz B, |2] >1.

LEuMA 4. Let E and ¢ be as in the statement of Lemma 3. Assume that ¢ satisfies
condition (10) and also:

(12) sup {||p(e®)]|, e’ ¢ B} < oo and

(13) sup |lp(rw)|| <oo for all weEE.
O<r<l

Then supp< [|p(z)[| <.

3 —792901 Acta mathematica 144. Imprimé le 13 Juin 1980
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LEMMA 5. Let @ be an analytic function tn D with values in some Banach space B

and let {0 be a (complex) analytic function in D.

Denote:
K(ry= sup [[f(re®)D(re?), 0<r<1
0<6<2n
and
1 27t
mr)=— f log* |f(re?)|dd, 0<r<1.
2n 0
Then:

There exists a constant ¢>0 such that

@ ua><z>u=o(x(1;'z’)exp{ﬁ”‘(%l’z")“]), el 1.

1-|z}

Suppose in addition that fEH®, and let y be the singular measure on [ —m, 7t) which
defines the singular inner part of f [16, p. 67]. Let v denote the discrete part of p and set

it
V(z)=exp {J.:—i—:ﬁ dv(t)}, z€D.

Then for every £>0,

o oel-o(k () varer L) E-1-
and
© oel =0 (& (252 exp ), o1 -

where ||v|| denotes the total variation of v.

We shall prove first Theorem 2 and then use it to prove Theorem 1. First, we
introdnce some notations and make some preliminary observations.

For an integer £>0 we shall denote by B, the Banach space of analytic functions
f(z)= D=0 @,2", 2€ D, such that >5.o|a,|(n+1)*<oo, the latter being the norm of f in
B,. It is known and easy to verify that B, are Banach algebras (with respect to pointwise
multiplication) and that the continuous imbeding H} ;< B holds for every integer k= 0.

If T is an operator acting on a Banach space B and [[T™|| =0(n*), n — oo, for some
integer k>0, it is clear that B, operates on 7, and that the mapping /- f(T), f€ By,
establishes a continuous homomorphism of the Banach algebra B, into the Banach
algebra of bounded linear operators on B.

Let & be an integer, and for every >0, let v, denote the function on D defined by

1
Ya(2) = (2 — 1)*"3 exp {a, zi—l}’ 2€D.
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It is easy to verify that ¢,€H7:; and that for every b0, lim,, ¥, =, in the norm of
HY,; and therefore also in the norm of B,. If w€aD, then the same remarks apply to the
functions vy, ,, defined by: y, ,(2) =y, (wz), 2€ D. We shall use these facts in the following

proof.

Proof of Theorem 2. Let T be an operator which satisfies the hypotheses of Theorem 2.
Assume that o(T)={z,, ..., 2,} = E. Set m =4k +5 (where k is the integer that appears in
(2)) and for every o >0 denote by f, the function defined by

v

o[l e-sroma$ 225
i=1

=122

It follows from the preceding remarks that f, is in B,, and that lim, ., f(T)=f,(T) in
the operator norm. Let ¢ be the constant that appears in (3). We claim that if a>2¢?,
then f,(7)=0. It is easy to see that condition (2) implies (see [6, p. 132]) that there
exists a constant ¢'>0 such that for |z|>1,

(14) |R(T, 2)|| < C(]z] =D~
Condition (3) and Lemma 2 imply that there exists a constant K >0 such that
(15) | B(T, 2)|| <K exp {4¢*/(1—|2|)}, z€D,

and therefore using Lemma 3, we deduce that there exist constants M, >0, K,>0 and
b>0 such that

(16) | R(T, 2)|| < M, exp (bo(z, E)™!) and

(17) |R(T, 2)|| < K,0(z, B)™>2

Noticing that |f,(rw)| < 2™ exp (2a(r—1)-1), 0<r<1, for all w€E and
|fa(e)] < TT7-1]e?—z;|™ 0<0<2x

and remembering that a>2¢?, we deduce from (17) and (15) that

sup {||f.(e?) B(T', e")||: €' ¢ B} < oo and
sup {||f.(rw) R(T, rw)||: 0<r<1, w€E} < oo,

and therefore, taking into account (16) and using Lemma 4 we obtain that

(18) sup If(2) B(T, 2)|| < oo
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Let f(z)=>r0a,2", 2€D, be a function in B, ;. A simple computation shows that
for every w€D and z€D, L,f(z) = >rio go(2)w™ where ¢,(2) = D20 tpyjn?, #=0,1, ...

Therefore

o ©
”wa"Bk< gﬂ ”gn”Blcgj;) lail (7+ ]-)ZH—1 = ”f”Bk+1

and conseqeuently supyep |{(L,f) (T)|| < .
Thus using Lemma 1 we obtain that

sup |/(T) R(T, 2) — {(z) R(T, 2)]| < oo

2} <1

and applying this to f=f, We deduce from (18) that
(19) sup /) BT, ) < oo
i<

2k-+2

To obtain a similar estimate for 1<|z| <2, we define u(z)=]]j~1 (z—2;) and

h(z)= IZ[ (z—2)**% exp {a i iﬁ} .
j=0

a-1%7"2%
Then A€ By, f,(z)=u(2)h(z), and f(T)=u(T)h(T). Using identity (5) with « we obtain:
w(T)R(T, z) = u(z) B(T, 2) +Q(T, 2)

where (7, 2) is a polynomial in z (with operator coefficients). Multiplying both sides by
R(T) we obtain that
£(T) R(T, 2) = (T)u(z) R(T, 2) + H(T)QT, 2).

Thus taking into consideration (17) and the definition of «, we obtain that
sup{|f(T) R(T, z)||: 1<]z] <2}<eo.
Combining this with (19), we see that
sup {||[l.(T)R(T, 2)||: |2] <2, 2¢E}<oo.

Therefore the operator valued analytic function z— f(T) R(T, 2), z¢c(T), has only re-
movable singularities at the points of ¢(7), and remembering that lim, .o, | B(7, 2)[| =0,
we deduce from Liouville’s Theorem for vector valued functions [15, p. 100] that
fAT)R(T, 2)=0, and consequently f,(7')=0. This completes the proof of Theorem 2.

Proof of Corollary 1. If T satisfies condition (4), then by Lemma 2, we obtain that
for every £>0, there exists a constant M,>0 such that | R(7, z)|| <M, exp (¢/(1— |z])),
2€D, and therefore by Theorem 2, f,(7')=0 for every a>0. Thus, by the remarks in the
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beginning of the proof of Theorem 2, we see that lim, g, f,(T)=f,(T)=0 where f,(z)=
[T5-0 (2 —2,)™. Using identity (5) with f,, we obtain that f,(z) R(T, 2) is a polynomial in z
(with operator coefficients) and therefore R(T, z) is a rational function with poles at the
points z, ...,z,. Remembering that by (2), |R(T,2)|]=0((|z] —1)"*"), |z|~>1+, we
obtain that R(T,z) has poles of order not exceeding k+1, at z,, ..., %, and therefore if
p()=TTj-1 (2—2,)**", then p(z) R(T, #) is a polynomial in z, and using identity (5) with p
we obtain that p(T) R(T, 2) is a polynomial, and as in the proof of Theorem 2, we con-
clude that p(71") =0.

Proof of Theorem 1. As already remarked after the statement of the theorem, it
suffices to consider the case where o(T') consists of a single point 4,. Since |4y] =1, condi-
tions (2) and (3) are not changed if 7' is replaced by Ag* T, and we may assume, as we shall,
that ¢(7T)={1}. For ¢ >0, let f, be the function defined in the proof of Theorem 2, with
v=1, and 2z, =1, that is,

R e

where m=4k+5. By Theorem 2 we know that f,(7)=0, if ¢>2¢? Let a=inf {a>0:
(T —I)*f,(Ty=0}. Since limg,, f,(T) =f,(T), we obtain that (T — I)"f,(T)=0. Therefore
it =0, (T'—1I)*=0, (and by Corollary 1, also (T —I)**'=0). Thus in this case, either
T=1, or T—1 is a nontrivial nilpotent operator and its kernel is a nontrivial hyper-
invariant subspace for T'. Assume now that «>0. Since f,(z)f,(2) =(z —1)™},,4(2), for all
a=>0, b>0, we obtain from the definition of « that

(20) flTW(T)4=0 if a+b<a
and
2n LMY(T)=0 if a+bza.

For every 0<s<ua, let M, denote the kernel of the operator f,(7). It is clear that M,
is a hyperinvariant subspace for 7. From (20) we see that M 4B and from (21) we see
that M contains the range of f,_(T) which is not {0}, since oc—s <. Thus M, 0<s<a,
are nontrivial hyperinvariant subspaces for 7. Also if 0 <a<b<g, if follows from (20)
and (21) that the range of f, ,(7") is contained in M, but not in M,, thus M,<=M,. To
show that the subspaces M, 0 <s <a, form an uncountable chain, it remains to show that
if 0<a<b<a then M,< M, Assume that 0<a<b <« and that v€ M, that is f,(T)v=0.
The argument in the proof of Theorem 2 shows that if G,(7T, z) is the function which is
associated with f, by Lemma 1, then sup, < [|G4(7, #)|| <o, and therefore using (5) with
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f.» We see that the hypothesis f,(7T)v =0, implies that supj, < ||f,(z) B(T, 2)v|| <oo. Since
a<b, we have [fy(2)| <|f,(2)|, 2€D, and therefore sup).j<1 ||/»(2) R(T', z)v| < co. Using (5)
with f,, and the fact that supp < ||Gy(T,2)|| <o (where G,(T,z) is the function asso-
ciated with f, by Lemma 1), we obtain that supy, < ||/,(Z") B(T, z)v|| <oc. Repeating the
argument (after (19)) in the proof of Theorem 2, (with f(7T') replaced by f,(T)v) we
conclude that f,(T)v=0, thus »€M,. This shows that M, < M,, and completes the proof

of Theorem 1.
Proof of Theorem 3.

Proof of (a). Let f=2=0 be a function in A such that f(7')=0. Since A is an admissible
Banach space which operates on 7', the identity

implies that for every A€D,

@AI=TY L )(T) = fA) I;

therefore, if ()= 0, then A¢ (7). Thus f=0 on W, and since f is analytic in D and = 0,
W is at most countable. To show that W consists of eigenvalues of 7', let f be as above
and A€W. Then A is a zero of f, and denoting its order by s, we have that

H(z) = (z—A)Yg(2), z€D

where g is an analytic function on D such that g(4)==0. Since A is admissible, g €A, and the
identity above implies that

(22) (T—AIyg(T) = (T) =0.

Since A€q(T) and g(A)=:0, it follows from the first part of the proof that ¢g(7')=0, and
therefore by (22), A is an eigenvalue of T'.

Proof of (b,). Since the functional f— f(0), f€EA is bounded, there exists a constant
M >0 such that for every f€EA and w€D

@) | = |w] [ ZufO)]| < M| || | L]

Therefore, by the hypothesis on ||L,||

c
(23) lf(w)|=0(eXP(1—_Wc), Jw|>1~
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for every f€A. The hypothesis on ||L,| and Lemma 1, imply that, if (7)< 0D, f€A and
f(T)=0, then

c
2) R(T, 2) O(ex ———), z|—-1-—-
and therefore if =0, we obtain from Lemma 5 and (23) that
1R, ) =0 (exp ) 1el+1-
’ =1

for some constant 5>0. Thus by Lemma 2 there exists a constant d>0 such that
(24) [ T7"[| = O (exp (dn=)), n—> oo

with a=(k+1)/(k+2). Consequently the assumption > log [[T7(|/(1+n?) <co and (24)
imply that X2 _ log || 7"]|/(1 +n?) <o, and therefore by [6, p. 154] T' is a 11 unitary

operator.

Proof of (by). If o(T) contains more than one point and 4 is an eigenvalue of 7', then
Ker (T'—AI) is a nontrivial hyperinvariant for 7'. If 7' has no eigenvalues, then by (a),
a(TY< oD and therefore by (b,), T satisfies (1), and since ¢(7") contains more than one

point, Wermer’s theorem [27] implies that 7' has a non-trivial hyperinvariant subspace.

Proof of (¢;). If A consists of functions of bounded characteristic, then the hypothesis
on ||L,| implies by Lemma 1 and Lemma 5 (as in the proof of (b,)) that if o(T)SéD,
then

12, -0 (exp ), Iel1-

for some constant d>0, and therefore by Lemma 2, 7 satisfies condition (3).

Proof of (cy). The proof of (a) shows that W =c¢(Z')N D consists of eigenvalues of T
and is contained in f~*(0) for some non-identically zero function f€A. Therefore by the

well-known theorem on the zeros of functions of bounded characteristic [20, p. 85],

Ziaew (1= |A]) <oo.
Proof of (d). (d) is an immediate consequence of (¢) and Theorem 1.

Proof of Corollary 2. Let || ||, denote the H® norm. Since [|2"]|, =0(x*), n— oo, it follows
from condition 2 of Definition 1, that if 7' is an operator in Co(HY), then ||| =0(xn"),
n - oo, Since Hiy < H® and every H* function is of bounded characteristic [20, p. 90] the

corollary follows from parts (¢) and (d) of Theorem 3.



40 A. ATZMON

Proof of Corollary 3. If (p,) is an increasing sequence of positive numbers, then the
space of analytic functions f(z)= >0 @,2", 2€D such that ||f|| =50 |@,]p, < oo forms
an admissible Banach space A for which ||L,]|<1/(1—|w|), Yw€D. Tt is clear that
Ac H® and if T is an operator such that || T"|| =O(p,), n—co, then A operates on T'. Thus
the corollary follows from Theorem 3: (1) from parts (a) and (c), (2) from part (d) and
(3) from part (b).

Proof of Theorem 4. Let A be an admissible Banach space which satisfies the
hypotheses of the theorem and assume that A operates on some operator 7' acting on a
Banach space B. We claim that for every €A, f(a(T))<o(f(T')). To prove this, let A€ (1)
and let (p,)7-1 be a sequence of polynomials such that lim,_,, p,=f in the norm of A. Let
(9,)7-1 be the polynomials such that p,(z) —p,(4) =(z—1)¢,(2), z€ D, n=1, 2, .... The hypo-
theses on A imply that lim, ., (T —A1)q,(T)=f(T) in the operator norm. Therefore since
A€c(T), and the set of non-invertible operators is closed (in the Banach space of bounded
linear operators on B) we obtain that f(1) €a(f(T)) and the claim is proved. Consequently,
if f€EA and f(T)=0, then o(7)=f1(0). Thus if T is in Cy(A), there exists a function
f€A, f=0 such that =0 on E=¢(T)NoD. Therefore since f is continuous in D and
analytic in D, E is of measure zero [20, p. 90]. The last assertion of the theorem follows

in the same way from [5].

Proof of Corollary 4. Let A be the Banach space introduced in the proof of Corollary 3.
The conclusion of Corollary 4 follows from Theorem 4 by observing that A satisfies the

hypotheses of the theorem.

3. Proofs of the lemmas

Proof of Lemma 1. Since A is an admissible Banach space which operates on 7', we

have for every z€D the identity
HT)— &) I = (T, 2)(T —=I)
and therefore for every z€ D\ o(7T)
HT)R(T, 2)—f(2) R(T, 2) = (T, 2)

and the Lemma is proved.
Proof of Lemma 2. Assume that T satisfies condition (6). Let z€ D be fixed and set
|z| =r. Let N be the smallest integer such that

¢ 1/(1-a)
N>{—
()
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(where ¢ is the constant appearing in (6)). Consider the two sums:

N <o)
= > r"exp (en”), Z,= » 1"exp (cn?).
n=0 n=N+1

For X, we have the obvious estimate
2, <(1-r)"texp {cN=}.
Using the fact that ¢N* ' <log (2 —7)<log (1/r), we obtain that

exp (cN%) < &XP (cN*)
GETE

T,< § exp{—n(log (1/r)—¢/N'*"%)} <

n=N+1

¢
1—-rexp Vi

Combining all these estimates, noticing that R(T,z)=>%.,T " '2", 2€D, and that the
choice of N implies that N < [2¢/(1—7)7¥*~® +1, we obtain (7) with d =4#c* This com-
pletes the proof of (a).

Proof of (b). Since o(T)<dD the identity R(T,z)= > T 12" 2€D holds, and
therefore for every 0<r<1,

1
T R(T,z)z "dz.

271 l2|=r

Consequently, if (7) holds, there exists a constant M >0 such that

177 < Mr~" exp 0<r<l1

4
a=nP
and setting r=1—(d/n)'**? we obtain (6) with a=p/(8+1) and ¢=3d*".

Proof of Lemma 3. For complex valued functions ¢, the conclusion of the lemma follows
from [26, Lemma 5.8 and Lemma 5.9]. The vector valued version can be deduced from
the scalar case as follows: The proof in [26] shows that in the scalar case, the constants
M, K; and b depend only on M, N, K and d, and not on the function ¢. Therefore if B is
the Banach space which contains the range of ¢ (in the vector valued case), and » is any
element in B* (the dual of B), such that ||v||g«=1, we obtain from the scalar case, applied
to the function (p(z), v) that

[ (@(2), v)| < M, exp {bo(z, E)-1}, 2€D
and
lp(z), v)| < Kioz, B)™, |z]|>1,
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where M, K, and b do not depend on v, and the conclusion of the lemma follows from the

fact that
92| =sup {|(@(z), v)|: vEB, ||v]lp+ =1}

Proof of Lemma 4. Let E={e™, ..., ¢} be the set in the hypotheses of the lemma,
and choose 0<d<w/2 such that d<min {|6,—0,|: i+j, ¢, j=1, 2, ..., k}. For every
j=1, ..., k consider the two sectors

8f ={z: |2] <1, 0;,<arg z<6,+46}
and
Sj ={z: 2| <1,0,—6 <argz<0,}.

It suffices to show that ¢ is bounded (in norm}) in each of these 2k sectors. For convenience
of notation we assume that 6, =0 and show that ¢ is bounded in 8{. The proof for the
other sectors is the same. Let U be the image of S; by the conformal map

1-2

Zw=1 —
1+2

and consider the function v defined on U by

T—w
T+w

w(w):qo( ), w€eU.

By the hypotheses ¢ is bounded on (boundary Sy )\ {1} and therefore ¢ is bounded on
(boundary U)N\ {0}. By Lemma 3, there exist constants M, and b such that |p(z)] <
M, exp (b/|1—2]), for 2€8{\ {1}, and this implies that |[y(w)]| <M, exp (b/|w]), for
w€ U\ {0}. Noticing that the part of the boundary of U which contains the point w =0
consists of two perpendicular line segments which intersect at w =0, we deduce from (the
vector valued analog of) the Phragmen-Lindelof principle that y is bounded in U\ {0}
and therefore ¢ is bounded in 8f\ {1}. This completes the proof of the lemma.

Proof of Lemma 5. Let' U* denote the unit ball of B* (the dual of B) and consider
LeU*. Since the function z > (®(z), L) 2€ D is analytic, it follows from the Poisson-Jensen
formula [23, p. 22] that for every z€D and |z| <p<1,

log | (®(2), L) <LJW Mlogﬂ(b(oe“) Ly|at
’ 2m J_, o€t —2|? e

and therefore using the identity

41 2 2
e
| fepar=t
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0<|z| <p<1 and the fact that [|®(z)|| =sup {|(®(z), L)|: LEU*} we deduce that

25 1 [ 92—|z|2 it
(25) log||(1)(z)”<10gK(0)”2w . mloglf(ge)ldt

7 -2
for every z€D and |z| <¢<1. Thus using the estimate

e-lel _otlzl
o —F “o= ]

0<|z]<e<1,
the identity
f [loglf(ge”)|[dt=2f log*lf(ge“)|dt—f log [f(o€*)| dt,

Jensen’s inequality [20, p. 82]
1 [ .
3 | togliteenldr=togla,] +s1og

(where a, is the first non-zero Taylor coefficient of f) and setting g=(1+ |2|)/2 we obtain
that for some constant ¢>0.

1+|z|
"q)(z)”=o(K(1+T|zl) exp[G"‘( 5 )+}) -1

1—|z|

and part (a) of the lemma is proved. To prove part (b), assume that fE H®, f==0, and let »
denote the discrete part of the measure which defines the singular inner part of f and let

V(z) =exp {J z—i%:idv(t))}, z2€D.

Using [16, pp. 67-68] we see that there exists a continuous measure T on [ —, ) such that
f admits a factorization f(z)=DB(z)G(z)V(z), 2€ D, where B is a Blaschke product and

it
G(z)=exp {j %t d‘L’(t)}, z€D.

Noticing that | B(z)| <1, z€ D and using once again the estimate

=z _o+lz|
loe*—z[* "o —||

2€D, |z|<p<]1,

we obtain from (25) that for every z€.D and 0<|z| <1,

1 o+[z| (7

(26) log |[0(2) < log Kle) =5 25 |

log | B(oe")| dt
1 (" o—|ef?

- it it
or | ., |ge”—z[21°gIG(Qe ) V(ee™)|dt.
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Since G(z) V(2) %0, for all z€ D, the function log |G(z) V(z)| is harmonic in D, and therefore
the Poisson formula implies that the last term in the right hand side of (26) is equal to
—log |@(2) V(z)|. Thus remembering that lim,,,_ fZ,log | B(pe™)|dt=0 [23, Chapter I]
and setting o =(14 |z]|)/2, we obtain from (26) that

en  oglowl<tog & (25F) + 1Dk g 6o+ fog Pea)

where v is a function on (0, 1) which satisfies lim, ,;_ v(r) =0. It is clear that (b) will

follow from (27) if we show that for every £>0 there exists a constant M, such that
|10g|G(z)H< I I+M5, z€D.

Let £>0. Since the measure 7 is continuous, there exists a number 4 >0 such that for every
interval I<[—m, ) with length less than ¢ we have that |7](I) <g/2, and therefore for

every z=re' €D,

.2
oglat@li< [Falel o= [——=" ko
(1— )+4rsm( 3 )

2 1 £
< dlT|()+—— dlt|(t)<—+ M,
1_7J‘|t—0|<6 l=l®) .Z(EJ‘H»O];& =@ 1-7

S

where M, = ||7||/sin? (5/2). This completes the proof of (b). {c) follows from (b) by observing
that for all z€ D,
ot 4
exp f

4. Operators which satisfy ||7|| = O (exp (¢|n|*)) n—~ + oo for some 0 <x <1 and ¢>0

2l

< ex
PI-Tal

[V(z)|[ = clv(t)

In this section we consider invertible operators 7' which for some 0 < <<1 and ¢ >0

satisfy the condition
(28) |7 =0 (exp ¢|n]|*), n—>+oo.

Since o <1, it is clear that if 7' satisfies (28), then 7" also satisfies condition (1) and therefore
by Wermer’s Theorem, if ¢(7") contains more than one point, 7' has a nontrivial hyper-
invariant subspace. The existence of nontrivial invariant subspace in the case where o(7)

consists of a single point remains open. We present here some partial results for this case.
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It will be convenient to introduce the following notation: If B is a Banach space and
0<a<1, we denote by L,(B) the set of all bounded invertible linear operators on B such
that o(T)={1} which satisfy (28). In what follows B will be fixed and we set: L, =L,(B).

We have the following results:

ProrosirioN 1. If for some 0 <y <1, every operator in L, has a nontrivial hyperin-

variant subspace, then the same is true for all the classes L,, 0 <a<1.

ProrositioN 2. If O0<a<i, and T is in L,, then there exists an analytic function
fR)=2%0a,2", f(2)£0, such that 25 o|a,| exp (cn*) < cc and f(T)=0 (c is the constant
associated with T by (28)).

As already noticed in section 1, we are not able to deduce from Proposition 2 the
existence of nontrivial invariant subspaces for operator in L,, for 0 <a<}.
For the proof of Propositions 1 and 2, we shall need some equivalent characterizations

of the classes L,. This is given in:

ProrosiTioN 3. Let 0<a<1 and set f=a/(1 — ). The following are equivalent:

() T is in L,
(II) There exists a constant R>0 such that

T —-I)]| < R*»™F, n=0,1,...
(IIT) There exist constants K >0 and b>0 such that

|R(T, 2)|| < K exp |_l_—b’z73’ z€CN\{1}.

Proof of (I)=(II). Since o(T)={1}, there exists a bounded linear operator 4 such
that T —=exp 4 and o(4)={0} (we may take A =log (I —(I—T))=— >51 (I—T)/j. Con-
sider the entire operator valued function ®(z)=exp (4z), 2€C. We claim that O is of
order o and finite type (see definition in [15, p. 104]). First @ is of order 1 and minimal
type: Let ¢>0; since A is quasi-nilpotent, lim,_, || A"||*” =0, and therefore there exists a
constant C, such that ||4"]| <C.e", n=0,1, ..., and

ll4~]l|=["
n!

o0
ol < > BN <0, exp o2,
Next, (I) implies that [@(x)|| <M, exp (¢c|z|*), — oo <a< oo, where ¢ is the constant given
by (28) and M, =M supyy<1 || exp ((4)||. Thus, using the analog for vector valued functions
of [3, p. 97, Theorem 6.69] (which is obtained from the scalar case by an argument which
is similar to the one in the proof of Lemma 3), we deduce that there exist contants K; >0
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and b>0 such that |jp(z)|| <K, exp (b]z|*), 2€C, and by using the vector valued analog
(which is proved in the same way as the scalar case) of the known relation between the
order of an entire function and the magnitude of its Taylor coefficients {3, p. 11,
Theorem 22.10] we obtain that there exists a constant ¢ >0 such that

An
<CtnM®, n=0,1,...,

n!
and therefore by Stirling’s formula there exists a constant C;,>0 such that
47| <Cin-"?, =01, ....

Noticing that 7—I =A-B where B= >, A™-1/j!, we obtain (II) with R=C,|B|.

Proof of (II)=(III). Observing that

R, =S L=I

o (1 - z)n+] b4

21,

is an entire vector function of 1/(1—z), we obtain (IIT) from (II) by using once again the
relation between the magnitude of Taylor coefficients and the order of entire functions

(this time in the other direction).
Proof of (I11)=(I). This is an immediate consequence of Lemma 2.

CoROLLARY 5. Let T be an operator such that o{T)={1}, let 0 <a <1 and §=o/(1 —a).

The following conditions (2), (b) and (c) are equivalent:

(@) | T =0(#¥), n—>oco, for some integer k=0 and || T"|| =0 (exp (¢|n|*), n—>—co
for some constant ¢>0. :

(b) ||| =0(#*), n—>co for some integer k=0 and ||(T —I)"|| =O(R"n™""), n—oco
for some constant R >0.

() ||R(T, 2)|| = O (exp (d/|1—2|?)), |2]| =1 — for some constant d>0, and || R(T, 2)| =
O(|1—z||™), |z| =1+, for some integer N >0.

Proof. Tt follows from Proposition 3 that (a) and (b) are equivalent; and from

Proposition 3 and [6, p. 131, Proposition 1.6] that (b) and (c) are equivalent. More
precisely (b)=(c) with N=£k+1 and (c)=-(b) with k=N.

CoROLLARY 6. Let T be an operator such that o(T)={1} and ||T"|| =0(n*), n—> oo,
for some integer k>0. A necessary and sufficient condition for the existence of an analytic
function f(2) = D50 a,2", =0, such that 35 o |a,|n*<oo and f(T)=0 is that

(T =1y = 01 fn), n—>oo.
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Proof. This is an immediate consequence of Theorem 2, Corollary 3 and Corollary 5.

CoroLLARY 7. If T is an operator such that ||T|| =O0(n*), n—>oo, for some integer
k>0, and ||(T—I)*||""=0(1/n), n—>oco, then (T —I)**'=0.

Proof. The condition [[(T — I)"|'" =o(1/n) implies that ¢(T) = {1}, and that if 4 isa
quasinilpotent operator such that 7'=e¢”, then the function ®(z)=¢*?, z€C, is an entire
function of order % and minimal type. (This follows by the arguments of Proposition 3.)
Therefore the function W'(z)=®(2?), 2€C, is of order 1, and minimal type, and the
hypothesis || 7| =O(n*), n—> oo implies that |'¥'(x)]] =O(|2|*), 2— + o and therefore by
(15, p. 104, Th. 3.13.8] ¥ is a polynomial of degree <2k, hence @ is a polynomial of
degree <k, thus 4" =0. Since

we obtain that (7 — I)**1=0.

Proof of Proposition 1. Let 0 <y <1, and let n be a positive integer. It follows from
Proposition 3(II) that if 7" is in L, for some 0 <o <1, then T'; =1+ (T —I)" is in Ly where
B=a/(n(l—a)+a), and therefore for n large enough <y and 7'; will be in L,, and since
any hyperinvariant subspace for T, is also a hyperinvariant subspace for T the conclusion

of Proposition 1 follows.

Proof of Proposition 2. Assume that 7' is in L, for some 0 <a<}. Let 20<p<1. It
is known ({20, p. 118, Ex. 7], or [7]) that there exists a function A =£0 of the form A(¢)=
20w Cpe!™, — oo <t<oo, such that D% _ |c,|exp (#?) <oo and A?(0)=0, j=0, 1, ... It
is easy to see that we also may assume, (as we shall), that % is even, or equivalently, that
¢_n=0Cy, n=1,2, .... Let f be the function defined by f(z) = SL_oa,2", |z] <1, where a,=c¢;
if n=k* for some integer k, and a,=0, otherwise. Noticing that f(z)= 30 ¢,2", and
C_n=Cp, n=1,2, ..., it is clear that since A== 0 also f=0. Let y =p/2; then the hypothesis

e —w|Cn| €Xp (n?) < oo implies that:

8

(29) |a,| exp (n?) < o0
n=0

I

and therefore in particular that Y35 [@,]exp (¢rn®) <oo for every ¢>0. Let F(t) =f(e') =
Dm0aye'™, —oco<t<<oo, The hypothesis A?(0)=0, =0, 1, ..., and the fact that ¢_,=c,,
n=1, 2, ..., imply that:

N3
(30) FOQ) = ‘5 K®0)=0, k=0,1,....
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It follows from (29) (see [20, p. 26, Ex. 7.]) that there exists a constant R,>0 such
that |f™(e*)| <R{n™, n=0,1,..; |t|<m. And therefore using (30) together with
Taylor’s and Stirling’s formulas we obtain that there exists a constant E,>0, such that
for all [¢|<m, |f(e")| <inf,., R3n™|e*—-1|" n=0,1, ..., where d=(1—y)/y, and this
implies (see [12, p. 170]) that for some constants K >0 and d>0 we have:

d
(31) lf(eu)|<KeXp{_|e“_—l?}’ 0<|t|<ﬂ

Using the fact that a«<} and p <1 we see that 6> a/(1 — o) and therefore from (31) and
Proposition 3 (IIT) we obtain that

(32) sup {||f(e®) R(T, e)||: 0< [t] <z} < oo.

Let Q(T, 2) be the function associated with f by Lemma 1. Since y > o we obtain from (29)
that S50 |a,|n exp (en®) <oo, and therefore by the argument used in the proof of the

second part of Theorem 2 we deduce that sup,«i ||G(T, 2)|| <o, and this together with
(32) and identity (5) imply that

(33) sup {||[/(T) R(T, e®)||: 0<|t] <m} < oo.

Let @ be the operator function ®(z)=f(T)R(T, 2), z€C\ {1}, and let

lIf(u))=c1>(w”), weC.

w—1

¥ is an entire operator function, and from Proposition 3(III) we deduce that there exist
constants M >0, >0 such that |[\¥'(w)|| <M exp (b|w|#) where f=a/(1—a), and from
(33) we obtain that sup_,c,<q ||V (@)]] <oo. Since a<} we see that <1, thus ¥ is an
entire (vector) function of order less than 1 which is bounded on the real axis and therefore
by a well known theorem [15, p. 104, Th. 3.13.8] we obtain that V' is a constant operator,
and therefore the same holds for @. Using the same argument as in the proof of Theorem 2,
we conclude that f(7")=0.

5. Quasinilpotent operators
In this section we apply the results of section 2 and section 4 to some classes of
quasinilpotent operators. Our first result is:
THEOREM 5. Let A be a quasinilpotent operator on a Banach space. Assume that there
exist constants M >0, N>0, K>0 and ¢>0 such that

(34) |R(4, 2)|| < M exp llﬁ‘, for Tm z>0
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and

(35) | R(4, 2)| <K|Imz}~¥, for Im z<0.

If A==0, then A has a non trivial hyperinvariant subspace, and if A is not nilpotent then A

has an uncountable chain of hyperinvariant subspaces.

Proof. Let T be the Cayley transform of A4, that is T'=(I+44)(I—34)"t. Then
o(T)={1} and a direct computation gives that

R(T,2)=(i+2)(A—iD R (A, 5(11;:)) ,

and from this we see that if 4 satisfies (34) and (35) then 7' satisfies:

"R(T,z)":O(expl_L), |z]>1— and

2|

IB(T, 2l =0ll2| - D)™, |e|>1+

and therefore by [6, p. 131, Prop. 16 and p. 155, Prop. 3.5] we obtain that 7" satisfies the
hypothesis of Theorem 1, and from this the conclusion of the theorem follows by
observing that 4 =4(f—T) (I + 1)~ and therefore 4 and T have the same invariant and

hyperinvariant subspaces.

CoROLLARY 8. Let A be a quasinilpotent operator acting on a Hilbert space H. If A is
dissipative (that s Im (A, ) >0, V2 € H) and satisfies (34), then the conclusions of Theorem

& hold for A. In particular, A has a non trivial invariant subspace.

Proof. It is well known and easy to verify that if 4 is dissipative then || R(4, z)|| <
[Im z| -2, for Im 2 <0, and therefore the corollary is an immediate consequence of Theorem 5.

ERemarks. 1. Corollary 8 is proved in [17] by using the theory of characteristic operator
functions in Hilbert space under the seemingly stronger hypothesis

R o

However by Proposition 3 one can show that for these operators (34) implies this hypo-
thesis. (For a study of this class of operators see also [4, p. 52].)

2. Corollary 8 can also be proved by the same argument for quasinilpotent dissipative
operators in Banach spaces in the sense of [21], which satisfy condition (34). (Notice

4—792901 Acta mathematica 144. Imprimé le 13 Juin 1980
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that the definition of dissipative in [21] is that Re (4=z, ) <0, hence in this case we have
to consider the half planes Re z<0 and Re z>0 in the hypotheses of Theorem 5, or to
replace 4 by ¢4).

3. If condition (34) bolds for every ¢>0, it follows from the prooi of Corollary 1
that 4 is nilpotent. This was proved under stronger hypotheses in [21] and [25].

4. If A is an operator such that ¢(4) is contained in the real line, contains more than

one point, and satisfies for some constants M >0, K >0 and §>0, the condition

R4, 2)|| < M exp ﬁmgz?’ Im 230,

the existence of non trivial hyperinvariant subspaces is proved in [6, p. 159, Th. 4.3].
Thus the first conclusion of Theorem 5 remains true if the hypothesis that 4 is quasinil-
potent is replaced by the hypothesis that o(4) is contained in the real line. (Notice that
conditions (34) and (35) remain unchanged if 4 is replaced by 4 —AI for some real
number 4.)

Our next observation is that the existence of non trivial invariant subspaces for guasinil-
potent operators whose resolvent is of finite exponential type is equivalent to the existence
of non trivial invariant subspaces for operators in the classes L, considered in section 4.

To state this more precisely we introduce the following:

Notation. If 0<f<<co, we denote by s the class of all quasinilpotent operators A4
which satisfy for some constants M >0 and ¢>0 the condition:

R4, 2)]| < M exp ﬁ, 20,

ProrosiTioN 4. Let 0<a<l, and set f=af(1 —a). The existence of non trivial in-
variant (hyperinvariant) subspaces for all operators in the class L, is equivalent to the existence

of mon trivial snvariant (hyperinvariant) subspaces for all operators in the class Qp.

Proof. It follows from Proposition 3 (III) that 7 is in L, if and only if 4 =T -1 is
in @4, and this proves Proposition 4.

Remark. It follows from Proposition 1 and Proposition 4 that the existence of non
trivial hyperinvariant subspaces for all operators in one of the classes @ is equivalent to
the existence of non trivial hyperinvariant subspaces for all operators in all these
classes. This can also be seen directly by observing that if A4 is in @4 then A2 is in Qgs.
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6. An extension of a theorem of Nagy, Foiag and Colojoara and a short proof
of Wermer’s theorem

By a theorem of Nagy and Foiag [22, p. 74, Th. 54], if T is a power bounded
operator on a Hilbert space and neither {T"}% 4 nor {T*"}7 4 converges strongly to 0,
then either 7'=cI where |c¢| =1 or T has a hyperinvariant subspace. This theorem was
extended by Colojoars and Foias [6, p. 134, Th. 1.9] as follows: If T is an operator on a
reflexive Banach space and || T =0(g,), n—> o0, where {0,}7-o is a sequence which satisfies
M0 0y /0 < Km#, m=0, 1, ..., for some K >0 and «>0 and neither p,;*7™ nor p;;* T**
converges strongly to zero, the same conclusion holds.

The next result shows that the same conclusion holds for much faster growing

sequences {0, }x-o.

ProPOSITION 5. Let T be a bounded linear operator on a reflexive Banach space and
let {p,}n-0 be a sequence such that for some constants 0 <a <%, K>0 and a>0,

lim
nsw0 On

On+m

< K exp (am®), m=0,1,....

Then if || T™|| =0(g,), n~> oo, and neither g, T™ nor o;* T*™ converges strongly to 0, the same

conclusion as in the above mentioned theorems holds for T.

Proof. The proof follows the same lines as the proof of [6, p. 134, Th. 1.9] except for
the following changes: In the first part of the argument, replace the fact that every invert-
ible operator 7', such that ||T7||=0(]|n|*), n—> 4 co for some x>0, is decomposable by
the fact that the same is true if [|[T7]| =0 (exp ¢|n|#), n—+ co, for some ¢>0, 0<f<1,
(Wermer’s Theorem or Theorem 3.2, p. 154 in [6]). In the last step of the argument, where
(an equivalent form of) the theorem of Hille [14] is used, use instead, the extension of
Hille’s Theorem given in Corollary 1 of the present paper.

We give now a short proof of

TurorEM (Wermer [27]). Let T be an invertible operator on a Banach space which
satisfies - o log||T™|| /(1 +n2) <co. If o(T') contains more than one point then T has a non

trivial hyperinvariant subspace.

Proof. Let w,=||T"||, n=0, +1, 42, ..., and consider the Banach algebra A which
consists of all functions f(e') = >%._ a, €™, 0 <t <2z, such that |[f||lsa =200 |t |wn < o°.
(This is a Banach algebra since w,.,<w,w, for all integers n, m). It is clear that the
mapping f>{(T)=Du o a,T", f€EA, establishes a continuous homomorphism of A into
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the Banach algebra of bounded linear operators on the space on which 7' acts. We claim
that for every fin A, f(o(T))<a(f(T)). (We recall here again, that (1) implies that o(7') is
contained in the unit circle.) Let A€a(T), f(e') = Don- o @,e™EA and Pyle’) =3 ya,e™,
N=1,2,.... Let gqy(e") be the trigonometric polynomials such that Py(e')—Py(i) =
(e —A)gule'), 0<t<2n. Then lim,.,, (" —-21)gy(e?) =f(e*) —f(A) in the norm of A, and
therefore f(T)—f(A) I =lmy,., (T —2)qy(T) in the operator norm. Since A€qg(7'), and the
set of non invertible elements in a Banach algebra is elosed, it follows that f(2)€a(f(T)).
Let now 2,44, be two points in o(T). Since D5 _ log w,/(1 +n?) < oo, the algebra A satis-
fies the Beurling condition for regularity ([20, p. 118, Ex. 7] or [7]), and there exists
functions fy, f,in A, with disjoint supports such that f;(4,) =1, j=1, 2. Thus, f,(e): fy(e)=0,
and therefore f,(77)-f,(T) =0, but f,(T)=%0, §=1, 2, since {;(4,)=1€q(f;(T)), =1, 2. Conse-
quently Kernel (f,(7)) is a non trivial hyperinvariant subspace for 7T

7. Applications to Banach algebras

Most of our previous results could be stated and proved in the context of Banach
algebras. For instance, it is clear that Corollaries 1, 6, and 7 are statements about elements
in Banach algebras. In this section we apply the results of the previous sections to prove
results on closed primary ideals and restriction algebras of certain Banach algebras of
continuous functions on the unit circle. We obtain in particular some of the results of
[18] and [2] and an extension of the results of [1].

We recall first some definitions and known facts from [11, pp. 214-215] and introduce

some notations.

Definition. Let R be a Banach algebra of continuous functions on the unit circle 8.D.
R is called a homogeneous Banach algebra (in the sense of Shilov) if:

(H,) R is generated by the functions 1, e'. ¢~** and its maximal ideal space is D.

(H,) For every f€R and ¢7€0D, |f[lr=|f[lr Where f,(e")=F*"7), e*€oD. (It
follows from H, that f,€R for every fER and &"€0D.)

If B is a homogeneous Banach algebra on 8D, we shall denote by R+ the closed
subalgebra of B which is generated by the functions 1 and e*. R+ is a homogeneous Banach
space on &D in the more general sense of [20, p. 14] and it follows from [20, Th. 2.12] that
R+ consists of all functions f in R such that f(n)=0, n=—1, —2, .... (Where for every
integer j, f(j) denotes the jth Fourier coefficient of f, that is, f(j) = (1/27%) [*. f(¢°) e #°d0.)

Every function f in R+ admits an extension to a continuous function f on D which
is analytic in D. This extension is given by f(z) =32, f(n)2", 2€D or equivalently by
fxe’®) = (P, f)(e®€8D, 0<r<1, where P, denotes the Poisson kernel and % denotes
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convolation on &D. It follows from the properties of R that the Gelfand representation of
the Banach algebra R+ is given by the mapping f—f and that the maximal ideal space of
R+ is D. We shall denote by R+ the algebra of functions on D which are Gelfand
transforms of elements of R+. With norm ||f||z+ = |||z R+ becomes a Banach algebra
which is isometrically isomorphic to R+. We shall need in the sequel the following two facts:

(a) R+ is an admissible Banach space and 1| <2j(e® —w)=2||r, YwED.

(b) R+ operates on the multiplier operator 7' defined on R+ by: T'f(e')=e!f(e'),
e’eaD, fER+.

We show first that (a) holds:

1) Since R+ is a Banach algebra and for every w€ D, the mapping f—f(w), fER+ is a
complex homomorphism of R+, it follows [20, p. 201] that |f(w)| <||f[|+ = ||]|&+, for every
fER+.

2) Assume that fER+ and w€D. To show that L,f Ef{t consider the function

gle™) = (f(e*) —f(w)) (e" —w)~, e* €0D.

Since the maximal ideal space of R is 8D and w€ D, it follows that g€R, and since fER+,
the function L, f is a continuous extension of g to D, which is analytic in D. Thus §(») =0
for n <0, and therefore, g€R*. Consequently L, f=g eR+ and

Il = lolle <207 )~ oy
and (a) is proved.

(b) follows from the fact that for very f in R+, lim,.; f(0e®) =f(¢”®) in the norm of
R [20, p. 16].

We recall that a primary ideal in a commutative Banach algebra with unit, is an
ideal that is contained in a single maximal ideal. A primary ideal is called trivial if it is
the zero ideal or a maximal ideal.

If R is a homogeneous Banach algebra on 8D, we shall denote by R, the maximal
ideal which consists of all functions f in R such that f(1) =0. It follows from the homogeneity
of R, that it suffices to consider primary ideals contained in R,. The next result gives some

information on these ideals, for certain homogeneous Banach algebras.

ProrosiTioN 6. Let R be a homogeneous Banach algebra on 8D, which for some

wnteger k=0 and constant ¢>0, satisfies the conditions

”emt”R — O(n"), n—> 00
and

llem™|lr = O (exp (cn?)), n-—>oco.
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Let I be a closed primary ideal in R which is contained in Ry. Then either I is of finite
codimension not exceeding k41 and s the closure of the ideal generated in R by the function
(¢ —1) for some 1 <j<k, or there exists an uncountable chain of closed ideals between I and
R,. I} in addition

lle=™|lr = O (exp (ent)), n~—>oo
for every £>0, then every closed primary ideal contained in Ry is of the first kind, and if

also k=0, there are no non-trivial closed primary ideals in R.

Proof. Consider the quotient algebra B=R/I endowed with the canonical quotient
norm. Let u be the image of ¢* under the canonical map of R onto B. Since ¢”—1€R,,
u—1 is contained in the single maximal ideal of B, and therefore o(u)={1}, [11, p. 34].
Consequently, u—1= >3, (1 —u)’, the series being convergent in the norm of B. Therefore,
since 1, » and u~! generate B, 1 and u also generate B. Let 7T be the operator defined on
B by Tx=uz, 2€B. Since ||| = ||u"||s <|[¢™||r, n=0, +1, £2, ..., the assumptions on
R imply that || 7] =0(n*), n—oo and || T"|| =0 (exp (¢|n]|")), n—> — oo, and since o(T) =
o(u) = {1}, it follows from Theorem 1 that if (7' — I)**'==0, then 7' has an uncountable chain
of invariant subspaces. Since 1 and u generate B, the invariant subspaces of T’ coincide
with the closed ideals in B, and since the pre-images by the canonical map of the closed
ideals in B are the closed ideals between I and R,, we obtain that, if (w—1)¥"1==0, then
there exists an uncountable chain of closed ideals between I and R, If (u—1)**'=0,
then the fact that B is generated by 1 and w implies that B is of finite dimension not
exceeding k+ 1, and it is easy to see that if j is the smallest integer such that (u—1)'=0,
then I is the closure of the ideal generated in R by the function (¢ —1)’. The last assertion
of the Proposition is proved in the same way, by using Corollary 1.

The following examples illustrate the two different possibilities described by Proposi-
tion 6

1) Let R be the Banach algebra of all continuous funtions f on 8D such that

=3 lfoloxplnfs+ S lfom] <<o.

Then R is a homogeneous Banach algebra on 8D [10, p. 120] which clearly satisfies the
hypotheses of Proposition 6. One can show that if I is a non-trivial closed primary ideal
contained in Ry, then there exists an uncountable chain of closed ideals between I and
R,. Moreover, one can prove that there exists a positive number a such that I is the
closure of the ideal generated in R by the function

41
p(e?) = (1 — )% exp {a ﬁ}
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for ¢’+1 and y(1)=0. (Itis easy to verify that y€ER+<R.) A similar result for the
analogous weighted Fourier algebra on the real line is announced in [13, Th. 8.1.].
2) If 0<z <} and R is the Banach algebra of all continuous functions f on 8.D such that

-1 o]
= 3_fmlexplnl+ 3 o] < o,

then the last assertion of Proposition 6 implies that R has no non-trivial closed primary
ideals.

Other results on the structure of closed primary ideas in Beurling algebras are given in
[8] and [9].

Next we consider closed primary ideals in the Banach algebras R+ where R is a
homogeneous Banach algebra on 2D which, for some positive integer k>0, contains the
Banach algebra C¥(0D) of k-times continuously differentiable functions on 8.D. The struc-
ture of closed primary ideals in some of these algebras was determined in [18] and also fol-
lows from the more general result proved in [2]. The proofs in [18] and [2] are based
on the Carleman transform of elements in the dual of R+. We shall obtain these results
on closed primary ideals, from Theorem 1 and Lemma 5, without using the Carleman
transform or duality.

We recall [11, p. 215] that the assumptions on R imply that there exists a constant
¢>0 such that ||g|[r <c||g]|ckop) for every g€C*(@D) and therefore [|e™!||g =O0(n*), n—> oo,
Using the fact that

[|(€? —w)" cropy =O((1 — [w])*Y), |w]|>1+
and property (a) of I~{+, we obtain also that
IZall = O = [w])7*7), Jow] 1

(L, being regarded here as an operator on ﬁ).
In what follows we shall denote for every real number o« by v, the function defined
on D\ {1} by .
v,(€”) = exp {a #1},
e’—1

and by g, the function defined on 8D by g,(e') = (" - 1)**19,(e?), ¢®=1 and g,(1)=0.
It is easy to see that g, belongs to C%(@D) and therefore also to B. For «>0, g, admits a

continuous extension to D which is analytic in D given by

+1 -

7.(2) = (z—1)** exp {cx z—_—i}, z€D
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and therefore g,€R*. For every «>0, we shall denote by I, the closure of the ideal
generated in R+ by g,. We shall denote by Ry the maximal ideal in R+, which consists of
all functions f in B+ such that f(1)=0.

The following definition is introduced in (2, part 1I]: One says that R satisfies the
analytic Ditkin condition if for every fERq there exists a sequence (g,) <R+ such that
7.(0)=1, n=1,2, ..., and lim,, g,f=0 in the norm of R.

Finally we adopt the following notation: For every fER+ we shall denote by S; the
singular inner part of f and by u, the positive singular measure on [—z, %) that defines
S; [16, p. 66). For a closed ideal I <R+ we denote by

() = inf {3, ({0)): f€T}.

The following contains the results on closed primary ideals in the algebras R+ that

are proved in 18] and [2]:

ProrosiTioN 7. Let R be a homogeneous Banach algebra on 8D which contains C¥(@.D)
for some positive integer k. Let I be a closed primary ideal in R+ which is contained in Ry

and let a=o(I). Then (P—1)* IS I, and (¥ — 1% *I,< 1. If in addition R satisfies the
analytic Ditkin condition, then I=1,.

Proof. To prove the inclusion WW; 1, consider f€I. Since fER], it follows
from the definition of « that f=v, F where F €C+(@D). (C(2D) is the algebra of continuous
functions on &D.) Therefore (¢—1)%**F—g_,f€RNCHoD)=R+ and consequently
(e®— 1) f—g (% —1)*** F€I,. Since this is true for every f€I and I, is closed, the
required inclusion is proved. To prove the inclusion (_e”’— 1y*** [ < I, consider the
quotient algebra B=R+*/I, and let » be the image of e’ under the canonical map of
R+ onto B. Since e®—1E€Ry, u -1 is contained in the single maximal ideal of B and there-
fore o(u) ={1}, [11, p. 34]. Thus the vector valued function R(u, z) = (u—2z)™" is defined and
analytic in O\ {1}. We claim that for every f>«, ||R(u,2)[lp=0 (exp 28/(1—|z])),
|2| >1—. Let #> . By the definition of « there exists a function f€ I such that u({0}) <p.
Therefore by the regularity of u, there exists §€(0, %) such that p(—9, §) <p. Thus re-

membering that
» etttz
87 (2)=expy | Zr duy(t)

[16, p. 66] we obtain that there exists a constant K >0 such that for z€ D with |arg z| <4

2
“1g .
[8,()] Kexpl~|z]
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Property (b) of R+ inplies that R+ operates on u (regarded as a multiplier operator on B)
and since f€I we obtain that f(u)=0. Thus remembering that ||L,] =0((1- |w|)™*"),
[w|->1—, we obtain from Lemma 5 part (b) that

| B, 2)|ls = O((1— |2[)7* [Si(2)| 1), [2] >1~

and since R(u,z) is analytic for z==1 he above estimate on |S,(z)|~* implies that

2
w9 =0 (exp 2], Iol-1-.

Therefore, by the proof of Theorem 2, (u — 1)***g,(u) =0, which means that (¢ — 1)***g, €1
and since I is closed the required inclusion is proved.

Assume now that R also satisfies the analytic Ditkin condition. It is clear that the
second conclusion of the proposition will follow from the first conclusion if we show that
every function in Rg belongs to the closure of the ideal generated in R+ by (¢ —1)f. Let
fERG; the analytic Ditkin condition implies that there exists a sequence (f,,)7-1 < Ry such
that lim, . f,f=f in the norm of R. Since R+ is generated by 1 and e", we may also
assume that f, are trigonometric polynomials which belong to Ry, and therefore there
exist trigonometric polynomials ¢, €R*, n=1, 2, ..., such that f,=(¢®—1)gq,, n=1,2, ...
This shows that f belongs to the closure of the ideal generated in R+ by (¢ —1)f and the

proposition is proved.

Remark. If R is a homogeneous Banach algebra on 8D such that [[e”!||g =O(1), n—> oo
and v,(¢%)=(}(1+€?)", €°€oD, n=1,2, ..., then one can show that lim, . ||v,f]r =0
for every f€ERg. Thus all these algebras satisty the analytic Ditkin condition; they include
in particular the algebra C(8D), the algebra of absolutely convergent Fourier series, and
more generally the algebras considered in [18]. For many other examples of homogeneous
Banach algebras which satisfy the analytic Ditkin condition we refer to {2, part II].

Our next application is to restriction algebras of the algebras R+. We extend and
improve the results of [1], thereby answering (in the negative) a question raised in that
paper. Before stating our result, we recall some definitions and known facts and introduce

some notations.

Definition. If R is a homogeneous Banach algebra on 8D, we say that E is a ZR* set
if there exists a non-identically zero function in R+ which vanishes on Z.

If F is a closed subset of 8D, we shall denote by R+(E) the restriction algebra of R+
to E, which can be identified with the quotient algebra R+/I(£), where I(E) denotes the
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ideal of functions in R+ which vanish on E. If E is not a ZR* set, then I(£)={0} and
R+(F) is isometrically isomorphic to R*+. On the other hand, if F is a ZR* set, then the
maximal ideal space of R*(¥) is E. This is proved in [19] in the case where R is the algebra
of absolutely convergent Fourier series and the same proof carries over to the general case.

We shall use this fact in the proof of the next result.

ProprosIiTION 8. Let R be a homogeneous Banach algebra on 0D and let E be a ZR+
set. Then

(@) If |le=™||r =0(nF), n—oco, for some integer k=0, then there exists a constant ¢>0

such that if vy is a function in C(@D) which satisfies
-1 o)
3l exp elnP)+ 3 [0 e e < .

then y|g (the restriction of y to E) belongs to R+(E).
(b) If for some positive integer k, C¥(@D)<R and v is a function in C(©D) such that
for some constant ¢>0, 5. _o [P(n)| exp(c|n|?)< oo, then p|zERT(E).

Proof of (a). First we note that property (a) of R+, the identity

(@ —w) 1= e Dlyr  weD, ’€oD,

iM8

0

and the assumption |le™"||g =0(n*), n—>co imply that ||L,[| =O((1 — |w|)™*), |w|~1-.
Let u=¢"|;. Since the maximal ideal space of R+(E) is E, it follows that o(u)< E<aD.
Property (b) of R+ implies that R+ operates on u (regarded as a multiplier operator on
R+(E)) and therefore f(x) =0 for every f€ I(E). Since E is a ZR+ set, there exists a function
fEI(E) such that f==0, that is, there exists a function f==0 in R+ such that fw)=0.
Therefore by Theorem 3 part (c;), there exists a constant ¢>0 such that

[lu=||g+@ = O (exp (cnt)), n—>oo.

Consequently, if ¢ is a continuous function on 9D which satisfies

S [l exp elnP?)+ 3 [l < e,

n=—

then also X5 o |$(n) ] ||4"||g+& < o and therefore y|z= S5 _oP(n) u" ER+(E). Thus part
(a) of the proposition is proved.
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Proof of (b). Let u be as in part (a). The assumption that C%(@D) < R implies that if 3
is a function in C{8D) such that for some constant ¢ >0, S5 |$(n)| exp ¢|n|t <o, then
oo |P(n)| ||4*||r+z < . Therefore (b) will be proved if we show that

i[u—n]ln+(E) =0 (exp (8?’&%)), 7> oo

for every ¢>0. Setting E(u, 2)=(u—2)"", 2¢ E it follows from Lemma 2 part (b) that it
suffices to show that

e
B, 2)|lg+@ =0 (exp i—_lz—]) , lel=>1-

for every £>0. Since f(u)=0 for every f€I(E), Lemma 1 and the fact that ||L,) =
O((1—|w|)*1), |w]—>1— imply that

/) R(u, 2)|rtm = O(1— |2])7*Y),  |2]>1—

for every f € I(E). Thus by virtue of Lemma 5 part (c). The required estimate of || R(%, 2)|| g+
will follow, if we show that for every £>0 there exists a function f€I(E), f=0, such that
lg]l <&, where p, deotes the discrete part of the measure which defines the singular
inner part of f. To show this, consider a function g € I(E), g =0, (such a function exists since
E is a ZR* set). Let » be the discrete part of the measure which defines the singular inner
part of §. Since # is a positive discrete measure on [ —x, ), there exists a positive measure v,
supported on a finite seb {Ts «os 7,0 <[ —, ), and a positive discrete measure on [ —, %),

such that [l,]| <& and » =»; +v,. Consider the function v defined on D by

q it 6
() =TT (¢° — "% exp {f eie - eie d”1(t)}

7=1 et —e
for e?=e™, j=1,2, ..., ¢ and v(e%)=0, j=1,...,¢. It is easily seen that the assumption
on v, implies that v€C*@D), and therefore v€R. Let f=v-g. Then f€R, and since the

singular inner function

+ ¢i0
exp {fz—:zi;dvl(t)}, z€D,

divides the singular inner part of §, f has a continuous extension to D which is analytic
in D, and therefore fER*. Since g€I(E}, g=0, also f€I(E), {=0. Noticing that the
discrete part of the measure which defines the singular inner part of f is #,, we see that f
has the required property, and the proof of the proposition is complete.

The following result is proved in [1, Th. 3]: Let p=(p,)m0 be an increasing
sequence of positive numbers such that py=1, 9,,,<P,Pn m, n=0,1,.. and
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lim,, ., (log p,}/n=0, and let B, be the Banach algebra of functions f in C+(8.D) such that
s, =270 f(n)|p,<oo. Then if E is a ZB, set (the definition is the same as for ZR+
sets) there exists a constant ¢>0, such that if v is a function in C(@D) which satisfies
it |Pm)] exple|n)t) + S50 | P(n)|p, < oo, then y|zEB,(E) (the restriction algebra of
B, to E).

This result follows from part (a) of Proposition 8 by the following simple observations:

If p=(p,)io is a sequence with the above properties and R is the Banach space of all
functions g€oD such that ||g||x=>r2-w|d®)]|+ Dee|f(n)|p,<oo, then R is a homo-
geneous Banach algebra on 8D [11, p. 120-121], [le~*||[g=1, =0, 1, ..., and R*=B,.
If in addition we assume that p, =O(n*), n— oo, for some integer k >0, it is easily seen that
R contains the algebra C**2(2D) (cf. [11, p. 215]) and therefore part (h) of Proposition 8
applies to B,. In particular we obtain that if A is the algebra of absolutely convergent
Fourier series and ¢ is a function in C(@D) such that for some constant ¢>0,
> oo |P(n)| exp(c|n|t) < oo, then p|EAT(E) for every ZA* set E. This improves the
result of [1, Th. 1] where o weaker assertion is proved, namely, that for every ZA+ set B
there exists a constant ¢>0 such that if ¢ is in C(@D) and S5 o |$(n)| exp(c|n|t) <oo,
then y|;€A+(E). In the same way, an analogous improvement of [1, Th. 2] is obtained.

If R is a homogeneous Banach algebra on 8D which contains C*(@D) for some integer
k>0, then the proof of part (b) of Proposition 8 shows that for every ZR+ set E,
lim,,,, 7~ log [|e=™||g + @ =0. Since this is in particular true for the algebra A of abso-
lutely convergent Fourier series, we obtain a negative answer to the question raised in

[1]. In this connection we mention that a ZA+ set E for which

lim n~* (log n)? log [le”™|[a*& = o, YB>1,
n—=>00

is constructed in [19]. By virtue of these results one can ask whether for every sequence
of positive numbers (c,)7-1 such that lim ¢, = oo, there exists a ZA+ set K such that

lim,,,, #2c, log||e || s+ & = 0. We do not know the answer.

8. Extensions of results and problems

If T'is a contraction in Hilbert space such that o(7")={1} and lim,_,_.log || 7™} /|nft=2°,
then by virtue of Theorems 3 and 4, it is no more possible to prove the existence of non
trivial invariant subspaces for 7 by constructing a bounded analytic function f=0,
such that f(7)=0. In this connection the following extension of Theorem 1 might be

useful:
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THEOREM 1*. Let T be an operator on a reflexive Banach space B with dual B*.
Assume that o(T)={1} and that || T"|| =0(n*), n—oco for some integer k=>0. If there exist

non zero vectors x,€B and y,€B* such that
(36) (T4, yo)| = O (exp (¢|n|*?), n—> — oo

for some constant ¢>0, then T has a non trivial invariant subspace.

Condition (36) is much weaker than (3) and can be established in some concrete
cases where (3) does not hold. It is also clear that condition (36) is necessary for the
existence of a non trivial invariant subspace for 7T, since if 7’ has a non trivial invariant
subspace so does T, and if x,€ B is any non cyclic vector for T-1, then there exists
Yo==0 in B* such that (7"x,, y,) =0, =0, —1, -2, ....

The proof of Theorem 1* depends on methods which are different from those used in
this paper, and it will be given elsewhere. We only mention here that in the proof of
Theorem 1* we use also Theorem 1.

Another result which we mention here without proof is the following:

TaroreM. Let T be an operator on & Banach space such that o(T)={1} and assume
that

(37) 0< Tim %8 17 _ .

o0 InIIIZ

If |7 =0(p,), n—>oo, where (p,)reo s @ sequence of positive numbers such that

>xlog p,/n?<co, then T has an uncountable chain of hyperinvariant subspaces.

Thus in Theorem 1, condition (2) can be replaced for example by the condition:
| T"]| =0 (exp (n=)), n—> oo for some 0 <<%, provided that condition (37) holds. We do
not know whether operators T' which satisfy the above conditions admit non trivial
analytic annihilating functions. The proof of the Theorem uses a different method, and
will also be given elsewhere.

We conclude with two problems. It is natural to ask, to what extent the converses
of Theorem 3(c,), Corollary 2(c) and Corollary 3(1) are true. More precisely we ask:

Problem 1. Suppose that 7 is a c.n.u. contraction acting on a Hilbert space, which
satisfies condition (3) and assume that o(7') is of measure zero (with respect to Lebesque

measure on éD). Is T a C, operator?

Problem 2. Let T be an operator acting on a Banach space and assume that 7' satisfies
conditions (2) and (3) and that ¢(7') is a Carleson set. Is 7' in Cj(Hy) for some positive

integer m?
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Remark. In an earlier version of this paper we also asked whether every c.n.u.
contraction acting on a Hilbert space, which satisfies condition (3) is in Cy. To this
Professor Cirpian Foiag gave the following counter example:

Let H be the Hilbert space of all functions f in L?*@D) such that

I 2

n=~00

o 1/2
o+ 3 fool) <o,

and let 7 be the operator defined on H by Tf(e’®) =ef(e”), e?€aD, fEH. Then 7T is a
c.n.u. contraction (cf. [22, Theorem 3.2.]) and ||7"""|| =O(n), n—co. However, for every
p€H™, o(T)f=¢f, f€H and therefore if p(T)=0, then =0 a.e, that is 7" is not in Cj.
It is easy to see that in this case o(7)=2D.
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