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l .  Introduction and main results 

In  what follows the term operator will mean a bounded linear operator T which acts 

on some infinite dimensional complex Banach space B. The spectrum of T will be denoted 

by g(T). An invariant subspace for T will always mean here a closed subspace M c  B such 

that  T M c  M. We say that  M is hyperinvariant for T if it is invariant for every operator 

tha t  commutes with T. A subspace M is called nontrivial if M ~ { 0 )  and M ~ B .  

J. Wermer [27] proved that  if T is an invertible operator which satisfies 

(1) ~ log IIT"II < oo 
n=-oo l q- n 2 

and a(T) contains more than one point then T has a nontrivial hyperinvafiant subspace. 

In the case where ~(T) consists of a single point 20, the existence of nontrivial invariant 

subspaces was proved in [27] only for invertible operators T which satisfy [[Tn][ = 

O(]n [k), n-+ + 0% for some integer k ~>0, by noticing that  in this case, a theorem of Hflle 

[14] (see also [15, p. 60]) implies that  (T--2ol)k+1=O where I is the identity operator. 

We prove the following result which is also valid in the case where a(T) consists of a 

single point: 

THEORWM 1. Let T be an invertible operator which satisfies the/oUowing conditions: 

(2) I[Tnll =O(nk), n-+ co /or some integer k~O 

(3) IIT=II = O(exp r n - ~  - ~ / o r  s o ~  constant e>0 .  

Then T has a nontrivial invariant subspace. Moreover, i] T is not a scalar multiple o] the 

identity operator, then T admits a nontrivial hyperinvariant subspaee. I /  a( T) consists o / a  
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single point ~o then either ( T - 2 0 I )  k+l =0  or T admits an uncountable chain of hyperin- 

variant subspaces. 

I f  a(T) contains more than  one point, then the conclusion of Theorem 1 follows from 

the above mentioned theorem of Wermer. Actually Wermer does not state in [27] the 

existence of hyperinvariant  subspaces but  this follows easily from his proof. This fact is 

also proved in [6, p. 154, Corollary 3.3]. We also give a short proof of Wermer 's  theorem 

in section 6 which establishes this fact. In  the case tha t  a(T) consits of a single point, we 

prove the existence of invariant subspaces by showing first tha t  there exists a function 

/ ~ 0  bounded and analytic in the open unit disc, such t h a t / ( T )  =0.  This fact is also true 

in the more general case when (r(T) consists of finitely many  points. More precisely we have: 

T H E 0 R E M 2. Let T be an operator whose spectrum (x(T) is a finite set and which satisfies 

conditions (2) and (3). Then there exists an analy t ic /unct ion/(z)  = ~ = 0  a~z n, / ~ 0  such that 

~ = o l a ~ [ n k <  ~ and /( T ) ~  ~.~=o a~ Tn=O. More concretely if a ( T ) = { z  1 . . . . .  z,}, one can 

choose / to be the /unction 

/(z) = I~ ( z -  zj) m exp a - -  
] ~ 1  Z - -  Z q ]  

with m = 4 / c + 5  and a=2c  ~ where c is the constant in (3). 

We note here, that  using the spectral radius formula, one can easily see that  if T is an 

invertible operator which satisfies (1), then a(T) is contained in the unit circle. Thus in 

Theorem 2, we have /z j / =  1, ?'= 1, ..., v. 

I f  a(T) consists of a single point ~o, and T satisfies (2) and (3), it is not true in 

general tha t  T - 2 0 1  is nilpotent. However if we replace (3) by the stronger condition: 

(4) ]]T~]] = O(exp sin]�89 n-~ - oo for every e>0 ,  

this is the case. 

More generally we can deduce from Theorem 2 the following: 

COROLLARY 1. Let T be an invertible operator such that a (T)  is a finite set {z 1 . . . . .  zv), 

and assume that T satisfies condition (2) and condition (4) (/or every z>0) .  Then if p 

denotes the polynomial p(z) = I~=1 (z -z j )  TM, we have that p ( T )  =0; that is, T is an algebraic 

operator. (For such operators, see [24, p. 63].) 

This extends the above mentioned theorem of Hflle [14] and is used in section 6 

to obtain and extension of a theorem of Nagy, Foist,  and Colojoar~ [22, p. 54] and [6, 

p. 134]. 
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I n  t ry ing to extend Theorem 1 to  operators T which satisfy less restrictive conditions 

than  (3) by  producing a nontrivial  analyt ic  functions / s u c h / ( T )  =0 ,  we found, somewhat  

surprisingly, t ha t  condition (3) is necessary for the existence of such a function. Moreover, 

it turns  out  t h a t  condition (3) is a necessary condition for the existence of such an 

annihilating functions for a large class of operators, including all C 0 operators in 

Hilbert  space [22, p. 114] whose spectrum is contained in the  uni t  circle. 

Before stat ing our results in this direction we introduce some notat ions and defini- 

tions. �9 

If  / is an analyt ic  funct ion in the open uni t  disc D = {z: [z I <  1} and w E D, we shall 

denote by  Lw] the analyt ic  function in D defined by  

L~/(z) = ](z) - / ( w ) ,  z E D~{w} .  
Z - - W  

Definition 1. A Banach space A which consists of analyt ic  functions in D will be cal- 

led admissible if: 

(i) For  every w ED the evaluat ion map  /-~/(w), /EA, is a bounded functional on A. 

(ii) For  every / E A  and wED,  L~o/EA. 

If  A is an admissible Banach space, we shall denote, for every w E D, by  Lw the 

operator  on A defined by  /~Lw/ ,  /EA. 

We give now some examples of admissible Banach spaces, some of which, will be used 

in the sequel. 

1. Let  H ~ denote as usual the space of bounded analyt ic  functions on D, and for a 

positive integer k, let H~ ~ denote the space of functions / in H ~176 such t h a t  /(~)EH ~176 

i = 1, 2 .. . .  , k. We also adopt  the  nota t ion H~  = H ~. Wi th  norm 

II/ll = 
N1('It~ 

j=o it 

<where II I1~ denotes the sup norm on D / t h e  space Hr  forms an admissible Banach  space, 

and it is easy to verify, tha~ in this case, I1~11 = 0 ( ( 1 - I w l / - ~ - ~ ) ,  Iwl ~ 1 - .  

2. The usual H a r d y  spaces on D, /-/~, 1 ~<p ~< co, are admissible Banach  spaces and 

for ~11 of them, 
3 

II/wll< ( l_  iwl)2, weD.  

3. I f  (P~)~=0 is an increasing sequence of positive numbers,  then  the space of all 

funct ions / (z)  = ~~ a~z ~, z E D such tha t  ]I/l] = ~n~--0 l a~ IPn < ~ ,  is an admissible Banach  

space and a simple computa t ion  shows t h a t  in this case IILwll ~ < ( 1 - I w ] )  -1, VwED.  
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If  /(Z)= ~ = 0  anz n, z eD,  is an analytic function in D, and T is an operator with 

a ( T ) ~ D ,  then the spectral radius formula implies tha t  for every 0 < Q < I ,  the series 

~ o  a n ~ T  ~ is convergent in the operator norm, to an operator which we denote by  

/(~T). I f  lim0_~l_/(~T) exists in the strong operator topology, we shall denote this 

operator b y / ( T ) .  

De/inition 2. I f  A is an admissible Banach space and T is an operator with a(T)___/), 

acting on a Banach space B, we shall say tha t  A operates on T if lime_.1_/(~T) exists for 

every / in A, and the m a p p i n g / ~ / ( T )  from A into L(B) (the Banach space of all bounded 

linear operators on B) is bounded. 

De/inition 3. I f  A is an admissible Banach space which operates on an operator T, 

we shall say tha t  T is in C0(A), if there exists a f u n c t i o n / ~ 0 , / E A ,  such t h a t / ( T )  =0.  

Remark. According to Definition 3, every C O contraction in Hflbert space [22, p. 114] 

is in Co(H~176 

We recall tha t  a function ] which is analytic in D is said to be of bounded charac- 

teristic, if 

sup / x log + I/(re~~ < co. 
0 < r < l  J - a  

T~EOREM 3. Let A be an admissible Banach space, and T an operator in C0(A ). Then: 

(a) I / the  set W =a(T)  N D is not empty, it is at most countable and consists o/eigenvalues 

o/ T. 

(b) If [[L,o[[=O exP(l_~w ] 

/or some constants c>0 ,  /~>0, and 

log II T II < 
A~ 

n=O 1 ~ - n  2 

then: 

(bl) I /(~(T) is contained in the unit circle ~D, then T is a 1I unitary operator in the 

sense o/ [6, p. 127], thus in particular T is decomposable [6, p. 30]. 

(b2) I] ~(T) contains more than one point, then T admits a non-trivial hyperinvariant 

subspace. 

(c) I / A  consists o/ /unctions o/ bounded characteristic and 

/or some constant c >0,  then: 
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(%) I /  (~(T) is contained in ~D, then T satis/ies condition (3). 

(%) I / the  set W =(T(T) N D is not empty, it is at most countable, consists o[ eigenvalues 

o! T and ~ o w ( 1 - I ~ l ) < ~ .  
(d) I [  A satis/ies the hypotheses o[ (c) and [IT, ll =o(n~), n - ~  /or some integer k>lO, 

then T admits a non-trivial invariant subspaee. 

CO~OLLAI~Y 2. I /  T is an operator in Co(H~) (/or some k>~O) then: 

(a) T admits a non-trivial invariant subspace. 

(b) I[ the set W =a(T)  N D is not empty, it is at most countable, consists o[ eigenvalues 

o / T  and 5~ow(1- I~ l )<  ~ 
(c) I /  a(T)~_~D, then T satis]ies condition (3), and is 1I unitary (thus in particular 

decomposable). 

Remarks. 1. For C o contractions in Hflbert space, conclusions (a) and (b) of Corollary 

2 are proved in [18, Cor. 5.2 and Th. 6.3] by methods which are different from ours. 

H ~ These methods are not applicable to the classes Co( k ) for k>0 .  

2. ]By conclusion (c) of Corollary 2, every C o operator with spectrum in ~D is 1I 

unitary. In this connection we mention that  C. Foia~ [10] proved that  all Co operators are 

decomposable. 

The following is an immediate consequence of Theorem 3 and Theorem 1: 

COROT.LAItY 3. Let T be an operator with (I(T)~_.D and let (Pn)~o be an increasing 

sequence o[ positive numbers such that IITnll =O(p~), n-~ co. Suppose that there exists a 

[unction [(z)= ~ = o  anz n, zeD,  ] ~  0 such that ~~ o lanipn<r and ](T)=O. Then: 

1) T satis/ies the conclusions o/parts (a) and (c) in Theorem 3. 

2) I] p~=O(n~), n--->oo /or some integer ]c>~O, then T admits a non-trivial invariant 

subspace. 

3) I1 ~ _ l l o g  IlT~ll/n~<~ and a(T) contains more than one point, then T has a 

non-trivial hyioerinvariant subspace. 

Under some assumptions on an admissible Banach space A, one can deduce that  if 

T is a Co(A ) operator, then a(T)N ~D must be in a certain sense a thin set. This is the 

content of the next  result. 

TEEOREM 4. Let A be an admissible Banach space, such that every [unction [ in A 

has a continuous extension to .D. (We shall denote tlds extension also by [.) Assume alsO[hat 

the polynomials (in z) are dense in A and that/or every w E D the evaluation map / ~ / ( w ) ,  

[CA, is a bounded/unctional on A. I / T  is in G0(A), then the set E =(~( T) N ~ D is:o[ measure 
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zero (with respect to Lebesque measure on ~D). I /  in addition the /unct ions  in A satis/y a 

Lipshitz condition on ~D, then E is a Carleson set (that is, l '~. [log ~(e ~~ E)[ dO < c~ where 

~(e ~~ E) denotes the distance of e l~ /rom E). 

C o R 0 L L A R ~: 4. I /  T satis/ies the hypotheses o/Corollary 3, then a(T)  N ~D is o/measure 

z e r o .  

The organiza t ion  of the  pape r  is as follows: 

I n  sect ion 2, we prove  the  resul ts  s t a t ed  in this  section. 

I n  sect ion 3, we prove  some lemmas  which are used to  p rove  the  theorems  in sect ion 2. 

I n  sect ion 4, we consider inver t ib le  opera tors  T such t h a t  a ( T ) = { 1 }  and  IITnH = 

0 (exp c In]~), n - 7  + oo for some c > 0 and  0 < zr < 1. W e  show t h a t  the  p rob lem of exis tence 

of non t r iv i a l  h y p e r i n v a r i a n t  subspaces  for these  classes is equ iva len t  to  the i r  exis tence 

for  a single class de t e rmined  b y  some =0 6 (0, 1). W e  also show t h a t  if T satisfies the  above  

condi t ions  for some 0 < ~ < �89 then  T admi t s  a non t r iv ia l  ana ly t i c  ann ih i la t ing  funct ion.  

However ,  we are  no t  able  to  deduce  f rom this  fact  the  exis tence of non t r iv ia l  i nva r i an t  

subspaces  for these  operators .  

I n  sect ion 5, we prove  the  exis tence of nont r iv ia l  i nva r i an t  subspaces  for some 

classes of quas in i lpo ten t  opera tors ,  b y  using the  resul ts  of Sect ion 1 and  Sect ion 4. W e  

obta in ,  in par t i cu la r ,  an  extens ion of a resul t  of I s aev  [17]. 

I n  sect ion 6, we ex tend  a resul t  of Nagy ,  Foia~, and  Colojoar~ men t ioned  before, 

and  give a shor t  proof  of W e r m e r ' s  Theorem [27]. 

I n  sect ion 7, we use t he  resul ts  of sections 1 and  4 to prove  some resul ts  on closed 

p r i m a r y  ideals and  res t r ic t ion  a lgebras  of some Banach  a lgebras  of cont inuous  funct ions  on 

the  un i t  circle. W e  t h e r e b y  ob ta in  in pa r t i cu la r  an  extens ion of the  resul ts  of [18] and  [1]. 

I n  Sect ion 8, we men t ion  some extensions of the  resul ts  of sect ion 1 and  pose some 

problems.  

F o r  var ious  resul ts  on inva r i an t  subspaces  for opera to rs  on H i lbe r t  space, including 

extens ions  of the  above  ment ioned  resul t  of Wermer ,  we refer to  [24]. The  basic 

reference for resul ts  on cont rac t ions  on H i lbe r t  space is [22]. F o r  resul ts  on i n v a r i a n t  

subspaces  for opera to rs  on Banach  spaces, which are  re la ted  to  the  resul ts  of th is  paper ,  we 

refer  to  [6]. 

2. ProoIs of main results 

W e  shall  now s ta t e  several  l emmas  and  use t h e m  to prove  the  theorems  s t a t ed  in 

sect ion 1. I n  sect ion 3 we shall  prove  the  lemmas.  

I f  T is an  opera to r  we shall  denote  i ts  resolvent  ( T - z I )  -1, z ~(~(T), as usual  b y  R ( T ,  z). 
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LEMMA 1. Let T be an operator with a(T)~_.D and assume that A is an admissible 

Banach space which operates on T. Let l E A  and set G(T, z)=(Lz~)(T), TED. Then the 

identity 

(5) /( T) R( T, z) - /(z) R( T, z) = G( T, z) 

holds/or every z E D ~ g( T). 

LE~MA 2. Let T be an operator with cr(T)~_~D. Then 

(a) -1"] there exist constants c>0  and 0< :~<1  such that 

]l T-nil = 0 (exp (cn=)), n ~ co. (6) 

Then 

d 

where ~ - ~ / ( 1 - a )  and d=4Bc ~l~. 

(b) _7/ (7) holds with some constants d>O and fl>O, then (6) holds with a=fl / ( l  +fl) 

and c = 3d ~/~. 

Remark. Part (b) of Lemma 2 is proved in [6, p. 155] with different relations between 

the constants c and d. Since we will need in the sequel the more precise relation between 

these constants, we shall include the proof. 

L~.MMA 3. Let E be a / in i te  set contained in 8D, and let q~ be an analytic/unction on 

C ' ~ E  with values in some Banach space. Assume that there exist constants M>O, N>O, 

K > 0 and d > 0 such that 

d 
(S) IIq)(z)Ii<M exp l _ i z ]  , T e D  and 

(o) tI ( )ll K ( N  - 1 ) %  /or Izl >1. 

Then there exist constants MI>0 ,  K 1 >0  and b >0 such that 

(10) [[~(z)l I ~<M 1 exp (b~(z, E)-I},  TED and 

(11) < E) >1. 

L]:MMA 4. Let E and q~ be as in the statement o/ Lemma 3. Assume that ~ satis/ies 

condition (10) and also: 

(12) sup {Hv(e'~)ll, e 'a ~E} < co and 

(13) sup IIq~(rw)H <oo /or all w e E .  
0<r<l 

Then sUpIz[<I Hqg(Z)]l < oO  

3 --792901 Acta mathematica 144. Imprim6 le 13 Juin 1980 
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L E ~ M A  5. Let r be an analy t ic /unct ion in D with values in some Banach space B 
and let /r be a (complex) analy t ic /unct ion  in  D. 

Denote: 
g ( r )  = sup Ill(re *~ r176 I, 

O~<O~<2zt 
and 

Then: 

re(r) = ~ log + I I(rd~ dO, 

O < r < l  

O < r < l .  

There exists a constant c > 0  such that 

1-1 1 
Suppose in addition that / E H %  and let # be the singular measure on [-:~,  :~) which 

defines the singular inner part o/ / [16, p. 67]. Let ~ denote the discrete part o/t~ and set 

z + e ~t 

T h e n / o r  every e > 0, 

a n d  

(c) [[O(z)]]=O g e x p [  l _ [ z  ] j ] ,  [z[-~l- 

where H ll denotes the total variation 

We shall prove first Theorem 2 and then use it to prove Theorem 1. First, we 

introduce some notations and make some preliminary observations. 

For an integer k ~>0 we shall denote by  Bk the Banach space of analytic functions 
" ~  a z n oo /(Z)=~n=O ~ , z e D ,  such tha t  ~n=0 [a~[ (n+l )  k < ~ ,  the latter being the norm of ] in 

B k. I t  is known and easy to verify tha t  B k are Banach algebras (with respect to pointwise 

multiplication) and tha t  the continuous imbeding H~~ c B k holds for every integer k ~> 0. 

I f  T is an operator acting on a Banach space B and ]] Tn]] = O(nk) , n-+ o% for some 

integer k>~0, it is clear tha t  Bk operates on T, and tha t  the m a p p i n g / - ~ / ( T ) , / E B t , ,  

establishes a continuous homomorphism of the Banach algebra Bk into the Banach 

algebra of bounded linear operators on B. 

Let  k be an integer, and for every a >~ 0, let ~0~ denote the function on D defined by  

~a(Z) = ( z -  1)~k+8 exp {a z + 1~ ~-TJ' z e D .  
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I t  is easy to verify tha t  ~fa~H~+l and tha t  for every b~>0, lima-~by~a=y~ in the norm of 

H~+a and therefore also in the norm of Bk. I f  w~bD, then the same remarks apply to the 

functions ~a.w defined by: v2~.w(z ) =~a(wz), z E D. We shall use these facts in the following 

proof. 

Proo] o] Theorem 2. Let  T be an operator which satisfies the hypotheses of Theorem 2. 

Assume tha t  a(T)={z 1 ..... z~}=E. Set m = 4 k + 5  (where k is the integer tha t  appears in 

(2)) and for every a~>0 denote by ]~ the function defined by 

v ~ -I- Zql. 
/a(Z) = ~-It=l (z-- zj)m exp aq~l g -  zqj 

I t  follows from the preceding remarks t h a t / a  is in B2k and tha t  lim~_~b ]a(T)=]b(T) in 

the operator norm. Let  c be the constant tha t  appears in (3). We claim tha t  if a>~2c2, 

then fa(T)=0. I t  is easy to see tha t  condition (2) implies (see [6, p. 132]) tha t  there 

exists a constant C > 0  such tha t  for I z l >  1, 

(14) ]IR(T, z)l I < C(Iz  I - 1) -'~-1. 

Condition (3) and Lemma 2 imply tha t  there exists a constant K > 0  such tha t  

(15) IIR(T, z)ll < K  exp {4c~/(1- Izl)}, zmD, 

and therefore using Lemma 3, we deduce tha t  there exist constants M I > 0  , K I > 0  and 

b > 0 such tha t  

(16) HR(T, z)H ~ M 1 exp (bQ(u, E) -1) and 

(17) II R( T, z)l I <~ KlQ(z , E) -2~-2. 

Noticing tha t  [/~(rw) [ ~< 2 ~ exp (2a(r - 1)-1), 0 < r < 1, for all w e E and 

and remembering tha t  a>~2c 2, we deduce from (17) and (15) tha t  

sup {llta(e~~ R( T, e'O)ll: ~ ,otE)  < ~ and 

sup {]]/a(rw) R( T, rw) ll : 0 < r < l ,  wEE} < o~ 

and therefore, taking into account (16) and using Lemma 4 we obtain tha t  

(18) sup II/a(~) R(T, z)l I < c~. 
Izl<l 
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Let  /(z)= ~ :oanz  n, zED, be a function in Bk+ 1. A simple computation shows tha t  

for every w e d  and zeD,  L~,/(z)= ~_og,~(z)w '~ where g,~(z)= ~j~o a,~+j+tz j, n = 0 ,  1, ... 

Therefore 

lILJll~.< ~ l lgnll.,< ) l a ,  l(j§ ~)~§ = II/II~§ 
n=O J=O 

and conseqeuently sup~D ll(L~t)(T)ll < ~. 
Thus using Lemma 1 we obtain tha t  

sup II/(T) R(T,  z) - [(z) R(T ,  z)ll < 
[z l<l  

and applying this to ]=]~ we deduce from (18) tha t  

(19) sup lifo(T) R(T, z)ll < ~ ,  
Izl<l 

To obtain a similar estimate for 1 < Izl <2, we define u(z) =IT=x (z-zj)  2k+u and 

--~I { q~=l Z'~-Zql h(z) - (z - z )2k+a exp 1 a j=0 z -- zqj" 

Then hEBk, /a(Z)=U(z)h(z), and ],(T)=u(T)h(T). Using identity (5) with u we obtain: 

u( T) R( T, z) = u(z) R( T, z) +Q( T, z) 

where Q(T, z) is a polynomial in z (with operator coefficients). Multiplying both sides by 

h(T) we obtain tha t  

/~( T) R( T, z) = h( T) u(z) R( T, z) + h( T) Q( T, z). 

Thus taking into consideration (17) and the definition of u, we obtain tha t  

sup {]] /a( T) R( T, z)ll: 1 < Izl < 2 ) <  oo. 

Combining this with (19), we see tha t  

sup {II]~(T)R(T, z)l[: I~1 <2, ~ r  

Therefore the operator valued analytic function z ~ [a(T) R(T, z), z ~(r(T), has only re- 

movable singularities a t  the points of (r(T), and remembering tha t  timl~i~oo HR(T, z)[ [ =0,  

we deduce from Liouville's Theorem for vector valued functions [15, p. 100] tha t  

[~(T) R(T, z)~O, and consequently [~(T)=0. This completes the proof of Theorem 2. 

Proo] o/ Corollary 1. I f  T satisfies condition (4), then by Lemma 2, we obtain tha t  

for every e>0 ,  there exists a constant i ~ > 0  such tha t  IIR(T, ~)ll <~o exp (~/(~-I~l)), 
zCD, and therefore by Theorem 2, ]a(T)=O for every a > 0 .  Thus, by the remarks in the 
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beginning of the proof of Theorem 2, we see tha t  lim~_.o+ fa (T)=]0(T)=0  where fo(z)= 

1T=0 (z-zr m. Using identity (5) with/o,  we obtain tha t  fo(z)R(T, z) is a polynomial in z 

(with operator coefficients) and therefore R(T, z) is a rational function with poles at  the 

points z~ .. . .  , z,. Remembering tha t  by  (2), IIR(T,  )ll =0((I 1 we 

obtain tha t  R(T, z) has poles of order not exceeding k + l ,  at  z~ ... . .  z~, and therefore if 

~o(z) = 1 ~  (z-zj) ~+1, then p(z)R(T, z) is a polynomial in z, and using identity ( 5 )w i thp  

we obtain t h a t  p(T)R(T, z) is a polynomial, and as in the proof of Theorem 2, we con- 

elude tha t  p(T)=0. 

Proof o/ Theorem 1. As already remarked after the statement of the theorem, it 

suffices to consider the case where a(T) consists of a single point ~0. Since [201 = 1, condi- 

tions (2) and (3) are not changed if T is replaced by  2o 1 T, and we may  assume, as we shall, 

tha t  a(T) ={1}. For a>~O, l e t / a  be the function defined in the proof of Theorem 2, with 

v = 1, and z 1 = 1, tha t  is, 

m [ z + l ]  

where m = 4 k + 5 .  By Theorem 2 we know tha t  /a(T)=O, if a>~2c 2. Let  :r {a>0:  

(T-l)m/a(T)=O}. Since lim~_~/a(T)=/~(T), we obtain tha t  (T-I)m/~(T)=O. Therefore 

if ~ = 0 ,  (T-I)2m=O, (and by  Corollary 1, also (T--I)k+l=O). Thus in this case, either 

T = I, or T - I  is a nontrivial nilpotent operator and its kernel is a nontrivial hyper- 

invariant subspace for T. Assume now tha t  g >0.  Since/a(z)/b(z ) = (z-1)'n/a+~(Z), for all 

a ~> 0, b >~ 0, we obtain from the definition of ~ tha t  

(20) /a(T)/~(T)~O if a+b<o~ 

and 

(21) /a(T)/b(T)=O if a+b>~. 

For every 0 < s < ~ ,  let M~ denote the kernel of the operator f~(T). I t  is clear tha t  M~ 

is a hyperinvariant  subspace for T. From (20) we see tha t  M~=4=B and from (21) we see 

tha t  Ms contains the range of/~_~(T) which is not {0}, since ~ - s < ~ .  Thus M~, 0 < s <  ~, 

are nontrivial hyperinvariant  subspaces for T. Also if 0 < a < b < ~ ,  if follows from (20) 

and (21) tha t  the range of f~_b(T) is contained in M b but  not in Ms, thus M~4=Mb. To 

show tha t  the subspaces Ms, 0 < s  < ~, form an uncountable chain, it remains to show tha t  

if 0 < a  < b < ~ then M a c  M b. Assume tha t  0 < a < b < ~ and tha t  v Q Ma, tha t  is ]a(T)v = O. 

The argument  in the proof of Theorem 2 shows tha t  if Ga(T, z) is the function which is 

associated with /~ by  Lemma 1, then  supH<l [IGa(T, z)]] < 0% and therefore using (5) with 
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/a, we see that  the hypothesis /a(T)v=O, implies tha t  sup,~,<lll/a(z)R(T,,)vll Since 

a <b, we have [h(z)[ ~< [/~(z) l , z eD ,  and therefore suplzl<l Uh(z)R(T, z)vll < co. Using (5) 

with h, and the fact that  supl~l<l ]IGb(T, z)[[ < oo (where Gb(T, z) is the function asso- 

ciated with h by Lemma 1), we obtain that  supl~l<l ]]h(T)R(T, z)vll <oo.  Repeating the 

argument (after (19)) in the proof of Theorem 2, (with /a(T) replaced by h(T)v) we 

conclude that  h(T)v  =0, thus v E M b. This shows that  Ma C M~, and completes the proof 

of Theorem 1. 

Proo] o/ Theorem 3. 

Proo/o I (a). Let 1 5 0  be a function in A such that  ](T)=0. Since A is an admissible 

Banach space which operates on T, the identity 

(2-z)L~l(z) =l(2)-l(z), 2, zeD 

implies that  for every 2 E D, 

(21 -  T)(L~I ) ( T) = 1(~.)1; 

therefore, i f / ( ~ ) #  0, then 2 Ca(T). Thus / =0  on W, and since / is analytic in D and / ~ 0, 

W is at  most countable. To show that  W consists of eigenvalues of T, let / be as above 

and 2 E W. Then ~ is a zero o f / ,  and denoting its order by s, we have that  

/(z)=(z-2)'g(z), zED 

where g is an analytic function on D such that  g(2)# 0. Since A is admissible, g E A, and the 

identity above implies that  

(22) (T-2I )~g(T)  = ](T) = O. 

Since 2Ea(T) and g(2)#O, it follows from the first part  of the proof tha t  g(T)#O, and 

therefore by (22), ~ is an eigenvalue of T. 

Proo[ o] (bl). Since the func t iona l / -*  ](0), ]EA is bounded, there exists a constant 

M > 0  such that  for every lEA and w e d  

I /(w)l--Iwl ILw/(O)l < MII/ll IILwll. 

Therefore, by the hypothesis on IILwll 

e x  - - -  - -  (28) II(w)l=o p(l_lwl),~, Iwl l- 
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for e v e r y / e A .  The hypothesis on IILwll and Lemma 1, imply that,  if a(T)_c 8 D , / e A  and 

/(T)=O, then 

[[/(z)R(T,z)[[=O(exP (l_Aiz[)~), [ z ] ~ l -  

and therefore if / ~  0, we obtain from Lemma 5 and (23) tha t  

/ b \ 
fIR(T,  )11 : o  ,lexp , , 1 -  

for some constant b >0.  Thus by Lemma 2 there exists a constant d > 0 such that  

(24) [IT-nil = 0 (exp (dn~)), n ~  

with ~ = ( k + l ) / ( k §  Consequently the assumption E~0  log [[Tn[[/(l§ oo and (24) 

imply that  ~n%-o~ log II T~II/( 1 +n~)< oo and therefore by [6, p. 154] T is a 1I unitary 

operator. 

Proo/o/(b~). If  a(T) contains more than one point and 2 is an eigenvalue of T, then 

Ker  (T -h i )  is a nontrivial hyperinvariant for T. If T has no eigenvalues, then by (a), 

(~(T)~SD and therefore by (bl), T satisfies (1), and since a(T) contains more than one 

point, Wermer's theorem [27] implies tha t  T has a non-trivial hyperinvariant subspace. 

Proo/o/ (Cl). If  A consists of functions of bounded characteristic, then the hypothesis 

on HLwH implies by Lemma 1 and Lemma 5 (as in the proof of (51)) that  if a ( T ) ~ D ,  

then 

for some constant d>O, and therefore by Lemma 2, T satisfies condition (3). 

Proo/o/ (cz). The proof of (a) shows that  W = a ( T ) N  D consists of eigenvalues of T 

and is contained in/-1(0) for some non-identically zero function ]EA. Therefore by the 

well-known theorem on the zeros of functions of bounded characteristic [20, p. 85], 

E ow 

Proo/ o/ (d). (d) is an immediate consequence of (c) and Theorem 1. 

Proo/ o/ Corollary 2. Let ]] II~ denote the H~ ~ norm. Since ][z'~lIk = O(nk), n~  co, it follows 

from condition 2 of Definition 1, tha t  if T is an operator in C0(H~~ then [[T~I] =O(n~), 
n-~ co. Since H~~ H ~ and every H ~176 function is of bounded characteristic [20, p. 90] the 

corollary follows from par~s (c) and (d) of Theorem 3. 
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Proof of Corollary 3. I f  (p~) is an increasing sequence of positive numbers, then the 
O0 n O0 space of analytic functions /(z)= ~ = 0  a~z, z E n  such tha t  II/[I = ~ = 0  [a~]pn< oo forms 

an admissible Banach space A for which ]]LwII<~I/(1-1wl), VwED. I t  is clear tha t  

A_~H ~ and if T is an operator such tha t  ]]Tn]] =O(pn) , n ~  co  then A operates on T. Thus 

the corollary follows from Theorem 3: (1) from parts (a) and (c), (2) from par t  (d) and 

(3) from par t  (b). 

Proo/ o/ Theorem d. Let A be an admissible Banach space which satisfies the 

hypotheses of the theorem and assume tha t  A operates on some operator T acting on a 

Banaeh space B. We claim tha t  for every/EA, / (a(T))~_a( / (T)) .  To prove this, le t~Ea(T)  

and let (pn)n%l be a sequence of polynomials such tha t  lim~_~o~p~ = / i n  the norm of A. Let  

(q~)~=l be the polynomials such tha t  p~(z) -pn(2) = (z -~)  q~(z), z E D, n = 1, 2, .... The hypo- 

theses on A imply tha t  limn~oD (T -~ I )qn (T)=/ (T )  in the operator norm. Therefore since 

Ea(T), and the set of non-invertible operators is closed (in the Banaeh space of bounded 

linear operators on B) we obtain tha t / (2)  Ea(/(T)) and the claim is proved. Consequently, 

if /EA and /(T)=O, then a(T)~_/-~(O). Thus if T is in C0(A), there exists a function 

/EA,  /=~0 such tha t  / = 0  on E=a(T)NaD.  Therefore since / is continuous in 1) and 

analytic in D, E is of measure zero [20, p. 90]. The last assertion of the theorem follows 

in the same way from [5]. 

Proo/ o/ Corollary 4. Let A be the Banaeh space introduced in the proof of Corollary 3. 

The conclusion of Corollary 4 follows from Theorem 4 by observing tha t  A satisfies the 

hypotheses of the theorem. 

3. Proofs of the lemmas 

Proo/of Lemma 1. Since A is an admissible Banach space which operates on T, we 

have for every z E D the identity 

/( T) - / (z)  I = G( T, z) ( T -  zI) 

and therefore for every z E D ~ a ( T )  

/( T) R( T, z) - /(z) R( T, z) = G( T, z) 

and the Lemma is proved. 

Proof of Lemma 2. Assume tha t  T satisfies condition (6). Let  z E D be fixed and set 

I zl =r .  Let  N be the smallest integer such tha t  

(-2- r)] 
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(where c is the constant appearing in (6)). Consider the two sums: 

N o0 

Z l =  ~ r ~ exp (c~), Z~= ~ r" exp (cn~). 
n = 0  n = N + l  

For E1 we have the obvious estimate 

Z 1 < ( l-r)  -1 exp {cN~}. 

Using the fact tha t  cN ~-~ <log ( 2 - r ) < l o g  (l/r), we obtain tha t  

Z~< ~ exp{-n( log(1/r) -c /Nl-=)}< exp(cN~) ~< 
C 

~=N+I 1 -- r exp NI_ ~ 

exp (cN ~) 
( 1  - r )  2 " 

Combining all these estimates, noticing tha t  R(T, z ) -  ~ T-~-lz n - / ~ o  , zED, and tha t  the 

choice of N implies tha t  N < [2c/(1-  r)]1/(1-~)+ 1, we obtain (7) with d = 4Pc ~/~. This com- 

pletes the proof of (a). 

Proo/ o/ (b). Since a ( T ) ~ D  the identity R(T, z)= ~ o  T-n-lz% zED holds, and 

therefore for every 0 < r < l, 

T_ ~_ 1 ( R(T, z) z-~dz. 
27ri J i l l  =~ 

Consequently, if (7) holds, there exists a constant M > 0  such that  

d 
HT-~ll<~Mr-nexP (l_r)~, 0 < r < l  

and setting r = l - ( d / n )  1/a+~) we obtain (6) with a = f l / ( f l + l )  and c=3d ~/~. 

Proo/o~ Lemma 3. For complex valued functions ~, the conclusion of the lemma follows 

from [26, Lemma 5.8 and Lemma 5.9]. The vector valued version can be deduced from 

the scalar case as follows: The proof in [26] shows tha t  in the scalar case, the constants 

M1, K 1 and b depend only on M, N, K and d, and not on the function ~0. Therefore if B is 

the Banach space which contains the range of T (in the vector valued case), and v is any 

element in B* (the dual of B), such tha t  ]lvlls. = 1, we obtain from the scalar case, applied 

to the function ((p(z), v) tha t  

and 

](~(z), v)l ~< M 1 exp {b~(z, E)-I}, z eD 

[~(z), v)[ 4Kl~(z,  E) -2N, [z I >1,  
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where M 1, K t and b do not depend on v, and the conclusion of the lemma follows from the 

fact tha t  
11~(~)11 =sup (I (~(~), v) l: veB,,  Ilvll,,. = 1 } .  

Proo] o / L e m m a  d. Let  E = {d ~ .... e ~~ be the set in the hypotheses of the lemma, 

and choose 0 < ~ < z / 2  such tha t  5 < m i n  {]0~-0s[: i~=], i, ?'=1, 2, ..., It). For every 

] = 1, ..., k consider the two sectors 

S f  ={z: Izl <1,  Os<<.argz<~Or 
and 

s ;  = {~: 1~1 < 1, 0 , - ~  < arg z ~< 0,}. 

I t  suffices to show tha t  ~ is bounded (in norm) in each of these 2k sectors. For convenience 

of notation we assume tha t  0 t = 0  and show tha t  ~ is bounded in S~. The proof for the 

other sectors is the same. Let  U be the image of S~ by  the conformal map  

. 1 - - z  
z - - - ~ w ~  ~ - - -  

l + z '  

and consider the function v? defined on U by  

i - -W 

By the hypotheses ~ is bounded on (boundary S~)~{1}  and therefore ~p is bounded on 

(boundary V)~{0}.  By  Lemma 3, there exist constants M 1 and b such tha t  I~(z)l ~< 

M l e x  p ( b / i l - z ] ) ,  for z e S t S { I } ,  and this implies tha t  ][~(w)[i~<Mlex p (b/[w[), for 

w E U~{0} .  Noticing tha t  the par t  of the boundary of U which contains the point w = 0 

consists of two perpendicular line segments which intersect at  w = 0, we deduce from (the 

vector valued analog of) the Phragmen-Lindelhf principle tha t  ~ is bounded in U ~ { 0 }  

and therefore ~ is bounded in S ~ { 1 ) .  This completes the proof of the lemma. 

Proo[ o[ Lemma 5. Let '  U* denote the unit ball of B* (the dual of B) and consider 

L E U*. Since the function z -+ ((I)(z), L) z E D is analytic, it follows from the Poisson-Jensen 

formula [23, p. 22] tha t  for every z E D  and [z[ < ~ < 1 ,  

log ] (r L)]< ~ ~-~ ]ee,~_ z] ~ log i ( O ( ~ e~t) , L ) ] dt 

and therefore using the identity 

f :  ~"-L:I" <~t- 1, 
7-  
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0 ~  < Iz[ < p < l  and the fact tha t  II~D(z)]] =sup {l(r  L6U*} we deduce that  

1 f~ Q~-Izl ~ (25) log IIr < log K(O ) - ~ _ ~  l oeU _ zl ~ log l /(o e~t) [ dt 

for every zED and [z] < 0 < 1 .  Thus using the estimate 

e~-Izl ~ <e+lzl O<[zl<e<l,  

the identity 

f ~  [l~ [/(QeU)[[dt= 2 f~ log+ ll(Qe")]dt - fS~ log l/(oe't)ldt, 

Jensen's inequality [20, p. 82] 

l f ~  2~ log 1](~ eU) l dt >1 log l asl + ~ log 0 

(where a~ is the first non-zero Taylor coefficient of ]) and setting ~ = (1 + I zl)/2 we obtain 

tha t  for some constant c >0. 

l i : ~  

and part  (a) of the lemma is proved. To prove part  (b), assume that  [ E H ~, ] ~ 0, and let v 

denote the discrete part  of the measure which defines the singular inner part  of ] and let 

V(z)=exp{fZ+r 1 ~ t d v ( t ) ) I ,  zED. 

Using [16, pp. 67-68] we see that  there exists a continuous measure ~ on [ - ~ ,  ~) such tha t  

] admits a factorization ](z)= B(z)G(z)V(z), z E D, where B is a Blaschke product and 

{fz+e,, dr(t)}, zED. G(z) = exp ~ t  

Noticing that  ]B(z)[ <1, z eD and using once again the estimate 

~ < ~+1~1 ~eD, I~1<~<1, 

we obtain from (25) tha t  for every zED and 0 <  Izl <1,  

1  +1,1 F loglB(~e,t)ld t ( 2 6 )  logllr 2~Q-lz[ = 

1 f ~  02 - [ z I S log ] G(o~ e ~t) Vie ~")1 at. 
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Since G(z) V(z) ~ 0, for all z E D, the function log [ G(z) V(z) [ is harmonic in D, and therefore 

the Poisson formula implies tha t  the last term in the right hand side of (26) is equal to 

- l o g  [G(z) V(z)]. Thus remembering tha t  lim~_,x_ ~_~ log ]B(ee '~) Idt = 0  [23, Chapter I] 

and setting ~ = ( 1 +  ]z])/2, we obtain from (26) tha t  

(27) (1 ~]z  ) v([zl) + flog V(z) l~ IIr ~< l~ K + l - l z l  II~ tG(z)ll + I II 

where v is a function on (0, 1) which satisfies limr_~a_ v(r)=0. I t  is clear tha t  (b) will 

follow from (27) if we show tha t  for every e > 0  there exists a constant M~ such tha t  

8 IloglG(z)l]<~§ zeD. 

Let  8 > 0. Since the measure ~ is continuous, there exists a number  0 > 0 such tha t  for every 

interval I c  [ - ~ ,  ~) with length less than  ~ we have tha t  [v[ ( I )<e /2 ,  and therefore for 

every z = re ~~ C D, 

I log I G( )11 < t r ~  d l l(t) = d l~:l(t) 
(1 - r) 2 + 4r sin 2 

2 fl d l z l ( t ) + %  f dlz , ( t )<  e ' + M ~  
~ < i - r  t ol<o sin 2_ t-ol>~o 1 - r  

2 

where M,  = ll~ll/sin S ((~/2). This completes the proof of (b). (e) follows from (b) by  observing 

tha t  for all z E D, 

_,_J ; e " + z  211 11 Iv(z) l - i  e x p / r  z d ~ ( t ) ,  J <exp 1-lzl " 

4 .  O p e r a t o r s  w h i c h  s a t i s f y  IIT"II = o (exp • oo f o r  s o m e  0 < ~ < 1 a n d  c > 0 

In  this section we consider invertible operators T which for some 0 < g < 1 and c > 0 

satisfy the condition 

(28) 11T~I] = 0 (exp c In [~), n -~ • oo. 

Since g < 1, it is clear tha t  if T satisfies (28), then T also satisfies condition (1) and therefore 

by  Wermer 's  Theorem, if g(T) contains more than one point, T has a nontrivial hyper- 

invariant  subspace. The existence of nontrivial invariant subspace in the case where a(T) 

consists of a single point remains open. We present here some partial results for this case. 
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I t  will be convenient to introduce the following notation: I f  B is a Banach space and 

0 < ~ <  1, we denote by La(B) the set of all bounded invertible linear operators on B such 

tha t  a (T)={1}  which satisfy (28). In  what  follows B ~ l l  be fixed and we set: La=L~(B ). 

We have the following results: 

PROPOSITION 1. I f  /or some 0 <  7 < 1, every operator in L~ has a nontrivial hyperin- 

variant subspace, then the same is true ]or all the classes La, 0 < o~ < 1. 

PROPOSITION 2. I /  0 < ~ < � 8 9  and T is in La, then there exists an analytic/unction 

/(Z)=~n=oanZ n, /(z)~O, such that ~=0[a~[  exp(cn~)< c~and / (T)=O (c is the constant 

associated with T by (28)). 

As already noticed in section 1, we are not able to deduce from Proposition 2 the 

existence of nontrivial invariant subspaces for operator in L~, for 0 < a < �89 

For the proof of Propositions 1 and 2, we shall need some equivalent characterizations 

of the classes L~. This is given in: 

PROPOSITiOn 3. Let 0 < ~ < 1  and set fl=o~/(1-o~). The ]ollowing are equivalent: 

(I) T is in L~ 

(II) There exists a constant R > 0 such that 

H(T- ril < R n-% n=O, 1 ..... 

(III)  There exist constants K > 0  and b > 0  such that 

b 
[[R(T,z)H~<gexp] l _ z l ~  , z eC~{1} .  

Proo/ o/ ( I ) ~ ( / / ) .  Since a(T)={1},  there exists a bounded linear operator A such 

tha t  T = e x p  A and a(A)={0} (we may  take A =log ( I - ( I -  T))~- - ~ ( I -  T)J/]. Con- 

sider the entire operator valued function aP(z)=exp (Az), zeC. We claim tha t  �9 is of 

order ~ and finite type (see definition in [15, p. 104]). First �9 is of order 1 and minimal 

type: Let  s > 0; since A is quasi-nilpotent, lim~-~o0 ]JA~]J 1'~ =0,  and therefore there exists a 

constant C~ such tha t  ]]Anll <C~s ~, n=O, 1 ..... and 

n=O n! 

Next, (I) implies tha t  l]9(x)][ ~<M x exp (c Ix l~), - oo < x  < 0% where c is the constant given 

by (28) and M 1 = M  supl~l<~ ]] exp (tA)I[" Thus, using the analog for vector valued functions 

of [3, p. 97, Theorem 6.69] (which is obtained from the scalar case by  an argument which 

is similar to the one in the proof of Lemma 3), we deduce tha t  there exist contants K 1 > 0  
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and b>O such that  lib(z)[/<~K 1 exp  ec, and by using the vector valued analog 

(which is proved in the same way as the scalar case) of the known relation between the 

order of an entire function and the magnitude of its Taylor coefficients [3, p. 11, 

Theorem 22.10] we obtain that  there exists a constant C > 0  such that  

~.T ~<C~n-~/~' n=O, 1, ..., 

and therefore by Stirling's formula there exists a constant C1>0 such that  

IIA ll <cT -% 1 . . . . .  

Noticing that  T - I = A . B  where B =  2~1A' - I / ]  !, we obtain ( I I )wi th  R=CllIBII. 

Proo/ o/ ( I I )9(111) .  Observing that  

( i -  T) 
R(T, z ) -  = o -  (l_z)~+l , z + l ,  

is an entire vector function of 1/(1-z),  we obtain (III) from (II) by using once again the 

relation between the magnitude of Taylor coefficients and the order of entire functions 

(this time in the other direction). 

Proo/ o/ (HI )9 (1 ) .  This is an immediate consequence of Lemma 2. 

C o R 0 L L A• Y 5. Let T be an operator such that (r(T)= (1 }, let 0 < o~ < 1 and fl = cr ~). 

The/ollowing conditions (a), (b) and (c) are equivalent: 

(a) HT~II =O(nk), n ~ c o  /or some integer k>~O and ]]Tn]]=O (exp (c]n]~), n - ~ - o o  

/or some constant c > O. 

(b) ]]Tn]] =O(nk), n - - -~  /or some integer k>~O and II(T-I)nH =O(Rnn-n/~), n-->c~ 

/or some constant R > O. 

(c) /JR(T, z)] 1 = 0 (exp (d/I 1-z]~)), ]z] ~ 1 - / o r  some constant d>O, and I[R(T, z)]] = 

0 ( l l - I z l  I-N), [z I -~1+,  /or some integer N>O. 

Proo/. I t  follows from Proposition 3 that  (a) and (b) are equivalent; and from 

Proposition 3 and [6, p. 131, Proposition 1.6] that  (b) and (c) are equivalent. More 

precisely (b)~(c) wi th-hr=/c+l  and (c)9(b) with k = N .  

COROLLARY 6. Let T be an operator such that q(T)={1} and ]]Tn]] =0(n~), n-->oo, 

/or some integer k >~ O. A necessary and su//icient condition/or the existence o / a n  analytic 

/unction/(z)= ~ = 0  anz ~, [ ~0,  such that ~=o  la~ln ~ < ~  a n d / ( T ) = O  is that 

]J(T-I) II = 0 ( l / n ) ,  n 
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Proof. This is an  immediate  consequence of Theorem 2, Corollary 3 and Corollary 5. 

COROLLARY 7. I /  T is an operator such that IIT  II =O(nk), n - ~ ,  /or some integer 

k>~O, and ll(T-I)~]]~Z~=o(1/n), n-->c~, then (T-I )~+~=O. 

Proof. The condition ]l(T-I)nll~/~=o(1/n) implies tha t  a ( T ) =  {1}, and t h a t  if A is a 

quasinflpotent operator  such t h a t  T = e  A, then the  funct ion r Az, zEC, is an  entire 

function of order �89 and minimal type.  (This follows by  the arguments  of Proposi t ion 3.) 

Therefore the funct ion ~F(z)=r zEC, is of order 1, and minimal type,  and the 

hypothesis  H T~[[ = O(nk), n--> oo implies t ha t  H~(x)]] = O(]x [2k), x ~  • oo and therefore by  

[15, p. 104, Th. 3.13.8] ~I e is a polynomial  of degree ~<2k, hence dp is a polynomial  of 

degree ~/~, thus A ~+1 =0 .  Since 

~A~-~  
T -  I =  Aj:~ j! , 

we obtain tha t  ( T -  I )  ~+~ =0 .  

Proof o/Proposition 1. Let  0 < y  < 1, and let n be a positive integer. I t  follows from 

Proposit ion 3(II) t ha t  if T is in L=, for some 0 < ~ < l, then T 1 = I + ( T - I )  ~ is in L~ where 

fl = ~/(n(1 - ~) + ~), and therefore for n large enough fl <~  and T x will be in Le, and since 

any  hyper invar iant  subspace for T 1 is also a hyper invar iant  subspace for T the conclusion 

of Proposi t ion 1 follows. 

Proof of Proposition 2. Assume t h a t  T is in L~ for some 0 < g < � 8 9  Let  2 g < p <  1. I t  

is known ([20, p. 118, Ex. 7], or  [7]) tha t  there exists a funct ion h ~ 0  of the form h( t )=  
o0 o0 ~,~=_ooc~e ~,~t, - c o  < t < o o ,  such tha t  ~=_oo Icn[ exp (nq)<oo and h(J)(0)=0, ] = 0 ,  I, .... I t  

is easy to  see tha t  we also m a y  assume, (as we shall), t ha t  h is even, or equivalently,  t ha t  
. . . .  ~ o o  a Z n c_~ = Cn, n = 1, 2, Let  / be the funct ion defined by / ( z )  = ~n=0 ~ , I z I ~< 1, where a n = ck 

= ~n=o cnz , and if n = k  s for some integer k, and a n = 0 ,  otherwise. Noticing tha t  /(z) oo ~ 

c-n=cn, n = l ,  2 .... , it is clear t ha t  since h ~ 0  a l s o / ~ 0 .  Let  ~=~/2 ;  then the hypothesis  

~=~176 [c n [ exp (n e) < oo implies tha t :  

~t~0 

and therefore in part icular  t h a t  ~.n%0 I a~ t exp (cn ~) < co for every c > 0. Le t  E( t )= / (e  't) = 

~oo a e *nt co < t <  oo. The hypothesis  h(J)(O)=0, ]=0,  1 .. . . .  and the fact  t ha t  c_~=cn, n ~ 0  n , - -  

n = l ,  2, ..., imply  that :  
"k 

(30) F(k)(0) = ~ h(~)(0) = 0, k = 0, 1 
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I t  follows from (29) (see [20, p. 26, Ex. 7.]) tha t  there exists a constant R I > 0  such 

tha t  ]/(~)(e~t)l <~R~n ~/r, n=O, 1 .. . .  ; It] <~.  And therefore using (30) together with 

Taylor 's  and Stirling's formulas we obtain tha t  there exists a constant R 2 >0,  such tha t  

for all It] ~<7~, ]/(eU)[ ~<infn~> 0 R~n~/~]e~-ll  n, n=O, 1 .. . .  , where (5=(1-7) /7  , and this 

implies (see [12, p. 170]) tha t  for some constants K > 0  and d > 0  we have: 

Using the fact tha t  ~<�89 and ~ < 1  we see tha t  d > ~ / ( 1 - ~ )  and therefore from (31) and 

Proposition 3 ( I I I )  we obtain tha t  

(32) sup (ll/(e~t)R(T, e~t)[[: O< ltl <~} < ~ .  

Let  G(T, z) be the function associated with / by Lemma 1. Since 7 > ~ we obtain from (29) 

tha t  ~ : 0  ]anl n exp (cn~)< ~ ,  and therefore by  the argument  used in the proof of the 

second par t  of Theorem 2 we deduce tha t  suplzl<l IIG(T, z)l ] < ~ ,  and this together with 

(32) and identity (5) imply tha t  

(33) sup {I[/( T) R( T, e't)H: 0 <  It I ~<~} < co. 

Let  (I) be the operator function (I)(z)=](T)R(T, z), z e C \ { 1 } ,  and let 

lw+i  
~F(w) =r \~_~/, weC, 

~F is an entire operator function, and from Proposition 3(III)  we deduce that  there exist 

constants / > 0 ,  b > 0  such tha t  [[qP(w)l [ ~<M exp (b[wl~) where fl=o~/(1-o~), and from 

(33) we obtain tha t  sup_~<~<~li~F(x)l[ <0o. Since ~<�89  we see tha t  f l < l ,  thus ~F is an 

entire (vector) function of order less than 1 which is bounded on the real axis and therefore 

by a well known theorem [15, p. 104, Th. 3.13.8] we obtain tha t  ~F is a constant operator, 

and therefore the same holds for (I). Using the same argument as in the proof of Theorem 2, 

we conclude t h a t / ( T )  =0.  

5. Quasinilpotent operators 

In  this section we apply the results of section 2 and section 4 to some classes of 

quasinilpotent operators. Our first result is: 

THEOREM 5. Let A be a quasinilpotent operator on a Banach space. Assume that there 

exist constants M > 0 ,  N > 0 ,  K > 0  and c > 0  such that 

c /or I m  z > 0 (34) [IR(A, z) ll <-M exp i im zl' 
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and 

(35) IIR( A, ~)11 < K l I m  zl-~, for Im z<0.  

I / A  =4=0, then A has a non trivial hyperinvariant subspace, and i / A  is not nilpotent then A 

has an uncountable chain of hyperinvariant subspaces. 

Proof. Let T be the Cayley transform of A, that  is T = ( I + i A ) ( I - i A )  -1. Then 

a(T)={1} and a direct computation gives tha t  

i(l -- z)~ 
R(T, z) = (i + z) -~ (A - il) R A, I +----7-7' 

and from this we see tha t  if A satisfies (34) and (35} then T satisfies: 

IIR(T,z)II=o exp , I z l - ~ l -  and 

I]R(T, ~)11 ~ O((Izl-  1)-~), I zl-~ 1 § 

and therefore by [6, p. 131, Prop. 16 and p. 155, Prop. 3.5] we obtain that  T satisfies the 

hypothesis of Theorem 1, and from this the conclusion of the theorem follows by 

observing that  A = i ( I - T ) ( I  + T) -1 and therefore A and T have the same invariant and 

hyperinvariant subspaces. 

COROLLARY 8. Let A be a quasinilpotent operator acting on a Hilbert space H. I f  A is 

dissipative (that is Im (Ax, x)>10, VxEH) and satisfies (34), then the conclusions o/Theorem 

5 hold/or A. In  particular, A has a non trivial invariant subspace. 

Proo/. I t  is well known and easy to verify that  if A is dissipative then IIR(A, z)ll < 

I Im z I-1, for Im z < 0, and ~herefore the corollary is an immediate consequence of Theorem 5. 

Remarks. 1. Corollary 8 is proved in [17] by using the theory of characteristic operator 

functions in Hilbert space under the seemingly stronger hypothesis 

I[R(A,z)[I=O (exp~z[),  Iz[-~0" 

However by Proposition 3 one can show that  for these operators (34) implies this hypo- 

thesis. (For a study of this class of operators see also [4, p. 52].) 

2. Corollary 8 can also be proved by the same argument for quasinflpotent dissipative 

operators in Banach spaces in the sense of [21], which satisfy condition (34). (Notice 

4--792901 Acta mathematica 144. Imprim6 le 13 Juin 1980 
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that  the definition of dissipative in [21] is tha t  Re (Ax, x) <0, hence in this case we have 

to consider the half planes Re z <0  and Re z > 0 in the hypotheses of Theorem 5, or to 

replace A by iA). 

3. If condition (34) holds for every c >0,  it follows from the proof of Corollary 1 

that  A is nilpotent. This was proved under stronger hypotheses in [21] and [25]. 

4. If A is an operator such that  ~(A) is contained in the real line, contains more than 

one point, and satisfies for some constants M >0,  K >0  and fl >0,  the condition 

K 
lIR(A, z)ll <~M exp Im z:~0, lira Z] B~ 

the existence of non trivial hyperinvariant subspaces is proved in [6, p. 159, Th. 4.3]. 

Thus the first conclusion of Theorem 5 remains true if the hypothesis tha t  A is quasinil- 

potent is replaced by the hypothesis that  a(A) is contained in the real line. (Notice tha t  

conditions (34) and (35) remain unchanged if A is replaced by A - 2 I  for some real 

number 2.) 

Our next  observation is tha t  the existence of non trivial invariant subspaces for quasinil- 

potent operators whose resolvent is of finite exponential type is equivalent to the existence 

of non trivial invariant subspaces for operators in the classes L~ considered in section 4. 

To state this more precisely we introduce the following: 

Notation. If 0 < f l<  0% we denote by Q~ the class of all quasinflpotent operators A 

which satisfy for some constants M >0  and c >0  the condition: 

]IR(A,z)H<M exPlSZ~[~, z*O. 

P ~ o P o s I m I o ~  4. Let 0 < = < 1 ,  and set f l=~/(1-cr  The existence oi non trivial in- 

variant (hyperinvariant) subspaces /or all operators in the class L= is equivalent to the existence 

o/ non trivial invariant (hyperinvariant) subspaces /or all operators in the class Qz. 

Proo/. I t  follows from Proposition 3 (III) tha t  T is in L~ if and only if A = T -  I is 

in Qp, and this proves Proposition 4. 

Remark. I t  follows from Proposition 1 and Proposition 4 that  the existence of non 

trivial hyperinvariant subspaces for all operators in one of the classes Qz is equivalent to 

the existence of non trivial hyperinvariant subspaces for all operators in all these 

classes. This can also be seen directly by observing that  if A is in Qn then A s is in Q~12. 
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6. An extension o|  a theorem oI Nagy, Foia~ and Colojoarh and a short proo[ 
of Wermer's theorem 

By a theorem of Nagy and Foias [22, p. 74, Th. 5.4], if T is a power bounded 

; T  *n~~176 converges strongly to 0, operator on a Hilbert  space and neither {T=}~_o nor ~ ;~=~ 

then either T = c I  where I cl = 1 or T has a hyperinvariant  subspaee. This theorem was 

extended by  Colojoar~ and Foias [6, p. 134, Th. 1.9] as follows: I f  T is an operator on a 

reflexive Banach space and 11Tnll = 0(~) ,  n-> co, where {~=}~-o is a sequence which satisfies 

~ n - - ~  ~n+r~/~n ~ K m ~ ,  m = 0 ,  1 ..... for some K > 0  and a > 0  and neither Q,~IT~ nor ~ 1  T.n 

converges strongly to zero, the same conclusion holds. 

The next result shows tha t  the same conclusion holds for much faster growing 

sequences {en}~=0. 

P~OPOSITIO~ 5. Let T be a bounded linear operator on a reflexive Banach space and 

let {Qn}~=0 be a sequence such that /or some constants 0 < ~ < � 8 9  K > 0  and a > 0 ,  

lim Q~+m ~ K exp (am~), m = 0, 1 . . . . .  
r~-~oo ~ 

Then i/  H T~II = O(pn), n-~ c% and neither ~ 1  T n nor e~ 1 T *~ converges strongly to O, the same 

conclusion as in the above mentioned theorems holds /or  T.  

Proo/. The proof follows the same lines as the proof of [6, p. 134, Th. 1.9] except for 

the following changes: In  the first par t  of the argument,  replace the fact tha t  every invert- 

ible operator T~ such tha t  IIT~H--0(lull) ,  n-* + ~ for some a > 0 ,  is decomposable by 

the fact  that the same is true if IIT~II = 0  (exp c}n]~), n-~ • oo, for some c>O, O < f l < l ,  

(Wermer's Theorem or Theorem 3.2, p. 154 in [6]). In  the last step of the argument,  where 

(an equivalent f o r m  of) the theorem of Hille [14] is used, use instead, the extension of 

Hille's Theorem given in Corollary 1 of the present paper. 

We give now a short proof of 

T ~ E O R E ~  (Wermer [27]). Let T be an invertible operator on a Banach space which 

satis/ie~ V~--~ logll T~JJ/(l +n~)< co. I / . ( T )  contains more than o~e point then T l~s a no~ 

trivial hyperinvariant subspace. 

Pro(,/. Let o~= [[T~[[, n=O, +1, +2 . . . . .  and consider the  Bauach  algebra A which 

consists of all functions/(e u) = ~ _ ~  a~ e in*, 0 ~t~< 2~, such tha t  [[/[[A = ~n~-oo [an [wn < ~ .  

(This is a Banach algebra since eo,+~<w~com for all integers n, m). I t  is clear tha t  the 

mapping / ~ / ( T ) =  ~ - _ ~ a ~ T  ~, /6A,  establishes a continuous homomorphism of A into 
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the Banach algebra of bounded linear operators on the space on which T acts. We claim 

tha t  for every / in A,/((~(T))ca(/(T)) .  (We recall here again, tha t  (1) implies tha t  a(T) is 

contained in the unit circle.) Let  16~(T) , / ( e  ~) = ~ = _ ~  a,~e ~n~ 6A and P~(e ~) = ~N_ N ane ~n~, 

N = I ,  2, .... Let  qN(e ~) be the trigonometric polynomials such tha t  PN(e~)-PN(I  ) = 

(eU-~)qN(e~), 0~<t~2~. Then 5mN__)oo(e~--~)qN(eu)=~(e~t)--~(~ ) in the norm of A, and 

therefore / (T)- / ( ) . ) I= l imN~oo ( T - I ) q N ( T )  in the operator norm. Since 16a(T),  and the 

set of non invertible elements in a B~naeh algebra is closed, i t  follows that/(A) 6(~(/(T)). 

Let now t~=~A~ be two points in a(T). Since ~ = _ ~  log ~o~/(1 + n  ~) < ~ ,  the algebra A saris- 

ties the Beurling condition for regularity ([20, p. 118, Ex. 7] or [7]), and there exists 

functions/~, f~ in A, with disjoint supports such tha t  f~(2~) = 1, ] = 1, 2. Thus,/~(e~) �9 '~)---0, 

and therefore/~(T)./~(T) =0, but/~(T) 40 ,  1 = 1, 2, since/~(l~) = I 6a(/~(T)), 1 = l ,  2. Conse- 

quently Kernel (/~(T)) is a non trivial hyperinvariant  subspace for T. 

7. Applications to Banaeh algebras 

Most of our previous results could be stated and proved in the context of Banach 

algebras. For instance, it is clear tha t  Corollaries 1, 6, and 7 are statements about elements 

in Banaeh algebras. In  this section we apply the results of the previous sections to prove 

results on closed pr imary ideals and restriction algebras of certain Banach algebras of 

continuous functions on the unit circle. We obtain in particular some of the results of 

[18] and [2] and an extension of the results of [1]. 

We recall ~irst some definitions and known facts from [11, pp. 214-215] and introduce 

some notations. 

Definition. Let R be a Banach algebra of continuous functions on the unit  circle aD. 

R is called a homogeneous Banaeh algebra (in the sense of Shflov) if: 

(H1) I t  is generated by  the functions 1, e ~t. e -~t and its maximal  ideal space is 9D. 

(H~) For every /GR and e~e~D, II/~IIR=I]/IIR where /~(eU)=/(e~(t-~)), e~te~D. (It  

follows from H 1 tha t  /~ER for every /eR and e~E~D.) 

I f  R is a homogeneous Banach algebra on ~D, we shall denote by  R+ the closed 

subalgebra of R which is generated by the functions 1 and e i~. R+ is a homogeneous Banach 

space on ~D in the more general sense of [20, p. 14] and it follows from [20, Th. 2.12] tha t  

It+ consists of all functions / in R such tha t  ](n)=O, n = - 1 ,  - 2  . . . . .  (Where for every 

integer ], ](i) denotes the i th  Fourier coefficient of / ,  tha t  is, ](i) -~ (1/2~) ~_~/(e ~~ e-~J~dO.) 

Every  function / in R + admits an extension to a continuous function [ on J0 which 

is analytic in /).  This extension is given by  T ( z ) = ~ - 0  ](n)z ~, z e D  or equivalently by 

T(re~~ , 0~<r< l ,  where P~ denotes the Poisson kernel and ~+ denotes 
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convolution on ~D. I t  follows from the properties of R tha t  the Gelfand representation of 

the Banach algebra R+ is given by the m a p p i n g / - ~ / a n d  tha t  the maximal  ideal space of 

R+ is /). We shall denote by l~+ the algebra of functions on D which are Gelfand 

transforms of elements of R+. With norm II~llfi+ = II/lla, it+ becomes a Banach algebra 

which is isometrically isomorphic to It+. We shall need in the sequel the following two facts: 

(a) It+ is an admissible Banach space and llLwl[ <~211(e~~ YwED. 

(b) It+ operates on the multiplier operator T defined on It+ by: T/(e~~176 

e~OEaD, /EIt+. 

We show first tha t  (a) holds: 

1) Since It+ is a Banach algebra and for every wED, the mapping / - -> / (w) , /6R + is a 

complex homomorphism of R +, it follows [20, p. 201] that  I/(w) l ~ II/Ila+ = II[ll~+, for every 

2) Assume tha t  /EI t  + and wED. To show tha t  Lw[EIt+ , consider the function 

g(e  it) = ( / (e  it) - ~ (w)  ) (e i~ - w) -1, e it e ~D. 

Since the maximal ideal space of R is ~D and wED, it follows tha t  gER, and s i n c e / 6 R  +, 

the function Lw[ is a continuous extension of g t o / ) ,  which is analytic in D. Thus ~(n) =0  

for n < 0, and therefore, g E R +. Consequently L w [ = ~ E It+ and 

and (a) is proved. 

(b) follows from the fact tha t  for very / in R+, limq_~l/(~e *~ =/(e *~ in the norm of 

R [20, p. 16]. 

We recall t ha t  a pr imary ideal in a commutat ive Banach algebra with unit, is an 

ideal tha t  is contained in a single maximal ideal. A pr imary ideal is called trivial if it is 

the zero ideal or a maximal ideal. 

I f  R is a homogeneous Banach algebra on ~D, we shall denote by  R0 the m~ximal 

ideal which consists of all functions / in R such that / (1)  = 0. I t  follows from the homogeneity 

of R, tha t  it suffices to consider pr imary ideals contained in t t  o. The next  result gives some 

information on these ideals, for certain homogeneous Banach algebras. 

P~OFOSITION 6. Let It be a homogeneous Banach algebra on OD, which /or some 

integer ]c ~0  and constant c >0,  satis/ies the conditions 

and 

lle' 'I[R = 0(nk),  
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Let I be a closed primary ideal in R which is contained in R 0. Then either I is of/ inite 

codimension not exceeding k + 1 and is the closure o/the ideal generated in R by the/unction 

(e ~~ 1) j ]or some 1 ~ ~ <~ k, or there exists an uncountable chain o/closed ideals between 1 and 

R 0. I / i n  addition 
Ile-   l!R = o (exp 

/or every e > 0, then every closed primary ideal contained in R o is o/the /fret kind, and i~ 

also k =0, there are no non-trivial closed primary ideals in R. 

Proo/. Consider the quotient algebra B = R ] I  endowed with the canonical quotient 

norm. Let  u be the image of e u under the canonical map of R onto B. Since e u -  1 ER 0, 

u - 1  is contained in the single maximal  ideal of B, and therefore a(u)={1) ,  [11, p. 34]. 

Consequently, u -1= ~ o  (1 - u )  j, the series being convergent in the norm of B. Therefore, 

since 1, u and u -1 generate B, 1 and u also generate B. Let T be the operator defined on 

B by Tx=ux ,  xeB .  Since HTnH = [[u~HB<~ He'~tllR, n=O, •  + 2  . . . . .  the assumptions on 

R imply tha t  [I T'[[ = O(nk), n ~  oo and H T~H = 0 (exp (c In 11'2)), n-+ - 0% and since a ( T ) =  

a(u) = {1), it follows from Theorem 1 tha t  if (T - I )  k+l ~= 0, then T has an uncountable chain 

of invariant subspaces. Since 1 and u generate B, the invariant  subspaces of T coincide 

with the closed ideals in B, and since the pre-images by  the canonical map of the closed 

ideals in B are the closed ideals between I and R 0, we obtain that,  if (u-1)~+l=~0, then 

there exists an uncountable chain of closed ideals between I and R e. I f  (u-1)7~+1=0, 

then the fact tha t  B is generated by  1 and u implies tha t  B is of finite dimension not 

exceeding k + l ,  and it is easy to see tha t  if ~ is the smallest integer such tha t  (u-1)J=O, 

then I is the closure of the ideal generated in R by  the function (d o -  1) ~. The last assertion 

of the Proposition is proved in the same way, by using Corollary 1. 

The following examples illustrate the two different possibilities described by Proposi- 

tion 6 

1) Let  R be the Banach algebra of all continuous funtions / on ~D such tha t  

--1 o0 

1[/11 = 5 It(n)lexplnl' + E II(n)l< 
ft---cO n = 0  

Then R is a homogeneous Banach algebra on aD [10, p. 120] which clearly satisfies the 

hypotheses of Proposition 6. One can show tha t  if I is a non-trivial closed pr imary ideal 

contained in R 0, then there exists an uncountable chain of closed ideals between I and 

R o. Moreover, one can prove tha t  there exists a positive number  a such tha t  I is the 

closure of the ideal generated in R by  the function 

to 2 f d~ + l /  
~o(e'~ ) expla~Z~_ l l  
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for e~~ and yJ(1)=0. (It: is easy to verify that  ~ E R e c R . )  A similar result for the 

analogous weighted Fourier algebra on the real line is announced in [13, Th. 8.1.]. 

2) If  0 ~< ~ < �89 and R is the Banach algebra of all continuous functions ] on ~D such that  

- 1  

II/IIR= It( )lexpl4 + If( )l< 
n = - o o  n ~ 0  

then the last assertion of Proposition 6 implies that  R h~s no non-trivial closed primary 

ideals. 

Other results on the structure of closed primary ideas in Beurling algebras are given in 

[8] and [9]. 

Next we consider closed primary ideals in the Banaeh algebras R + where R is a 

homogeneous Banach algebra on ~D which, for some positive integer k >0,  contains the 

Banach algebra C~:(~D) of k-times continuously differentiable functions on aD. The struc- 

ture of closed primary ideals in some of these algebras was determined in [18] and also fol- 

lows from the more general result proved in [2]. The proofs in [18] and [2] are based 

on the Carlcman transform of elements in the dual of R +. We shall obtain these results 

on closed primary ideals, from Theorem 1 and Lemma 5, without using the Carleman 

transform or duality. 

We recall [11, p. 215] that  the assumptions on R imply that  there exists a constant 

c > 0 such that  II~ll* ~<  llgll ~,(~.) for every g E Ck(SD) and therefore II "'IIR = o( b, ~ .  

Using the fact that  

Iwl 

and property (a) of 1~+, we obtain also that  

tlLoll 
(Lw being regarded here as an operator on 1~). 

In what follows we shall denote for every real number ~ by v~ the function defined 

o n / ) ~ , { 1 }  by 
f e'~ 11 

and by g~ the function defined on 8D by g~(e~O)=(el~176 e~~ 1 and g~(1)=0. 

I t  is easy to see that  g~ belongs to Cg(OD) and therefore ~Iso to R. For g ~> O, ga admits a 

continuous extension to / )  which is analytic in D given by 

g~(z) = ( z -  1) ~k+l exp {~ z +  1~ 
z -  l J '  zE/)  
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and therefore gaER+. For every a~>0, we shall denote by I~ the closure of the ideal 

generated in R+ by g:. We shall denote by  II. + the maximal ideal in It+, which consists of 

all functions / in R + such tha t  / (1)=0.  

The following definition is introduced in [2, part  II]:  One says tha t  R satisfies the 

analytic Ditkin condition if for every /E R~ there exists a sequence (g~)~ R + such tha t  

g~(0)=l,  n = l ,  2 . . . .  , and limn~oogJ=O in the norm of R. 

Finally we adopt the following notation: For e v e r y / f i R  + we shall denote by  Sf the 

singular inner par t  of [ and b y / t  I the positive singular measure on [ - z ,  ~) tha t  defines 

Sf [16, p. 66]. For  a closed ideal I c R  + we denote by 

~(I) = inf {/~1({0}): ]e I } .  

The following contains the results on closed pr imary ideals in the algebras It+ tha t  

are proved in [18] and [2]: 

PROPOSITIOZ~ 7. Let It be a homogeneous Banach algebra on ~D which contains C~(~D) 

/or some positive integer k. Let I be a closed primary ideal in It+ which is contained in It+ 

and let ~ = ~(I). Then (e i~  1) 4'~+11 ~ I= and (e ~~ 1) 2k+41 a ~ I .  I / i n  addition R satis/ies the 

analytic Ditkin condition, then I = I~. 

Proo/. To prove the inclusion (e ~~ - 1)4k+l I ~ I~ consider ] E I .  Since ] E R~, it follows 

from the definition of ~ tha t  ] =va F where F E C+(~D). (C(~D) is the algebra of continuous 

functions on ~D.) Therefore (e t ~  1) 2~+1F = g _ j  e R fl C+(OD) =R+ and consequently 

(e ~~ 1)~k+l/=g~(e~~ Since this is true for every ~El  and I~ is closed, the 

required inclusion is proved. To prove the inclusion (e~~ consider the 

quotient algebra B=R+/I ,  and let u be the image of e ~t under the canonical map of 

It+ onto B. Since e ~t- 1 Ett~, u - 1 is contained in the single maximal ideal of B and there- 

fore a(u) = {1}, [11, p. 34]. Thus the vector valued function R(u, z) = (u - z) -1 is defined and 

analytic in C~{1}. We claim that  for every fl>~, ]lR(u, z)[[B=O (cxp 2f l / (1- Iz[ ) ) ,  

[z [ -~ 1 - .  Let/3 > ~. By the definition of ~ there exists a function / E I such that/~i({0}) </3. 

Therefore by the regularity of #f there exists ~e(0, ~) such that/~I( - ~ ,  8) </3" Thus re- 

membering tha t  
e ~ + z 

[16, p. 66] we obtain tha t  there exists a constant K > 0 such tha t  for z E D with [ arg z[ < 6 

2fl 
I < K c x p  1 - 
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Property (b) of ft+ inplies tha t  li+ operates on u (regarded as a multiplier operator on B) 

and since / e I  we obtain tha t  h u ) = 0 .  Thus remembering tha t  HLw]] = 0 ( ( 1 - ] w l ) - ~ - l ) ,  

[w 1 - ~ 1 - ,  we obtain from Lemma 5 par t  (b) tha t  

11R(u, z)]lB = 0((1 - ]z [)-e iS1(z) l_l), i z I ~ 1 - 

and since R(u, z) is analytic for z4=I he above estimate on Isr(~)l -~ implies tha t  

IlR(u, z)[[=O exp , ] z [ - - , 1 - .  

Therefore, by the proof of Theorem 2, (u - 1)2k+4g~(u) =0,  which means tha t  (e ~~ 1)2~+4~ E I 

and since I is closed the required inclusion is proved. 

Assume now tha t  R also satisfies the analytic Ditkin condition. I t  is clear tha t  the 

second conclusion of the proposition will follow from the first conclusion if we show tha t  

every function in R~ belongs to the closure of the ideal generated in R + by (e ~~ 1)/. Let  

] E R~; the analytic Ditkin condition implies tha t  there exists a sequence (]n)~n=l c R~ such 

tha t  limn_.o~/n/=/ in the norm of R. Since R+ is generated by 1 and e ~, we may  also 

assume tha t  /n are trigonometric polynomials which belong to Rg, and therefore there 

exist trigonometric polynomials qn E R +, n = 1, 2 ..... such t h a t / n  = ( eio - 1) q~, n = 1, 2 . . . . .  

This shows tha t  [ belongs to the closure of the ideal generated in It+ by (e ~~ - 1 ) / a n d  the 

proposition is proved. 

Remarlc. If  I t  is a homogeneous Banaeh algebra on ~ D such tha t  11 e  " IIR = o(a  ), oo 

and vn(e~~189176 ~, e~~ n = l , 2  . . . .  , then one can show tha t  lim=~Hvd]]R=0 
for every [ CIIg. Thus all these algebras satisfy the analytic Ditkin condition; they include 

in particular the algebra C(OD), the algebra of absolutely convergent Fourier series, and 

more generally the algebras considered in [18]. For many  other examples of homogeneous 

Banach algebras which satisfy the analytic Ditkin condition we refer to [2, par t  II] .  

Our next  application is to restriction algebras of the algebras R +. We extend and 

improve the results of [1], thereby answering (in the negative) a question raised in tha t  

paper. Before stating our result, we recall some definitions and known facts and introduce 

some notations. 

Definition. I f  R is a homogeneous Banach algebra on ~D, we say tha t  E is a ZR + set 

if there exists a non-identically zero function in It+ which vanishes on E. 

I f  E is a closed subset of ~D, we shall denote by R+(E) the restriction algebra of R + 

to E, which can be identified with the quotient algebra R+/I(E),  where I (E)  denotes the 
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ideal of functions in It+ which vanish on E. If  E is not a ZR + set, then I (E)= (0} and 

It+(E) is isometrically isomorphic to It+. On the other hand, if E is a Ztt+ set, then the 

maximal ideal space of It+(E) is E. This is proved in [19] in the case where It is the algebra 

of absolutely convergent Fourier series and the same proof carries over to the general case. 

We shall use this fact in the proof of the next  result. 

PROPOSITION 8. Let It be a homogeneous Banach algebra on ~D and let E be a ZR + 

set. Then 

(a) n +oo /or some integer ]c>~O, then there exists a constant c > 0  

such that i/~f is a ]unction in C(~D) which satisfies 

- 1  

/~(n)/exp (c/nllJ2)+ ~ [~(n)llle~tlIR< oo, 
n =  --00 n = O  

then ~P[E (the restriction o/~p to E) belongs to Re(E). 

(b) I / / o r  some positive integer k, @(~D)~ It and ~f is a ]unction in C(~D) such that 

]or some constant c>O, ~~176 o l~(n)[ exp(c ln l  < ~ ,  then ~]EEI~+(E). 

Proo/ o/ (a). First we note tha t  property (a) of R +, the identity 

(ei~ ~ e-i(n-1)Own, wED, et~ 

and the assumption Ile-~-~ = O(n~), n-+ oo imply that  I{Lwll = o((1 - I wl)-k-1), I W I -'+ 1 - - .  

Let u =e~~ Since the maximal ideal space of Re(E) is E, it follows that  a(u)c  E caD.  

Property (b) of R+ implies tha t  ~+ operates on u (regarded as a multiplier operator on 

Re(E)) and therefore [(u) = 0 for every /E I(E). Since E is a ZR + set, there exists a ftmetion 

]EI(E) such that  ] $ 0 ,  tha t  is, there exists a function [ ~ 0  in It+ such that  [(u)=0.  

Therefore by Theorem 3 part  (e~), there exists a constant c>O such that  

IJu-~ll~+<E) = 0 (+xp (cn+)), n +  oo.  

Consequently, if ~0 is a continuous function on ~D which satisfies 

I+(n)loxp(clnl'+:)+ + ,  

then also ~:,~:_oo I~(n) I II u:ll ~ ++ < ~ and therefore YJIE = ~ :  -~o~(n) u" e Ire(E). Thus part  

(a) of the proposition is proved. 
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Proo/ o/ (b). Let  u be as in par t  (a). The assumption tha t  Ck(~D) c t t  implies tha t  if y: 

is a function in C(~D) such tha t  for some constant c>0 ,  ~oo=_~ }~(n)[ exp c]n[�89 c~, then 

5 ~ 0  I~(n)] IIu~IIR+(E) < ~ .  Therefore (b) will be proved if we show tha t  

I[u-n]li~+(E) = 0 (exp (sni)), n--> 

for every ~>0.  Setting R(u, z)=(u-z) -1, z~E it follows from Lemma 2 par t  (b) tha t  it 

suffices to show tha t  

I I~(~,z) l lR+(~,=o exp , 1 4 ~ t -  

for every ~>0.  Sinoe t(u)=O for every / e~(E) ,  Lemma ~ and the fact that IIL~ll = 

0((~--Iwl)-~-~),  I~1 ~ a - -  imply that 

for every / E I(E). Thus by virtue of Lemma 5 par t  (c). The required estimate of 11R(u, z)l] a+(E) 

will follow, if we show tha t  for every e > 0  there exists a function ]~I(E), ]~0, such tha t  

II/ze[[ <e ,  where /u a deotes the discrete par t  of the measure which defines the singular 

inner par t  of [. To show this, consider a function gEI(E), g ~0, (such a function exists since 

E is a ZR + set). Let  v be the discrete part  of the measure which defines the singular inner 

par t  of ~. Since v is a positive discrete measure on [ - ~ ,  7~), there exists a positive measure v 1 

supported on a finite set {T 1 ..... Tq} c [--~,  ~), and a positive discrete measure on [ - ~ ,  ~), 

such tha t  [[~21[ <e  and ~=r~+v~. Consider the function v defined on ~D by  

q f / "  e ~ + d ~ 1 

for 404=e ~'j, j = l ,  2 ... . .  q and v(e~0=0, j = l ,  ..., q. I t  is easily seen tha t  the assumption 

on vl implies tha t  vECk(~D), and therefore vER. Let  /=v.g. Then /ER,  and since the 

singular inner function 

[ f z + d  ~ exp~j  z--Z~e~dv,(t)} , zeD, 

divides the singular inner par t  of 0, ] has a continuous extension to /5 which is analytic 

in D, and therefore / E R  +. Since gEl(E), g~O, also /EI(E), /~0. Noticing tha t  the 

discrete par t  of the measure which defines the singular inner par t  of [ is v~, we see tha t  / 

has the required property,  and the proof of the proposition is complete. 

The following result is proved in [1, Th. 3]: Let  P=(Pn)~o be an increasing 

sequence of positive numbers such tha t  :Po=l, pn+,n<~:pnpm, m,n=O, 1, ..., and 
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lim~_~ (log 9n)/n =0,  and let By be the Banach algebra of functions f in C+(OD) such tha t  

It/lIB = ~ = 0  I[(n)lp=<oo. Then if E is a ZB v set (the definition is the same as for ZR+ 

sets) there exists a constant c > 0 ,  such tha t  if ~p is a function in C(~D) which satisfies 

~;=~_~ ]~(n)] exp(c}n]�89 }~(n)]p ,< oo, then V]EeBr(E) (the restriction algebra of 

By to E). 

This result follows from par t  (a) of Proposition 8 by the following simple observations: 

I f  p = (P~)~=0 is a sequence with the above properties and R is the Banach space of all 

--5,~=_~]~(n)] 5,=0]~(n) lpn<oo , then It  is a homo- functions g6OD such tha t  HgHa _i 

geneous Banach algebra on eD [11, p. 120-121], ]I~-'"*I[R=a, ~=0 ,  1 . . . . .  and It+=B~. 

I f  in addition we assume tha t  p~ = 0(n~), n-~ oo for some integer k >~ 0, it is easily seen tha t  

I t  contains the algebra C~+Z(OD) (cf. [11, p. 215]) and therefore par t  (b) of Proposition 8 

applies to B~. In  particular we obtain tha t  if A is the ~Igebra of absolutely convergent 

Fourier series and %o is a function in C(~D) such tha t  for some constant c>0 ,  

Y.~%-oo I~(n)[exp(c[nl~)<~, then %0]E6A+(E) for every ZA + set E. This improves the 

result of [1, Th. 1] where a weaker assertion is proved, namely, tha t  for every ZA+ set E 

there exists a constant c > 0 such tha t  if yJ is in C(~D) and ~ %  oo ]y3(n) ] exp (c ] n ]�89 < 0% 

then ~]~6A+(E). In  the same way, an analogous improvement of [1, Th. 2] is obtained. 

I f  R is a homogeneous Banach algebra on 3D which contains Ck(OD) for some integer 

k > 0 ,  then the proof of par t  (b) of Proposition 8 shows tha t  for every ZR + set E, 
lim~-.oo n- t  log He-*~~ =0.  Since this is in particular true for the algebra A of abso- 

lutely convergent Fourier series, we obtain a negative answer to the question raised in 

[1]. In  this connection we mention tha t  a ZA+ set E for which 

lim n-~ (log n)Z log I[~-'"~ = ~ ,  v~  > 1, 

is constructed in [19]. By virtue of these results one can ask whether for every sequence 

of positive numbers ~o lira c= (cn)~=l such tha t  = ~ ,  there exists a ZA + set E such tha t  

lim~_~ n-ic~ log ]]e-~nO]lA+(E)= co  We do not know the answer. 

8. Extensions of results and problems 

I f  T is a contraction in Hilbert  space such tha t  ~(T)={1} and limn_._~log II T~li/inl oo 

then by virtue of Theorems 3 and 4, it is no more possible to prove the existence of non 

trivial invariant subspaces for T by constructing a bounded analytic function / ~ 0 ,  

such tha t  / (T )= 0 .  In  this connection the following extension of Theorem 1 might be 

useful: 
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THEORE~ 1". Let T be an operator on a reflexive Banach space B with dual B*. 

Assume that a(T)={1} and that HTnH =0(nk), n--->oo /or some integer k>~O. I / there  exist 

non zero vectors x0EB and y0EB* such that 

(36) I(T~w0, Y0)l = O ( e x p  (clnl~'~)), n ~  - oo 

for some constant c > 0, then T has a non trivial invariant subspace. 

Condition (36) is much weaker than (3) and can be established in some concrete 

cases where (3) does not hold. I t  is also clear that  condition (36) is necessary for the 

existence of a non trivial invariant subspace for T, since if T has a non trivial invariant 

subspace so does T -1, and if x0E B is any non cyclic vector for T -x, then there exists 

y0#0  in B* such that  (T'~xo, Yo)=O, n=O, - 1 ,  - 2  .. . . .  

The proof of Theorem 1" depends on methods which are different from those used in 

this paper, and it will be given elsewhere. We only mention here that  in the proof of 

Theorem 1" we use also Theorem 1. 

Another result which we mention here without proof is the following: 

THEOREM. Let T be an operator on a Banach space such that ~r(T)={1} and assume 

that 

(37) 0 <  lira l~ 
=-, oo Inl ~ ~ "  

I1 I I~ l l  =O(p=) ,  n ~ o o  where (p=)r-o is a sequenee o! positive numbers such that 

~~ 1 log p~/ns/2< 0% then T has an uncountable chain o[ hyperinvariant subspaees. 

Thus in Theorem 1, condition (2) can be replaced for example by the condition: 

]] T~II = 0 (exp (ha)), n-+ oo for some 0 < g < �89 provided that  condition (37) holds. We do 

not know whether operators T which satisfy the above conditions admit non trivial 

analytic annihilating functions. The proof of the Theorem uses a different method, and 

will also be given elsewhere. 

We conclude with two problems. I t  is natural to ask, to what extent the converses 

of Theorem 3(%), Corollary 2(c) and Corollary 3(1) are true. More precisely we ask: 

Problem 1. Suppose that  T is a c.n.u, contraction acting on a Hilbert space, which 

satisfies condition (3) and assume that  a(T) is of measure zero (with respect to Lebesque 

measure on 8D). Is T a C O operator? 

Problem 2. Let T be an operator acting on a Banach space and assume that  T satisfies 

conditions (2) and (3) and that  (r(T) is a Carleson set. Is T in C~(H~) for some positive 

integer m? 
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Remark. I n  an  earl ier  vers ion of th is  pape r  we also asked whe ther  eve ry  c.n.u. 

con t rac t ion  ac t ing  on a Hf lber t  space, which satisfies condi t ion  (3) is in C 0. To this  

Professor  Cirpian Foias  gave  the  following counter  example :  

L e t  t l  be  the  H i lbe r t  space of all  funct ions  / in L~'(~D) such t h a t  

and  le t  T be the  opera to r  def ined on H b y  T/(e ~~ =e~~176 et~ /EH.  Then  T is a 

c.n.u, con t rac t ion  (cf. [22, Theorem 3 . 2 . ] ) a n d  [[T-~[[ = 0 ( n ) ,  n - ~ .  However ,  for eve ry  

~ E H  ~, ~(T)/=qJ/, / e l l  and  therefore  if ~ ( T ) = 0 ,  t hen  ~ = 0  a.e, t h a t  is T is no t  in C 0. 

I t  is easy  to  see t h a t  in th is  ease a ( T ) = ~ D .  
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